Matsumoto, Hisashi; Motomura, Tomokazu; Hara, Yoshiaki; Masuda, Yukiko; Mashiko, Kunihiro; Yokota, Hiroyuki; Koido, Yuichi
2013-04-01
Since 2001, a Japanese national project has developed a helicopter emergency medical service (HEMS) system ("doctor-helicopter") and a central Disaster Medical Assistance Team (DMAT) composed of mobile and trained medical teams for rapid deployment during the response phase of a disaster. In Japan, the DMAT Research Group has focused on command and control of doctor-helicopters in future disasters. The objective of this study was to investigate the effectiveness of such planning, as well as the problems encountered in deploying the doctor-helicopter fleet with DMAT members following the March 11, 2011 Great East Japan Earthquake. This study was undertaken to examine the effectiveness of aeromedical disaster relief activities following the Great East Japan Earthquake and to evaluate the assembly and operations of 15 doctor-helicopter teams dispatched for patient evacuation with medical support. Fifteen DMATs from across Japan were deployed from March 11th through March 13th to work out of two doctor-helicopter base hospitals. The dispatch center at each base hospital directed its own doctor-helicopter fleet under the command of DMAT headquarters to transport seriously injured or ill patients out of hospitals located in the disaster area. Disaster Medical Assistance Teams transported 149 patients using the doctor-helicopters during the first five days after the earthquake. The experiences and problems encountered point to the need for DMATs to maintain direct control over 1) communication between DMAT headquarters and dispatch centers; 2) information management concerning patient transportation; and 3) operation of the doctor-helicopter fleet during relief activities. As there is no rule of prioritization for doctor-helicopters to refuel ahead of other rotorcraft, many doctor-helicopters had to wait in line to refuel. The "doctor-helicopter fleet" concept was vital to Japan's disaster medical assistance and rescue activities. The smooth and immediate dispatch of the doctor-helicopter fleet must occur under the direct control of the DMAT, independent from local government authority. Such a command and control system for dispatching the doctor-helicopter fleet is strongly recommended, and collaboration with local government authorities concerning refueling priority should be addressed.
2009-10-01
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, volunteers portraying astronauts are transported to helicopters as part of a Mode II-IV exercise that allows teams to practice an emergency response at Launch Pad 39A, including helicopter evacuation to local hospitals. The exercise allows teams to practice an emergency response at Launch Pad 39A, including helicopter evacuation to local hospitals. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing and medical trauma teams at three central Florida hospitals. The Space Shuttle Program and U.S. Air Force are conducting the emergency simulation. Photo credit: NASA/Troy Cryder
2011-03-01
CAPE CANAVERAL, Fla. – Volunteers portraying injured astronauts are loaded onto a helicopter as part of an emergency exit, or Mode II/IV, exercise that allows teams to practice an emergency response at Launch Pad 39A at NASA's Kennedy Space Center in Florida. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing, and medical trauma teams at three Central Florida hospitals. The drill allows teams to practice an emergency response at the launch pad, including helicopter evacuation to local hospitals. Photo credit: NASA/Kim Shiflett
2011-03-01
CAPE CANAVERAL, Fla. – Volunteers portraying injured astronauts are transported to a helicopter as part of an emergency exit, or Mode II/IV, exercise that allows teams to practice an emergency response at Launch Pad 39A at NASA's Kennedy Space Center in Florida. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing, and medical trauma teams at three Central Florida hospitals. The drill allows teams to practice an emergency response at the launch pad, including helicopter evacuation to local hospitals. Photo credit: NASA/Kim Shiflett
2011-03-01
CAPE CANAVERAL, Fla. – Volunteers portraying injured astronauts are transported to a helicopter as part of an emergency exit, or Mode II/IV, exercise that allows teams to practice an emergency response at Launch Pad 39A at NASA's Kennedy Space Center in Florida. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing, and medical trauma teams at three Central Florida hospitals. The drill allows teams to practice an emergency response at the launch pad, including helicopter evacuation to local hospitals. Photo credit: NASA/Kim Shiflett
2011-03-01
CAPE CANAVERAL, Fla. – Volunteers portraying injured astronauts are loaded onto a helicopter as part of an emergency exit, or Mode II/IV, exercise that allows teams to practice an emergency response at Launch Pad 39A at NASA's Kennedy Space Center in Florida. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing, and medical trauma teams at three Central Florida hospitals. The drill allows teams to practice an emergency response at the launch pad, including helicopter evacuation to local hospitals. Photo credit: NASA/Kim Shiflett
Garner, Alan A
2004-08-01
The crewing of Helicopter Emergency Medical Service (HEMS) for scene response to trauma patients is generally considered to be controversial, particularly regarding the role of physicians. This is reflected in HEMS in Australia with some services utilizing physician crewing for all prehospital missions. Others however, use physicians for selected missions only whilst others do not use physicians at all. This review seeks to determine whether the literature supports using physicians in addition to paramedics in HEMS teams for prehospital trauma care. Studies were excluded if they compared physician teams with basic life support teams (BLS) teams rather than paramedics. Ambulance officers were considered to be paramedics where they were able to administer intravenous fluids and use a method of airway management beyond bag-valve-mask ventilation. Studies were excluded if the skill set of the ambulance team was not defined, the level of staffing of the helicopter service was not stated, team composition varied without reporting outcomes for each team type, patient outcome data were not reported, or the majority of the transports were interhospital rather than prehospital transports.
2009-10-01
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, volunteers portraying astronauts are loaded into a helicopter as part of a Mode II-IV exercise that allows teams to practice an emergency response at Launch Pad 39A, including helicopter evacuation to local hospitals. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing and medical trauma teams at three central Florida hospitals. The Space Shuttle Program and U.S. Air Force are conducting the emergency simulation. Photo credit: NASA/Troy Cryder
2009-10-01
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, volunteers portraying astronauts are transported to helicopters as part of a Mode II-IV exercise that allows teams to practice an emergency response at Launch Pad 39A, including helicopter evacuation to local hospitals. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing and medical trauma teams at three central Florida hospitals. The Space Shuttle Program and U.S. Air Force are conducting the emergency simulation. Photo credit: NASA/Troy Cryder
Life Forecasting as a Logistics Technique.
1982-01-01
Two examples of RCM applications were investigated directly by the MIT project team: the T53-L-13B engine for the UH -lH Helicopter and the M- 60 Tank...for RCM activities. The candidate systems and the respective 4 readiness commands were the UH -lH helicopter (TSARCOM), TOY Weapon System (MIRCOM), M...have capability for developing Failure Modes and Effects Analyses ( FMEA ). 5. Accurate and dependable field or test data are generally not available. 6
3D-LZ helicopter ladar imaging system
NASA Astrophysics Data System (ADS)
Savage, James; Harrington, Walter; McKinley, R. Andrew; Burns, H. N.; Braddom, Steven; Szoboszlay, Zoltan
2010-04-01
A joint-service team led by the Air Force Research Laboratory's Munitions and Sensors Directorates completed a successful flight test demonstration of the 3D-LZ Helicopter LADAR Imaging System. This was a milestone demonstration in the development of technology solutions for a problem known as "helicopter brownout", the loss of situational awareness caused by swirling sand during approach and landing. The 3D-LZ LADAR was developed by H.N. Burns Engineering and integrated with the US Army Aeroflightdynamics Directorate's Brown-Out Symbology System aircraft state symbology aboard a US Army EH-60 Black Hawk helicopter. The combination of these systems provided an integrated degraded visual environment landing solution with landing zone situational awareness as well as aircraft guidance and obstacle avoidance information. Pilots from the U.S. Army, Air Force, Navy, and Marine Corps achieved a 77% landing rate in full brownout conditions at a test range at Yuma Proving Ground, Arizona. This paper will focus on the LADAR technology used in 3D-LZ and the results of this milestone demonstration.
2009-10-01
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, volunteers and teams take part in a Mode II-IV exercise that allows teams to practice an emergency response at Launch Pad 39A, including helicopter evacuation to local hospitals. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing and medical trauma teams at three central Florida hospitals. The Space Shuttle Program and U.S. Air Force are conducting the emergency simulation. Photo credit: NASA/Troy Cryder
2009-10-01
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, volunteers and teams take part in a Mode II-IV exercise that allows teams to practice an emergency response at Launch Pad 39A, including helicopter evacuation to local hospitals. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing and medical trauma teams at three central Florida hospitals. The Space Shuttle Program and U.S. Air Force are conducting the emergency simulation. Photo credit: NASA/Troy Cryder
2003-05-07
KENNEDY SPACE CENTER, FLA. - KSC employees enjoy a baseball game at Manatees Stadium, home of the Brevard Manatees, a minor league baseball team in Central Florida. The team hosted KSC employees for the game, which included a moment of silence to honor the STS-107 crew and two recovery workers who died in a helicopter crash.
2003-05-07
KENNEDY SPACE CENTER, FLA. - KSC employees enjoy a baseball game at Manatees Stadium, home of the Brevard Manatees, a minor league baseball team in Central Florida. The team hosted the employees for the game, which included a moment of silence to honor the STS-107 crew and two recovery workers who died in a helicopter crash.
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, helicopter pilots walk to their helicopter prior to practicing use of a Bambi Bucket to pick up water from a nearby waterway and dropping it on simulated targets at the center’s Shuttle Landing Facility. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
Flight Control Development for the ARH-70 Armed Reconnaissance Helicopter Program
NASA Technical Reports Server (NTRS)
Christensen, Kevin T.; Campbell, Kip G.; Griffith, Carl D.; Ivler, Christina M.; Tischler, Mark B.; Harding, Jeffrey W.
2008-01-01
In July 2005, Bell Helicopter won the U.S. Army's Armed Reconnaissance Helicopter competition to produce a replacement for the OH-58 Kiowa Warrior capable of performing the armed reconnaissance mission. To meet the U.S. Army requirement that the ARH-70A have Level 1 handling qualities for the scout rotorcraft mission task elements defined by ADS-33E-PRF, Bell equipped the aircraft with their generic automatic flight control system (AFCS). Under the constraints of the tight ARH-70A schedule, the development team used modem parameter identification and control law optimization techniques to optimize the AFCS gains to simultaneously meet multiple handling qualities design criteria. This paper will show how linear modeling, control law optimization, and simulation have been used to produce a Level 1 scout rotorcraft for the U.S. Army, while minimizing the amount of flight testing required for AFCS development and handling qualities evaluation of the ARH-70A.
2003-05-07
KENNEDY SPACE CENTER, FLA. - There is action on the baseball diamond during a game at Manatees Stadium, home of the Brevard Manatees, a minor league baseball team in Central Florida. The team hosted KSC employees for the game, which included a moment of silence to honor the STS-107 crew and two recovery workers who died in a helicopter crash.
Development and evaluation of a helicopter-borne water-quality monitoring system
NASA Technical Reports Server (NTRS)
Wallace, J. W.; Jordan, R. A.; Flynn, J.; Thomas, R. W.
1978-01-01
A small, helicopter-borne water-quality monitoring package is being developed by the NASA/EPA using a combination of basic in situ water quality sensors and physical sample collector technology. The package is a lightweight system which can be carried and operated by one person as a passenger in a small helicopter typically available by rental at commercial airports. Real-time measurements are made by suspending the water quality monitoring package with a cable from the hovering helicopter. Designed primarily for use in rapidly assessing hazardous material spills in inland and coastal zone water bodies, the system can survey as many as 20 data stations up to 1.5 kilometers apart in 1 hour. The system provides several channels of sensor data and allows for the addition of future sensors. The system will also collect samples from selected sites with sample collection on command. An EPA Spill Response Team member can easily transport, deploy, and operate the water quality monitoring package to determine the distribution, movement, and concentration of the spilled material in the water body.
Airborne profiling of ice thickness using a short pulse radar
NASA Technical Reports Server (NTRS)
Vickers, R. S.; Heighway, J. E.; Gedney, R. T.
1973-01-01
This paper describes helicopter-borne measurements of ice thickness in Lake Superior, Lake St. Clair, and the St. Clair river as part of NASA's program to develop an ice information system. The profiler described is a high resolution, nonimaging, short pulse radar, operating at a carrier frequency of 2.7 GHz. The system can resolve reflective surfaces separated by as little as 10 cm and permits measurement of the distance between resolvable surfaces with an accuracy of about 1 cm. Data samples are given for measurements both in a static (helicopter hovering), and a traverse mode. Ground truth measurements taken by an ice auger team traveling with the helicopter are compared with the remotely sensed data and the accuracy of the profiler is discussed based on these measurements.
2013-09-11
CAPE CANAVERAL, Fla. – Engineers fine-tune a remote-controlled helicopter before it takes off. The helicopter is equipped with a unique set of sensors and software and was assembled by a team of engineers from NASA's Johnson Space Center for a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2011-03-01
CAPE CANAVERAL, Fla. – An emergency exit, or Mode II/IV, exercise is under way near Launch Pad 39A at NASA's Kennedy Space Center in Florida. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing, and medical trauma teams at three Central Florida hospitals. The drill allows teams to practice an emergency response at the launch pad, including helicopter evacuation to local hospitals. Photo credit: NASA/Kim Shiflett
2011-03-01
CAPE CANAVERAL, Fla. – An emergency exit, or Mode II/IV, exercise is under way in a bunker of Launch Pad 39A at NASA's Kennedy Space Center in Florida. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing, and medical trauma teams at three Central Florida hospitals. The drill allows teams to practice an emergency response at the launch pad, including helicopter evacuation to local hospitals. Photo credit: NASA/Kim Shiflett
2011-03-01
CAPE CANAVERAL, Fla. – An emergency exit, or Mode II/IV, exercise is under way near Launch Pad 39A at NASA's Kennedy Space Center in Florida. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing, and medical trauma teams at three Central Florida hospitals. The drill allows teams to practice an emergency response at the launch pad, including helicopter evacuation to local hospitals. Photo credit: NASA/Kim Shiflett
Poster presentation Sandia helicopter acoustic detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arlowe, H.D.
1981-01-01
In reviewing the safeguards plans for several proposed fuel cycle facilities, the advantages of a short-range helicopter detector became apparent. The main buildings of these new designs are generally hardened so as to provide significant delay to a helicopter-borne adversary team. Under these circumstances the sensor is only required to detect helicopters which are in their final landing phase and at close range (less than 75 meters). This paper describes the Sandia detector, which is designed to only look at spectral lines between 20 and 40 Hz, and depends upon the harmonic content of the rotor pulses for detecting themore » lower rotor speed helicopters. 1 ref.« less
Astronauts Stafford and Young await pickup by recovery helicopter
NASA Technical Reports Server (NTRS)
1969-01-01
Astronauts Thomas P. Stafford, commander; and John W. Young, command module pilot, await pickup by the recovery helicopter from the prime recovery ship, U.S.S. Pinceton. Astronaut Eugene A. Cernan, lunar module pilot, is already hoisted aboard the helicopter. U.S. Navy underwater demolition team swimmers assist in the recovery operations. Splashdown occurred at 11:53 a.m., May 26, 1969, about 400 miles east of American Samoa.
Analysis of tasks for dynamic man/machine load balancing in advanced helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jorgensen, C.C.
1987-10-01
This report considers task allocation requirements imposed by advanced helicopter designs incorporating mixes of human pilots and intelligent machines. Specifically, it develops an analogy between load balancing using distributed non-homogeneous multiprocessors and human team functions. A taxonomy is presented which can be used to identify task combinations likely to cause overload for dynamic scheduling and process allocation mechanisms. Designer criteria are given for function decomposition, separation of control from data, and communication handling for dynamic tasks. Possible effects of n-p complete scheduling problems are noted and a class of combinatorial optimization methods are examined.
DOT National Transportation Integrated Search
1985-09-30
This document reports the findings of the U.S. test team's participation in the Helicopter Noise Measurement Repeatability Program (HNMRP) conducted under the direction of the International Civil Aviation Organization's (ICAO) Committee on Aviation E...
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, helicopter crew chief Mark Smith, of URS Federal Technical Services Inc., checks out a Bambi Bucket prior to a training exercise to practice firefighting techniques. A three-person helicopter crew recently practiced using a Bambi Bucket to pick up water from a nearby waterway and dropping it on simulated targets at the center’s Shuttle Landing Facility. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
BOREAS RSS-3 Atmospheric Measurements from a Helicopter-Mounted Sunphotometer
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickerson, Jaime (Editor); Walthall, Charles L.; Loechel, Sara; Halthore, Rangasayi
2000-01-01
The BOREAS RSS-3 team collected and processed helicopter-based measurements of atmospheric conditions to estimates of aerosol optical thickness and atmospheric water vapor. The automatic sun-tracking photometer for helicopters was deployed during all three 1994 IFCs at numerous tower and auxiliary sites in both the NSA and the SSA. Six spectral channels (440, 540, 613, 670, 870, and 1030 nm) were chosen to span the visible and NIR wavelengths and to avoid gaseous absorption. One additional channel, 940 nm, was selected to measure the water column abundance above the helicopter platform. The data are stored in tabular ASCII files.
2003-05-07
KENNEDY SPACE CENTER, FLA. - The Brevard Manatees, a minor league baseball team in Central Florida, hosts KSC employees at a ballgame at Manatees Stadium. Before the game, attendees offered a moment of silence to honor the STS-107 crew and two recovery workers who died in a helicopter crash.
2009-10-01
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, volunteers portraying astronauts are taking part in a Mode II-IV exercise that allows teams to practice an emergency response at Launch Pad 39A, including helicopter evacuation to local hospitals. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing and medical trauma teams at three central Florida hospitals. The Space Shuttle Program and U.S. Air Force are conducting the emergency simulation. Photo credit: NASA/Troy Cryder
2009-10-01
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, volunteers portraying astronauts are transported to ambulances as part of a Mode II-IV exercise that allows teams to practice an emergency response at Launch Pad 39A, including helicopter evacuation to local hospitals. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing and medical trauma teams at three central Florida hospitals. The Space Shuttle Program and U.S. Air Force are conducting the emergency simulation. Photo credit: NASA/Jack Pfaller
2011-03-01
CAPE CANAVERAL, Fla. – On Launch Pad 39A at NASA's Kennedy Space Center in Florida, an emergency exit, or Mode II/IV, exercise is under way. Seen here are M-113 armored personnel carriers near the slidewire basked landing site. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing, and medical trauma teams at three Central Florida hospitals. The drill allows teams to practice an emergency response at the launch pad, including helicopter evacuation to local hospitals. Photo credit: NASA/Kim Shiflett
Administration of CroFab Antivenom by a Helicopter Emergency Medical Service Team.
Steuerwald, Michael T; Gabbard, Season R K; Beauchamp, Gillian A; Riddle, Matthew K; Otten, Edward J
The case presented here highlights an unconventional use of a helicopter emergency medical service (HEMS) to provide a specialized medication to a critically ill patient when definitive transport was delayed. A 39-year-old man presented to a rural hospital 1 hour after sustaining a copperhead envenomation. He developed severe symptoms and was intubated. Arrangements were made for transfer to a tertiary referral center by HEMS, but because of incoming weather conditions, the team would not be able to make the return flight safely. The decision was made for the HEMS team to fly antivenom to the patient, administer the medication, and then transport the patient by ground to the tertiary medical center. This plan was executed, and the patient was safely transported to the accepting facility. Antivenom is most effective when administered early because this will halt the progression of edema and may reverse the systemic effects of envenomation. In this case, HEMS transport of antivenom to the patient with severe toxicity prevented a delay to administration and likely improved the patient's outcome. Although the traditional role of HEMS is to provide rapid transport to critically ill patients, HEMS teams can also function to deliver specialized medications to remote settings. Copyright © 2016 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.
Astronaut John Young hoisted aboard helicopter during water egress training
NASA Technical Reports Server (NTRS)
1966-01-01
Astronauts John W. Young, Gemini 10 command pilot, is hoisted up to a U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. A team of Manned Spaceflight Center (MSC) swimmers assists in the exercise. The Static Article 5 spacecraft can be seen in the water.
2003-05-07
KENNEDY SPACE CENTER, FLA. - The pitcher with the Brevard Manatees, a minor league baseball team in Central Florida, starts the game on a night that hosted KSC employees. Before the game, attendees offered a moment of silence to honor the STS-107 crew and two recovery workers who died in a helicopter crash.
2009-10-01
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, volunteers portraying astronauts are helped with the launch-and-entry suits. The volunteers are taking part in a Mode II-IV exercise that allows teams to practice an emergency response at Launch Pad 39A, including helicopter evacuation to local hospitals. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing and medical trauma teams at three central Florida hospitals. The Space Shuttle Program and U.S. Air Force are conducting the emergency simulation. Photo credit: NASA/Troy Cryder
2009-10-01
CAPE CANAVERAL, Fla. – At NASA's Kennedy Space Center in Florida, volunteers portraying astronauts are transported to and from a triage site as part of a Mode II-IV exercise that allows teams to practice an emergency response at Launch Pad 39A, including helicopter evacuation to local hospitals. The exercise involves NASA fire rescue personnel, volunteers portraying astronauts with simulated injuries, helicopters and personnel from the Air Force’s 920th Rescue Wing and medical trauma teams at three central Florida hospitals. The Space Shuttle Program and U.S. Air Force are conducting the emergency simulation. Photo credit: NASA/Jack Pfaller
NASA Astrophysics Data System (ADS)
Howie, Philip V.
1993-04-01
The MD Explorer is an eight-seat twin-turbine engine helicopter which is being developed using integrated product definition (IPD) team methodology. New techniques include NOTAR antitorque system for directional control, a composite fuselage, an all-composite bearingless main rotor, and digital cockpit displays. Three-dimensional CAD models are the basis of the entire Explorer design. Solid models provide vendor with design clarification, removing much of the normal drawing interpretation errors.
1980-01-01
reproduction cost of data furnished to the PRR team, and (3) travel cost of prime contractor personnel traveling to subcontractor PRRs, if any. The...got our first assignment - to conduct a PRR on the CH-53E Super Stallion , heavy lift helicopter being developed by Sikorsky Aircraft. The planning
[Helicopters and medical first aid units. Role of Medical First Aid Unit 94].
Huguenard, P; Hanote, P; Metrot, J
1975-10-01
For the transport of injured and sick patients, the helicopter (even the mono-turbine type) offers greater advantages when compared to land vehicles: - more comfort (less vibrations, accelerations and decelerations); - a greater speed, that is to say a 61 p. 100 gain of time upon the distance and a gain from 29 up to 44 p. 100 upon the total amount of time taken up by each transport. This gain in time enables valuable specialised medical teams to be more available: - more precise time-tables than by land which namely makes it easier to receive the patients. The drawbacks are linked with the risks which are not nonexistent but rather less serious than by land. The drawbacks also depend upon the weather-conditions (although this factor does not matter much in our area), upon nuisances such as the noise (which is more important but far more transitory than by ambulance) and chiefly upon the cost of air-transport. In fact, the mean cost of a medical land transport amounts roughly to one thousand Francs, a quarter of which only does represent the actual cost of medical aid. For a similar transport, the helicopter comes to a 47 mns flight. There are several ways of making good use of a helicopter. Practical problems have been solved. The "SAMU 94" experience goes back to 1973 and includes over 500 transports by helicopter essentially with the help of the teams and the helicopters belonging to the Paris Base (Civil Protection and the Fire-Brigade). For flights over urban areas, it is to be desired in the future that only twin-turbine helicopters should be used.
Astronauts Stafford and Young await pickup by recovery helicopter
1969-05-26
S69-36595 (26 May 1969) --- Astronauts Thomas P. Stafford, Apollo 10 commander; and John W. Young, command module pilot, await pickup by the recovery helicopter from the prime recovery ship, USS Princeton. Astronaut Eugene A. Cernan, lunar module pilot, is already hoisted aboard the helicopter. U.S. Navy underwater demolition team swimmers assist in the recovery operations. Splashdown occurred at 11:53 a.m., May 26, 1969, about 400 miles east of American Samoa and about four miles from the recovery ship, to conclude a successful eight-day lunar orbit mission.
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a three-person helicopter crew recently practiced using a Bambi Bucket to pick up water from a nearby waterway and dropping it on simulated targets at the center’s Shuttle Landing Facility. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a three-person helicopter crew recently practiced using a Bambi Bucket to pick up water from a nearby waterway and dropping it on simulated targets at the center’s Shuttle Landing Facility. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a three-person helicopter crew recently practiced using a Bambi Bucket to pick up water from a nearby waterway and dropping it on simulated targets at the center’s Shuttle Landing Facility. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a three-person helicopter crew recently practiced using a Bambi Bucket to pick up water from a nearby waterway and dropping it on simulated targets at the center’s Shuttle Landing Facility. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a three-person helicopter crew recently practiced using a Bambi Bucket to pick up water from a nearby waterway and dropping it on simulated targets at the center’s Shuttle Landing Facility. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a three-person helicopter crew recently practiced using a Bambi Bucket to pick up water from a nearby waterway and dropping it on simulated targets at the center’s Shuttle Landing Facility. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a three-person helicopter crew recently practiced using a Bambi Bucket to pick up water from a nearby waterway and dropping it on simulated targets at the center’s Shuttle Landing Facility. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a three-person helicopter crew recently practiced using a Bambi Bucket to pick up water from a nearby waterway and dropping it on simulated targets at the center’s Shuttle Landing Facility. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, a three-person helicopter crew recently practiced using a Bambi Bucket to pick up water from a nearby waterway and dropping it on simulated targets at the center’s Shuttle Landing Facility. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
Astronaut John Young hoisted aboard helicopter during water egress training
1966-06-18
S66-39713 (18 June 1966) --- Astronaut John W. Young, Gemini-10 command pilot, is hoisted up to a U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. A team of Manned Spaceflight Center (MSC) swimmers assists in the exercise. The Static Article 5 spacecraft can be seen in the water. Photo credit: NASA
Aerials of Orion on Launch Pad 37 from Helicopter
2014-12-04
This helicopter view of the Kennedy Space Center Visitor Complex shows the thousands of vehicles parked where guests gather to see the launch of the Orion Flight Test. The liftoff was postponed because of an issue related to fill and drain valves on the Delta IV Heavy rocket that teams could not troubleshoot by the time the launch window expired.
BOREAS RSS-3 Reflectance Measured from a Helicopter-Mounted SE-590
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Walthall, Charles L.; Loechel, Sara
2000-01-01
The BOREAS RSS-3 team collected multiple remotely sensed data sets from the NASA UH-1 helicopter. This data set includes helicopter-based radiometric measurements of forested sites acquired during BOREAS made with an SE-590 processed to reflectance factors. The data used in this analysis were collected in 1994 during the three BOREAS IFCs at numerous tower and auxiliary sites in both the NSA and the SSA. The 15-degree FOV of the SE-590 yielded a ground resolution of approximately 79 m at the 300-m nominal altitude. The data are provided in tabular ASCII files.
2003-05-07
KENNEDY SPACE CENTER, FLA. - Shuttle Launch Director Mike Leinbach throws out the first pitch at a local baseball game at Manatees Stadium. KSC employees were hosted by the Brevard Manatees, a minor league baseball team in Central Florida. Before the game, attendees offered a moment of silence to honor the STS-107 crew and two recovery workers who died in a helicopter crash.
