Sample records for teaching engineering students

  1. How to Make Mathematics Relevant to First-Year Engineering Students: Perceptions of Students on Student-Produced Resources

    ERIC Educational Resources Information Center

    Loch, Birgit; Lamborn, Julia

    2016-01-01

    Many approaches to make mathematics relevant to first-year engineering students have been described. These include teaching practical engineering applications, or a close collaboration between engineering and mathematics teaching staff on unit design and teaching. In this paper, we report on a novel approach where we gave higher year engineering…

  2. Students' attitudes towards interdisciplinary education: a course on interdisciplinary aspects of science and engineering education

    NASA Astrophysics Data System (ADS)

    Gero, Aharon

    2017-05-01

    A course entitled 'Science and Engineering Education: Interdisciplinary Aspects' was designed to expose undergraduate students of science and engineering education to the attributes of interdisciplinary education which integrates science and engineering. The core of the course is an interdisciplinary lesson, which each student is supposed to teach his/her peers. Sixteen students at advanced stages of their studies attended the course. The research presented here used qualitative instruments to characterise students' attitudes towards interdisciplinary learning and teaching of science and engineering. According to the findings, despite the significant challenge which characterises interdisciplinary teaching, a notable improvement was evident throughout the course in the percentage of students who expressed willingness to teach interdisciplinary classes in future.

  3. Student-driven courses on the social and ecological responsibilities of engineers : commentary on "student-inspired activities for the teaching and learning of engineering ethics".

    PubMed

    Baier, André

    2013-12-01

    A group of engineering students at the Technical University of Berlin, Germany, designed a course on engineering ethics. The core element of the developed Blue Engineering course are self-contained teaching-units, "building blocks". These building blocks typically cover one complex topic and make use of various teaching methods using moderators who lead discussions, rather than experts who lecture. Consequently, the students themselves started to offer the credited course to their fellow students who take an active role in further developing the course themselves.

  4. Discussion on teaching reform of environmental planning and management

    NASA Astrophysics Data System (ADS)

    Zhang, Qiugen; Chen, Suhua; Xie, Yu; Wei, Li'an; Ding, Yuan

    2018-05-01

    The curriculum of environmental planning and management is an environmental engineering major curriculum established by the teaching steering committee of environmental science and engineering of Education Ministry, which is the core curriculum of Chinese engineering education professional certification. It plays an important role in cultivating environmental planning and environmental management ability of environmental engineering major. The selection and optimization of the course teaching content of environmental planning and management were discussed which including curriculum teaching content updating and optimizing and teaching resource system construction. The comprehensive application of teaching method was discussed which including teaching method synthesis and teaching method. The final combination of the assessment method was also discussed which including the formative assessment normal grades and the final result of the course examination. Through the curriculum comprehensive teaching reform, students' knowledge had been broadened, the subject status and autonomy of learning had been enhanced, students' learning interest had been motivated, the ability of students' finding, analyzing and solving problems had been improved. Students' innovative ability and positive spirit had been well cultivated.

  5. Engineering Motion

    ERIC Educational Resources Information Center

    Tuttle, Nicole; Stanley, Wendy; Bieniek, Tracy

    2016-01-01

    For many teachers, engineering can be intimidating; teachers receive little training in engineering, particularly those teaching early elementary students. In addition, the necessity of differentiating for students with special needs can make engineering more challenging to teach. This article describes a professional development program…

  6. Teaching Engineering Ethics to PhD Students: A Berkeley-Delft Initiative : Commentary on "Ethics Across the Curriculum: Prospects for Broader (and Deeper) Teaching and Learning in Research and Engineering Ethics".

    PubMed

    Taebi, Behnam; Kastenberg, William E

    2016-07-13

    A joint effort by the University of California at Berkeley and Delft University of Technology to develop a graduate engineering ethics course for PhD students encountered two types of challenges: academic and institutional. Academically, long-term collaborative research efforts between engineering and philosophy faculty members might be needed before successful engineering ethics courses can be initiated; the teaching of ethics to engineering graduate students and collaborative research need to go hand-in-hand. Institutionally, both bottom-up approaches at the level of the faculty and as a joint research and teaching effort, and top-down approaches that include recognition by a University's administration and the top level of education management, are needed for successful and sustainable efforts to teach engineering ethics.

  7. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    ERIC Educational Resources Information Center

    Chiel, Hillel J.; McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge…

  8. The Research of Software Engineering Curriculum Reform

    NASA Astrophysics Data System (ADS)

    Kuang, Li-Qun; Han, Xie

    With the problem that software engineering training can't meet the needs of the community, this paper analysis some outstanding reasons in software engineering curriculum teaching, such as old teaching contents, weak in practice and low quality of teachers etc. We propose the methods of teaching reform as guided by market demand, update the teaching content, optimize the teaching methods, reform the teaching practice, strengthen the teacher-student exchange and promote teachers and students together. We carried out the reform and explore positive and achieved the desired results.

  9. A top-down approach in control engineering third-level teaching: The case of hydrogen-generation

    NASA Astrophysics Data System (ADS)

    Setiawan, Eko; Habibi, M. Afnan; Fall, Cheikh; Hodaka, Ichijo

    2017-09-01

    This paper presents a top-down approach in control engineering third-level teaching. The paper shows the control engineering solution for the issue of practical implementation in order to motivate students. The proposed strategy only focuses on one technique of control engineering to lead student correctly. The proposed teaching steps are 1) defining the problem, 2) listing of acquired knowledge or required skill, 3) selecting of one control engineering technique, 4) arrangement the order of teaching: problem introduction, implementation of control engineering technique, explanation of system block diagram, model derivation, controller design, and 5) enrichment knowledge by the other control techniques. The approach presented highlights hardware implementation and the use of software simulation as a self-learning tool for students.

  10. Engineering the future with America's high school students

    NASA Technical Reports Server (NTRS)

    Farrance, M. A.; Jenner, J. W.

    1993-01-01

    The number of students enrolled in engineering is declining while the need for engineers is increasing. One contributing factor is that most high school students have little or no knowledge about what engineering is, or what engineers do. To teach young students about engineering, engineers need good tools. This paper presents a course of study developed and used by the authors in a junior college course for high school students. Students learned about engineering through independent student projects, in-class problem solving, and use of career information resources. Selected activities from the course can be adapted to teach students about engineering in other settings. Among the most successful techniques were the student research paper assignments, working out a solution to an engineering problem as a class exercise, and the use of technical materials to illustrate engineering concepts and demonstrate 'tools of the trade'.

  11. Developing Teaching of Mathematics to First Year Engineering Students

    ERIC Educational Resources Information Center

    Jaworski, Barbara; Matthews, Janette

    2011-01-01

    Engineering Students Understanding Mathematics (ESUM) is a developmental research project at a UK university. The motivating aim is that engineering students should develop a more conceptual understanding of mathematics through their participation in an innovation in teaching. A small research team has both studied and contributed to innovation,…

  12. Creating the learning situation to promote student deep learning: Data analysis and application case

    NASA Astrophysics Data System (ADS)

    Guo, Yuanyuan; Wu, Shaoyan

    2017-05-01

    How to lead students to deeper learning and cultivate engineering innovative talents need to be studied for higher engineering education. In this study, through the survey data analysis and theoretical research, we discuss the correlation of teaching methods, learning motivation, and learning methods. In this research, we find that students have different motivation orientation according to the perception of teaching methods in the process of engineering education, and this affects their choice of learning methods. As a result, creating situations is critical to lead students to deeper learning. Finally, we analyze the process of learning situational creation in the teaching process of «bidding and contract management workshops». In this creation process, teachers use the student-centered teaching to lead students to deeper study. Through the study of influence factors of deep learning process, and building the teaching situation for the purpose of promoting deep learning, this thesis provide a meaningful reference for enhancing students' learning quality, teachers' teaching quality and the quality of innovation talent.

  13. Gaming, texting, learning? Teaching engineering ethics through students' lived experiences with technology.

    PubMed

    Voss, Georgina

    2013-09-01

    This paper examines how young peoples' lived experiences with personal technologies can be used to teach engineering ethics in a way which facilitates greater engagement with the subject. Engineering ethics can be challenging to teach: as a form of practical ethics, it is framed around future workplace experience in a professional setting which students are assumed to have no prior experience of. Yet the current generations of engineering students, who have been described as 'digital natives', do however have immersive personal experience with digital technologies; and experiential learning theory describes how students learn ethics more successfully when they can draw on personal experience which give context and meaning to abstract theories. This paper reviews current teaching practices in engineering ethics; and examines young people's engagement with technologies including cell phones, social networking sites, digital music and computer games to identify social and ethical elements of these practices which have relevance for the engineering ethics curricula. From this analysis three case studies are developed to illustrate how facets of the use of these technologies can be drawn on to teach topics including group work and communication; risk and safety; and engineering as social experimentation. Means for bridging personal experience and professional ethics when teaching these cases are discussed. The paper contributes to research and curriculum development in engineering ethics education, and to wider education research about methods of teaching 'the net generation'.

  14. Future Engineering Professors' Conceptions of Learning and Teaching Engineering

    ERIC Educational Resources Information Center

    Torres Ayala, Ana T.

    2012-01-01

    Conceptions of learning and teaching shape teaching practices and are, therefore, important to understanding how engineering professors learn to teach. There is abundant research about professors' conceptions of teaching; however, research on the conceptions of teaching of doctoral students, the future professors, is scarce. Furthermore,…

  15. Teaching Chemical Engineers about Teaching

    ERIC Educational Resources Information Center

    Heath, Daniel E.; Hoy, Mary; Rathman, James F.; Rohdieck, Stephanie

    2013-01-01

    The Chemical and Biomolecular Engineering Department at The Ohio State University in collaboration with the University Center for the Advancement of Teaching developed the Chemical Engineering Mentored Teaching Experience. The Mentored Teaching Experience is an elective for Ph.D. students interested in pursuing faculty careers. Participants are…

  16. Exploration of Engineering Students' Values with Respect to Behaviors in Group Work

    ERIC Educational Resources Information Center

    Nagel, Robert L.; Pappas, Eric C.; Swain, Matthew S.; Hazard, Gretchen A.

    2015-01-01

    In order to train young professionals, instructional methodologies in engineering need not only teach students knowledge, but must also instill the values and teach the behaviors--"competencies" students can demonstrate--required of professional practice. Herein, we focus on understanding the values and behaviors of students with respect…

  17. Cognition and thinking on Applied Optics course's reformation and innovation

    NASA Astrophysics Data System (ADS)

    Chen, Jingjing; Ji, Feng; Liu, Zhijian; Xia, Haojie; Shu, Shuangbao

    2017-08-01

    The course of "Applied Optics" is professional and foundational for the specialty of photo-electric information and engineering. According to the characteristics of the specialty, the teaching contents, teaching means, innovations and appraisal methods are mainly discussed in this paper. Firstly, one of the most difficult part to comprehend, the Fermat principle is taken as an example in the teaching content. By using the development history of optics and interesting natural phenomenon, students' understanding of the optical knowledge can be enhanced. Secondly, in various means of teaching art, ZEMAX provides students with a platform of training innovative consciousness and engineering capacity, and it make high cohesion in teaching and scientific research. Thirdly, in the teaching innovation, photoelectric contest can stimulate students' innovative thinking, innovation awareness, and cultivate undergraduate students' optics, mechanics, electricity, numerology integrated design capabilities. Lastly, the reform in the appraisal methods guide students from focusing on the examination results to pay attention to the learning process. Eventually, students' study interest has improved, demand of the engineering practice has adapted, and the well teaching effect has realized.

  18. Metstoich--Teaching Quantitative Metabolism and Energetics in Biochemical Engineering

    ERIC Educational Resources Information Center

    Wong, Kelvin W. W.; Barford, John P.

    2010-01-01

    Metstoich, a metabolic calculator developed for teaching, can provide a novel way to teach quantitative metabolism to biochemical engineering students. It can also introduce biochemistry/life science students to the quantitative aspects of life science subjects they have studied. Metstoich links traditional biochemistry-based metabolic approaches…

  19. 'To Go Boldly': Teaching Science Fiction to First-Year Engineering Students in a South African Context

    ERIC Educational Resources Information Center

    Manià, Kirby; Mabin, Linda Kathleen; Liebenberg, Jessica

    2018-01-01

    This paper reflects on the teaching of science fiction texts to first-year engineering students at the University of the Witwatersrand as part of a Critical Thinking course that uses literature as a vehicle through which to develop competence in critical literacy and communication. This course aims to equip engineering students, as future…

  20. Project-oriented teaching model about specialized courses in the information age

    NASA Astrophysics Data System (ADS)

    Chen, Xiaodong; Wang, Jinjiang; Tian, Qingguo; Wang, Yi; Cai, Huaiyu

    2017-08-01

    Specialized courses play a significant role in the usage of basic knowledge in the practical application for engineering college students. The engineering data available has sharply increased since the beginning of the information age in the 20th century, providing much more approaches to study and practice. Therefore, how to guide students to make full use of resources for active engineering practice learning has become one of the key problems for specialized courses. This paper took the digital image processing course for opto-electronic information science and technology major as an example, discussed the teaching model of specialized course in the information age, put forward the "engineering resource oriented model", and fostered the ability of engineering students to use the basic knowledge to innovate and deal with specific project objectives. The fusion of engineering examples into practical training and teaching encourages students to practice independent engineering thinking.

  1. Engineering students' and faculty perceptions of teaching methods and the level of faculty involvement that promotes academic success

    NASA Astrophysics Data System (ADS)

    Karpilo, Lacy N.

    Student academic success is a top priority of higher education institutions in the United States and the trend of students leaving school prior to finishing their degree is a serious concern. Accountability has become a large part of university and college ratings and perceived success. Retention is one component of the accountability metrics used by accreditation agencies. In addition, there are an increasing number of states allocating funds based in part on retention (Seidman, 2005). Institutions have created initiatives, programs, and even entire departments to address issues related to student academic success to promote retention. Universities and colleges have responded by focusing on methods to retain and better serve students. Retention and student academic success is a primary concern for high education institutions; however, engineering education has unique retention issues. The National Science Board (2004) reports a significant decline in the number of individuals in the United States who are training to become engineers, despite the fact that the number of jobs that utilize an engineering background continues to increase. Engineering education has responded to academic success issues by changing curriculum and pedagogical methods (Sheppard, 2001). This descriptive study investigates the perception of engineering students and faculty regarding teaching methods and faculty involvement to create a picture of what is occurring in engineering education. The population was the engineering students and faculty of Colorado State University's College of Engineering. Data from this research suggests that engaging teaching methods are not being used as often as research indicates they should and that there is a lack of student-faculty interaction outside of the classroom. This research adds to the breadth of knowledge and understanding of the current environment of engineering education. Furthermore, the data allows engineering educators and other higher education professionals to gain insight into the teaching methods currently being utilized in engineering and reinforces the importance of student-faculty interaction and thus facilitating the creation of programs or initiatives to improve student academic success.

  2. The Impact of Teaching Communication Strategies on English Speaking of Engineering Undergraduates

    ERIC Educational Resources Information Center

    Kongsom, Tiwaporn

    2016-01-01

    This study investigates the impact of teaching communication strategies on Thai engineering undergraduate students' communication strategy use and strategic competence. Fifty-seven engineering undergraduate students were taught ten communication strategies for ten weeks and responded to a self-report communication strategy questionnaire before and…

  3. Diversity Issues in the Engineering Curriculum

    ERIC Educational Resources Information Center

    Ihsen, Susanne; Gebauer, Sabrina

    2009-01-01

    Teaching engineering studies students about diversity issues as part of the curriculum in engineering programs is an essential part of preparing the students for their professional life. By teaching them what this is and what it means for their (professional) lives sensitises them towards more responsibility. The idea is to connect diversity…

  4. Teaching Engineering Design Through Paper Rockets

    ERIC Educational Resources Information Center

    Welling, Jonathan; Wright, Geoffrey A.

    2018-01-01

    The paper rocket activity described in this article effectively teaches the engineering design process (EDP) by engaging students in a problem-based learning activity that encourages iterative design. For example, the first rockets the students build typically only fly between 30 and 100 feet. As students test and evaluate their rocket designs,…

  5. Exploring Engineering instructors' views about writing and online tools to support communication in Engineering

    NASA Astrophysics Data System (ADS)

    Howard, Sarah K.; Khosronejad, Maryam; Calvo, Rafael A.

    2017-11-01

    To be fully prepared for the professional workplace, Engineering students need to be able to effectively communicate. However, there has been a growing concern in the field about students' preparedness for this aspect of their future work. It is argued that online writing tools, to engage numbers of students in the writing process, can support feedback on and development of writing in engineering on a larger scale. Through interviews and questionnaires, this study explores engineering academics' perceptions of writing to better understand how online writing tools may be integrated into their teaching. Results suggest that writing is viewed positively in the discipline, but it is not believed to be essential to success in engineering. Online writing tools were believed to support a larger number of students, but low knowledge of the tools limited academics' understanding of their usefulness in teaching and learning. Implications for innovation in undergraduate teaching are discussed.

  6. Teaching Agile Software Engineering Using Problem-Based Learning

    ERIC Educational Resources Information Center

    El-Khalili, Nuha H.

    2013-01-01

    Many studies have reported the utilization of Problem-Based Learning (PBL) in teaching Software Engineering courses. However, these studies have different views of the effectiveness of PBL. This paper presents the design of an Advanced Software Engineering course for undergraduate Software Engineering students that uses PBL to teach them Agile…

  7. Teaching Reform of Civil Engineering Materials Course Based on Project-Driven Pedagogy

    NASA Astrophysics Data System (ADS)

    Yidong, Xu; Wei, Chen; WeiguoJian, You; Jiansheng, Shen

    2018-05-01

    In view of the scattered experimental projects in practical courses of civil engineering materials, the poor practical ability of students and the disconnection between practical teaching and theoretical teaching, this paper proposes a practical teaching procedure. Firstly, the single experiment should be offered which emphasizes on improving the students’ basic experimental operating ability. Secondly, the compressive experiment is offered and the overall quality of students can be examined in the form of project team. In order to investigate the effect of teaching reform, the comparative analysis of the students of three grades (2014, 2015 and 2016) majored in civil engineering was conducted. The result shows that the students’ ability of experimental operation is obviously improved by using the project driven method-based teaching reform. Besides, the students’ ability to analyse and solve problems has also been improved.

  8. Hands-on curriculum teaches biomedical engineering concepts to home-schooled students.

    PubMed

    Sagstetter, Ann M; Nimunkar, Amit J; Tompkins, Willis J

    2009-01-01

    University level outreach has increased over the last decade to stimulate K-12 student interest in engineering related fields. Home schooling students are one of the groups that are valued for engineering admissions due to diligent study habits and high achievement scores. However, home schooled students have inadequate access to science, math, and engineering related resources, which precludes the development of interdisciplinary teaching methods. To address this problem, we have developed a hands-on, STEM based curriculum as a safe and comprehensive supplement to current home schooling curricula. The ultimate goal is to stimulate university-student relations and subsequently increase engineering recruitment opportunities. Our pre and post workshop survey comparisons demonstrate that integrating disciplines, via the manner presented in this study, provides a K-12 student-friendly engineering learning method.

  9. Cause-Effect Analysis: Improvement of a First Year Engineering Students' Calculus Teaching Model

    ERIC Educational Resources Information Center

    van der Hoff, Quay; Harding, Ansie

    2017-01-01

    This study focuses on the mathematics department at a South African university and in particular on teaching of calculus to first year engineering students. The paper reports on a cause-effect analysis, often used for business improvement. The cause-effect analysis indicates that there are many factors that impact on secondary school teaching of…

  10. Impact of distributed virtual reality on engineering knowledge retention and student engagement

    NASA Astrophysics Data System (ADS)

    Sulbaran, Tulio Alberto

    Engineering Education is facing many problems, one of which is poor knowledge retention among engineering students. This problem affects the Architecture, Engineering, and Construction (A/E/C) industry, because students are unprepared for many necessary job skills. This problem of poor knowledge retention is caused by many factors, one of which is the mismatch between student learning preferences and the media used to teach engineering. The purpose of this research is to assess the impact of Distributed Virtual Reality (DVR) as an engineering teaching tool. The implementation of DVR addresses the issue of poor knowledge retention by impacting the mismatch between learning and teaching style in the visual versus verbal spectrum. Using as a point of departure three knowledge domain areas (Learning and Instruction, Distributed Virtual Reality and Crane Selection as Part of Crane Lift Planning), a DVR engineering teaching tool is developed, deployed and assessed in engineering classrooms. The statistical analysis of the data indicates that: (1) most engineering students are visual learners; (2) most students would like more classes using DVR; (3) engineering students find DVR more engaging than traditional learning methods; (4) most students find the responsiveness of the DVR environments to be either good or very good; (5) all students are able to interact with DVR and most of the students found it easy or very easy to navigate (without previous formal training in how to use DVR); (6) students' knowledge regarding the subject (crane selection) is higher after the experiment; and, (7) students' using different instructional media do not demonstrate statistical difference in knowledge retained after the experiment. This inter-disciplinary research offers opportunities for direct and immediate application in education, research, and industry, due to the fact that the instructional module developed (on crane selection as part of construction crane lift planning) can be used to convey knowledge to engineers beyond the classrooms. This instructional module can also be used as a workbench to assess parameters on engineering education such as time on task, assessment media, and long-term retention among others.

  11. How to make mathematics relevant to first-year engineering students: perceptions of students on student-produced resources

    NASA Astrophysics Data System (ADS)

    Loch, Birgit; Lamborn, Julia

    2016-01-01

    Many approaches to make mathematics relevant to first-year engineering students have been described. These include teaching practical engineering applications, or a close collaboration between engineering and mathematics teaching staff on unit design and teaching. In this paper, we report on a novel approach where we gave higher year engineering and multimedia students the task to 'make maths relevant' for first-year students. This approach is novel as we moved away from the traditional thinking that staff should produce these resources to students producing the same. These students have more recently undertaken first-year mathematical study themselves and can also provide a more mature student perspective to the task than first-year students. Two final-year engineering students and three final-year multimedia students worked on this project over the Australian summer term and produced two animated videos showing where concepts taught in first-year mathematics are applied by professional engineers. It is this student perspective on how to make mathematics relevant to first-year students that we investigate in this paper. We analyse interviews with higher year students as well as focus groups with first-year students who had been shown the videos in class, with a focus on answering the following three research questions: (1) How would students demonstrate the relevance of mathematics in engineering? (2) What are first-year students' views on the resources produced for them? (3) Who should produce resources to demonstrate the relevance of mathematics? There seemed to be some disagreement between first- and final-year students as to how the importance of mathematics should be demonstrated in a video. We therefore argue that it should ideally be a collaboration between higher year students and first-year students, with advice from lecturers, to produce such resources.

  12. Integrator Element as a Promoter of Active Learning in Engineering Teaching

    ERIC Educational Resources Information Center

    Oliveira, Paulo C.; Oliveira, Cristina G.

    2014-01-01

    In this paper, we present a teaching proposal used in an Introductory Physics course to civil engineering students from Porto's Engineering Institute/Instituto Superior de Engenharia do Porto (ISEP). The proposal was born from the need to change students' perception and motivation for learning physics. It consists in the use of an integrator…

  13. Lecturers' Experiences of Teaching STEM to Students with Disabilities

    ERIC Educational Resources Information Center

    Ngubane-Mokiwa, S. A.; Khoza, S. B.

    2016-01-01

    Innovative teaching is a concept based on student-centred teaching strategies. Access to Science, Technology, Engineering and Mathematics (STEM) subjects has not been equitable due to use of traditional teaching strategies. These strategies tend to exclude students with disabilities who can effectively learn in environments that appropriately and…

  14. Learning-Centered Instruction of Engineering Graphics for Freshman Engineering Students

    ERIC Educational Resources Information Center

    Pucha, Raghuram V.; Utschig, Tristan T.

    2012-01-01

    Teaching "Engineering Graphics" to freshman engineering students poses challenges to instructors as well as to students. While the instructors are confronted with a lack of material / text book that covers the broad scope of the subject matter, the students struggle to correlate newly developed skills to real-world engineering design problems…

  15. Starting and Teaching Basic Robotics in the Classroom: Modern, Engaging Engineering in Technology Education

    ERIC Educational Resources Information Center

    Bianco, Andrew S.

    2014-01-01

    All technology educators have favorite lessons and projects that they most desire to teach. Many teachers might ask why teach robotics when there are many other concepts to cover with the students? The answer to this question is to engage students in science, technology, engineering, and math (commonly referred to as STEM) concepts. In order for…

  16. Exploration and practice in-class practice teaching mode

    NASA Astrophysics Data System (ADS)

    Zang, Xue-Ping; Wu, Wei-Feng

    2017-08-01

    According to the opto-electronic information science and engineering professional course characteristics and cultivate students' learning initiative, raised the teaching of photoelectric professional course introduce In-class practice teaching mode. By designing different In-class practice teaching content, the students' learning interest and learning initiative are improved, deepen students' understanding of course content and enhanced students' team cooperation ability. In-class practice teaching mode in the course of the opto-electronic professional teaching practice, the teaching effect is remarkable.

  17. Exploration on the matching between Optical Comprehensive Design Experiment and Washington Accord

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Chen, Wenjing; Zhang, Qican; Liu, Yuankun; Li, Dahai; Zhou, Xinzhi; Wei, Jun

    2017-08-01

    Common problems faced in optical comprehensive design experiment and going against the Washington Accord are pointed out. For resolving these problems, an instructional and innovative teaching scheme for Optics Comprehensive Design Experiment is proposed. We would like to understand the student that can improve the hands-on practical ability, theory knowledge understanding ability, complex problem solving ability, engineering application ability, cooperative ability after tracking and researching the student who have attended the class about Optical Comprehensive Design Experiment, We found that there are some problems on the course such as the experiment content vague, the student beginning less time, phase separation theory and engineering application, the experiment content lack of selectivity and so on. So we have made some improvements reference to the Washington Accord for the class teaching plan about Optical Comprehensive Design Experiment. This class must relevant to the engineering basic courses, professional foundation course and the major courses, so far as to the future study and work that which can play a role in inheriting and continuity to the students. The Optical Comprehensive Design Experiment teaching program requires students learning this course to have learnt basic courses like analog electronics technique, digital electronic technique, applied optics and computer and other related courses which students are required to comprehensively utilize. This teaching scheme contains six practical complex engineering problems which are respectively optical system design, light energy meter design, illuminometer design, material refractive index measuring system design, light intensity measuring system design and open design. Establishing the optional experiment and open experiment can provide students with a greater choice and enhance the students' creativity, vivid teaching experimental teachers and enriching contents of experiment can make the experiment more interesting, providing students with more opportunities to conduct experiment and improving students' practical ability with long learning time, putting emphasis on student's understanding of complex engineering problems and the cognitive of the process to solve complex engineering problems with actual engineering problems. Applying the scheme in other courses and improving accordingly will be able to ensure the quality of engineering education. Look forward to offering useful reference for the curriculum system construction in colleges and universities.

  18. Breaking Ground: Improving Undergraduate Engineering Projects through Flipped Teaching of Literature Search Techniques

    ERIC Educational Resources Information Center

    Maddison, Tasha; Beneteau, Donna; Sokoloski, Brandy

    2014-01-01

    This case study describes the use of flipped teaching for information literacy instruction in a new course, "Drill, Blast, and Excavate GeoE 498," within the mining option for geological engineering (GeoE) students. These students will enter the mining industry with less discipline-specific knowledge than a student that graduated with a…

  19. Teaching science, technology, and society to engineering students: a sixteen year journey.

    PubMed

    Ozaktas, Haldun M

    2013-12-01

    The course Science, Technology, and Society is taken by about 500 engineering students each year at Bilkent University, Ankara. Aiming to complement the highly technical engineering programs, it deals with the ethical, social, cultural, political, economic, legal, environment and sustainability, health and safety, reliability dimensions of science, technology, and engineering in a multidisciplinary fashion. The teaching philosophy and experiences of the instructor are reviewed. Community research projects have been an important feature of the course. Analysis of teaching style based on a multi-dimensional model is given. Results of outcome measurements performed for ABET assessment are provided. Challenges and solutions related to teaching a large class are discussed.

  20. Design-Build-Write: Increasing the Impact of English for Specific Purposes Learning and Teaching in Aeronautical Engineering Education through Multiple Intelligences Task Design

    ERIC Educational Resources Information Center

    Tatzl, Dietmar

    2011-01-01

    This article presents an English for Specific Purposes (ESP) task developed for teaching aeronautical engineering students. The task Design-Build-Write rests on the assumption that engineering students are skilled at mathematical reasoning, problem solving, drawing and constructing. In Gardner's 1983 Multiple Intelligences (MI) theory, these…

  1. The Role of Gender in Students' Ratings of Teaching Quality in Computer Science and Environmental Engineering

    ERIC Educational Resources Information Center

    Price, Linda; Svensson, Ingrid; Borell, Jonas; Richardson, John T. E.

    2017-01-01

    Students' ratings of teaching quality on course units in a computer science program and an environmental engineering program at a large Swedish university were obtained using the Course Experience Questionnaire; 8888 sets of ratings were obtained from men and 4280 sets were obtained from women over ten academic years. These student ratings from…

  2. The Scholarship of Teaching: The CEET Initiative on Teaching and Learning. A Faculty Development Program on Teaching and Learning and Classroom Research. Volumes 1-4. October 2005-December 2006

    ERIC Educational Resources Information Center

    Scarborough, Jule Dee

    2007-01-01

    This Northern Illinois University College of Engineering and Engineering Technology (CEET) initiative represents the authors' first attempt to prepare engineering and technology professors for teaching to improve student learning and the Scholarship of Teaching. This college portfolio is nontraditional in that it combines a learning paper approach…

  3. Reaching Students: What Research Says about Effective Instruction in Undergraduate Science and Engineering

    ERIC Educational Resources Information Center

    Kober, Nancy

    2015-01-01

    The undergraduate years are a turning point in producing scientifically literate citizens and future scientists and engineers. Evidence from research about how students learn science and engineering shows that teaching strategies that motivate and engage students will improve their learning. So how do students best learn science and engineering?…

  4. Teaching Engineering Students Team Work

    NASA Technical Reports Server (NTRS)

    Levi, Daniel

    1998-01-01

    The purpose of this manual is to provide professor's in engineering classes which the background necessary to use student team projects effectively. This manual describes some of the characteristics of student teams and how to use them in class. It provides a set of class activities and films which can be used to introduce and support student teams. Finally, a set of teaching modules used in freshmen, sophomore, and senior aeronautical engineering classes are presented. This manual was developed as part of a NASA sponsored project to improve the undergraduate education of aeronautical engineers. The project has helped to purchase a set of team work films which can be checked out from Cal Poly's Learning Resources Center in the Kennedy Library. Research for this project has included literature reviews on team work and cooperative learning; interviews, observations, and surveys of Cal Poly students from Industrial and Manufacturing Engineering, Aeronautical Engineering and Psychology; participation in the Aeronautical Engineering senior design lab; and interviews with engineering faculty. In addition to this faculty manual, there is a student team work manual which has been designed to help engineering students work better in teams.

  5. Decoding Student Satisfaction: How to Manage and Improve the Laboratory Experience

    ERIC Educational Resources Information Center

    Nikolic, Sasha; Ritz, Christian; Vial, Peter James; Ros, Montserrat; Stirling, David

    2015-01-01

    The laboratory plays an important role in teaching engineering skills. An Electrical Engineering department at an Australian University implemented a reform to monitor and improve student satisfaction with the teaching laboratories. A Laboratory Manager was employed to oversee the quality of 27 courses containing instructional laboratories.…

  6. Web Tools: Keeping Learners on Pace

    ERIC Educational Resources Information Center

    Kosloski, Mickey

    2016-01-01

    One of the greatest challenges in teaching technology and engineering is pacing. Some students grasp new technological concepts quickly, while others need repetition and may struggle to keep pace. This poses an obstacle for the technology and engineering teacher, and is particularly true when teaching students to build a website. However, there…

  7. Enhancement of Teaching and Learning of the Fundamentals of Nuclear Engineering Using Multimedia Courseware.

    ERIC Educational Resources Information Center

    Keyvan, Shahla A.; Pickard, Rodney; Song, Xiaolong

    1997-01-01

    Computer-aided instruction incorporating interactive multimedia and network technologies can boost teaching effectiveness and student learning. This article describes the development and implementation of network server-based interactive multimedia courseware for a fundamental course in nuclear engineering. A student survey determined that 80% of…

  8. TEACHING ENGINEERING DESIGN, A STUDY OF JOBSHOP.

    ERIC Educational Resources Information Center

    ENTWISLE, DORIS R.; HUGGINS, W.H.

    THE USE OF A COMPUTER PROGRAM BY ENGINEERING STUDENTS TO SIMULATE A JOB SHOP THAT MANUFACTURES ELECTRONIC DEVICES HAS INDICATED THAT SIMULATION METHODS OFFER REALISTIC ASSISTANCE IN TEACHING. EACH STUDENT IN THE STUDY SUBMITTED SPECIFICATIONS FOR A CIRCUIT DESIGN AND, FROM THE COMPUTER, RECEIVED PERFORMANCE ASSESSMENTS OF THE CIRCUIT WHICH…

  9. Teaching Statistics in Labor, Social, Juridical or Economic Studies

    ERIC Educational Resources Information Center

    Navarrete-Alvarez, Esteban; Rosales-Moreno, Maria Jesus; Huete-Morales, Maria Dolores

    2010-01-01

    Statistics teaching should not be carried out in the same way for all kinds of university students. Instead, teaching statistics should take into account the different fields of study that students have chosen. For example, students of sciences or engineering have different interests and backgrounds compared to students of any social or juridical…

  10. Engineering for Liberal Arts and Engineering Students.

    ERIC Educational Resources Information Center

    The Weaver, 1986

    1986-01-01

    Describes courses designed to develop approaches for teaching engineering concepts, applied mathematics and computing skills to liberal arts undergraduates, and to teach the history of scientific and technological innovation and application to engineering and science majors. Discusses courses, course materials, enrichment activities, and…

  11. Development of Science and Mathematics Education System Including Teaching Experience of Students in Local Area

    NASA Astrophysics Data System (ADS)

    Kage, Hiroyuki

    New reformation project on engineering education, which is supported from 2005 to 2008FY by Support Program for Contemporary Educational Needs of Ministry of Education, Culture, Sports, Science and Technology, started in Kyushu Institute of Technology. In this project, teaching experience of students is introduced into the curriculum of Faculty of Engineering. In the curriculum students try to prepare teaching materials and to teach local school pupils with them by themselves. Teaching experience is remarkably effective for them to strengthen their self-dependence and learning motivation. Science Education Center, Science Laboratory and Super Teachers College were also organized to promote the area cooperation on the education of science and mathematics.

  12. Convergence and translation: attitudes to inter-professional learning and teaching of creative problem-solving among medical and engineering students and staff.

    PubMed

    Spoelstra, Howard; Stoyanov, Slavi; Burgoyne, Louise; Bennett, Deirdre; Sweeney, Catherine; Drachsler, Hendrik; Vanderperren, Katrien; Van Huffel, Sabine; McSweeney, John; Shorten, George; O'Flynn, Siun; Cantillon-Murphy, Padraig; O'Tuathaigh, Colm

    2014-01-22

    Healthcare worldwide needs translation of basic ideas from engineering into the clinic. Consequently, there is increasing demand for graduates equipped with the knowledge and skills to apply interdisciplinary medicine/engineering approaches to the development of novel solutions for healthcare. The literature provides little guidance regarding barriers to, and facilitators of, effective interdisciplinary learning for engineering and medical students in a team-based project context. A quantitative survey was distributed to engineering and medical students and staff in two universities, one in Ireland and one in Belgium, to chart knowledge and practice in interdisciplinary learning and teaching, and of the teaching of innovation. We report important differences for staff and students between the disciplines regarding attitudes towards, and perceptions of, the relevance of interdisciplinary learning opportunities, and the role of creativity and innovation. There was agreement across groups concerning preferred learning, instructional styles, and module content. Medical students showed greater resistance to the use of structured creativity tools and interdisciplinary teams. The results of this international survey will help to define the optimal learning conditions under which undergraduate engineering and medicine students can learn to consider the diverse factors which determine the success or failure of a healthcare engineering solution.

  13. Convergence and translation: attitudes to inter-professional learning and teaching of creative problem-solving among medical and engineering students and staff

    PubMed Central

    2014-01-01

    Background Healthcare worldwide needs translation of basic ideas from engineering into the clinic. Consequently, there is increasing demand for graduates equipped with the knowledge and skills to apply interdisciplinary medicine/engineering approaches to the development of novel solutions for healthcare. The literature provides little guidance regarding barriers to, and facilitators of, effective interdisciplinary learning for engineering and medical students in a team-based project context. Methods A quantitative survey was distributed to engineering and medical students and staff in two universities, one in Ireland and one in Belgium, to chart knowledge and practice in interdisciplinary learning and teaching, and of the teaching of innovation. Results We report important differences for staff and students between the disciplines regarding attitudes towards, and perceptions of, the relevance of interdisciplinary learning opportunities, and the role of creativity and innovation. There was agreement across groups concerning preferred learning, instructional styles, and module content. Medical students showed greater resistance to the use of structured creativity tools and interdisciplinary teams. Conclusions The results of this international survey will help to define the optimal learning conditions under which undergraduate engineering and medicine students can learn to consider the diverse factors which determine the success or failure of a healthcare engineering solution. PMID:24450310

  14. Design of Smart Educational Robot as a Tool For Teaching Media Based on Contextual Teaching and Learning to Improve the Skill of Electrical Engineering Student

    NASA Astrophysics Data System (ADS)

    Zuhrie, M. S.; Basuki, I.; Asto, B. I. G. P.; Anifah, L.

    2018-04-01

    The development of robotics in Indonesia has been very encouraging. The barometer is the success of the Indonesian Robot Contest. The focus of research is a teaching module manufacturing, planning mechanical design, control system through microprocessor technology and maneuverability of the robot. Contextual Teaching and Learning (CTL) strategy is the concept of learning where the teacher brings the real world into the classroom and encourage students to make connections between knowledge possessed by its application in everyday life. This research the development model used is the 4-D model. This Model consists of four stages: Define Stage, Design Stage, Develop Stage, and Disseminate Stage. This research was conducted by applying the research design development with the aim to produce a tool of learning in the form of smart educational robot modules and kit based on Contextual Teaching and Learning at the Department of Electrical Engineering to improve the skills of the Electrical Engineering student. Socialization questionnaires showed that levels of the student majoring in electrical engineering competencies image currently only limited to conventional machines. The average assessment is 3.34 validator included in either category. Modules developed can give hope to the future are able to produce Intelligent Robot Tool for Teaching.

  15. Mathematics and its value for engineering students: what are the implications for teaching?

    NASA Astrophysics Data System (ADS)

    Harris, Diane; Black, Laura; Hernandez-Martinez, Paul; Pepin, Birgit; Williams, Julian; with the TransMaths Team

    2015-04-01

    Mathematics has long been known to be problematic for university engineering students and their teachers, for example, Scanlan.[1] This paper presents recent data gathered from interviews with engineering students who experienced problems with mathematics and their lecturers during their transition through the first year in different programme contexts. Our interviews with the students reveal how they understand the relation between engineering and mathematics and we draw on the concept of 'use- and exchange-value' to explore this relationship more fully. This paper challenges both the pedagogical practice of teaching non-contextualized mathematics and the lack of transparency regarding the significance of mathematics to engineering. We conclude that the value of mathematics in engineering remains a central problem, and argue that mathematics should be a fundamental concern in the design and practice of first-year engineering.

  16. A Design of Innovative Engineering Drawing Teaching Materials

    NASA Astrophysics Data System (ADS)

    Mujiarto; Djohar, A.; Komaro, M.

    2018-02-01

    Good teaching is influenced by several things such as effective school leaders and skilled teachers who are able to use information communication technology as a medium of learning. The purpose of this research in general is to develop innovative teaching materials in the form of multimedia animation for engineering drawing in the field of technology and engineering at vocational high school. Research method used research and development (research and development / R & D). The results showed that the E-book Multimedia Animation Engineering Drawing (E-MMAED) is easy to possess and contains complete material. Students stated that the use of E-MMAED adds to learning motivation and improves learning outcomes (student competencies). We recommend that teachers apply E-MMAED as a learning medium and create other innovations to improve student competences.

  17. Effectiveness of Cooperative Learning (Jigsaw II) Method in Teaching English as a Foreign Language to Engineering Students (Case of Firat University, Turkey)

    ERIC Educational Resources Information Center

    Gomleksiz, M. N.

    2007-01-01

    The present study compares the effects of the cooperative jigsaw II method and traditional teacher-centred teaching method on improving vocabulary knowledge and active-passive voice in English as a foreign language for engineering students and the students' attitudes towards learning English. Jigsaw is a cooperative learning model that involves…

  18. Exploration and practice for engineering innovative talents training based on project-driven

    NASA Astrophysics Data System (ADS)

    Xu, Yishen; Lv, Qingsong; Ye, Yan; Wu, Maocheng; Gu, Jihua

    2017-08-01

    As one of the "excellent engineer education program" of the Ministry of Education and one of the characteristic majors of Jiangsu Province, the major of optoelectronic information science and engineering in Soochow University has a long history and distinctive features. In recent years, aiming to the talents training objective of "broad foundation, practiceoriented, to be creative", education and teaching reforms have been carried out, which emphasize basis of theoretical teaching, carrier of practical training, promotion of projects and discussion, and development of second class. By optimizing the teaching contents and course system of the theoretical courses, the engineering innovative talents training mode based on the project-driven has been implemented with playing a practical training carrier role and overall managing the second class teaching for cultivating students' innovative spirit and practical ability. Meanwhile, the evaluation mechanism of the students' comprehensive performance mainly based on "scores of theory test" is being gradually changed, and the activities such as scientific research, discipline competitions and social practices are playing an increasing important role in the students' comprehensive assessment. The produced achievements show that the proposed training model based on project-driven could stimulate the students' enthusiasm and initiative to participate in research activities and promote the training of students' ability of engineering practice and consciousness of innovation.