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, crew chief Mark Smith of URS looks out the side door down at the Bambi Bucket. Securely strapped to the helicopter floor, his position allows him to tell the pilot precisely when to release the water over the target. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
Apollo 8 prime crew seen during water egress training in Gulf of Mexico
NASA Technical Reports Server (NTRS)
1968-01-01
Astronaut James A. Lovell Jr., command module pilot of the Apollo 8 prime crew, in special net being hoisted up to a U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. Awaiting his turn for helicopter pickup is Astronaut William A. Andors (in raft), lunar module pilot. A team of Manned Spacecraft Center (MSC) swimmers assited with the training exercise.
2014-06-20
CAPE CANAVERAL, Fla. – A Huey helicopter from the Aircraft Operations branch at NASA's Kennedy Space Center in Florida hovers over the Indian River Lagoon after a group of Emergency Response Team officers from the center's Protective Services branch dropped from the helicopter during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the crew of the NASA helicopter carefully lifts a Bambi Bucket from a canal near the Shuttle Landing Facility. Minutes later, the water was dropped on the target cones in the foreground, using techniques that would be employed to fight a brush fire at the Kennedy Space Center. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the crew of the NASA helicopter carefully lifts a Bambi Bucket from a canal near the Shuttle Landing Facility. Minutes later, the water was dropped on the target cones in the foreground, using techniques that would be employed to fight a brush fire at the Kennedy Space Center. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, the crew of the NASA helicopter carefully lowers a Bambi Bucket into a canal near the Shuttle Landing Facility. Minutes later, the water was dropped on the target cones in the foreground, using techniques that would be employed to fight a brush fire at the Kennedy Space Center. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
Use of a helicopter to capture flighted cranes
Ellis, D.H.; Hjertaas, D.; Johns, B.W.; Urbanek, R.P.
1998-01-01
Using a helicopter, we pursued 12 sandhill cranes (Grus canadensis) and captured 6. In forested habitat, cranes could be forced down, but we were unable to deploy the pursuit team, so cranes could not be captured. In open habitat, every crane we pursued was captured. Target cranes were forced to the ground in 0.3-14 minutes. Adjusting pursuit distance (50-150 m) was essential in promoting fatigue and in preventing escape of target cranes.
Manned-Unmanned Teaming of Aircraft - Literature Search
2013-12-01
unmanned aircraft reconnaissance system MQ 8B Fire Scout vertical takeoff and landing unmanned system MQ 5B Hunter medium altitude unmanned aerial...201140, and allows their crew to view sensor data from unmanned aircraft systems (UAS) and send data from the helicopter’s sensors to the ground.35 No...Helicopter, AAI unmanned Aircraft Systems , and Textron Inc. It opened in December 2012 in Huntsville Alabama. It will enable “a software and
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. KSC employees enjoy a baseball game at Manatees Stadium, home of the Brevard Manatees, a minor league baseball team in Central Florida. The team hosted the employees for the game, which included a moment of silence to honor the STS-107 crew and two recovery workers who died in a helicopter crash.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. KSC employees enjoy a baseball game at Manatees Stadium, home of the Brevard Manatees, a minor league baseball team in Central Florida. The team hosted KSC employees for the game, which included a moment of silence to honor the STS-107 crew and two recovery workers who died in a helicopter crash.
Impact of flying qualities on mission effectiveness for helicopter air combat, volume 1
NASA Technical Reports Server (NTRS)
Harris, T. M.; Beerman, D. A.
1983-01-01
A computer simulation to investigate the impact of flying qualities on mission effectiveness is described. The objective of the study was to relate the effects of flying qualities, such as precision of flight path control and pilot workload, to the ability of a single Scout helicopter, or helicopter team, to accomplish a specified anti-armor mission successfully. The model of the actual engagement is a Monte Carlo simulation that has the capability to assess the effects of helicopter characteristics, numbers, tactics and weaponization on the force's ability to accomplish a specific mission against a specified threat as a function of realistic tactical factors. A key feature of this program is a simulation of micro-terrain features and their effects on detection, exposure, and masking for nap-of-the-earth (NOE) flight.
A 'mixed reality' simulator concept for future Medical Emergency Response Team training.
Stone, Robert J; Guest, R; Mahoney, P; Lamb, D; Gibson, C
2017-08-01
The UK Defence Medical Service's Pre-Hospital Emergency Care (PHEC) capability includes rapid-deployment Medical Emergency Response Teams (MERTs) comprising tri-service trauma consultants, paramedics and specialised nurses, all of whom are qualified to administer emergency care under extreme conditions to improve the survival prospects of combat casualties. The pre-deployment training of MERT personnel is designed to foster individual knowledge, skills and abilities in PHEC and in small team performance and cohesion in 'mission-specific' contexts. Until now, the provision of airborne pre-deployment MERT training had been dependent on either the availability of an operational aircraft (eg, the CH-47 Chinook helicopter) or access to one of only two ground-based facsimiles of the Chinook 's rear cargo/passenger cabin. Although MERT training has high priority, there will always be competition with other military taskings for access to helicopter assets (and for other platforms in other branches of the Armed Forces). This paper describes the development of an inexpensive, reconfigurable and transportable MERT training concept based on 'mixed reality' technologies-in effect the 'blending' of real-world objects of training relevance with virtual reality reconstructions of operational contexts. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. There is action on the baseball diamond during a game at Manatees Stadium, home of the Brevard Manatees, a minor league baseball team in Central Florida. The team hosted KSC employees for the game, which included a moment of silence to honor the STS-107 crew and two recovery workers who died in a helicopter crash.
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, 23-foot cables used to hold a Bambi Bucket are checked out prior to a training exercise to practice firefighting techniques. A three-person helicopter crew recently practiced using a Bambi Bucket to pick up water from a nearby waterway and dropping it on simulated targets at the center’s Shuttle Landing Facility. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
Apollo 8 prime crew seen during water egress training in Gulf of Mexico
1968-10-19
S68-53217 (19 Oct. 1968) --- Astronaut James A. Lovell Jr., command module pilot of the Apollo 8 prime crew, in special net being hoisted up to a U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. Awaiting his turn for helicopter pickup is astronaut William A. Anders (in raft), lunar module pilot. Astronaut Frank Borman, commander, had already been picked up. A team of Manned Spacecraft Center (MSC) swimmers assisted with the training exercise.
2009-11-01
quality control RCRA Resource Conservation and Recovery Act SAE Society for Automotive Engineers S-N stress vs number of cycles (fatigue curve...Automotive Engineers ( SAE ) Aerospace Materials Specifications (AMS): Figure 3. Air handler and dust filter installation at FRC-E. 8 - AMS 2447 was...developed with the assistance of the HCAT team and issued by SAE in 1998. It is now a widely used standard in the aerospace industry. - AMS 2448
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, John Miller of URS Federal Technical Services moves a Bambi Bucket and its associated cables are moved outside the Shuttle Landing Facility hangar prior to a training exercise to practice firefighting techniques. A three-person helicopter crew recently practiced using a Bambi Bucket to pick up water from a nearby waterway and dropping it on simulated targets at the center’s Shuttle Landing Facility. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
Autonomous formation flight of helicopters: Model predictive control approach
NASA Astrophysics Data System (ADS)
Chung, Hoam
Formation flight is the primary movement technique for teams of helicopters. However, the potential for accidents is greatly increased when helicopter teams are required to fly in tight formations and under harsh conditions. This dissertation proposes that the automation of helicopter formations is a realistic solution capable of alleviating risks. Helicopter formation flight operations in battlefield situations are highly dynamic and dangerous, and, therefore, we maintain that both a high-level formation management system and a distributed coordinated control algorithm should be implemented to help ensure safe formations. The starting point for safe autonomous formation flights is to design a distributed control law attenuating external disturbances coming into a formation, so that each vehicle can safely maintain sufficient clearance between it and all other vehicles. While conventional methods are limited to homogeneous formations, our decentralized model predictive control (MPC) approach allows for heterogeneity in a formation. In order to avoid the conservative nature inherent in distributed MPC algorithms, we begin by designing a stable MPC for individual vehicles, and then introducing carefully designed inter-agent coupling terms in a performance index. Thus the proposed algorithm works in a decentralized manner, and can be applied to the problem of helicopter formations comprised of heterogenous vehicles. Individual vehicles in a team may be confronted by various emerging situations that will require the capability for in-flight reconfiguration. We propose the concept of a formation manager to manage separation, join, and synchronization of flight course changes. The formation manager accepts an operator's commands, information from neighboring vehicles, and its own vehicle states. Inside the formation manager, there are multiple modes and complex mode switchings represented as a finite state machine (FSM). Based on the current mode and collected information, the FSM generates discrete reference points in state space. Then, the reference trajectory generator makes smooth trajectories from discrete reference points using interpolation and/or an online optimization scheme. By modifying the reference trajectory and triggering mode changes, the formation manager can override behaviors of the MPC controller. When a vehicle outside of the formation approaches a vehicle at the edge of the formation, the motion of the vehicle at the formation edge acts like a disturbance with respect to the vehicle attempting to join the formation. The vehicle at the edge of the formation cannot cooperate with any vehicle outside of the formation due to constraints on maintaining the existing formation. (Abstract shortened by UMI.)
2014-09-15
SAN DIEGO, Calif. – Helicopter Sea Combat Squadron 8, or HSC 8, prepare two H60-S helicopters for flight on the deck of the USS Anchorage during the first day of Orion Underway Recovery Test 3. The helicopters will be used during recovery of the Orion boilerplate test article. NASA, Lockheed Martin and U.S. Navy personnel are conducting recovery tests to prepare for recovery of the Orion crew module on its return from a deep space mission. The test will allow the teams to demonstrate and evaluate the recovery processes, procedures, hardware and personnel in open waters. The Ground Systems Development and Operations Program is conducting the underway recovery tests. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion is scheduled to launch in 2014 atop a United Launch Alliance Delta IV Heavy rocket and in 2018 on NASA’s Space Launch System rocket. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Cory Huston
Expedition 41 Soyuz TMA-13M Landing
2014-11-10
Russian Search and Rescue helicopter teams are seen waiting to take off in their helicopter from Kustanay, Kazakhstan to support the Soyuz TMA-13M spacecraft landing with Expedition 41 Commander Max Suraev of the Russian Federal Space Agency (Roscosmos), NASA Flight Engineer Reid Wiseman and Flight Engineer Alexander Gerst of the European Space Agency (ESA) on Monday, Nov. 10, 2014. Suraev, Wiseman and Gerst returned to Earth after more than five months onboard the International Space Station where they served as members of the Expedition 40 and 41 crews. Photo Credit: (NASA/Bill Ingalls)
AN F-16 COMMUNITY PUSHED TO THE LIMIT: CAN THEY HANDLE ADDING COMBAT SEARCH AND RESCUE (CSAR)
2015-10-01
recovery. Traditionally, the HH-60G Pave Hawk is the RV expected to be used in a majority of scenarios. An article from www.military.com stated that...the HH-60G Pave Hawk is the U.S. Air Force’s primary combat search and rescue helicopter used by Air Force special tactics teams and pararescuemen...16 This aircraft is a version of the Army Black Hawk helicopter that has been modified to meet the needs of the Air Force.17 The locations of
Apollo 9 prime crew participates in water egress training in Gulf of Mexico
NASA Technical Reports Server (NTRS)
1968-01-01
The Apollo 9 prime crew participates in water egress training in the Gulf of Mexico. Being hoisted up to the U.S. Coast Guard helicopter in a new type of rescue net (called a Billy Pugh net) is Astronaut David R. Scott, command module pilot. Sitting in the life raft awaiting their turn for helicopter pickup are Astronauts Russell L. Schweickart (on left), lunar module pilot; and James A. McDivitt, commander. A team of Manned Spacecraft Center (MSC) swimmers assisted in the training exercise.
The S.T.o.R.M. (tm): Air transport system design simulation
NASA Technical Reports Server (NTRS)
1992-01-01
The members of Team Asylum have proposed a helicopter design concept, called the S.T.o.R.M., in order to meet the market demands for an aircraft to perform overnight package delivery services in Aeroworld. The helicopter concept was chosen over a fixed wing aircraft design to fulfill the mission requirements for a variety of reasons, all of which will be discussed later. However, many critical design areas needed to be investigated as part of the helicopter concept's selection. One of the most significant design factors was the weight of the aircraft. This determined the selection of the propulsion system necessary to get the S.T.o.R.M. off the ground, and maintain flight once airborne. Another significant factor that went hand in hand with the motor selection was the choice of the main rotor. Since the main rotor is the primary source of lift for the helicopter, its proper selection became increasingly important.
1998-06-25
KENNEDY SPACE CENTER, FLA. -- A forest fire burning in Volusia County, Florida, is clearly visible from NASA's Huey UH-1 helicopter. The helicopter has been outfitted with a Forward Looking Infrared Radar (FLIR) and a portable global positioning satellite (GPS) system to support Florida's Division of Forestry as they fight the brush fires which have been plaguing the state as a result of extremely dry conditions and lightning storms. The FLIR includes a beach ball-sized infrared camera that is mounted on the helicopter's right siderail and a real-time television monitor and recorder installed inside. While the FLIR collects temperature data and images, the GPS system provides the exact coordinates of the fires being observed and transmits the data to the firefighters on the ground. The Kennedy Space Center (KSC) security team routinely uses the FLIR equipment prior to Shuttle launch and landing activities to ensure that the area surrounding the launch pad and runway are clear of unauthorized personnel. KSC's Base Operations Contractor, EG&G Florida, operates the NASA-owned helicopter
1998-06-25
KENNEDY SPACE CENTER, FLA. -- Sgt. Mark Hines, of Kennedy Space Center (KSC) Security, checks out equipment used to operate the Forward Looking Infrared Radar (FLIR) installed on NASA's Huey UH-1 helicopter. The helicopter has also been outfitted with a portable global positioning satellite (GPS) system to support Florida's Division of Forestry as they fight the brush fires which have been plaguing the state as a result of extremely dry conditions and lightning storms. The FLIR includes a beach ball-sized infrared camera that is mounted on the helicopter's right siderail and a real-time television monitor and recorder installed inside. While the FLIR collects temperature data and images, the GPS system provides the exact coordinates of the fires being observed and transmits the data to the firefighters on the ground. KSC's security team routinely uses the FLIR equipment prior to Shuttle launch and landing activities to ensure that the area surrounding the launch pad and runway are clear of unauthorized personnel. KSC's Base Operations Contractor, EG&G Florida, operates the NASA-owned helicopter
1998-06-25
KENNEDY SPACE CENTER, FLA. -- NASA's Huey UH-1 helicopter lands at the Shuttle Landing Facility to pick up Kennedy Space Center (KSC) Security personnel who operate the Forward Looking Infrared Radar (FLIR) installed on board. The helicopter has also been outfitted with a portable global positioning satellite (GPS) system to support Florida's Division of Forestry as they fight the brush fires which have been plaguing the state as a result of extremely dry conditions and lightning storms. The FLIR includes a beach ball-sized infrared camera that is mounted on the helicopter's right siderail and a real-time television monitor and recorder installed inside. While the FLIR collects temperature data and images, the GPS system provides the exact coordinates of the fires being observed and transmits the data to the firefighters on the ground. KSC's security team routinely uses the FLIR equipment prior to Shuttle launch and landing activities to ensure that the area surrounding the launch pad and runway are clear of unauthorized personnel. KSC's Base Operations Contractor, EG&G Florida, operates the NASA-owned helicopter
1998-06-25
KENNEDY SPACE CENTER, FLA. -- A beach ball-sized infrared camera, part of the Forward Looking Infrared Radar (FLIR), has been mounted on the right siderail of NASA's Huey UH-1 helicopter. The helicopter has also been outfitted with a portable global positioning satellite (GPS) system to support Florida's Division of Forestry as they fight the brush fires which have been plaguing the state as a result of extremely dry conditions and lightning storms. The FLIR also includes a real-time television monitor and recorder installed inside the helicopter. While the FLIR collects temperature data and images, the GPS system provides the exact coordinates of the fires being observed and transmits the data to the firefighters on the ground. The Kennedy Space Center (KSC) security team routinely uses the FLIR equipment prior to Shuttle launch and landing activities to ensure that the area surrounding the launch pad and runway are clear of unauthorized personnel. KSC's Base Operations Contractor, EG&G Florida, operates the NASA-owned helicopter
1998-06-25
KENNEDY SPACE CENTER, FLA. -- A beach ball-sized infrared camera, part of the Forward Looking Infrared Radar (FLIR), has been mounted on the right siderail of NASA's Huey UH-1 helicopter. A KSC pilot prepares to fly the helicopter, which has also been outfitted with a portable global positioning satellite (GPS) system, to support Florida's Division of Forestry as they fight the brush fires which have been plaguing the state as a result of extremely dry conditions and lightning storms. The FLIR also includes a real-time television monitor and recorder installed inside the helicopter. While the FLIR collects temperature data and images, the GPS system provides the exact coordinates of the fires being observed and transmits the data to the firefighters on the ground. The Kennedy Space Center (KSC) security team routinely uses the FLIR equipment prior to Shuttle launch and landing activities to ensure that the area surrounding the launch pad and runway are clear of unauthorized personnel. KSC's Base Operations Contractor, EG&G Florida, operates the NASA-owned helicopter
1998-06-25
KENNEDY SPACE CENTER, FLA. -- A beach ball-sized infrared camera, part of the Forward Looking Infrared Radar (FLIR), has been mounted on the right siderail of NASA's Huey UH-1 helicopter and is being used to search for fires in Volusia County, Florida. The helicopter has also been outfitted with a portable global positioning satellite (GPS) system to support Florida's Division of Forestry as they fight the brush fires which have been plaguing the state as a result of extremely dry conditions and lightning storms. The FLIR also includes a real-time television monitor and recorder installed inside the helicopter. While the FLIR collects temperature data and images, the GPS system provides the exact coordinates of the fires being observed and transmits the data to the firefighters on the ground. The Kennedy Space Center (KSC) security team routinely uses the FLIR equipment prior to Shuttle launch and landing activities to ensure that the area surrounding the launch pad and runway are clear of unauthorized personnel. KSC's Base Operations Contractor, EG&G Florida, operates the NASA-owned helicopter
Simulation Based Training Improves Airway Management for Helicopter EMS Teams
NASA Technical Reports Server (NTRS)
Dhindsa, Harinder S.; Reid, Renee; Murray, David; Lovelady, James; Powell, Katie; Sayles, Jeff; Stevenson, Christopher; Baker, Kathy; Solada, Brian; Carroll, Scott;
2011-01-01
The use of paralytic medications in the performance of RSI intubation is a high risk intervention used by many HEMS crews. There is no margin for error in RSI intubation as the results can be fatal. Operating room access for airway management training has become more difficult, and is not representative of the environment in which HEMS crews typically function. LifeEvac of Virginia designed and implemented an SST airway management program to provide a realistic, consistent training platform. The dynamic program incorporates standardized scenarios, and real life challenging cases that this and other programs have encountered. SST is done in a variety of settings including the helicopter, back of ambulances, staged car crashes and simulation centers. The result has been the indoctrination of a well defined, consistent approach to every airway management intervention. The SST program facillitates enhancement of technical skills. as well as team dynamics and communication.
Gemini 11 prime crew in life rafts after splashdown
NASA Technical Reports Server (NTRS)
1966-01-01
Astronauts Richard F. Gordon Jr. (left), pilot, and Charles Conrad Jr., command pilot, sit in life raft while awaiting pickup by a helicopter from the U.S.S. Guam. Members of the Navy frogman team wait with them.
Continuing Medical Education for Air Medical Providers: The Successes and Challenges.
Miller, Jenna O; Thammasitboon, Satid; Hsu, Deborah C; Shah, Manish I; Minard, Charles G; Graf, Jeanine M
2016-02-01
Research has shown that patients transported by nonpediatric teams have higher rates of morbidity and mortality. There is currently a paucity of pediatric standardized ongoing medical education for emergency medical service providers, thus we aimed to develop a model curriculum to increase their knowledge regarding pediatric respiratory distress and failure. The curriculum was based on the Kolb Learning Cycle to optimize learning. Target learners were flight nurses (registered nurse) and emergency medical technicians of a private helicopter emergency transport team. The topics included were pediatric stridor, wheezing, and respiratory failure. Online modules were developed for continued spaced education. Knowledge gained from the interventions was measured by precurricular and postcurricular testing and compared with paired t tests. A linear mixed regression model was used to investigate covariates of interest. Sixty-two learners attended the workshop. Fifty-nine learners completed both precurricular and postcurricular testing. The mean increase between pretest and posttest scores was 12.1% (95% confidence interval, 9.4, 14.8; P < 0.001). Type of licensure (private emergency medical technician vs registered nurse) and number of years experience had no association with the level of knowledge gained. Learners who had greater than 1 year of pediatric transport experience scored higher on their pretests. There was no significant retention shown by those who participated in spaced education. The curriculum was associated with a short term increased knowledge regarding pediatric respiratory distress and failure for emergency helicopter transport providers and could be used as an alternative model to develop standardized ongoing medical education in pediatrics. Further work is needed to achieve knowledge retention in this learner population.
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled helicopter with a unique set of sensors and software assembled by a team of engineers from NASA's Johnson Space Center flies in a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled helicopter with a unique set of sensors and software assembled by a team of engineers from NASA's Johnson Space Center flies in a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
BOREAS RSS-3 Reflectance Measured from a Helicopter-Mounted Barnes MMR
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); Walthall, Charles L.; Loechel, Sara; deColstoun, Eric Brown
2000-01-01
The BOREAS RSS-3 team acquired helicopter-based radiometric measurements of forested sites with a Barnes MMR. The data were collected in 1994 during the three BOREAS IFCs at numerous tower and auxiliary sites in both the NSA and SSA. The 15-degree FOV of the MMR yielded approximately 79-m ground resolution from an altitude of 300 m. The MMR has seven spectral bands that are similar to the Landsat TM bands, ranging from the blue region to the thermal. The data are stored in tabular ASCII files. The data are stored in tabular ASCII files.
Apollo 13 crew recovery after splashdown
1970-04-17
S70-35651 (17 April 1970) --- Astronaut John L. Swigert Jr., command module pilot, is lifted aboard a helicopter in a "Billy Pugh" net while astronaut James A. Lovell Jr., commander, awaits his turn. Astronaut Fred W. Haise Jr., lunar module pilot, is already aboard the helicopter. In the life raft with Lovell, and in the water are several U.S. Navy underwater demolition team swimmers, who assisted in the recovery operations. The crew was taken to the USS Iwo Jima, prime recovery ship, several minutes after the Apollo 13 spacecraft splashed down at 12:07:44 p.m. (CST), April 17, 1970.
1998-06-25
KENNEDY SPACE CENTER, FLA. -- A beach ball-sized infrared camera, part of the Forward Looking Infrared Radar (FLIR), has been mounted on the right siderail of NASA's Huey UH-1 helicopter and is being used to scan a large area of Volusia County, Florida, where a fire burns. The helicopter has also been outfitted with a portable global positioning satellite (GPS) system to support Florida's Division of Forestry as they fight the brush fires which have been plaguing the state as a result of extremely dry conditions and lightning storms. The FLIR also includes a real-time television monitor and recorder installed inside the helicopter. While the FLIR collects temperature data and images, the GPS system provides the exact coordinates of the fires being observed and transmits the data to the firefighters on the ground. The Kennedy Space Center (KSC) security team routinely uses the FLIR equipment prior to Shuttle launch and landing activities to ensure that the area surrounding the launch pad and runway are clear of unauthorized personnel. KSC's Base Operations Contractor, EG&G Florida, operates the NASA-owned helicopter
1998-06-25
KENNEDY SPACE CENTER, FLA. -- Sgt. Mark Hines, of Kennedy Space Center (KSC) Security, points out a view of a fire on the Forward Looking Infrared Radar (FLIR) video screen to Greg Dunn, of Florida's Division of Forestry, as KSC pilots fly NASA's Huey UH-1 helicopter over fires burning in Volusia County, Florida. The FLIR includes a beach-ball sized infrared camera that is mounted on the helicopter's right siderail and a real-time TV monitor and recorder installed inside. The helicopter has also been outfitted with a portable global positioning satellite (GPS) system to support the Division of Forestry as they fight the brush fires which have been plaguing the state as a result of extremely dry conditions and lightning storms. While the FLIR collects temperature data and images, the GPS system provides the exact coordinates of the fires being observed and transmits the data to the firefighters on the ground. KSC's security team routinely uses the FLIR equipment prior to Shuttle launch and landing activities to ensure that the area surrounding the launch pad and runway are clear of unauthorized personnel. KSC's Base Operations Contractor, EG&G Florida, operates the NASA-owned helicopter.
2013-09-11
CAPE CANAVERAL, Fla. – A remote-controlled helicopter with a unique set of sensors and software assembled by a team of engineers from NASA's Johnson Space Center prepares to fly in a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Brevard Manatees, a minor league baseball team in Central Florida, hosts KSC employees at a ballgame at Manatees Stadium. Before the game, attendees offered a moment of silence to honor the STS-107 crew and two recovery workers who died in a helicopter crash.
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
Objectives include: a) Describe the organization of recovery force command and control and landing areas; b) Describe the function and timeline use of the Earth Landing System (ELS); c) Describe Stable 1 vs Stable 2 landing configurations and the function of the Command Module Uprighting System; d) Explain the activities of the helicopter and swimmer teams in egress and recovery of the crew; e)Explain the activities of the swimmer teams and primary recovery ship in recovery of the Command Module; and f) Describe several landing incidents that occurred during Apollo.
Young, S A; Holden, M S
1991-09-01
In the preceding article, the authors described the formation of an overseas mental health crisis intervention team. In this paper, the application of the United States Southern Command Crisis Intervention Team in the aftermath of a recent tragedy in Panama is described. A chronology of the disaster, involving two helicopter crashes which left 11 dead, is presented. The intervention that followed is described in detail. The emphasis is on four main areas: education, identification, process, and follow-up. The authors present their experience in an effort to provide an intervention strategy for other isolated mental health providers.
Astronauts Borman and Lovell sit in life raft while awaiting pickup
NASA Technical Reports Server (NTRS)
1965-01-01
Astronauts Frank Borman, command pilot, and James A. Lovell Jr., pilot, sit in life raft while awaiting pickup by a helicopter from the aircraft carrier U.S.S. Wasp. The three man Navy frogman team attached the flotation collar to increase the spacecraft's buoyancy prior to recovery.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The pitcher with the Brevard Manatees, a minor league baseball team in Central Florida, starts the game on a night that hosted KSC employees. Before the game, attendees offered a moment of silence to honor the STS-107 crew and two recovery workers who died in a helicopter crash.
NASA Technical Reports Server (NTRS)
Sopher, R.; Twomey, W. J.
1990-01-01
NASA-Langley is sponsoring a rotorcraft structural dynamics program with the objective to establish in the U.S. a superior capability to utilize finite element analysis models for calculations to support industrial design of helicopter airframe structures. In the initial phase of the program, teams from the major U.S. manufacturers of helicopter airframes will apply extant finite element analysis methods to calculate loads and vibrations of helicopter airframes, and perform correlations between analysis and measurements. The aforementioned rotorcraft structural dynamics program was given the acronym DAMVIBS (Design Analysis Method for Vibrations). Sikorsky's RDYNE Rotorcraft Dynamics Analysis used for the correlation study, the specifics of the application of RDYNE to the AH-1G, and comparisons of the predictions of the method with flight data for loads and vibrations on the AH-1G are described. RDYNE was able to predict trends of variations of loads and vibrations with airspeed, but in some instances magnitudes differed from measured results by factors of two or three to one. Sensitivities were studied of predictions to rotor inflow modeling, effects of torsional modes, number of blade bending modes, fuselage structural damping, and hub modal content.