  19. An appraisal of an online tutorial system for the teaching and learning of engineering physics in conjunction with contextual physics and mathematics, and relevant mathematics

    NASA Astrophysics Data System (ADS)

    Bhathal, Ragbir

    2016-09-01

    The number of students entering engineering schools in Australian universities has increased tremendously over the last few years because of the Australian Federal Government's policy of increasing the participation rates of Higher School Certificate students and students from low social economic status backgrounds in the tertiary sector. They now come with a diverse background of skills, motivations and prior knowledge. It is imperative that new methods of teaching and learning be developed. This paper describes an online tutorial system used in conjunction with contextual physics and mathematics, and the revision of the relevant mathematical knowledge at the appropriate time before a new topic is introduced in the teaching and learning of engineering physics. Taken as a whole, this study shows that students not only improved their final examination results but there was also an increase in the retention rate of first-year engineering students which has financial implications for the university.

  20. Simulation teaching method in Engineering Optics

    NASA Astrophysics Data System (ADS)

    Lu, Qieni; Wang, Yi; Li, Hongbin

    2017-08-01

    We here introduce a pedagogical method of theoretical simulation as one major means of the teaching process of "Engineering Optics" in course quality improvement action plan (Qc) in our school. Students, in groups of three to five, complete simulations of interference, diffraction, electromagnetism and polarization of light; each student is evaluated and scored in light of his performance in the interviews between the teacher and the student, and each student can opt to be interviewed many times until he is satisfied with his score and learning. After three years of Qc practice, the remarkable teaching and learning effect is obatined. Such theoretical simulation experiment is a very valuable teaching method worthwhile for physical optics which is highly theoretical and abstruse. This teaching methodology works well in training students as to how to ask questions and how to solve problems, which can also stimulate their interest in research learning and their initiative to develop their self-confidence and sense of innovation.

  1. Broadening ethics teaching in engineering: beyond the individualistic approach.

    PubMed

    Conlon, Eddie; Zandvoort, Henk

    2011-06-01

    There is a widespread approach to the teaching of ethics to engineering students in which the exclusive focus is on engineers as individual agents and the broader context in which they do their work is ignored. Although this approach has frequently been criticised in the literature, it persists on a wide scale, as can be inferred from accounts in the educational literature and from the contents of widely used textbooks in engineering ethics. In this contribution we intend to: (1) Restate why the individualistic approach to the teaching of ethics to engineering students is inadequate in view of preparing them for ethical, professional and social responsibility; (2) Examine the existing literature regarding the possible contribution of Science, Technology and Society (STS) scholarship in addressing the inadequacies of the individualistic approach; and (3) Assess this possible contribution of STS in order to realise desired learning outcomes regarding the preparation of students for ethical and social responsibility.

  2. Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants Teaching Self-Efficacy

    ERIC Educational Resources Information Center

    DeChenne, Sue Ellen; Enochs, Larry G.; Needham, Mark

    2012-01-01

    The graduate experience is a critical time for development of academic faculty, but often there is little preparation for teaching during the graduate career. Teaching self-efficacy, an instructor's belief in his or her ability to teach students in a specific context, can help to predict teaching behavior and student achievement, and can be used…

  3. An Interdisciplinary Laboratory to Teach Experimentation. Final Report.

    ERIC Educational Resources Information Center

    Schenck, Hilbert, Jr.

    The author views the primary purpose of the modern engineering laboratory as teaching the student how to experiment. An attempt is made to update the engineering laboratory and make it generally meaningful for all students, whether headed for graduate school or an industrial job. The intent is to broaden the experimental picture so that students…

  4. "Star Power" for Teaching Professional Skills to Engineering Students

    ERIC Educational Resources Information Center

    Goh, Suk Meng

    2012-01-01

    The objective of this study is to evaluate the potential of a game called "Star Power" to teach professional skills to mechanical engineering undergraduates. The game was conducted as an activity in a final year Professional Practice unit. A survey in the form of a questionnaire was administered to participating students in the following…

  5. Teaching Engineering Statistics with Technology, Group Learning, Contextual Projects, Simulation Models and Student Presentations

    ERIC Educational Resources Information Center

    Romeu, Jorge Luis

    2008-01-01

    This article discusses our teaching approach in graduate level Engineering Statistics. It is based on the use of modern technology, learning groups, contextual projects, simulation models, and statistical and simulation software to entice student motivation. The use of technology to facilitate group projects and presentations, and to generate,…

  6. Coherent Teaching and Need-Based Learning in Science: An Approach to Teach Engineering Students in Basic Physics Courses

    ERIC Educational Resources Information Center

    Kurki-Suonio, T.; Hakola, A.

    2007-01-01

    In the present paper, we propose an alternative, based on constructivism, to the conventional way of teaching basic physics courses at the university level. We call this approach "coherent teaching" and the underlying philosophy of teaching science and engineering "need-based learning". We have been applying this philosophy in…

  7. Socialization Experiences Resulting from Doctoral Engineering Teaching Assistantships

    ERIC Educational Resources Information Center

    Mena, Irene B.; Diefes-Dux, Heidi A.; Capobianco, Brenda M.

    2013-01-01

    The purpose of this study was to explore and characterize the types of socialization experiences that result from engineering teaching assistantships. Using situated learning and communities of practice as the theoretical framework, this study highlights the experiences of 28 engineering doctoral students who worked as engineering teaching…

  8. Using Student Video Cases to Assess Pre-service Elementary Teachers' Engineering Teaching Responsiveness

    NASA Astrophysics Data System (ADS)

    Dalvi, Tejaswini; Wendell, Kristen

    2017-10-01

    Our study addresses the need for new approaches to prepare novice elementary teachers to teach both science and engineering, and for new tools to measure how well those approaches are working. This in particular would inform the teacher educators of the extent to which novice teachers are developing expertise in facilitating their students' engineering design work. One important dimension to measure is novice teachers' abilities to notice the substance of student thinking and to respond in productive ways. This teacher noticing is particularly important in science and engineering education, where students' initial, idiosyncratic ideas and practices influence the likelihood that particular instructional strategies will help them learn. This paper describes evidence of validity and reliability for the Video Case Diagnosis (VCD) task, a new instrument for measuring pre-service elementary teachers' engineering teaching responsiveness. To complete the VCD, participants view a 6-min video episode of children solving an engineering design problem, describe in writing what they notice about the students' science ideas and engineering practices, and propose how a teacher could productively respond to the students. The rubric for scoring VCD responses allowed two independent scorers to achieve inter-rater reliability. Content analysis of the video episode, systematic review of literature on science and engineering practices, and solicitation of external expert educator responses establish content validity for VCD. Field test results with three different participant groups who have different levels of engineering education experience offer evidence of construct validity.

  9. Creating meaningful learning experiences: Understanding students' perspectives of engineering design

    NASA Astrophysics Data System (ADS)

    Aleong, Richard James Chung Mun

    There is a societal need for design education to prepare holistic engineers with the knowledge, skills, and attitudes to innovate and compete globally. Design skills are paramount to the espoused values of higher education, as institutions of higher learning strive to develop in students the cognitive abilities of critical thinking, problem solving, and creativity. To meet these interests from industry and academia, it is important to advance the teaching and learning of engineering design. This research aims to understand how engineering students learn and think about design, as a way for engineering educators to optimize instructional practice and curriculum development. Qualitative research methodology was used to investigate the meaning that engineering students' ascribe to engineering design. The recruitment of participants and corresponding collection of data occurred in two phases using two different data collection techniques. The first phase involved the distribution of a one-time online questionnaire to all first year, third year, and fourth year undergraduate engineering students at three Canadian Universities. After the questionnaire, students were asked if they would be willing to participate in the second phase of data collection consisting of a personal interview. A total of ten students participated in interviews. Qualitative data analysis procedures were conducted on students' responses from the questionnaire and interviews. The data analysis process consisted of two phases: a descriptive phase to code and categorize the data, followed by an interpretative phase to generate further meaning and relationships. The research findings present a conceptual understanding of students' descriptions about engineering design, structured within two educational orientations: a learning studies orientation and a curriculum studies orientation. The learning studies orientation captured three themes of students' understanding of engineering design: awareness, relevance, and transfer. With this framework of student learning, engineering educators can enhance learning experiences by engaging all three levels of students' understanding. The curriculum studies orientation applied the three holistic elements of curriculum---subject matter, society, and the individual---to conceptualize design considerations for engineering curriculum and teaching practice. This research supports the characterization of students' learning experiences to help educators and students optimize their teaching and learning of design education.

  10. Engineering Student's Ethical Awareness and Behavior: A New Motivational Model.

    PubMed

    Bairaktarova, Diana; Woodcock, Anna

    2017-08-01

    Professional communities are experiencing scandals involving unethical and illegal practices daily. Yet it should not take a national major structure failure to highlight the importance of ethical awareness and behavior, or the need for the development and practice of ethical behavior in engineering students. Development of ethical behavior skills in future engineers is a key competency for engineering schools as ethical behavior is a part of the professional identity and practice of engineers. While engineering educators have somewhat established instructional methods to teach engineering ethics, they still rely heavily on teaching ethical awareness, and pay little attention to how well ethical awareness predicts ethical behavior. However the ability to exercise ethical judgement does not mean that students are ethically educated or likely to behave in an ethical manner. This paper argues measuring ethical judgment is insufficient for evaluating the teaching of engineering ethics, because ethical awareness has not been demonstrated to translate into ethical behavior. The focus of this paper is to propose a model that correlates with both, ethical awareness and ethical behavior. This model integrates the theory of planned behavior, person and thing orientation, and spheres of control. Applying this model will allow educators to build confidence and trust in their students' ability to build a professional identity and be prepared for the engineering profession and practice.

  11. Teaching smartphone and microcontroller systems using "Android Java"

    NASA Astrophysics Data System (ADS)

    Tigrek, Seyitriza

    Mobile devices are becoming indispensable tools for many students and educators. Mobile technology is starting a new era in the computing methodologies in many engineering disciplines and laboratories. Microcontroller extension that communicates with mobile devices will take the data acquisition and control process into a new level in the sensing technology and communication. The purpose of this thesis is to develop a framework to incorporate the new mobile platform with robust embedded systems into the engineering curriculum. For this purpose a course material is developed "Introduction to Programming Java on a Mobile Platform" to teach novice programmers how to create applications, specifically on Android. Combining an introductory level programming class with the Android platform can appeal to non-programming individuals in multiple disciplines. The proposed course curriculum reduces the learning time, and allows senior engineering students to use the new framework for their specific needs in the labs such as mobile data acquisition and control projects. This work provides techniques for instructors with modest programming background to teach cutting edge technology, which is smartphone programming. Techniques developed in this work minimize unnecessary information carried into current teaching approaches with hands-on practice. It also helps the students with minimal background requirements overcome the barriers that have evolved around computer programming. The motivation of this thesis is to create a tailored programming introductory course to teach Java programming on Android by incorporating selected efficient methods from extant literature. The mechanism proposed in this thesis is to keep students motivated by an active approach based on student-centered learning with collaborative work. Teamwork through pair programming is adapted in this teaching process. Bloom's taxonomy, along with a knowledge survey, is used as a guide to classify the information and exercise problems. A prototype curriculum is a deliverable of this research that is suitable for novice programmers-such as engineering freshmen students. It also contains advanced material that allows senior students to use mobile phone and a microcontroller system to enhance engineering laboratories.

  12. Project-Based Curriculum for Teaching Analytical Design to Freshman Engineering Students via Reconfigurable Trebuchets

    ERIC Educational Resources Information Center

    Herber, Daniel R.; Deshmukh, Anand P.; Mitchell, Marlon E.; Allison, James T.

    2016-01-01

    This paper presents an effort to revitalize a large introductory engineering course for incoming freshman students that teaches them analytical design through a project-based curriculum. This course was completely transformed from a seminar-based to a project-based course that integrates hands-on experimentation with analytical work. The project…

  13. Improving Science Scores of Middle School Students with Learning Disabilities through Engineering Problem Solving Activities

    ERIC Educational Resources Information Center

    Starling, A. Leyf Peirce; Lo, Ya-Yu; Rivera, Christopher J.

    2015-01-01

    This study evaluated the differential effects of three different science teaching methods, namely engineering teaching kit (ETK), explicit instruction (EI), and a combination of the two methods (ETK+EI), in two sixth-grade science classrooms. Twelve students with learning disabilities (LD) and/or attention deficit hyperactivity disorder (ADHD)…

  14. Meeting the expectation of industry: an integrated approach for the teaching of mechanics and electronics to design students

    NASA Astrophysics Data System (ADS)

    Bingham, Guy A.; Southee, Darren J.; Page, Tom

    2015-07-01

    This paper examines the traditional engineering-based provision delivered to Product Design and Technology (B.Sc.) undergraduates at the Loughborough Design School and questions its relevancy against the increasing expectations of industry. The paper reviews final-year design projects to understand the level of transference of engineering-based knowledge into design practice and highlights areas of opportunity for improved teaching and learning. The paper discusses the development and implementation of an integrated approach to the teaching of Mechanics and Electronics to formalise and reinforce the key learning process of transference within the design context. The paper concludes with observations from the delivery of this integrated teaching and offers insights from student and academic perspectives for the further improvement of engineering-based teaching and learning.

  15. From biology to mathematical models and back: teaching modeling to biology students, and biology to math and engineering students.

    PubMed

    Chiel, Hillel J; McManus, Jeffrey M; Shaw, Kendrick M

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a "live" textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology.

  16. The effect of context on student engagement in engineering

    NASA Astrophysics Data System (ADS)

    Patterson, Eann A.; Campbell, Patricia B.; Busch-Vishniac, Ilene; Guillaume, Darrell W.

    2011-06-01

    The self-belief, motivation, tendency to procrastinate and learning styles of engineering students are discussed. It is proposed that engineering has developed an idiom and a learning approach that favours the dominant client, i.e. men, while simultaneously undermining the self-efficacy and motivation of women. Thematic coherence and teaching within a context that is familiar to students have been shown previously to be effective approaches for engaging students and are extended here to utilise the common experiences of all students to initiate the learning cycle. These approaches are combined with a template for teaching that uses the 5Es (Engage, Explore, Explain, Elaborate and Evaluate) in order to render the fundamentals of engineering more accessible to all students. This methodology can be introduced by individual instructors, who will be rewarded by students who are more engaged, more motivated and more likely to give a higher rating to the instructor and the course.

  17. OJPOT: online judge & practice oriented teaching idea in programming courses

    NASA Astrophysics Data System (ADS)

    Wang, Gui Ping; Chen, Shu Yu; Yang, Xin; Feng, Rui

    2016-05-01

    Practical abilities are important for students from majors including Computer Science and Engineering, and Electrical Engineering. Along with the popularity of ACM International Collegiate Programming Contest (ACM/ICPC) and other programming contests, online judge (OJ) websites achieve rapid development, thus providing a new kind of programming practice, i.e. online practice. Due to fair and timely feedback results from OJ websites, online practice outperforms traditional programming practice. In order to promote students' practical abilities in programming and algorithm designing, this article presents a novel teaching idea, online judge & practice oriented teaching (OJPOT). OJPOT is applied to Programming Foundation course. OJPOT cultivates students' practical abilities through various kinds of programming practice, such as programming contests, online practice and course project. To verify the effectiveness of this novel teaching idea, this study conducts empirical research. The experimental results show that OJPOT works effectively in enhancing students' practical abilities compared with the traditional teaching idea.

  18. More than Just a Game: The Role of Simulation in The Teaching of Product Design and Entrepreneurship to Mechanical Engineering Students

    ERIC Educational Resources Information Center

    Costello, Gabriel J.

    2017-01-01

    The purpose of this work is to contribute to the debate on the best pedagogical approach to developing undergraduate mechanical engineering skills to meet the requirements of contemporary complex working environments. The paper provides an example of using student-entrepreneur collaboration in the teaching of modules to Mechanical Engineering…

  19. Using Student Video Cases to Assess Pre-Service Elementary Teachers' Engineering Teaching Responsiveness

    ERIC Educational Resources Information Center

    Dalvi, Tejaswini; Wendell, Kristen

    2017-01-01

    Our study addresses the need for new approaches to prepare novice elementary teachers to teach both science and engineering, and for new tools to measure how well those approaches are working. This in particular would inform the teacher educators of the extent to which novice teachers are developing expertise in facilitating their students'…

  20. Engineering Ethics Education: A Comparative Study of Japan and Malaysia.

    PubMed

    Balakrishnan, Balamuralithara; Tochinai, Fumihiko; Kanemitsu, Hidekazu

    2018-03-22

    This paper reports the findings of a comparative study in which students' perceived attainment of the objectives of an engineering ethics education and their attitude towards engineering ethics were investigated and compared. The investigation was carried out in Japan and Malaysia, involving 163 and 108 engineering undergraduates respectively. The research method used was based on a survey in which respondents were sent a questionnaire to elicit relevant data. Both descriptive and inferential statistical analyses were performed on the data. The results of the analyses showed that the attainment of the objectives of engineering ethics education and students' attitude towards socio-ethical issues in engineering were significantly higher and positive among Japanese engineering students compared to Malaysian engineering students. Such findings suggest that a well-structured, integrated, and innovative pedagogy for teaching ethics will have an impact on the students' attainment of ethics education objectives and their attitude towards engineering ethics. As such, the research findings serve as a cornerstone to which the current practice of teaching and learning of engineering ethics education can be examined more critically, such that further improvements can be made to the existing curriculum that can help produce engineers that have strong moral and ethical characters.

  1. Assessing Changes in Teachers' Attitudes toward Interdisciplinary STEM Teaching

    ERIC Educational Resources Information Center

    Al Salami, Mubarak K.; Makela, Carole J.; de Miranda, Michael A.

    2017-01-01

    Integrating engineering and technology concepts into K-12 science and math curricula through engineering design project-based learning has been found to increase students' interest in science, technology, engineering, and mathematics (STEM), however preparing teachers to shift to interdisciplinary teaching remains a significant challenge.…

  2. Teaching Ethics to Engineers: A Socratic Experience.

    PubMed

    Génova, Gonzalo; González, M Rosario

    2016-04-01

    In this paper we present the authors' experience of teaching a course in Ethics for Engineers, which has been delivered four times in three different universities in Spain and Chile. We begin by presenting the material context of the course (its place within the university program, the number of students attending, its duration, etc.), and especially the intellectual background of the participating students, in terms of their previous understanding of philosophy in general, and of ethics in particular. Next we set out the objectives of the course and the main topics addressed, as well as the methodology and teaching resources employed to have students achieve a genuine philosophical reflection on the ethical aspects of the profession, starting from their own mindset as engineers. Finally we offer some results based on opinion surveys of the students, as well as a more personal assessment by the authors, recapitulating the most significant achievements of the course and indicating its underlying Socratic structure.

  3. Mapping the level of scientific reasoning skills to instructional methodologies among Malaysian science-mathematics-engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Tajudin, Nor'ain Mohd.; Saad, Noor Shah; Rahman, Nurulhuda Abd; Yahaya, Asmayati; Alimon, Hasimah; Dollah, Mohd. Uzi; Abd Karim, Mohd. Mustaman

    2012-05-01

    The objectives of this quantitative survey research were (1) to establish the level of scientific reasoning (SR) skills among science, mathematics and engineering (SME) undergraduates in Malaysian Institute of Higher Learning (IHL); (b) to identify the types of instructional methods in teaching SME at universities; and (c) to map instructional methods employed to the level of SR skills among the undergraduates. There were six universities according to zone involved in this study using the stratification random sampling technique. For each university, the faculties that involved were faculties which have degree students in science, mathematics and engineering programme. A total of 975 students were participated in this study. There were two instruments used in this study namely, the Lawson Scientific Reasoning Skills Test and the Lecturers' Teaching Style Survey. The descriptive statistics and the inferential statistics such as mean, t-test and Pearson correlation were used to analyze the data. Findings of the study showed that most students had concrete level of scientific reasoning skills where the overall mean was 3.23. The expert and delegator were dominant lecturers' teaching styles according to students' perception. In addition, there was no correlation between lecturers' teaching style and the level of scientific reasoning skills. Thus, this study cannot map the dominant lecturers' teaching style to the level of scientific reasoning skills of Science, Mathematics and Engineering undergraduates in Malaysian Public Institute of Higher Learning. Nevertheless, this study gave some indications that the expert and delegator teaching styles were not contributed to the development of students' scientific reasoning skills. This study can be used as a baseline for Science, Mathematics and Engineering undergraduates' level of scientific reasoning skills in Malaysian Public Institute of Higher Learning. Overall, this study also opens an endless source of other researchers to investigate more areas on scientific reasoning skills so that the potential instructional model can be developed to enhance students' level of scientific reasoning skills in Malaysian Public Institute of Higher Learning.

  4. Teaching Network Security with IP Darkspace Data

    ERIC Educational Resources Information Center

    Zseby, Tanja; Iglesias Vázquez, Félix; King, Alistair; Claffy, K. C.

    2016-01-01

    This paper presents a network security laboratory project for teaching network traffic anomaly detection methods to electrical engineering students. The project design follows a research-oriented teaching principle, enabling students to make their own discoveries in real network traffic, using data captured from a large IP darkspace monitor…

  5. The Experience of Teaching of Descriptive Geometry and Engineering Graphics in Russian Language as a Foreign Language

    ERIC Educational Resources Information Center

    Voronina, Marianna V.; Tretyakova, Zlata O.

    2017-01-01

    The article considers the peculiarities of training foreign students subject "Descriptive geometry and Engineering Graphics" in a modern engineering university of Russia. The relevance of the problem conditioned by the fact that virtually there are no special studies of teaching Descriptive Geometry and Engineering Graphics in Russian…

  6. Teaching Engineering Ethics with Sustainability as Context

    ERIC Educational Resources Information Center

    Byrne, Edmond P.

    2012-01-01

    Purpose: The purpose of this paper is to ascertain the engagement and response of students to the teaching of engineering ethics incorporating a macro ethical framework whereby sustainability is viewed as context to professional practice. This involves incorporating a broader conception of engineering than is typically applied in conventional…

  7. Socialization Experiences Resulting from Engineering Teaching Assistantships at Purdue University

    ERIC Educational Resources Information Center

    Mena, Irene B.

    2010-01-01

    The purpose of this study was to explore and understand the types of socialization experiences that result from engineering teaching assistantships. Using situated learning as the theoretical framework and phenomenology as the methodological framework, this study highlights the experiences of 28 engineering doctoral students who worked as…

  8. Teaching Continuum Mechanics in a Mechanical Engineering Program

    ERIC Educational Resources Information Center

    Liu, Yucheng

    2011-01-01

    This paper introduces a graduate course, continuum mechanics, which is designed for and taught to graduate students in a Mechanical Engineering (ME) program. The significance of continuum mechanics in engineering education is demonstrated and the course structure is described. Methods used in teaching this course such as topics, class…

  9. Mathematics and Its Value for Engineering Students: What Are the Implications for Teaching?

    ERIC Educational Resources Information Center

    Harris, Diane; Black, Laura; Hernandez-Martinez, Paul; Pepin, Birgit; Williams, Julian

    2015-01-01

    Mathematics has long been known to be problematic for university engineering students and their teachers, for example, Scanlan. This paper presents recent data gathered from interviews with engineering students who experienced problems with mathematics and their lecturers during their transition through the first year in different programme…

  10. Medical imaging education in biomedical engineering curriculum: courseware development and application through a hybrid teaching model.

    PubMed

    Zhao, Weizhao; Li, Xiping; Chen, Hairong; Manns, Fabrice

    2012-01-01

    Medical Imaging is a key training component in Biomedical Engineering programs. Medical imaging education is interdisciplinary training, involving physics, mathematics, chemistry, electrical engineering, computer engineering, and applications in biology and medicine. Seeking an efficient teaching method for instructors and an effective learning environment for students has long been a goal for medical imaging education. By the support of NSF grants, we developed the medical imaging teaching software (MITS) and associated dynamic assessment tracking system (DATS). The MITS/DATS system has been applied to junior and senior medical imaging classes through a hybrid teaching model. The results show that student's learning gain improved, particularly in concept understanding and simulation project completion. The results also indicate disparities in subjective perception between junior and senior classes. Three institutions are collaborating to expand the courseware system and plan to apply it to different class settings.

  11. Engineering Professional Development: Elementary Teachers' Self-efficacy and Sources of Self-efficacy

    NASA Astrophysics Data System (ADS)

    Webb, Donna Louise

    Currently, STEM (science, technology, engineering, and mathematics) is a popular buzz word in P-12 education as it represents a means to advance American competitiveness in the global economy. Proponents of the engineering component of STEM advocate additional benefits in teaching engineering, such as its capacity to engage students in collaboration, and to apply critical thinking, systems thinking, negotiation, and communication skills to solve real-life contextual problems. Establishing a strong foundation of engineering knowledge at a young age will provide students with internal motivation as it taps into their curiosity toward how things work, and it also prepares them for secondary science courses. Successful STEM education is often constrained by elementary teachers' low perception of self-efficacy to teach science and engineering. Elementary teachers with low self-efficacy in science are more likely to spend less instructional time teaching science, which suggests that teachers with little to no training in engineering might avoid teaching this topic. Therefore, the purpose of this study was twofold: (a) to examine the effects of engineering professional development on elementary (K-6) teachers' content and pedagogical content knowledge (PCK) and perceptions of self-efficacy to teach engineering, and (b) to identify and explain sources influencing self-efficacy. Professional development was conducted in a metropolitan area in the Pacific Northwest. Results revealed that after the engineering professional development, teachers experienced statistically significant gains in content, PCK, and self-efficacy to teach engineering. Increases in self-efficacy were mainly attributed to mastery experiences and cultivation of a growth mindset by embracing the engineering design process.

  12. From Biology to Mathematical Models and Back: Teaching Modeling to Biology Students, and Biology to Math and Engineering Students

    PubMed Central

    McManus, Jeffrey M.; Shaw, Kendrick M.

    2010-01-01

    We describe the development of a course to teach modeling and mathematical analysis skills to students of biology and to teach biology to students with strong backgrounds in mathematics, physics, or engineering. The two groups of students have different ways of learning material and often have strong negative feelings toward the area of knowledge that they find difficult. To give students a sense of mastery in each area, several complementary approaches are used in the course: 1) a “live” textbook that allows students to explore models and mathematical processes interactively; 2) benchmark problems providing key skills on which students make continuous progress; 3) assignment of students to teams of two throughout the semester; 4) regular one-on-one interactions with instructors throughout the semester; and 5) a term project in which students reconstruct, analyze, extend, and then write in detail about a recently published biological model. Based on student evaluations and comments, an attitude survey, and the quality of the students' term papers, the course has significantly increased the ability and willingness of biology students to use mathematical concepts and modeling tools to understand biological systems, and it has significantly enhanced engineering students' appreciation of biology. PMID:20810957

  13. Teaching-as-Research Internships: A Model for the Development of Future Chemistry Faculty and the Improvement of Teaching in Science, Technology, Engineering, and Math

    ERIC Educational Resources Information Center

    Gillian-Daniel, Donald L.; Walz, Kenneth A.

    2016-01-01

    Over the past decade, the University of Wisconsin-Madison (UW-Madison) and Madison Area Technical College (Madison College) partnered to create an internship pathway for graduate students pursuing careers as future science, technology, engineering and math (STEM) faculty members. Since 2003, 10 doctoral students from the university completed…

  14. Examining the Effects of Integrated Science, Engineering, and Nonfiction Literature on Student Learning in Elementary Classrooms

    NASA Astrophysics Data System (ADS)

    Tank, Kristina Maruyama

    In recent years there has been an increasing emphasis on the integration of multiple disciplines in order to help prepare more students to better address the complex challenges they will face in the 21st century. Exposing students to an integrated and multidisciplinary approach will help them to better understand the connections between subjects instead of as individual and separate subjects. Science, Technology, Engineering and Mathematics (STEM) Integration has been suggested as an approach that would model a multidisciplinary approach while also offering authentic and meaningful learning experiences to students. However, there is limited research on STEM integration in the elementary classroom and additional research is needed to better define and explore the effects of this integration for both students and science educators. With the recent recommendations for teaching both science and engineering in elementary classrooms (NRC, 2012), two common models include teaching science through inquiry and teaching science through engineering-design pedagogies. This study will explore both of these models as it seeks to better understand one piece of the larger issue of STEM and STEM integration by examining how the integration of science, engineering, and nonfiction literature affects students learning in elementary classrooms. This study employed an embedded mixed methods design to measure the effects of this integration on student learning in four fifth grade classrooms from the same elementary school. The findings revealed that the students who participated in the nonfiction reading instruction that was integrated with their science instruction showed a greater increase in all measures of student learning in both science and reading when compared to the control students. The findings from the integrated science, engineering and nonfiction literature revealed similar findings with the treatment students showing a greater increase in the measures of student learning in all three of the content areas. These results suggest that integrating nonfiction literature with science or science and engineering instruction can be an effective strategy in improving student learning in elementary classrooms.

  15. Teaching Engineering Practices

    NASA Astrophysics Data System (ADS)

    Cunningham, Christine M.; Carlsen, William S.

    2014-03-01

    Engineering is featured prominently in the Next Generation Science Standards (NGSS) and related reform documents, but how its nature and methods are described is problematic. This paper is a systematic review and critique of that representation, and proposes that the disciplinary core ideas of engineering (as described in the NGSS) can be disregarded safely if the practices of engineering are better articulated and modeled through student engagement in engineering projects. A clearer distinction between science and engineering practices is outlined, and prior research is described that suggests that precollege engineering design can strengthen children's understandings about scientific concepts. However, a piecemeal approach to teaching engineering practices is unlikely to result in students understanding engineering as a discipline. The implications for science teacher education are supplemented with lessons learned from a number of engineering education professional development projects.

  16. Educational Method of Engineering Ethics Aiming for Comprehensive Understanding

    NASA Astrophysics Data System (ADS)

    Yasui, Mitsukuni; Fujiki, Hiroyuki; Aoyagi, Manabu; Sugata, Noriyuki; Hayasaka, Narihito

    We have proposed the omnibus style to teach an engineering ethics program. This paper showed the essentials to practice the class. The engineering ethics program is constituted with the factors; grade, subject, objective even if it is operated by some themes and teachers in the style of omnibus. Also, teachers have to select the cases which have dilemma of the engineer and the good effect. And they should teach how to analyze the case. Evaluation of student activity must be made up by versatile style according to objective. And student is recommended to understand the relation of activity and object.

  17. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    NASA Astrophysics Data System (ADS)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  18. Analyzing the Function of Cartilage Replacements: A Laboratory Activity to Teach High School Students Chemical and Tissue Engineering Concepts

    ERIC Educational Resources Information Center

    Renner, Julie N.; Emady, Heather N.; Galas, Richards J., Jr.; Zhange, Rong; Baertsch, Chelsey D.; Liu, Julie C.

    2013-01-01

    A cartilage tissue engineering laboratory activity was developed as part of the Exciting Discoveries for Girls in Engineering (EDGE) Summer Camp sponsored by the Women In Engineering Program (WIEP) at Purdue University. Our goal was to increase awareness of chemical engineering and tissue engineering in female high school students through a…

  19. Conceptual or procedural mathematics for engineering students at University of Samudra

    NASA Astrophysics Data System (ADS)

    Saiman; Wahyuningsih, Puji; Hamdani

    2017-06-01

    This study we investigate whether the emphasis in mathematics courses for engineering students would benefit from being more conceptually oriented than more procedurally oriented way of teaching. In this paper, we report in some detail from twenty-five engineering students comes from three departements ; mechanical engineering, civil engineering and industrial engineering. The aim was to explore different kinds of arguments regarding the role of mathematics in engineering courses, as well as some common across contexts. The result of interview showed that most of engineering students feel that conceptual mathematics is more important than procedural mathematics for their job the future.

  20. Preparing Graduate Students for Teaching: Expected and Unexpected Outcomes from Participation in a GK-12 Classroom Fellowship

    ERIC Educational Resources Information Center

    Page, Melissa; Wilhelm, Mari S.; Regens, Nancy

    2011-01-01

    Graduate students in science technology, engineering, and mathematics (STEM) fields often enter degree programs focused on research or field-based experiences. Being a teaching assistant can serve two purposes: one for financial compensation and two as preparation for teaching in a future career. The GK-12 program (Graduate Teaching Fellows in…

  1. Enhanced Teaching and Student Learning through a Simulator-Based Course in Chemical Unit Operations Design

    ERIC Educational Resources Information Center

    Ghasem, Nayef

    2016-01-01

    This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes…

  2. A development optical course based on optical fiber white light interference

    NASA Astrophysics Data System (ADS)

    Jiang, Haili; Sun, Qiuhua; Zhao, Yancheng; Li, Qingbo

    2017-08-01

    The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don't know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students' ability of using scientific methods to solve complex engineering problems.

  3. Changing the Teaching/Learning Procedures in Physics for Agricultural Engineering. A Case Study

    ERIC Educational Resources Information Center

    Mulero, Angel; Parra, M. Isabel; Cachadina, Isidro

    2012-01-01

    The subject "Physical Fundamentals of Engineering" for agricultural engineers in the University of Extremadura has long had high rates of students not attending classes, not presenting for examinations and, finally, failing the subject. During the 2007 and 2008 courses, the teaching/learning procedures were strongly modified. Analysis of the…

  4. Collaborating for Success: Team Teaching the Engineering Technical Thesis

    ERIC Educational Resources Information Center

    Keating, Terrence; Long, Mike

    2012-01-01

    This paper will examine the collaborative teaching process undertaken at College of the North Atlantic-Qatar (CNA-Q) by Engineering and the Communication faculties to improve the overall quality of engineering students' capstone projects known as the Technical Thesis. The Technical Thesis is divided into two separate components: a proposal stage…

  5. Developing Creativity and Problem-Solving Skills of Engineering Students: A Comparison of Web- and Pen-and-Paper-Based Approaches

    ERIC Educational Resources Information Center

    Valentine, Andrew; Belski, Iouri; Hamilton, Margaret

    2017-01-01

    Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed…

  6. US students have wrong view of teaching

    NASA Astrophysics Data System (ADS)

    Kruesi, Liz

    2017-04-01

    Students taking science, technology, engineering and mathematics (STEM) subjects in the US have a number of misconceptions about teaching that may be leading them to choose other careers, according to a study by the American Physical Society (APS).

  7. Design and integration of a problem-based biofabrication course into an undergraduate biomedical engineering curriculum.

    PubMed

    Raman, Ritu; Mitchell, Marlon; Perez-Pinera, Pablo; Bashir, Rashid; DeStefano, Lizanne

    2016-01-01

    The rapidly evolving discipline of biological and biomedical engineering requires adaptive instructional approaches that teach students to target and solve multi-pronged and ill-structured problems at the cutting edge of scientific research. Here we present a modular approach to designing a lab-based course in the emerging field of biofabrication and biological design, leading to a final capstone design project that requires students to formulate and test a hypothesis using the scientific method. Students were assessed on a range of metrics designed to evaluate the format of the course, the efficacy of the format for teaching new topics and concepts, and the depth of the contribution this course made to students training for biological engineering careers. The evaluation showed that the problem-based format of the course was well suited to teaching students how to use the scientific method to investigate and uncover the fundamental biological design rules that govern the field of biofabrication. We show that this approach is an efficient and effective method of translating emergent scientific principles from the lab bench to the classroom and training the next generation of biological and biomedical engineers for careers as researchers and industry practicians.

  8. Engineering Design Concepts

    ERIC Educational Resources Information Center

    Fitzgerald, Mike

    2004-01-01

    In the author's opinion, the separation of content between science, math, engineering, and technology education should not exist. Working with the relationship between these content areas enhances students' efforts to learn about the physical world. In teaching students about design, technology, and engineering, attention should be given to the…

  9. Engineering Students Learning Preferences in UNITEN: Comparative Study and Patterns of Learning Styles

    ERIC Educational Resources Information Center

    Lee, Chen Kang; Sidhu, Manjit Singh

    2015-01-01

    Engineering educators have been increasingly taking the learning style theories into serious consideration as part of their efforts to enhance the teaching and learning in engineering. This paper presents a research study to investigate the learning style preference of the mechanical engineering students in Universiti Tenaga Nasional (UNITEN),…

  10. Teaching Bioprocess Engineering to Undergraduates: Multidisciplinary Hands-On Training in a One-Week Practical Course

    ERIC Educational Resources Information Center

    Henkel, Marius; Zwick, Michaela; Beuker, Janina; Willenbacher, Judit; Baumann, Sandra; Oswald, Florian; Neumann, Anke; Siemann-Herzberg, Martin; Syldatk, Christoph; Hausmann, Rudolf

    2015-01-01

    Bioprocess engineering is a highly interdisciplinary field of study which is strongly benefited by practical courses where students can actively experience the interconnection between biology, engineering, and physical sciences. This work describes a lab course developed for 2nd year undergraduate students of bioprocess engineering and related…

  11. Culturally responsive engineering education: A case study of a pre-college introductory engineering course at Tibetan Children's Village School of Selakui

    NASA Astrophysics Data System (ADS)

    Santiago, Marisol Mercado

    Culturally responsive teaching has been argued to be effective in the education of Indigenous youth. This approach emphasizes the legitimacy of a group's cultural heritage, helps to associate abstract academic knowledge with the group's sociocultural context, seeks to incorporate a variety of strategies to engage students who have different learning styles, and strives to integrate multicultural information in the educational contents, among other considerations. In this work, I explore the outcomes of a culturally responsive introductory engineering short course that I developed and taught to Tibetan students at Tibetan Children's Village of Selakui (in Uttarakhand, India). Based on my ethnographic research in Tibetan communities in northern India, I examine two research questions: (a) What are the processes to develop and implement a pre-college culturally responsive introductory engineering course? and (b) How do Tibetan culture and Buddhism influence the engineering design and teamwork of the pre-college Tibetan students who took the course? I designed then taught the course that featured elementary lectures on sustainability, introductory engineering design, energy alternatives, and manufacturing engineering. The course also included a pre-college engineering design project through which Tibetan high school students investigated a problem at the school and designed a possible solution to it. Drawing from postcolonial studies, engineering studies, engineering and social justice, Buddhist studies, and Tibetan studies, I provide an analysis of my findings. Based on my findings, I conclude that my culturally responsive approach of teaching was an effective method to help students feel that their cultural background was respected and included in a pre-college engineering course; however, some students felt resistance toward the teaching approach. In addition, the culturally relevant content that connected with their ways of living in their school, Tibetan communities, and surroundings helped the students to relate to abstract concepts in familiar settings. Lastly, they appreciated that I brought to the course relevant information about technology and society in India (their host country), engineers' work in industry, technologies used in other contexts as well, and projects that show how engineers can help to alleviate poverty. The findings of my research can inform (a) educators who are interested in integrating culturally responsive activities in their teaching methods, (b) researchers or teachers in ethnic minority schools abroad, (c) educators interested in developing engineering activities or courses for underrepresented ethnic minorities, ethnic diasporas or refugee youth in the United States, and (d) facilitators at multicultural engineering summer camps in the United States.

  12. The Application of Linear and Nonlinear Water Tanks Case Study in Teaching of Process Control

    NASA Astrophysics Data System (ADS)

    Li, Xiangshun; Li, Zhiang

    2018-02-01

    In the traditional process control teaching, the importance of passing knowledge is emphasized while the development of creative and practical abilities of students is ignored. Traditional teaching methods are not very helpful to breed a good engineer. Case teaching is a very useful way to improve students’ innovative and practical abilities. In the traditional case teaching, knowledge points are taught separately based on different examples or no examples, thus it is very hard to setup the whole knowledge structure. Though all the knowledge is learned, how to use the knowledge to solve engineering problems keeps challenging for students. In this paper, the linear and nonlinear tanks are taken as illustrative examples which involves several knowledge points of process control. The application method of each knowledge point is discussed in detail and simulated. I believe the case-based study will be helpful for students.

  13. Mapping Beliefs about Teaching to Patterns of Instruction within Science, Technology, Engineering, and Mathematics

    ERIC Educational Resources Information Center

    Allendoerfer, Cheryl; Wilson, Denise; Kim, Mee Joo; Burpee, Elizabeth

    2014-01-01

    In this paper, we identify beliefs about teaching and patterns of instruction valued and emphasized by science, technology, engineering, and mathematics faculty in higher education in the USA. Drawing on the notion that effective teaching is student-centered rather than teacher-centered and must include a balance of knowledge-, learner-,…

  14. An Evaluation of Student Team Teaching in Sophomore Physics Classes. Final Report.

    ERIC Educational Resources Information Center

    Thrasher, Paul H.