NASA Astrophysics Data System (ADS)
Simon, Miguel
In this work, we show how to computerize a helicopter to fly attitude axes controlled hover flight without the assistance of a pilot and without ever crashing. We start by developing a helicopter research test bed system including all hardware, software, and means for testing and training the helicopter to fly by computer. We select a Remote Controlled helicopter with a 5 ft. diameter rotor and 2.2 hp engine. We equip the helicopter with a payload of sensors, computers, navigation and telemetry equipment, and batteries. We develop a differential GPS system with cm accuracy and a ground computerized navigation system for six degrees of freedom (6-DoF) free flight while tracking navigation commands. We design feedback control loops with yet-to-be-determined gains for the five control "knobs" available to a flying radio-controlled (RC) miniature helicopter: engine throttle, main rotor collective pitch, longitudinal cyclic pitch, lateral cyclic pitch, and tail rotor collective pitch. We develop helicopter flight equations using fundamental dynamics, helicopter momentum theory and blade element theory. The helicopter flight equations include helicopter rotor equations of motions, helicopter rotor forces and moments, helicopter trim equations, helicopter stability derivatives, and a coupled fuselage-rotor helicopter 6-DoF model. The helicopter simulation also includes helicopter engine control equations, a helicopter aerodynamic model, and finally helicopter stability and control equations. The derivation of a set of non-linear equations of motion for the main rotor is a contribution of this thesis work. We design and build two special test stands for training and testing the helicopter to fly attitude axes controlled hover flight, starting with one axis at a time and progressing to multiple axes. The first test stand is built for teaching and testing controlled flight of elevation and yaw (i.e., directional control). The second test stand is built for teaching and testing any one or combination of the following attitude axes controlled flight: (1) pitch, (2) roll and (3) yaw. The subsequent development of a novel method to decouple, stabilize and teach the helicopter hover flight is a primary contribution of this thesis. The novel method included the development of a non-linear modeling technique for linearizing the RPM state equation dynamics so that a simple but accurate transfer function is derivable between the "available torque of the engine" and RPM. Specifically, the main rotor and tail rotor torques are modeled accurately with a bias term plus a nonlinear term involving the product of RPM squared times the main rotor blade pitch angle raised to the three-halves power. Application of this non-linear modeling technique resulted in a simple, representative and accurate transfer function model of the open-loop plant for the entire helicopter system so that all the feedback control laws for autonomous flight purposes could be derived easily using classical control theory. This is one of the contributions of this dissertation work. After discussing the integration of hardware and software elements of our helicopter research test bed system, we perform a number of experiments and tests using the two specially built test stands. Feedback gains are derived for controlling the following: (1) engine throttle to maintain prescribed main rotor angular speed, (2) main rotor collective pitch to maintain constant elevation, (3) longitudinal cyclic pitch to maintain prescribed pitch angle, (4) lateral cyclic pitch to maintain prescribed roll angle, and (5) yaw axis to maintain prescribed compass direction. (Abstract shortened by UMI.)
Experimental Investigations of Generalized Predictive Control for Tiltrotor Stability Augmentation
NASA Technical Reports Server (NTRS)
Nixon, Mark W.; Langston, Chester W.; Singleton, Jeffrey D.; Piatak, David J.; Kvaternik, Raymond G.; Bennett, Richard L.; Brown, Ross K.
2001-01-01
A team of researchers from the Army Research Laboratory, NASA Langley Research Center (LaRC), and Bell Helicopter-Textron, Inc. have completed hover-cell and wind-tunnel testing of a 1/5-size aeroelastically-scaled tiltrotor model using a new active control system for stability augmentation. The active system is based on a generalized predictive control (GPC) algorithm originally developed at NASA LaRC in 1997 for un-known disturbance rejection. Results of these investigations show that GPC combined with an active swashplate can significantly augment the damping and stability of tiltrotors in both hover and high-speed flight.
NASA Technical Reports Server (NTRS)
Smith, C. C.; Warner, D. B.; Dajani, J. S.
1977-01-01
The technical, economic, and environmental problems restricting commercial helicopter passenger operations are reviewed. The key considerations for effective assessment procedures are outlined and a preliminary model for the environmental analysis of helicopters is developed. It is recommended that this model, or some similar approach, be used as a common base for the development of comprehensive environmental assessment methods for each of the federal agencies concerned with helicopters. A description of the critical environmental research issues applicable to helicopters is also presented.
[Medical doctor in mountain rescue service - a profession's perspective].
Putzke, Matthias
2008-01-01
Helicopter emergency services (HEMS) carrying doctors trained in emergency medicine represent a well established system for primary care with increasing professionalism since their implementation in the seventies until now. However, considerable differences persist in Europe concerning the structure as well as integration of the system in the entire organisation of area-wide demands. Based on the particular geographic conditions in the alps which are highly associated with challenges for man and material a dense network of helicopter airbases has been established. Hence, this system accounts for the social, economical and touristic requirements of this region in terms of providing sufficient emergency medical treatment. In addition to statutory and professional provisions qualification requirements for emergency doctors comprehend extensive alpine training. Primarily this provides personal safety as well as security for the entire team and the patient which particularly applies for technical rope rescue. Advanced all-season training is compulsory due to seasonal differences in casualties. Well harmonized training with cross-border validity is not available to-date. Hence, the development of obligatory standard operating procedures should be the major goal of medical associations and societies.
Vinsonneau, Ulric; Cavel, Christiane; Bombert, Christophe; Lely, Laurent; Paleiron, Nicolas; Vergez-Larrouget, Claude; Cornily, Jean-Christophe; Castellant, Philippe; Gilard, Martine; Paule, Paule; Bronstein, Jean-Ariel
2012-10-01
Medicalized high sea rescue is very different from prehospital medical evacuation. It requires specifically trained medical teams because the difficulties are marine, aerial, and medically related. The French Navy provides medical evacuations by helicopter on the Atlantic coast, up to 320 km offshore and under all weather conditions. The epidemiology of acute chest pain in the high seas has been poorly described. Therefore, in this retrospective study, we aimed to assess the prevalence and constraints found in the management of these emergencies. From January 1, 2000, to April 30, 2009, 286 medical evacuations by helicopter were performed, 132 of which were due to traumatological emergencies, and 154 to medical emergencies. Acute chest pain, with 36 missions, was the leading cause of medical evacuation. All evacuated patients were men who were either professional sailors or ferry passengers. The median age was 48 years (range, 26-79). The most common prehospital diagnosis was coronary chest pain in 23 patients (64%), including 11 patients with acute coronary syndrome with ST-segment elevation. Thirty-two patients were airlifted by helicopter. All patients benefited from monitoring, electrocardiogram, peripheral venous catheter, and medical management as soon as the technical conditions allowed it. Copyright © 2012 Elsevier Inc. All rights reserved.
Research requirements to improve safety of civil helicopters
NASA Technical Reports Server (NTRS)
Waters, K. T.
1977-01-01
Helicopter and fixed-wing accident data were reviewed and major accident causal factors were established. The impact of accidents on insurance rates was examined and the differences in fixed-wing and helicopter accident costs discussed. The state of the art in civil helicopter safety was compared to military helicopters. Goals were established based on incorporation of known technology and achievable improvements that require development, as well as administrative-type changes such as the impact of improved operational planning, training, and human factors effects. Specific R and D recommendations are provided with an estimation of the payoffs, timing, and development costs.
Apollo 16 Command Module during recovery operations after splashdown
1972-04-27
S72-36602 (27 April 1972) --- The Apollo 16 Command Module bobbles photographed in the waters of the central Pacific Ocean during recovery operations. The prime recovery ship, USS Ticonderoga, is in the background. A recovery helicopter hovers overhead. The Apollo 16 crew, astronauts John W. Young, Thomas K. Mattingly II, and Charles M. Duke Jr., were picked up by helicopter and flown to the deck of the ship. The splashdown occurred at 290:37:06 ground elapsed time, 1:45:06 p.m. (CST), Thursday, April 27, 1972, at coordinates of 00:45.2 degrees south latitude and 156:11.4 degrees west longitude, a point approximately 215 miles southeast of Christmas Island. A team of Earth Landing System swimmers assisted with the recovery operations.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Shuttle Launch Director Mike Leinbach throws out the first pitch at a local baseball game at Manatees Stadium. KSC employees were hosted by the Brevard Manatees, a minor league baseball team in Central Florida. Before the game, attendees offered a moment of silence to honor the STS-107 crew and two recovery workers who died in a helicopter crash.
Prehospital paediatric emergencies treated by an Australian helicopter emergency medical service.
Barker, Claire L; Weatherall, Andrew D
2014-04-01
The aim of this study was to describe the mechanism and severity of injuries in the paediatric population treated by an Australian helicopter emergency medical service and to examine the frequency and nature of interventions performed. This information is important for planning education and continuing professional development in prehospital medicine. The study is a retrospective cohort analysis of 349 patients under the age of 16 treated by CareFlight in Sydney, Australia, between April 2007 and April 2012. Data collected included age, type of incident, medication and fluid administered, procedures performed, receiving hospital, 24 h and 30-day mortality and injuries sustained. Falls (33%), motor vehicle incidents (30%), sport injury (14%) and immersion injury (12%) were the most common mechanisms. A total of 27 children died within 30 days; nontrauma cases were proportionally overrepresented in the deaths. With respect to tasking, 59% cases involved a severely or significantly injured child. Among the children, 97% with a traumatic mechanism were transferred directly to a paediatric trauma centre.In addition, 81% of children had at least one intervention by the helicopter emergency medical services team at the incident scene, most commonly intravenous cannulation (61%), crystalloid bolus (29%), intubation (21%) and intravenous analgesia administration (15%). Paediatric prehospital patients can be of high dependency, requiring urgent critical care procedures. Training in prehospital medicine should include paediatrics. It is essential that practitioners maintain skills in venous access, airway management and provision of adequate analgesia in children.
McQueen, Carl; Crombie, Nick; Cormack, Stef; George, Arun; Wheaton, Steve
2015-05-01
The utilisation of Helicopter Emergency Medical Services (HEMS) in response to equestrian accidents has been an integral part of operations for many years throughout the UK. The recent establishment of major trauma networks in the UK has placed great emphasis on the appropriate tasking of HEMS units to cases where added benefit can be provided and the incidence of time critical injury in cases of equestrian accidents has been shown to be low. This study assesses the impact made on the utilisation of the different HEMS resources for cases of equestrian accidents within the West Midlands following the launch of the regional trauma network. We present a retrospective analysis of all equestrian accidents attended by Midlands Air Ambulance (MAA) between 1 April 2012 and 1 April 2013. Data were abstracted from the MAA operational database relating to mission activations/scene attendances; team configuration (physician led and Critical Care Paramedic (CCP) led); on-scene interventions; mission timings and patient conveyance by helicopter. A total of 114 activations involved equestrian accidents (6% of overall workload). The contribution of equestrian accidents to overall workload was similar for physician led and CCP-led (69/1069) platforms (5% vs. 6%, p=0.50). Only three patients (3%) required pre-hospital RSI during the period analysed and there were no recorded cases of ketamine administration for analgesia/conscious sedation. In approximately half of all scene attendances patients did not require any medication to be administered by the HEMS team. The vast majority of incidents occurred in rural locations with over 80% of patients conveyed to hospital by helicopter. The average mission time for scene attendances resulting in conveyance by helicopter was in excess of 90 min on both types of platform. There is a clear requirement for the design and implementation of informed and intelligent tasking models to respond to the need for assistance in equestrian accidents. Such models may include preferential deployment of non-physician led HEMS resources to equestrian accidents or the utilisation of other local or regional resources, such as those with specially adapted vehicles with off road capability, to offer alternative solutions to access/egress challenges posed in such cases. Copyright © 2014 Elsevier Ltd. All rights reserved.
Advanced Airfoils Boost Helicopter Performance
NASA Technical Reports Server (NTRS)
2007-01-01
Carson Helicopters Inc. licensed the Langley RC4 series of airfoils in 1993 to develop a replacement main rotor blade for their Sikorsky S-61 helicopters. The company's fleet of S-61 helicopters has been rebuilt to include Langley's patented airfoil design, and the helicopters are now able to carry heavier loads and fly faster and farther, and the main rotor blades have twice the previous service life. In aerial firefighting, the performance-boosting airfoils have helped the U.S. Department of Agriculture's Forest Service control the spread of wildfires. In 2003, Carson Helicopters signed a contract with Ducommun AeroStructures Inc., to manufacture the composite blades for Carson Helicopters to sell
Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM
2013-12-01
UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Stefano Wahono Aerospace...Georgia Institute of Technology. The OpenFOAM predicted result was also shown to compare favourably with ANSYS Fluent predictions. RELEASE...UNCLASSIFIED Development of Virtual Blade Model for Modelling Helicopter Rotor Downwash in OpenFOAM Executive Summary The Infrared
A review of US Army aircrew-aircraft integration research programs
NASA Technical Reports Server (NTRS)
Key, D. C.; Aiken, E. W.
1984-01-01
If the U.S. Army's desire to develop a one crew version of the Light Helicopter Family (LHX) helicopter is to be realized, both flightpath management and mission management will have to be performed by one crew. Flightpath management, the helicopter pilot, and the handling qualities of the helicopter were discussed. In addition, mission management, the helicopter pilot, and pilot control/display interface were considered. Aircrew-aircraft integration plans and programs were reviewed.
Gear Damage Detection Integrating Oil Debris and Vibration Measurement Technologies Developed
NASA Technical Reports Server (NTRS)
Gyekeyeski, Andrew L.; Sawicki, Jerzy T.
2001-01-01
The development of highly reliable health-monitoring systems is one technology area recommended for reducing the number of helicopter accidents. Helicopter transmission diagnostics are an important part of a helicopter health-monitoring system because helicopters depend on the power train for propulsion, lift, and flight maneuvering. One technique currently being tested for increasing the reliability and decreasing the false alarm rate of current transmission diagnostic tools is the replacement of simple single-sensor limits with multisensor systems integrating different measurement technologies.
Report to Congress : nonmilitary helicopter urban noise study
DOT National Transportation Integrated Search
2004-12-31
In response to public concerns about nonmilitary helicopter noise impact on densely populated : communities, the United States Congress directed the Secretary of Transportation to investigate : and develop recommendations on reducing helicopter noise...
2014-06-20
CAPE CANAVERAL, Fla. – Emergency Response Team officers from the Protective Services branch NASA's Kennedy Space Center in Florida enter the Indian River Lagoon from a Huey helicopter from the Aircraft Operations branch at the center during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
2014-06-20
CAPE CANAVERAL, Fla. – Emergency Response Team officers from the Protective Services branch NASA's Kennedy Space Center in Florida enter the Indian River Lagoon from a Huey helicopter from the Aircraft Operations branch at the center during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
2014-06-20
CAPE CANAVERAL, Fla. – Emergency Response Team officers from the Protective Services branch NASA's Kennedy Space Center in Florida enter the Indian River Lagoon from a Huey helicopter from the Aircraft Operations branch at the center during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
2014-06-20
CAPE CANAVERAL, Fla. – Emergency Response Team officers from the Protective Services branch NASA's Kennedy Space Center in Florida enter the Indian River Lagoon from a Huey helicopter from the Aircraft Operations branch at the center during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
Optimization process in helicopter design
NASA Technical Reports Server (NTRS)
Logan, A. H.; Banerjee, D.
1984-01-01
In optimizing a helicopter configuration, Hughes Helicopters uses a program called Computer Aided Sizing of Helicopters (CASH), written and updated over the past ten years, and used as an important part of the preliminary design process of the AH-64. First, measures of effectiveness must be supplied to define the mission characteristics of the helicopter to be designed. Then CASH allows the designer to rapidly and automatically develop the basic size of the helicopter (or other rotorcraft) for the given mission. This enables the designer and management to assess the various tradeoffs and to quickly determine the optimum configuration.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter rescue team carries another injured astronaut to a helicopter for transportation to a local hospital. They are all taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of the Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts who are simulating various injuries inside the crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
Apollo 10 crewmember is pickup by recovery helicopter
1969-05-26
S69-20621 (26 May 1969) --- A member of the Apollo 10 crew is hoisted into a helicopter from the prime recovery ship, USS Princeton, during recovery operations in the South Pacific. Astronauts Thomas P. Stafford, commander; John W. Young, command module pilot; and Eugene A. Cernan, lunar module pilot, were picked up and flown to the deck of the USS Princeton where a red-carpet welcome awaited them. The spacecraft was later retrieved from the water and put aboard the recovery ship. The Apollo 10 splashdown occurred at 11:53 a.m. (CDT), May 26, 1969, about 400 miles east of American Samoa, and about four miles from the recovery ship, to conclude a successful eight-day lunar orbit mission. U.S. Navy underwater demolition team swimmers assisted in the recovery operations.
The Human Powered Submarine Team of Virginia Tech Propulsion System Design Final Report
NASA Technical Reports Server (NTRS)
An, Eric; Bennett, Matt; Callis, Ron; Chen, Chester; Lee, John; Milan-Williams, Kristy
1999-01-01
The Human Powered Submarine Team has been in existence at Virginia Tech since its conception in 1993. Since then, it has served as a way for engineering students from many different disciplines to implement design conception and realization. The first submarine built was Phantom 1, a two-man submarine made of fiberglass. After construction was complete, Phantom 1 was ready for racing, but, unfortunately, suffered fatal problems come race time. The submarine team slowed down a bit after experiencing racing problems, but was revived in 1995 when design efforts for a new two-man submarine, the Phantom 2 commence. The propulsion system consisted of a chain and gear drive system using an ultra-light helicopter tail rotor for a propeller. Although the team learned valuable lessons as a result of Phantom 1's problems, Phantom 2 still experiences problems at races. After various parts of Phantom 2 are redesigned, it is once again ready for racing and proves that the redesign was well worth the time and effort. In 1997, Phantom 2 not only finishes its first race, held in San Diego, California, but comes in third. This success sparks yet another revival of the submarine team and design for the team's current project, the Phantom 3, a one-man submarine, is started. In 1998, the plug for Phantom 3 is built and the hull is constructed. With so many past problems from which to learn, Phantom 3 promises to be the fastest and best-designed submarine the team has developed thus far. The current speed world-record is 7 knots.
Small Business Innovations (Helicopters)
NASA Technical Reports Server (NTRS)
1992-01-01
The amount of engine power required for a helicopter to hover is an important, but difficult, consideration in helicopter design. The EHPIC program model produces converged, freely distorted wake geometries that generate accurate analysis of wake-induced downwash, allowing good predictions of rotor thrust and power requirements. Continuum Dynamics, Inc., the Small Business Innovation Research (SBIR) company that developed EHPIC, also produces RotorCRAFT, a program for analysis of aerodynamic loading of helicopter blades in forward flight. Both helicopter codes have been licensed to commercial manufacturers.
Methodology for estimating helicopter performance and weights using limited data
NASA Technical Reports Server (NTRS)
Baserga, Claudio; Ingalls, Charles; Lee, Henry; Peyran, Richard
1990-01-01
Methodology is developed and described for estimating the flight performance and weights of a helicopter for which limited data are available. The methodology is based on assumptions which couple knowledge of the technology of the helicopter under study with detailed data from well documented helicopters thought to be of similar technology. The approach, analysis assumptions, technology modeling, and the use of reference helicopter data are discussed. Application of the methodology is illustrated with an investigation of the Agusta A129 Mangusta.
Research requirements to reduce civil helicopter life cycle cost
NASA Technical Reports Server (NTRS)
Blewitt, S. J.
1978-01-01
The problem of the high cost of helicopter development, production, operation, and maintenance is defined and the cost drivers are identified. Helicopter life cycle costs would decrease by about 17 percent if currently available technology were applied. With advanced technology, a reduction of about 30 percent in helicopter life cycle costs is projected. Technological and managerial deficiencies which contribute to high costs are examined, basic research and development projects which can reduce costs include methods for reduced fuel consumption; improved turbine engines; airframe and engine production methods; safety; rotor systems; and advanced transmission systems.
A parametric analysis of visual approaches for helicopters
NASA Technical Reports Server (NTRS)
Moen, G. C.; Dicarlo, D. J.; Yenni, K. R.
1976-01-01
A flight investigation was conducted to determine the characteristic shapes of the altitude, ground speed, and deceleration profiles of visual approaches for helicopters. Two hundred thirty-six visual approaches were flown from nine sets of initial conditions with four types of helicopters. Mathematical relationships were developed that describe the characteristic visual deceleration profiles. These mathematical relationships were expanded to develop equations which define the corresponding nominal ground speed, pitch attitude, pitch rate, and pitch acceleration profiles. Results are applicable to improved helicopter handling qualities in terminal area operations.
A new helicostat from SNIAS helicopter division
NASA Technical Reports Server (NTRS)
Morisset, J.
1977-01-01
The Helicostat was described as a helicopter in which the vehicle weight is nullified by two balloons arranged in a catamaran fashion. Development of such a vehicle is discussed, and various uses for these helicopters are summarized.
Advanced electromagnetic methods for aerospace vehicles
NASA Technical Reports Server (NTRS)
Balanis, Constantine A.; Sun, Weimin; El-Sharawy, El-Budawy; Aberle, James T.; Birtcher, Craig R.; Peng, Jian; Tirkas, Panayiotis A.; Andrew, William V.; Kokotoff, David; Zavosh, Frank
1993-01-01
The Advanced Helicopter Electromagnetics (AHE) Industrial Associates Program has fruitfully completed its fourth year. Under the support of the AHE members and the joint effort of the research team, new and significant progress has been achieved in the year. Following the recommendations by the Advisory Task Force, the research effort is placed on more practical helicopter electromagnetic problems, such as HF antennas, composite materials, and antenna efficiencies. In this annual report, the main topics to be addressed include composite materials and antenna technology. The research work on each topic has been driven by the AHE consortium members' interests and needs. The remarkable achievements and progresses in each subject is reported respectively in individual sections of the report. The work in the area of composite materials includes: modeling of low conductivity composite materials by using Green's function approach; guidelines for composite material modeling by using the Green's function approach in the NEC code; development of 3-D volume mesh generator for modeling thick and volumetric dielectrics by using FD-TD method; modeling antenna elements mounted on a composite Comanche tail stabilizer; and antenna pattern control and efficiency estimate for a horn antenna loaded with composite dielectric materials.
NASA Astrophysics Data System (ADS)
Lewy, Serge; Marze, Henri-James
The development of a 'silent helicopter' program in Europe, whose aim would be noise reduction for both commercial and military helicopters over the next five years, is discussed. Attention is given to acoustic constraints for helicopters and to noise reduction techniques (with particular reference to the main rotor, the rear rotor, and the engines). For commercial helicopters, the noise reduction over the next five years is projected to be at least down to 6 dB below the OACI norms; for military helicopters, the aim is a variable-frequency signature in near-tactical-flight conditions, with a factor-of-two reduction in the maximum impulsivity in the far field.
Moiseev, Yu B; Ignatovich, S N; Strakhov, A Yu
The article discusses anthropometric design of shockproof pilot seats for state-of-the-art helicopters. Object of the investigation was anthropometric parameters of the helicopter aviation personnel of the Russian interior troops. It was stated that the body parameters essential for designing helicopter seat dampers are mass of the body part that presses against the seat in the seating position, and eye level above the seat surface. An uncontrolled seat damper ensuring shockproof safety to 95 % helicopter crews must be designed for the body mass contacting the seat of 99.7 kg and eye level above the seat of 78.6 cm. To absorb.shock effectively, future dampers should be adjustable to pilot's body parameters. The optimal approach to anthropometric design of a helicopter seat is development of type pilot' body models with due account of pilot's the flight outfit and seat geometry. Principle criteria of type models are body mass and eye level. The authors propose a system of type body models facilitating specification of anthropometric data helicopter seat developers.
2016-04-01
percent of the wounded were deceased upon arrival for surgery . With the increased role of helicopters in Vietnam, many of which were specifically...capability to perform surgeries both prior to takeoff and during transport as well. This capability allows surgical teams to transport casualties prior to...to exponentially increase. These systems must be tested and adapted to the battlefield. Robotics will need to be further evaluated to consider in
2014-06-20
CAPE CANAVERAL, Fla. – A Huey helicopter from the Aircraft Operations branch at NASA's Kennedy Space Center in Florida flies over the Indian River Lagoon with a group of Emergency Response Team officers from the center's Protective Services branch during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
2014-06-20
CAPE CANAVERAL, Fla. – Emergency Response Team officers from the Protective Services branch NASA's Kennedy Space Center in Florida prepare enter the Indian River Lagoon from a Huey helicopter from the Aircraft Operations branch at the center during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
2014-06-20
CAPE CANAVERAL, Fla. – A Huey helicopter from the Aircraft Operations branch at NASA's Kennedy Space Center in Florida flies over the Indian River Lagoon with a group of Emergency Response Team officers from the center's Protective Services branch during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
2014-06-20
CAPE CANAVERAL, Fla. – A Huey helicopter from the Aircraft Operations branch at NASA's Kennedy Space Center in Florida flies over the Indian River Lagoon with a group of Emergency Response Team officers from the center's Protective Services branch during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
2014-06-20
CAPE CANAVERAL, Fla. – A Huey helicopter from the Aircraft Operations branch at NASA's Kennedy Space Center in Florida flies over the Indian River Lagoon with a group of Emergency Response Team officers from the center's Protective Services branch during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
2014-06-20
CAPE CANAVERAL, Fla. – A Huey helicopter from the Aircraft Operations branch at NASA's Kennedy Space Center in Florida flies over the Indian River Lagoon with a group of Emergency Response Team officers from the center's Protective Services branch during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
2014-06-19
CAPE CANAVERAL, Fla. – A Huey helicopter from the Aircraft Operations branch at NASA's Kennedy Space Center in Florida flies over the Indian River Lagoon with a group of Emergency Response Team officers from the center's Protective Services branch during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
2014-06-20
CAPE CANAVERAL, Fla. – A Huey helicopter from the Aircraft Operations branch at NASA's Kennedy Space Center in Florida flies over the Indian River Lagoon with a group of Emergency Response Team officers from the center's Protective Services branch during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
NASA Technical Reports Server (NTRS)
1982-01-01
Helicopters are used by the military and civilian communities for a variety of tasks and must be capable of operating in poor weather conditions and at night. Accompanying extended helicopter operations is a significant increase in pilot workload and a need for better handling qualities. An overview of the status and problems in the development and specification of helicopter handling-qualities criteria is presented. Topics for future research efforts by government and industry are highlighted.
McMahon, Terry W; Newman, David G
2016-04-01
Flying a helicopter is a complex psychomotor skill. Fatigue is a serious threat to operational safety, particularly for sustained helicopter operations involving high levels of cognitive information processing and sustained time on task. As part of ongoing research into this issue, the object of this study was to develop a field-deployable helicopter-specific psychomotor vigilance test (PVT) for the purpose of daily performance monitoring of pilots. The PVT consists of a laptop computer, a hand-operated joystick, and a set of rudder pedals. Screen-based compensatory tracking task software includes a tracking ball (operated by the joystick) which moves randomly in all directions, and a second tracking ball which moves horizontally (operated by the rudder pedals). The 5-min test requires the pilot to keep both tracking balls centered. This helicopter-specific PVT's portability and integrated data acquisition and storage system enables daily field monitoring of the performance of individual helicopter pilots. The inclusion of a simultaneous foot-operated tracking task ensures divided attention for helicopter pilots as the movement of both tracking balls requires simultaneous inputs. This PVT is quick, economical, easy to use, and specific to the operational flying task. It can be used for performance monitoring purposes, and as a general research tool for investigating the psychomotor demands of helicopter operations. While reliability and validity testing is warranted, data acquired from this test could help further our understanding of the effect of various factors (such as fatigue) on helicopter pilot performance, with the potential of contributing to helicopter operational safety.
The helicopter as a caring context: Experiences of people suffering trauma.
Sandström, Linda; Nilsson, Carina; Juuso, Päivi; Engström, Åsa
2017-05-01
When emergency medical services (EMS) are needed, the choice of transport depends on several factors. These may include the patient's medical condition, transport accessibility to the accident site and the receiving hospital's resources. Emergency care research is advancing, but little is known about the patient's perspective of helicopter emergency medical services (HEMS). The aim of this study was to describe trauma patients' experiences of HEMS. Thirteen persons (ages 21-76) were interviewed using an interview guide. Data were analyzed using qualitative content analysis. The analysis resulted in three themes: Being distraught and dazed by the event - patients experienced shock and tension, as well as feelings of curiosity and excitement. Being comforted by the caregivers - as the caregivers were present and attentive, they had no need for relatives in the helicopter. Being safe in a restricted environment - the participants' injuries were taken seriously and the caregivers displayed effective teamwork. For trauma patients to be taken seriously and treated as 'worst cases' enables them to trust their caregivers and 'hand themselves over' to their care. HEMS provide additional advantageous circumstances, such as being the sole patient and having proximity to a small, professional team. Copyright © 2016 Elsevier Ltd. All rights reserved.
Long-range rescue helicopter missions in the Arctic.
Haagensen, Rolf; Sjøborg, Karl-Ake; Rossing, Anders; Ingilae, Henry; Markengbakken, Lars; Steen, Peter-Andreas
2004-01-01
Search and rescue helicopters from the Royal Norwegian Air Force conduct ambulance and search and rescue missions in the Barents Sea. The team on-board includes an anesthesiologist and a paramedic. Operations in this area are challenging due to long distances, severe weather conditions, and arctic winter darkness. One-hundred, forty-seven ambulance and 29 search and rescue missions in the Barents Sea during 1994-1999 were studied retrospectively with special emphasis on operative conditions and medical results. Thirty-five percent of the missions were carried out in darkness. The median time from the alarm to first patient contact was 3.3 hours and the median duration of the missions was 7.3 hours. Forty-eight percent of the missions involved ships of foreign origin. Half the patients had acute illnesses, dominated by gastrointestinal and heart diseases. Most of the injuries resulted from industrial accidents with open and closed fractures, amputations, and soft tissue damage. Ninety percent of the patients were hospitalized; 7.5% probably would not have survived without early medical treatment and rapid transportation to a hospital. Using a heavy search and rescue helicopter in the Barents Sea was the right decision in terms of medical gain and operative risk.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-08
... Firefly Aviation Helicopter Services, and Erickson Air-Crane); Rotorcraft Development Corporation..., Inc. (Previously Firefly Aviation Helicopter Services, and Erickson Air-Crane); Rotorcraft Development...
Civil helicopter design and operational requirement
NASA Technical Reports Server (NTRS)
Waters, K. T.
1978-01-01
Design and operational requirements and other factors that have a restraining influence on expansion of the helicopter market are discussed. The needs of operators, users, pilots and the community at large are examined. The impact of future technology developments and other trends such as use, energy shortages, and civil and military helicopter requirements and development is assessed. Areas where research and development are needed to provide opportunities for lowering life cycle costs and removing barriers to further expansion of the industry are analyzed.
NASA Technical Reports Server (NTRS)
Sutton, L. R.
1975-01-01
A theoretical analysis is developed for a coupled helicopter rotor system to allow determination of the loads and dynamic response behavior of helicopter rotor systems in both steady-state forward flight and maneuvers. The effects of an anisotropically supported swashplate or gyroscope control system and a deformed free wake on the rotor system dynamic response behavior are included.
Implementing Realistic Helicopter Physics in 3D Game Environments
2002-09-01
developed a highly realistic and innovative PC video game that puts you inside an Army unit. You’ll face your first tour of duty along with your fellow...helicopter physics. Many other video games include helicopters but omit realistic third person helicopter behaviors in their applications. Of the 48...to be too computationally expensive for a PC based video game . Generally, some basic parts of blade element theory are present in any attempt to
Advanced Control System Increases Helicopter Safety
NASA Technical Reports Server (NTRS)
2008-01-01
With support and funding from a Phase II NASA SBIR project from Ames Research Center, Hoh Aeronautics Inc. (HAI), of Lomita, California, produced HeliSAS, a low-cost, lightweight, attitude-command-attitude-hold stability augmentation system (SAS) for civil helicopters and unmanned aerial vehicles. HeliSAS proved itself in over 160 hours of flight testing and demonstrations in a Robinson R44 Raven helicopter, a commercial helicopter popular with news broadcasting and police operations. Chelton Flight Systems, of Boise, Idaho, negotiated with HAI to develop, market, and manufacture HeliSAS, now available as the Chelton HeliSAS Digital Helicopter Autopilot.
2013-09-11
CAPE CANAVERAL, Fla. – Engineers from NASA's Johnson Space Center fly a remote-controlled helicopter equipped with a unique set of sensors and software during a competition at the agency's Kennedy Space Center. Teams from Johnson, Kennedy and Marshall Space Flight Center competed in an unmanned aerial systems event to evaluate designs and work by engineers learning new specialties. The competition took place at the Shuttle Landing Facility at Kennedy. Photo credit: NASA/Dmitri Gerondidakis
Aircraft Mishap Exercise at SLF
2018-02-14
Members of NASA Kennedy Space Center's Flight Operations team participate in a rehearsal of a helicopter crash-landing to test new and updated emergency procedures. Called the Aircraft Mishap Preparedness and Contingency Plan, the operation was designed to validate several updated techniques the center's first responders would follow, should they ever need to rescue a crew in case of a real accident. The mishap exercise took place at the center's Shuttle Landing Facility.
Aircraft Mishap Exercise at SLF
2018-02-14
NASA Kennedy Space Center's Flight Operations team reviews procedures before beginning a rehearsal of a helicopter crash-landing to test new and updated emergency procedures. Called the Aircraft Mishap Preparedness and Contingency Plan, the operation was designed to validate several updated techniques the center's first responders would follow, should they ever need to rescue a crew in case of a real accident. The mishap exercise took place at the center's Shuttle Landing Facility.
Aircraft Mishap Exercise at SLF
2018-02-14
Members of NASA Kennedy Space Center's Flight Operations team prepare for a rehearsal of a helicopter crash-landing to test new and updated emergency procedures. Called the Aircraft Mishap Preparedness and Contingency Plan, the operation was designed to validate several updated techniques the center's first responders would follow, should they ever need to rescue a crew in case of a real accident. The mishap exercise took place at the center's Shuttle Landing Facility.
Aircraft Mishap Exercise at SLF
2018-02-14
A member of NASA Kennedy Space Center's Flight Operations team prepares for a rehearsal of a helicopter crash-landing to test new and updated emergency procedures. Called the Aircraft Mishap Preparedness and Contingency Plan, the operation was designed to validate several updated techniques the center's first responders would follow, should they ever need to rescue a crew in case of a real accident. The mishap exercise took place at the center's Shuttle Landing Facility.
1968-10-28
S68-52542 (22 Oct. 1968) --- The Apollo 7 crew arrives aboard the USS Essex, the prime recovery ship for the mission. Left to right, are astronauts Walter M. Schirra Jr., commander; Donn F. Eisele, command module pilot; Walter Cunningham, lunar module pilot; and Dr. Donald E. Stullken, NASA Recovery Team Leader from the Manned Spacecraft Center's (MSC) Landing and Recovery Division. The crew is pausing in the doorway of the recovery helicopter.
2014-06-20
CAPE CANAVERAL, Fla. – A Huey helicopter from the Aircraft Operations branch at NASA's Kennedy Space Center in Florida hovers then descends over the Indian River Lagoon with a group of Emergency Response Team officers from the center's Protective Services branch during a training exercise. The training session focused on safely entering the water, something the ERT could be required to perform in certain situations at the center. Photo credit: NASA/ Dan Casper
A Methodology to Determine the Psychomotor Performance of Helicopter Pilots During Flight Maneuvers.
McMahon, Terry W; Newman, David G
2015-07-01
Helicopter flying is a complex psychomotor task requiring continuous control inputs to maintain stable flight and conduct maneuvers. Flight safety is impaired when this psychomotor performance is compromised. A comprehensive understanding of the psychomotor performance of helicopter pilots, under various operational and physiological conditions, remains to be developed. The purpose of this study was to develop a flight simulator-based technique for capturing psychomotor performance data of helicopter pilots. Three helicopter pilots conducted six low-level flight sequences in a helicopter simulator. Accelerometers applied to each flight control recorded the frequency and magnitude of movements. The mean (± SEM) number of control inputs per flight was 2450 (± 136). The mean (± SEM) number of control inputs per second was 1.96 (± 0.15). The mean (± SEM) force applied was 0.44 G (± 0.05 G). No significant differences were found between pilots in terms of flight completion times or number of movements per second. The number of control inputs made by the hands was significantly greater than the number of foot movements. The left hand control input forces were significantly greater than all other input forces. This study shows that the use of accelerometers in flight simulators is an effective technique for capturing accurate, reliable data on the psychomotor performance of helicopter pilots. This technique can be applied in future studies to a wider range of operational and physiological conditions and mission types in order to develop a greater awareness and understanding of the psychomotor performance demands on helicopter pilots.
Leiba, Adi; Blumenfeld, Amir; Hourvitz, Ariel; Weiss, Gali; Peres, Michal; Laor, Dani; Schwartz, Dagan; Arad, Jacob; Goldberg, Avishay; Levi, Yeheskel; Bar-Dayan, Yaron
2005-01-01
Large-scale, terrorist attacks can happen in peripheral areas, which are located close to a country's borders and far from its main medical facilities and involve multi-national casualties and responders. The objective of this study was to analyze the terrorist suicide bombings that occurred on 07 October 2004, near the Israeli-Egyptian border, as representative of such a complex scenario. Data from formal debriefings after the event were processed in order to learn about victim outcomes, resource utilization, critical events, and time course of the emergency response. A total of 185 injured survivors were repatriated: four were severely wounded, 13 were moderately injured, and 168 were mildly injured. Thirty-eight people died. A forward medical team landed at the border town's airport, which provided reinforcement in the field and in the local hospital. Israeli and Egyptian search and rescue teams collaborated at the destruction site. One-hundred sixty-eight injured patients arrived at the small border hospital that rapidly organized itself for the mass-casualty incident, operating as an evacuation "staging hospital". Twenty-three casualties secondarily were distributed to two major trauma centers in the south and the center of Israel, respectively, either by ambulance or by helicopter. Large-scale, terrorist attacks at a peripheral border zone can be handled by international collaboration, reinforcement of medical teams at the site itself and at the peripheral neighboring hospital, rapid rearrangement of an "evacuation hospital", and efficient transport to trauma centers by ambulances, helicopters, and other aircraft.
DOT National Transportation Integrated Search
1994-08-01
NASA and the U.S. Army have designed, developed, and flight evaluated a : Computer Aiding for Low-Altitude Helicopter Flight (CALAHF) guidance system. : This system provides guidance to the pilot for near-terrain covert helicopter : operations. It au...
CH-53K Heavy Lift Replacement Helicopter (CH-53K)
2015-12-01
Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-390 CH-53K Heavy Lift Replacement Helicopter (CH-53K) As of FY 2017 President’s Budget...December 2015 SAR March 4, 2016 10:04:18 UNCLASSIFIED 4 Col Henry Vanderborght PMA-261 Heavy Lift Helicopters Program Executive Office - Air, Anti...Replacement Helicopter (CH-53K) DoD Component Navy Responsible Office References SAR Baseline (Development Estimate) Defense Acquisition Executive (DAE
Aeromechanics and Aeroacoustics Predictions of the Boeing-SMART Rotor Using Coupled-CFD/CSD Analyses
NASA Technical Reports Server (NTRS)
Bain, Jeremy; Sim, Ben W.; Sankar, Lakshmi; Brentner, Ken
2010-01-01
This paper will highlight helicopter aeromechanics and aeroacoustics prediction capabilities developed by Georgia Institute of Technology, the Pennsylvania State University, and Northern Arizona University under the Helicopter Quieting Program (HQP) sponsored by the Tactical Technology Office of the Defense Advanced Research Projects Agency (DARPA). First initiated in 2004, the goal of the HQP was to develop high fidelity, state-of-the-art computational tools for designing advanced helicopter rotors with reduced acoustic perceptibility and enhanced performance. A critical step towards achieving this objective is the development of rotorcraft prediction codes capable of assessing a wide range of helicopter configurations and operations for future rotorcraft designs. This includes novel next-generation rotor systems that incorporate innovative passive and/or active elements to meet future challenging military performance and survivability goals.
Recent Langley helicopter acoustics contributions
NASA Technical Reports Server (NTRS)
Morgan, Homer G.; Pao, S. P.; Powell, C. A.
1988-01-01
The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included.
Materials and structural aspects of advanced gas-turbine helicopter engines
NASA Technical Reports Server (NTRS)
Freche, J. C.; Acurio, J.
1979-01-01
The key to improved helicopter gas turbine engine performance lies in the development of advanced materials and advanced structural and design concepts. The modification of the low temperature components of helicopter engines (such as the inlet particle separator), the introduction of composites for use in the engine front frame, the development of advanced materials with increased use-temperature capability for the engine hot section, can result in improved performance and/or decreased engine maintenance cost. A major emphasis in helicopter engine design is the ability to design to meet a required lifetime. This, in turn, requires that the interrelated aspects of higher operating temperatures and pressures, cooling concepts, and environmental protection schemes be integrated into component design. The major material advances, coatings, and design life-prediction techniques pertinent to helicopter engines are reviewed; the current state-of-the-art is identified; and when appropriate, progress, problems, and future directions are assessed.
Nursing and en route care: history in time of war.
Davis, R Scott; Connelly, Linda K
2011-01-01
The mission of the en route caregiver is to provide critical care in military helicopters for wounded Warriors. This care minimizes the effects of the wounds and injuries, and improves morbidity and mortality. This article will focus on the history of Army Nursing en route care. From World War II through Vietnam, and continuing through the War on Terrorism in Iraq and Afghanistan, Army nurses served in providing en route care in military airplanes and helicopters for patients being transported to higher echelons of care. From aid stations on the battlefield to forward surgical teams which provide life, limb, and eyesight saving care, to the next higher level of care in combat support hospitals, these missions require specialized nursing skills to safely care for the high acuity patients. Before the en route care concept existed, there was not a program to train nurses in these critical skills. There was also a void of information about patient outcomes associated with the nursing assessment and care provided during helicopter medical evacuation (MEDEVAC) of such unstable patients, and the consequent impact on the patient's condition after transport. The role of critical care nurses has proven to be essential and irreplaceable in providing full-spectrum care to casualties of war, in particular, the postsurgical patients transferred from one surgical facility to another in theatre. However, we have only recently developed the concepts over the required skill set, training, equipment, functionality, evidenced-based care, and sustainability of nursing in the en route care role. Much of the work to quantify and qualify nursing care has been done by individuals and individual units whose lessons-learned have only recently been captured.
The Helicopter Antenna Radiation Prediction Code (HARP)
NASA Technical Reports Server (NTRS)
Klevenow, F. T.; Lynch, B. G.; Newman, E. H.; Rojas, R. G.; Scheick, J. T.; Shamansky, H. T.; Sze, K. Y.
1990-01-01
The first nine months effort in the development of a user oriented computer code, referred to as the HARP code, for analyzing the radiation from helicopter antennas is described. The HARP code uses modern computer graphics to aid in the description and display of the helicopter geometry. At low frequencies the helicopter is modeled by polygonal plates, and the method of moments is used to compute the desired patterns. At high frequencies the helicopter is modeled by a composite ellipsoid and flat plates, and computations are made using the geometrical theory of diffraction. The HARP code will provide a user friendly interface, employing modern computer graphics, to aid the user to describe the helicopter geometry, select the method of computation, construct the desired high or low frequency model, and display the results.
NASA Technical Reports Server (NTRS)
Lemanski, A. J.
1976-01-01
Helicopter drive-system technology which would result in the largest benefit in direct maintenance cost when applied to civil helicopters in the 1980 timeframe was developed. A prototype baseline drive system based on 1975 technology provided the basis for comparison against the proposed advanced technology in order to determine the potential for each area recommended for improvement. A specific design example of an advanced-technology main transmission is presented to define improvements for maintainability, weight, producibility, reliability, noise, vibration, and diagnostics. Projections of the technology achievable in the 1980 timeframe are presented. Based on this data, the technologies with the highest payoff (lowest direct maintenance cost) for civil-helicopter drive systems are identified.
Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm
NASA Astrophysics Data System (ADS)
Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun
2017-10-01
A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.
Correlate Life Predictions and Condition Indicators in Helicopter Tail Gearbox Bearings
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Bolander, Nathan; Haynes, Chris; Branning, Jeremy; Wade, Daniel R.
2010-01-01
Research to correlate bearing remaining useful life (RUL) predictions with Helicopter Health Usage Monitoring Systems (HUMS) condition indicators (CI) to indicate the damage state of a transmission component has been developed. Condition indicators were monitored and recorded on UH-60M (Black Hawk) tail gearbox output shaft thrust bearings, which had been removed from helicopters and installed in a bearing spall propagation test rig. Condition indicators monitoring the tail gearbox output shaft thrust bearings in UH-60M helicopters were also recorded from an on-board HUMS. The spal-lpropagation data collected in the test rig was used to generate condition indicators for bearing fault detection. A damage progression model was also developed from this data. Determining the RUL of this component in a helicopter requires the CI response to be mapped to the damage state. The data from helicopters and a test rig were analyzed to determine if bearing remaining useful life predictions could be correlated with HUMS condition indicators (CI). Results indicate data fusion analysis techniques can be used to map the CI response to the damage levels.
Human-Powered Helicopter: A Program for Design and Construction
1991-06-01
that for the Gossamer Albatross , it was surprising that members of both teams felt that the most difficult obstacle was the travel and transportation of...the aircraft, crew and support equipment [Ref.4: p.120]. Both the Gossamer Albatross and the Daedalus projects were required to travel to Europe...to the degree anticipated. The Daedalus prototype, called the Light Eagle, was designed to break the Gossamer Albatross distance record of 21 miles
The Quest for a Helicopter Suitable for Combat Rescue, 1967-1983.
1985-04-01
the war draqged on" (2:7). From this need came the development of the helicopter as a - ascue -,hicle, a development that came late in World War 11. Even...question of future conflicts and the coming jet age forced policy makers to consider the reorganization and expansion of a rescue force capable of...to existing aging H-3s" (6:92). The inadequacies of the USAF’s combat rescue helicopter force, both in terms of mission capabiitic: and number of
AB-204B and A-106 helicopters and a bit about superconducting R and D in Italy. [Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, F.P.
1969-08-01
This report describes the AB-204B ASW helicopter now in service with the Italian navy and the Agusta developed A-106 light helicopter. A short report on high energy physics research devices and superconducting magnet construction at the Italian Nuclear Energy Laboratories is also included.
Helicopter simulation: Making it work
NASA Technical Reports Server (NTRS)
Payne, Barry
1992-01-01
The opportunities for improved training and checking by using helicopter simulators are greater than they are for airplane pilot training. Simulators permit the safe creation of training environments that are conducive to the development of pilot decision-making, situational awareness, and cockpit management. This paper defines specific attributes required in a simulator to meet a typical helicopter operator's training and checking objectives.
Extending helicopter operations to meet future integrated transportation needs.
Stanton, Neville A; Plant, Katherine L; Roberts, Aaron P; Harvey, Catherine; Thomas, T Glyn
2016-03-01
Helicopters have the potential to be an integral part of the future transport system. They offer a means of rapid transit in an overly populated transport environment. However, one of the biggest limitations on rotary wing flight is their inability to fly in degraded visual conditions in the critical phases of approach and landing. This paper presents a study that developed and evaluated a Head up Display (HUD) to assist rotary wing pilots by extending landing to degraded visual conditions. The HUD was developed with the assistance of the Cognitive Work Analysis method as an approach for analysing the cognitive work of landing the helicopter. The HUD was tested in a fixed based flight simulator with qualified helicopter pilots. A qualitative analysis to assess situation awareness and workload found that the HUD enabled safe landing in degraded conditions whilst simultaneously enhancing situation awareness and reducing workload. Continued development in this area has the potential to extend the operational capability of helicopters in the future. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.
NASA Technical Reports Server (NTRS)
Hayes, Judith
2009-01-01
This slide presentation reviews the requirements that NASA has for the medical service of a crew returning to earth after long duration space flight. The scenarios predicate a water landing. Two scenarios are reviewed that outline the ship-board medical operations team and the ship board science reseach team. A schedule for the each crew upon landing is posited for each of scenarios. The requirement for a heliport on board the ship is reviewed and is on the requirement for a helicopter to return the Astronauts to the Baseline Data Collection Facility (BDCF). The ideal is to integrate the medical and science requirements, to minimize the risks and Inconveniences to the returning astronauts. The medical support that is required for all astronauts returning from long duration space flight (30 days or more) is reviewed. The personnel required to support the team is outlined. The recommendations for medical operations and science research for crew support are stated.
Development of Low Cost Satellite Communications System for Helicopters and General Aviation
NASA Technical Reports Server (NTRS)
Farazian, K.; Abbe, B.; Divsalar, D.; Raphaeli, D.; Tulintseff, A.; Wu, T.; Hinedi, S.
1994-01-01
In this paper, the development of low-cost satellite communications (SATCOM) system for helicopters and General Aviation (GA) aircrafts is described. System design and standards analysis have been conducted to meet the low-cost, light-weight, small-size and low-power system requirements for helicopters and GA aircraft environments. Other specific issues investigated include coding schemes, spatial diversity, and antenna arraying techniques. Coding schemes employing Channel State Information (CSI) and inverleaving have been studied in order to mitigate severe banking angle fading and the periodic RF signal blockage due to the helicopter rotor blades. In addition, space diversity and antenna arraying techniques have been investigated to further reduce the fading effects and increase the link margin.
Handling Qualities Specifications for U.S. Military Helicopters
NASA Technical Reports Server (NTRS)
Key, David L.
1982-01-01
Inadequacies in the military specification for helicopter handling qualities, MIL-H-8501A, have long been recognized, and the latest procurements by the U.S. Army used special Prime Item Development Specifications (PIDS). This paper assesses the efficacy of these PIDS and suggests that changes should be made. In particular, the structure developed in MIL-F-8785B (ASG) (the specification for flying qualities of piloted airplanes) should be incorporated. Improved requirements must be based on a systematic data base and concentrated on topics most important in preliminary design: static and dynamic stability, control power and sensitivity, and interaction with controllers and displays. Emphasis should be on current military helicopter missions and helicopter idiosyncrasies such as cross-coupling, nonlinearities, and higher-order dynamics.
Helicopter-V/STOL dynamic wind and turbulence design methodology
NASA Technical Reports Server (NTRS)
Bailey, J. Earl
1987-01-01
Aircraft and helicopter accidents due to severe dynamic wind and turbulence continue to present challenging design problems. The development of the current set of design analysis tools for a aircraft wind and turbulence design began in the 1940's and 1950's. The areas of helicopter dynamic wind and turbulence modeling and vehicle response to severe dynamic wind inputs (microburst type phenomena) during takeoff and landing remain as major unsolved design problems from a lack of both environmental data and computational methodology. The development of helicopter and V/STOL dynamic wind and turbulence response computation methology is reviewed, the current state of the design art in industry is outlined, and comments on design methodology are made which may serve to improve future flight vehicle design.
Research requirements for development of improved helicopter rotor efficiency
NASA Technical Reports Server (NTRS)
Davis, S. J.
1976-01-01
The research requirements for developing an improved-efficiency rotor for a civil helicopter are documented. The various design parameters affecting the hover and cruise efficiency of a rotor are surveyed, and the parameters capable of producing the greatest potential improvement are identified. Research and development programs to achieve these improvements are defined, and estimated costs and schedules are presented. Interaction of the improved efficiency rotor with other technological goals for an advanced civil helicopter is noted, including its impact on engine noise, hover and cruise performance, one-engine-inoperative hover capability, and maintenance and reliability.
Research requirements for development of regenerative engines for helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semple, R.D.
1976-12-01
The improved specific fuel consumption of the regenerative engine was compared to a simple-cycle turboshaft engine. The performance improvement and fuel saving are obtained at the expense of increased engine weight, development and production costs, and maintenance costs. Costs and schedules are estimated for the elements of the research and development program. Interaction of the regenerative engine with other technology goals for an advanced civil helicopter is examined, including its impact on engine noise, hover and cruise performance, helicopter empty weight, drive-system efficiency and weight, one-engine-inoperative hover capability, and maintenance and reliability.
Research requirements for development of regenerative engines for helicopters
NASA Technical Reports Server (NTRS)
Semple, R. D.
1976-01-01
The improved specific fuel consumption of the regenerative engine was compared to a simple-cycle turboshaft engine. The performance improvement and fuel saving are obtained at the expense of increased engine weight, development and production costs, and maintenance costs. Costs and schedules are estimated for the elements of the research and development program. Interaction of the regenerative engine with other technology goals for an advanced civil helicopter is examined, including its impact on engine noise, hover and cruise performance, helicopter empty weight, drive-system efficiency and weight, one-engine-inoperative hover capability, and maintenance and reliability.
NASA Technical Reports Server (NTRS)
1978-01-01
Work on advanced concepts for helicopter designs is reported. Emphasis is on use of advanced composites, damage-tolerant design, and load calculations. Topics covered include structural design flight maneuver loads using PDP-10 flight dynamics model, use of 3-D finite element analysis in design of helicopter mechanical components, damage-tolerant design of the YUH-61A main rotor system, survivability of helicopters to rotor blade ballistic damage, development of a multitubular spar composite main rotor blade, and a bearingless main rotor structural design approach using advanced composites.
McQueen, Carl; Nutbeam, Tim; Crombie, Nick; Lecky, Fiona; Lawrence, Thomas; Hathaway, Karen; Wheaton, Steve
2015-07-01
Challenges exist in how to deliver enhanced care to patients suffering severe injury in geographically remote areas within regionalised trauma networks at night. The physician led Enhanced Care Teams (ECTs) in the West Midlands region of England do not currently utilise helicopters to respond to incidents at night. This study describes this remote trauma workload at night within the regional network in terms of incident location; injury profile and patient care needs and discusses various solutions to the delivery of ECTs to such incidents, including the need for helicopter based platforms. We present a retrospective analysis of incidents involving Major Trauma occurring in the West Midlands Regional Trauma Network in England over a one year period (1st April 2012 until the 31st March 2013). Anonymised patient records from the Trauma Audit and Research Network (TARN) for patients that had been conveyed to hospital by ambulance/air ambulance were cross-referenced with the West Midlands Ambulance Service NHS Foundation Trust (WMAS) Computer Assisted Dispatch (CAD) archive for the same period. Data were abstracted from the combined dataset relating to injury severity (ISS/ICU admission/death at scene or as inpatient); ECT resource activations/scene attendances; incident location and the need for enhanced level care. A total of 603 incidents involving Major Trauma were identified during night time hours. Enhanced Care Team resources attended scene in 167 cases (27.7%). Of the incidents not attended by an ECT 179 (41.1%) were due to falls and 91 (20.9%) involved a 'Road Traffic Collision'. A total of 36 incidents (6.0% of total at night) occurred in locations identified as being greater than 45min by road from the nearest major trauma centre. In these cases 13 patients had enhanced care needs that could not be addressed at scene by the attending ambulance service personnel. There is limited evidence to support the need for night HEMS operations in the West Midlands regional trauma network. The potential role of night HEMS in other regional trauma networks in England requires further evaluation with specific reference to the incidence of Major Trauma and efficiency of existing road based systems. Copyright © 2015. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Kussner, H G
1937-01-01
The present report deals with a number of the main problems requiring solution in the development of helicopters and concerning the lift, flying performance, stability, and drive. A complete solution is given for the stability of the helicopter with rigid blades and control surfaces. With a view to making a direct-lift propeller sufficient without the addition of auxiliary propellers, the "flapping drive" is assessed and its efficiency calculated.