    In the present document the effectiveness of a student team teaching technique is evaluated in comparison with the lecture method. The team teaching technique, previously used for upper division and graduate physics courses, was, for this study, used in a sophomore physics, electricity and magnetism course for engineers, mathematicians, chemists,…

  15. Elementary teachers' mental models of engineering design processes: A comparison of two communities of practice

    NASA Astrophysics Data System (ADS)

    McMahon, Ann P.

    Educating K-12 students in the processes of design engineering is gaining popularity in public schools. Several states have adopted standards for engineering design despite the fact that no common agreement exists on what should be included in the K-12 engineering design process. Furthermore, little pre-service and in-service professional development exists that will prepare teachers to teach a design process that is fundamentally different from the science teaching process found in typical public schools. This study provides a glimpse into what teachers think happens in engineering design compared to articulated best practices in engineering design. Wenger's communities of practice work and van Dijk's multidisciplinary theory of mental models provide the theoretical bases for comparing the mental models of two groups of elementary teachers (one group that teaches engineering and one that does not) to the mental models of design engineers (including this engineer/researcher/educator and professionals described elsewhere). The elementary school teachers and this engineer/researcher/educator observed the design engineering process enacted by professionals, then answered questions designed to elicit their mental models of the process they saw in terms of how they would teach it to elementary students. The key finding is this: Both groups of teachers embedded the cognitive steps of the design process into the matrix of the social and emotional roles and skills of students. Conversely, the engineers embedded the social and emotional aspects of the design process into the matrix of the cognitive steps of the design process. In other words, teachers' mental models show that they perceive that students' social and emotional communicative roles and skills in the classroom drive their cognitive understandings of the engineering process, while the mental models of this engineer/researcher/educator and the engineers in the video show that we perceive that cognitive understandings of the engineering process drive the social and emotional roles and skills used in that process. This comparison of mental models with the process that professional designers use defines a problem space for future studies that investigate how to incorporate engineering practices into elementary classrooms. Recommendations for engineering curriculum development and teacher professional development based on this study are presented.

  16. Cultivation of students' engineering designing ability based on optoelectronic system course project

    NASA Astrophysics Data System (ADS)

    Cao, Danhua; Wu, Yubin; Li, Jingping

    2017-08-01

    We carry out teaching based on optoelectronic related course group, aiming at junior students majored in Optoelectronic Information Science and Engineering. " Optoelectronic System Course Project " is product-designing-oriented and lasts for a whole semester. It provides a chance for students to experience the whole process of product designing, and improve their abilities to search literature, proof schemes, design and implement their schemes. In teaching process, each project topic is carefully selected and repeatedly refined to guarantee the projects with the knowledge integrity, engineering meanings and enjoyment. Moreover, we set up a top team with professional and experienced teachers, and build up learning community. Meanwhile, the communication between students and teachers as well as the interaction among students are taken seriously in order to improve their team-work ability and communicational skills. Therefore, students are not only able to have a chance to review the knowledge hierarchy of optics, electronics, and computer sciences, but also are able to improve their engineering mindset and innovation consciousness.

  17. How Much Do Engineering Students Know about Sustainable Development? The Findings of an International Survey and Possible Implications for the Engineering Curriculum

    ERIC Educational Resources Information Center

    Azapagic, Adisa; Perdan, Slobodan; Shallcross, David

    2005-01-01

    This paper addresses the issue of engineering education for sustainable development. In an attempt to facilitate a better integration of sustainability teaching into the engineering curriculum, it seeks to provide answers to the following fundamental questions: (1) How much do engineering students know about sustainable development? (2) What are…

  18. Strategies for Teaching Professional Ethics to IT Engineering Degree Students and Evaluating the Result.

    PubMed

    Miñano, Rafael; Uruburu, Ángel; Moreno-Romero, Ana; Pérez-López, Diego

    2017-02-01

    This paper presents an experience in developing professional ethics by an approach that integrates knowledge, teaching methodologies and assessment coherently. It has been implemented for students in both the Software Engineering and Computer Engineering degree programs of the Technical University of Madrid, in which professional ethics is studied as a part of a required course. Our contribution of this paper is a model for formative assessment that clarifies the learning goals, enhances the results, simplifies the scoring and can be replicated in other contexts. A quasi-experimental study that involves many of the students of the required course has been developed. To test the effectiveness of the teaching process, the analysis of ethical dilemmas and the use of deontological codes have been integrated, and a scoring rubric has been designed. Currently, this model is also being used to develop skills related to social responsibility and sustainability for undergraduate and postgraduate students of diverse academic context.

  19. A Multidimensional Approach to Examine Student Interdisciplinary Learning in Science and Engineering in Higher Education

    ERIC Educational Resources Information Center

    Spelt, Elisabeth Jacoba Hendrika; Luning, Pieternelleke Arianne; van Boekel, Martinus A. J. S.; Mulder, Martin

    2017-01-01

    Preparing science and engineering students to work in interdisciplinary teams necessitates research on teaching and learning of interdisciplinary thinking. A multidimensional approach was taken to examine student interdisciplinary learning in a master course on food quality management. The collected 615 student experiences were analysed for the…

  20. Improving Student Interest in Engineering Curricula--Exciting Students about Their Classes

    ERIC Educational Resources Information Center

    Khalid, Adeel

    2013-01-01

    In this paper, we explore what events, activities, and teaching styles invoke student interest in engineering courses. The research is based on inputs from some of the best and award winning faculty members across disciplines. The activities that professors use to keep students engaged are highlighted. Similarly, the actions that professors take…

  1. Resources in Technology and Engineering: A Journey to Increase Student Engagement

    ERIC Educational Resources Information Center

    Akers, Ruth

    2017-01-01

    Increasing student achievement is a fundamental concern for many school districts and teachers. Providing students with engaging, blended STEM educational experiences may help them understand how scientists and engineers solve problems. The purpose of this article is to share teaching strategies and student activities that will not only increase…

  2. Paired peer learning through engineering education outreach

    NASA Astrophysics Data System (ADS)

    Fogg-Rogers, Laura; Lewis, Fay; Edmonds, Juliet

    2017-01-01

    Undergraduate education incorporating active learning and vicarious experience through education outreach presents a critical opportunity to influence future engineering teaching and practice capabilities. Engineering education outreach activities have been shown to have multiple benefits; increasing interest and engagement with science and engineering for school children, providing teachers with expert contributions to engineering subject knowledge, and developing professional generic skills for engineers such as communication and teamwork. This pilot intervention paired 10 pre-service teachers and 11 student engineers to enact engineering outreach in primary schools, reaching 269 children. A longitudinal mixed methods design was employed to measure change in attitudes and Education Outreach Self-Efficacy in student engineers; alongside attitudes, Teaching Engineering Self-Efficacy and Engineering Subject Knowledge Confidence in pre-service teachers. Highly significant improvements were noted in the pre-service teachers' confidence and self-efficacy, while both the teachers and engineers qualitatively described benefits arising from the paired peer mentor model.

  3. Elementary Teacher Self-Efficacy in Engineering and Student Achievement in Math and Science

    ERIC Educational Resources Information Center

    Gorena, Jacquelyn L.

    2015-01-01

    STEM education is a national priority, and more schools are implementing STEM K-12. Elementary teachers are prepared to teach science, mathematics, and technology, but teachers may not feel as prepared to teach engineering. Engineering is a new genre for elementary schools, and it is not typically a content area included in teacher preparation…

  4. A Novel Outreach to High School Students by Teaching Them the Engineering Skills in a Project-Based Approach

    ERIC Educational Resources Information Center

    Asiabanpour, Bahram

    2010-01-01

    In this paper a novel outreach approach to high school students to familiarize them with engineering functions and methods is explained. In this approach students participated in a seven days research camp and learned many engineering skills and tools such as CAD solid modeling, finite element analysis, rapid prototyping, mechanical tests, team…

  5. Investigating the Impact of Using a CAD Simulation Tool on Students' Learning of Design Thinking

    NASA Astrophysics Data System (ADS)

    Taleyarkhan, Manaz; Dasgupta, Chandan; Garcia, John Mendoza; Magana, Alejandra J.

    2018-02-01

    Engineering design thinking is hard to teach and still harder to learn by novices primarily due to the undetermined nature of engineering problems that often results in multiple solutions. In this paper, we investigate the effect of teaching engineering design thinking to freshmen students by using a computer-aided Design (CAD) simulation software. We present a framework for characterizing different levels of engineering design thinking displayed by students who interacted with the CAD simulation software in the context of a collaborative assignment. This framework describes the presence of four levels of engineering design thinking—beginning designer, adept beginning designer, informed designer, adept informed designer. We present the characteristics associated with each of these four levels as they pertain to four engineering design strategies that students pursued in this study—understanding the design challenge, building knowledge, weighing options and making tradeoffs, and reflecting on the process. Students demonstrated significant improvements in two strategies—understanding the design challenge and building knowledge. We discuss the affordances of the CAD simulation tool along with the learning environment that potentially helped students move towards Adept informed designers while pursuing these design strategies.

  6. Advanced Engineering Methods in Design and Education

    NASA Astrophysics Data System (ADS)

    Kamenov, Krasimir; Dobreva, Antoaneta; Ronkova, Vyarka

    2017-10-01

    The paper presented deals with the challenges occurring during the education of the new digital generation of students in the area of engineering subjects. This new situation in teaching technologies imposes the obtaining of appropriate feedback from the students during the lectures and tutorials. The objective of the research is to investigate the impact of the application of video games, graphical presentations, animations, etc. The feedback received in such interactive way gives the opportunity to improve the teaching models and to increase the active participation of the students during the lectures and tutorials.

  7. A flipped mode teaching approach for large and advanced electrical engineering courses

    NASA Astrophysics Data System (ADS)

    Ravishankar, Jayashri; Epps, Julien; Ambikairajah, Eliathamby

    2018-05-01

    A fully flipped mode teaching approach is challenging for students in advanced engineering courses, because of demanding pre-class preparation load, due to the complex and analytical nature of the topics. When this is applied to large classes, it brings an additional complexity in terms of promoting the intended active learning. This paper presents a novel selective flipped mode teaching approach designed for large and advanced courses that has two aspects: (i) it provides selective flipping of a few topics, while delivering others in traditional face-to-face teaching, to provide an effective trade-off between the two approaches according to the demands of individual topics and (ii) it introduces technology-enabled live in-class quizzes to obtain instant feedback and facilitate collaborative problem-solving exercises. The proposed approach was implemented for a large fourth year course in electrical power engineering over three successive years and the criteria for selecting between the flipped mode teaching and traditional teaching modes are outlined. Results confirmed that the proposed approach improved both students' academic achievements and their engagement in the course, without overloading them during the teaching period.

  8. UCS-PROMOVE: The Engineer of the Future

    ERIC Educational Resources Information Center

    Villas-Boas, V.

    2010-01-01

    The Universidade de Caxias do Sul (UCS) elaborated the cooperative project called "The engineer of the future", with the objective of promoting science and engineering among high school teachers and students. This project aims to improve the quality of the teaching and to increase the interest of students in technological areas, leading…

  9. Teaching Problem-Solving Skills to Nuclear Engineering Students

    ERIC Educational Resources Information Center

    Waller, E.; Kaye, M. H.

    2012-01-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…

  10. Engine Identification. Teacher's Guide. Small Engine Repair Series.

    ERIC Educational Resources Information Center

    Hill, Pamela

    This teacher's guide is part of an instructional series on small engine repair that is intended for use with mentally retarded and learning disabled students in general mechanical repair programs. The package also includes three student manuals. Notes to the instructor cover equipment needed, preparation before teaching, and use of evaluation…

  11. Process Systems Engineering Education: Learning by Research

    ERIC Educational Resources Information Center

    Abbas, A.; Alhammadi, H. Y.; Romagnoli, J. A.

    2009-01-01

    In this paper, we discuss our approach in teaching the final-year course Process Systems Engineering. Students are given ownership of the course by transferring to them the responsibility of learning. A project-based group environment stimulates learning while solving a real engineering problem. We discuss postgraduate student involvement and how…

  12. Technological Literacy Learning with Cumulative and Stepwise Integration of Equations into Electrical Circuit Diagrams

    ERIC Educational Resources Information Center

    Ozogul, G.; Johnson, A. M.; Moreno, R.; Reisslein, M.

    2012-01-01

    Technological literacy education involves the teaching of basic engineering principles and problem solving, including elementary electrical circuit analysis, to non-engineering students. Learning materials on circuit analysis typically rely on equations and schematic diagrams, which are often unfamiliar to non-engineering students. The goal of…

  13. Reverse engineering by design: using history to teach.

    PubMed

    Fagette, Paul

    2013-01-01

    Engineering students rarely have an opportunity to delve into the historic antecedents of design in their craft, and this is especially true for biomedical devices. The teaching emphasis is always on the new, the innovative, and the future. Even so, over the last decade, I have coupled a research agenda with engineering special projects into a successful format that allows young biomedical engineering students to understand aspects of their history and learn the complexities of design. There is value in having knowledge of historic engineering achievements, not just for an appreciation of these accomplishments but also for understanding exactly how engineers and clinicians of the day executed their feats-in other words, how the design process works. Ultimately, this particular educational odyssey confirms that history and engineering education are not only compatible but mutually supportive.

  14. Explore the Human-Based Teaching for the Professional Course of Materials Science and Engineering

    ERIC Educational Resources Information Center

    Zhao, Yiping; Chen, Li; Zhang, Yufeng

    2008-01-01

    As viewed from two sides such as teacher and student, in this article, we explore the human-based teaching reform for the college professional course of materials Science and Engineering, point out the qualities and conditions that professional teacher should possess in the process of human-based teaching reform of professional course and the…

  15. An Assessment of the Impact of a Collaborative Didactic Approach and Students' Background in Teaching Computer Animation

    ERIC Educational Resources Information Center

    Sanna, Andrea; Valpreda, Fabrizio

    2017-01-01

    The purpose of this study was to compare different students' backgrounds and two different didactic methodologies to profitably teach computer animation in Italian schools of design and engineering. Teachers and instructors have long been engaged in discussions to define effective curricula for teaching computer animation. Various…

  16. Students' Perceptions of and Responses to Teaching Assistant and Peer Feedback

    ERIC Educational Resources Information Center

    Rodgers, Kelsey J.; Horvath, Aladar K.; Jung, Hyunyi; Fry, Amanda S.; Diefes-Dux, Heidi A.; Cardella, Monica E.

    2015-01-01

    Authentic open-ended problems are increasingly appearing in university classrooms at all levels. Formative feedback that leads to learning and improved student work products is a challenge, particularly in large enrollment courses. This is a case study of one first-year engineering student team's experience with teaching assistant and peer…

  17. Exploration on teaching reform of theory curriculum for engineering specialties

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Shen, Wei-min; Shen, Chang-yu; Li, Chen-xia; Jing, Xu-feng; Lou, Jun; Shi, Yan; Jin, Shang-zhong

    2017-08-01

    The orientation of talents cultivation for local colleges is to train engineering application-oriented talents, so the exploration and practice on teaching reform of theory curriculum was carried out. We restructured the knowledge units basing on numerical solution problems, and chose the software to build algorithm models for improving the analytical and designed ability. Relying on micro video lessons platform, the teacher-student interaction was expanded from class to outside. Also, we programmed new experimental homework, which was suited for process evaluation. The new teaching mode has achieved good effect, and the students' application ability was significantly improved.

  18. Reform and practice for photoelectric specialty experimental teaching based on virtual simulation experiment platform

    NASA Astrophysics Data System (ADS)

    Ye, Yan; Lv, Qingsong; Wu, Maocheng; Xu, Yishen; Gu, Jihua

    2017-08-01

    In view of some problems about the traditional photoelectric specialty experimental teaching process, such as separation of theoretical teaching and practical teaching, immobilization of experimental teaching contents, low quality of experiments and no obvious effect, we explored and practiced a new experimental teaching model of "theoretical teaching, virtual simulation and physical experiment", which combined the characteristics of photoelectric information science and engineering major and the essential requirements of engineering innovation talents cultivation. The virtual simulation experiment platform has many advantages, such as high performance-to-price ratio, easy operation and open experimental process, which makes virtual simulation combine physical experiment, complete each other with virtual for practical. After the users log into the virtual simulation experimental platform, they will first study the contents of the experiment, clarify the purpose and requirements of the experiment, master the method of using the instrument and the relevant notes, and then use the experimental instruments provided by the platform to build the corresponding experimental system. Once the experimenter's optical path is set incorrectly or the instrument parameters are set incorrectly, the error or warning message will be automatically triggered, and the reference information will be given instructing the student to complete the correct experimental operation. The results of our practice in recent years show that the teaching reform of the photoelectric specialty experiments has not only brought great convenience to the experimental teaching management, broadened the students' thinking and vision, enhanced the students' experimental skills and comprehensive qualities, but also made the students participate in the experiment with their enthusiasm. During the construction of experiment programs, the students' engineering practical ability and independent innovation awareness has been improved greatly. In the next time, based on the development trend of optoelectronic discipline and our own major characteristics, we will further perfect and enrich the construction of virtual simulation experimental platform and continuously improve the quality of experimental teaching.

  19. Examining Experienced Teachers' Noticing of and Responses to Students' Engineering

    ERIC Educational Resources Information Center

    Johnson, Aaron W.; Wendell, Kristen B.; Watkins, Jessica

    2017-01-01

    Engineering design places unique demands on teachers, as students are coming up with new, unanticipated ideas to problems along often unpredictable trajectories. These demands motivate a responsive approach to teaching, in which teachers attend their students' thinking and flexibly adapt their instructional plans and objectives. A great deal of…

  20. Can Students Flourish in Engineering Classrooms?

    ERIC Educational Resources Information Center

    Boylan-Ashraf, Peggy C.; Freeman, Steven A.; Shelley, Mack C.; Keles, Özgür

    2017-01-01

    This study investigated the role of a new paradigm in teaching large introductory, fundamental engineering mechanics (IFEM) courses that combined student-centered learning pedagogies and supplemental learning resources. Demographic characteristics in this study included a total of 405 students, of whom 347 (85.7%) are males and 58 are (14.3%)…

  1. Using interactive problem-solving techniques to enhance control systems education for non English-speakers

    NASA Astrophysics Data System (ADS)

    Lamont, L. A.; Chaar, L.; Toms, C.

    2010-03-01

    Interactive learning is beneficial to students in that it allows the continual development and testing of many skills. An interactive approach enables students to improve their technical capabilities, as well as developing both verbal and written communicative ability. Problem solving and communication skills are vital for engineering students; in the workplace they will be required to communicate with people of varying technical abilities and from different linguistic and engineering backgrounds. In this paper, a case study is presented that discusses how the traditional method of teaching control systems can be improved. 'Control systems' is a complex engineering topic requiring students to process an extended amount of mathematical formulae. MATLAB software, which enables students to interactively compare a range of possible combinations and analyse the optimal solution, is used to this end. It was found that students became more enthusiastic and interested when given ownership of their learning objectives. As well as improving the students' technical knowledge, other important engineering skills are also improved by introducing an interactive method of teaching.

  2. Challenges in Teaching Modern Manufacturing Technologies

    ERIC Educational Resources Information Center

    Ngaile, Gracious; Wang, Jyhwen; Gau, Jenn-Terng

    2015-01-01

    Teaching of manufacturing courses for undergraduate engineering students has become a challenge due to industrial globalisation coupled with influx of new innovations, technologies, customer-driven products. This paper discusses development of a modern manufacturing course taught concurrently in three institutions where students collaborate in…

  3. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants

    PubMed Central

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor’s belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K–12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. PMID:26250562

  4. Attitudes and Perceptions of Students in a Systems Engineering E-Learnig Course

    ERIC Educational Resources Information Center

    de Vega, Carolina Armijo; McAnally-Salas, Lewis; Lavigne, Gilles

    2009-01-01

    In this paper is reported the attitudes and perception of students in a systems Engineering e-learning course and a teacher with more than six years of experience teaching online courses. The paper reports the teacher and students' perceptions about the e-learning courses experience. Personalized interviews with some of the students were carried…

  5. Constructively Aligned Teaching and Learning in Higher Education in Engineering: What Do Students Perceive as Contributing to the Learning of Interdisciplinary Thinking?

    ERIC Educational Resources Information Center

    Spelt, E. J. H.; Luning, P. A.; van Boekel, M. A. J. S.; Mulder, M.

    2015-01-01

    Increased attention to the need for constructively aligned teaching and learning in interdisciplinary higher education in engineering is observed. By contrast, little research has been conducted on the implementation of the outcome-based pedagogical approach to interdisciplinary higher education in engineering. Therefore, the present design-based…

  6. The Effect of Case Teaching on Meaningful and Retentive Learning When Studying Genetic Engineering

    ERIC Educational Resources Information Center

    Güccük, Ahmet; Köksal, Mustafa Serdar

    2017-01-01

    The purpose of this study is to investigate the effects of case teaching on how students learn about genetic engineering, in terms of meaningful learning and retention of learning. The study was designed as quasi-experimental research including 63 8th graders (28 boys and 35 girls). To collect data, genetic engineering achievement tests were…

  7. Cause-effect analysis: improvement of a first year engineering students' calculus teaching model

    NASA Astrophysics Data System (ADS)

    van der Hoff, Quay; Harding, Ansie

    2017-01-01

    This study focuses on the mathematics department at a South African university and in particular on teaching of calculus to first year engineering students. The paper reports on a cause-effect analysis, often used for business improvement. The cause-effect analysis indicates that there are many factors that impact on secondary school teaching of mathematics, factors that the tertiary sector has no control over. The analysis also indicates the undesirable issues that are at the root of impeding success in the calculus module. Most important is that students are not encouraged to become independent thinkers from an early age. This triggers problems in follow-up courses where students are expected to have learned to deal with the work load and understanding of certain concepts. A new model was designed to lessen the impact of these undesirable issues.

  8. Teaching Sustainable Energy and Power Electronics to Engineering Students in a Laboratory Environment Using Industry-Standard Tools

    ERIC Educational Resources Information Center

    Ochs, David S.; Miller, Ruth Douglas

    2015-01-01

    Power electronics and renewable energy are two important topics for today's power engineering students. In many cases, the two topics are inextricably intertwined. As the renewable energy sector grows, the need for engineers qualified to design such systems grows as well. In order to train such engineers, new courses are needed that highlight the…

  9. Science and Engineering Technician Curriculum Development Project. Final Report.

    ERIC Educational Resources Information Center

    Mowery, Donald R.; Wolf, Lawrence J.

    Project SET (Science and Engineering for Technicians) developed a series of study guides designed to teach generic science and engineering skills to students interested in becoming technicians. An entire 2-year curriculum is encompassed by these guides, geared for 2-year college students. Described in this final report are the project's rationale,…

  10. Embedded Simultaneous Prompting Procedure to Teach STEM Content to High School Students with Moderate Disabilities in an Inclusive Setting

    ERIC Educational Resources Information Center

    Heinrich, Sara; Collins, Belva C.; Knight, Victoria; Spriggs, Amy D.

    2016-01-01

    Effects of an embedded simultaneous prompting procedure to teach STEM (science, technology, engineering, math) content to three secondary students with moderate intellectual disabilities in an inclusive general education classroom were evaluated in the current study. Students learned discrete (i.e., geometric figures, science vocabulary, or use of…

  11. Convergent Inquiry in Science & Engineering: The Use of Atomic Force Microscopy in a Biology Class

    ERIC Educational Resources Information Center

    Lee, Il-Sun; Byeon, Jung-Ho; Kwon, Yong-Ju

    2013-01-01

    The purpose of this study was to design a teaching method suitable for science high school students using atomic force microscopy. During their scientific inquiry procedure, high school students observed a micro-nanostructure of a biological sample, which is unobservable via an optical microscope. The developed teaching method enhanced students'…

  12. Students' Attitude towards STEM Education

    ERIC Educational Resources Information Center

    Popa, Roxana-Alexandra; Ciascai, Liliana

    2017-01-01

    STEM is the acronym of Science, Technology, Engineering, and Mathematics fields. STEM education refers both to teaching and learning in the above-mentioned disciplines, but especially to teaching and learning a new discipline based on the integration of Science, Technology, Engineering, and Mathematics. The present survey aims to investigate the…

  13. Environmental Engineering Teaching Reference Community.

    ERIC Educational Resources Information Center

    Bell, John M.; Brenchley, David L.

    Dawson, Fairfax County/U.S.A. is a hypothetical community developed by the authors as a teaching aid for undergraduate and graduate courses in environmental engineering, providing a context for problem solving and role playing. It was contrived to provide students opportunities to: (1) identify important community relationships, (2) appreciate the…

  14. Control Engineering, System Theory and Mathematics: The Teacher's Challenge

    ERIC Educational Resources Information Center

    Zenger, K.

    2007-01-01

    The principles, difficulties and challenges in control education are discussed and compared to the similar problems in the teaching of mathematics and systems science in general. The difficulties of today's students to appreciate the classical teaching of engineering disciplines, which are based on rigorous and scientifically sound grounds, are…

  15. Student Achievement and Retention: Can Professional Development Programs Help Faculty GRASP It?

    ERIC Educational Resources Information Center

    McShannon, Judy; Hynes, Patricia

    2005-01-01

    Many faculty developers have difficulty involving engineering and science faculty in instructional development. Engineering professors are particularly quick to discount the relevance of teaching workshops, and many argue teaching methods presented in workshops lead to lower standards and inflated grades. This paper presents a successful…

  16. Soils and Foundations: A Syllabus.

    ERIC Educational Resources Information Center

    Long, Melvin J.

    The teaching guide and course outline for a 12-week course in soils and foundations is designed to help student technicians in a two-year associate degree civil engineering technology program to obtain entry level employment as highway engineering aides, soil testing technicians, soil mappers, or construction inspectors. The seven teaching units…

  17. Teaching Embedded System Concepts for Technological Literacy

    ERIC Educational Resources Information Center

    Winzker, M.; Schwandt, A.

    2011-01-01

    A basic understanding of technology is recognized as important knowledge even for students not connected with engineering and computer science. This paper shows that embedded system concepts can be taught in a technological literacy course. An embedded system teaching block that has been used in an electronics module for non-engineers is…

  18. Excel spreadsheet in teaching numerical methods

    NASA Astrophysics Data System (ADS)

    Djamila, Harimi

    2017-09-01

    One of the important objectives in teaching numerical methods for undergraduates’ students is to bring into the comprehension of numerical methods algorithms. Although, manual calculation is important in understanding the procedure, it is time consuming and prone to error. This is specifically the case when considering the iteration procedure used in many numerical methods. Currently, many commercial programs are useful in teaching numerical methods such as Matlab, Maple, and Mathematica. These are usually not user-friendly by the uninitiated. Excel spreadsheet offers an initial level of programming, which it can be used either in or off campus. The students will not be distracted with writing codes. It must be emphasized that general commercial software is required to be introduced later to more elaborated questions. This article aims to report on a teaching numerical methods strategy for undergraduates engineering programs. It is directed to students, lecturers and researchers in engineering field.

  19. A democratic and student-centred approach to facilitating teamwork learning among first-year engineering students: a learning and teaching case study

    NASA Astrophysics Data System (ADS)

    Missingham, Dorothy; Matthews, Robert

    2014-07-01

    This work examines an innovative and evolving approach to facilitating teamwork learning in a generic first-year mechanical engineering course. Principles of inclusive, student-active and democratic pedagogy were utilised to engage students on both the social and personal planes. Learner opportunities to facilitate, direct and lead the learning direction were emphasised. This emphasis encouraged a rich learning process and motivated students dismissive of the need to examine their communication skills and those who initially perceived the topic as a personal intrusion. Through a sharing of curriculum decisions, a climate of trust, ownership and shared value arose. Students chose from a range of tools across personality-type indicators, learning style indicators and hierarchies of human needs, to assist their capacity to express and discuss engineering designs and concepts. Peer teaching and collaborative exercises were incorporated to provide an authentic learning context and to further the student's sense of ownership.

  20. MATLAB Meets LEGO Mindstorms--A Freshman Introduction Course into Practical Engineering

    ERIC Educational Resources Information Center

    Behrens, A.; Atorf, L.; Schwann, R.; Neumann, B.; Schnitzler, R.; Balle, J.; Herold, T.; Telle, A.; Noll, T. G.; Hameyer, K.; Aach, T.

    2010-01-01

    In today's teaching and learning approaches for first-semester students, practical courses more and more often complement traditional theoretical lectures. This practical element allows an early insight into the real world of engineering, augments student motivation, and enables students to acquire soft skills early. This paper describes a new…

  1. Engaging Engineering Students in Geoscience through Case Studies and Active Learning

    ERIC Educational Resources Information Center

    Holley, Elizabeth A.

    2017-01-01

    This study reports on a case study-based curricular intervention designed to help undergraduate engineering students make connections between geoscience and its applications. Teaching through case studies resulted in a measurable and significant improvement in the confidence that students had in their ability to apply geoscience concepts in an…

  2. Enhancing Student Learning in Food Engineering Using Computational Fluid Dynamics Simulations

    ERIC Educational Resources Information Center

    Wong, Shin Y.; Connelly, Robin K.; Hartel, Richard W.

    2010-01-01

    The current generation of students coming into food science and engineering programs is very visually oriented from their early experiences. To increase their interest in learning, new and visually appealing teaching materials need to be developed. Two diverse groups of students may be identified based on their math skills. Food science students…

  3. Engineering Students' Experiences of Interactive Teaching in Calculus

    ERIC Educational Resources Information Center

    Weurlander, Maria; Cronhjort, Mikael; Filipsson, Lars

    2017-01-01

    This study reports on an educational development initiative where peer instruction was used instead of traditional lectures in a calculus course for first-year engineering students. The aim of the study was to explore students' experiences of this method. Data were collected by means of an open-ended questionnaire on two occasions: early and late…

  4. Exploring Students' Engineering Designs through Open-Ended Assignments

    ERIC Educational Resources Information Center

    Puente, S. M. Gómez; Jansen, J. W.

    2017-01-01

    This paper aims at presenting the experience of the Power Conversion project in teaching students to design a proof-of-principle contactless energy transfer system for the charging of electrical vehicles. The Power Conversion is a second-year electrical engineering (EE) project in which students are to gather and apply EE knowledge to design and…

  5. Effective Engineering Presentations through Teaching Visual Literacy Skills.

    ERIC Educational Resources Information Center

    Kerns, H. Dan; And Others

    This paper describes a faculty resource team in the Bradley University (Illinois) Department of Industrial Engineering that works with student project teams in an effort to improve their visualization and oral presentation skills. Students use state of the art technology to develop and display their visuals. In addition to technology, students are…

  6. Enhanced teaching and student learning through a simulator-based course in chemical unit operations design

    NASA Astrophysics Data System (ADS)

    Ghasem, Nayef

    2016-07-01

    This paper illustrates a teaching technique used in computer applications in chemical engineering employed for designing various unit operation processes, where the students learn about unit operations by designing them. The aim of the course is not to teach design, but rather to teach the fundamentals and the function of unit operation processes through simulators. A case study presenting the teaching method was evaluated using student surveys and faculty assessments, which were designed to measure the quality and effectiveness of the teaching method. The results of the questionnaire conclusively demonstrate that this method is an extremely efficient way of teaching a simulator-based course. In addition to that, this teaching method can easily be generalised and used in other courses. A student's final mark is determined by a combination of in-class assessments conducted based on cooperative and peer learning, progress tests and a final exam. Results revealed that peer learning can improve the overall quality of student learning and enhance student understanding.

  7. Editors' overview perspectives on teaching social responsibility to students in science and engineering.

    PubMed

    Zandvoort, Henk; Børsen, Tom; Deneke, Michael; Bird, Stephanie J

    2013-12-01

    Global society is facing formidable current and future problems that threaten the prospects for justice and peace, sustainability, and the well-being of humanity both now and in the future. Many of these problems are related to science and technology and to how they function in the world. If the social responsibility of scientists and engineers implies a duty to safeguard or promote a peaceful, just and sustainable world society, then science and engineering education should empower students to fulfil this responsibility. The contributions to this special issue present European examples of teaching social responsibility to students in science and engineering, and provide examples and discussion of how this teaching can be promoted, and of obstacles that are encountered. Speaking generally, education aimed at preparing future scientists and engineers for social responsibility is presently very limited and seemingly insufficient in view of the enormous ethical and social problems that are associated with current science and technology. Although many social, political and professional organisations have expressed the need for the provision of teaching for social responsibility, important and persistent barriers stand in the way of its sustained development. What is needed are both bottom-up teaching initiatives from individuals or groups of academic teachers, and top-down support to secure appropriate embedding in the university. Often the latter is lacking or inadequate. Educational policies at the national or international level, such as the Bologna agreements in Europe, can be an opportunity for introducing teaching for social responsibility. However, frequently no or only limited positive effect of such policies can be discerned. Existing accreditation and evaluation mechanisms do not guarantee appropriate attention to teaching for social responsibility, because, in their current form, they provide no guarantee that the curricula pay sufficient attention to teaching goals that are desirable for society as a whole.

  8. A Democratic and Student-Centred Approach to Facilitating Teamwork Learning among First-Year Engineering Students: A Learning and Teaching Case Study

    ERIC Educational Resources Information Center

    Missingham, Dorothy; Matthews, Robert

    2014-01-01

    This work examines an innovative and evolving approach to facilitating teamwork learning in a generic first-year mechanical engineering course. Principles of inclusive, student-active and democratic pedagogy were utilised to engage students on both the social and personal planes. Learner opportunities to facilitate, direct and lead the learning…

  9. A Joint Venture Model for Teaching Required Courses in "Ethics and Engineering" to Engineering Students

    ERIC Educational Resources Information Center

    Zandvoort, H.; Van Hasselt, G. J.; Bonnet, J. A. B. A. F.

    2008-01-01

    We present our experience, spanning more than 10 years of teaching a course on "ethics and engineering" for a group of MSc programmes in applied sciences at Delft University of Technology. The course is taught by a team of teachers from the faculty of Applied Sciences and from the department of Philosophy of the Faculty of Technology,…

  10. Promoting Reflection on Science, Technology, and Society among Engineering Students through an EAP Online Learning Environment

    ERIC Educational Resources Information Center

    Arno-Macia, Elisabet; Rueda-Ramos, Carmen

    2011-01-01

    With the new European framework, as EAP lecturers in an engineering college, we are reappraising our teaching and the position of our courses. From the perspective of engineering education in the 21st century, we believe that EAP teaching can focus not only on language and communication needs, but also on developing critical thinking about science…

  11. On Design Experiment Teaching in Engineering Quality Cultivation

    ERIC Educational Resources Information Center

    Chen, Xiao

    2008-01-01

    Design experiment refers to that designed and conducted by students independently and is surely an important method to cultivate students' comprehensive quality. According to the development and requirements of experimental teaching, this article carries out a study and analysis on the purpose, significance, denotation, connotation and…

  12. Teaching Mathematics Using Steplets

    ERIC Educational Resources Information Center

    Bringslid, Odd; Norstein, Anne

    2008-01-01

    This article evaluates online mathematical content used for teaching mathematics in engineering classes and in distance education for teacher training students. In the EU projects Xmath and dMath online computer algebra modules (Steplets) for undergraduate students assembled in the Xmath eBook have been designed. Two questionnaires, a compulsory…

  13. Research approach to teaching groundwater biodegradation in karst aquifers

    USGS Publications Warehouse

    King, L.; Byl, T.; Painter, R.

    2006-01-01

    TSU in partnership with the USGS has conducted extensive research regarding biode??gradation of contaminants in karst aquifers. This research resulted in the development of a numerical approach to modeling biodegradation of contaminants in karst aquifers that is taught to environmental engineering students in several steps. First, environmental engineering students are taught chemical-reaction engineering principles relating to a wide variety of environmental fate and transport issues. Second, as part of TSU's engineering course curriculum, students use a non-ideal flow laboratory reactor system and run a tracer study to establish residence time distribution (RTD). Next, the students couple that formula to a first-order biodegradation rate and predict the removal of a biodegradable contaminant as a function of residence time. Following this, students are shown data collected from karst bedrock wells that suggest that karst aquifers are analogous to non-ideal flow reactors. The students are challenged to develop rates of biodegradation through lab studies and use their results to predict biodegradaton at an actual contaminated karst site. Field studies are also conducted to determine the accuracy of the students' predictions. This academic approach teaches biodegradation processes, rate-kinetic processes, hydraulic processes and numerical principles. The students are able to experience how chemical engineering principles can be applied to other situations, such as, modeling biodegradation of contaminants in karst aquifers. This paper provides background on the chemical engineering principles and karst issues used in the research-enhanced curriculum. ?? American Society for Engineering Education, 2006.

  14. UCS-PROMOVE: The engineer of the future

    NASA Astrophysics Data System (ADS)

    Villas-Boas, V.

    2010-06-01

    The Universidade de Caxias do Sul (UCS) elaborated the cooperative project called 'The engineer of the future', with the objective of promoting science and engineering among high school teachers and students. This project aims to improve the quality of the teaching and to increase the interest of students in technological areas, leading to a future career in engineering. The activities of this project were planned to give meaning and foundation to the teaching-learning process of science and for the application of theory in the solution of real problems, while articulating scientific, economic, environmental, social and political aspects and also to reinforce the important role of engineering in society. Amongst the activities to be offered to high school teachers and students are a specialisation course for teachers based upon new educational methodologies, workshops in different areas of science and technology, a programme entitled 'Encouraging girls in technology, science and engineering', science fairs and visits to the industries of the region. Activities with the engineering instructors of UCS are also being developed in order to help them to incorporate in their classes more effective pedagogical strategies for educating the engineer-to-be.

  15. The research on teaching reformation of photoelectric information science and engineering specialty experiments

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Yang, Fan; Zhang, Yang; Geng, Tao; Li, Yuxiang

    2017-08-01

    This paper introduced the idea of teaching reformation of photoelectric information science and engineering specialty experiments. The teaching reformation of specialty experiments was analyzed from many aspects, such as construction of specialized laboratory, experimental methods, experiment content, experiment assessing mechanism, and so on. The teaching of specialty experiments was composed of four levels experiments: basic experiments, comprehensive and designing experiments, innovative research experiments and engineering experiments which are aiming at enterprise production. Scientific research achievements and advanced technology on photoelectric technology were brought into the teaching of specialty experiments, which will develop the students' scientific research ability and make them to be the talent suitable for photoelectric industry.

  16. Innovation Online Teaching Module Plus Digital Engineering Kit with Proteus Software through Hybrid Learning Method to Improve Student Skills

    NASA Astrophysics Data System (ADS)

    Kholis, Nur; Syariffuddien Zuhrie, Muhamad; Rahmadian, Reza

    2018-04-01

    Demands the competence (competence) needs of the industry today is a competent workforce to the field of work. However, during this lecture material Digital Engineering (Especially Digital Electronics Basics and Digital Circuit Basics) is limited to the delivery of verbal form of lectures (classical method) is dominated by the Lecturer (Teacher Centered). Though the subject of Digital Engineering requires learning tools and is required understanding of electronic circuits, digital electronics and high logic circuits so that learners can apply in the world of work. One effort to make it happen is by creating an online teaching module and educational aids (Kit) with the help of Proteus software that can improve the skills of learners. This study aims to innovate online teaching modules plus kits in Proteus-assisted digital engineering courses through hybrid learning approaches to improve the skills of learners. The process of innovation is done by considering the skills and mastery of the technology of students (students) Department of Electrical Engineering - Faculty of Engineering – Universitas Negeri Surabaya to produce quality graduates Use of online module plus Proteus software assisted kit through hybrid learning approach. In general, aims to obtain adequate results with affordable cost of investment, user friendly, attractive and interactive (easily adapted to the development of Information and Communication Technology). With the right design, implementation and operation, both in the form of software both in the form of Online Teaching Module, offline teaching module, Kit (Educational Viewer), and e-learning learning content (both online and off line), the use of the three tools of the expenditure will be able to adjust the standard needs of Information and Communication Technology world, both nationally and internationally.

  17. Improving the Retention of First Year Students

    NASA Astrophysics Data System (ADS)

    Bishop, Graham

    The thesis compares student attrition rates in two UWS Schools for 2004 and 2005. It analyses possible reasons why students discontinue and identifies strategies and approaches to improving the quality of the teaching and learning environment for these students. The thesis focuses on the retention of first year students in the School of Engineering at the University of Western Sydney. Low retention rates are costly to the university, leading to inefficient use of resources, failure to fulfil student aspirations, and intervention between the university and the student. In each chapter, the thesis addresses student retention, satisfaction and performance and the interrelation between them and outlines the measures taken by the School of Engineering to improve these measurements for students commencing in 2006 and proposes many recommendations for further improvements in subsequent years. Each chapter addresses these issues by following the student pathway, commencing with the student leaving High School and entering their chosen university and course of study. At each stage, the relevant issues are addressed which have a direct or indirect impact on student retention, satisfaction and performance. Use is made of reports and papers published by universities and organisations, as outlined in the Literature Review. The research questions provide data through the results obtained from surveys. Typical Retention Rates are 75% for UWS, 81% for the Sector, 76% for the New Generation Universities (NGUs) and 62% for the School of Engineering on which this research is focussed. This thesis confirms the research from many countries that closely links student retention with the quality of teaching and learning. Key issues are: • a sound first year student orientation and welcome by staff; encountering efficient, effective and accurate student. The introduction of a more effective and tailored orientation program in 2007 attracted, at UWS School of Engineering, 92% attendance and greater awareness by the students of their study program and the available support services; • having student queries responded to promptly and effectively; The introduction of a First Year Coordinator in 2007 proved to be well received, with a significant number of students having prompt responses to their queries, as compared with previous years; clear expectations management about services and key academic issues like assessment; the marketing of UWS Engineering programs was addressed in 2006 and 2007, with an expansion of the marketing program operated for feeder schools and improved awareness of student expectations prior to entry: an ongoing exercise; having committed, accessible, responsive and capable teaching staff; the accessibility and responsiveness of teaching staff to first year student issues, as outlined in this thesis, is being addressed in 2007; receiving prompt and helpful feedback on their learning; an issue being addressed by the First Year Teaching Team as an essential element of the teaching and learning process; together with: effective use of an appropriate selection from a myriad of learning strategies and resources which give emphasis to active learning, practice oriented learning, peer supported learning and self-managed learning; supported by a reliable infrastructure and support systems; and consistently encountering staff that are responsive and committed to giving service to student support. (Abstract shortened by ProQuest.).