Recent European Developments in Helicopters
NASA Technical Reports Server (NTRS)
1921-01-01
Descriptions are given of two captured helicopters, one driven by electric power, the other by a gasoline engine. An account is given of flight tests of the gasoline powered vehicle. After 15 successful flight tests, the gasoline powered vehicle crashed due to the insufficient thrust. Also discussed here are the applications of helicopters for military observations, for meteorological work, and for carrying radio antennas.
Helicopter rotor trailing edge noise. [noise prediction
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amier, R. K.
1981-01-01
A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.
The Potential for Helicopter Passenger Service in Major Urban Areas. [cost analysis
NASA Technical Reports Server (NTRS)
Dajani, J. S.; Stortstrom, R. G.; Warner, D. B.
1977-01-01
An interurban helicopter cost model having the capability of selecting an efficient helicopter network for a given city in terms of service and total operating costs was developed. This model which is based upon the relationship between total and direct operating costs and the number of block hours of helicopter operation is compiled in terms of a computer program which simulates the operation of an intracity helicopter fleet over a given network. When applied to specific urban areas, the model produces results in terms of a break-even air passenger market penetration rate, which is the percent of the air travelers in each of those areas that must patronize the helicopter network to make it break even commercially. A total of twenty major metropolitan areas are analyzed and are ranked initially according to cost per seat mile and then according to break-even penetration rate.
Narrative in Army Values Training
2003-01-01
character of the first American president. As the “father of our country,” the power of the story implies that part of the essential nature of being a...that was at that time in mostly composed of singles. The homogenous nature of American society and the role of religion within society are assumed in...man crew accomplished three major interventions that day. First, he landed the helicopter to rescue a group of civilians from a small team of U.S
Whole body vibration in helicopters: risk assessment in relation to low back pain.
Kåsin, Jan Ivar; Mansfield, Neil; Wagstaff, Anthony
2011-08-01
Helicopter pilots are exposed to whole body vibration (WBV) in their working environment. WBV has been associated with low back pain (LBP) and helicopter pilots have a high prevalence for LBP compared with other professions. The aim of this study was to develop a test protocol for measuring helicopters with ISO 2631-1 and to perform a whole body vibration risk assessment based on the European Vibration Directive in a number of commonly used military and civilian helicopters. Both absolute values and individual difference in current helicopter types are of interest in order to evaluate the possible role of vibration in LBP in helicopter pilots. In operationally relevant maneuvers, six helicopters were tested. In order to standardize measurements, each continuous flight was split into 15 separate maneuvers. A model of a working day exposure pattern was used to calculate A(8) vibration magnitudes for each helicopter. The vibration A(8) exposure estimates ranged from 0.32-0.51 m x s(-2) during an 8-h working day A(8). This compares with EU and ISO lower bounds risk criteria of 0.5 and 0.43 m x s(-2) A(8), respectively. Despite the vibration levels being relatively low, helicopter pilots report a high incidence of LBP. It is possible that helicopter pilot postures increase the risk of LBP when combined with WBV. The test protocol used in this study could be generally applied for other rotary winged aircraft testing to allow for comparison of WBV results. Data from different flight phases could be used to model different exposure profiles.
78 FR 51127 - Airworthiness Directives; Various Restricted Category Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
... Heavylift Helo, Inc.; Robinson Air Crane, Inc.; Rotorcraft Development Corporation; San Joaquin Helicopters... Rotorcraft, LLC; OAS Parts LLC; Richards Heavylift Helo, Inc.; Robinson Air Crane, Inc.; Rotorcraft...
Hostile fire indicator threat data collection for helicopter-mounted applications
NASA Astrophysics Data System (ADS)
Naz, P.; Hengy, S.; De Mezzo, S.
2013-05-01
This paper briefly describes the set-up of the sensors and the instrumentation deployed by the French-German Research Institute of Saint-Louis (ISL) during the last NATO/ACG3/SG2 HFI Threat Data Collection (Trial PROTEUS which has been conducted during the summer 2012 in Slovenia). The main purpose of this trial was the measurements of weapon and ammunition signatures for threat warning and hostile fire indicator (HFI) system development. The used weapons vary from small caliber rifles to anti-tank rockets in ground-to-ground shooting configurations. For the ISL team, the objectives consisted in measuring the acoustic signals for detection and localization of weapon firing events. Experimental results of sound localization obtained by using ground based sensors are presented and analyzed under various conditions.
A real-time digital computer program for the simulation of a single rotor helicopter
NASA Technical Reports Server (NTRS)
Houck, J. A.; Gibson, L. H.; Steinmetz, G. G.
1974-01-01
A computer program was developed for the study of a single-rotor helicopter on the Langley Research Center real-time digital simulation system. Descriptions of helicopter equations and data, program subroutines (including flow charts and listings), real-time simulation system routines, and program operation are included. Program usage is illustrated by standard check cases and a representative flight case.
Development and validation of a blade-element mathematical model for the AH-64A Apache helicopter
NASA Technical Reports Server (NTRS)
Mansur, M. Hossein
1995-01-01
A high-fidelity blade-element mathematical model for the AH-64A Apache Advanced Attack Helicopter has been developed by the Aeroflightdynamics Directorate of the U.S. Army's Aviation and Troop Command (ATCOM) at Ames Research Center. The model is based on the McDonnell Douglas Helicopter Systems' (MDHS) Fly Real Time (FLYRT) model of the AH-64A (acquired under contract) which was modified in-house and augmented with a blade-element-type main-rotor module. This report describes, in detail, the development of the rotor module, and presents some results of an extensive validation effort.
Application of low-power, high-rate PCM telemetry in a helicopter instrumentation system
NASA Technical Reports Server (NTRS)
Thomas, Mitchel E.; Diamond, John K.
1987-01-01
The use of low-power, high-rate pulse code modulation (PCM) in a helicopter instrumentation system is examined. A Helicopter Instrumentation and Recording System (HIARS) was developed to obtain main rotor blade measurements and fuselage performance measurements. The HIARS consists of a low-power PCM telemeter, a digital PCM system, an optical rotor position sensor, and a PCM decommutation unit; the components and functions of these subsystems are described. Flight tests were conducted to evaluate the ability of the HIARS to measure aircraft parameters. The test data reveal that the PCM telemetry is applicable to helicopter instrumentation systems.
Padilla-Walker, Laura M; Nelson, Larry J
2012-10-01
The purpose of the current study was to establish a measure of helicopter parenting that was distinct from other forms of parental control, and to examine parental and behavioral correlates of helicopter parenting. Participants included 438 undergraduate students from four universities in the United States (M(age) = 19.65, SD = 2.00, range = 18-29; 320 women, 118 men), and at least one of their parents. Analyses revealed that helicopter parenting loaded on a separate factor from both behavioral and psychological control, and that helicopter parenting was positively associated with behavioral and psychological control, but not at levels suggesting complete overlap. Results also revealed that helicopter parenting was positively associated with parental involvement and with other positive aspects of the parent-child relationship; but negatively associated with parental autonomy granting and school engagement. Discussion focuses on the implications of helicopter parenting for healthy development during emerging adulthood. Copyright © 2012 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.
Self-tuning regulators for multicyclic control of helicopter vibration
NASA Technical Reports Server (NTRS)
Johnson, W.
1982-01-01
A class of algorithms for the multicyclic control of helicopter vibration and loads is derived and discussed. This class is characterized by a linear, quasi-static, frequency-domain model of the helicopter response to control; identification of the helicopter model by least-squared-error or Kalman filter methods; and a minimum variance or quadratic performance function controller. Previous research on such controllers is reviewed. The derivations and discussions cover the helicopter model; the identification problem, including both off-line and on-line (recursive) algorithms; the control problem, including both open-loop and closed-loop feedback; and the various regulator configurations possible within this class. Conclusions from analysis and numerical simulations of the regulators provide guidance in the design and selection of algorithms for further development, including wind tunnel and flight tests.
NASA Technical Reports Server (NTRS)
Toossi, Mostafa; Weisenburger, Richard; Hashemi-Kia, Mostafa
1993-01-01
This paper presents a summary of some of the work performed by McDonnell Douglas Helicopter Company under NASA Langley-sponsored rotorcraft structural dynamics program known as DAMVIBS (Design Analysis Methods for VIBrationS). A set of guidelines which is applicable to dynamic modeling, analysis, testing, and correlation of both helicopter airframes and a large variety of structural finite element models is presented. Utilization of these guidelines and the key features of their applications to vibration modeling of helicopter airframes are discussed. Correlation studies with the test data, together with the development and applications of a set of efficient finite element model checkout procedures, are demonstrated on a large helicopter airframe finite element model. Finally, the lessons learned and the benefits resulting from this program are summarized.
Apollo 8 prime crew seen during water egress training in Gulf of Mexico
NASA Technical Reports Server (NTRS)
1968-01-01
The prime crew of the Apollo 8 mission in life raft awaiting pickup by U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. They had just egressed Apollo Boilerplate 1102A, at left. Inflated bags were used to upright the boilerplate. Left to right, are Astronauts William A. Anders, lunar module pilot; James A. Lovell Jr., command module pilot; and Frank Borman, commander. A team of Manned Spacecraft Center (MSC) swimmers assisted with the training exercise.
Macrocognition in Teams and Analysis of Information Flow During the Haiti Disaster Relief
2011-06-01
supplies, clean water and electricity. TIE TIE TIE Local soccer field is now a safe landing ground for helicopters. TIE TIE TIE Five flights have...TIE TIE OR’s adequate medical supplies, clean water and electricity (generator) TIE TIE TIE Local soccer field is landing pad. TIE TIE TIE 5... soccer /helo pad, TIE TIE TIE Have own ambulances for transport. TIE TIE TIE 62 Contact: "NAME" (Ground Coordinator) Haiti cell "PHONE", "E
Apollo 8 prime crew seen during water egress training in Gulf of Mexico
1968-10-19
S68-53223 (19 Oct. 1968) --- The prime crew of the Apollo 8 mission in life raft awaiting pickup by U.S. Coast Guard helicopter during water egress training in the Gulf of Mexico. They had just egressed Apollo Boilerplate 1102A, at left. Inflated bags were used to upright the boilerplate. Left to right, are astronauts William A. Anders, lunar module pilot; and Frank Borman, commander. A team of MSC swimmers assisted with the training exercise.
2009-04-29
visual coverage armed with responsive, high volume offensive or defensive door mounted machine guns and nearly 3600 weapons coverage. In addition, a fixed...forward gun option and forward firing rocket capacity substantially expand firepower options. Team this crew and machine with the world’s premiere...escort. 1 Headquarters, U. S. Marine Corps, Vision & Strategy 2025, (Washington, DC: Headquarters, U.S. Marine Corps, June 18, 2008), 9. 2 Scott Atwood
NASA Technical Reports Server (NTRS)
Dugan, Daniel C.; Delamer, Kevin J.
2005-01-01
Because of increasing accident rates in Army helicopters in hover and low speed flight, a study was made in 1999 of accidents which could be attributed to inadequate stability augmentation. A study of civil helicopter accidents from 1993-2004 was then undertaken to pursue the issue of poor handling qualities in helicopters which, in almost all cases, had no stability augmentation. The vast majority of the mishaps studied occurred during daylight in visual meteorological condition, reducing the impact of degraded visual environments (DVE) on the results. Based on the Cooper-Harper Rating Scale, the handling qualities of many of the helicopters studied could be described as having from "very objectionable" to "major" deficiencies. These costly deficiencies have resulted in unnecessary loss of life, injury, and high dollar damage. Low cost and lightweight augmentation systems for helicopters have been developed in the past and are still being investigated. They offer the potential for significant reductions in the accident rate.
Square tracking sensor for autonomous helicopter hover stabilization
NASA Astrophysics Data System (ADS)
Oertel, Carl-Henrik
1995-06-01
Sensors for synthetic vision are needed to extend the mission profiles of helicopters. A special task for various applications is the autonomous position hold of a helicopter above a ground fixed or moving target. As a proof of concept for a general synthetic vision solution a restricted machine vision system, which is capable of locating and tracking a special target, was developed by the Institute of Flight Mechanics of Deutsche Forschungsanstalt fur Luft- und Raumfahrt e.V. (i.e., German Aerospace Research Establishment). This sensor, which is specialized to detect and track a square, was integrated in the fly-by-wire helicopter ATTHeS (i.e., Advanced Technology Testing Helicopter System). An existing model following controller for the forward flight condition was adapted for the hover and low speed requirements of the flight vehicle. The special target, a black square with a length of one meter, was mounted on top of a car. Flight tests demonstrated the automatic stabilization of the helicopter above the moving car by synthetic vision.
NASA Technical Reports Server (NTRS)
Swenson, Harry N.; Zelenka, Richard E.; Dearing, Munro G.; Hardy, Gordon H.; Clark, Raymond; Davis, Tom; Amatrudo, Gary; Zirkler, Andre
1994-01-01
NASA and the U.S. Army have designed, developed, and flight evaluated a Computer Aiding for Low Altitude Helicopter Flight (CALAHF) guidance system. This system provides guidance to the pilot for near terrain covert helicopter operations. It automates the processing of precision navigation information, helicopter mission requirements, and terrain flight guidance. The automation is presented to the pilot through symbology on a helmet-mounted display. The symbology is a 'pilot-centered' design which preserves pilot flexibility and authority over the CALAHF system's automation. An extensive flight evaluation of the system has been conducted using the U.S. Army's NUH-60 STAR (Systems Testbed for Avionics Research) research helicopter. The evaluations were flown over a multiwaypoint helicopter mission in rugged mountainous terrain, at terrain clearance altitudes from 300 to 125 ft and airspeeds from 40 to 110 knots. The results of these evaluations showed that the pilots could precisely follow the automation symbology while maintaining a high degree of situational awareness.
A comparative framework for maneuverability and gust tolerance of aerial microsystems
NASA Astrophysics Data System (ADS)
Campbell, Renee
Aerial microsystems have the potential of navigating low-altitude, cluttered environments such as urban corridors and building interiors. Reliable systems require both agility and tolerance to gusts. While many platform designs are under development, no framework currently exists to quantitatively assess these inherent bare airframe characteristics which are independent of closed loop controllers. This research develops a method to quantify the maneuverability and gust tolerance of vehicles using reachability and disturbance sensitivity sets. The method is applied to a stable flybar helicopter and an unstable flybarless helicopter, whose state space models were formed through system identification. Model-based static H∞ controllers were also implemented on the vehicles and tested in the lab using fan-generated gusts. It is shown that the flybar restricts the bare airframe's ability to maneuver in translational velocity directions. As such, the flybarless helicopter proved more maneuverable and gust tolerant than the flybar helicopter. This approach was specifically applied here to compare stable and unstable helicopter platforms; however, the framework may be used to assess a broad range of aerial microsystems.
[Rescue operations with helicopter ambulances in the Barents sea].
Haagensen, R; Sjøborg, K A; Rossing, A; Ingilae, H; Markengbakken, L; Steen, P A
2001-03-30
Search and rescue helicopters from the Royal Norwegian Air Force conduct ambulance and search and rescue missions in the Barents Sea. The team on board includes an anaesthesiologist and a paramedic. Operations in this area are challenging due to long distances, severe weather conditions and winter darkness. 147 ambulance and 29 search and rescue missions in the Barents Sea during 1994-99 were studied retrospectively with special emphasis on operative conditions and medical results. 35% of the missions were carried out in darkness. Median time from alarm to first patient contact was 3.3 hours and median duration of the missions was 7.3 hours. 48% of the missions involved ships of foreign nationality. About half of the patients had acute illness, dominated by gastrointestinal and heart diseases. Most of the injuries resulted from on-board accidents; open or closed fractures, amputations, and soft tissue damage. 90% of the patients were hospitalised; 7.5% would probably not have survived without early medical treatment and rapid transportation to hospital.
Development of the improved helicopter icing spray system (IHISS)
NASA Technical Reports Server (NTRS)
Peterson, Andrew A.; Jenks, Mark D.; Gaitskill, William H.
1989-01-01
Boeing Helicopters has been awarded a contract by the U.S. Army to design, fabricate and test a replacement for the existing Helicopter Icing Spray System (HISS). The Improved Hiss (IHISS), capable of deployment from any CH-47D helicopter, will include new icing spray nozzles and pneumatic pressure source, and a significantly larger water tank and spray boom. Results are presented for extensive bench and icing tunnel test programs used to select and modify an improved spray nozzle and validate spray boom aerodynamic characteristics. The resulting system will provide a significantly larger icing cloud with droplet characteristics closely matching natural icing conditions.
Development of Magnetorheological Fluid Elastomeric Dampers for Helicopter Stability Augmentation
2005-01-01
ABSTRACT Title of Dissertation: DEVELOPMENT OF MAGNETORHEOLOGICAL FLUID ELASTOMERIC DAMPERS FOR HELICOPTER STABILITY AUGMENTATION Wei Hu, Doctor of...motion increases. Magnetorheological (MR) fluids based dampers have controllable damping with little or no stiffness. In order to combine the...advantages of both elastomeric materials and MR flu- ids, semi-active magnetorheological fluid elastomeric (MRFE) lag dampers are developed in this thesis. In
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
A comprehensive presentation is made of the engineering analysis methods used in the design, development and evaluation of helicopters. After an introduction covering the fundamentals of helicopter rotors, configuration and operation, rotary wing history, and the analytical notation used in the text, the following topics are discussed: (1) vertical flight, including momentum, blade element and vortex theories, induced power, vertical drag and ground effect; (2) forward flight, including in addition to momentum and vortex theory for this mode such phenomena as rotor flapping and its higher harmonics, tip loss and root cutout, compressibility and pitch-flap coupling; (3) hover and forward flight performance assessment; (4) helicopter rotor design; (5) rotary wing aerodynamics; (6) rotary wing structural dynamics, including flutter, flap-lag dynamics ground resonance and vibration and loads; (7) helicopter aeroelasticity; (8) stability and control (flying qualities); (9) stall; and (10) noise.
A kinesthetic-tactual display concept for helicopter-pilot workload reduction
NASA Technical Reports Server (NTRS)
Gilson, R. D.; Dunn, R. S.; Sun, P.
1977-01-01
A kinesthetic-tactual (K-T) display concept is now under research and development (R & D) at the Ohio State University. It appears to offer considerable promise for useful application in helicopters by conveying control information via the sense of touch. This is a review of the overall R & D program including the original K-T display design, initial studies in automobile and fixed-wing vehicles, and feasibility experiments in a helicopter simulator. In addition to investigations of control and potential workload reduction, present efforts are directed toward establishing optimal design requirements for K-T helicopter displays. Potential applications, modes of usage, and the kinds of information that may be displayed in helicopter applications are discussed along with a brief forecast of future R & D. A brief description of the latest multi-axis laboratory prototype K-T display is also provided.
Helicopter Flight Procedures for Community Noise Reduction
NASA Technical Reports Server (NTRS)
Greenwood, Eric
2017-01-01
A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.
2014-09-25
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Mike Tillema, chief of Flight Operations in the Operations Support Division of NASA Center Operations, center, discusses plans for a training session to practice use of a Bambi Bucket in honing firefighting techniques. Bill Martin, a URS Federal Technical Services pilot in NASA Flight Operations, is on the left, with crew chief Mark Smith, also of URS. Firefighters respond to wildfires with teams on the ground and in the air. The most up-to-date tools include helicopters that use Bambi Buckets large quantities of water. NASA Flight Operations teams are training to perfect the skills needed to ensure they are ready to use tools, such as the Bambi Bucket, in the event of an out-of-control blaze at the spaceport. Photo credit: NASA/Frankie Martin
Military surgery in the 21st century.
Mellor, S G
2006-01-01
The battlefield has changed. UK and US Forces in Iraq and Afghanistan are engaged in asymmetric, three bloc warfare. Three bloc warfare indicates that what is effectively war-fighting occurs in parallel with peace-keeping and humanitarian operations. Casualties are numerically lower than in previous conflicts but many survivors are horrifically mutilated as body armour prevents the fatal injury in this severely injured group. Rapid evacuation of severely injured from the point of injury, usually by helicopter, provides extreme challenges for surgical teams. Damage control surgery requires support in the form of environmental control, adequate diagnostics (including computerised tomography) and effective intensive care facilities if the patient is to survive. Teams need to be highly trained and to have experience of complex surgery and trauma. They must be adequately resourced if lives are to be saved.
Power transfer systems for future navy helicopters. Final report 25 Jun 70--28 Jun 72
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossler, R.B. Jr.
1972-11-01
The purpose of this program was to conduct an analysis of helicopter power transfer systems (pts), both conventional and advanced concept type, with the objective of reducing specific weights and improving reliability beyond present values. The analysis satisfied requirements specified for a 200,000 pound cargo transport helicopter (CTH), a 70,000 pound heavy assault helicopter, and a 15,000 pound non-combat search and rescue helicopter. Four selected gearing systems (out of seven studied), optimized for lightest weight and equal reliability for the CTH, using component proportioning via stress and stiffness equations, had no significant difference between their aircraft payloads. All optimized ptsmore » were approximately 70% of statistically predicted weight. Reliability increase is predicted via gearbox derating using Weibull relationships. Among advanced concepts, the Turbine Integrated Geared Rotor was competitive for weight, technology availability and reliability increase but handicapped by a special engine requirement. The warm cycle system was found not competitive. Helicopter parametric weight analysis is shown. Advanced development Plans are presented for the pts for the CTH, including total pts system, selected pts components, and scale model flight testing in a Kaman HH2 helicopter.« less
NASA Technical Reports Server (NTRS)
Jacobsen, R. A.; Bivens, C. C.; Rediess, N. A.; Hindson, W. S.; Aiken, E. W.; Aiken, Edwin W. (Technical Monitor)
1995-01-01
The Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) is a UH-60A Black Hawk helicopter that is being modified by the US Army and NASA for flight systems research. The principal systems that are being installed in the aircraft are a Helmet Mounted Display (HMD) and imaging system, and a programmable full authority Research Flight Control System (RFCS). In addition, comprehensive instrumentation of both the rigid body of the helicopter and the rotor system is provided. The paper will describe the capabilities of these systems and their current state of development. A brief description of initial research applications is included. The wide (40 X 60 degree) field-of-view HMD system has been provided by Kaiser Electronics. It can be configured as a monochromatic system for use in bright daylight conditions, a two color system for darker ambients, or a full color system for use in night viewing conditions. Color imagery is achieved using field sequential video and a mechanical color wheel. In addition to the color symbology, high resolution computer-gene rated imagery from an onboard Silicon Graphics Reality Engine Onyx processor is available for research in virtual reality applications. This synthetic imagery can also be merged with real world video from a variety of imaging systems that can be installed easily on the front of the helicopter. These sensors include infrared or tv cameras, or potentially small millimeter wave radars. The Research Flight Control System is being developed for the aircraft by a team of contractors led by Boeing Helicopters. It consists of a full authority high bandwidth fly-by-wire actuators that drive the main rotor swashplate actuators and the tail rotor actuator in parallel. This arrangement allows the basic mechanical flight control system of the Black Hawk to be retained so that the safety pilot can monitor the operation of the system through the action of his own controls. The evaluation pilot will signal the fly-by-wire actuators through the flight computer from electrical sidearm controllers located in the right hand cockpit. The system will have very substantial input/output capacity and impressive computational power. These systems are installed in the aircraft using predominantly a MIL-STD 1553B data bus architecture. Sensor data from the RFCS, the basic aircraft and rotor system instrumentation including navigation information, and the HMD system are easily exchanged among user systems, or are available at the systems operator station located in the cabin for real time monitoring or data recording.
NASA Technical Reports Server (NTRS)
Davis, S. J.; Egolf, T. A.
1980-01-01
Acoustic characteristics predicted using a recently developed computer code were correlated with measured acoustic data for two helicopter rotors. The analysis, is based on a solution of the Ffowcs-Williams-Hawkings (FW-H) equation and includes terms accounting for both the thickness and loading components of the rotational noise. Computations are carried out in the time domain and assume free field conditions. Results of the correlation show that the Farrassat/Nystrom analysis, when using predicted airload data as input, yields fair but encouraging correlation for the first 6 harmonics of blade passage. It also suggests that although the analysis represents a valuable first step towards developing a truly comprehensive helicopter rotor noise prediction capability, further work remains to be done identifying and incorporating additional noise mechanisms into the code.
Laser development for optimal helicopter obstacle warning system LADAR performance
NASA Astrophysics Data System (ADS)
Yaniv, A.; Krupkin, V.; Abitbol, A.; Stern, J.; Lurie, E.; German, A.; Solomonovich, S.; Lubashitz, B.; Harel, Y.; Engart, S.; Shimoni, Y.; Hezy, S.; Biltz, S.; Kaminetsky, E.; Goldberg, A.; Chocron, J.; Zuntz, N.; Zajdman, A.
2005-04-01
Low lying obstacles present immediate danger to both military and civilian helicopters performing low-altitude flight missions. A LADAR obstacle detection system is the natural solution for enhancing helicopter safety and improving the pilot situation awareness. Elop is currently developing an advanced Surveillance and Warning Obstacle Ranging and Display (SWORD) system for the Israeli Air Force. Several key factors and new concepts have contributed to system optimization. These include an adaptive FOV, data memorization, autonomous obstacle detection and warning algorithms and the use of an agile laser transmitter. In the present work we describe the laser design and performance and discuss some of the experimental results. Our eye-safe laser is characterized by its pulse energy, repetition rate and pulse length agility. By dynamically controlling these parameters, we are able to locally optimize the system"s obstacle detection range and scan density in accordance with the helicopter instantaneous maneuver.
A comprehensive plan for helicopter drag reduction
NASA Technical Reports Server (NTRS)
Williams, R. M.; Montana, P. S.
1975-01-01
Current helicopters have parasite drag levels 6 to 10 times as great as fixed wing aircraft. The commensurate poor cruise efficiency results in a substantial degradation of potential mission capability. The paper traces the origins of helicopter drag and shows that the problem (primarily due to bluff body flow separation) can be solved by the adoption of a comprehensive research and development plan. This plan, known as the Fuselage Design Methodology, comprises both nonaerodynamic and aerodynamic aspects. The aerodynamics are discussed in detail and experimental and analytical programs are described which will lead to a solution of the bluff body problem. Some recent results of work conducted at the Naval Ship Research and Development Center (NSRDC) are presented to illustrate these programs. It is concluded that a 75-per cent reduction of helicopter drag is possible by the full implementation of the Fuselage Design Methodology.
Study of Cost/Benefit Tradeoffs Available in Helicopter Noise Technology Applications
1980-01-01
Report No. FAA-EE-80-5 .,,-vx s?Pi iO Oi CO 00 o STUDY OF COST/ BENEFIT TRADEOFFS AVAILABLE IN HELICOPTER NOISE TECHNOLOGY APPLICATIONS R.H...Documentation Page ). Report No. FAA-EE-80-5 2. Government Accession No. i. Title ord Subtitle Study of Cost/ Benefit Tradeoffs Available in...Abstract This study investigated cost/ benefit tradeoffs using the case histories of four helicopters for which design and development were complete, and in
A Prototype Flight-Deck Airflow Hazard Visualization System
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.
2004-01-01
Airflow hazards such as turbulence, vortices, or low-level wind shear can pose a threat to landing aircraft and are especially dangerous to helicopters. Because pilots usually cannot see airflow, they may be unaware of the extent of the hazard. We have developed a prototype airflow hazard visual display for use in helicopter cockpits to alleviate this problem. We report on the results of a preliminary usability study of our airflow hazard visualization system in helicopter-shipboard operations.
Rotor design for maneuver performance
NASA Technical Reports Server (NTRS)
Berry, John D.; Schrage, Daniel
1986-01-01
A method of determining the sensitivity of helicopter maneuver performance to changes in basic rotor design parameters is developed. Maneuver performance is measured by the time required, based on a simplified rotor/helicopter performance model, to perform a series of specified maneuvers. This method identifies parameter values which result in minimum time quickly because of the inherent simplicity of the rotor performance model used. For the specific case studied, this method predicts that the minimum time required is obtained with a low disk loading and a relatively high rotor solidity. The method was developed as part of the winning design effort for the American Helicopter Society student design competition for 1984/1985.
Helicopter transmission arrangements with split-torque gear trains
NASA Technical Reports Server (NTRS)
White, G.
1983-01-01
As an alternative to component development, the case for improved drive-train configuration is argued. In particular, the use of torque-splitting gear trains is proposed as a practicable means of improving the effectiveness of helicopter main gearboxes.
NASA Technical Reports Server (NTRS)
Murthy, T. Sreekanta
1988-01-01
Several key issues involved in the application of formal optimization technique to helicopter airframe structures for vibration reduction are addressed. Considerations which are important in the optimization of real airframe structures are discussed. Considerations necessary to establish relevant set of design variables, constraints and objectives which are appropriate to conceptual, preliminary, detailed design, ground and flight test phases of airframe design are discussed. A methodology is suggested for optimization of airframes in various phases of design. Optimization formulations that are unique to helicopter airframes are described and expressions for vibration related functions are derived. Using a recently developed computer code, the optimization of a Bell AH-1G helicopter airframe is demonstrated.
NASA Technical Reports Server (NTRS)
Simpson, Carol A.
1990-01-01
The U.S. Army Crew Station Research and Development Facility uses vintage 1984 speech recognizers. An evaluation was performed of newer off-the-shelf speech recognition devices to determine whether newer technology performance and capabilities are substantially better than that of the Army's current speech recognizers. The Phonetic Discrimination (PD-100) Test was used to compare recognizer performance in two ambient noise conditions: quiet office and helicopter noise. Test tokens were spoken by males and females and in isolated-word and connected-work mode. Better overall recognition accuracy was obtained from the newer recognizers. Recognizer capabilities needed to support the development of human factors design requirements for speech command systems in advanced combat helicopters are listed.
Vercruysse, Gary A; Friese, Randall S; Khalil, Mazhar; Ibrahim-Zada, Irada; Zangbar, Bardiya; Hashmi, Ammar; Tang, Andrew; O'Keeffe, Terrence; Kulvatunyou, Narong; Green, Donald J; Gries, Lynn; Joseph, Bellal; Rhee, Peter M
2015-03-01
Mortality benefit has been demonstrated for trauma patients transported via helicopter but at great cost. This study identified patients who did not benefit from helicopter transport to our facility and demonstrates potential cost savings when transported instead by ground. We performed a 6-year (2007-2013) retrospective analysis of all trauma patients presenting to our center. Patients with a known mode of transfer were included in the study. Patients with missing data and those who were dead on arrival were excluded from the study. Patients were then dichotomized into helicopter transfer and ground transfer groups. A subanalysis was performed between minimally injured patients (ISS < 5) in both the groups after propensity score matching for demographics, injury severity parameters, and admission vital parameters. Groups were then compared for hospital and emergency department length of stay, early discharge, and mortality. Of 5,202 transferred patients, 18.9% (981) were transferred via helicopter and 76.7% (3,992) were transferred via ground transport. Helicopter-transferred patients had longer hospital (p = 0.001) and intensive care unit (p = 0.001) stays. There was no difference in mortality between the groups (p = 0.6).On subanalysis of minimally injured patients there was no difference in hospital length of stay (p = 0.1) and early discharge (p = 0.6) between the helicopter transfer and ground transfer group. Average helicopter transfer cost at our center was $18,000, totaling $4,860,000 for 270 minimally injured helicopter-transferred patients. Nearly one third of patients transported by helicopter were minimally injured. Policies to identify patients who do not benefit from helicopter transport should be developed. Significant reduction in transport cost can be made by judicious selection of patients. Education to physicians calling for transport and identification of alternate means of transportation would be both safe and financially beneficial to our system. Epidemiologic study, level III. Therapeutic study, level IV.
The Effects of Ambient Conditions on Helicopter Rotor Source Noise Modeling
NASA Technical Reports Server (NTRS)
Schmitz, Frederic H.; Greenwood, Eric
2011-01-01
A new physics-based method called Fundamental Rotorcraft Acoustic Modeling from Experiments (FRAME) is used to demonstrate the change in rotor harmonic noise of a helicopter operating at different ambient conditions. FRAME is based upon a non-dimensional representation of the governing acoustic and performance equations of a single rotor helicopter. Measured external noise is used together with parameter identification techniques to develop a model of helicopter external noise that is a hybrid between theory and experiment. The FRAME method is used to evaluate the main rotor harmonic noise of a Bell 206B3 helicopter operating at different altitudes. The variation with altitude of Blade-Vortex Interaction (BVI) noise, known to be a strong function of the helicopter s advance ratio, is dependent upon which definition of airspeed is flown by the pilot. If normal flight procedures are followed and indicated airspeed (IAS) is held constant, the true airspeed (TAS) of the helicopter increases with altitude. This causes an increase in advance ratio and a decrease in the speed of sound which results in large changes to BVI noise levels. Results also show that thickness noise on this helicopter becomes more intense at high altitudes where advancing tip Mach number increases because the speed of sound is decreasing and advance ratio increasing for the same indicated airspeed. These results suggest that existing measurement-based empirically derived helicopter rotor noise source models may give incorrect noise estimates when they are used at conditions where data were not measured and may need to be corrected for mission land-use planning purposes.
Optimal short-range trajectories for helicopters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slater, G.L.; Erzberger, H.
1982-12-01
An optimal flight path algorithm using a simplified altitude state model and a priori climb cruise descent flight profile was developed and applied to determine minimum fuel and minimum cost trajectories for a helicopter flying a fixed range trajectory. In addition, a method was developed for obtaining a performance model in simplified form which is based on standard flight manual data and which is applicable to the computation of optimal trajectories. The entire performance optimization algorithm is simple enough that on line trajectory optimization is feasible with a relatively small computer. The helicopter model used is the Silorsky S-61N. Themore » results show that for this vehicle the optimal flight path and optimal cruise altitude can represent a 10% fuel saving on a minimum fuel trajectory. The optimal trajectories show considerable variability because of helicopter weight, ambient winds, and the relative cost trade off between time and fuel. In general, reasonable variations from the optimal velocities and cruise altitudes do not significantly degrade the optimal cost. For fuel optimal trajectories, the optimum cruise altitude varies from the maximum (12,000 ft) to the minimum (0 ft) depending on helicopter weight.« less
Tests with an integrated helmet system for the TIGER helicopter
NASA Astrophysics Data System (ADS)
Boehm, Hans-Dieter V.; Evers, Carl; Stenner, K.-H.
1998-08-01
The TIGER helicopter is under development by the MODs of France and Germany for their armies. The initial German requirement was for anti-tank missions only. This task has been extended to support missions which resulted in an upgrade to the German 'UH-TIGER' variant. German MOD is planning to procure 212 UH-TIGER helicopters armed with TRIGAT-, HOT anti-tank missiles, STINGER air-to-air missiles, 68 mm rockets and a gun pod with a 12.7 mm gun.
Rotorcraft handling-qualities design criteria development
NASA Technical Reports Server (NTRS)
Aiken, Edwin W.; Lebacqz, J. Victor; Chen, Robert T. N.; Key, David L.
1988-01-01
Joint NASA/Army efforts at the Ames Research Center to develop rotorcraft handling-qualities design criteria began in earnest in 1975. Notable results were the UH-1H VSTOLAND variable stability helicopter, the VFA-2 camera-and-terrain-board simulator visual system, and the generic helicopter real-time mathematical model, ARMCOP. An initial series of handling-qualities studies was conducted to assess the effects of rotor design parameters, interaxis coupling, and various levels of stability and control augmentation. The ability to conduct in-flight handling-qualities research was enhanced by the development of the NASA/Army CH-47 variable-stability helicopter. Research programs conducted using this vehicle include vertical-response investigations, hover augmentation systems, and the effects of control-force characteristics. The handling-qualities data base was judged to be sufficient to allow an update of the military helicopter handling-qualities specification, MIL-H-8501. These efforts, including not only the in-house experimental work but also contracted research and collaborative programs performed under the auspices of various international agreements. The report concludes by reviewing the topics that are currently most in need of work, and the plans for addressing these topics.
NASA Technical Reports Server (NTRS)
Petot, D.; Loiseau, H.
1982-01-01
Unsteady aerodynamic methods adopted for the study of aeroelasticity in helicopters are considered with focus on the development of a semiempirical model of unsteady aerodynamic forces acting on an oscillating profile at high incidence. The successive smoothing algorithm described leads to the model's coefficients in a very satisfactory manner.
Code of Federal Regulations, 2013 CFR
2013-07-01
... REGULATIONS GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS..., seaplanes, helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered... person, material or equipment by parachute, balloon, helicopter or other means onto or from project lands...
2009-10-10
A Russian Search and Rescue team All Terrain Vehicle (ATV) brings Expedition 20 Flight Engineer Michael Barratt to his helicopter shortly after he and Expedition 20 Commander Gennady Padalka, and spaceflight participant Guy Laliberté landed their Soyuz TMA-14 capsule near the town of Arkalyk, Kazakhstan on Sunday, Oct. 11, 2009. Padalka and Barratt are returning from six months onboard the International Space Station, along with Laliberté who arrived at the station on Oct. 2 with Expedition 21 Flight Engineers Jeff Williams and Maxim Suraev aboard the Soyuz TMA-16 spacecraft. Photo Credit: (NASA/Bill Ingalls)
Expedition 41 Soyuz TMA-13M Landing
2014-11-10
A Russian search and rescue team member looks out a helicopter window as they fly from Kustanay, Kazakhstan to support the Soyuz TMA-13M spacecraft landing with Expedition 41 Commander Max Suraev of the Russian Federal Space Agency (Roscosmos), NASA Flight Engineer Reid Wiseman and Flight Engineer Alexander Gerst of the European Space Agency (ESA) on Monday, Nov. 10, 2014. Suraev, Wiseman and Gerst returned to Earth after more than five months onboard the International Space Station where they served as members of the Expedition 40 and 41 crews. Photo Credit: (NASA/Bill Ingalls)
Expedition 41 Soyuz TMA-13M Landing
2014-11-10
Russian Search and Rescue helicopter teams wait to take off from Kustanay, Kazakhstan to support the Soyuz TMA-13M spacecraft landing with Expedition 41 Commander Max Suraev of the Russian Federal Space Agency (Roscosmos), NASA Flight Engineer Reid Wiseman and Flight Engineer Alexander Gerst of the European Space Agency (ESA) on Monday, Nov. 10, 2014. Suraev, Wiseman and Gerst returned to Earth after more than five months onboard the International Space Station where they served as members of the Expedition 40 and 41 crews. Photo Credit: (NASA/Bill Ingalls)
Expedition 41 Soyuz TMA-13M Landing
2014-11-10
Russian Search and Rescue helicopter tail rotors are seen as teams wait to take off from Kustanay, Kazakhstan to support the Soyuz TMA-13M spacecraft landing with Expedition 41 Commander Max Suraev of the Russian Federal Space Agency (Roscosmos), NASA Flight Engineer Reid Wiseman and Flight Engineer Alexander Gerst of the European Space Agency (ESA) on Monday, Nov. 10, 2014. Suraev, Wiseman and Gerst returned to Earth after more than five months onboard the International Space Station where they served as members of the Expedition 40 and 41 crews. Photo Credit: (NASA/Bill Ingalls)
2008-06-13
caliber howitzers and mortars (pieces of 300 mm or more) were not always kept in an army’s inventory . One way the Central Powers attempted to initially...missions as these arise. Lift helicopters (primarily the UH-60 Blackhawks and CH-47 Chinooks in the Army’s current inventory ) can potentially...serve many functions at the BCT level, to include: troop transport, medical evacuation, and aerial resupply. In today’s operatio environment, if all
NASA/FAA helicopter simulator workshop
NASA Technical Reports Server (NTRS)
Larsen, William E. (Editor); Randle, Robert J., Jr. (Editor); Bray, Richard S. (Editor); Zuk, John (Editor)
1992-01-01
A workshop was convened by the FAA and NASA for the purpose of providing a forum at which leading designers, manufacturers, and users of helicopter simulators could initiate and participate in a development process that would facilitate the formulation of qualification standards by the regulatory agency. Formal papers were presented, special topics were discussed in breakout sessions, and a draft FAA advisory circular defining specifications for helicopter simulators was presented and discussed. A working group of volunteers was formed to work with the National Simulator Program Office to develop a final version of the circular. The workshop attracted 90 individuals from a constituency of simulator manufacturers, training organizations, the military, civil regulators, research scientists, and five foreign countries.
2014-05-01
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Bill Martin, a URS Federal Technical Services helicopter pilot in the agency's Aircraft Operations, is interviewed near the Shuttle Landing Facility. He discussed working with spaceport Fire Rescue personnel to develop procedures for using agency helicopters to transport injured patients to a local hospital. The training activity took place in Kennedy's Launch Complex 39 turn-basin parking lot. It was part of a new training program developed by Kennedy's Fire Rescue department along with NASA Aircraft Operations to sharpen the skills needed to help rescue personnel learn how to collaborate with helicopter pilots in taking injured patients to hospitals as quickly as possible. Photo credit: NASA/Dimitri Gerondidakis
2014-05-01
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Bill Martin, a URS Federal Technical Services helicopter pilot in the agency's Aircraft Operations, is interviewed near the Shuttle Landing Facility. He discussed working with spaceport Fire Rescue personnel to develop procedures for using agency helicopters to transport injured patients to a local hospital. The training activity took place in Kennedy's Launch Complex 39 turn-basin parking lot. It was part of a new training program developed by Kennedy's Fire Rescue department along with NASA Aircraft Operations to sharpen the skills needed to help rescue personnel learn how to collaborate with helicopter pilots in taking injured patients to hospitals as quickly as possible. Photo credit: NASA/Dimitri Gerondidakis
2014-05-01
CAPE CANAVERAL, Fla. -- At NASA's Kennedy Space Center in Florida, Bill Martin, a URS Federal Technical Services helicopter pilot in the agency's Aircraft Operations, is interviewed near the Shuttle Landing Facility. He discussed working with spaceport Fire Rescue personnel to develop procedures for using agency helicopters to transport injured patients to a local hospital. The training activity took place in Kennedy's Launch Complex 39 turn-basin parking lot. It was part of a new training program developed by Kennedy's Fire Rescue department along with NASA Aircraft Operations to sharpen the skills needed to help rescue personnel learn how to collaborate with helicopter pilots in taking injured patients to hospitals as quickly as possible. Photo credit: NASA/Dimitri Gerondidakis
Helicopter precision approach capability using the Global Positioning System
NASA Technical Reports Server (NTRS)
Kaufmann, David N.
1992-01-01
The period between 1 July and 31 December, 1992, was spent developing a research plan as well as a navigation system document and flight test plan to investigate helicopter precision approach capability using the Global Positioning System (GPS). In addition, all hardware and software required for the research was acquired, developed, installed, and verified on both the test aircraft and the ground-based reference station.
Driscoll, R S
2001-04-01
Medical evacuation helicopters are taken for granted in today's military. However, the first use of helicopters for this purpose in the Korean War was not done intentionally but as a result of the necessity of moving patients rapidly over difficult Korean terrain and of the early ebbing of the main battle line. The objective of this essay is to increase the historical awareness of military medical evacuation helicopters in the Korean War during this 50th anniversary year. By describing the many challenges and experiences encountered in implementing the use of helicopters for evacuation, the reader will appreciate how a technology developed for another use helped in the success of evacuating nearly 22,000 patients while contributing to establishing a mortality rate of wounded of 2.4%. The preparation to write this essay included archival research of historical reports, records, and oral histories from the archives of the U.S. Army Center for Military History. Additionally, a search of journal articles written during and after the Korean War was conducted. The result is a comprehensive description of the use of medical evacuation helicopters in the Korean War.
NASA Technical Reports Server (NTRS)
Piasecki, F. N.
1975-01-01
A hybrid VTOL airship which is combined with helicopters is evaluated. The static lift of the airship supports approximately the full empty weight of the entire assembly. The helicopter rotors furnish the lift to support the payload as well as the propulsion and control about all axes. Thus existing helicopters, with no new technology required, can be made to lift payloads of ten times the capacity of each one alone, and considerably more than that of any airship built so far. A vehicle is described which has a 75-ton payload, based on four existing CH-53D helicopters and an airship of 3,600,000 cu. ft. The method of interconnection is described along with discussion of control, instrumentation, drive system and critical design conditions. The vertical lift and positioning capabilities of this vehicle far exceed any other means available today, yet can be built with a minimum of risk, development cost and time.
Investigation of Current Methods to Identify Helicopter Gear Health
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Lewicki, David G.; Le, Dy D.
2007-01-01
This paper provides an overview of current vibration methods used to identify the health of helicopter transmission gears. The gears are critical to the transmission system that provides propulsion, lift and maneuvering of the helicopter. This paper reviews techniques used to process vibration data to calculate conditions indicators (CI's), guidelines used by the government aviation authorities in developing and certifying the Health and Usage Monitoring System (HUMS), condition and health indicators used in commercial HUMS, and different methods used to set thresholds to detect damage. Initial assessment of a method to set thresholds for vibration based condition indicators applied to flight and test rig data by evaluating differences in distributions between comparable transmissions are also discussed. Gear condition indicator FM4 values are compared on an OH58 helicopter during 14 maneuvers and an OH58 transmission test stand during crack propagation tests. Preliminary results show the distributions between healthy helicopter and rig data are comparable and distributions between healthy and damaged gears show significant differences.
Investigation of Current Methods to Identify Helicopter Gear Health
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Lewicki, David G.; Le, Dy D.
2007-01-01
This paper provides an overview of current vibration methods used to identify the health of helicopter transmission gears. The gears are critical to the transmission system that provides propulsion, lift and maneuvering of the helicopter. This paper reviews techniques used to process vibration data to calculate conditions indicators (CI s), guidelines used by the government aviation authorities in developing and certifying the Health and Usage Monitoring System (HUMS), condition and health indicators used in commercial HUMS, and different methods used to set thresholds to detect damage. Initial assessment of a method to set thresholds for vibration based condition indicators applied to flight and test rig data by evaluating differences in distributions between comparable transmissions are also discussed. Gear condition indicator FM4 values are compared on an OH58 helicopter during 14 maneuvers and an OH58 transmission test stand during crack propagation tests. Preliminary results show the distributions between healthy helicopter and rig data are comparable and distributions between healthy and damaged gears show significant differences.
Code of Federal Regulations, 2014 CFR
2014-07-01
... GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.4..., helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices or..., material or equipment by parachute, balloon, helicopter or other means onto or from project lands or waters...
Code of Federal Regulations, 2012 CFR
2012-07-01
... GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.4..., helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices or..., material or equipment by parachute, balloon, helicopter or other means onto or from project lands or waters...
Code of Federal Regulations, 2011 CFR
2011-07-01
... GOVERNING PUBLIC USE OF WATER RESOURCE DEVELOPMENT PROJECTS ADMINISTERED BY THE CHIEF OF ENGINEERS § 327.4..., helicopters, ultra-light aircraft, motorized hang gliders, hot air balloons, any non-powered flight devices or..., material or equipment by parachute, balloon, helicopter or other means onto or from project lands or waters...
Evaluation of the usefulness of various simulation technology options for TERPS enhancement
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Sorensen, J. A.
1986-01-01
Current approved terminal instrument procedures (TERPS) do not permit the full exploitation of the helicopter's unique flying characteristics. Enhanced TERPS need to be developed for a host of non-standard landing sites and navigation aids. Precision navigation systems such as microwave landing systems (MLS) and the Global Positioning System (GPS) open the possibility of curved paths, steep glide slopes, and decelerating helicopter approaches. This study evaluated the feasibility, benefits, and liabilities of using helicopter cockpit simulators in place of flight testing to develop enhanced TERPS criteria for non-standard flight profiles and navigation equipment. Near-term (2 to 5 year) requirements for conducting simulator studies to verify that they produce suitable data comparable to that obtained from previous flight tests are discussed. The long-term (5 to 10 year) research and development requirements to provide necessary modeling for continued simulator-based testing to develop enhanced TERPS criteria are also outlined.
Full-Scale Crash Test and Finite Element Simulation of a Composite Prototype Helicopter
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Boitnott, Richard L.; Lyle, Karen H.
2003-01-01
A full-scale crash test of a prototype composite helicopter was performed at the Impact Dynamics Research Facility at NASA Langley Research Center in 1999 to obtain data for validation of a finite element crash simulation. The helicopter was the flight test article built by Sikorsky Aircraft during the Advanced Composite Airframe Program (ACAP). The composite helicopter was designed to meet the stringent Military Standard (MIL-STD-1290A) crashworthiness criteria and was outfitted with two crew and two troop seats and four anthropomorphic dummies. The test was performed at 38-ft/s vertical and 32.5-ft/s horizontal velocity onto a rigid surface. An existing modal-vibration model of the Sikorsky ACAP helicopter was converted into a model suitable for crash simulation. A two-stage modeling approach was implemented and an external user-defined subroutine was developed to represent the complex landing gear response. The crash simulation was executed with a nonlinear, explicit transient dynamic finite element code. Predictions of structural deformation and failure, the sequence of events, and the dynamic response of the airframe structure were generated and the numerical results were correlated with the experimental data to validate the simulation. The test results, the model development, and the test-analysis correlation are described.
A feasibility study regarding the addition of a fifth control to a rotorcraft in-flight simulator
NASA Technical Reports Server (NTRS)
Turner, Simon; Andrisani, Dominick, II
1992-01-01
The addition of a large movable horizontal tail surface to the control system of a rotorcraft in-flight simulator being developed from a Sikorsky UH-60A Black Hawk Helicopter is evaluated. The capabilities of the control surface as a trim control and as an active control are explored. The helicopter dynamics are modeled using the Generic Helicopter simulation program developed by Sikorsky Aircraft. The effect of the horizontal tail on the helicopter trim envelope is examined by plotting trim maps of the aircraft attitude and controls as a function of the flight speed and horizontal tail incidence. The control power of the tail surface relative to that of the other controls is examined by comparing control derivatives extracted from the simulation program over the flight speed envelope. The horizontal tail's contribution as an active control is evaluated using an explicit model following control synthesis involving a linear model of the helicopter in steady, level flight at a flight speed of eighty knots. The horizontal tail is found to provide additional control flexibility in the longitudinal axis. As a trim control, it provides effective control of the trim pitch attitude at mid to high forward speeds. As an active control, the horizontal tail provides useful pitching moment generating capabilities at mid to high forward speeds.
Development of Fuzzy Logic Controller for Quanser Bench-Top Helicopter
NASA Astrophysics Data System (ADS)
Jafri, M. H.; Mansor, H.; Gunawan, T. S.
2017-11-01
Bench-top helicopter is a laboratory scale helicopter that usually used as a testing bench of the real helicopter behavior. This helicopter is a 3 Degree of Freedom (DOF) helicopter which works by three different axes wshich are elevation, pitch and travel. Thus, fuzzy logic controller has been proposed to be implemented into Quanser bench-top helicopter because of its ability to work with non-linear system. The objective for this project is to design and apply fuzzy logic controller for Quanser bench-top helicopter. Other than that, fuzzy logic controller performance system has been simulated to analyze and verify its behavior over existing PID controller by using Matlab & Simulink software. In this research, fuzzy logic controller has been designed to control the elevation angle. After simulation has been performed, it can be seen that simulation result shows that fuzzy logic elevation control is working for 4°, 5° and 6°. These three angles produce zero steady state error and has a fast response. Other than that, performance comparisons have been performed between fuzzy logic controller and PID controller. Fuzzy logic elevation control has a better performance compared to PID controller where lower percentage overshoot and faster settling time have been achieved in 4°, 5° and 6° step response test. Both controller are have zero steady state error but fuzzy logic controller is managed to produce a better performance in term of settling time and percentage overshoot which make the proposed controller is reliable compared to the existing PID controller.
Digital resolver for helicopter model blade motion analysis
NASA Technical Reports Server (NTRS)
Daniels, T. S.; Berry, J. D.; Park, S.
1992-01-01
The paper reports the development and initial testing of a digital resolver to replace existing analog signal processing instrumentation. Radiometers, mounted directly on one of the fully articulated blades, are electrically connected through a slip ring to analog signal processing circuitry. The measured signals are periodic with azimuth angle and are resolved into harmonic components, with 0 deg over the tail. The periodic nature of the helicopter blade motion restricts the frequency content of each flapping and yaw signal to the fundamental and harmonics of the rotor rotational frequency. A minicomputer is employed to collect these data and then plot them graphically in real time. With this and other information generated by the instrumentation, a helicopter test pilot can then adjust the helicopter model's controls to achieve the desired aerodynamic test conditions.
Review of aeromedical intra-aortic balloon pump retrieval in New South Wales.
Burns, Brian; Reid, Cliff; Habig, Karel
2013-02-01
The intra-aortic balloon pump (IABP) was first introduced in 1968 to augment cardiac output in the haemodynamically unstable patient and serve as a bridge to treatment options such as coronary artery bypass grafting and cardiac transplantation. Transfer of IABP-dependent patients for upgrade of clinical care is increasingly common and safe. In Australia, percutaneous coronary intervention centres can be located outside cardiothoracic surgical centres. This study reviews IABP medical retrieval by a doctor/paramedic team after implementation of a standardized protocol. This was a retrospective case series review, using descriptive statistics. Greater Sydney Area Helicopter Emergency Service carried out 22 cases from 1 May 2007 to 31 December 2009. Median age was 62 years [interquartile range (IQR) 51-83], 67% were male. In all, 63% of patients were retrieved on inotropic support, 29% overall received invasive ventilation. Highest frequency indications were myocardial infarction, cardiogenic shock and bridge to coronary artery bypass grafts. There were complications during 18% of all retrievals and no adverse outcomes. Of the patients, 67% (14/21) were retrieved by road and 33% (7/21) by helicopter (longest distance 500 km). Median stabilization time by a retrieval team was 1 h 15 min (IQR 50 min to 3 h 30 min). Median mission time was 4 h 55 min (IQR 3 h 50 min to 8 h 54 min). Our system offers a safe method of IABP medical retrieval. The doctor and paramedic combination complements strengths in logistics and critical care. This serves as a guide to other systems looking to put in place a similar model of care.