  18. Role-play and the Industrial Revolution: an STS approach to the teaching of steam engines

    NASA Astrophysics Data System (ADS)

    Sabka, Diego; Pereira de Pereira, Alexsandro; Lima Junior, Paulo

    2016-11-01

    Role-play is an interesting, although underexplored, way of teaching physics in high school. This paper presents a science-technology-society (STS) approach to the teaching of heat engines based on a role-play of the Industrial Revolution. Enacting the role-play, students are presented not only to scientific concepts, but also to the social and technological controversies of industrial development.

  19. A Systematic Approach to Teaching Critical Thinking Skills to Electrical and Computer Engineering Undergraduates

    ERIC Educational Resources Information Center

    Welch, Karla Conn; Hieb, Jeffrey; Graham, James

    2015-01-01

    Coursework that instills patterns of rigorous logical thought has long been a hallmark of the engineering curriculum. However, today's engineering students are expected to exhibit a wider range of thinking capabilities both to satisfy ABET requirements and to prepare the students to become successful practitioners. This paper presents the initial…

  20. Inspire Future Engineers with the Concrete Canoe Competition!

    ERIC Educational Resources Information Center

    Cramer, Steven; Kurten, Jaime

    2005-01-01

    While classroom instruction can and should still be used to teach students the fundamentals of engineering, the key to their ultimate success is learning to use that knowledge in a real-world setting. Out-of-class activities, like the American Society of Civil Engineers' (ASCE) National Concrete Canoe Competition, not only give students a hands-on…

  1. Diesel Engine Services. An Instructor's Guide for a Program in Trade and Technical Education. Automotive Industries Occupations.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    Designed to prepare students to be engine mechanics working on automotive and large stationary diesel engines, this instructor's guide contains eight units arranged from simple to complex to facilitate student learning. Each contains behavioral objectives, a content outline, understandings and teaching approaches necessary to develop the content,…

  2. Construction Mechanic, Engine Tune-Up I, 8-7. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for use in vocational and technical education, teaches students to perform a complete engine tune-up using appropriate hand tools, special tools, and testing equipment. Students completing the course will be able to diagnose gasoline-engine performance and perform corrective measures to…

  3. Using the van Hiele K-12 Geometry Learning Theory to Modify Engineering Mechanics Instruction

    ERIC Educational Resources Information Center

    Sharp, Janet M.; Zachary, Loren W.

    2004-01-01

    Engineering students use spatial thinking when examining diagrams or models to study structure design. It is expected that most engineering students have solidified spatial thinking skills during K-12 schooling. However, according to what we know about geometry learning and teaching, spatial thinking probably needs to be explicitly taught within…

  4. The Physics of Living in Space: A Physicist's Attempt to Provide Science and Engineering Education for Non-Science Students.

    ERIC Educational Resources Information Center

    Holbrow, C. H.

    1983-01-01

    A course was developed to teach physics concepts and to help students understand mathematics, the nature and role of engineers and engineering in society, and to distinguish between science/technology from pseudo-science. Includes course goals/content, mechanics, start-up, and long-term projects. (JN)

  5. Graduate students' teaching experiences improve their methodological research skills.

    PubMed

    Feldon, David F; Peugh, James; Timmerman, Briana E; Maher, Michelle A; Hurst, Melissa; Strickland, Denise; Gilmore, Joanna A; Stiegelmeyer, Cindy

    2011-08-19

    Science, technology, engineering, and mathematics (STEM) graduate students are often encouraged to maximize their engagement with supervised research and minimize teaching obligations. However, the process of teaching students engaged in inquiry provides practice in the application of important research skills. Using a performance rubric, we compared the quality of methodological skills demonstrated in written research proposals for two groups of early career graduate students (those with both teaching and research responsibilities and those with only research responsibilities) at the beginning and end of an academic year. After statistically controlling for preexisting differences between groups, students who both taught and conducted research demonstrate significantly greater improvement in their abilities to generate testable hypotheses and design valid experiments. These results indicate that teaching experience can contribute substantially to the improvement of essential research skills.

  6. Exploration on practice teaching reform of Photoelectric Image Processing course under applied transformation

    NASA Astrophysics Data System (ADS)

    Cao, Binfang; Li, Xiaoqin; Liu, Changqing; Li, Jianqi

    2017-08-01

    With the further applied transformation of local colleges, teachers are urgently needed to make corresponding changes in the teaching content and methods from different courses. The article discusses practice teaching reform of the Photoelectric Image Processing course in the Optoelectronic Information Science and Engineering major. The Digital Signal Processing (DSP) platform is introduced to the experimental teaching. It will mobilize and inspire students and also enhance their learning motivation and innovation through specific examples. The course via teaching practice process has become the most popular course among students, which will further drive students' enthusiasm and confidence to participate in all kinds of electronic competitions.

  7. Engineering Encounters: Engineering Adaptations

    ERIC Educational Resources Information Center

    Gatling, Anne; Vaughn, Meredith Houle

    2015-01-01

    Engineering is not a subject that has historically been taught in elementary schools, but with the emphasis on engineering in the "Next Generation Science Standards," curricula are being developed to explicitly teach engineering content and design. However, many of the scientific investigations already conducted with students have…

  8. Linking Teaching and Research in an Undergraduate Course and Exploring Student Learning Experiences

    ERIC Educational Resources Information Center

    Wallin, Patric; Adawi, Tom; Gold, Julie

    2017-01-01

    In this case study, we first describe how teaching and research are linked in a master's course on tissue engineering. A central component of the course is an authentic research project that the students carry out in smaller groups and in collaboration with faculty. We then explore how the students experience learning in this kind of…

  9. Teaching Engineering Graduate Online Students in the U.S. from Pakistan--A Case Study

    ERIC Educational Resources Information Center

    Khalid, Adeel

    2012-01-01

    Outsourcing is seen from various points of views by individuals in different industries. When it comes to educating science and technology students, and for that matter, students of any discipline, up until recently, outsourcing was not a possibility. With the recent advances in computer and network technology, it is now possible to teach a live…

  10. Comparing problem-based learning and lecture as methods to teach whole-systems design to engineering students

    NASA Astrophysics Data System (ADS)

    Dukes, Michael Dickey

    The objective of this research is to compare problem-based learning and lecture as methods to teach whole-systems design to engineering students. A case study, Appendix A, exemplifying successful whole-systems design was developed and written by the author in partnership with the Rocky Mountain Institute. Concepts to be tested were then determined, and a questionnaire was developed to test students' preconceptions. A control group of students was taught using traditional lecture methods, and a sample group of students was taught using problem-based learning methods. After several weeks, the students were given the same questionnaire as prior to the instruction, and the data was analyzed to determine if the teaching methods were effective in correcting misconceptions. A statistically significant change in the students' preconceptions was observed in both groups on the topic of cost related to the design process. There was no statistically significant change in the students' preconceptions concerning the design process, technical ability within five years, and the possibility of drastic efficiency gains with current technologies. However, the results were inconclusive in determining that problem-based learning is more effective than lecture as a method for teaching the concept of whole-systems design, or vice versa.

  11. Al-Manakh. Language Centre Journal, Volume 4, Number 1.

    ERIC Educational Resources Information Center

    Al Manakh, Journal of The Language Centre, 1980

    1980-01-01

    This issue of a journal devoted primarily to teaching English as a second language to engineering students contains the following articles: (1) "The Contribution of Educational Technology to ELT [English Language Teaching]" by Mike Laflin; (2) "Looking Again at Student-Centred Study Skills" by Andrew E. Seymour; (3)…

  12. Teaching Advanced Vehicle Dynamics Using a Project Based Learning (PBL) Approach

    ERIC Educational Resources Information Center

    Redkar, Sangram

    2012-01-01

    This paper presents an interesting teaching experiment carried out at XXX University. The author offered a new course in computational/analytical vehicle dynamics to senior undergraduate students, graduate students and practicing engineers. The objective of the course was to present vehicle dynamics theory with practical applications using…

  13. ''Math in a Can'': Teaching Mathematics and Engineering Design

    ERIC Educational Resources Information Center

    Narode, Ronald B.

    2011-01-01

    Using an apparently simple problem, ''Design a cylindrical can that will hold a liter of milk,'' this paper demonstrates how engineering design may facilitate the teaching of the following ideas to secondary students: linear and non-linear relationships; basic geometry of circles, rectangles, and cylinders; unit measures of area and volume;…

  14. Experimental Economics for Teaching the Functioning of Electricity Markets

    ERIC Educational Resources Information Center

    Guevara-Cedeno, J. Y.; Palma-Behnke, R.; Uribe, R.

    2012-01-01

    In the field of electricity markets, the development of training tools for engineers has been extremely useful. A novel experimental economics approach based on a computational Web platform of an electricity market is proposed here for the practical teaching of electrical engineering students. The approach is designed to diminish the gap that…

  15. Microsoft Excel Software Usage for Teaching Science and Engineering Curriculum

    ERIC Educational Resources Information Center

    Singh, Gurmukh; Siddiqui, Khalid

    2009-01-01

    In this article, our main objective is to present the use of Microsoft Software Excel 2007/2003 for teaching college and university level curriculum in science and engineering. In particular, we discuss two interesting and fascinating examples of interactive applications of Microsoft Excel targeted for undergraduate students in: 1) computational…

  16. Teaching "Community Engagement" in Engineering Education for International Development: Integration of an Interdisciplinary Social Work Curriculum

    ERIC Educational Resources Information Center

    Gilbert, Dorie J.; Held, Mary Lehman; Ellzey, Janet L.; Bailey, William T.; Young, Laurie B.

    2015-01-01

    This article reviews the literature on challenges faced by engineering faculty in educating their students on community-engaged, sustainable technical solutions in developing countries. We review a number of approaches to increasing teaching modules on social and community components of international development education, from adding capstone…

  17. Using Articulate Virtual Laboratories in Teaching Energy Conversion at the U.S. Naval Academy.

    ERIC Educational Resources Information Center

    Wu, C.

    1998-01-01

    The Mechanical Engineering Department at the U.S. Naval Academy is currently evaluating a new teaching method which uses computer software. Utilizing the thermodynamic-based software CyclePad, Intelligent Computer Aided Instruction is incorporated in an advanced energy conversion course for Mechanical Engineering students. The CyclePad software…

  18. Instructional Strategies and Course Design for Teaching Statistics Online: Perspectives from Online Students

    ERIC Educational Resources Information Center

    Yang, Dazhi

    2017-01-01

    Background: Teaching online is a different experience from that of teaching in a face-to-face setting. Knowledge and skills developed for teaching face-to-face classes are not adequate preparation for teaching online. It is even more challenging to teach science, technology, engineering and math (STEM) courses completely online because these…

  19. Puzzle-based learning in engineering mathematics: students' attitudes

    NASA Astrophysics Data System (ADS)

    Klymchuk, Sergiy

    2017-11-01

    The article reports on the results of two case studies on the impact of the regular use of puzzles as a pedagogical strategy in the teaching and learning of engineering mathematics. The intention of using puzzles is to engage students' emotions, creativity and curiosity and also to enhance their generic thinking skills and lateral thinking 'outside the box'. Students' attitudes towards this pedagogical strategy are evaluated via short questionnaires with two groups of university students taking a second-year engineering mathematics course. Students' responses to the questionnaire are presented and analyzed in the paper.

  20. Development of a Support Environment for First Year Students Taking Materials Science/Engineering

    ERIC Educational Resources Information Center

    Laoui, Tahar; O'Donoghue, John

    2008-01-01

    This paper is based on the experience acquired in teaching materials science/engineering to first year university students. It has been observed that students struggle with some of the fundamental materials concepts addressed in the module/course. This applies to delivered lectures but extends to the incorporation of tutorial sessions provided…

  1. A Comparison of Delivery Formats to Encourage Student-Centered Learning in a Power Engineering Technology Course

    ERIC Educational Resources Information Center

    Turner, Mathew J.; Webster, Rustin D.

    2017-01-01

    This paper describes a student-centered approach to a power engineering technology course using the flipped or inverted classroom as well as active learning in the form of group discussions and team problem solving. The study compares student performance and perceptions of a traditional, teaching-centered classroom to two different flipped…

  2. Progress in reforming chemical engineering education.

    PubMed

    Wankat, Phillip C

    2013-01-01

    Three successful historical reforms of chemical engineering education were the triumph of chemical engineering over industrial chemistry, the engineering science revolution, and Engineering Criteria 2000. Current attempts to change teaching methods have relied heavily on dissemination of the results of engineering-education research that show superior student learning with active learning methods. Although slow dissemination of education research results is probably a contributing cause to the slowness of reform, two other causes are likely much more significant. First, teaching is the primary interest of only approximately one-half of engineering faculty. Second, the vast majority of engineering faculty have no training in teaching, but trained professors are on average better teachers. Significant progress in reform will occur if organizations with leverage-National Science Foundation, through CAREER grants, and the Engineering Accreditation Commission of ABET-use that leverage to require faculty to be trained in pedagogy.

  3. A systematic approach to engineering ethics education.

    PubMed

    Li, Jessica; Fu, Shengli

    2012-06-01

    Engineering ethics education is a complex field characterized by dynamic topics and diverse students, which results in significant challenges for engineering ethics educators. The purpose of this paper is to introduce a systematic approach to determine what to teach and how to teach in an ethics curriculum. This is a topic that has not been adequately addressed in the engineering ethics literature. This systematic approach provides a method to: (1) develop a context-specific engineering ethics curriculum using the Delphi technique, a process-driven research method; and (2) identify appropriate delivery strategies and instructional strategies using an instructional design model. This approach considers the context-specific needs of different engineering disciplines in ethics education and leverages the collaboration of engineering professors, practicing engineers, engineering graduate students, ethics scholars, and instructional design experts. The proposed approach is most suitable for a department, a discipline/field or a professional society. The approach helps to enhance learning outcomes and to facilitate ethics education curriculum development as part of the regular engineering curriculum.

  4. University of Colorado CubeSat Student Projects as Successful Model for Teaching Students about Engineering Practices

    NASA Astrophysics Data System (ADS)

    Palo, S. E.; Li, X.; Woods, T. N.; Kohnert, R.

    2014-12-01

    There is a long history of cooperation between students at the University of Colorado, Boulder and professional engineers and scientists at LASP, which has led to many successful space missions with direct student involvement. The recent student-led missions include the Student Nitric Oxide Explorer (SNOE, 1998 - 2002), the Student Dust Counter (SDC) on New Horizons (2006 - present), the Colorado Student Space Weather Experiment (CSSWE), being a very successful NSF CubeSat that launched in September 2012, and the NASA Miniature X-ray Solar Spectrometer (MinXSS) CubeSat (launch will be in early 2015). Students are involved in all aspects of the design, and they experience the full scope of the mission process from concept, to fabrication and test, and mission operations. A significant part of the student involvement in the CubeSat projects is gained by using the CubeSat development as a focal point for an existing two-semester course sequence in CU's Aerospace Engineering Sciences (AES) Department: the Space Hardware Design section of Graduate Projects I & II (ASEN 5018 & ASEN 6028). The goal of these courses is to teach graduate students how to design and build systems using a requirement-based approach and fundamental systems engineering practices. The two-semester sequence takes teams of about 15 students from requirements definition and preliminary design through manufacturing, integration, and testing. In addition to the design process, students learn key professional skills such as working effectively in groups, finding solutions to open-ended problems, and actually building a system to their own set of specifications. The partnership between AES and LASP allows us to include engineering professionals in the mix, thus more effectively training science and engineering students for future roles in the civilian or commercial space industry. The mentoring process with LASP engineers helps to mitigate risk of the inexperience of the students and ensures consistent system engineer oversight for the multi-year CubeSat programs.

  5. Integrating design and communication in engineering education: a collaboration between Northwestern University and the Rehabilitation Institute of Chicago.

    PubMed

    Hirsch, Penny L; Yarnoff, Charles

    2011-01-01

    The required course for freshmen in Northwestern University's engineering school - a 2-quarter sequence called Engineering Design and Communication (EDC) - is noteworthy not only for its project-based focus on user-centered design, but also for its innovative integrated approach to teaching communication, teamwork, and ethics. Thanks to the collaboration between EDC faculty and staff at the Rehabilitation Institute of Chicago, EDC students, at the beginning of their education, experience the excitement of solving problems for real clients and users. At the same time, these authentic design projects offer an ideal setting for teaching students how to communicate effectively to different audiences and perform productively as team members and future leaders in engineering.

  6. An Analog Computer for Electronic Engineering Education

    ERIC Educational Resources Information Center

    Fitch, A. L.; Iu, H. H. C.; Lu, D. D. C.

    2011-01-01

    This paper describes a compact analog computer and proposes its use in electronic engineering teaching laboratories to develop student understanding of applications in analog electronics, electronic components, engineering mathematics, control engineering, safe laboratory and workshop practices, circuit construction, testing, and maintenance. The…

  7. The Keller Plan: A Successful Experiment in Engineering Education.

    ERIC Educational Resources Information Center

    Koen, Billy; And Others

    1985-01-01

    Discusses the Keller Plan or personalized system of instruction (PSI), a mastery-oriented, self-paced, modular teaching strategy using student/peer proctors. Success for PSI in chemical engineering, operations research, electrical engineering, and nuclear engineering courses is explained. (DH)

  8. Creative Teaching in STEM

    ERIC Educational Resources Information Center

    Pollard, Vikki; Hains-Wesson, Rachael; Young, Karen

    2018-01-01

    If Science, Technology, Engineering and Mathematics (STEM) disciplines in higher education are to retain students, there needs to be a shift towards teaching in more enriching and interesting ways. Creative teaching needs to become more prominent in STEM. This article presents a study that defines creative teaching in the STEM context and…

  9. Try This: Construct a Water Catchment

    ERIC Educational Resources Information Center

    Teaching Science, 2017

    2017-01-01

    EngQuest, an initiative of Engineers Australia, provides an exciting, non-competitive way for students to participate in free, fun and educational engineering activities involving mathematics, science and technology. This article describes a project designed to teach middle school students how to construct a water catchment system. Water…

  10. Postgraduate Training in Student Learning and Teaching.

    ERIC Educational Resources Information Center

    Alpay, E.; Mendes-Tatsis, M. A.

    2000-01-01

    Presents an experiential postgraduate training program for student learning and supervision involving laboratory and pilot plant supervisions in the chemical engineering field. The program addresses some of the current concerns about non-technical training and the further development of the broad science and engineering knowledge of postgraduate…

  11. Practical Example of Introductory Engineering Education Based on the Design Process and Teaching Methodology Using a Gyro Bicycle

    ERIC Educational Resources Information Center

    Higa, Yoshikazu; Shimojima, Ken

    2018-01-01

    This report describes a workshop on the Dynamics of Machinery based on the fabrication of a gyro- bicycle in a summer school program for junior high school students. The workshop was conducted by engineering students who had completed "Creative Research", an engineering design course at the National Institute of Technology, Okinawa…

  12. Reverse Engineering and Software Products Reuse to Teach Collaborative Web Portals: A Case Study with Final-Year Computer Science Students

    ERIC Educational Resources Information Center

    Medina-Dominguez, Fuensanta; Sanchez-Segura, Maria-Isabel; Mora-Soto, Arturo; Amescua, Antonio

    2010-01-01

    The development of collaborative Web applications does not follow a software engineering methodology. This is because when university students study Web applications in general, and collaborative Web portals in particular, they are not being trained in the use of software engineering techniques to develop collaborative Web portals. This paper…

  13. Student-inspired activities for the teaching and learning of engineering ethics.

    PubMed

    Alpay, E

    2013-12-01

    Ethics teaching in engineering can be problematic because of student perceptions of its subjective, ambiguous and philosophical content. The use of discipline-specific case studies has helped to address such perceptions, as has practical decision making and problem solving approaches based on some ethical frameworks. However, a need exists for a wider range of creative methods in ethics education to help complement the variety of activities and learning experiences within the engineering curriculum. In this work, a novel approach is presented in which first-year undergraduate students are responsible for proposing ethics education activities of relevance to their peers and discipline area. The students are prepared for the task through a short introduction on engineering ethics, whereby generic frameworks for moral and professional conduct are discussed, and discipline and student-relevance contexts provided. The approach has been used in four departments of engineering at Imperial College London, and has led to the generation of many creative ideas for wider student engagement in ethics awareness, reflection and understanding. The paper presents information on the premise of the introductory sessions for supporting the design task, and an evaluation of the student experience of the course and task work. Examples of proposals are given to demonstrate the value of such an approach to teachers, and ultimately to the learning experiences of the students themselves.

  14. Development of Engineering Design Education in the Department of Mechanical Engineering at Kanazawa Technical College

    NASA Astrophysics Data System (ADS)

    Yamada, Hirofumi; Ten-Nichi, Michio; Mathui, Hirosi; Nakamura, Akizi

    This paper introduces a method of the engineering design education for college of technology mechanical engineering students. In order to teach the practical engineering design, the MIL-STD-499A process is adapted and improved upon for a Mechatronics hands-on lesson used as the MOT method. The educational results in five years indicate that knowledge of the engineering management is useful for college students in learning engineering design. Portfolio for lessons and the hypothesis method also have better effects on the understanding of the engineering specialty.

  15. Barriers to student success in engineering education

    NASA Astrophysics Data System (ADS)

    Boles, Wageeh; Whelan, Karen

    2017-07-01

    In the UK, the USA and Australia, there have been calls for an increase in the number of engineering graduates to meet the needs of current global challenges. Universities around the world have been grappling with how to both attract more engineering students and to then retain them. Attrition from engineering programmes is disturbingly high. This paper reports on an element of research undertaken through an Australian Learning and Teaching Council-funded Fellowship that investigated the factors leading to student attrition in engineering programmes, by identifying barriers to student success. Here, we contrast a review of the literature related to student barriers and success with student perceptions, gathered through a series of focus groups and interviews at three Australian universities. We also present recommendations for action to try to remove barriers to student success.

  16. Professional Development as a Catalyst for Change in the Community College Science Classroom: How Active Learning Pedagogy Impacts Teaching Practices as Well as Faculty and Student Perceptions of Learning

    ERIC Educational Resources Information Center

    Harmon, Melissa Cameron

    2017-01-01

    Active learning, an engaging, student-centered, evidence-based pedagogy, has been shown to improve student satisfaction, engagement, and achievement in college classrooms. There have been numerous calls to reform teaching practices, especially in science, technology, engineering, and math (STEM); however, the utilization of active learning is…

  17. Exploration on the reform of the science and engineering experiment teaching based on the combination with teaching and scientific research

    NASA Astrophysics Data System (ADS)

    Song, Peng

    2017-08-01

    The existing problems of the experiment education in colleges and universities are analyzed. Take the science and engineering specialty as example, the idea of the combination with teaching and scientific research is discussed. The key problems are how the scientific research and scientific research achievements are used effectively in the experiment education, how to effectively use scientific research laboratories and scientific researchers. Then, a specialty experiment education system is established which is good for the teaching in accordance of all students' aptitude. The research in this paper can give the construction of the experiment teaching methods and the experiment system reform for the science and engineering specialties in colleges and universities.

  18. Electrophysiology for biomedical engineering students: a practical and theoretical course in animal electrocorticography.

    PubMed

    Albarracín, Ana L; Farfán, Fernando D; Coletti, Marcos A; Teruya, Pablo Y; Felice, Carmelo J

    2016-09-01

    The major challenge in laboratory teaching is the application of abstract concepts in simple and direct practical lessons. However, students rarely have the opportunity to participate in a laboratory that combines practical learning with a realistic research experience. In the Biomedical Engineering career, we offer short and optional courses to complement studies for students as they initiate their Graduation Project. The objective of these theoretical and practical courses is to introduce students to the topics of their projects. The present work describes an experience in electrophysiology to teach undergraduate students how to extract cortical information using electrocorticographic techniques. Students actively participate in some parts of the experience and then process and analyze the data obtained with different signal processing tools. In postlaboratory evaluations, students described the course as an exceptional opportunity for students interested in following a postgraduate science program and fully appreciated their contents. Copyright © 2016 The American Physiological Society.

  19. The Flying Classroom--A Cost Effective Integrated Approach to Learning and Teaching Flight Dynamics

    ERIC Educational Resources Information Center

    Bromfield, Michael A.; Belberov, Aleksandar

    2017-01-01

    In the UK, the Royal Aeronautical Society recommends the inclusion of practical flight exercises for accredited undergraduate aerospace engineering programmes to enhance learning and student experience. The majority of academic institutions teaching aerospace in the UK separate the theory and practice of flight dynamics with students attending a…

  20. Design and Validation of a Questionnaire to Measure Research Skills: Experience with Engineering Students

    ERIC Educational Resources Information Center

    Cobos Alvarado, Fabián; Peñaherrera León, Mónica; Ortiz Colon, Ana María

    2016-01-01

    Universities in Latin American countries are undergoing major changes in its institutional and academic settings. One strategy for continuous improvement of teaching and learning process is the incorporation of methods and teaching aids seeking to develop scientific research skills in students from their undergraduate studies. The aim of this…

  1. A Bottom-Up Approach to Teaching Robotics and Mechatronics to Mechanical Engineers

    ERIC Educational Resources Information Center

    Shiller, Z.

    2013-01-01

    This paper describes a multidisciplinary teaching program, designed to provide students with the broad knowledge and skills required to practice product development in robotics and mechatronics. The curriculum was designed to prepare students for the senior capstone design project, in which they design and build a working mechatronic/robotic…

  2. A Course in Electrochemical and Corrosion Engineering.

    ERIC Educational Resources Information Center

    Van Zee, John

    1985-01-01

    Describes a course designed to show similarities between electrochemistry and corrosion engineering and to show graduate students that electrochemical and corrosion engineering can be accomplished by extending their knowledge of chemical engineering models. Includes course outline, textbooks selected, and teaching methods used. (JN)

  3. A Flipped Mode Teaching Approach for Large and Advanced Electrical Engineering Courses

    ERIC Educational Resources Information Center

    Ravishankar, Jayashri; Epps, Julien; Ambikairajah, Eliathamby

    2018-01-01

    A fully flipped mode teaching approach is challenging for students in advanced engineering courses, because of demanding pre-class preparation load, due to the complex and analytical nature of the topics. When this is applied to large classes, it brings an additional complexity in terms of promoting the intended active learning. This paper…

  4. Physics for Scientists and Engineers, 5th edition - Volume 1

    NASA Astrophysics Data System (ADS)

    Tipler, Paul A.; Mosca, Gene P.

    For nearly 30 years, Paul Tipler's Physics for Scientists and Engineers has set the standard in the introductory calculus-based physics course for clarity, accuracy, and precision. In this fifth edition, Paul has recruited Gene Mosca to bring his years of teaching experience to bear on the text, to scrutinize every explanation and example from the perspective of the freshman student. The result is a teaching tool that retains its precision and rigor, but offers struggling students the support they need to solve problems strategically and to gain real understanding of physical concepts.

  5. How Is That Done? Student Views on Resources Used outside the Engineering Classroom

    ERIC Educational Resources Information Center

    Maclaren, Peter

    2018-01-01

    While the traditional lecture remains a key feature in the teaching of mathematically intensive disciplines at a tertiary level, what students do outside class, the resources they use, and how they use them are critical factors in their success. This study reports on a survey of students studying a range of engineering subjects, giving their views…

  6. Improvements to an Electrical Engineering Skill Audit Exam to Improve Student Mastery of Core EE Concepts

    ERIC Educational Resources Information Center

    Parent, D. W.

    2011-01-01

    The San Jose State University Electrical Engineering (EE) Department implemented a skill audit exam for graduating seniors in 1999 with the purpose of assessing the teaching and the students' mastery of core concepts in EE. However, consistent low scores for the first years in which the test was administered suggested that students had little…

  7. Using Mung Beans as a Simple, Informative Means to Evaluate the Phytotoxicity of Engineered Nanomaterials and Introduce the Concept of Nanophytotoxicity to Undergraduate Students

    ERIC Educational Resources Information Center

    Ross, Shailise S.; Owen, Matthew J.; Pedersen, Brian P.; Liu, Gang-yu; Miller, William J. W.

    2016-01-01

    This work presents a lecture and lab series that focuses on teaching the concept of nanophytotoxicity to undergraduate students in a relatively simple experiment. In this experiment, students evaluated the phytotoxicity of engineered nanomaterials (ENMs) using mung beans (i.e., "Vigna radiata") and industrially relevant, commercially…

  8. A Comparative Analysis of Preferred Learning and Teaching Styles for Engineering, Industrial, and Technology Education Students and Faculty

    ERIC Educational Resources Information Center

    Katsioloudis, Petros; Fantz, Todd D.

    2012-01-01

    In the spring semester of 2010, a materials process course was selected as a means to perform a preferred learning style research study. This course was selected because it contained three groups of students: technology education, engineering technology, and industrial technology. The researchers believed that the differences in the students'…

  9. Research and Teaching: Transforming Discussion in General Chemistry with Authentic Experiences for Engineering Students

    ERIC Educational Resources Information Center

    Crippen, Kent J.; Boyer, Treavor H.; Korolev, Maria; de Torres, Trisha; Brucat, Phil J.; Wu, Chang-Yu

    2016-01-01

    Undergraduate engineering education in the United States is in need of reform that addresses the recruitment and retention of a diverse population of students. Change Chem is a curriculum reform model that has been created to address this issue for freshman students. This article reports on a mixed method efficacy study of Change Chem, which uses…

  10. The Design and Evaluation of a Cryptography Teaching Strategy for Software Engineering Students

    ERIC Educational Resources Information Center

    Dowling, T.

    2006-01-01

    The present paper describes the design, implementation and evaluation of a cryptography module for final-year software engineering students. The emphasis is on implementation architectures and practical cryptanalysis rather than a standard mathematical approach. The competitive continuous assessment process reflects this approach and rewards…

  11. Mechatronics Learning Studio: From "Play and Learn" to Industry-Inspired Green Energy Applications

    ERIC Educational Resources Information Center

    Habash, R. W. Y.; Suurtamm, C.; Necsulescu, D.

    2011-01-01

    This paper describes the evolution of the teaching of electrical engineering to mechanical engineering students based on motivation and a pedagogical strategy incorporating interdisciplinary mechatronics projects in a learning studio environment. Implementation of student projects within the curriculum has been demonstrated to be highly…

  12. Teaching Population Balances for Chemical Engineering Students: Application to Granulation Processes

    ERIC Educational Resources Information Center

    Bucala, Veronica; Pina, Juliana

    2007-01-01

    The population balance equation (PBE) is a useful tool to predict particle size distributions in granulation processes. When PBE is taught to advanced chemical engineering students, the internal coordinates (particle properties) are particularly hard to understand. In this paper, the flow of particles along different coordinates is carefully…

  13. Teaching Complicated Conceptual Knowledge with Simulation Videos in Foundational Electrical Engineering Courses

    ERIC Educational Resources Information Center

    Chen, Baiyun; Wei, Lei; Li, Huihui

    2016-01-01

    Building a solid foundation of conceptual knowledge is critical for students in electrical engineering. This mixed-method case study explores the use of simulation videos to illustrate complicated conceptual knowledge in foundational communications and signal processing courses. Students found these videos to be very useful for establishing…

  14. International Co-Operation in Control Engineering Education Using Online Experiments

    ERIC Educational Resources Information Center

    Henry, Jim; Schaedel, Herbert M.

    2005-01-01

    This paper describes the international co-operation experience in teaching control engineering with laboratories being conducted remotely by students via the Internet. This paper describes how the students ran the experiments and their personal experiences with the laboratory. A tool for process identification and controller tuning based on…

  15. Using Animation to Improve the Students' Academic Achievement on Bipolar Junction Transistor

    ERIC Educational Resources Information Center

    Zoabi, W.; Sabag, N.; Gero, A.

    2012-01-01

    Teaching abstract subjects to students studying towards a degree in electronics practical engineering (a degree between a technician and an engineer) requires didactic tools that enable understanding of issues without using advanced mathematics and physics. One basic issue is the BJT (Bipolar Junction Transistor) that requires preliminary…

  16. Student Teachers of Technology and Design: Can Short Periods of STEM-Related Industrial Placement Change Student Perceptions of Engineering and Technology?

    ERIC Educational Resources Information Center

    Gibson, Ken S.

    2012-01-01

    This is a report, on a small-scale case study, of a programme of short industrial placements (5 day block) for student teachers of technology and design in Northern Ireland. Such placements increase student awareness and understanding of the nature of Engineering and Technology and therefore better prepare them to teach these subjects, as integral…

  17. Engaging students in learning: findings from a study of project-led education

    NASA Astrophysics Data System (ADS)

    Fernandes, Sandra; Mesquita, Diana; Assunção Flores, Maria; Lima, Rui M.

    2014-01-01

    This paper reports on findings from a three-year study of project-based learning implemented in the first year of the Industrial Engineering and Management programme, at the University of Minho, Portugal. This particular model was inspired on project-led education (PLE), following Powell and Weenk's [2003. Project-Led Engineering Education. Utrecht: Lemma] work. It aims to analyse students' perceptions of PLE as a learning device and its implications for faculty and students' role in teaching and learning. Data collection took place in two phases through individual surveys and focus groups to students. Findings suggest the importance of PLE as a device to enhance meaningful learning and provide evidence from students that it helps to increase their engagement in learning. Implications of PLE for faculty and students role in teaching and learning will be discussed in the paper.

  18. Knowledge management through the e-learning approach - a case study of online engineering courses

    NASA Astrophysics Data System (ADS)

    Aichouni, Mohamed; Benchicou, Soraya; Nehari, Dris

    2013-06-01

    Though it is universally accepted that the face-to-face approach is the best way for education and training, however, with the advent of the information and communication technologies (mainly the World Wide Web) it became possible to enhance further the methods we are using to teach our students and to share the teaching material within a broaden engineering, technical and business communities. This paper is dedicated to making a review of the basic concepts of knowledge management and e-learning and to show how these two modern concepts can be integrated into engineering education to produce knowledge, disseminate it and share it within virtual interest groups and networks of engineering students, academic teachers and industrial engineers and technicians and business managers. A practical case study will be presented and discussed.

  19. More than just a game: the role of simulation in the teaching of product design and entrepreneurship to mechanical engineering students

    NASA Astrophysics Data System (ADS)

    Costello, Gabriel J.

    2017-11-01

    The purpose of this work is to contribute to the debate on the best pedagogical approach to developing undergraduate mechanical engineering skills to meet the requirements of contemporary complex working environments. The paper provides an example of using student-entrepreneur collaboration in the teaching of modules to Mechanical Engineering final-year students. Problem-based learning (PBL) is one of the most significant recent innovations in the area of education for the professions. This work proposes to make an original contribution by simulating a real-life entrepreneur interaction for the students. The current literature largely confines simulation-based learning to computer applications such as games. However, this paper argues that role playing by students interfacing with technology start-ups can also be regarded as 'simulation' in a wider sense. Consequently, the paper proposes the concept of simulation-action learning as an enhancement of PBL and to distinguish it from computer simulation.

  20. Evolution of the teachings of chemistry in the new degrees of School of Agricultural Engineering and its importance in the acquisition of competencies

    NASA Astrophysics Data System (ADS)

    Arce, Augusto; Tarquis, Ana M.; Castellanos, Maria Teresa; Requejo, Maria Isabel; Cartagena, Maria Carmen

    2014-05-01

    The academic year 2012-13 is the third year of implementation of the Bologna process in ETSI Agricultural for the subjects Chemistry I and Chemistry II in the new four Degrees: Graduate in Engineering and Agricultural Science, Food Engineering Graduate, Graduate in Engineering Environmental and Biotechnology graduate. We have implemented new interactive methodologies in the teaching-learning process based on the use of the virtual platform of the UPM, and teaching support materials and new laboratory practice developing has. It has also launched new continuous assessment systems that promote active student participation. A comparative study of academic achievements by students of the new grades in the subjects of chemistry during the last three academic years was performed to correlating the results obtained, the success rate and the drop out, and compare with the level of prior knowledge to those entering students. Possible solutions to try and fix these results in future courses are proposed Finally, the general competencies that contribute this course, how they are acquired and how they should be evaluated correctly are indicated. Acknowledgments: Innovation educative projects Nº IE02054-11/12 UPM. 2012

  1. Examining Elementary Teachers' Engineering Self-Efficacy and Engineering Teacher Efficacy

    ERIC Educational Resources Information Center

    Hammack, Rebekah; Ivey, Toni

    2017-01-01

    Research indicates that teacher efficacy influences student achievement and is situation specific. With the Next Generation Science Standards calling for the incorporation of engineering practices into K-12 classrooms, it is important to identify teachers' engineering teaching efficacy. A study of K-5 teachers' engineering self-efficacy and…

  2. MCEER, from Earthquake Engineering to Extreme Events | Home Page

    Science.gov Websites

    Center Report Series Education Education Home Bridge Engineering Guest Speaker Series Connecte²d Teaching CSEE Graduate Student Poster Competition Earthquake Engineering Education in Haiti Earthquakes : FAQ's Engineering Seminar Series K-12 STEM Education National Engineers Week Research Experiences for

  3. Educating Civil Engineers for Developing Countries

    ERIC Educational Resources Information Center

    Stanley, D.

    1974-01-01

    Based on engineering teaching experience in Africa and Asia, ideas are presented on educating civil engineers for developing countries, especially those in Africa. Some of the problems facing educational planners, teachers, and students are addressed, including responsibilities of a newly graduated civil engineer, curriculum development, and…

  4. Final Technical Report: Hydrogen Energy in Engineering Education (H2E3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, Peter A.; Cashman, Eileen; Lipman, Timothy

    2011-09-15

    Schatz Energy Research Center's Hydrogen Energy in Engineering Education curriculum development project delivered hydrogen energy and fuel cell learning experiences to over 1,000 undergraduate engineering students at five California universities, provided follow-on internships for students at a fuel cell company; and developed commercializable hydrogen teaching tools including a fuel cell test station and a fuel cell/electrolyzer experiment kit. Monitoring and evaluation tracked student learning and faculty and student opinions of the curriculum, showing that use of the curriculum did advance student comprehension of hydrogen fundamentals. The project web site (hydrogencurriculum.org) provides more information.

  5. Empowering biomedical engineering undergraduates to help teach design.

    PubMed

    Allen, Robert H; Tam, William; Shoukas, Artin A

    2004-01-01

    We report on our experience empowering upperclassmen and seniors to help teach design courses in biomedical engineering. Initiated in the fall of 1998, these courses are a projects-based set, where teams of students from freshmen level to senior level converge to solve practical problems in biomedical engineering. One goal in these courses is to teach the design process by providing experiences that mimic it. Student teams solve practical projects solicited from faculty, industry and the local community. To hone skills and have a metric for grading, written documentation, posters and oral presentations are required over the two-semester sequence. By requiring a mock design and build exercise in the fall, students appreciate the manufacturing process, the difficulties unforeseen in the design stage and the importance of testing. A Web-based, searchable design repository captures reporting information from each project since its inception. This serves as a resource for future projects, in addition to traditional ones such as library, outside experts and lab facilities. Based on results to date, we conclude that characteristics about our design program help students experience design and learn aspects about teamwork and mentoring useful in their profession or graduate education.

  6. Elementary Students' Acquisition of Academic Vocabulary Through Engineering Design

    NASA Astrophysics Data System (ADS)

    Kugelmass, Rachel

    This study examines how STEM (science, technology, engineering, and mathematics) inquiry-based learning through a hands-on engineering design can be beneficial in helping students acquire academic vocabulary. This research took place in a second grade dual- language classroom in a public, suburban elementary school. English language learners, students who speak Spanish at home, and native English speakers were evaluated in this study. Each day, students were presented with a general academic vocabulary focus word during an engineering design challenge. Vocabulary pre-tests and post-tests as well as observation field notes were used to evaluate the student's growth in reading and defining the focus academic vocabulary words. A quiz and KSB (knowledge and skill builder) packet were used to evaluate students' knowledge of science and math content and engineering design. The results of this study indicate that engineering design is an effective means for teaching academic vocabulary to students with varying levels of English proficiency.