Control of a human-powered helicopter in hover
NASA Technical Reports Server (NTRS)
Totah, Joseph J.; Patterson, William
1988-01-01
The study of a control system for the Da Vinci 2 human-powered helicopter in hovering flight is documented. This helicopter has two very large, slowly rotating rotor blades and is considered to be unstable in hover. The control system is designed to introduce stability in hover by maintaining level rotors through the use of rotor tip mounted control surfaces. A five degree of freedom kinematic model was developed to study this control system and is documented. Results of this study show that the unaugmented configuration is unstable due to the large Lock Number, and the augmented configuration is stable. The role of NASA in this study included the development and analysis of the kinematic model and control laws. Both analytical and numerical techniques were used.
Evacuation of a Tertiary Neonatal Centre: Lessons from the 2016 Kumamoto Earthquakes
Iwata, Osuke; Kawase, Akihiko; Iwai, Masanori; Wada, Kazuko
2017-01-01
Background Newborn infants hospitalised in the neonatal intensive care unit (NICU) are vulnerable to natural disasters. However, publications on evacuation from NICUs are sparse. The 2016 Kumamoto Earthquakes caused serious damage to Kumamoto City Hospital and its level III regional core NICU. Local/neighbour NICU teams and the disaster-communication team of a neonatal academic society cooperated to evacuate 38 newborn infants from the ward. Objective The aim of this paper was to highlight potential key factors to improve emergency NICU evacuation and coordination of hospital transportation following natural disasters. Methods Background variables including clinical risk scores and timing/destination of transportation were compared between infants, who subsequently were transferred to destinations outside of Kumamoto Prefecture, and their peers. Results All but 1 of the infants were successfully evacuated from their NICU within 8 h. One very-low-birth-weight infant developed moderate hypothermia following transportation. Fourteen infants were transferred to NICUs outside of Kumamoto Prefecture, which was associated with the diagnosis of congenital heart disease, dependence on respiratory support, higher risk scores, and longer elapsed time from the decision to departure. There was difficulty in arranging helicopter transportation because the coordination office of the Disaster Medical Assistance Team had requisitioned most air/ground ambulances and only helped arrange ground transportations for 13 low-risk infants. Transportation for all 10 high-risk infants (risk scores greater than or equal to the upper quartile) was arranged by local/neighbour NICUs. Conclusions Although the overall evacuation process was satisfactory, potential risks of relying on the adult-based emergency transportation system were highlighted. A better system needs to be developed urgently to put appropriate priority on vulnerable infants. PMID:28437783
Evacuation of a Tertiary Neonatal Centre: Lessons from the 2016 Kumamoto Earthquakes.
Iwata, Osuke; Kawase, Akihiko; Iwai, Masanori; Wada, Kazuko
2017-01-01
Newborn infants hospitalised in the neonatal intensive care unit (NICU) are vulnerable to natural disasters. However, publications on evacuation from NICUs are sparse. The 2016 Kumamoto Earthquakes caused serious damage to Kumamoto City Hospital and its level III regional core NICU. Local/neighbour NICU teams and the disaster-communication team of a neonatal academic society cooperated to evacuate 38 newborn infants from the ward. The aim of this paper was to highlight potential key factors to improve emergency NICU evacuation and coordination of hospital transportation following natural disasters. Background variables including clinical risk scores and timing/destination of transportation were compared between infants, who subsequently were transferred to destinations outside of Kumamoto Prefecture, and their peers. All but 1 of the infants were successfully evacuated from their NICU within 8 h. One very-low-birth-weight infant developed moderate hypothermia following transportation. Fourteen infants were transferred to NICUs outside of Kumamoto Prefecture, which was associated with the diagnosis of congenital heart disease, dependence on respiratory support, higher risk scores, and longer elapsed time from the decision to departure. There was difficulty in arranging helicopter transportation because the coordination office of the Disaster Medical Assistance Team had requisitioned most air/ground ambulances and only helped arrange ground transportations for 13 low-risk infants. Transportation for all 10 high-risk infants (risk scores greater than or equal to the upper quartile) was arranged by local/neighbour NICUs. Although the overall evacuation process was satisfactory, potential risks of relying on the adult-based emergency transportation system were highlighted. A better system needs to be developed urgently to put appropriate priority on vulnerable infants. © 2017 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Ma, Xunjun; Lu, Yang; Wang, Fengjiao
2017-09-01
This paper presents the recent advances in reduction of multifrequency noise inside helicopter cabin using an active structural acoustic control system, which is based on active gearbox struts technical approach. To attenuate the multifrequency gearbox vibrations and resulting noise, a new scheme of discrete model predictive sliding mode control has been proposed based on controlled auto-regressive moving average model. Its implementation only needs input/output data, hence a broader frequency range of controlled system is modelled and the burden on the state observer design is released. Furthermore, a new iteration form of the algorithm is designed, improving the developing efficiency and run speed. To verify the algorithm's effectiveness and self-adaptability, experiments of real-time active control are performed on a newly developed helicopter model system. The helicopter model can generate gear meshing vibration/noise similar to a real helicopter with specially designed gearbox and active struts. The algorithm's control abilities are sufficiently checked by single-input single-output and multiple-input multiple-output experiments via different feedback strategies progressively: (1) control gear meshing noise through attenuating vibrations at the key points on the transmission path, (2) directly control the gear meshing noise in the cabin using the actuators. Results confirm that the active control system is practical for cancelling multifrequency helicopter interior noise, which also weakens the frequency-modulation of the tones. For many cases, the attenuations of the measured noise exceed the level of 15 dB, with maximum reduction reaching 31 dB. Also, the control process is demonstrated to be smoother and faster.
McDonnell Douglas Helicopter Company independent research and development: Preparing for the future
NASA Technical Reports Server (NTRS)
Haggerty, Allen C.
1988-01-01
During the 1970's and 80's, research has produced the technology that is seen in aircraft such as the LHX and future models. The technology is discussed that is reaching maturity and moving into the application stage of future programs. Technology is discussed in six major areas: advanced concepts, analysis techniques, structures, systems, simulation, and research and development facilities. The partnership of McDonnell Douglas Helicopter Co. and the government in developing these technologies is illustrated in several programs.
2002-09-11
KENNEDY SPACE CENTER, FLA. -- An Air Care team from Orlando take a distressed lobster diver to the helicopter to take him to Florida Hospital. The diver was picked up by the Freedom Star, one of the Shuttle Rocket Booster retrieval ships, on a certification exercise and near the location of a lobster diving boat that radioed the U.S. Coast Guard for help when one of the divers experienced difficulty breathing on his return to the surface. Hearing the call for help, the captain of the Freedom Star offered to help. The ship had a dive team on board, including a diver medical technician, Andy Fish, as well as a hyperbaric chamber. Fish stayed with the diver in the recompression chamber aboard the Freedom Star until the ship reached Port Canaveral where a KSC Occupational Health doctor waited. The diver was stabilized and then taken to Florida Hospital.
A rotorcraft flight database for validation of vision-based ranging algorithms
NASA Technical Reports Server (NTRS)
Smith, Phillip N.
1992-01-01
A helicopter flight test experiment was conducted at the NASA Ames Research Center to obtain a database consisting of video imagery and accurate measurements of camera motion, camera calibration parameters, and true range information. The database was developed to allow verification of monocular passive range estimation algorithms for use in the autonomous navigation of rotorcraft during low altitude flight. The helicopter flight experiment is briefly described. Four data sets representative of the different helicopter maneuvers and the visual scenery encountered during the flight test are presented. These data sets will be made available to researchers in the computer vision community.
NASA Technical Reports Server (NTRS)
Waters, K. T.
1979-01-01
The results of a study of the uses of helicopters in agriculture and forestry in the United States are discussed. Comparisons with agricultural airplanes are made in terms of costs of aerial application to the growers. An analysis of cost drivers and potential improvements to helicopters that will lower costs is presented. Future trends are discussed, and recommendations for research are outlined. Operational safety hazards and accident records are examined, and problem areas are identified. Areas where research and development are needed to provide opportunities for lowering costs while increasing productivity are analyzed.
NASA Astrophysics Data System (ADS)
Allred, Charles Jefferson
Since the advent of Health and Usage Monitoring Systems (HUMS) in the early 1990's, there has been a steady decrease in the number of component failure related helicopter accidents. Additionally, measurable cost benefits due to improved maintenance practices based on HUMS data has led to a desire to expand HUMS from its traditional area of helicopter drive train monitoring. One of the areas of greatest interest for this expansion of HUMS is monitoring of the helicopter rotor head loads. Studies of rotor head load and blade motions have primarily focused on wind tunnel testing with technology which would not be applicable for production helicopter HUMS deployment, or measuring bending along the blade, rather than where it is attached to the rotor head and the location through which all the helicopter loads pass. This dissertation details research into finding methods for real time methods of estimating rotor blade motion which could be applied across helicopter fleets as an expansion of current HUMS technology. First, there is a brief exploration of supporting technologies which will be crucial in enabling the expansion of HUMS from the fuselage of helicopters to the rotor head: wireless data transmission and energy harvesting. A brief overview of the commercially available low power wireless technology selected for this research is presented. The development of a relatively high-powered energy harvester specific to the motion of helicopter rotor blades is presented and two different prototypes of the device are shown. Following the overview of supporting technologies, two novel methods of monitoring rotor blade motion in real time are developed. The first method employs linear displacement sensors embedded in the elastomer layers of a high-capacity laminate bearing of the type commonly used in fully articulated rotors throughout the helicopter industry. The configuration of these displacement sensors allows modeling of the sensing system as a robotic parallel mechanism, similar to a Stewart Platform. A calibration method for this device is developed and the improved orientation estimation results are shown. The second method is not specific to the fully articulated rotor head mounting geometry of the first method. Rather, it utilizes micro-electromechanical (MEMS) accelerometers and gyroscopes configured to measure the centrifugal acceleration and rotation rate induced through rotor head rotation differentially. By measuring these quantities differentially, other accelerations from the fuselage reference frame are removed from the measurement, resulting in acceleration and rate quantities that are impacted only by the angle of the sensors relative to the plane of rotation. By mounting these sensors strategically and symmetrically about the rotor blade root center of rotation, the orientation of the rotor blade can be estimated in real time.
Measurement and Characterization of Helicopter Noise in Steady-State and Maneuvering Flight
NASA Technical Reports Server (NTRS)
Schmitz, Fredric H.; Greenwood, Eric; Sickenberger, Richard D.; Gopalan, Gaurav; Sim, Ben Well-C; Conner, David; Moralez, Ernesto; Decker, William A.
2007-01-01
A special acoustic flight test program was performed on the Bell 206B helicopter outfitted with an in-flight microphone boom/array attached to the helicopter while simultaneous acoustic measurements were made using a linear ground array of microphones arranged to be perpendicular to the flight path. Air and ground noise measurements were made in steady-state longitudinal and steady turning flight, and during selected dynamic maneuvers. Special instrumentation, including direct measurement of the helicopter s longitudinal tip-path-plane (TPP) angle, Differential Global Positioning System (DGPS) and Inertial Navigation Unit (INU) measurements, and a pursuit guidance display were used to measure important noise controlling parameters and to make the task of flying precise operating conditions and flight track easier for the pilot. Special care was also made to test only in very low winds. The resulting acoustic data is of relatively high quality and shows the value of carefully monitoring and controlling the helicopter s performance state. This paper has shown experimentally, that microphones close to the helicopter can be used to estimate the specific noise sources that radiate to the far field, if the microphones are positioned correctly relative to the noise source. Directivity patterns for steady, turning flight were also developed, for the first time, and connected to the turning performance of the helicopter. Some of the acoustic benefits of combining normally separated flight segments (i.e. an accelerated segment and a descending segment) were also demonstrated.
Spiral-Bevel-Gear Damage Detected Using Decision Fusion Analysis
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Handschuh, Robert F.
2003-01-01
Helicopter transmission integrity is critical to helicopter safety because helicopters depend on the power train for propulsion, lift, and flight maneuvering. To detect impending transmission failures, the ideal diagnostic tools used in the health-monitoring system would provide real-time health monitoring of the transmission, demonstrate a high level of reliable detection to minimize false alarms, and provide end users with clear information on the health of the system without requiring them to interpret large amounts of sensor data. A diagnostic tool for detecting damage to spiral bevel gears was developed. (Spiral bevel gears are used in helicopter transmissions to transfer power between nonparallel intersecting shafts.) Data fusion was used to integrate two different monitoring technologies, oil debris analysis and vibration, into a health-monitoring system for detecting surface fatigue pitting damage on the gears.
UH-60A Black Hawk engineering simulation program. Volume 1: Mathematical model
NASA Technical Reports Server (NTRS)
Howlett, J. J.
1981-01-01
A nonlinear mathematical model of the UR-60A Black Hawk helicopter was developed. This mathematical model, which was based on the Sikorsky General Helicopter (Gen Hel) Flight Dynamics Simulation, provides NASA with an engineering simulation for performance and handling qualities evaluations. This mathematical model is total systems definition of the Black Hawk helicopter represented at a uniform level of sophistication considered necessary for handling qualities evaluations. The model is a total force, large angle representation in six rigid body degrees of freedom. Rotor blade flapping, lagging, and hub rotational degrees of freedom are also represented. In addition to the basic helicopter modules, supportive modules were defined for the landing interface, power unit, ground effects, and gust penetration. Information defining the cockpit environment relevant to pilot in the loop simulation is presented.
NASA Technical Reports Server (NTRS)
Brentner, K. S.
1986-01-01
A computer program has been developed at the Langley Research Center to predict the discrete frequency noise of conventional and advanced helicopter rotors. The program, called WOPWOP, uses the most advanced subsonic formulation of Farassat that is less sensitive to errors and is valid for nearly all helicopter rotor geometries and flight conditions. A brief derivation of the acoustic formulation is presented along with a discussion of the numerical implementation of the formulation. The computer program uses realistic helicopter blade motion and aerodynamic loadings, input by the user, for noise calculation in the time domain. A detailed definition of all the input variables, default values, and output data is included. A comparison with experimental data shows good agreement between prediction and experiment; however, accurate aerodynamic loading is needed.
Design of Quiet Rotorcraft Approach Trajectories: Verification Phase
NASA Technical Reports Server (NTRS)
Padula, Sharon L.
2010-01-01
Flight testing that is planned for October 2010 will provide an opportunity to evaluate rotorcraft trajectory optimization techniques. The flight test will involve a fully instrumented MD-902 helicopter, which will be flown over an array of microphones. In this work, the helicopter approach trajectory is optimized via a multiobjective genetic algorithm to improve community noise, passenger comfort, and pilot acceptance. Previously developed optimization strategies are modified to accommodate new helicopter data and to increase pilot acceptance. This paper describes the MD-902 trajectory optimization plus general optimization strategies and modifications that are needed to reduce the uncertainty in noise predictions. The constraints that are imposed by the flight test conditions and characteristics of the MD-902 helicopter limit the testing possibilities. However, the insights that will be gained through this research will prove highly valuable.
76 FR 53326 - Airworthiness Directives; Eurocopter France (ECF) Model EC120B Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-26
... also requires modifying the emergency switch electrical wiring and performing tests to ensure correct... the RFM after modifying the emergency switch electrical wiring and performing tests to ensure correct... likely to exist or develop on other helicopters of the same type design. Differences Between This AD and...
Using Paper Helicopters to Teach Statistical Process Control
ERIC Educational Resources Information Center
Johnson, Danny J.
2011-01-01
This hands-on project uses a paper helicopter to teach students how to distinguish between common and special causes of variability when developing and using statistical process control charts. It allows the student to experience a process that is out-of-control due to imprecise or incomplete product design specifications and to discover how the…
Multivariable control of a twin lift helicopter system using the LQG/LTR design methodology
NASA Technical Reports Server (NTRS)
Rodriguez, A. A.; Athans, M.
1986-01-01
Guidelines for developing a multivariable centralized automatic flight control system (AFCS) for a twin lift helicopter system (TLHS) are presented. Singular value ideas are used to formulate performance and stability robustness specifications. A linear Quadratic Gaussian with Loop Transfer Recovery (LQG/LTR) design is obtained and evaluated.
An analytical method for designing low noise helicopter transmissions
NASA Technical Reports Server (NTRS)
Bossler, R. B., Jr.; Bowes, M. A.; Royal, A. C.
1978-01-01
The development and experimental validation of a method for analytically modeling the noise mechanism in the helicopter geared power transmission systems is described. This method can be used within the design process to predict interior noise levels and to investigate the noise reducing potential of alternative transmission design details. Examples are discussed.
NASA Technical Reports Server (NTRS)
Gupta, N. K.; Bryson, A. E., Jr.
1973-01-01
An autopilot logic is designed here for controlling a helicopter with a hanging load. A 16th order model for the system is decoupled into four subsystems: (1) a second order system for yawing motion, (2) a second order system for vertical motion, (3) a sixth order system for longitudinal motion, and (4) a sixth order system for lateral motion. A measuring scheme, which could be used in remote areas, is developed and filters are designed to estimate the state variables from these measurements. The autopilot can be used to move the load over short distances without retracting the cables. This is done by automatically shifting the autopilot modes from position-hold (hover) to acceleration-hold to velocity-hold (cruise) to deceleration-hold to velocity-hold (near hover) to position-hold (hover). Use of such an autopilot might save considerable turnaround time. The Sikorsky S-61 helicopter is chosen as an example vehicle. The performance of the controlled system is studied in the presence of longitudinal and lateral winds.
1978-01-01
MOMENT GROWTH BV %tV • REDUCE BLADr. BENDING MOMENTS B’< 17* HUB VIBRATORV FORCES • REDUCE VIBRATORV LOADSBV W FLIGHTWOR THINE SS • FAIL SAM...standardization in future military helicopter development. 2.4 SOME TECHNICAL ASPECTS OF MILITARY HELICOPTER DEVELOPMENT ^- Ss In recent years, the...8217 - fT • SS 1 H Fig.2 The Lynx HAS MK 2 Fig.3 The Gazelle — — " - Fig.4 Wessex MK 2 Fig. 5 The Puma MteMA
Dynamics Control Approaches to Improve Vibratory Environment of the Helicopter Aircrew
NASA Astrophysics Data System (ADS)
Wickramasinghe, Viresh Kanchana
Although helicopter has become a versatile mode of aerial transportation, high vibration levels leads to poor ride quality for its passengers and aircrew. Undesired vibration transmitted through the helicopter seats have been known to cause fatigue and discomfort to the aircrew in the short-term as well as neck strain and back pain injuries due to long-term exposure. This research study investigated the use of novel active as well as passive methodologies integrated in helicopter seats to mitigate the aircrew exposure to high vibration levels. Due to significantly less certification effort required to modify the helicopter seat structure, application of novel technologies to the seat is more practical compared to flight critical components such as the main rotor to reduce aircrew vibration. In particular, this research effort developed a novel adaptive seat mount approach based on active vibration control technology. This novel design that incorporated two stacked piezoelectric actuators as active struts increases the bending stiffness to avoid the low frequency resonance while generating forces to counteract higher harmonic vibration peaks. A real-time controller implemented using a feed-forward algorithm based on adaptive notches counteracted the forced vibration peaks while a robust feedback control algorithm suppressed the resonance modes. The effectiveness of the adaptive seat mount system was demonstrated through extensive closed-loop control tests on a full-scale helicopter seat using representative helicopter floor vibration profiles. Test results concluded that the proposed adaptive seat mount approach based on active control technology is a viable solution for the helicopter seat vibration control application. In addition, a unique flight test using a Bell-412 helicopter demonstrated that the aircrew is exposed to high levels of vibration during flight and that the whole body vibration spectrum varied substantially depending on operating conditions as well as the aircrew configurations. This investigation also demonstrated the suitability of integrating novel energy absorbing cushion materials to the seat as a low cost solution to improve aircrew vibration suppression. Therefore, it was recommended to pursue certification of novel seat cushion materials as a near-term solution to mitigate undesirable occupational health hazards in helicopter aircrew due to vibration exposure.
Finite element analysis using NASTRAN applied to helicopter transmission vibration/noise reduction
NASA Technical Reports Server (NTRS)
Howells, R. W.; Sciarra, J. J.
1975-01-01
A finite element NASTRAN model of the complete forward rotor transmission housing for the Boeing Vertol CH-47 helicopter was developed and applied to reduce transmission vibration/noise at its source. In addition to a description of the model, a technique for vibration/noise prediction and reduction is outlined. Also included are the dynamic response as predicted by NASTRAN, test data, the use of strain energy methods to optimize the housing for minimum vibration/noise, and determination of design modifications which will be manufactured and tested. The techniques presented are not restricted to helicopters but are applicable to any power transmission system. The transmission housing model developed can be used further to evaluate static and dynamic stresses, thermal distortions, deflections and load paths, fail-safety/vulnerability, and composite materials.
1969-03-13
S69-27746 (13 March 1969) --- The Apollo 9 crew awaits the arrival of a recovery helicopter from the USS Guadalcanal, prime recovery ship for the Apollo 9 10-day Earth-orbital space mission. Astronaut James A. McDivitt, commander, stands in hatch of spacecraft. Already in life raft are astronauts Russell L. Schweickart (foreground), lunar module pilot, and David R. Scott, command module pilot. Scott is taking a picture of McDivitt. Splashdown occurred at 12:00:53 p.m. (EST), March 13, 1969, only 4.5 nautical miles from the USS Guadalcanal. U.S. Navy underwater demolition team swimmers assist in the recovery operations.
Helicopter noise regulations: An industry perspective
NASA Technical Reports Server (NTRS)
Wagner, R. A.
1978-01-01
A review of helicopter noise measurement programs and noise reduction/economic studies of FAA is given along with a critique of a study which addresses the economic impact of noise reduction on helicopter noise. Modification of several helicopters to reduce noise and demonstrate the economic impact of the application of the current state-of-the-art technology is discussed. Specific helicopters described include Boeing Vertol 347 Helicopter, Hughes OH-6 Helicopter, and Hughes 269C Helicopter. Other topics covered include: (1) noise trends and possible noise limits; (2) accuracy of helicopter noise prediction techniques; (3) limited change possibilities of derivatives; and (4) rotor impulsive noise. The unique operational capabilities of helicopters and the implications relative to noise regulations and certification are discussed.
Development in helicopter tail boom strake applications in the US
NASA Technical Reports Server (NTRS)
Wilson, John C.; Kelley, Henry L.; Donahue, Cynthia C.; Yenni, Kenneth R.
1988-01-01
The use of a strake or spoiler on a helicopter tail boom to beneficially change helicopter tail boom air loads was suggested in the United States in 1975. The anticipated benefits were a change of tail boom loads to reduce required tail rotor thrust and power and improve directional control. High tail boom air loads experienced by the YAH-64 and described in 1978 led to a wind tunnel investigation of the usefullness of strakes in altering such loads on the AH-64, UH-60, and UH-1 helicopters. The wind tunnel tests of 2-D cross sections of the tail boom of each demonstrated that a strake or strakes would be effective. Several limited test programs with the U.S. Army's OH-58A, AH-64, and UH-60A were conducted which showed the effects of strakes were modest for those helicopters. The most recent flight test program, with a Bell 204B, disclosed that for the 204B the tail boom strake or strakes would provide more than a modest improvement in directional control and reduction in tail rotor power.
NASA Technical Reports Server (NTRS)
Folenta, Dezi; Lebo, William
1988-01-01
A 450 hp high ratio Self-Aligning Bearingless Planetary (SABP) for a helicopter application was designed, manufactured, and spin tested under NASA contract NAS3-24539. The objective of the program was to conduct research and development work on a high contact ratio helical gear SABP to reduce weight and noise and to improve efficiency. The results accomplished include the design, manufacturing, and no-load spin testing of two prototype helicopter transmissions, rated at 450 hp with an input speed of 35,000 rpm and an output speed of 350 rpm. The weight power density ratio of these gear units is 0.33 lb hp. The measured airborne noise at 35,000 rpm input speed and light load is 94 dB at 5 ft. The high speed, high contact ratio SABP transmission appears to be significantly lighter and quieter than comtemporary helicopter transmissions. The concept of the SABP is applicable not only to high ratio helicopter type transmissions but also to other rotorcraft and aircraft propulsion systems.
77 FR 12991 - Airworthiness Directives; Robinson Helicopter Company Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-05
... Airworthiness Directives; Robinson Helicopter Company Helicopters AGENCY: Federal Aviation Administration (FAA...) that was published in the Federal Register. That AD applies to Robinson Helicopter Company (Robinson...
The basis for the development of a fuselage evacuation time for a ditched helicopter.
Brooks, C J; Muir, H C; Gibbs, P N
2001-06-01
When a helicopter ditches or crashes in water, unless the buoyancy bags are inflated, it commonly sinks inverted. Thus, crew and passengers must make an underwater escape. It is postulated that later passengers in the escape sequence do not have the breath-holding ability to conduct a successful escape, particularly if the water is cold. This contributes to the 20-50% mortality rate in survivable accidents. There were 132 immersed subject evaluations which were conducted in daylight and darkness to measure escape times from a helicopter underwater escape trainer, configured to the Super Puma, seated for 15 and 18 passengers. The subjects were highly experienced instructors or Navy clearance divers. The time from when each subject's head disappeared underwater until each subject surfaced and total fuselage evacuation time were measured and any problems hampering escape were noted. Breath-holding for the last subject out ranged from 28 to 92 s. An emergency breathing system was used by a minimum of four subjects each time and a maximum of 11 subjects in one condition. The buoyancy of the survival suit was the principal component that hampered escape. Breath-holding times were too long for the later subjects to escape without resorting to an EBS, in spite of the fact that they were highly trained. For regular crew and passengers flying over water, this would explain the high mortality, etc. Therefore, a new helicopter standard should be developed requiring fuselage design to accommodate total evacuation within 20 s from underwater. For current helicopters, where this cannot be achieved, passengers should be provided with some form of air supply, or, after ditching, the helicopter should be modified so that it will stay afloat on its side and retain an air space in the cabin.
Performance of a real-time sensor and processing system on a helicopter
NASA Astrophysics Data System (ADS)
Kurz, F.; Rosenbaum, D.; Meynberg, O.; Mattyus, G.; Reinartz, P.
2014-11-01
A new optical real-time sensor system (4k system) on a helicopter is now ready to use for applications during disasters, mass events and traffic monitoring scenarios. The sensor was developed light-weighted, small with relatively cheap components in a pylon mounted sideward on a helicopter. The sensor architecture is finally a compromise between the required functionality, the development costs, the weight and the sensor size. Aboard processors are integrated in the 4k sensor system for orthophoto generation, for automatic traffic parameter extraction and for data downlinks. It is planned to add real-time processors for person detection and tracking, for DSM generation and for water detection. Equipped with the newest and most powerful off-the-shelf cameras available, a wide variety of viewing configurations with a frame rate of up to 12 Hz for the different applications is possible. Based on three cameras with 50 mm lenses which are looking in different directions, a maximal FOV of 104° is reachable; with 100 mm lenses a ground sampling distance of 3.5 cm is possible at a flight height of 500 m above ground. In this paper, we present the first data sets and describe the technical components of the sensor. The effect of vibrations of the helicopter on the GNSS/IMU accuracy and on the 4k video quality is analysed. It can be shown, that if the helicopter hoovers the rolling shutter effect affects the 4k video quality drastically. The GNSS/IMU error is higher than the specified limit, which is mainly caused by the vibrations on the helicopter and the insufficient vibrational absorbers on the sensor board.