  7. Design and practice of a comprehensively functional integrated management information system for major construction

    NASA Astrophysics Data System (ADS)

    Liu, Yuling; Wang, Xiaoping; Zhu, Yuhui; Fei, Lanlan

    2017-08-01

    This paper introduces a Comprehensively Functional Integrated Management Information System designed for the Optical Engineering Major by the College of Optical Science and Engineering, Zhejiang University, which combines the functions of teaching, students learning, educational assessment and management. The system consists of 5 modules, major overview, online curriculum, experiment teaching management, graduation project management and teaching quality feedback. The major overview module introduces the development history, training program, curriculums and experiment syllabus and teaching achievements of optical engineering major in Zhejiang University. The Management Information System is convenient for students to learn in a mobile and personalized way. The online curriculum module makes it very easy for teachers to setup a website for new curriculums. On the website, teachers can help students on their problems about the curriculums in time and collect their homework online. The experiment teaching management module and the graduation project management module enables the students to fulfill their experiment process and graduation thesis under the help of their supervisors. Before students take an experiment in the lab, they must pass the pre-experiment quiz on the corresponding module. After the experiment, students need to submit the experiment report to the web server. Moreover, the module contains experiment process video recordings, which are very helpful to improve the effect of the experiment education. The management of the entire process of a student's graduation program, including the project selection, mid-term inspection, progress report of every two weeks, final thesis, et al, is completed by the graduation project management module. The teaching quality feedback module is not only helpful for teachers to know whether the education effect of curriculum is good or not, but also helpful for the administrators of the college to know whether the design of syllabus is reasonable or not. The Management Information System changes the management object from the education results to the entire education processes. And it improves the efficiency of the management. It provides an effective method to promote curriculum construction management by supervision and evaluation, which improves students' learning outcomes and the quality of curriculums. As a result, it promotes the quality system of education obviously.

  8. Setting Engineering Students up for Success in the 21st Century: Integrating Gamification and Crowdsourcing into a CDIO-Based Web Design Course

    ERIC Educational Resources Information Center

    Song, Donglei; Tavares, Adriano; Pinto, Sandro; Xu, Hao

    2017-01-01

    Over the past few decades, many researchers have tested course designs that may better engage students in developing countries, accommodate for Millennials' desires to learn and teach at will, and teach students the skills they need for their first jobs. The vision of this paper for a web design course seeks to address these issues for engineering…

  9. Promoting Active Learning When Teaching Introductory Statistics and Probability Using a Portfolio Curriculum Approach

    ERIC Educational Resources Information Center

    Adair, Desmond; Jaeger, Martin; Price, Owen M.

    2018-01-01

    The use of a portfolio curriculum approach, when teaching a university introductory statistics and probability course to engineering students, is developed and evaluated. The portfolio curriculum approach, so called, as the students need to keep extensive records both as hard copies and digitally of reading materials, interactions with faculty,…

  10. Development of an Interactive Computer-Based Learning Strategy to Assist in Teaching Water Quality Modelling

    ERIC Educational Resources Information Center

    Zigic, Sasha; Lemckert, Charles J.

    2007-01-01

    The following paper presents a computer-based learning strategy to assist in introducing and teaching water quality modelling to undergraduate civil engineering students. As part of the learning strategy, an interactive computer-based instructional (CBI) aid was specifically developed to assist students to set up, run and analyse the output from a…

  11. Teaching Kindergarten Students about the Water Cycle through Arts and Invention

    ERIC Educational Resources Information Center

    Smith, Latisha L.; Samarakoon, Deepanee

    2016-01-01

    Research evidence for the benefits of arts integration is mounting. The purpose of this study was to determine if integration of the arts was an effective strategy for teaching the water cycle to kindergarten students. The study included lessons that supported both a science and an engineering standard of the Next Generation Science Standards and…

  12. Gathering Design References from Nature

    ERIC Educational Resources Information Center

    Debs, Luciana; Kelley, Todd

    2015-01-01

    Teaching design to middle and high school students can be challenging. One of the first procedures in teaching design is to help students gather information that will be useful in the design phase. An early stage of engineering design as described by Lewis (2005), calls for the designer to establish the state of the art of the problem. During this…

  13. Using Continuous Assessment to Promote Student Engagement in a Large Class

    ERIC Educational Resources Information Center

    Cole, Jonathan S.; Spence, Stephen W. T.

    2012-01-01

    The authors have developed a first-year fluids course for a class of around 230 aerospace, civil and mechanical engineering students. This paper aims to show how the teaching and assessment methodology was applied to the challenge of a large class. The lectures featured formal teaching interspersed with active learning elements. Smaller group…

  14. Teaching Mass Transfer and Filtration Using Crossflow Reverse Osmosis and Nanofiltration: An Experiment for the Undergraduate Unit Operations Lab

    ERIC Educational Resources Information Center

    Anastasio, Daniel; McCutcheon, Jeffrey

    2012-01-01

    A crossflow reverse osmosis (RO) system was built for a senior-level chemical engineering unit operations laboratory course. Intended to teach students mass transfer fundamentals related to membrane separations, students tested several commercial desalination membranes, measuring water flux and salt rejections at various pressures, flow rates, and…

  15. How to teach artificial organs.

    PubMed

    Zapanta, Conrad M; Borovetz, Harvey S; Lysaght, Michael J; Manning, Keefe B

    2011-01-01

    Artificial organs education is often an overlooked field for many bioengineering and biomedical engineering students. The purpose of this article is to describe three different approaches to teaching artificial organs. This article can serve as a reference for those who wish to offer a similar course at their own institutions or incorporate these ideas into existing courses. Artificial organ classes typically fulfill several ABET (Accreditation Board for Engineering and Technology) criteria, including those specific to bioengineering and biomedical engineering programs.

  16. TeachEnG: a Teaching Engine for Genomics.

    PubMed

    Kim, Minji; Kim, Yeonsung; Qian, Lei; Song, Jun S

    2017-10-15

    Bioinformatics is a rapidly growing field that has emerged from the synergy of computer science, statistics and biology. Given the interdisciplinary nature of bioinformatics, many students from diverse fields struggle with grasping bioinformatic concepts only from classroom lectures. Interactive tools for helping students reinforce their learning would be thus desirable. Here, we present an interactive online educational tool called TeachEnG (acronym for Teaching Engine for Genomics) for reinforcing key concepts in sequence alignment and phylogenetic tree reconstruction. Our instructional games allow students to align sequences by hand, fill out the dynamic programming matrix in the Needleman-Wunsch global sequence alignment algorithm, and reconstruct phylogenetic trees via the maximum parsimony, Unweighted Pair Group Method with Arithmetic mean (UPGMA) and Neighbor-Joining algorithms. With an easily accessible interface and instant visual feedback, TeachEnG will help promote active learning in bioinformatics. TeachEnG is freely available at http://teacheng.illinois.edu. The source code is available from https://github.com/KnowEnG/TeachEnG under the Artistic License 2.0. It is written in JavaScript and compatible with Firefox, Safari, Chrome and Microsoft Edge. songj@illinois.edu. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  17. An Appraisal of an Online Tutorial System for the Teaching and Learning of Engineering Physics in Conjunction with Contextual Physics and Mathematics, and Relevant Mathematics

    ERIC Educational Resources Information Center

    Bhathal, Ragbir

    2016-01-01

    The number of students entering engineering schools in Australian universities has increased tremendously over the last few years because of the Australian Federal Government's policy of increasing the participation rates of Higher School Certificate students and students from low social economic status backgrounds in the tertiary sector. They now…

  18. Multiple case studies of STEM teachers' orientations to science teaching through engineering design

    NASA Astrophysics Data System (ADS)

    Rupp, Madeline

    The following master's thesis is composed of two manuscripts describing STEM teachers' orientations to science teaching through engineering within the context of the Science Learning through Engineering Design (SLED) partnership. The framework guiding both studies was science teaching orientations, a component of pedagogical content knowledge. Data were collected via semi-structured interviews, multi-day classroom observations, pre- and post-observation interviews, implementation plans, and written reflections. Data sources were analyzed to generate two orientations to science teaching through engineering design for each participant. The first manuscript illustrates a single case study conducted with a sixth grade STEM teacher. Results of this study revealed a detailed picture of the teacher's goals, practices, assessments, and general views when teaching science through engineering design. Common themes across the teacher's instruction were used to characterize her orientations to science teaching through engineering design. Overall, the teacher's orientations showed a shift in her practice from didactic to student-centered methods of teaching as a result of integrating engineering design-based curriculum. The second manuscript describes a comparative case study of two sixth grade SLED participants. Results of this study revealed more complex and diverse relationships between the teachers' orientations to teaching science through engineering design and their instruction. Participants' orientations served as filters for instruction, guided by their divergent purposes for science teaching. Furthermore, their orientations and resulting implementation were developed from knowledge gained in teacher education, implying that teacher educators and researchers can use this framework to learn more about how teachers' knowledge is used to integrate engineering and science practices in the K-12 classroom.

  19. Synthesis of Hollow Gold-Silver Alloyed Nanoparticles: A "Galvanic Replacement" Experiment for Chemistry and Engineering Students

    ERIC Educational Resources Information Center

    Jenkins, Samir V.; Gohman, Taylor D.; Miller, Emily K.; Chen, Jingyi

    2015-01-01

    The rapid academic and industrial development of nanotechnology has led to its implementation in laboratory teaching for undergraduate-level chemistry and engineering students. This laboratory experiment introduces the galvanic replacement reaction for synthesis of hollow metal nanoparticles and investigates the optical properties of these…

  20. Critical Thinking Disposition: The Effects of Infusion Approach in Engineering Drawing

    ERIC Educational Resources Information Center

    Darby, Norazlinda Mohd; Rashid, Abdullah Mat

    2017-01-01

    Critical Thinking Disposition is known as an important factor that drives a student to use Higher Order Thinking Skills (HOTS) in order to solve engineering drawing problems. Infusing them while teaching the subject may enhance students' disposition and higher order thinking skills. However, no research has been done in critical thinking…

  1. Troubleshooting. Teacher's Guide and Student Activity Sheets. Small Engine Repair Series.

    ERIC Educational Resources Information Center

    Hill, Pamela

    This teacher's guide is part of an instructional series on small engine repair that is intended for use with mentally retarded and learning disabled students in general mechanical repair programs. Notes to the instructor cover equipment needed, preparation before teaching, and use of evaluation charts, transparency masters, audiovisual(s), and…

  2. Improving Aerospace Engineering Students' Achievements by an Open Aero Control Experiment Apparatus

    ERIC Educational Resources Information Center

    Zeng, QingHua; Zhang, WeiHua; Huang, ZheZhi; Dong, RongHua

    2014-01-01

    This paper describes the development of an aero control experiment apparatus (ACEA) for use in aerospace control practical courses. The ACEA incorporates a systematic multihierarchy learning and teaching method, and was designed to improve aerospace engineering students' understanding of unmanned aerial vehicle (UAV) control systems. It offers a…

  3. Engineering Encounters: Building Technological Literacy with Philosophy and Nature of Technology

    ERIC Educational Resources Information Center

    Kruse, Jerrid; Wilcox, Jesse

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. In this issue the authors discuss a design project they have used with upper elementary students (grades 4-6). They note ways to engage students in thinking philosophically about technology to meet engineering design outcomes in the "Next Generation Science…

  4. Teaching and Evaluation of Critical Appraisal Skills to Postgraduate ESL Engineering Students

    ERIC Educational Resources Information Center

    Melles, Gavin

    2009-01-01

    Enrolments in postgraduate engineering in Australia include a significant proportion of Asian ESL (English as a Second Language) students, and there is some debate in the literature about whether they are capable of critical appraisal. Content-based discipline-specific EAP (English for Academic Purposes) courses provide an environment for…

  5. Methodology for Developing Teaching Activities and Materials for Use in Fluid Mechanics Courses in Undergraduate Engineering Programs

    ERIC Educational Resources Information Center

    Gamez-Montero, P. Javier; Raush, Gustavo; Domènech, Lluis; Castilla, Robert; García-Vílchez, Mercedes; Moreno, Hipòlit; Carbó, Albert

    2015-01-01

    "Mechanics" and "Fluids" are familiar concepts for any newly-registered engineering student. However, when combined into the term "Fluid Mechanics", students are thrust into the great unknown. The present article demonstrates the process of adaptation employed by the Fluid Mechanics course in the undergraduate…

  6. Teach CAD and Measuring Skills through Reverse Engineering

    ERIC Educational Resources Information Center

    Board, Keith

    2012-01-01

    This article describes a reverse engineering activity that gives students hands-on, minds-on experience with measuring tools, machine parts, and CAD. The author developed this activity to give students an abundance of practical experience with measuring tools. Equally important, it provides a good interface between the virtual world of CAD 3D…

  7. A review of biotransport education in the 21st century: lessons learned from experts.

    PubMed

    Banerjee, Rupak K; D'Souza, Gavin A; Rylander, Christopher; Devireddy, Ram

    2014-11-01

    The field of bioengineering is relatively new and complex including multiple disciplines encompassing areas in science and engineering. Efforts including the National Science Foundation (NSF) sponsored Integrative Graduate Education and Research Traineeship (IGERT) and VaNTH Engineering Research Center in Bioengineering Educational Technologies have been made to establish and disseminate knowledge and proven methods for teaching bioengineering concepts. Further, the summer bioengineering conference (SBC), sponsored by the American Society of Mechanical Engineers' (ASME) Bioengineering Division, was established to provide a meeting place for engineering educators and students having common interests in biological systems. Of the many subdisciplines of bioengineering, biotransport is a key subject that has wide applicability to many issues in engineering, biology, medicine, pharmacology, and environmental science, among others. The absence of standard content, guidelines, and texts needed for teaching biotransport courses to students motivated the Biotransport committee of ASME's Bioengineering Division to establish a biotransport education initiative. Biotransport education workshop sessions were conducted during the SBC 2011, 2012, and 2013 as part of this initiative. The workshop sessions included presentations from experienced faculty covering a spectrum of information from general descriptions of undergraduate biotransport courses to very detailed outlines of graduate courses to successful teaching techniques. A list of texts and references available for teaching biotransport courses at undergraduate and graduate levels has been collated and documented based on the workshop presentations. Further, based on individual teaching experiences and methodologies shared by the presenters, it was noted that active learning techniques, including cooperative and collaborative learning, can be useful for teaching undergraduate courses while problem based learning (PBL) can be a beneficial method for graduate courses. The outcomes of the education initiative will help produce students who are knowledgeable in the subject of biotransport, facile in applying biotransport concepts for solving problems in various application areas, and comfortable with their own abilities as life-long learners.

  8. ERM TLB Teaching-Learning Behavior News

    ERIC Educational Resources Information Center

    LeBold, William K., Ed.

    1978-01-01

    Describes a graduate electrical engineering mini-course, computer graphics gaming and simulation, classroom management and student progress records, student reaction to instruction, and computer graphics in undergraduate education. (SL)

  9. Failure is an option: Reactions to failure in elementary engineering design projects

    NASA Astrophysics Data System (ADS)

    Johnson, Matthew M.

    Recent reform documents in science education have called for teachers to use epistemic practices of science and engineering researchers to teach disciplinary content (NRC, 2007; NRC, 2012; NGSS Lead States, 2013). Although this creates challenges for classroom teachers unfamiliar with engineering, it has created a need for high quality research about how students and teachers engage in engineering activities to improve curriculum development and teaching pedagogy. While framers of the Next Generation Science Standards (NRC, 2012; NGSS Lead States 2013) focused on the similarities of the practices of science researchers and engineering designers, some have proposed that engineering has a unique set of epistemic practices, including improving from failure (Cunningham & Carlsen, 2014; Cunningham & Kelly, in review). While no one will deny failures occur in science, failure in engineering is thought of in fundamentally different ways. In the study presented here, video data from eight classes of elementary students engaged in one of two civil engineering units were analyzed using methods borrowed from psychology, anthropology, and sociolinguistics to investigate: 1) the nature of failure in elementary engineering design; 2) the ways in which teachers react to failure; and 3) how the collective actions of students and teachers support or constrain improvement in engineering design. I propose new ways of considering the types and causes of failure, and note three teacher reactions to failure: the manager, the cheerleader, and the strategic partner. Because the goal of iteration in engineering is improvement, I also studied improvement. Students only systematically improve when they have the opportunity, productive strategies, and fair comparisons between prototypes. I then investigate the use of student engineering journals to assess learning from the process of improvement after failure. After discussion, I consider implications from this work as well as future research to advance our understanding in this area.

  10. Using competence-based and project-related approaches to support students individually - An engineering science experience report

    NASA Astrophysics Data System (ADS)

    Mayer, M.

    2009-04-01

    The recent education of engineers, using the example of satellite geodesy at the Geodetic Institute of the University Karlsruhe (Germany), is still suffering from time pressure as well as from heavy curriculum content loading. Within this education field, where the academic teachers have to fulfill high requests from the new generation of students as well as from industry and from research institutions respectively, advanced satellite geodetic knowledge has to be transferred effectively and sustainably. In order to enable the students to train newest aspects related to satellite geodesy as well as important key competences, e.g. capacity for independent and academic work, reflection and evaluation skills, presentation skills, an innovative teaching concept was developed, tested, and evaluated. This teaching concept makes use of very different teaching techniques like portfolio assignment, project work, input from experts, jig saw, advance and post organizer. The concept will be presented and discussed in detail.

  11. New teaching methods in use at UC Irvine's optical engineering and instrument design programs

    NASA Astrophysics Data System (ADS)

    Silberman, Donn M.; Rowe, T. Scott; Jo, Joshua; Dimas, David

    2012-10-01

    New teaching methods reach geographically dispersed students with advances in Distance Education. Capabilities include a new "Hybrid" teaching method with an instructor in a classroom and a live WebEx simulcast for remote students. Our Distance Education Geometric and Physical Optics courses include Hands-On Optics experiments. Low cost laboratory kits have been developed and YouTube type video recordings of the instructor using these tools guide the students through their labs. A weekly "Office Hour" has been developed using WebEx and a Live Webcam the instructor uses to display his live writings from his notebook for answering students' questions.

  12. Teamwork Seminar Practice to Foster Diversified Thinking and Leadership Among Students

    NASA Astrophysics Data System (ADS)

    Maruyama, Naoki; Yoshida, Kazumi; Yamao, Hidenori

    A new course entitled “Mechanical Engineering Seminar” has begun in the Department of Mechanical Engineering, Mie University. This course consists of three parts, a teamwork seminar, a creative design seminar and a comprehensive achievement examination. Its aim is to foster a broad social and international outlook, ethical thinking, autonomy, partnership, leadership, presentation ability, originality, overall creativity in students, and to help them become aware of their real ability. The teaching method used in this seminar is based on problem-based learning (PBL) , and pro-active student participation is required. The purpose of this paper is to report the features, teaching method and educational effectiveness of the teamwork seminar, which seeks to educate students with a broad, diversified outlook. The results of a student questionnaire show that these new fields of study stimulate students' will to learn, and they express general satisfaction with the seminar.

  13. The Effects of Doctoral Teaching Development on Early-Career STEM Scholars' College Teaching Self-Efficacy

    ERIC Educational Resources Information Center

    Connolly, Mark R.; Lee, You-Geon; Savoy, Julia N.

    2018-01-01

    To help prepare future faculty in science, technology, engineering, and mathematics (STEM) to teach undergraduates, more research universities are offering teaching development (TD) programs to doctoral students who aspire to academic careers. Using social cognitive career theory, we examine the effects of TD programs on early-career STEM…

  14. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    NASA Astrophysics Data System (ADS)

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-08-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.

  15. The use of mathematical models in teaching wastewater treatment engineering.

    PubMed

    Morgenroth, E; Arvin, E; Vanrolleghem, P

    2002-01-01

    Mathematical modeling of wastewater treatment processes has become increasingly popular in recent years. To prepare students for their future careers, environmental engineering education should provide students with sufficient background and experiences to understand and apply mathematical models efficiently and responsibly. Approaches for introducing mathematical modeling into courses on wastewater treatment engineering are discussed depending on the learning objectives, level of the course and the time available.

  16. What do K-12 students feel when dealing with technology and engineering issues? Gardner's multiple intelligence theory implications in technology lessons for motivating engineering vocations at Spanish Secondary School

    NASA Astrophysics Data System (ADS)

    Sánchez-Martín, Jesús; Álvarez-Gragera, García J.; Dávila-Acedo, M. Antonia; Mellado, Vicente

    2017-11-01

    The interest on engineering and scientific studies can be raised up even from the early years of academic instructional process. This vocation may be linked to emotions and aptitudes towards technological education. Particularly, students get in touch with these technological issues (namely STEM) during the Compulsory Secondary Education in Spain (12-16 years old).This work presents a preliminary evaluation of how relevant is Gardner's multiple intelligence theory (MIT) in the teaching-learning process within the Technology Lessons. In this sense, MIT was considered as an explanation variable of the emotional response within the different educational parts (so-called syllabus units, SU) in the Technology spanish curriculum. Different intelligence style (IS) will orient the student to a vision of the engineering and technology. This work tries to identify which relationships can be established between IS and specific technology and engineering learning. This research involved up to 135 students were subsequently tested about their predominant (IS) and on the emotions that arouse in them when working with each SU. The results were statistically significant and only those with a Logic-arithmetic or Environmental IS were not affected by the SU.Best teaching and learning practicesare required for encouraging further engineering studies.

  17. Infusing Engineering Concepts: Teaching Engineering Design

    ERIC Educational Resources Information Center

    Daugherty, Jenny

    2012-01-01

    Engineering has gained considerable traction in many K-12 schools. However, there are several obstacles or challenges to an effective approach that leads to student learning. Questions such as where engineering best fits in the curriculum; how to include it authentically and appropriately; toward what educational end; and how best to prepare…

  18. Engineering Encounters: Reverse Engineering

    ERIC Educational Resources Information Center

    McGowan, Veronica Cassone; Ventura, Marcia; Bell, Philip

    2017-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information on how students' everyday experiences can support science learning through engineering design. In this article, the authors outline a reverse-engineering model of instruction and describe one example of how it looked in our fifth-grade…

  19. Examining Elementary School Students' Transfer of Learning through Engineering Design Using Think-Aloud Protocol Analysis

    ERIC Educational Resources Information Center

    Kelley, Todd; Sung, Euisuk

    2017-01-01

    The introduction of engineering practices within the "Next Generation Science Standards" provides technology educators with opportunities to help STEM educators infuse engineering design within a core curriculum. The introduction of teaching engineering design in early elementary grades also provides opportunities to conduct research…

  20. Teaching Business Plan Negotiation: Fostering Entrepreneurship among Business and Engineering Students

    ERIC Educational Resources Information Center

    Ulijn, Jan M.; O'Duill, Micheal; Robertson, Stephen A.

    2004-01-01

    From personal relationships to complex business dealings, negotiations are essential forms of communication. But negotiation skills are often neglected in university courses. One reason for this neglect is the difficulty of teaching negotiations effectively. Such teaching requires both an underlying theoretical base and activities that provide…

  1. Mentored Discussions of Teaching: An Introductory Teaching Development Program for Future STEM Faculty

    ERIC Educational Resources Information Center

    Baiduc, Rachael R.; Linsenmeier, Robert A.; Ruggeri, Nancy

    2016-01-01

    Today's science, technology, engineering, and mathematics (STEM) graduate students and postdoctoral fellows are tomorrow's new faculty members; but these junior academicians often receive limited pedagogical training. We describe four iterations of an entry-level program with a low time commitment, Mentored Discussions of Teaching (MDT). The…

  2. Teaching Agile Software Development: A Case Study

    ERIC Educational Resources Information Center

    Devedzic, V.; Milenkovic, S. R.

    2011-01-01

    This paper describes the authors' experience of teaching agile software development to students of computer science, software engineering, and other related disciplines, and comments on the implications of this and the lessons learned. It is based on the authors' eight years of experience in teaching agile software methodologies to various groups…

  3. Analysis of Five Instructional Methods for Teaching Sketchpad to Junior High Students

    ERIC Educational Resources Information Center

    Wright, Geoffrey; Shumway, Steve; Terry, Ronald; Bartholomew, Scott

    2012-01-01

    This manuscript addresses a problem teachers of computer software applications face today: What is an effective method for teaching new computer software? Technology and engineering teachers, specifically those with communications and other related courses that involve computer software applications, face this problem when teaching computer…

  4. Mechatronics as a technological basis for an innovative learning environment in engineering

    NASA Astrophysics Data System (ADS)

    Garner, Gavin Thomas

    Mechatronic systems that couple mechanical and electrical systems with the help of computer control are forcing a paradigm shift in the design, manufacture, and implementation of mechanical devices. The inherently interdisciplinary nature of these systems generates exciting new opportunities for developing a hands-on, inventive, and creativity-focused educational program while still embracing rigorous scientific fundamentals. The technologies associated with mechatronics are continually evolving (e.g., integrated circuit chips, miniature and new types of sensors, and state-of-the-art actuators). As a result, a mechatronics curriculum must prepare students to adapt along with these rapidly changing technologies---and perhaps even advance these technologies themselves. Such is the inspiring and uncharted new world that is presented for student exploration and experimentation in the University of Virginia's Mechatronics Laboratory. The underlying goal of this research has been to develop a framework for teaching mechatronics that helps students master fundamental concepts and build essential technical and analytical skills. To this end, two courses involving over fifty hours worth of technologically-innovative and educationally-effective laboratory experiments have been developed along with open-ended projects in response to the unique and new challenges associated with teaching mechatronics. These experiments synthesize an unprecedentedly vast array of skills from many different disciplines and enable students to haptically absorb the fundamental concepts involved in designing mechatronic systems. They have been optimized through several iterations to become highly efficient. Perspectives on the development of these courses and on the field of mechatronics in general are included. Furthermore, this dissertation demonstrates the integration of new technologies within a learning environment specifically designed to teach mechatronics to mechanical engineers. For mechanical engineering in particular, mechatronics poses considerable challenges, and necessitates a fundamental evolution in the understanding of the relationship between the various engineering disciplines. Consequently, this dissertation helps to define the role that mechatronics must play in mechanical engineering and presents unique laboratory experiments, creative projects, and modeling and simulation exercises as effective tools for teaching mechatronics to the modern mechanical engineering student.

  5. Final report to DOE: Matching Grant Program for the Penn State University Nuclear Engineering Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack S. Brenizer, Jr.

    2003-01-17

    The DOE/Industry Matching Grant Program is designed to encourage collaborative support for nuclear engineering education as well as research between the nation's nuclear industry and the U.S. Department of Energy (DOE). Despite a serious decline in student enrollments in the 1980s and 1990s, the discipline of nuclear engineering remained important to the advancement of the mission goals of DOE. The program is designed to ensure that academic programs in nuclear engineering are maintained and enhanced in universities throughout the U.S. At Penn State, the Matching Grant Program played a critical role in the survival of the Nuclear Engineering degree programs.more » Funds were used in a variety of ways to support both undergraduate and graduate students directly. Some of these included providing seed funding for new graduate research initiatives, funding the development of new course materials, supporting new teaching facilities, maintenance and purchase of teaching laboratory equipment, and providing undergraduate scholarships, graduate fellowships, and wage payroll positions for students.« less

  6. English Education for Engineers in the World of Globalization : A Report of an Undergraduate and Graduate English Program with an Emphasis on Writing

    NASA Astrophysics Data System (ADS)

    Shimazu, Nobuko

    In an increasingly globalized world, demand for engineers well versed in English remains strong. As a professor of English in the Faculty of Computer Science and Systems Engineering at the Kyushu Institute of Technology, I have sought with the aid of two associate professors to improve the English program for our engineering students together to help meet that very demand. In order to assist other English teachers in similar situations to improve their own English programs, I would like to report on the ideas and methods presently used in our undergraduate English program, specifically the first-year compulsory and common course with its emphasis on paragraph writing which students from each of the five departments within the Faculty of Computer Science and Systems Engineering are required to take. In addition, I would also like to report my ideas and teaching methods for a graduate research paper writing course. The objective of this course is to teach graduate students how to write presentations for conferences and papers for journals at the international level.

  7. Collaborative and Competitive Video Games for Teaching Computing in Higher Education

    ERIC Educational Resources Information Center

    Smith, Spencer; Chan, Samantha

    2017-01-01

    This study measures the success of using a collaborative and competitive video game, named Space Race, to teach computing to first year engineering students. Space Race is played by teams of four, each with their own tablet, collaborating to compete against the other teams in the class. The impact of the game on student learning was studied…

  8. Learning Style Preferences: An Examination of Differences amongst Students with Different Disciplinary Backgrounds

    ERIC Educational Resources Information Center

    Hill, Frances; Tomkinson, Bland; Hiley, Anna; Dobson, Helen

    2016-01-01

    The context of this study is of students with backgrounds in a variety of engineering and social science disciplines, and from first degrees in different countries, coming together to study Project Management. Tailoring teaching to all individuals' learning styles is not possible, but, in an attempt to learn how to teach better in ways that fit…

  9. Technology Engineering in Science Education: Where Instructional Challenges Interface Nonconforming Productivity to Increase Retention, Enhance Transfer, and Maximize Student Learning

    ERIC Educational Resources Information Center

    Osler, James E.; Hollowell, Gail P.; Nichols, Stacy M.

    2012-01-01

    Technology Engineering is an innovative component of a much larger arena of teaching that effectively uses interactive technology as a method of enhancing learning and the learning environment. Using this method to teach science and math content empowers the teacher and enhances the curriculum as the classroom becomes more efficient and effective.…

  10. Methods and Strategies: Beyond the Textbook--But Not Just "Hands On". Using High-Quality Informational Texts to Meet the "Next Generation Science Standards"

    ERIC Educational Resources Information Center

    Vick, Matthew

    2016-01-01

    Science teaching continues to move away from teaching science as merely a body of facts and figures to be memorized to a process of exploring and drawing conclusions. The Next Generation Science Standards (NGSS) emphasize eight science and engineering practices that ask students to apply scientific and engineering reasoning and explanation. This…

  11. Development of a Teaching Text of Care, Operation, Maintenance and Repair of Air-Cooled Gasoline Engines.

    ERIC Educational Resources Information Center

    Turner, Howard

    Objectives of a 2-volume book developed as a comprehensive reference for teachers and a text for students on small gasoline engines were that it be: (1) organized for teaching, (2) complete in detail, (3) well illustrated, (4) authentic, (5) edited to high school reading level, (6) correlated with basic scientific principles, and (7) evaluated by…

  12. A Pilot Study of the Effectiveness of Augmented Reality to Enhance the Use of Remote Labs in Electrical Engineering Education

    ERIC Educational Resources Information Center

    Borrero, A. Mejias; Marquez, J. M. Andujar

    2012-01-01

    Lab practices are an essential part of teaching in Engineering. However, traditional laboratory lessons developed in classroom labs (CL) must be adapted to teaching and learning strategies that go far beyond the common concept of e-learning, in the sense that completely virtualized distance education disconnects teachers and students from the real…

  13. Teaching Separations: Why, What, When, and How?

    ERIC Educational Resources Information Center

    Wankat, Phillip C.

    2001-01-01

    Describes how and when to teach separation science to chemical engineering students. Separation science is important for industrial businesses involving the manufacture of adsorption systems, distillation columns, extractors, and other separation equipment and techniques. (Contains 13 references.) (YDS)

  14. Microprocessors as a Vehicle for Teaching Circuit Analysis.

    ERIC Educational Resources Information Center

    Neu, Emil C.

    1982-01-01

    Based on the premise that most engineering students will own their own microcomputers, discusses the teaching of circuit analysis, possible directions to be taken in hardware analysis, and impact on the mathematics related to circuit analysis. (SK)

  15. Applicability of Online Education to Large Undergraduate Engineering Courses

    NASA Astrophysics Data System (ADS)

    Bir, Devayan Debashis

    With the increase in undergraduate engineering enrollment, many universities have chosen to teach introductory engineering courses such as Statics of Engineering and Mechanics of Materials in large classes due to budget limitations. With the overwhelming literature against traditionally taught large classes, this study aims to see the effects of the trending online pedagogy. Online courses are the latest trend in education due to the flexibility they provide to students in terms of schedule and pace of learning with the added advantage of being less expensive for the university over a period. In this research, the effects of online lectures on engineering students' course performances and students' attitudes towards online learning were examined. Specifically, the academic performances of students enrolled in a traditionally taught, lecture format Mechanics of Materials course with the performance of students in an online Mechanics of Materials course in summer 2016 were compared. To see the effect of the two different teaching approaches across student types, students were categorized by gender, enrollment status, nationality, and by the grades students obtained for Statics, one of the prerequisite courses for Mechanics of Materials. Student attitudes towards the online course will help to keep the process of continuously improving the online course, specifically, to provide quality education through the online medium in terms of course content and delivery. The findings of the study show that the online pedagogy negatively affects student academic performance when compared to the traditional face-to-face pedagogy across all categories, except for the high scoring students. Student attitudes reveal that while they enjoyed the flexibility schedule and control over their pace of studying, they faced issues with self-regulation and face-to-face interaction.

  16. Classroom modules for nanotechnology undergraduate education: development, implementation and evaluation

    NASA Astrophysics Data System (ADS)

    Shabani, R.; Massi, L.; Zhai, L.; Seal, S.; Cho, H. J.

    2011-05-01

    In order to address the challenges and restrictions given by a traditional classroom lecture environment, the top-down and bottom-up nanotechnology teaching modules were developed, implemented and evaluated. Then based on the hypothesis that instructors could further develop students' interest in this emerging area through the introduction of the teaching modules and a career module, an early stage evaluation of the effectiveness of the modules in selected engineering courses was conducted. The data suggested that adoption of modular lectures in regular engineering courses influenced attitude towards nanotechnology - overall, the teaching modules did a better job of piquing student's interest (albeit in the short term) in the subject, but there were also positive gains in interest in nanotechnology as a career. There was some evidence that the hands-on demonstration teaching modules with visual elements and the career module were more effective than traditional lecture presentations in the classroom.

  17. 3D Game-Based Learning System for Improving Learning Achievement in Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Su,Chung-Ho; Cheng, Ching-Hsue

    2013-01-01

    The advancement of game-based learning has encouraged many related studies, such that students could better learn curriculum by 3-dimension virtual reality. To enhance software engineering learning, this paper develops a 3D game-based learning system to assist teaching and assess the students' motivation, satisfaction and learning achievement. A…

  18. Developing a Pre-Engineering Curriculum for 3D Printing Skills for High School Technology Education

    ERIC Educational Resources Information Center

    Chien, Yu-Hung

    2017-01-01

    This study developed an integrated-STEM CO[subscript 2] dragster design course using 3D printing technology. After developing a pre-engineering curriculum, we conducted a teaching experiment to assess students' differences in creativity, race forecast accuracy, and learning performance. We compared student performance in both 3D printing and…

  19. Toward Teaching Methods that Develop Learning and Enhance Problem Solving Skills in Engineering Students

    ERIC Educational Resources Information Center

    Loji, K.

    2012-01-01

    Problem solving skills and abilities are critical in life and more specifically in the engineering field. Unfortunately, significant numbers of South African students who are accessing higher education lack problem solving skills and this results in poor academic performance jeopardizing their progress especially from first to second year. On the…

  20. A Middleware Platform for Providing Mobile and Embedded Computing Instruction to Software Engineering Students

    ERIC Educational Resources Information Center

    Mattmann, C. A.; Medvidovic, N.; Malek, S.; Edwards, G.; Banerjee, S.

    2012-01-01

    As embedded software systems have grown in number, complexity, and importance in the modern world, a corresponding need to teach computer science students how to effectively engineer such systems has arisen. Embedded software systems, such as those that control cell phones, aircraft, and medical equipment, are subject to requirements and…

  1. Puzzle-Based Learning in Engineering Mathematics: Students' Attitudes

    ERIC Educational Resources Information Center

    Klymchuk, Sergiy

    2017-01-01

    The article reports on the results of two case studies on the impact of the regular use of puzzles as a pedagogical strategy in the teaching and learning of engineering mathematics. The intention of using puzzles is to engage students' emotions, creativity and curiosity and also to enhance their generic thinking skills and lateral thinking…

  2. Interdisciplinary Team-Teaching Experience for a Computer and Nuclear Energy Course for Electrical and Computer Engineering Students

    ERIC Educational Resources Information Center

    Kim, Charles; Jackson, Deborah; Keiller, Peter

    2016-01-01

    A new, interdisciplinary, team-taught course has been designed to educate students in Electrical and Computer Engineering (ECE) so that they can respond to global and urgent issues concerning computer control systems in nuclear power plants. This paper discusses our experience and assessment of the interdisciplinary computer and nuclear energy…

  3. Expert vs. novice: Problem decomposition/recomposition in engineering design

    NASA Astrophysics Data System (ADS)

    Song, Ting

    The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between subsystems, and Level 3 represents designers consider details of subsystems. The results showed that students used more S on Level 1 and 3 but they used less F on Level 1 than engineering experts. The results imply that engineering curriculum should improve the teaching of problem definition in engineering design because students need to understand the problem before solving it.

  4. Encouraging Undergraduate Engineering Students towards Civic Engagement

    ERIC Educational Resources Information Center

    Wallen, Matthew R.; Pandit, Abhay S.

    2009-01-01

    Responding to the calls for teaching "soft skills" within the undergraduate engineering curriculum and for the university to address a perceived decrease in social capital, a programme titled Community Awareness Initiatives Responsibly Directed by Engineers (CAIRDE, an Irish language word meaning "friends") was instituted at…

  5. The art of scientific writing

    NASA Astrophysics Data System (ADS)

    Gad-El-Hak, Mohamed

    2015-11-01

    The humanities teach students how to learn and communicate. Science teaches why everything works. Engineering teaches how to make things work. But scientists and engineers need to communicate their ideas amongst themselves as well as to everyone else. A newly developed technical writing course is outlined. In the class, offered to senior undergraduate and beginning graduate students, we read numerous short novels, essays, and op-eds. Some of the reading materials are technical but many are not. The students also have weekly writing assignments. When the first assignment is returned to the students with a grade of 20-30%, their first reaction is, ``how come I did not receive my usual 80-90%?'' I retort, ``you reach that level only when your essay is ready to be published in The New York Times.'' What is emphasized in the class is the process of creating something to write about, researching that something, expressing ideas coherently and comprehensibly, then endlessly editing the essay. The elective class has been offered three times thus far, all of its available seats are always filled, the students' evaluations have been outstanding, and the improvements in the students' ability to write by the end of the semester is quite impressive.

  6. An Innovation Teaching Experience Following Guidelines of European Space of Higher Education in the Interactive Learning

    NASA Astrophysics Data System (ADS)

    Zamorano, M.; Rodríguez, M. L.; Ramos-Ridao, A. F.; Pasadas, M.; Priego, I.

    The Area of Environmental Technology in Department of Civil Engineering has developed an innovation education project, entitled Application of new Information and Communication Technologies in Area of Environmental Technology teaching, to create a Web site that benefits both parties concerned in teaching-learning process, teachers and students. Here teachers conduct a supervised teaching and students have necessary resources to guide their learning process according to their capacities and possibilities. The project has also included a pilot experience to introduce European Space of Higher Education (ESHE) new teaching concept based on student's work, in one subject of Environmental Science degree, considering interactive learning complementary to presence teaching. The experience has showed strength and weakness of the method and it is the beginning in a gradual process to guide e-learning education in future.

  7. Using the Chernobyl incident to teach engineering ethics.

    PubMed

    Wilson, William R

    2013-06-01

    This paper discusses using the Chernobyl Incident as a case study in engineering ethics instruction. Groups of students are asked to take on the role of a faction involved in the Chernobyl disaster and to defend their decisions in a mock debate. The results of student surveys and the Engineering and Science Issues Test indicate that the approach is very popular with students and has a positive impact on moral reasoning. The approach incorporates technical, communication and teamwork skills and has many of the features suggested by recent literature.

  8. The Effects of Doctoral Teaching Development on Early-Career STEM Scholars' College-Teaching Self-Efficacy. WCER Working Paper No. 2015-1

    ERIC Educational Resources Information Center

    Connolly, Mark R.; Lee, You-Geon

    2015-01-01

    As a result of increased national emphasis on preparing future faculty in science, technology, engineering, and mathematics (STEM) to teach undergraduates, more research universities offer teaching development (TD) programs to doctoral students who aspire to academic careers. Using social cognitive career theory, we examine the effects of these…

  9. Smith college secondary math and science outreach program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, J.A.; Clark, C.

    1994-12-31

    The Smith College Secondary Math and Science Outreach Program works collaboratively with front-line educators to encourage young women students of all abilities, especially underrepresented and underserved minorities, to continue studying math and science throughout high school. The program includes three main components: (1) Twenty-five to thirty teams of math/science teachers and guidance counselors participate in a year-long program which begins with a three-day Current Students/Future Scientists and Engineering Workshop. This event includes a keynote address, presentations and workshops by successful women in science and engineering, and hands-on laboratory sessions. Each participant receives a stipend and free room and board. Returningmore » to their schools, the teacher-counselor teams implement ongoing plans designed to counteract gender bias in the sciences and to alert female students to the broad range of math, science, and engineering career choices open to them. A follow-up session in the spring allows the teams to present and discuss their year-long activities. (2) TRI-ON, a day of science for 120 ninth- and tenth- grade girls from schools with a large underserved and underrepresented population, is held in early spring. Girls discover the excitement of laboratory investigation and interact with female college science and math majors. (3) Teaching Internships, initiated in 1991, involve ten to fifteen Smith College math and science majors in teaching in public schools. The teaching interns experience the rewards and challenges of classroom teaching, and they also serve as role models for younger students.« less

  10. The development of a digital logic concept inventory

    NASA Astrophysics Data System (ADS)

    Herman, Geoffrey Lindsay

    Instructors in electrical and computer engineering and in computer science have developed innovative methods to teach digital logic circuits. These methods attempt to increase student learning, satisfaction, and retention. Although there are readily accessible and accepted means for measuring satisfaction and retention, there are no widely accepted means for assessing student learning. Rigorous assessment of learning is elusive because differences in topic coverage, curriculum and course goals, and exam content prevent direct comparison of two teaching methods when using tools such as final exam scores or course grades. Because of these difficulties, computing educators have issued a general call for the adoption of assessment tools to critically evaluate and compare the various teaching methods. Science, Technology, Engineering, and Mathematics (STEM) education researchers commonly measure students' conceptual learning to compare how much different pedagogies improve learning. Conceptual knowledge is often preferred because all engineering courses should teach a fundamental set of concepts even if they emphasize design or analysis to different degrees. Increasing conceptual learning is also important, because students who can organize facts and ideas within a consistent conceptual framework are able to learn new information quickly and can apply what they know in new situations. If instructors can accurately assess their students' conceptual knowledge, they can target instructional interventions to remedy common problems. To properly assess conceptual learning, several researchers have developed concept inventories (CIs) for core subjects in engineering sciences. CIs are multiple-choice assessment tools that evaluate how well a student's conceptual framework matches the accepted conceptual framework of a discipline or common faulty conceptual frameworks. We present how we created and evaluated the digital logic concept inventory (DLCI).We used a Delphi process to identify the important and difficult concepts to include on the DLCI. To discover and describe common student misconceptions, we interviewed students who had completed a digital logic course. Students vocalized their thoughts as they solved digital logic problems. We analyzed the interview data using a qualitative grounded theory approach. We have administered the DLCI at several institutions and have checked the validity, reliability, and bias of the DLCI with classical testing theory procedures. These procedures consisted of follow-up interviews with students, analysis of administration results with statistical procedures, and expert feedback. We discuss these results and present the DLCI's potential for providing a meaningful tool for comparing student learning at different institutions.

  11. Implementation of an innovative teaching project in a Chemical Process Design course at the University of Cantabria, Spain

    NASA Astrophysics Data System (ADS)

    Galan, Berta; Muñoz, Iciar; Viguri, Javier R.

    2016-09-01

    This paper shows the planning, the teaching activities and the evaluation of the learning and teaching process implemented in the Chemical Process Design course at the University of Cantabria, Spain. Educational methods to address the knowledge, skills and attitudes that students who complete the course are expected to acquire are proposed and discussed. Undergraduate and graduate engineers' perceptions of the methodology used are evaluated by means of a questionnaire. Results of the teaching activities and the strengths and weaknesses of the proposed case study are discussed in relation to the course characteristics. The findings of the empirical evaluation shows that the excessive time students had to dedicate to the case study project and dealing with limited information are the most negative aspects obtained, whereas an increase in the students' self-confidence and the practical application of the methodology are the most positive aspects. Finally, improvements are discussed in order to extend the application of the methodology to other courses offered as part of the chemical engineering degree.

  12. Teaching Design in Middle-School: Instructors' Concerns and Scaffolding Strategies

    NASA Astrophysics Data System (ADS)

    Bamberger, Yael M.; Cahill, Clara S.

    2013-04-01

    This study deals with engineering education in the middle-school level. Its focus is instructors' concerns in teaching design, as well as scaffolding strategies that can help teachers deal with these concerns. Through participatory action research, nine instructors engaged in a process of development and instruction of a curriculum about energy along with engineering design. A 50-h curriculum was piloted during a summer camp for 38 middle-school students. Data was collected through instructors' materials: observation field notes, daily reflections and post-camp discussions. In addition, students' artifacts and planning graphical models were collected in order to explore how instructors' concerns were aligned with students' learning. Findings indicate three main tensions that reflect instructors' main concerns: how to provide sufficient scaffolding yet encourage creativity, how to scaffold hands-on experiences that promote mindful planning, and how to scaffold students' modeling practices. Pedagogical strategies for teaching design that developed through this work are described, as well as the ways they address the National Research Council (A framework for K-12 science education: practices, crosscutting concepts, and core ideas. National Academies Press, Washington, DC, 2011) core ideas of engineering education and the International Technological Literacy standards (ITEA in Standards for technological literacy, 3rd edn. International Technology education Association, Reston, VA, 2007).

  13. Building inclusive engineering identities: implications for changing engineering culture

    NASA Astrophysics Data System (ADS)

    Atadero, Rebecca A.; Paguyo, Christina H.; Rambo-Hernandez, Karen E.; Henderson, Heather L.

    2018-05-01

    Ongoing efforts to broaden the participation of women and people of colour in engineering degree programmes and careers have had limited success. This paper describes a different approach to broadening participation that seeks to work with all students and develop inclusive engineering identities. Researchers worked with the instructors of two first-year engineering courses to integrate curriculum activities designed to promote the formation of engineering identities and build an appreciation for how diversity and inclusion strengthen engineering practice. Multilevel modelling results indicated positive effects of the intervention on appreciation for diversity but no effects on engineering identity, and qualitative results indicated students learned the most about diversity not through one of the intervention activities, but through team projects in the courses. We also describe lessons learned in how to teach engineering students about diversity in ways that are relevant to engineering.

  14. 76 FR 21873 - Notice Inviting Proposals for Taking Ownership and Operation of the TEACH Campaign

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-19

    ... individuals to pursue a career in teaching. As one strategy to reach this goal, the Department launched the... teaching English learners, students with disabilities, or in the fields of science, technology, engineering... teachers (e.g., members of the military, mid-career professionals, and recent retirees), while continuing...

  15. Leading Part-Time Teaching Staff to Achieve Excellent Teaching

    ERIC Educational Resources Information Center

    Kabouridis, Georgios

    2011-01-01

    The paper points out the significance of hourly-waged tutors to the quality of the teaching-learning procedure in Mechanical Engineering Department. Existing research shows that higher education faces many challenges in its attempt to keep pace with the needs of students' body for effective learning. The changing nature of higher education is…

  16. A Survey to Capture Needs Assessment for Graduate Teaching Assistant Training

    ERIC Educational Resources Information Center

    Sohoni, Sohum; Cho, Yoonjung; French, Donald P.

    2013-01-01

    Graduate teaching assistants (GTAs) often teach the majority of contact hours within engineering with little pedagogical knowledge. To plan efficient professional development for GTAs to address this, we created and administered a survey to measure the perceived importance of GTAs' roles and responsibilities. GTAs, faculty, and students rated the…

  17. Teaching biomedical applications to secondary students.

    PubMed

    Openshaw, S; Fleisher, A; Ljunggren, C

    1999-01-01

    Certain aspects of biomedical engineering applications lend themselves well to experimentation that can be done by high school students. This paper describes two experiments done during a six-week summer internship program in which two high school students used electrodes, circuit boards, and computers to mimic a sophisticated heart monitor and also to control a robotic car. Our experience suggests that simple illustrations of complex instrumentation can be effective in introducing adolescents to the biomedical engineering field.

  18. Reactor physics teaching and research in the Swiss nuclear engineering master

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chawla, R.; Paul Scherrer Inst., CH-5232 Villigen PSI

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  19. Genomics Analogy Model for Educators (GAME): Fuzzy DNA Model to Enable the Learning of Gene Sequencing by Visually-Impaired and Blind Students

    ERIC Educational Resources Information Center

    Butler, Charles; Bello, Julia; York, Alan; Orvis, Kathryn; Pittendrigh, Barry R.

    2008-01-01

    Much of the general population is aware of terms such as biotechnology, genetic engineering, and genomics. However, there is a lack of understanding concerning these fields among many secondary school students. Few teaching models exist to explain concepts behind genomics and even less are available for teaching the visually impaired and blind.…

  20. Using `min' and `max' functions in calculus teaching

    NASA Astrophysics Data System (ADS)

    Satianov, Pavel; Dagan, Miriam; Amram, Meirav

    2015-08-01

    In this paper, we discuss the use of the min and max functions in teaching calculus to engineering students. Our experience illustrates that such functions have great possibilities in the development of a student's analytical thinking. The types of problems we present here are not common in most instructional texts, which lead us to suggest that the paper will be interesting and useful to calculus lecturers.

  1. Efficiency Assessment of a Blended-Learning Educational Methodology in Engineering

    NASA Astrophysics Data System (ADS)

    Rogado, Ana Belén González; Conde, Ma José Rodríguez; Migueláñez, Susana Olmos; Riaza, Blanca García; Peñalvo, Francisco José García

    The content of this presentation highlights the importance of an active learning methodology in engineering university degrees in Spain. We present of some of the outcomes from an experimental study carried out during the academic years 2007/08 and 2008/09 with engineering students (Technical Industrial Engineering: Mechanics, Civical Design Engineering: Civical building, Technical Architecture and Technical Engineering on Computer Management.) at the University of Salamanca. In this research we select a subject which is common for the four degrees: Computer Science. This study has the aim of contributing to the improvement of education and teaching methods for a better performance of students in Engineering.

  2. Teaching transportation systems thinking concepts to undergraduates.

    DOT National Transportation Integrated Search

    2013-05-01

    Systems thinking is thought by many academics to be a graduate level educational venture. : Many traditional educators in the engineering field argue that first a student should gain a : grounding in some traditional branch of engineering (civil and ...

  3. Teaching Reinforcement of Stochastic Behavior Using Monte Carlo Simulation.

    ERIC Educational Resources Information Center

    Fox, William P.; And Others

    1996-01-01

    Explains a proposed block of instruction that would give students in industrial engineering, operations research, systems engineering, and applied mathematics the basic understanding required to begin more advanced courses in simulation theory or applications. (DDR)

  4. A Simple Interactive Introduction to Teaching Genetic Engineering

    ERIC Educational Resources Information Center

    Child, Paula

    2013-01-01

    In the UK, at key stage 4, students aged 14-15 studying GCSE Core Science or Unit 1 of the GCSE Biology course are required to be able to describe the process of genetic engineering to produce bacteria that can produce insulin. The simple interactive introduction described in this article allows students to consider the problem, devise a model and…

  5. Save the Penguins: Teaching the Science of Heat Transfer through Engineering Design

    ERIC Educational Resources Information Center

    Schnittka, Christine; Bell, Randy; Richards, Larry

    2010-01-01

    Engineers, scientists, and environmental groups around the globe are hard at work finding solutions to mitigate or halt global warming. One major goal of the curriculum described here, Save the Penguins, is to help students recognize that what we do at home can affect how penguins fare in the Southern Hemisphere. In addition, students learn how…

  6. Introductory Level Problems Illustrating Concepts in Pharmaceutical Engineering

    ERIC Educational Resources Information Center

    McIver, Keith; Whitaker, Kathryn; De Delva, Vladimir; Farrell, Stephanie; Savelski, Mariano J.; Slater, C. Stewart

    2012-01-01

    Textbook style problems including detailed solutions introducing pharmaceutical topics at the level of an introductory chemical engineering course have been created. The problems illustrate and teach subjects which students would learn if they were to pursue a career in pharmaceutical engineering, including the unique terminology of the field,…

  7. Efficient Optoelectronics Teaching in Undergraduate Engineering Curriculum

    ERIC Educational Resources Information Center

    Matin, M. A.

    2005-01-01

    The Engineering Department's vision for undergraduate education for the next century is to develop a set of laboratory experiences that are thoughtfully sequenced and integrated to promote the full development of students in all courses. Optoelectronics is one of the most important and most demanding courses in Electrical and Computer Engineering.…

  8. Engineering Design Modules as Physics Teaching Tools

    ERIC Educational Resources Information Center

    Oliver, Douglas L.; Kane, Jackie

    2011-01-01

    Pre-engineering is increasingly being taught as a high school subject. This development presents challenges as well as opportunities for the physics education community. If pre-engineering is taught as a separate class, it may divert resources and students from traditional physics classes. However, design modules can be used as physics teaching…

  9. Teaching Process Engineering Principles Using an Ice Cream Maker

    ERIC Educational Resources Information Center

    Kaletunc, Gonul; Duemmel, Kevin; Gecik, Christopher

    2007-01-01

    The ice cream laboratory experiment is designed to illustrate and promote discussion of several engineering and science topics including material and energy balances, heat transfer, freezing, mass transfer, mixing, viscosity, and freezing point depression in a sophomore level engineering class. A pre-lab assignment requires the students to develop…

  10. Outsiders Looking In: Tutor Expertise in Engineering Writing

    ERIC Educational Resources Information Center

    Bengesai, Annah

    2015-01-01

    Drawing on an academic literacies approach, this article explores the representations of technical communication by non-content expert tutors teaching the Technical Communication for Engineering course at a South African university. The course is offered to all first year engineering students as a developmental academic literacy course. It is…

  11. Reading and Engineering: Elementary Students' Co-Application of Comprehension Strategies and Engineering Design Processes

    ERIC Educational Resources Information Center

    Wilson-Lopez, Amy; Gregory, Stacie; Larsen, Victor

    2016-01-01

    For decades, researchers have asserted that K-12 teachers should embed reading comprehension instruction within each academic discipline, including "technical subjects" such as engineering. Recently, this assertion has become a source of controversy among researchers and practitioners who believe that time spent on teaching reading…

  12. Engineering education in research-intensive universities

    NASA Astrophysics Data System (ADS)

    Alpay, E.; Jones, M. E.

    2012-12-01

    The strengths and weaknesses of engineering education in research-intensive institutions are reported and key areas for developmental focus identified. The work is based on a questionnaire and session summaries used during a two-day international conference held at Imperial College London. The findings highlight several common concerns, such as the need to improve faculty motivation towards teaching, broaden the workplace skills of students, widen employer engagement in teaching and raise the relevance and value of scholarly activity in the discipline of engineering education. Examples of good practice used to address such issues are reported.

  13. [From gene cloning to expressional analysis--practice and experience from educational reform of experimental gene engineering].

    PubMed

    Wu, Yan-Hua; Guo, Bin; Lou, Hui-Ling; Cui, Yu-Liang; Gu, Hui-Juan; Qiao, Shou-Yi

    2012-02-01

    Experimental gene engineering is a laboratory course focusing on the molecular structure, expression pattern and biological function of genes. Providing our students with a solid knowledge base and correct ways to conduct research is very important for high-quality education of genetic engineering. Inspired by recent progresses in this field, we improved the experimental gene engineering course by adding more updated knowledge and technologies and emphasizing on the combination of teaching and research, with the aim of offering our students a good start in their scientific careers.

  14. One more thing: Faculty response to increased emphasis on project teams in undergraduate engineering education

    NASA Astrophysics Data System (ADS)

    Hunter, Jane

    Tenured and tenure-track faculty members at institutions of higher education, especially those at Research I institutions, are being asked to do more than ever before. With rapidly changing technology, significant decreases in public funding, the shift toward privately funded research, and the ever increasing expectations of students for an education that adequately prepares them for professional careers, engineering faculty are particularly challenged by the escalating demands on their time. In 1996, the primary accreditation organization for engineering programs (ABET) adopted new criteria that required, among other things, engineering programs to teach students to function on multidisciplinary teams and to communicate effectively. In response, most engineering programs utilize project teams as a strategy for teaching these skills. The purpose of this qualitative study of tenured and tenure track engineering faculty at a Research I institution in the southwestern United States was to explore the variety of ways in which the engineering faculty responded to the demands placed upon them as a result of the increased emphasis on project teams in undergraduate engineering education. Social role theory and organizational climate theory guided the study. Some faculty viewed project teams as an opportunity for students to learn important professional skills and to benefit from collaborative learning but many questioned the importance and feasibility of teaching teamwork skills and had concerns about taking time away from other essential fundamental material such as mathematics, basic sciences and engineering sciences. Although the administration of the College of Engineering articulated strong support for the use of project teams in undergraduate education, the prevailing climate did little to promote significant efforts related to effective utilization of project teams. Too often, faculty were unwilling to commit sufficient time or effort to make project teamwork a truly valuable learning opportunity because those efforts were not perceived to be valuable and were rarely rewarded. Few formal professional development opportunities were available and few incentives were in place to encourage other informal efforts to develop the necessary skills. Those who committed significant effort to project teams were challenged by concerns about team composition, student accountability and assigning individual grades for group teamwork.

  15. Teaching Reform of Course Group Regarding Theory and Design of Mechanisms Based on MATLAB Technology

    ERIC Educational Resources Information Center

    Shen, Yi; Yuan, Mingxin; Wang, Mingqiang

    2013-01-01

    Considering that the course group regarding theory and design of mechanisms is characterized by strong engineering application background and the students generally feel very boring and tedious during the learning process, some teaching reforms for the theory and design of mechanisms are carried out to improve the teaching effectiveness in this…

  16. Reforming Undergraduate Biology Teaching through Graduate Assistants: Identifying Bridges and Barriers to Making Change

    ERIC Educational Resources Information Center

    Hill, Kathleen M.; Orchinik, Miles

    2016-01-01

    Among policy makers, there is an ongoing discussion about the need to improve undergraduate education in science and engineering. With many undergraduate students being taught by graduate teaching assistants (GTAs), it is important to explore the development of STEM knowledge for teaching by GTAs. This study follows ten GTAs as they participated…

  17. An Option in Applied Microbiology.

    ERIC Educational Resources Information Center

    Lee, William E., III

    1988-01-01

    Describes a program option for undergraduate chemical engineering students interested in biotechnology. Discusses how this program is deployed at the University of Southern Florida. Lists courses which apply to this program. Discusses the goals of teaching applied microbiology to engineering majors. (CW)

  18. Facilitating Open-Ended Problem Solving: Training Engineering TAs To Facilitate Open-Ended Problem Solving.

    ERIC Educational Resources Information Center

    Streveler, Ruth A.; King, Robert H.

    2000-01-01

    Describes and evaluates a four-session training program for Multidisciplinary Engineering Laboratory (MEL) teaching assistants at the Colorado School of Mines. The sessions focus attention on student development approaches to learning. (EV)

  19. Use of rich-media resources by engineering undergraduates

    NASA Astrophysics Data System (ADS)

    Gillie, Martin; Dahli, Ranim; Saunders, Fiona C.; Gibson, Andrew

    2017-11-01

    The ability to develop and distribute digital teaching resources in higher education has developed rapidly over the last decade but research into how students use such resources has received limited attention. This study uses questionnaire results, Internet analytic data and semi-structured interviews to examine the use of three types of rich-media teaching resources - lecture podcasts, key-concept videos and tutorial solution videos - by engineering undergraduates. It is found that students value all three types of resource, especially for revision and as a supplement to lectures. Students find short, focused resources more useful than longer ones. Non-native English speakers and those with disabilities derive particular benefits from the resources. The effect of rich-media resources on lecture attendance is found to be small, and two-way.

  20. Computer Aided Teaching of Digital Signal Processing.

    ERIC Educational Resources Information Center

    Castro, Ian P.

    1990-01-01

    Describes a microcomputer-based software package developed at the University of Surrey for teaching digital signal processing to undergraduate science and engineering students. Menu-driven software capabilities are explained, including demonstration of qualitative concepts and experimentation with quantitative data, and examples are given of…

  1. SENSE IT: Teaching STEM Principles to Middle and High School Students through the Design, Construction and Deployment of Water Quality Sensors

    ERIC Educational Resources Information Center

    Hotaling, Liesl; Lowes, Susan; Stolkin, Rustam; Lin, Peiyi; Bonner, James; Kirkey, William; Ojo, Temitope

    2012-01-01

    This paper describes the structure and impact of an NSF-funded ITEST project designed to enrich science, technology, engineering, and mathematics (STEM) education using educational modules that teach students to construct, program, and test a series of sensors used to monitor water quality. During the two years of the SENSE IT project, over 30…

  2. Technology of interdisciplinary open-ended designing in engineering education

    NASA Astrophysics Data System (ADS)

    Isaev, A. P.; Plotnikov, L. V.; Fomin, N. I.

    2017-11-01

    Author’s technology of interdisciplinary open-ended engineering is presented in this article. This technology is an integrated teaching method that significantly increases the practical component in the educational program. Author’s technology creates the conditions to overcome the shortcomings in the engineering education. The basic ideas of the technology of open-ended engineering, experience of their implementation in higher education and the author’s vision of the teaching technology are examined in the article. The main stages of development process of the author’s technology of open-ended engineering to prepare students (bachelor) of technical profile are presented in the article. Complex of the methodological tools and procedures is shown in the article. This complex is the basis of the developed training technology that is used in educational process in higher school of engineering (UrFU). The organizational model of the technology of open-ended engineering is presented. Organizational model integrates the functions in the creation and implementation of all educational program. Analysis of the characteristics of educational activity of students working on author’s technology of interdisciplinary open-ended engineering is presented. Intermediate results of the application of author’s technology in the educational process of the engineering undergraduate are shown.

  3. Development of teaching modules for geology and engineering coursework using terrestrial LiDAR scanning systems

    NASA Astrophysics Data System (ADS)

    Yarbrough, L. D.; Katzenstein, K.

    2012-12-01

    Exposing students to active and local examples of physical geologic processes is beneficial to the learning process. Students typically respond with interest to examples that use state-of-the-art technologies to investigate local or regional phenomena. For lower cognitive level of learning (e.g. knowledge, comprehension, and application), the use of "close-to-home" examples ensures that students better understand concepts. By providing these examples, the students may already have a familiarity or can easily visit the location. Furthermore, these local and regional examples help students to offer quickly other examples of similar phenomena. Investigation of these examples using normal photographic techniques, as well as a more sophisticated 3-D Light Detection And Ranging (LiDAR) (AKA Terrestrial Laser Scanning or TLS) system, allows students to gain a better understanding of the scale and the mechanics of the geologic processes and hazards. The systems are used for research, teaching and outreach efforts and depending on departmental policies can be accessible to students are various learning levels. TLS systems can yield scans at sub-centimeter resolution and contain surface reflectance of targets. These systems can serve a number of learning goals that are essential for training geoscientists and engineers. While querying the data to answer geotechnical or geomorphologic related questions, students will develop skills using large, spatial databases. The upper cognitive level of learning (e.g. analysis, synthesis, and evaluation) is also promoted by using a subset of the data and correlating the physical geologic process of stream bank erosion and rock slope failures with mathematical and computer models using the scanned data. Students use the examples and laboratory exercises to help build their engineering judgment skills with Earth materials. The students learn not only applications of math and engineering science but also the economic and social implication of designed engineering solutions. These course learning modules were developed for traditional geological engineering courses delivered on campus, for more intensive field work courses and online-based asynchronous course delivery.

  4. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants.

    PubMed

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor's belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K-12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. © 2015 S. E. DeChenne et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  5. `Getting stuck' in analogue electronics: threshold concepts as an explanatory model

    NASA Astrophysics Data System (ADS)

    Harlow, A.; Scott, J.; Peter, M.; Cowie, B.

    2011-10-01

    Could the challenge of mastering threshold concepts be a potential factor that influences a student's decision to continue in electronics engineering? This was the question that led to a collaborative research project between educational researchers and the Faculty of Engineering in a New Zealand university. This paper deals exclusively with the qualitative data from this project, which was designed to investigate the high attrition rate of students taking introductory electronics in a New Zealand university. The affordances of the various teaching opportunities and the barriers that students perceived are examined in the light of recent international research in the area of threshold concepts and transformational learning. Suggestions are made to help students move forward in their thinking, without compromising the need for maintaining the element of intellectual uncertainty that is crucial for tertiary teaching. The issue of the timing of assessments as a measure of conceptual development or the crossing of thresholds is raised.

  6. An Innovative Teaching Method To Promote Active Learning: Team-Based Learning

    NASA Astrophysics Data System (ADS)

    Balasubramanian, R.

    2007-12-01

    Traditional teaching practice based on the textbook-whiteboard- lecture-homework-test paradigm is not very effective in helping students with diverse academic backgrounds achieve higher-order critical thinking skills such as analysis, synthesis, and evaluation. Consequently, there is a critical need for developing a new pedagogical approach to create a collaborative and interactive learning environment in which students with complementary academic backgrounds and learning skills can work together to enhance their learning outcomes. In this presentation, I will discuss an innovative teaching method ('Team-Based Learning (TBL)") which I recently developed at National University of Singapore to promote active learning among students in the environmental engineering program with learning abilities. I implemented this new educational activity in a graduate course. Student feedback indicates that this pedagogical approach is appealing to most students, and promotes active & interactive learning in class. Data will be presented to show that the innovative teaching method has contributed to improved student learning and achievement.

  7. Relationships between Students' Strategies for Influencing Their Study Environment and Their Strategic Approach to Studying

    ERIC Educational Resources Information Center

    Jungert, Tomas; Rosander, Michael

    2009-01-01

    The purpose of this study was to investigate the relationship between student influence, students' strategic approaches to studying and academic achievement, and to examine differences between students in a Master's programme in Engineering with conventional teaching and one based on problem-based learning in a sample of 268 students. A version of…

  8. International Engineering Students--Avoiding Plagiarism through Understanding the Western Academic Context of Scholarship

    ERIC Educational Resources Information Center

    Duff, Andrea H.; Rogers, Derek P.; Harris, Michael B.

    2006-01-01

    Despite the best attempts of academic staff to teach students the mechanics of citation, the rules of referencing continue to be broken, particularly by those new to Western university systems (either first-year undergraduate students or international students from different cultural backgrounds). In late 2003, 16 postgraduate international…

  9. Difficulties of Student Teachers in the Engineering Graphics and Design Course at a South African University: Snapshot on Sectional Drawing

    ERIC Educational Resources Information Center

    Makgato, Moses; Khoza, Samuel D.

    2016-01-01

    Engineering Graphics and Design (EGD) is a university course that teaches a medium of communication in the form of drawings. This study was undertaken to investigate factors associated with the difficulties experienced by student teachers in the sectional drawing component of the EGD course. Purposive sampling was used to select 40 students…

  10. Two Different Approaches to Teaching Final-Year Projects for Mechanical Engineers and Biotechnologists at Ngee Ann Polytechnic: Case Studies Approach.

    ERIC Educational Resources Information Center

    Walsh, Kath; Rebaczonok-Padulo, Michael

    The Oral and Written Communication (OWC) course at Ngee Ann Polytechnic was originally intended to equip students with occupational skills (e.g., report- and letter-writing, public speaking) but has expanded to be a course aimed at helping third-year mechanical engineering students to develop third-year project reports. This has been done through…

  11. Elementary Teachers' Reflections on Design Failures and Use of Fail Words after Teaching Engineering for Two Years

    ERIC Educational Resources Information Center

    Lottero-Perdue, Pamela S.; Parry, Elizabeth A.

    2017-01-01

    This mixed-methods study examines how teachers who have taught one or two units of the Engineering is Elementary (EiE) curriculum for two years reported on: students' responses to design failure; the ways in which they, the teachers, supported these students and used fail words (e.g. fail, failure); and the teachers' broad perspectives and…

  12. Teaching CAD on the Apple Computer.

    ERIC Educational Resources Information Center

    Norton, Robert L.

    1984-01-01

    Describes a course designed to teach engineers how to accomplish computer graphics techniques on a limited scale with the Apple computer. The same mathematics and program code will also function for larger and more complex computers. Course content, instructional strategies, student evaluation, and recommendations are considered. (JN)

  13. Architectural Drafting. Curriculum Development. Bulletin 1779.

    ERIC Educational Resources Information Center

    Eppler, Thomas

    This teaching guide is designed to aid high school vocational education teachers in teaching a course in architectural drafting for students who plan to become architects, interior designers and decorators, architectural draftspersons, landscape engineers, building contractors, building estimators, real estate persons or appraisers, and others.…

  14. Using Insights from Applied Moral Psychology to Promote Ethical Behavior Among Engineering Students and Professional Engineers.

    PubMed

    Gelfand, Scott D

    2016-10-01

    In this essay I discuss a novel engineering ethics class that has the potential to significantly decrease the likelihood that students (and professionals) will inadvertently or unintentionally act unethically in the future. This class is different from standard engineering ethics classes in that it focuses on the issue of why people act unethically and how students (and professionals) can avoid a variety of hurdles to ethical behavior. I do not deny that it is important for students to develop cogent moral reasoning and ethical decision-making as taught in traditional college-level ethics classes, but as an educator, I aim to help students apply moral reasoning in specific, real-life situations so they are able to make ethical decisions and act ethically in their academic careers and after they graduate. Research in moral psychology provides evidence that many seemingly irrelevant situational factors affect the moral judgment of most moral agents and frequently lead agents to unintentionally or inadvertently act wrongly. I argue that, in addition to teaching college students moral reasoning and ethical decision-making, it is important to: 1. Teach students about psychological and situational factors that affect people's ethical judgments/behaviors in the sometimes stressful, emotion-laden environment of the workplace; 2. Guide students to engage in critical reflection about the sorts of situations they personally might find ethically challenging before they encounter those situations; and 3. Provide students with strategies to help them avoid future unethical behavior when they encounter these situations in school and in the workplace.

  15. "Dirt Cheap" Project Teaches Soils Engineering

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    This article describes a soil-testing activity that enables students to learn some interesting and useful things about how soil behaves under varied conditions. It offers a great way to give them a practical pre-engineering experience and will show them how engineers think about construction and how local soils influence building design. The…

  16. Teaching Sustainable Entrepreneurship to Engineering Students: The Case of Delft University of Technology

    ERIC Educational Resources Information Center

    Bonnet, Hans; Quist, Jaco; Hoogwater, Daan; Spaans, Johan; Wehrmann, Caroline

    2006-01-01

    Sustainability, enhancement of personal skills, social aspects of technology, management and entrepreneurship are of increasing concern for engineers and therefore for engineering education. In 1996 at Delft University of Technology this led to the introduction of a subject on sustainable entrepreneurship and technology in the course programmes of…

  17. Efficacy of an Online Resource for Teaching Interpersonal Problem Solving Skills to Women Graduate Students in Engineering

    ERIC Educational Resources Information Center

    Bekki, Jennifer M.; Bernstein, Bianca; Fabert, Natalie; Gildar, Natalie; Way, Amy

    2014-01-01

    Interpersonal problem solving skills allow engineers to prevent interpersonal difficulties more effectively and to manage conflict, both of which are critical to successful participation on teams. This research provides evidence that the "Career"WISE online learning environment can improve those skills among women in engineering graduate…

  18. Construction Mechanic, Engine Tune-Up II (Diesel), 8-8. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This course, adapted from military curriculum materials for vocational and technical education, teaches students to restore diesel engine performance to the manufacturer's specifications through troubleshooting and analyzing diesel engine fuel systems and to make minor and major adjustments to those components that directly affect engine…

  19. Embedding Enterprise in Science and Engineering Departments

    ERIC Educational Resources Information Center

    Handscombe, Robert D.; Rodriguez-Falcon, Elena; Patterson, Eann A.

    2008-01-01

    Purpose: This paper aims to focus on the attempts to implement the challenges of teaching enterprise to science and engineering students by the embedding approach chosen by the White Rose Centre for Enterprise (WRCE), one of the centres formed under the Science Engineering Challenge in the UK. Design/methodology/approach: WRCE's objective was to…

  20. Student Interest in Engineering Design-Based Science

    ERIC Educational Resources Information Center

    Selcen Guzey, S.; Moore, Tamara J.; Morse, Gillian

    2016-01-01

    Current reform efforts in science education around the world call on teachers to use integrated approaches to teach science. As a part of such reform efforts in the United States, engineering practices and engineering design have been identified in K-12 science education standards. However, there is relatively little is known about effective ways…

  1. A psychological model that integrates ethics in engineering education.

    PubMed

    Magun-Jackson, Susan

    2004-04-01

    Ethics has become an increasingly important issue within engineering as the profession has become progressively more complex. The need to integrate ethics into an engineering curriculum is well documented, as education does not often sufficiently prepare engineers for the ethical conflicts they experience. Recent research indicates that there is great diversity in the way institutions approach the problem of teaching ethics to undergraduate engineering students; some schools require students to take general ethics courses from philosophical or religious perspectives, while others integrate ethics in existing engineering courses. The purpose of this paper is to propose a method to implement the integration of ethics in engineering education that is pedagogically based on Kohlberg's stage theory of moral development.

  2. Developing creativity and problem-solving skills of engineering students: a comparison of web- and pen-and-paper-based approaches

    NASA Astrophysics Data System (ADS)

    Valentine, Andrew; Belski, Iouri; Hamilton, Margaret

    2017-11-01

    Problem-solving is a key engineering skill, yet is an area in which engineering graduates underperform. This paper investigates the potential of using web-based tools to teach students problem-solving techniques without the need to make use of class time. An idea generation experiment involving 90 students was designed. Students were surveyed about their study habits and reported they use electronic-based materials more than paper-based materials while studying, suggesting students may engage with web-based tools. Students then generated solutions to a problem task using either a paper-based template or an equivalent web interface. Students who used the web-based approach performed as well as students who used the paper-based approach, suggesting the technique can be successfully adopted and taught online. Web-based tools may therefore be adopted as supplementary material in a range of engineering courses as a way to increase students' options for enhancing problem-solving skills.

  3. Academic Instruction with the Visible V-8 Engine. The Coordinated Correlated Instructional Program.

    ERIC Educational Resources Information Center

    Davis, W. J.

    The book presents three 93-day lesson plans to motivate and teach handicapped secondary students basic academic skills in reading and language arts, English, and mathematics in conjunction with learning about automobile engines from Revell's Visible V8 Engine Kit. Each lesson plan is correlated with the Visible V8 Engine Kit and includes daily…

  4. Engineering Encounters: The Cat in the Hat Builds Satellites. A Unit Promoting Scientific Literacy and the Engineering Design Process

    ERIC Educational Resources Information Center

    Rehmat, Abeera P.; Owens, Marissa C.

    2016-01-01

    This column presents ideas and techniques to enhance your science teaching. This month's issue shares information about a unit promoting scientific literacy and the engineering design process. The integration of engineering with scientific practices in K-12 education can promote creativity, hands-on learning, and an improvement in students'…

  5. Computer-Based Mathematics Instructions for Engineering Students

    NASA Technical Reports Server (NTRS)

    Khan, Mustaq A.; Wall, Curtiss E.

    1996-01-01

    Almost every engineering course involves mathematics in one form or another. The analytical process of developing mathematical models is very important for engineering students. However, the computational process involved in the solution of some mathematical problems may be very tedious and time consuming. There is a significant amount of mathematical software such as Mathematica, Mathcad, and Maple designed to aid in the solution of these instructional problems. The use of these packages in classroom teaching can greatly enhance understanding, and save time. Integration of computer technology in mathematics classes, without de-emphasizing the traditional analytical aspects of teaching, has proven very successful and is becoming almost essential. Sample computer laboratory modules are developed for presentation in the classroom setting. This is accomplished through the use of overhead projectors linked to graphing calculators and computers. Model problems are carefully selected from different areas.

  6. Introducing Students to Computer Programming on a UNIX Time-Sharing System.

    ERIC Educational Resources Information Center

    Cook, Allen R.

    1983-01-01

    Reviews experiences in teaching computer programing to engineering freshmen at the University of Oklahoma. Focuses on the stimulating interactive environment that is possible when using the UNIX operating system to introduce students to programing. (JN)

  7. Cultivating engineering innovation ability based on optoelectronic experimental platform

    NASA Astrophysics Data System (ADS)

    Li, Dangjuan; Wu, Shenjiang

    2017-08-01

    As the supporting experimental platform of the Xi'an Technological University education reform experimental class, "optical technological innovation experimental platform" integrated the design and comprehensive experiments of the optical multi-class courses. On the basis of summing up the past two years teaching experience, platform pilot projects were improve. It has played a good role by making the use of an open teaching model in the cultivating engineering innovation spirit and scientific thinking of the students.

  8. A Detailed Research Study of Learning and Teaching Core Chemical Engineering to a High Standard in a Mixed-Ability Small Class in Industry

    ERIC Educational Resources Information Center

    Davey, Kenneth

    2017-01-01

    A detailed study of learning and teaching (L&T) of chemical engineering distillation to a mixed-ability small class of 13 students who are ordinarily full-time in-house employees in industry is reported. The course consisted of 9 × 2-h lectures (18 hours) and 9 × 2-h tutorials (18 hours). It was delivered over nine business days "in…

  9. Northwestern University Initiative for Teaching NanoSciences (NUITNS): An Approach for Teaching Computational Chemistry to Engineering Undergraduate Students

    ERIC Educational Resources Information Center

    Simeon, Tomekia; Aikens, Christine M.; Tejerina, Baudilio; Schatz, George C.

    2011-01-01

    The Northwestern University Initiative for Teaching Nanosciences (NUITNS) at nanohub.org Web site combines several tools for doing electronic structure calculations and analyzing and displaying the results into a coordinated package. In this article, we describe this package and show how it can be used as part of an upper-level quantum chemistry…

  10. The Use of Multimedia in Teaching Dirasah Islamiyah Course in Higher Education Institution in Indonesia

    ERIC Educational Resources Information Center

    Sulaeman, Maryam; Marlina, Yuli

    2017-01-01

    Dirasah Islamiyah is one of basic courses in the Faculty of Industrial Engineering, Jakarta Islamic University (FT-UID). This course aims to examine and develops Islamic teachings and concepts. After studying this course, it is expected that students are able to understand the Islamic teachings and concepts and are able to implement it in their…

  11. Promoting Students' Problem Solving Skills and Knowledge of STEM Concepts in a Data-Rich Learning Environment: Using Online Data as a Tool for Teaching about Renewable Energy Technologies

    ERIC Educational Resources Information Center

    Thurmond, Brandi

    2011-01-01

    This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related…

  12. Experiences in teaching of modeling and simulation with emphasize on equation-based and acausal modeling techniques.

    PubMed

    Kulhánek, Tomáš; Ježek, Filip; Mateják, Marek; Šilar, Jan; Kofránek, Jří

    2015-08-01

    This work introduces experiences of teaching modeling and simulation for graduate students in the field of biomedical engineering. We emphasize the acausal and object-oriented modeling technique and we have moved from teaching block-oriented tool MATLAB Simulink to acausal and object oriented Modelica language, which can express the structure of the system rather than a process of computation. However, block-oriented approach is allowed in Modelica language too and students have tendency to express the process of computation. Usage of the exemplar acausal domains and approach allows students to understand the modeled problems much deeper. The causality of the computation is derived automatically by the simulation tool.

  13. Enhancement of Pyrometallurgical Teaching Using Excel Simulation Models

    NASA Astrophysics Data System (ADS)

    Grimsey, Eric J.

    Steady state Excel models for a copper flash smelter and an iron blast furnace are used to enhance the teaching of pyrometallurgical smelting principles within a fourth year level process engineering unit delivered at the Western Australian School of Mines. A lecture/workshop approach has been adopted in which student teams undertake process simulation assignments that illustrate the multifaceted responses of process outputs to variation of inputs, the objectives being to reinforce their understanding of smelting principles. The approach has proven to be popular with students, as evidenced by the consistently high ratings the unit has received through student feedback. This paper provides an overview of the teaching approach and process models used.

  14. Diving Deep: A Comparative Study of Educator Undergraduate and Graduate Backgrounds and Their Effect on Student Understanding of Engineering and Engineering Careers, Utilizing an Underwater Robotics Program

    NASA Astrophysics Data System (ADS)

    Scribner, J. Adam

    Numerous studies have demonstrated that educators having degrees in their subjects significantly enhances student achievement, particularly in secondary mathematics and science (Chaney, 1995; Goe, 2007; Rowan, Chiang, & Miller, 1997; Wenglinsky, 2000). Yet, science teachers in states that adopt the Next Generation Science Standards will be facilitating classroom engineering activities despite the fact that few have backgrounds in engineering. This quantitative study analyzed ex-post facto WaterBotics (an innovative underwater robotics curriculum for middle and high school students) data to determine if educators having backgrounds in engineering (i.e., undergraduate and graduate degrees in engineering) positively affected student learning on two engineering outcomes: 1) the engineering design process, and 2) understanding of careers in engineering (who engineers are and what engineers do). The results indicated that educators having backgrounds in engineering did not significantly affect student understanding of the engineering design process or careers in engineering when compared to educators having backgrounds in science, mathematics, technology education, or other disciplines. There were, however, statistically significant differences between the groups of educators. Students of educators with backgrounds in technology education had the highest mean score on assessments pertaining to the engineering design process while students of educators with disciplines outside of STEM had the highest mean scores on instruments that assess for student understanding of careers in engineering. This might be due to the fact that educators who lack degrees in engineering but who teach engineering do a better job of "sticking to the script" of engineering curricula.

  15. Teaching Sustainable Design Using BIM and Project-Based Energy Simulations

    ERIC Educational Resources Information Center

    Shen, Zhigang; Jensen, Wayne; Wentz, Timothy; Fischer, Bruce

    2012-01-01

    The cross-disciplinary nature of energy-efficient building design has created many challenges for architecture, engineering and construction instructors. One of the technical challenges in teaching sustainable building design is enabling students to quantitatively understand how different building designs affect a building's energy performance.…

  16. Research report: learning styles of biomedical engineering students.

    PubMed

    Dee, Kay C; Nauman, Eric A; Livesay, Glen A; Rice, Janet

    2002-09-01

    Examining students' learning styles can yield information useful to the design of learning activities, courses, and curricula. A variety of measures have been used to characterize learning styles, but the literature contains little information specific to biomedical engineering (BMEN) students. We, therefore, utilized Felder's Index of Learning Styles to investigate the learning style preferences of BMEN students at Tulane University. Tulane BMEN students preferred to receive information visually (preferred by 88% of the student sample) rather than verbally, focus on sensory information (55%) instead of intuitive information, process information actively (66%) instead of reflectively, and understand information globally (59%) rather than sequentially. These preferences varied between cohorts (freshman, sophomore, etc.) and a significantly higher percentage of female students preferred active and sensing learning styles. Compared to other engineering student populations, our sample of Tulane BMEN students contained the highest percentage of students preferring the global learning style. Whether this is a general trend for all BMEN students or a trait specific to Tulane engineers requires further investigation. Regardless, this study confirms the existence of a range of learning styles within biomedical engineering students, and provides motivation for instructors to consider how well their teaching style engages multiple learning styles.

  17. Ethics education in the consulting engineering environment: where do we start?

    PubMed

    Elder, Keith E

    2004-04-01

    As a result of in-house discussions stimulated by previous Gonzaga engineering ethics conferences, Coffman Engineers began the implementation of what is to be a company-wide ethics training program. While preparing a curriculum aimed at consulting engineers, we found very little guidance as to how to proceed with most available literature being oriented towards the academic environment. We consulted a number of resources that address the teaching of engineering ethics in higher education, but questioned their applicability for the Consulting Engineering environment. This lack of guidance led us to informal research into the ethical knowledge and attitudes of both consulting engineers and engineering students. Some of our findings were unexpected, and suggest that a simpler approach to teaching ethics to working professionals might be preferred to that typically promoted in higher education.

  18. Linking teaching and research in an undergraduate course and exploring student learning experiences

    NASA Astrophysics Data System (ADS)

    Wallin, Patric; Adawi, Tom; Gold, Julie

    2017-01-01

    In this case study, we first describe how teaching and research are linked in a master's course on tissue engineering. A central component of the course is an authentic research project that the students carry out in smaller groups and in collaboration with faculty. We then explore how the students experience learning in this kind of discovery-oriented environment. Data were collected through a survey, reflective writing, and interviews. Using a general inductive approach for qualitative analysis, we identified three themes related to the students' learning experiences: learning to navigate the field, learning to do real research, and learning to work with others. Overall, the students strongly valued learning in a discovery-oriented environment and three aspects of the course contributed to much of its success: taking a holistic approach to linking teaching and research, engaging students in the whole inquiry process, and situating authentic problems in an authentic physical and social context.

  19. Incorporating service-learning within engineering and technology education in secondary schools

    NASA Astrophysics Data System (ADS)

    Smiley, Craig L.

    This study focuses the status of service-learning incorporated into the secondary engineering and technology classroom in the State of Indiana. Post-secondary engineering service-learning programs have been found to increase student interest in engineering to attract females into engineering (Coyle, Jamieson, & Oakes, 2005). Engineering, Design, and Development (EDD) is the capstone class of Project Lead The Way (PLTW) curriculum taught in many schools across Indiana, in which students design and develop a project that addresses an open-ended engineering problem. Of all the courses offered in the PLTW curriculum, this has the greatest potential for students to engage in a service-learning project, because the open-ended engineering problem could be used to help the community. A Likert-type survey was sent to the 62 secondary technology education teachers in Indiana who were certified to teach EDD during the 2011-2012 school year to identify the frequency at which the core components of service-learning, as identified by the National Service-Learning Clearinghouse (2006), were being implemented in the EDD curriculum. Fifteen teachers completed the survey by the end of the 2011-2012 academic calendar. Four of the 15 EDD teachers (27%) reported that a majority of their students' projects addressed a need in the community, and therefore were considered to be service-learning projects. The percentage of projects that were called service-learning projects by the respondents appeared to have a direct relationship with the total number of students enrolled in the PLTW program, and an inverse relationship with the number of years the teacher had been teaching technology education. Upon further study, only 2 of these EDD teachers (13%) were guiding students to collaborate with their community partner frequently enough to have an experience indicative of high quality service-learning according to the National Service-Learning Clearinghouse.

  20. Teaching vs. Research: An Approach to Understanding Graduate Students' Roles through ePortfolio Reflection

    ERIC Educational Resources Information Center

    Svyantek, Martina V.; Kajfez, Rachel L.; McNair, Lisa D.

    2015-01-01

    In this work, we examined the problem of preparing future faculty (graduate students) regarding their development in multiple roles, focusing on students in science and engineering disciplines. The purpose of the presented research was to address the questions, "Do graduate students believe that their current experiences align with the roles…

  1. Teaching Students How to Self-Regulate Their Online Vocabulary Learning by Using a Structured Think-to-Yourself Procedure

    ERIC Educational Resources Information Center

    Ebner, Rachel J.; Ehri, Linnea C.

    2016-01-01

    Using the Internet for vocabulary development is a powerful way for students to rapidly expand their vocabularies. The Internet affords students opportunities to interact both instantaneously and multimodaly with words in different contexts. By using search engines and hyperlinks, students can immediately access textual, visual, and auditory…

  2. Students Teach Pupils Environmental Issues and Renewable Energy

    NASA Astrophysics Data System (ADS)

    Friman, H.; Banner, I.; Tuchin, B. S.; Einav, Y.

    2018-05-01

    Technological advances and accessibility to information on the internet have opened a new channel of pupils that are being taught by students throughout the country. Students, full of motivation and a will to learn and teach, have understood that this way is good for them – enabling them to profit from a side job and take advantage of the knowledge they have accumulated in their degree. Holon Institute of Technology (“HIT”) developed a new program at the Faculty of Electrical Engineering. The Renewable Energy program gives the students technical and practical aspects of energy use (technology and methodology of the study) and energy efficiency. The program also deals with minimizing the environmental impacts of energy use, as well as with energy economy and environmental policy. The entrance of students to the field of teaching pupils while still in their studies brings many advantages, such as: fresh knowledge, motivation to teach, and innovative, out of the ordinary methods that arouse interest in the pupils and intrigue them.

  3. Using CASE Software to Teach Undergraduates Systems Analysis and Design.

    ERIC Educational Resources Information Center

    Wilcox, Russell E.

    1988-01-01

    Describes the design and delivery of a college course for information system students utilizing a Computer-Aided Software Engineering program. Discusses class assignments, cooperative learning, student attitudes, and the advantages of using this software in the course. (CW)

  4. MTU-pre-service teacher enhancement program. Final report, September 1992--May 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, C.S.; Yarroch, W.J.

    1996-01-01

    The MTU Pre-Service Teacher Enhancement Program was a two year extended project designed to introduce a select group of science and engineering undergraduate students, with good {open_quotes}people skills,{close_quotes} to the teaching profession. Participants were paid for their time spent with area teacher/mentors and were involved in a variety of in school activities, projects and observations to illustrate the teaching profession. They were encouraged to consider the teaching profession as a future career option. The student participants, however, were under no obligation to enter the Teacher Education Program at the conclusion of the program.

  5. Teaching Behavioral Modeling and Simulation Techniques for Power Electronics Courses

    ERIC Educational Resources Information Center

    Abramovitz, A.

    2011-01-01

    This paper suggests a pedagogical approach to teaching the subject of behavioral modeling of switch-mode power electronics systems through simulation by general-purpose electronic circuit simulators. The methodology is oriented toward electrical engineering (EE) students at the undergraduate level, enrolled in courses such as "Power…

  6. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  7. Getting into Gear

    ERIC Educational Resources Information Center

    Cobbs, Georgia A.; Cranor-Buck, Edith

    2011-01-01

    This article describes a particular activity, the Motorized Toy unit, which supports science, technology, engineering, and mathematics (STEM) goals and teaches students the basic concept of ratio. The unit addresses both mathematics and science standards and is part of a team-teaching activity. The unit comes from a curriculum titled A World In…

  8. Utilization of Information and Communication Technologies in Mathematics Learning

    ERIC Educational Resources Information Center

    Saadati, Farzaneh; Tarmizi, Rohani Ahmad; Ayub, Ahmad Fauzi Mohd

    2014-01-01

    Attention to integrate technology in teaching and learning has provided a major transformation in the landscape of education. Therefore, many innovations in teaching and learning have been technology-driven. The study attempted to examine what is engineering students' perception regarding the use of Information and Communication Technologies (ICT)…

  9. Identifying Key Components of Teaching and Learning in a STEM School

    ERIC Educational Resources Information Center

    Morrison, Judith; Roth McDuffie, Amy; French, Brian

    2015-01-01

    This study was conducted at an innovative science, technology, engineering, and mathematics high school, providing a rich contextual description of the teaching and learning at the school, specifically focusing on problem solving and inquiry approaches, and students' motivation, social interactions, and collaborative work. Data were collected…

  10. Use of WIRIS Quizzes in an Online Calculus Course

    ERIC Educational Resources Information Center

    Calm, Remei; Masià, Ramon; Olivé, Carme; Parés, Núria; Pozo, Francesc; Ripoll, Jordi; Sancho-Vinuesa, Teresa

    2017-01-01

    Calculus courses often present a large number of difficulties to undergraduate students of scientific studies, especially in engineering degrees. These difficulties are sometimes related to teaching and assessment strategies. In this paper, a teaching innovation experience is presented within the framework of the Universitat Oberta de Catalunya.…

  11. Construction on Practical Talents Training Mode in Environmental Monitoring Curriculum

    ERIC Educational Resources Information Center

    Wang, Jing-Ping; Wang, Xin-Hong

    2017-01-01

    Environmental Monitoring is a basic and comprehensive course for students majoring in environmental sciences and engineering. Based on the characteristics of this course, a new teaching mode in application of practical talents training in Environmental Monitoring Curriculum teaching mode is proposed including the new scheme of training applied…

  12. Teaching Mathematics to Non-Mathematics Majors through Applications

    ERIC Educational Resources Information Center

    Abramovich, Sergei; Grinshpan, Arcadii Z.

    2008-01-01

    This article focuses on the important role of applications in teaching mathematics to students with career paths other than mathematics. These include the fields as diverse as education, engineering, business, and life sciences. Particular attention is given to instructional computing as a means for concept development in mathematics education…

  13. Student Learning and Perceptions in a Flipped Linear Algebra Course

    ERIC Educational Resources Information Center

    Love, Betty; Hodge, Angie; Grandgenett, Neal; Swift, Andrew W.

    2014-01-01

    The traditional lecture style of teaching has long been the norm in college science, technology, engineering, and mathematics (STEM) courses, but an innovative teaching model, facilitated by recent advances in technology, is gaining popularity across college campuses. This new model inverts or "flips" the usual classroom paradigm, in…

  14. Mathematical Meaning-Making and Its Relation to Design of Teaching

    ERIC Educational Resources Information Center

    Jaworski, Barbara

    2015-01-01

    This paper addresses the design of teaching to promote engineering students' conceptual understanding of mathematics, and its outcomes for mathematical meaning-making. Within a developmental research approach, inquiry-based tasks have been designed and evaluated, through the use of competencies proposed for their potential to promote conceptual…

  15. Research and Teaching: Project-Based Instruction with Future STEM Educators--An Interdisciplinary Approach

    ERIC Educational Resources Information Center

    Wilhelm, Jennifer

    2014-01-01

    This study documented the means by which STEM (science, technology, engineering, and mathematics) educators experienced the mathematics and science associated with understanding lunar phenomena. The article reports how well STEM education graduate students interacted with projectbased materials as they engaged in interdisciplinary teaching and…

  16. Students Learn Programming Faster through Robotic Simulation

    ERIC Educational Resources Information Center

    Liu, Allison; Newsom, Jeff; Schunn, Chris; Shoop, Robin

    2013-01-01

    Schools everywhere are using robotics education to engage kids in applied science, technology, engineering, and mathematics (STEM) activities, but teaching programming can be challenging due to lack of resources. This article reports on using Robot Virtual Worlds (RVW) and curriculum available on the Internet to teach robot programming. It also…

  17. Teaching Language Concepts to Multihandicapped Deaf Students.

    ERIC Educational Resources Information Center

    Brasch, Marilyn; Boespflug, Pam

    This brief paper offers suggestions for parents and teachers working together to develop meaningful communication skills in deaf multihandicapped children. An intervention program developed by Jan VanDijk is described. This program involves the use of environmental engineering to teach language concepts with materials such as a calendar box with…

  18. An eLearning Standard Approach for Supporting PBL in Computer Engineering

    ERIC Educational Resources Information Center

    Garcia-Robles, R.; Diaz-del-Rio, F.; Vicente-Diaz, S.; Linares-Barranco, A.

    2009-01-01

    Problem-based learning (PBL) has proved to be a highly successful pedagogical model in many fields, although it is not that common in computer engineering. PBL goes beyond the typical teaching methodology by promoting student interaction. This paper presents a PBL trial applied to a course in a computer engineering degree at the University of…

  19. A Basic Engineering English Word List for Less Proficient Foundation Engineering Undergraduates

    ERIC Educational Resources Information Center

    Ward, Jeremy

    2009-01-01

    This paper concerns the teaching of English to learners who are studying, or will soon study, engineering and who are expected to do at least part of their studying through textbooks written in English. Such students, especially in universities in developing countries, often find themselves very poorly equipped by their secondary education for…

  20. A Qualitative Evaluation of the Use of Multimedia Case Studies in an Introductory Engineering Course at Two Southeastern Universities

    ERIC Educational Resources Information Center

    Huett, Kim C.; Kawulich, Barbara

    2015-01-01

    Collaborating at two universities to improve teaching and learning in undergraduate engineering, an interdisciplinary team of researchers, instructors, and evaluators planned and implemented the use of multimedia case studies with students enrolled in an introductory engineering course. This qualitative action evaluation study focuses on results…

  1. Developing and Teaching a Two-Credit Data Management Course for Graduate Students in Climate and Space Sciences

    ERIC Educational Resources Information Center

    Thielen, Joanna; Samuel, Sara M.; Carlson, Jake; Moldwin, Mark

    2017-01-01

    Engineering researchers face increasing pressure to manage, share, and preserve their data, but these subjects are not typically a part of the curricula of engineering graduate programs. To address this situation, librarians at the University of Michigan, in partnership with the Climate and Space Sciences and Engineering Department, developed a…

  2. Increasing Interest of Young Women in Engineering

    ERIC Educational Resources Information Center

    Hinterlong, Diane; Lawrence, Branson; DeVol, Purva

    2014-01-01

    The internationally recognized Illinois Mathematics and Science Academy (IMSA) develops creative, ethical leaders in science, technology, engineering and mathematics. As a teaching and learning laboratory created by the State of Illinois, IMSA enrolls academically talented Illinois students in grades 10 through 12 in its advanced, residential…

  3. Formative Assessment in Mathematics for Engineering Students

    ERIC Educational Resources Information Center

    Ní Fhloinn, Eabhnat; Carr, Michael

    2017-01-01

    In this paper, we present a range of formative assessment types for engineering mathematics, including in-class exercises, homework, mock examination questions, table quizzes, presentations, critical analyses of statistical papers, peer-to-peer teaching, online assessments and electronic voting systems. We provide practical tips for the…

  4. Implementation of a cooperative methodology to develop organic chemical engineering skills

    NASA Astrophysics Data System (ADS)

    Arteaga, J. F.; Díaz Blanco, M. J.; Toscano Fuentes, C.; Martín Alfonso, J. E.

    2013-08-01

    The objective of this work is to investigate how most of the competences required by engineering students may be developed through an active methodology based on cooperative learning/evaluation. Cooperative learning was employed by the University of Huelva's third-year engineering students. The teaching methodology pretends to create some of the most relevant engineering skills required nowadays such as the ability to cooperate finding appropriate information; the ability to solve problems through critical and creative thinking; and the ability to make decisions and to communicate effectively. The statistical study carried out supports the hypothesis that comprehensive and well-defined protocols in the development of the subject, the rubric and cooperative evaluation allow students to acquire a successful learning.

  5. The Effects of Professors' Race and Gender on Student Evaluations and Performance

    ERIC Educational Resources Information Center

    Basow, Susan A.; Codos, Stephanie; Martin, Julie L.

    2013-01-01

    This experimental study examined the effects of professor gender, professor race, and student gender on student ratings of teaching effectiveness and amount learned. After watching a three-minute engineering lecture presented by a computer-animated professor who varied by gender and race (African American, White), female and male undergraduates…

  6. AmosWEB ... Economics with a Touch of Whimsy!

    ERIC Educational Resources Information Center

    Avalos, Antonio; Amos, Orley M. Jr.

    2002-01-01

    Describes AmosWEB.com as a collection of unique resources for students and instructors devoted to uncovering the most effective means of using technology to teach economics. States that most of the resources are designed for college level introductory courses but can be used with high school students and graduate business and engineering students.…

  7. Chinese College Students' Perceptions of Excellent Teachers across Three Disciplines: Psychology, Chemical Engineering, and Education

    ERIC Educational Resources Information Center

    Liu, Shujie; Keeley, Jared; Buskist, William

    2016-01-01

    Researchers have found that students from different academic disciplines tend to value different qualities in their teachers, and cultural differences play a role in which qualities students appreciate in their professors. The present/current study employed the Teacher Behavior Checklist as an operationalization of teaching qualities in a…

  8. Assessing the Metacognitive Awareness among Foundation in Engineering Students

    ERIC Educational Resources Information Center

    Poh, Betsy Lee Guat; Muthoosamy, Kasturi; Lai, Chiang Choon; Gee, Ooi Chel

    2016-01-01

    The transition phase is a critical moment to students who have completed their secondary school education and are proceeding to pre-university education in Malaysia. The long duration of exposure to rote-learning and examination oriented education systems at school has somehow shaped these students' perceptions about teaching and learning. Thus,…

  9. What Motivates Introductory Geology Students to Study for an Exam?

    ERIC Educational Resources Information Center

    Lukes, Laura A.; McConnell, David A.

    2014-01-01

    There is a need to understand why some students succeed and persist in STEM fields and others do not. While numerous studies have focused on the positive results of using empirically validated teaching methods in introductory science, technology, engineering, and math (STEM) courses, little data has been collected about the student experience in…

  10. Using MBTI for the Success Assessment of Engineering Teams in Project-Based Learning

    ERIC Educational Resources Information Center

    Rodríguez Montequín, V.; Mesa Fernández, J. M.; Balsera, J. Villanueva; García Nieto, A.

    2013-01-01

    Project-Based Learning (PBL) is a teaching and learning methodology that emphasizes student centered instruction by assigning projects. The students have to conduct significant projects and cope with realistic working conditions and scenarios. PBL is generally done by groups of students working together towards a common goal. Several factors play…

  11. Preference Learning Style in Engineering Mathematics: Students' Perception of E-Learning

    ERIC Educational Resources Information Center

    Tawil, Norngainy Mohd; Ismail, Nur Arzilah; Asshaari, Izamarlina; Othman, Haliza; Zaharim, Azami; Bahaludin, Hafizah

    2013-01-01

    Nowadays, traditional learning styles are assisted with e-learning components to ensure the effectiveness of the teaching and learning process, especially for the students. This approach is known as blended learning. Objective of this paper is to investigate and clarify the students' preferences in learning style, either traditional or e-learning.…

  12. Large-scale visualization projects for teaching software engineering.

    PubMed

    Müller, Christoph; Reina, Guido; Burch, Michael; Weiskopf, Daniel

    2012-01-01

    The University of Stuttgart's software engineering major complements the traditional computer science major with more practice-oriented education. Two-semester software projects in various application areas offered by the university's different computer science institutes are a successful building block in the curriculum. With this realistic, complex project setting, students experience the practice of software engineering, including software development processes, technologies, and soft skills. In particular, visualization-based projects are popular with students. Such projects offer them the opportunity to gain profound knowledge that would hardly be possible with only regular lectures and homework assignments.

  13. A case study of pedagogy of mathematics support tutors without a background in mathematics education

    NASA Astrophysics Data System (ADS)

    Walsh, Richard

    2017-01-01

    This study investigates the pedagogical skills and knowledge of three tertiary-level mathematics support tutors in a large group classroom setting. This is achieved through the use of video analysis and a theoretical framework comprising Rowland's Knowledge Quartet and general pedagogical knowledge. The study reports on the findings in relation to these tutors' provision of mathematics support to first and second year undergraduate engineering students and second year undergraduate science students. It was found that tutors are lacking in various pedagogical skills which are needed for high-quality learning amongst service mathematics students (e.g. engineering/science/technology students), a demographic which have low levels of mathematics upon entering university. Tutors teach their support classes in a very fast didactic way with minimal opportunities for students to ask questions or to attempt problems. It was also found that this teaching method is even more so exaggerated in mandatory departmental mathematics tutorials that students take as part of their mathematics studies at tertiary level. The implications of the findings on mathematics tutor training at tertiary level are also discussed.

  14. Integrating Leadership Development throughout the Undergraduate Science Curriculum

    ERIC Educational Resources Information Center

    Reed, Kelynne E.; Aiello, David P.; Barton, Lance F.; Gould, Stephanie L.; McCain, Karla S.; Richardson, John M.

    2016-01-01

    This article discusses the STEM (science, technology, engineering, and mathematics) Teaching and Research (STAR) Leadership Program, developed at Austin College, which engages students in activities integrated into undergraduate STEM courses that promote the development of leadership behaviors. Students focus on interpersonal communication,…

  15. An online support site for preparation of oral presentations in science and engineering

    NASA Astrophysics Data System (ADS)

    Kunioshi, Nílson; Noguchi, Judy; Hayashi, Hiroko; Tojo, Kazuko

    2012-12-01

    Oral communication skills are essential for engineers today and, as they are included in accreditation criteria of educational programmes, their teaching and evaluation deserve attention. However, concrete aspects as to what should be taught and evaluated in relation to oral communication skills have not been sufficiently established. In this paper, a method to aid the efficient teaching of oral presentation skills is proposed, from the presentation structure level to word and sentence level choices, through the use of JECPRESE, The Japanese-English Corpus of Presentations in Science and Engineering. As of June 2012, the corpus is composed of transcriptions of 74 presentations delivered in Japanese by students graduating from the Master's programme of various engineering departments and 31 presentations delivered in English, 16 by experienced researchers at an international conference on chemistry, and 15 by undergraduate engineering students of a mid-sized American university. The utterances were classified according to the specific moves (sections of the speech that express specific speaker intent) appearing in the presentations and frequently used words/expressions to express these moves were identified.

  16. Teaching methodologies to promote creativity in the professional skills related to optics knowledge

    NASA Astrophysics Data System (ADS)

    Fernández-Oliveras, Alicia; Fernandez, Paz; Peña-García, Antonio; Oliveras, Maria L.

    2014-07-01

    We present the methodologies proposed and applied in the context of a teaching-innovation project developed at the University of Granada, Spain. The main objective of the project is the implementation of teaching methodologies that promote the creativity in the learning process and, subsequently, in the acquisition of professional skills. This project involves two subjects related with optics knowledge in undergraduate students. The subjects are "Illumination Engineering" (Bachelor's degree in Civil-Engineering) and "Optical and Optometric Instrumentation" (Bachelor's degree in and Optics and Optometry). For the first subject, the activities of our project were carried out in the theoretical classes. By contrast, in the case of the second subject, such activities were designed for the laboratory sessions. For "Illumination Engineering" we applied the maieutic technique. With this method the students were encouraged to establish relationships between the main applications of the subject and concepts that apparently unrelated with the subject framework. By means of several examples, the students became aware of the importance of cross-curricular and lateral thinking. We used the technique based on protocols of control and change in "Optical and Optometric Instrumentation". The modus operandi was focused on prompting the students to adopt the role of the professionals and to pose questions to themselves concerning the practical content of the subject from that professional role. This mechanism boosted the critical capacity and the independent-learning ability of the students. In this work, we describe in detail both subject proposals and the results of their application in the 2011-2012 academic course.

  17. Eliciting and characterizing students' mental models within the context of engineering design

    NASA Astrophysics Data System (ADS)

    Dankenbring, Chelsey

    Recently, science education reform documents have called for the incorporation of engineering principles and practices into the K-12 science standards and curriculum. One way this has been done is through the use of engineering design tasks as a way for students to apply their scientific understandings to real-world problems. However, minimal studies have documented students' conceptions within the context of engineering design. Thus, the first chapter of this thesis outlines the steps taken to develop a draw-and-explain item that elicited students' mental models regarding the cause of the four seasons after finishing an engineering design task. Students' mental models regarding the reason for the seasons are also described. The second chapter characterizes students' conceptions regarding sun-Earth relationships, specifically the amount of daylight hours throughout the year, for students who completed either an engineering design task or more traditional learning activities. Results from these studies indicate that draw-and-explain items are an effective way of obtaining students' mental models and that students harbor a variety of alternate conceptions on astronomy related concepts within various learning contexts. Implications from this study include the need for further research regarding how engineering design is used in the classroom and how engineering design facilitates science learning. Also, professional development that allows in-service teachers to gain experience teaching engineering design is needed, as are teacher preparation programs that expose pre-service teachers to engineering design.

  18. An exploration of the biomedical optics course construction of undergraduate biomedical engineering program in medical colleges

    NASA Astrophysics Data System (ADS)

    Guo, Shijun; Lyu, Jie; Zhang, Peiming

    2017-08-01

    In this paper, the teaching goals, teaching contents and teaching methods in biomedical optics course construction are discussed. From the dimension of teaching goals, students should master the principle of optical inspection on the human body, diagnosis and treatment of methodology and instruments, through the study of the theory and practice of this course, and can utilize biomedical optics methods to solve practical problems in the clinical medical engineering practice. From the dimension of teaching contents, based on the characteristics of biomedical engineering in medical colleges, the organic integration of engineering aspects, medical optical instruments, and biomedical aspects dispersed in human anatomy, human physiology, clinical medicine fundamental related to the biomedical optics is build. Noninvasive measurement of the human body composition and noninvasive optical imaging of the human body were taken as actual problems in biomedical optics fields. Typical medical applications such as eye optics and laser medicine were also integrated into the theory and practice teaching. From the dimension of teaching methods, referencing to organ-system based medical teaching mode, optical principle and instrument principle were taught by teachers from school of medical instruments, and the histological characteristics and clinical actual need in areas such as digestive diseases and urinary surgery were taught by teachers from school of basic medicine or clinical medicine of medical colleges. Furthermore, clinical application guidance would be provided by physician and surgeons in hospitals.

  19. Applied Problems and Use of Technology in an Aligned Way in Basic Courses in Probability and Statistics for Engineering Students--A Way to Enhance Understanding and Increase Motivation

    ERIC Educational Resources Information Center

    Zetterqvist, Lena

    2017-01-01

    Researchers and teachers often recommend motivating exercises and use of mathematics or statistics software for the teaching of basic courses in probability and statistics. Our courses are given to large groups of engineering students at Lund Institute of Technology. We found that the mere existence of real-life data and technology in a course…

  20. Interactive Physics: the role of interactive learning objects in teaching Physics in Engineering

    NASA Astrophysics Data System (ADS)

    Benito, R. M.; Cámara, M. E.; Arranz, F. J.

    2009-04-01

    In this work we present the results of a Project in educational innovation entitled "Interactive Physics". We have developed resources for teaching Physics for students of Engineering, with an emphasis in conceptual reinforcement and addressing the shortcomings of students entering the University. The resources developed include hypertext, graphics, equations, quizzes and more elaborated problems that cover the customary syllabus in first-year Physics: kinematics and dynamics, Newton laws, electricity and magnetism, elementary circuits… The role of vector quantities is stressed and we also provide help for the most usual mathematical tools (calculus and trigonometric formulas). The structure and level of detail of the resources are fitted to the conceptual difficulties that most of the students find. Some of the most advanced resources we have developed are interactive simulations. These are real simulations of key physical situations, not only animations. They serve as learning objects, in the well known sense of small reusable digital objects that are self-contained and tagged with metadata. In this sense, we use them to link concepts and content through interaction with active engagement of the student. The development of an interactive simulation involves several steps. First, we identify common pitfalls in the conceptual framework of the students and the points in which they stumble frequently. Then we think of a way to make clear the physical concepts using a simulation. After that, we program the simulation (using Flash or Java) and finally the simulation is tested with the students, and we reelaborate some parts of it in terms of usability. In our communication, we discuss the usefulness of these interactive simulations in teaching Physics for engineers, and their integration in a more comprehensive b-learning system.

  1. Linear Programming across the Curriculum

    ERIC Educational Resources Information Center

    Yoder, S. Elizabeth; Kurz, M. Elizabeth

    2015-01-01

    Linear programming (LP) is taught in different departments across college campuses with engineering and management curricula. Modeling an LP problem is taught in every linear programming class. As faculty teaching in Engineering and Management departments, the depth to which teachers should expect students to master this particular type of…

  2. Promoting Interdisciplinarity in Engineering Teaching

    ERIC Educational Resources Information Center

    Harrison, Gareth P.; Macpherson, D. Ewen; Williams, David A.

    2007-01-01

    With funding from the UK's Royal Academy of Engineering, the University of Edinburgh has developed a series of truly interdisciplinary design courses aimed at improving penultimate-year students' ability to operate across disciplines and improve their preparation for industry. Led by a Visiting Industrial Professor, the course on hydropower design…

  3. Integrator element as a promoter of active learning in engineering teaching

    NASA Astrophysics Data System (ADS)

    Oliveira, Paulo C.; Oliveira, Cristina G.

    2014-03-01

    In this paper, we present a teaching proposal used in an Introductory Physics course to civil engineering students from Porto's Engineering Institute/Instituto Superior de Engenharia do Porto (ISEP). The proposal was born from the need to change students' perception and motivation for learning physics. It consists in the use of an integrator element, called the physics elevator project. This integrator element allows us to use, in a single project, all the content taught in the course and uses several active learning strategies. In this paper, we analyse this project as: (i) a clarifying element of the contents covered in the course; (ii) a promoter element of motivation and active participation in class and finally and (iii) a link between the contents covered in the course and the 'real world'. The data were collected by a questionnaire and interviews to students. From the data collected, it seems that the integrator element improves students' motivation towards physics and develops several skills that they consider to be important to their professional future. It also acts as a clarifying element and makes the connection between the physics that is taught and the 'real world'.

  4. Trials of large group teaching in Malaysian private universities: a cross sectional study of teaching medicine and other disciplines

    PubMed Central

    2011-01-01

    Background This is a pilot cross sectional study using both quantitative and qualitative approach towards tutors teaching large classes in private universities in the Klang Valley (comprising Kuala Lumpur, its suburbs, adjoining towns in the State of Selangor) and the State of Negeri Sembilan, Malaysia. The general aim of this study is to determine the difficulties faced by tutors when teaching large group of students and to outline appropriate recommendations in overcoming them. Findings Thirty-two academics from six private universities from different faculties such as Medical Sciences, Business, Information Technology, and Engineering disciplines participated in this study. SPSS software was used to analyse the data. The results in general indicate that the conventional instructor-student approach has its shortcoming and requires changes. Interestingly, tutors from Medicine and IT less often faced difficulties and had positive experience in teaching large group of students. Conclusion However several suggestions were proposed to overcome these difficulties ranging from breaking into smaller classes, adopting innovative teaching, use of interactive learning methods incorporating interactive assessment and creative technology which enhanced students learning. Furthermore the study provides insights on the trials of large group teaching which are clearly identified to help tutors realise its impact on teaching. The suggestions to overcome these difficulties and to maximize student learning can serve as a guideline for tutors who face these challenges. PMID:21902839

  5. Trials of large group teaching in Malaysian private universities: a cross sectional study of teaching medicine and other disciplines.

    PubMed

    Thomas, Susan; Subramaniam, Shamini; Abraham, Mathew; Too, Laysan; Beh, Loosee

    2011-09-09

    This is a pilot cross sectional study using both quantitative and qualitative approach towards tutors teaching large classes in private universities in the Klang Valley (comprising Kuala Lumpur, its suburbs, adjoining towns in the State of Selangor) and the State of Negeri Sembilan, Malaysia. The general aim of this study is to determine the difficulties faced by tutors when teaching large group of students and to outline appropriate recommendations in overcoming them. Thirty-two academics from six private universities from different faculties such as Medical Sciences, Business, Information Technology, and Engineering disciplines participated in this study. SPSS software was used to analyse the data. The results in general indicate that the conventional instructor-student approach has its shortcoming and requires changes. Interestingly, tutors from Medicine and IT less often faced difficulties and had positive experience in teaching large group of students. However several suggestions were proposed to overcome these difficulties ranging from breaking into smaller classes, adopting innovative teaching, use of interactive learning methods incorporating interactive assessment and creative technology which enhanced students learning. Furthermore the study provides insights on the trials of large group teaching which are clearly identified to help tutors realise its impact on teaching. The suggestions to overcome these difficulties and to maximize student learning can serve as a guideline for tutors who face these challenges.

  6. Teaching audience analysis to the technical student

    NASA Technical Reports Server (NTRS)

    Debs, M. B.; Brillhart, L. V.

    1981-01-01

    Teaching audience analysis, as practiced in a technical writing course for engineering students, is discussed. Audience analysis is described as the task of defining the audience for a particular piece of writing and determining those characteristics of the audience which constrain the writer and effect reception of the message. A mature technical writing style that shows the tension produced when a text is written to be read and understood is considered in terms of audience analysis. Techniques include: (1) conveying to students the concept that a reader with certain expectations exist, (2) team teaching to preserve the context of a given technical discipline, and (3) assigning a technical report that addresses a variety of readers, thus establishing the complexity of audience oriented writing.

  7. Analyzing the Effect of Technology-Based Intervention in Language Laboratory to Improve Listening Skills of First Year Engineering Students (El uso de la tecnología en el laboratorio de idiomas para el mejoramiento de las habilidades de escucha de estudiantes de ingeniería de primer año)

    ERIC Educational Resources Information Center

    Pasupathi, Madhumathi

    2013-01-01

    First year students pursuing engineering education face problems with their listening skills. Most of the Indian schools use a bilingual method for teaching subjects from primary school through high school. Nonetheless, students entering university education develop anxiety in listening to classroom lectures in English. This article reports an…

  8. Vertical stream curricula integration of problem-based learning using an autonomous vacuum robot in a mechatronics course

    NASA Astrophysics Data System (ADS)

    Chin, Cheng; Yue, Keng

    2011-10-01

    Difficulties in teaching a multi-disciplinary subject such as the mechatronics system design module in Departments of Mechatronics Engineering at Temasek Polytechnic arise from the gap in experience and skill among staff and students who have different backgrounds in mechanical, computer and electrical engineering within the Mechatronics Department. The departments piloted a new vertical stream curricula model (VSCAM) to enhance student learning in mechatronics system design through integration of educational activities from the first to the second year of the course. In this case study, a problem-based learning (PBL) method on an autonomous vacuum robot in the mechatronics systems design module was proposed to allow the students to have hands-on experience in the mechatronics system design. The proposed works included in PBL consist of seminar sessions, weekly works and project presentation to provide holistic assessment on teamwork and individual contributions. At the end of VSCAM, an integrative evaluation was conducted using confidence logs, attitude surveys and questionnaires. It was found that the activities were quite appreciated by the participating staff and students. Hence, PBL has served as an effective pedagogical framework for teaching multidisciplinary subjects in mechatronics engineering education if adequate guidance and support are given to staff and students.

  9. An Inquiry-Based Approach to Teaching Space Weather to Undergraduate Non-Science Majors

    NASA Astrophysics Data System (ADS)

    Cade, W. B., III

    2016-12-01

    Undergraduate Space Weather education is an important component of creating a society that is knowledgeable about space weather and its societal impacts. The space physics community has made great strides in providing academic education for students, typically physics and engineering majors, who are interested in pursuing a career in the space sciences or space weather. What is rarely addressed, however, is providing a broader space weather education to undergraduate students as a whole. To help address this gap, I have created an introductory space weather course for non-science majors, with the idea of expanding exposure to space weather beyond the typical physics and engineering students. The philosophy and methodologies used in this course will be presented, as well as the results of the first attempts to teach it. Using an approach more tailored to the non-scientist, courses such as this can be an effective means of broadening space weather education and outreach.

  10. Labour perspectives of engineering degrees in the European Higher Education Area (EHEA): a case of study in the University of Cordoba (Spain)

    NASA Astrophysics Data System (ADS)

    Taguas, E. V.; Redel, M. D.; Pérez, R.; Peña, A.

    2009-04-01

    The Bologna process is reaching its final stages and is causing controversy among students. The adaptation of European universities to the European Higher Education Area (EHEA) entails not only the modification of curricular programmes and the nomenclature and duration of degrees, but also the incorporation of new teaching strategies aimed at ensuring that students acquire transversal skills and aptitudes and at increasing student participation in the teaching-learning process. A number of surveys have been carried out during the last few courses among students doing degrees in engineering (Industrial Engineering, Agronomy Engineering and Forestry Engineering). These surveys include questions on their knowledge of Bologna process, its advantages and drawbacks, their opinion about optional masters or doctorate degrees, what perspectives their degrees have on the labour market and suggestions for improvement. Although the different degrees showed notable differences, the content of EHEA is well-known by less than 30% of students, while 40% of them state they know about their perspectives on the labour market. The main advantages of EHEA were related to the improvement of practical knowledge in the subjects, the recognition of degrees in Europe and wider working opportunities. The main drawbacks pointed out were worse and shorter training periods, higher costs and fiercer competition between different degrees. In addition, they suggested that the new degrees are better adjusted to the demands of the labour market. 60% and 40% of them, respectively, approved of Masters degrees and PhDs. These features should be taken into account to organize and improve the contents of the degrees as well as to involve the students in the future of University education.

  11. Teaching Cellular Automation Concepts through Interdisciplinary Collaborative Learning.

    ERIC Educational Resources Information Center

    Biernacki, Joseph J.; Ayers, Jerry B.

    2000-01-01

    Reports on the experiences of 12 students--three senior undergraduates majoring in chemical engineering, five master-level, and four doctoral students--in a course titled "Interdisciplinary Studies in Multi-Scale Simulation of Concrete Materials". Course objectives focused on incorporating team-oriented interdisciplinary experiences into the…

  12. The Bologna Process Implementation and its Consequent Changes in the Teaching/Learning Model—the Industrial Management and Engineering Degree Case

    NASA Astrophysics Data System (ADS)

    Luísa Soares, Ana; Costa, Elga; Ferreira, Luís Pinto

    2009-11-01

    The present paper aims to present a Project included in a diversified programme and consequent implementation of a new Teaching/Learning model adapted to the Industrial Management and Engineering Degree (IMED) of the Management and Industrial Studies School (O'Porto Polytechnic Institute). Owning particular and specific characteristics, this model is based on the graduates' professional profile as well as on the work market dynamics, placing the student in the centre of the Learning Process, in opposition to the `teacher centred' method (as conceived by the Bologna Treat). Diverse in the approach, the model includes differentiating factors when compared to the project based traditional model. Through the development and conception of practical Interdisciplinary Projects, centring knowledges and techniques from the different Industrial Management and Engineering areas, we seek a new way of implementing the `Project Led Education' (PLE) bases, according to the Active Learning paradigm. This teaching/learning model aims to contribute to the Industrial Management and Engineering graduates' formation focused on a high level of performance and professional rectitude, to induce students' enthusiasm and motivation for acquiring scientific and technical knowledge, as well as to satisfy the diverse interest groups' expectations and promote the regional development.

  13. Learning from the Professions: Examining How, Why, and When Engineers Read and Write

    ERIC Educational Resources Information Center

    Giroux, Carolyn S.; Moje, Elizabeth Birr

    2017-01-01

    With the advent of the Next Generation Science Standards in engineering (NGSS, 2013), teachers of multiple subject areas are being asked to do more than ever before--not only to teach engineering content in the K-12 classroom but also to engage students in authentic disciplinary reading and writing as part of content learning. These standards…

  14. Teaching room acoustics as a product sound quality issue

    NASA Astrophysics Data System (ADS)

    Kleiner, Mendel; Vastfjall, Daniel

    2003-04-01

    The department of Applied Acoustics teaches engineering and architect students at Chalmers University of Technology. The teaching of room acoustics to architectural students has been under constant development under several years and is now based on the study of room acoustics as a product sound quality issue. Various listening sessions using binaural sound recording and reproduction is used to focus students' learning on simple, easy to remember concepts. Computer modeling using ray tracing software and auralization is also used extensively as a tool to demonstrate concepts in addition to other software for simple sound generation and manipulation. Sound in general is the focus of an interdisciplinary course for students from Chalmers as well as from a school of art, a school of design, and a school of music which offers particular challenges and which is almost all listening based.

  15. Using a 400 kV Van de Graaff accelerator to teach physics at West Point

    NASA Astrophysics Data System (ADS)

    Marble, D. K.; Bruch, S. E.; Lainis, T.

    1997-02-01

    A small accelerator visitation laboratory is being built at the United States Military Academy using two 400 kV Van de Graaff accelerators. This laboratory will provide quality teaching experiments and increased research opportunities for both faculty and cadets as well as enhancing the department's ability to teach across the curriculum by using nuclear techniques to solve problems in environmental engineering, material science, archeology, art, etc. This training enhances a students ability to enter non-traditional fields that are becoming a large part of the physics job market. Furthermore, a small accelerator visitation laboratory for high school students can stimulate student interest in science and provide an effective means of communicating the scientific method to a general audience. A discussion of the USMA facility, class experiments and student research projects will be presented.

  16. Put Some Movie Wow! in Your Chemistry Teaching

    ERIC Educational Resources Information Center

    Frey, Christopher A.; Mikasen, Marjorie L.; Griep, Mark A.

    2012-01-01

    Movies and movie clips have been used by many instructors to teach chemistry. Entire movies based on true chemical stories are used because they provide students with a common experience after which instructors can launch writing lessons about the chemistry, the scientists, or engineers, or even postscripts to the story presented in the film. In…

  17. Research and Teaching: WikiED--Using Web 2.0 Tools to Teach Content and Critical Thinking

    ERIC Educational Resources Information Center

    Frisch, Jennifer K.; Jackson, Paula C.; Murray, Meg C.

    2013-01-01

    WIKIed Biology is a National Science Foundation Transforming Undergraduate Education in Science, Technology, Engineering, and Mathematics interdisciplinary project in which the authors developed and implemented a model for student centered, inquiry-driven instruction using Web 2.0 technologies to increase inquiry and conceptual understanding in…

  18. Stateless Programming as a Motif for Teaching Computer Science

    ERIC Educational Resources Information Center

    Cohen, Avi

    2004-01-01

    With the development of XML Web Services, the Internet could become an integral part of and the basis for teaching computer science and software engineering. The approach has been applied to a university course for students studying introduction to computer science from the point of view of software development in a stateless, Internet…

  19. Implementing Collaborative Learning across the Engineering Curriculum

    ERIC Educational Resources Information Center

    Ralston, Patricia A. S.; Tretter, Thomas R.; Kendall-Brown, Marie

    2017-01-01

    Active and collaborative teaching methods increase student learning, and it is broadly accepted that almost any active or collaborative approach will improve learning outcomes as compared to lecture. Yet, large numbers of faculty have not embraced these methods. Thus, the challenge to encourage evidence-based change in teaching is not only how to…

  20. Colorblind and Multicultural Ideologies Are Associated with Faculty Adoption of Inclusive Teaching Practices

    ERIC Educational Resources Information Center

    Aragón, Oriana R.; Dovidio, John F.; Graham, Mark J.

    2017-01-01

    Professional workshops aimed at increasing student diversity typically urge college-level science, technology, engineering, and math (STEM) educators to implement inclusive teaching practices. A model of the process by which educators adopt such practices, and the relationship between adoption and 2 ideologies of diversity is tested here. One…

  1. A Blended Learning Approach to Teach Fluid Mechanics in Engineering

    ERIC Educational Resources Information Center

    Rahman, Ataur

    2017-01-01

    This paper presents a case study on the teaching and learning of fluid mechanics at the University of Western Sydney (UWS), Australia, by applying a blended learning approach (BLA). In the adopted BLA, various flexible learning materials have been made available to the students such as online recorded lectures, online recorded tutorials, hand…

  2. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…

  3. Teaching Ethics as Design

    ERIC Educational Resources Information Center

    Kirkman, Robert; Fu, Katherine; Lee, Bumsoo

    2017-01-01

    This paper introduces an approach to teaching ethics as design in a new course entitled Design Ethics, team-taught by a philosopher and an engineer/designer. The course follows a problem-based learning model in which groups of students work through the phases of the design process on a project for a local client, considering the design values and…

  4. Teaching STEM after School: Correlates of Instructional Comfort

    ERIC Educational Resources Information Center

    Cohen, Benjamin

    2018-01-01

    Science, technology, engineering and mathematics (STEM) education is a critical component of federal policymakers' agendas. Out-of-school time (OST) programs are designated as an important venue to teach STEM to K-12 students. Using a sample of OST direct staff in Pennsylvania (n = 133), the present analysis examines instructional methods used for…

  5. A Collaborative Learning Environment for Management Education Based on Experiential Learning

    ERIC Educational Resources Information Center

    Lidon, Ivan; Rebollar, Ruben; Moller, Charles

    2011-01-01

    In many areas of applied sciences, such as management and engineering, the generation and dissemination of theory and knowledge is increasingly woven into practice. This leaves teaching and research institutions with the challenge of developing and organising teaching activities that are effective from a student learning perspective. This paper…

  6. Teaching Personal Skills in Technology and Engineering Education: Is It Our Job?

    ERIC Educational Resources Information Center

    Loveland, Thomas R.

    2017-01-01

    Recent papers on career and college readiness have emphasized preparation of secondary students for either future college and/or career choices (Robles, 2012, Rateau, Kaufman & Cletzer, 2015). While technologies used in business change rapidly and make the teaching of job-specific skills somewhat impractical, the foundational skills needed for…

  7. Mechatronic system design course for undergraduate programmes

    NASA Astrophysics Data System (ADS)

    Saleem, A.; Tutunji, T.; Al-Sharif, L.

    2011-08-01

    Technology advancement and human needs have led to integration among many engineering disciplines. Mechatronics engineering is an integrated discipline that focuses on the design and analysis of complete engineering systems. These systems include mechanical, electrical, computer and control subsystems. In this paper, the importance of teaching mechatronic system design to undergraduate engineering students is emphasised. The paper offers the collaborative experience in preparing and delivering the course material for two universities in Jordan. A detailed description of such a course is provided and a case study is presented. The case study used is a final year project, where students applied a six-stage design procedure that is described in the paper.

  8. Chemistry teaching in the new degrees of Agricultural Engineering

    NASA Astrophysics Data System (ADS)

    Arce, Augusto; Tarquis, Ana Maria; Castellanos, Maria Teresa; Requejo, Maria Isabel; Cartagena, Maria Carmen

    2013-04-01

    The academic year 2011-12 is the second one implementing Bologna process in ETSI at the subjects of Agricultural Chemistry I and Chemistry II in the new four Degrees: Graduate in Engineering and Agricultural Science, Food Engineering Graduate, Graduate Environmental and engineering Graduate in Biotechnology, for it has been necessary to design and implement new interactive methodologies in the teaching-learning process based on the use of the virtual platform of the UPM, implement new evaluation systems that promote continued participation active student and the development of educational materials to support the subjects of chemistry designed new degrees within the EEES. In addition to the above actions, an assessment test prior chemistry knowledge has been made to all students who enter into Agricultural Grades, improving laboratory practices and the comparative study of academic obtained by the students of the new grades in the subjects of chemistry during the year 2011-12 compared to the 2010-11 academic year. More than 15,000 data have showed a good correlation between the student's prior knowledge, the level test performed, test scores, the overall success rate of the course and the abandonment of the different degrees. Academic results show a higher percentage of students enrolled and presented on a greater number of passes on students enrolled in the 2011-12 academic year for students enrolled in the previous academic year. The improved results have influenced the actions taken and the level of knowledge with students entering. Finally, we propose possible solutions to fix these results in future courses, aiming to improve the degree of efficiency, success and significant absenteeism in the first year as it will condition the dropout rate of these new degrees. Acknowledgements: Proyecto de Innovación Educativa N° IE02054-11/12 UPM. 2012.

  9. Poetry for physicists

    NASA Astrophysics Data System (ADS)

    Tobias, Sheila; Abel, Lynne S.

    1990-09-01

    In an effort to discover what makes the humanities difficult and unpopular with some science and engineering students, 14 Cornell faculty from the disciplines of chemistry, physics, applied mathematics, geology, materials science, and engineering were invited to become ``surrogate learners'' in a junior/senior level poetry seminar designed expressly for them. Their encounter with humanistic pedagogy and scholarship was meant to be an extension of ``Peer Perspectives on Science'' [see S. Tobias and R. R. Hake, ``Professors as physics students: What can they teach us?'' Am. J. Phys. 56, 786 (1988)]. The results challenge certain assumptions about differences between scholarship and pedagogy in the humanities and science (as regards ``certainty'' and models). But the experiment uncovered other problems that affect ``marketing'' the humanities to science and engineering students. Results are some additional insights into what makes science ``hard'' for humanities students and why physical science and engineering students have difficulty with and tend to avoid courses in literature, as well as into what can make humanities courses valuable for science students.

  10. Teaching ethics to engineers: ethical decision making parallels the engineering design process.

    PubMed

    Bero, Bridget; Kuhlman, Alana

    2011-09-01

    In order to fulfill ABET requirements, Northern Arizona University's Civil and Environmental engineering programs incorporate professional ethics in several of its engineering courses. This paper discusses an ethics module in a 3rd year engineering design course that focuses on the design process and technical writing. Engineering students early in their student careers generally possess good black/white critical thinking skills on technical issues. Engineering design is the first time students are exposed to "grey" or multiple possible solution technical problems. To identify and solve these problems, the engineering design process is used. Ethical problems are also "grey" problems and present similar challenges to students. Students need a practical tool for solving these ethical problems. The step-wise engineering design process was used as a model to demonstrate a similar process for ethical situations. The ethical decision making process of Martin and Schinzinger was adapted for parallelism to the design process and presented to students as a step-wise technique for identification of the pertinent ethical issues, relevant moral theories, possible outcomes and a final decision. Students had greatest difficulty identifying the broader, global issues presented in an ethical situation, but by the end of the module, were better able to not only identify the broader issues, but also to more comprehensively assess specific issues, generate solutions and a desired response to the issue.

  11. A Dynamic Action in the Engineering Teaching.

    ERIC Educational Resources Information Center

    Pegollo, Carlos Alberto Goebel; Shiga, Alberto Akio

    The main proposal of this paper is to present research performed during a practical subject in the last year of the electrical engineer undergraduate course, emphasis in electrotechnics, at the Universidade Sao Judas Tadeu. Several activities are developed to provide the students variable and continued information about their performance in many…

  12. Information Literacy for First-Year Students: An Embedded Curriculum Approach

    ERIC Educational Resources Information Center

    Andrews, T.; Patil, R.

    2007-01-01

    The ability to access, evaluate and synthesise high-quality research material is the backbone of critical thinking in academic and professional contexts for Engineers and Industrial Designers. This is the premise upon which teaching and library staff developed Information Literacy (IL) components in Engineering & Industrial Design Practice--a…

  13. Measurement. Teacher's Guide. Small Engine Repair Series.

    ERIC Educational Resources Information Center

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    This teacher's guide is part of an instructional series on small engine repair that is intended for use with mentally retarded and learning disabled students in general mechanical repair programs. Notes to the instructor cover equipment needed, preparation before teaching, and use of evaluation charts, transparency masters, audiovisual(s), and…

  14. OJPOT: Online Judge & Practice Oriented Teaching Idea in Programming Courses

    ERIC Educational Resources Information Center

    Wang, Gui Ping; Chen, Shu Yu; Yang, Xin; Feng, Rui

    2016-01-01

    Practical abilities are important for students from majors including Computer Science and Engineering, and Electrical Engineering. Along with the popularity of ACM International Collegiate Programming Contest (ACM/ICPC) and other programming contests, online judge (OJ) websites achieve rapid development, thus providing a new kind of programming…

  15. Creativity on the Teaching Agenda

    ERIC Educational Resources Information Center

    Lewis, Timothy Michael

    2004-01-01

    In the rapidly changing modern world there is a special need for engineers to be responsive to the differing demands of their physical, technical, social and economic environments. To do this effectively, they need to be able to think and act creatively. The typical engineering student is characteristically not particularly creative. This makes it…

  16. Student Plagiarism and Faculty Responsibility in Undergraduate Engineering Labs

    ERIC Educational Resources Information Center

    Parameswaran, Ashvin; Devi, Poornima

    2006-01-01

    In undergraduate engineering labs, lab reports are routinely copied. By ignoring this form of plagiarism, teaching assistants and lab technicians neglect their role responsibility. By designing courses that facilitate it, however inadvertently, professors neglect their causal responsibility. Using the case of one university, we show via interviews…

  17. Rurality as an Asset for Inclusive Teaching in Chemical Engineering

    ERIC Educational Resources Information Center

    Gomez, Jamie; Svihla, Vanessa

    2018-01-01

    We developed and tested a pedagogical strategy--asset-based design challenges--to enhance diversity in early chemical engineering coursework. Using qualitative methods, we found first-year students justified high-cost solutions with ethical arguments; teams that included rural expertise argued instead for economically-viable solutions. In the…

  18. A Thematic Instruction Approach to Teaching Technology and Engineering

    ERIC Educational Resources Information Center

    Moyer, Courtney D.

    2016-01-01

    Thematic instruction offers flexible opportunities to engage students with real-world experiences in the technology and engineering community. Whether used in a broad unifying theme or specific project-based theme, research has proven that thematic instruction has the capacity to link cross-curricular subjects, facilitate active learning, and…

  19. Constructing engineers through practice: Gendered features of learning and identity development

    NASA Astrophysics Data System (ADS)

    Tonso, Karen L.

    How do women and men student engineers develop an engineering identity (a sense of belonging, or not), while practicing "actual" engineering? What are the influences of gender, learning and knowledge, relations of power, and conceptions of equality on cultural identity development? I studied these issues in reform-minded engineering design classes, courses organized around teaching students communications, teamwork, and practical engineering. Engineering-student cultural identity categories revealed a status hierarchy, predicated on meeting "academic" criteria for excellence, and the almost total exclusion of women. While working as an engineering colleague on five student teams (three first-year and two senior) and attending their design classes, I documented how cultural identities were made evident and constructed in students' practical engineering. Design projects promoted linking academic knowledge with real-world situations, sharing responsibilities and trusting colleagues, communicating engineering knowledge to technical and non-technical members of business communities, and addressing gaps in students' knowledge. With a curriculum analysis and survey of students' perceptions of the differences between design and conventional courses, I embedded the design classes in the wider campus and found that: (1) Engineering education conferred prestige, power, and well-paying jobs on students who performed "academic" engineering, while failing to adequately encourage "actual" engineering practices. High-status student engineers were the least likely to perform "actual" engineering in design teams. (2) Engineering education advanced an ideology that encouraged its practitioners to consider men's privilege and women's invisibility normal. By making "acting like men act" the standards to which engineering students must conform, women learned to put up with oppressive treatment. Women's accepting their own mistreatment and hiding their womanhood became a condition of women's belonging. (3) Despite all of the pressures to do otherwise, (some) teams of students (at all levels) carved out small oases where "actual" engineering prevailed and women's participation was robust. Students--not faculty, not progressive pedagogy, not "reformed" courses--disrupted prevailing norms. However, two women engineering students, one on each senior team, performed fabulous "actual" engineering, yet neither of them had a job when they graduated--the only two senior students on my teams without jobs.

  20. Research and Teaching. The Science Identity of College Students: Exploring the Intersection of Gender, Race, and Ethnicity

    ERIC Educational Resources Information Center

    Hazari, Zahra; Sadler, Philip M.; Sonnert, Gerhard

    2013-01-01

    This study explores students' self-perceptions across science subjects (biology, chemistry, and physics) by gender and underrepresented minority group membership. The data are drawn from the Persistence Research in Science and Engineering (PRiSE) project, which surveyed 7,505 students (enrolled in college English courses required for all majors)…

  1. Research and Teaching: From Gatekeeper to Gateway: Improving Student Success in an Introductory Biology Course

    ERIC Educational Resources Information Center

    Scott, Amy N.; McNair, Delores E.; Lucas, Jonathan C.; Land, Kirkwood M.

    2017-01-01

    Introductory science, math, and engineering courses often have problems related to student engagement, achievement, and course completion. To begin examining these issues in greater depth, this pilot study compared student engagement, achievement, and course completion in a small and large section of an introductory biology class. Results based on…

  2. A Two-Tier Test-Based Approach to Improving Students' Computer-Programming Skills in a Web-Based Learning Environment

    ERIC Educational Resources Information Center

    Yang, Tzu-Chi; Hwang, Gwo-Jen; Yang, Stephen J. H.; Hwang, Gwo-Haur

    2015-01-01

    Computer programming is an important skill for engineering and computer science students. However, teaching and learning programming concepts and skills has been recognized as a great challenge to both teachers and students. Therefore, the development of effective learning strategies and environments for programming courses has become an important…

  3. Using Embedded Computer-Assisted Instruction to Teach Science to Students with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Smith, Bethany

    2012-01-01

    The need for promoting scientific literacy for all students has been the focus of recent education reform resulting in the rise of the Science Technology, Engineering, and Mathematics movement. For students with Autism Spectrum Disorders and intellectual disability, this need for scientific literacy is further complicated by the need for…

  4. Innovative Mobile Robot Method: Improving the Learning of Programming Languages in Engineering Degrees

    ERIC Educational Resources Information Center

    Ortiz, Octavio Ortiz; Pastor Franco, Juan Ángel; Alcover Garau, Pedro María; Herrero Martín, Ruth

    2017-01-01

    This paper describes a study of teaching a programming language in a C programming course by having students assemble and program a low-cost mobile robot. Writing their own programs to define the robot's behavior raised students' motivation. Working in small groups, students programmed the robots by using the control structures of structured…

  5. Using portfolio assignment to support students individually and sustainably -There's always a first time

    NASA Astrophysics Data System (ADS)

    Mayer, M.

    2009-04-01

    The recent education of engineers, using the example of satellite geodesy at the Geodetic Institute of the University Karlsruhe (GIK, Germany), is still suffering from time pressure as well as from heavy curriculum content loading. Within this education students, where the academic teachers have to fulfill high requests from the new generation of students as well as from industry and from research institutions respectively, advanced satellite geodetic knowledge has to be transferred effectively and sustainably. In order to enable the students to train newest aspects related to satellite geodesy as well as important key competences, e.g. capacity for independent and academic work, reflection and evaluation skills, presentation skills, an innovative teaching concept was developed, tested, and evaluated. This teaching concept makes use of very different teaching techniques like portfolio assignment, project work, input from experts, jig saw, advance and post organizer. This presentation will focus on the portfolio assignment component. This teaching technique was used at the GIK during the last two years for the first time, in order to support students individually. The lessons learnt within this teaching experiment are going to be presented.

  6. Chemical Engineering Students' Ideas of Entropy

    ERIC Educational Resources Information Center

    Haglund, Jesper; Andersson, Staffan; Elmgren, Maja

    2015-01-01

    Thermodynamics, and in particular entropy, has been found to be challenging for students, not least due to its abstract character. Comparisons with more familiar and concrete domains, by means of analogy and metaphor, are commonly used in thermodynamics teaching, in particular the metaphor "entropy is disorder." However, this particular…

  7. Preparing College Students to Teach an Environmental Problem Solving Curriculum to Middle School Students

    NASA Astrophysics Data System (ADS)

    Powers, S. E.

    2001-12-01

    An NSF-funded project-based program was implemented by Clarkson University in 2000 to increase the interest and knowledge of middle school students in science, math and technology through the solution of an environmental problem that is relevant to their local school community. Clarkson students developed curricula for 7th and 8th grade science and technology classes and then worked with the middle school students throughout the year to reduce to transform solid waste into healthy soil for plant growth. The solution to this problem provided a vehicle to teach fundamental science and math content as well as the process of doing science and solving problems. Placing college science and engineering students in the classroom proved to be a great mechanism for engaging students in science topics and providing mentoring experiences that differ greatly from those that a practicing professional can provide. It is clear, however, that the students must be well prepared for this experience to maximize the benefits of university - school district partnership programs. The objective of this presentation will be to describe the training program that has been developed to prepare Clarkson students to work effectively in middle school classrooms. The Clarkson students are trained for their classroom experiences during the summer before they enter the classroom. They receive three credits for the training, curriculum development, and teaching efforts. It is expected that the students have the necessary background in science and technology to teach themselves the content and environmental relevance of the problem they will be teaching. Lectures and workshops focus on how to transform this knowledge into a project-based curriculum that meets the needs of the teachers, while also exciting the students. Lecture/workshops include: team work; components of an effective class and teacher; project planning and management; problem solving process; inquiry based learning, deductive/inductive learning; creating unit/lesson plan; defining learning objectives; incorporating mentoring into program; NYS standards and science exam; and, assessment techniques. Journals are used to encourage the fellows to reflect on their learning and own educational experiences. An evaluation of the program by both Clarkson students and their partner teachers indicated that this training was appropriate for the students to enter the classroom as professional scientists and engineers. Their classroom interaction skills improved throughout the year.

  8. The bench vs. the blackboard: learning to teach during graduate school.

    PubMed

    Ciaccia, Laura

    2011-09-01

    Many science, technology, engineering, and mathematics (STEM) graduate students travel through the academic career pipeline without ever learning how to teach effectively, an oversight that negatively affects the quality of undergraduate science education and cheats trainees of valuable professional development. This article argues that all STEM graduate students and postdoctoral fellows should undergo training in teaching to strengthen their resumes, polish their oral presentation skills, and improve STEM teaching at the undergraduate level. Though this may seem like a large undertaking, the author outlines a three-step process that allows busy scientists to fit pedagogical training into their research schedules in order to make a significant investment both in their academic career and in the continuing improvement of science education. Copyright © 2011.

  9. Engineering Education in K-12 Schools

    NASA Astrophysics Data System (ADS)

    Spence, Anne

    2013-03-01

    Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.

  10. Embedding Entrepreneurial Thinking into Fluids-related Courses: Small Changes Lead to Positive Results

    NASA Astrophysics Data System (ADS)

    Carnasciali, Maria-Isabel

    2017-11-01

    Many fluid dynamics instructors have embraced student-centered learning pedagogies (Active & Collaborative Learning (ACL) and Problem/Project Based Learning (PBL)) to promote learning and increase student engagement. A growing effort in engineering education calls to equip students with entrepreneurial skills needed to drive innovation. The Kern Entrepreneurial Engineering Network (KEEN) defines entrepreneurial mindset based on three key attributes: curiosity, connections, and creating value. Elements of ACL and PBL have been used to embed Entrepreneurial Thinking concepts into two fluids-related subjects: 1) an introductory thermal-fluid systems course, and 2) thermo-fluids laboratory. Assessment of students' work reveal an improvement in student learning. Course Evaluations and Surveys indicate an increased perceived-value of course content. Training and development made possible through funding from the Kern Entrepreneurial Engineering Network and the Bucknall Excellence in Teaching Award.

  11. Educational technologies and the teaching of ethics in science and engineering.

    PubMed

    Loui, Michael C

    2005-07-01

    To support the teaching of ethics in science and engineering, educational technologies offer a variety of functions: communication between students and instructors, production of documents, distribution of documents, archiving of class sessions, and access to remote resources. Instructors may choose to use these functions of the technologies at different levels of intensity, to support a variety of pedagogies, consistent with accepted good practices. Good pedagogical practices are illustrated in this paper with four examples of uses of educational technologies in the teaching of ethics in science and engineering. Educational technologies impose costs for the purchase of hardware, licensing of software, hiring of support personnel, and training of instructors. Whether the benefits justify these costs is an unsettled question. While many researchers are studying the possible benefits of educational technologies, all instructors should assess the effectiveness of their practices.

  12. Developing students' worksheets applying soft skill-based scientific approach for improving building engineering students' competencies in vocational high schools

    NASA Astrophysics Data System (ADS)

    Suparno, Sudomo, Rahardjo, Boedi

    2017-09-01

    Experts and practitioners agree that the quality of vocational high schools needs to be greatly improved. Many construction services have voiced their dissatisfaction with today's low-quality vocational high school graduates. The low quality of graduates is closely related to the quality of the teaching and learning process, particularly teaching materials. In their efforts to improve the quality of vocational high school education, the government have implemented Curriculum 2013 (K13) and supplied teaching materials. However, the results of monitoring and evaluation done by the Directorate of Vocational High School, Directorate General of Secondary Education (2014), the provision of tasks for students in the teaching materials was totally inadequate. Therefore, to enhance the quality and the result of the instructional process, there should be provided students' worksheets that can stimulate and improve students' problem-solving skills and soft skills. In order to develop worksheets that can meet the academic requirements, the development needs to be in accordance with an innovative learning approach, which is the soft skill-based scientific approach.

  13. MO-DE-BRA-02: SIMAC: A Simulation Tool for Teaching Linear Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlone, M; Harnett, N; Department of Radiation Oncology, University of Toronto, Toronto, Ontario

    Purpose: The first goal of this work is to develop software that can simulate the physics of linear accelerators (linac). The second goal is to show that this simulation tool is effective in teaching linac physics to medical physicists and linac service engineers. Methods: Linacs were modeled using analytical expressions that can correctly describe the physical response of a linac to parameter changes in real time. These expressions were programmed with a graphical user interface in order to produce an environment similar to that of linac service mode. The software, “SIMAC”, has been used as a learning aid in amore » professional development course 3 times (2014 – 2016) as well as in a physics graduate program. Exercises were developed to supplement the didactic components of the courses consisting of activites designed to reinforce the concepts of beam loading; the effect of steering coil currents on beam symmetry; and the relationship between beam energy and flatness. Results: SIMAC was used to teach 35 professionals (medical physicists; regulators; service engineers; 1 week course) as well as 20 graduate students (1 month project). In the student evaluations, 85% of the students rated the effectiveness of SIMAC as very good or outstanding, and 70% rated the software as the most effective part of the courses. Exercise results were collected showing that 100% of the students were able to use the software correctly. In exercises involving gross changes to linac operating points (i.e. energy changes) the majority of students were able to correctly perform these beam adjustments. Conclusion: Software simulation(SIMAC), can be used to effectively teach linac physics. In short courses, students were able to correctly make gross parameter adjustments that typically require much longer training times using conventional training methods.« less

  14. Progress of teaching and learning of nuclear engineering courses at College of Engineering, Universiti Tenaga Nasional (UNITEN)

    NASA Astrophysics Data System (ADS)

    Hamid, Nasri A.; Mohamed, Abdul Aziz; Yusoff, Mohd. Zamri

    2015-04-01

    Developing human capital in nuclear with required nuclear background and professional qualifications is necessary to support the implementation of nuclear power projects in the near future. Sufficient educational and training skills are required to ensure that the human resources needed by the nuclear power industry meets its high standard. The Government of Malaysia has made the decision to include nuclear as one of the electricity generation option for the country, post 2020 in order to cater for the increasing energy demands of the country as well as to reduce CO2 emission. The commitment by the government has been made clearer with the inclusion of the development of first NPP by 2021 in the Economic Transformation Program (ETP) which was launched by the government in October 2010. The In tandem with the government initiative to promote nuclear energy, Center for Nuclear Energy, College of Engineering, Universiti Tenaga Nasional (UNITEN) is taking the responsibility in developing human capital in the area of nuclear power and technology. In the beginning, the College of Engineering has offered the Introduction to Nuclear Technology course as a technical elective course for all undergraduate engineering students. Gradually, other nuclear technical elective courses are offered such as Nuclear Policy, Security and Safeguards, Introduction to Nuclear Engineering, Radiation Detection and Nuclear Instrumentation, Introduction to Reactor Physics, Radiation Safety and Waste Management, and Nuclear Thermal-hydraulics. In addition, another course Advancement in Nuclear Energy is offered as one of the postgraduate elective courses. To enhance the capability of teaching staffs in nuclear areas at UNITEN, several junior lecturers are sent to pursue their postgraduate studies in the Republic of Korea, United States and the United Kingdom, while the others are participating in short courses and workshops in nuclear that are conducted locally and abroad. This paper describes the progress of teaching and learning in nuclear engineering and technology at UNITEN that include curriculum development, students' enrolment and performance, and teaching staff's human resource development.

  15. The reform of the teaching mode of Applied Optics curriculum and analysis of teaching effect

    NASA Astrophysics Data System (ADS)

    Ning, Yu; Xu, Zhongjie; Li, Dun; Chen, Zilun; Cheng, Xiangai; Zhong, Hairong

    2017-08-01

    Military academies have two distinctive characteristics on talent training: Firstly, we must teach facing actual combat and connecting with academic frontier. Secondly, the bachelor's degree education and the military education should be balanced. The teaching mode of basic curriculum in military academies must be reformed and optimized on the basis of the traditional teaching mode, so as to ensure the high quality of teaching and provide enough guidance and help for students to support their academic burden. In this paper, our main work on "Applied Optics" teaching mode reform is introduced: First of all, we research extensively and learn fully from advanced teaching modes of the well-known universities at home and abroad, a whole design is made for the teaching mode of the core curriculum of optical engineering in our school "Applied Optics", building a new teaching mode which takes the methods of teaching basic parts as details, teaching application parts as emphases, teaching frontier parts as topics and teaching actual combat parts on site. Then combining with the questionnaire survey of students and opinions proposed by relevant experts in the teaching seminar, teaching effect and generalizability of the new teaching mode are analyzed and evaluated.

  16. Computational and Genomic Analysis of Mycobacteriophage: A Longitudinal Study of Technology Engineered Biology Courses That Implemented an Inquiry Based Laboratory Practice Designed to Enhance, Encourage, and Empower Student Learning

    ERIC Educational Resources Information Center

    Hollowell, Gail P.; Osler, James E.; Hester, April L.

    2015-01-01

    This paper provides an applied research rational for a longitudinal investigation that involved teaching a "Technology Engineered Science Education Course" via an Interactive Laboratory Based Genomics Curriculum. The Technology st Engineering [TE] methodology was first introduced at the SAPES: South Atlantic Philosophy of Education…

  17. Strengthening the Link between Theory and Practice in Teaching Design Engineering: An Empirical Study on a New Approach

    ERIC Educational Resources Information Center

    Tempelman, E.; Pilot, A.

    2011-01-01

    In 2007, the Faculty of Industrial Design Engineering of the Delft University of Technology introduced a new bachelor program. Based on theories of learning and instruction three design principles were used to develop an approach that aims to make it easier for students to bridge the gap between theoretical design engineering courses and practical…

  18. Models as Artefacts of a Dual Nature: A Philosophical Contribution to Teaching about Models Designed and Used in Engineering Practice

    ERIC Educational Resources Information Center

    Nia, Mahdi G.; de Vries, Marc J.

    2017-01-01

    Although '"models" play a significant role in engineering activities, not much has yet been developed to enhance the technological literacy of students in this regard. This contribution intends to help fill this gap and deliver a comprehensive account as to the nature and various properties of these engineering tools. It begins by…

  19. Computing Aspects of Interactive Video.

    ERIC Educational Resources Information Center

    Butcher, P. G.

    1986-01-01

    Describes design and production of the award-winning software used to control Great Britain's Open University Materials Science videodisc, the Teddy Bear Disc, which is used to teach undergraduate students about materials engineering. The disc is designed for use in one-week sessions, which students attend in July or August. (MBR)

  20. Quest for Teaching Experimental Skills

    ERIC Educational Resources Information Center

    Lakshmi, B. Samrajya; Rao, B. Venkateswara

    2013-01-01

    In Andhra Pradesh, India, chemical experimenting in under graduate college labs by students is neglected because most of the intermediate (10+1 and 10+2) students concentrate on writing competitive exams like EAMCET (Engineering and Medical Common Entrance Test), IIT JEE (Indian Institute of Technology Joint Entrance Test), AIEEE (All India…

  1. Social and Emotional Learning and Teachers

    ERIC Educational Resources Information Center

    Schonert-Reichl, Kimberly A.

    2017-01-01

    Teachers are the engine that drives social and emotional learning (SEL) programs and practices in schools and classrooms, and their own social-emotional competence and wellbeing strongly influence their students. But when teachers poorly manage the social and emotional demands of teaching, students' academic achievement and behavior both suffer.…

  2. Graduate Students as Middle School Content Experts.

    ERIC Educational Resources Information Center

    Luedeman, John K.; Leonard, William H.; Horton, Robert M.; Wagner, John R.

    2003-01-01

    Describes the Graduate K-12 Project, which is funded by the National Science Foundation (NSF) and provides fellowship to graduate and highly qualified undergraduate students in the areas of science, mathematics, engineering, and technology to serve in K-12 schools with teachers. Aims to improve communication and teaching skills of fellows,…

  3. Teaching Thermodynamics with Physlets[R] in Introductory Physics

    ERIC Educational Resources Information Center

    Cox, Anne J.; Belloni, Mario; Dancy, Melissa; Christian, Wolfgang

    2003-01-01

    This paper describes the use of interactive, Physlet[R]-based curricular material designed to help students learn concepts of thermodynamics with a particular focus on the use of kinetic theory models. These exercises help students visualize ideal gas particle dynamics and engine cycles, make concrete connections between mechanics and…

  4. Design Sketching: A Lost Skill

    ERIC Educational Resources Information Center

    Kelley, Todd R.

    2017-01-01

    As national STEM initiatives focus on engineering design as a STEM integrator, a more important concern for K-12 educators should be teaching design fundamentals and using these experiences to help students obtain STEM content knowledge. There appears however, to be little instruction and emphasis on building students' design-sketching skills in…

  5. You and Technology, Teacher's Guide 1969.

    ERIC Educational Resources Information Center

    Damaskos, Nickander, J., Ed.; Smyth, Michael P., Ed.

    This is a teaching guide to a high school text on engineering and technology principles for the general student. Behavioral objectives, suggestions for class presentation, field trips, exercises, and supplemental problems and activities are provided for each of the text chapters. (Textual material is contained in the student book, in case study…

  6. Teaching a Course about the Space Telescope.

    ERIC Educational Resources Information Center

    Page, Thornton

    1983-01-01

    "Astronomy with the Space Telescope" is a course designed to show scientists/engineers how this instrument can make important advances in astrophysics, planetology, and geophysics. A description of the course (taught to 11 students working for the National Aeronautics and Space Administration) and sample student paper on black holes are…

  7. Self-Guided Field Trips for Students of Environments

    ERIC Educational Resources Information Center

    Moore, G.; Kerr, Roger; Hadgraft, Roger

    2011-01-01

    In many learning institutions around the world, there is a trend towards larger classes, more flexible learning pathways and reduced teaching resources. Experiential learning is often used in the form of site visits or field trips for students studying engineering, natural resource management, geography and similar disciplines. Providing…

  8. Considerations for Teaching Integrated STEM Education

    ERIC Educational Resources Information Center

    Stohlmann, Micah; Moore, Tamara J.; Roehrig, Gillian H.

    2012-01-01

    Quality Science, Technology, Engineering, and Mathematics (STEM) education is vital for the future success of students. Integrated STEM education is one way to make learning more connected and relevant for students. There is a need for further research and discussion on the knowledge, experiences, and background that teachers need to effectively…

  9. Teaching through Trade Books: Design Dilemmas

    ERIC Educational Resources Information Center

    Royce, Christine Anne

    2015-01-01

    This column includes activities inspired by children's literature. Through two different stories, students are introduced to the process--including the frustrations--of designing something to solve a problem. The experiences of the books' characters are brought into the classroom by having students engage in an engineering and design process. The…

  10. Virtual Voices with Real-Life Consequences: Teaching Students about Cyber-Vetting

    ERIC Educational Resources Information Center

    Hanasono, Lisa Kiyomi

    2013-01-01

    Despite its pervasiveness, many students do not realize how online communication can impact their careers and relationships. Cyber-vetting occurs when people use online search engines, social networking sites, and other Internet tools to uncover information about others. Because cyber-vetting is a relatively new concept, most communication…

  11. The Use of Modeling Approach for Teaching Exponential Functions

    NASA Astrophysics Data System (ADS)

    Nunes, L. F.; Prates, D. B.; da Silva, J. M.

    2017-12-01

    This work presents a discussion related to the teaching and learning of mathematical contents related to the study of exponential functions in a freshman students group enrolled in the first semester of the Science and Technology Bachelor’s (STB of the Federal University of Jequitinhonha and Mucuri Valleys (UFVJM). As a contextualization tool strongly mentioned in the literature, the modelling approach was used as an educational teaching tool to produce contextualization in the teaching-learning process of exponential functions to these students. In this sense, were used some simple models elaborated with the GeoGebra software and, to have a qualitative evaluation of the investigation and the results, was used Didactic Engineering as a methodology research. As a consequence of this detailed research, some interesting details about the teaching and learning process were observed, discussed and described.

  12. Investigating students' view on STEM in learning about electrical current through STS approach

    NASA Astrophysics Data System (ADS)

    Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study aims to investigate Grade 11 students' views on Science Technology Engineering Mathematics (STEM) with the integration of learning about electrical current based on Science Technology Society (STS) approach [8]. The participants were 60 Grade 11 students in Demonstration Secondary School, Khon Kaen University, Khon Kaen Province, Thailand. The methodology is in the respect of interpretive paradigm. The teaching and learning about Electrical Current through STS approach carried out over 6 weeks. The Electrical Current unit through STS approach was developed based on framework[8] that consists of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision making, and (5) socialization stage. To start with, the question "what if this world is lack of electricity" was challenged in the class in order to move students to find the problem of how to design Electricity Generation from Clean Energy. Students were expected to apply scientific and other knowledge to design of Electricity Generation. Students' views on STEM were collected during their learning by participant' observation and students' tasks. Their views on STEM were categorized when they applied their knowledge for designing the Electricity Generation. The findings indicated that students cooperatively work to solve the problem when applying knowledge about the content of Science and Mathematics and processing skill of Technology and Engineering. It showed that students held the integration of science, technology, engineering and mathematics to design their possible solutions in learning about Electrical Current. The paper also discusses implications for science teaching and learning through STS in Thailand.

  13. Analysis of Student-Evaluation Data on the Teaching of Fundamental Physics in an Introductory Technology Course, Paying Attention to Students‧ Earnestness to Learn

    NASA Astrophysics Data System (ADS)

    Nishida, Masahiko

    How student evaluations of the teaching of fundamental physics for engineering relate to teaching strategy from academic 2004 to 2006 has been studied, focusing on students‧ earnestness to learn. The teaching emphasized instructing theoretical concepts for 2004 and solving problems for 2005. The instruction during 2006 offered a good balance between the strategy for 2004 and that for 2005. The first and second components produced by principal-component analysis of the evaluation data have indicated the quality of instruction and the scholastic ability of students, respectively, independent of the teaching strategy. While correlation between the second component and the degree of earnestness was positive for 2004 and negative for 2005, the correlation for 2006 has been negligible, as expected. Multiple-regression analysis between the evaluation data and students‧ exam scores has shown little correlation for 2006, in contrast to that for 2004, but similar to that for 2005. Finally, we can say that the teaching strategy for 2006 would lead to educational effects similar to those in 2005 when the exam scores were notably improved.

  14. [Research-oriented experimental course of plant cell and gene engineering for undergraduates].

    PubMed

    Xiaofei, Lin; Rong, Zheng; Morigen, Morigen

    2015-04-01

    Research-oriented comprehensive experimental course for undergraduates is an important part for their training of innovation. We established an optional course of plant cell and gene engineering for undergraduates using our research platform. The course is designed to study the cellular and molecular basis and experimental techniques for plant tissue culture, isolation and culture of protoplast, genetic transformation, and screening and identification of transgenic plants. To develop undergraduates' ability in experimental design and operation, and inspire their interest in scientific research and innovation consciousness, we integrated experimental teaching and practice in plant genetic engineering on the tissue, cellular, and molecular levels. Students in the course practiced an experimental teaching model featured by two-week teaching of principles, independent experimental design and bench work, and ready-to-access laboratory. In this paper, we describe the contents, methods, evaluation system and a few issues to be solved in this course, as well as the general application and significance of the research-oriented experimental course in reforming undergraduates' teaching and training innovative talents.

  15. Teaching Logistics without Formal Classes: A Case Study

    ERIC Educational Resources Information Center

    Carravilla, Maria Antonia; Oliveira, Jose Fernando

    2004-01-01

    This paper describes a case study concerning the teaching of logistics in the Computers and Electrical Engineering degree at FEUP. The logistics course is taken in the last semester of the degree and there are no lectures given by the teachers. All the learning strategy is based upon the autonomous learning capacity of the students, following the…

  16. Teaching Science and Engineering-Related Topics Using Experiential Methods: An Action-Research Study

    ERIC Educational Resources Information Center

    Aleong, Chandra; Aleong, John

    2007-01-01

    This article describes a portion of a long-term action-research project investigating the teaching of the science of transportation to high school students using the case study or experiential method. Other aspects integrated with the project-oriented study are the use of Constructivist theory, the Socratic Method, and the incorporation of…

  17. Digital or Didactic: Using Learning Technology to Confront the Challenge of Large Cohort Teaching

    ERIC Educational Resources Information Center

    Saunders, Fiona C.; Gale, Andrew W.

    2012-01-01

    This paper investigates whether the selective use of technology can begin to overcome the challenge of large cohort teaching and deliver an enhanced student learning experience. It describes the initial development and evaluation of a campus-based management course taught to 270 third year engineering undergraduates at The University of…

  18. From Green to Blue: Site-Directed Mutagenesis of the Green Fluorescent Protein to Teach Protein Structure-Function Relationships

    ERIC Educational Resources Information Center

    Giron, Maria D.; Salto, Rafael

    2011-01-01

    Structure-function relationship studies in proteins are essential in modern Cell Biology. Laboratory exercises that allow students to familiarize themselves with basic mutagenesis techniques are essential in all Genetic Engineering courses to teach the relevance of protein structure. We have implemented a laboratory course based on the…

  19. A Case Study on a Capsule Robot in the Gastrointestinal Tract to Teach Robot Programming and Navigation

    ERIC Educational Resources Information Center

    Guo, Yi; Zhang, Shubo; Ritter, Arthur; Man, Hong

    2014-01-01

    Despite the increasing importance of robotics, there is a significant challenge involved in teaching this to undergraduate students in biomedical engineering (BME) and other related disciplines in which robotics techniques could be readily applied. This paper addresses this challenge through the development and pilot testing of a bio-microrobotics…

  20. "Shrink Wrapping" Lectures: Teaching Cell and Molecular Biology within the Context of Human Pathologies

    ERIC Educational Resources Information Center

    Guilford, William H.

    2005-01-01

    Students are most motivated and learn best when they are immersed in an environment that causes them to realize why they should learn. Perhaps nowhere is this truer than when teaching the biological sciences to engineers. Transitioning from a traditionally mathematics-based to a traditionally knowledge-based pedagogical style can challenge student…

Top