77 FR 23388 - Airworthiness Directives; Bell Helicopter Textron Canada Limited Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-19
... Airworthiness Directives; Bell Helicopter Textron Canada Limited Helicopters AGENCY: Federal Aviation... are publishing a new airworthiness directive (AD) for Bell Helicopter Textron Canada Limited (Bell..., contact Bell Helicopter Textron Canada Limited, 12,800 Rue de l'Avenir, Mirabel, Quebec J7J1R4, telephone...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-09
...-AA00 Safety Zone, Naval Helicopter Association Reunion Helicopter Demonstration, Elizabeth River... establishing a temporary safety zone on the Elizabeth River in the vicinity of Norfolk, VA to support the Naval... of life on navigable waters during the Naval Helicopter Association Reunion Helicopter Demonstration...
Three-dimensional landing zone ladar
NASA Astrophysics Data System (ADS)
Savage, James; Goodrich, Shawn; Burns, H. N.
2016-05-01
Three-Dimensional Landing Zone (3D-LZ) refers to a series of Air Force Research Laboratory (AFRL) programs to develop high-resolution, imaging ladar to address helicopter approach and landing in degraded visual environments with emphasis on brownout; cable warning and obstacle avoidance; and controlled flight into terrain. Initial efforts adapted ladar systems built for munition seekers, and success led to a the 3D-LZ Joint Capability Technology Demonstration (JCTD) , a 27-month program to develop and demonstrate a ladar subsystem that could be housed with the AN/AAQ-29 FLIR turret flown on US Air Force Combat Search and Rescue (CSAR) HH-60G Pave Hawk helicopters. Following the JCTD flight demonstration, further development focused on reducing size, weight, and power while continuing to refine the real-time geo-referencing, dust rejection, obstacle and cable avoidance, and Helicopter Terrain Awareness and Warning (HTAWS) capability demonstrated under the JCTD. This paper summarizes significant ladar technology development milestones to date, individual LADAR technologies within 3D-LZ, and results of the flight testing.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-22
... Helicopter Services (previously Erickson Air-Crane Co.); Garlick Helicopters, Inc.; Global Helicopter... Forestry; Firefly Aviation Helicopter Services (previously Erickson Air-Crane Co.); Garlick Helicopters...
NASA Astrophysics Data System (ADS)
Holasek, R. E.; Nakanishi, K.; Swartz, B.; Zacaroli, R.; Hill, B.; Naungayan, J.; Herwitz, S.; Kavros, P.; English, D. C.
2013-12-01
As part of the NASA ROSES program, the NovaSol Selectable Hyperspectral Airborne Remote-sensing Kit (SHARK) was flown as the payload on the unmanned Vision II helicopter. The goal of the May 2013 data collection was to obtain high resolution visible and near-infrared (visNIR) hyperspectral data of seagrasses and coral reefs in the Florida Keys. The specifications of the SHARK hyperspectral system and the Vision II turbine rotorcraft will be described along with the process of integrating the payload to the vehicle platform. The minimal size, weight, and power (SWaP) specifications of the SHARK system is an ideal match to the Vision II helicopter and its flight parameters. One advantage of the helicopter over fixed wing platforms is its inherent ability to take off and land in a limited area and without a runway, enabling the UAV to be located in close proximity to the experiment areas and the science team. Decisions regarding integration times, waypoint selection, mission duration, and mission frequency are able to be based upon the local environmental conditions and can be modified just prior to take off. The operational procedures and coordination between the UAV pilot, payload operator, and scientist will be described. The SHARK system includes an inertial navigation system and digital elevation model (DEM) which allows image coordinates to be calculated onboard the aircraft in real-time. Examples of the geo-registered images from the data collection will be shown. SHARK mounted below VTUAV. SHARK deployed on VTUAV over water.
ERIC Educational Resources Information Center
Caro, Paul W., Jr.; And Others
As part of the Army's effort to use synthetic devices to improve training, researchers evaluated a captive helicopter attached to a ground effects machine. Experimental groups received varying amounts of pre-flight practice tasks designed to develop flight skills, while control groups received no device training. Student flight performance during…
ERIC Educational Resources Information Center
Schulz, Russel E.; And Others
The report, the first of two documents examining the relationship among job requirements, training, and manpower considerations for Army aviation maintenance Personnel, discusses the development of task data gathering techniques and procedures for incorporating this data into training programs for the UH-1 helicopter mechanic sPecialty (MOS…
Development of Helicopter Capabilities in the U.S. Army During the Korean and Vietnam Wars
2016-06-10
capacity, cost, vulnerability and complexity of design comparing to fixed- wind capability. However, helicopters had their unbeatable advantage... wires , rescuing of downed pilots and casualty 23 Horn, 66. 24 Ibid., 75. 23 evacuation...missions: air transportation, medical evacuation, wire laying, reconnaissance, artillery spotting, messenger service and many others. In case of both
Autonomous Unmanned Helicopter System for Remote Sensing Missions in Unknown Environments
NASA Astrophysics Data System (ADS)
Merz, T.; Chapman, S.
2011-09-01
This paper presents the design of an autonomous unmanned helicopter system for low-altitude remote sensing. The proposed concepts and methods are generic and not limited to a specific helicopter. The development was driven by the need for a dependable, modular, and affordable system with sufficient payload capacity suitable for both research and real-world deployment. The helicopter can be safely operated without a backup pilot in a contained area beyond visual range. This enables data collection in inaccessible or dangerous areas. Thanks to its terrain following and obstacle avoidance capability, the system does not require a priori information about terrain elevation and obstacles. Missions are specified in state diagrams and flight plans. We present performance characteristics of our system and show results of its deployment in real-world scenarios. We have successfully completed several dozen infrastructure inspection missions and crop monitoring missions facilitating plant phenomics studies.
Airflow Hazard Visualization for Helicopter Pilots: Flight Simulation Study Results
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.; Long, Kurtis R.
2005-01-01
Airflow hazards such as vortices or low level wind shear have been identified as a primary contributing factor in many helicopter accidents. US Navy ships generate airwakes over their decks, creating potentially hazardous conditions for shipboard rotorcraft launch and recovery. Recent sensor developments may enable the delivery of airwake data to the cockpit, where visualizing the hazard data may improve safety and possibly extend ship/helicopter operational envelopes. A prototype flight-deck airflow hazard visualization system was implemented on a high-fidelity rotorcraft flight dynamics simulator. Experienced helicopter pilots, including pilots from all five branches of the military, participated in a usability study of the system. Data was collected both objectively from the simulator and subjectively from post-test questionnaires. Results of the data analysis are presented, demonstrating a reduction in crash rate and other trends that illustrate the potential of airflow hazard visualization to improve flight safety.
Computed tomography (CT) as a nondestructive test method used for composite helicopter components
NASA Astrophysics Data System (ADS)
Oster, Reinhold
1991-09-01
The first components of primary helicopter structures to be made of glass fiber reinforced plastics were the main and tail rotor blades of the Bo105 and BK 117 helicopters. These blades are now successfully produced in series. New developments in rotor components, e.g., the rotor blade technology of the Bo108 and PAH2 programs, make use of very complex fiber reinforced structures to achieve simplicity and strength. Computer tomography was found to be an outstanding nondestructive test method for examining the internal structure of components. A CT scanner generates x-ray attenuation measurements which are used to produce computer reconstructed images of any desired part of an object. The system images a range of flaws in composites in a number of views and planes. Several CT investigations and their results are reported taking composite helicopter components as an example.
Computed Tomography (CT) as a nondestructive test method used for composite helicopter components
NASA Astrophysics Data System (ADS)
Oster, Reinhold
The first components of primary helicopter structures to be made of glass fiber reinforced plastics were the main and tail rotor blades of the Bo105 and BK117 helicopters. These blades are now successfully produced in series. New developments in rotor components, e.g. the rotor blade technology of the Bo108 and PAH2 programs, make use of very complex fiber reinforced structures to achieve simplicity and strength. Computer tomography was found to be an outstanding nondestructive test method for examining the internal structure of components. A CT scanner generates x-ray attenuation measurements which are used to produce computer reconstructed images of any desired part of an object. The system images a range of flaws in composites in a number of views and planes. Several CT investigations and their results are reported taking composite helicopter components as an example.
78 FR 56592 - Airworthiness Directives; Bell Helicopter Textron, Inc. (Bell) Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-13
... Airworthiness Directives; Bell Helicopter Textron, Inc. (Bell) Helicopters AGENCY: Federal Aviation...) 76-12- 07 for all Bell Model 204B and certain serial-numbered Model 205A-1 helicopters with a certain... detect a crack in the link segments and, for affected Model 205A-1 helicopters, replacing the chain and...
Data Visualization of Invisible Airflow Hazards During Helicopter Takeoff and Landing Operations
NASA Technical Reports Server (NTRS)
Aragon, Cecilia R.
2004-01-01
Many aircraft accidents each year are caused by encounters with unseen airflow hazards near the ground such as vortices, downdrafts, wind shear, microbursts, or other turbulence. While such hazards frequently pose problems to fixed-wing airplanes, they are especially dangerous to helicopters, which often have to operate in confined spaces and under operationally stressful conditions. We are developing flight-deck visualizations of airflow hazards during helicopter takeoff and landing operations, and are evaluating their effectiveness with usability studies. Our hope is.that this work will lead to the production of an airflow hazard detection system for pilots that will save lives.
Influence of maneuverability on helicopter combat effectiveness
NASA Technical Reports Server (NTRS)
Falco, M.; Smith, R.
1982-01-01
A computational procedure employing a stochastic learning method in conjunction with dynamic simulation of helicopter flight and weapon system operation was used to derive helicopter maneuvering strategies. The derived strategies maximize either survival or kill probability and are in the form of a feedback control based upon threat visual or warning system cues. Maneuverability parameters implicit in the strategy development include maximum longitudinal acceleration and deceleration, maximum sustained and transient load factor turn rate at forward speed, and maximum pedal turn rate and lateral acceleration at hover. Results are presented in terms of probability of skill for all combat initial conditions for two threat categories.
Research requirements to improve reliability of civil helicopters
NASA Technical Reports Server (NTRS)
Dougherty, J. J., III; Barrett, L. D.
1978-01-01
The major reliability problems of the civil helicopter fleet as reported by helicopter operational and maintenance personnel are documented. An assessment of each problem is made to determine if the reliability can be improved by application of present technology or whether additional research and development are required. The reliability impact is measured in three ways: (1) The relative frequency of each problem in the fleet. (2) The relative on-aircraft manhours to repair, associated with each fleet problem. (3) The relative cost of repair materials or replacement parts associated with each fleet problem. The data reviewed covered the period of 1971 through 1976 and covered only turbine engine aircraft.
NASA Astrophysics Data System (ADS)
Davis, S. J.; Egolf, T. A.
1980-07-01
Acoustic characteristics predicted using a recently developed computer code were correlated with measured acoustic data for two helicopter rotors. The analysis, is based on a solution of the Ffowcs-Williams-Hawkings (FW-H) equation and includes terms accounting for both the thickness and loading components of the rotational noise. Computations are carried out in the time domain and assume free field conditions. Results of the correlation show that the Farrassat/Nystrom analysis, when using predicted airload data as input, yields fair but encouraging correlation for the first 6 harmonics of blade passage. It also suggests that although the analysis represents a valuable first step towards developing a truly comprehensive helicopter rotor noise prediction capability, further work remains to be done identifying and incorporating additional noise mechanisms into the code.
A Maneuvering Flight Noise Model for Helicopter Mission Planning
NASA Technical Reports Server (NTRS)
Greenwood, Eric; Rau, Robert; May, Benjamin; Hobbs, Christopher
2015-01-01
A new model for estimating the noise radiation during maneuvering flight is developed in this paper. The model applies the Quasi-Static Acoustic Mapping (Q-SAM) method to a database of acoustic spheres generated using the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique. A method is developed to generate a realistic flight trajectory from a limited set of waypoints and is used to calculate the quasi-static operating condition and corresponding acoustic sphere for the vehicle throughout the maneuver. By using a previously computed database of acoustic spheres, the acoustic impact of proposed helicopter operations can be rapidly predicted for use in mission-planning. The resulting FRAME-QS model is applied to near-horizon noise measurements collected for the Bell 430 helicopter undergoing transient pitch up and roll maneuvers, with good agreement between the measured data and the FRAME-QS model.
Crash-resistant fuel system effectiveness in civil helicopter crashes.
Hayden, Mark S; Shanahan, Dennis F; Chen, Li-Hui; Baker, Susan P
2005-08-01
Crash-resistant fuel systems (CRFS) have demonstrated close to 100% effectiveness in survivable crashes of Army helicopters, but the technology has been slow to transfer into the civil helicopter arena. Federal standards for civil helicopter CRFS are less stringent than those for military helicopters. A reduction in standards for CRFS in military helicopters is being considered. The goal of this study was to determine whether crashes of civil helicopters with CRFS are less likely to result in post-crash fire than crashes of those without. Crashes of civil helicopters during 1982-2004 were analyzed, comparing Bell 206 helicopters manufactured with CRFS with Aerospatial 350 helicopters manufactured during the same period (post-1981), but lacking CRFS. Bell 206 helicopters with CRFS were also compared with earlier models without CRFS. The highest proportion of crashes with post-crash fires (11.3%) was in AS-350s manufactured after 1981 (non-CRFS), and the lowest (3.7%) was in Bell 206s (with CRFS) [unadjusted risk ratio (RR) = 3.3, 95% confidence interval (CI) = 1.04, 10.50; adjusted for light and weather, RR = 2.81, Cl = 0.82, 9.69]. Earlier models of Bell 206s without CRFS had higher risk of post-crash fire than post-1981 models with CRFS (7.4% vs. 3.7%; adjusted RR = 2.11, Cl = 0.82, 5.45). The results of this study suggest a better performance, in terms of post-crash fire prevention, of CRFS-equipped civil helicopters as compared with those without CRFS. It is possible that CRFS in civil helicopters have not achieved the same degree of effectiveness as CRFS in military helicopters. CRFS should be used more widely in civil helicopters. The more stringent CRFS requirements for military helicopters should not be reduced without further research.
Aero-medical evacuation from the second Israel-Lebanon war: a descriptive study.
Schwartz, Dagan; Resheff, Avram; Geftler, Alex; Weiss, Aviram; Birenbaum, Erez; Lavon, Ophir
2009-05-01
The second Lebanon war started as a limited operation and progressed to a large-scale campaign. Most of the fighting took place in mountainous villages and small towns inhabited with civilians. The Israeli Defense Forces (IDF) Airborne rescue and evacuation unit is charged with air evacuation of soldiers and civilians in times of peace, limited conflict, and war. We describe this unit's activities in the second Lebanon war, analyzing injury, treatment, and evacuation characteristics Data were collected from flight medical reports, debriefings of aero-medical team members (usually immediately upon return from mission), ground units medical reports and debriefings, and hospital records. 725 IDF soldiers were injured and 117 killed either in Lebanon or near the Israeli-Lebanese border during the war. A total of 338 (46%) were evacuated in 95 airlifts (averaging 4.5 evacuees per airlift) from the fighting zones or the border. Air evacuation used dedicated helicopters with advanced care capacities, and most victims were evacuated straight from the battlefield, as the fighting was ensuing. Many wounded first received advanced medical care upon the arrival of the aero-medical teams. In military operations within civilian populated areas with threats to ground transport, air evacuation can sometimes be the only readily available option. Providing timely ground advanced medical care proved difficult in many instances. Thus, for many, the rescue helicopter was the first point of access to such care. Aero-medical aircrafts and personnel faced threats from gunfire and missiles, causing both delays in evacuation and a high average number of evacuees per airlift. This article proposes ways of coping with situations in which similar rescue and evacuation problems are likely.
The Effects of Ambient Conditions on Helicopter Harmonic Noise Radiation: Theory and Experiment
NASA Technical Reports Server (NTRS)
Greenwood, Eric; Sim, Ben W.; Boyd, D. Douglas, Jr.
2016-01-01
The effects of ambient atmospheric conditions, air temperature and density, on rotor harmonic noise radiation are characterized using theoretical models and experimental measurements of helicopter noise collected at three different test sites at elevations ranging from sea level to 7000 ft above sea level. Significant changes in the thickness, loading, and blade-vortex interaction noise levels and radiation directions are observed across the different test sites for an AS350 helicopter flying at the same indicated airspeed and gross weight. However, the radiated noise is shown to scale with ambient pressure when the flight condition of the helicopter is defined in nondimensional terms. Although the effective tip Mach number is identified as the primary governing parameter for thickness noise, the nondimensional weight coefficient also impacts lower harmonic loading noise levels, which contribute strongly to low frequency harmonic noise radiation both in and out of the plane of the horizon. Strategies for maintaining the same nondimensional rotor operating condition under different ambient conditions are developed using an analytical model of single main rotor helicopter trim and confirmed using a CAMRAD II model of the AS350 helicopter. The ability of the Fundamental Rotorcraft Acoustics Modeling from Experiments (FRAME) technique to generalize noise measurements made under one set of ambient conditions to make accurate noise predictions under other ambient conditions is also validated.
77 FR 44434 - Airworthiness Directives; Various Restricted Category Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-30
... Erickson Air-Crane Co.); California Department of Forestry; Garlick Helicopters, Inc.; Global Helicopter... Helicopter Services (previously Erickson Air-Crane Co.); California Department of Forestry; Garlick... Helicopter Services (previously Erickson Air-Crane Co.); California Department of Forestry; Garlick...
78 FR 60182 - Airworthiness Directives; Bell Helicopter Textron, Inc., Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-01
... Helicopter Textron, Inc. (Bell), Model 214B, 214B-1, and 214ST helicopters. This AD requires creating a... and 214B-1 helicopters with a certain spindle installed. The NPRM proposed to require creating a...
NASA Technical Reports Server (NTRS)
Colbourne, Jason
1999-01-01
This report details the development and use of CONDUIT (Control Designer's Unified Interface). CONDUIT is a design tool created at Ames Research Center for the purpose of evaluating and optimizing aircraft control systems against handling qualities. Three detailed design problems addressing the RASCAL UH-60A Black Hawk are included in this report to show the application of CONDUIT to helicopter control system design.
Helicopter crashworthiness research program
NASA Technical Reports Server (NTRS)
Farley, Gary L.; Boitnott, Richard L.; Carden, Huey D.
1988-01-01
Results are presented from the U.S. Army-Aerostructures Directorate/NASA-Langley Research Center joint research program on helicopter crashworthiness. Through the on-going research program an in-depth understanding was developed on the cause/effect relationships between material and architectural variables and the energy-absorption capability of composite material and structure. Composite materials were found to be efficient energy absorbers. Graphite/epoxy subfloor structures were more efficient energy absorbers than comparable structures fabricated from Kevlar or aluminum. An accurate method predicting the energy-absorption capability of beams was developed.
Special opportunities in helicopter aerodynamics
NASA Technical Reports Server (NTRS)
Mccroskey, W. J.
1983-01-01
Aerodynamic research relating to modern helicopters includes the study of three dimensional, unsteady, nonlinear flow fields. A selective review is made of some of the phenomenon that hamper the development of satisfactory engineering prediction techniques, but which provides a rich source of research opportunities: flow separations, compressibility effects, complex vortical wakes, and aerodynamic interference between components. Several examples of work in progress are given, including dynamic stall alleviation, the development of computational methods for transonic flow, rotor-wake predictions, and blade-vortex interactions.
Dynamic analysis using superelements for a large helicopter model
NASA Technical Reports Server (NTRS)
Patel, M. P.; Shah, L. C.
1978-01-01
Using superelements (substructures), modal and frequency response analysis was performed for a large model of the Advanced Attack Helicopter developed for the U.S. Army. Whiffletree concept was employed so that the residual structure along with the various superelements could be represented as beam-like structures for economical and accurate dynamic analysis. A very large DMAP alter to the rigid format was developed so that the modal analysis, the frequency response, and the strain energy in each component could be computed in the same run.
Stephanie A. Snyder; Keith D. Stockmann; Gaylord E. Morris
2012-01-01
The US Forest Service used contracted helicopter services as part of its wildfire suppression strategy. An optimization decision-modeling system was developed to assist in the contract selection process. Three contract award selection criteria were considered: cost per pound of delivered water, total contract cost, and quality ratings of the aircraft and vendors....
ERIC Educational Resources Information Center
Frey, T. Kody; Tatum, Nicholas T.
2016-01-01
Popular culture is all too familiar with the notion of the helicopter parent. This suffocating sheltering extends students' adolescence and delays the development of independence (Price, 2010), causing millennials to rely on their parents for financial stability (White, 2015) and emotional support (Raphelson, 2014). Even in the midst of…
Remote helicopter-borne detector for searching of methane leaks.
Berezin, A G; Malyugin, S V; Nadezhdinskii, A I; Namestnikov, D Yu; Ponurovskii, Ya Ya; Rudov, S G; Stavrovskii, D B; Shapovalov, Yu P; Vyazov, I E; Zaslavskii, V Ya
2007-04-01
Measurements of the content of various molecular impurities in the ambient air using helicopter- and aircraft-borne systems represent an extremely urgent challenge. In this respect, of special interest are the devices that that provide leakage monitoring in gas lines in order to prevent emergencies. In the paper results of the tunable diode laser-based instrument development and testing are presented.
1963-06-11
Ames aerodynamicists tested a wide variety of VTOL aircraft and helicopters during the 1960's. Here the Hiller rotorcycle YROE-1, made by Hiller Helicopter in nearby PaloAlto, California, hovers in front of the Ames Hangar. (4020, 4021, 4024) Published in NASA SP Flight Research at Ames: 57 Years of Development and Validation of Aeronautical Technology and Ames 60yr History Atmosphere of Freedom.
NASA Technical Reports Server (NTRS)
Wright, C. C.; Baker, D. J.; Corvelli, N.; Thurston, L.; Clary, R.; Illg, W.
1971-01-01
The fabrication of UH-1 helicopter tail rotor drive shafts from graphite/epoxy composite materials is discussed. Procedures for eliminating wrinkles caused by lack of precure compaction are described. The development of the adhesive bond between aluminum end couplings and the composite tube is analyzed. Performance tests to validate the superiority of the composite materials are reported.
Sampling tree tops by helicopter...special pole pruner cuts branchlets
John F. Wear; Robert G. Winterfeld
1966-01-01
A new technique for sampling tops of tall Douglas-fir trees by using a special pole pruner from a helicopter has been developed and field-tested. Thee pole pruner cuts and holds a branchlet. Foliage samples collected will be compared by spectral analysis to show the type of aerial imagery that best differentiates healthy trees from those attacked by root rot.
NASA Technical Reports Server (NTRS)
1978-01-01
Think of guitars and you think of rock and country music, or the vigorous rhythms of the gypsy flamenco, or perhaps the classical strumming of a Segovia. About the last thing you would associate with guitars is aerospace technology. Yet there is a connection. A whole family of quality guitars is an outgrowth of helicopter rotor research conducted for the military services and NASA by an aerospace contractor. These musical spinoffs, commercially available and rapidly gaining in popularity, are the Ovation guitar line, manufactured by Ovation Instruments, Inc., Bloomfield, Connecticut. Ovation Instruments is a subsidiary of Kaman Corporation, a diversified company originally formed to develop and build helicopters. A helicopter's rotor system, with thousands of moving parts, is highly susceptible to vibration. For rotor efficiency, vibration must be "dampened," or reduced. Like other helicopter builders, Kaman Corporation spent years of research toward that end. The technology thus developed, together with the availability of staff experts in vibration engineering, sparked an idea in the mind of the company's president and founder, Charles H. Karnan. A guitarist of professional caliber, Kaman reasoned that vibration-dampening technology could be turned around to enhance vibration and thereby produce a guitar with superior sound.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatchell, Brian K.; Mauss, Fredrick J.; Amaya, Ivan A.
Military missiles are exposed to many sources of mechanical vibration that can affect system reliability, safety, and mission effectiveness. The U. S. Army Aviation and Missile Research Development and Engineering Center (AMRDEC) has been developing missile health monitoring systems to assess and improve reliability, reduce life cycle costs, and increase system readiness. One of the most significant exposures to vibration occurs when the missile is being carried by a helicopter or other aviation platform, which is a condition known as captive carry. Recording the duration of captive carry exposure during the missile’s service life can enable the implementation of predictivemore » maintenance and resource management programs. Since the vibration imparted by each class of helicopter varies in frequency and amplitude, tracking the vibration exposure from each helicopter separately can help quantify the severity and harmonic content of the exposure. Under the direction of AMRDEC staff, engineers at the Pacific Northwest National Laboratory have developed a Captive Carry Health Monitor (CCHM) for the Hellfire II missile. The CCHM is an embedded usage monitoring device installed on the outer skin of the Hellfire II missile to record the cumulative hours the host missile has been in captive carry mode. To classify the vibration by class of helicopter, the CCHM analyzes the amplitude and frequency content of the vibration with the Goertzel algorithm to detect the presence of distinctive rotor harmonics. Cumulative usage data are accessible in theater from an external display; monthly usage histograms are accessible through an internal download connector. This paper provides an overview of the CCHM electrical and package design, describes field testing and data analysis techniques used to monitor captive carry identify and the class of helicopter, and discusses the potential application of missile health and usage data for real-time reliability analysis and fleet management.« less
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1991-01-01
A NASA Langley-sponsored rotorcraft structural dynamics program, known as Design Analysis Methods for VIBrationS (DAMVIBS), has been under development since 1984. The objective of this program was to establish the technology base needed by the industry to develop an advanced finite-element-based dynamics design analysis capability for vibrations. Under the program, teams from the four major helicopter manufacturers have formed finite-element models, conducted ground vibration tests, made test/analysis comparisons of both metal and composite airframes, performed 'difficult components' studies on airframes to identify components which need more complete finite-element representation for improved correlation, and evaluated industry codes for computing coupled rotor-airframe vibrations. Studies aimed at establishing the role that structural optimization can play in airframe vibrations design work have also been initiated. Five government/industry meetings were held in connection with these activities during the course of the program. Because the DAMVIBS Program is coming to an end, the fifth meeting included a brief assessment of the program and its benefits to the industry.
NASA Technical Reports Server (NTRS)
Kvaternik, Raymond G.
1991-01-01
A NASA Langley-sponsored rotorcraft structural dynamics program, known as Design Analysis Methods for VIBrationS (DAMVIBS), has been under development since 1984. The objective of this program was to establish the technology base needed by the industry to develop an advanced finite-element-based dynamics design analysis capability for vibrations. Under the program, teams from the four major helicopter manufacturers have formed finite-element models, conducted ground vibration tests, made test/analysis comparisons of both metal and composite airframes, performed 'difficult components' studies on airframes to identify components which need more complete finite-element representation for improved correlation, and evaluated industry codes for computing coupled rotor-airframe vibrations. Studies aimed at establishing the role that structural optimization can play in airframe vibrations design work have also been initiated. Five government/industry meetings were held in connection with these activities during the course of the program. Because the DAMVIBS Program is coming to an end, the fifth meeting included a brief assessment of the program and its benefits to the industry.
77 FR 30232 - Airworthiness Directives; Bell Helicopter Textron Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-22
...-0530; Directorate Identifier 2011-SW-075-AD] RIN 2120-AA64 Airworthiness Directives; Bell Helicopter Textron Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed rulemaking (NPRM). SUMMARY: We propose to adopt a new airworthiness directive (AD) for Bell Helicopter...
Helicopter Operations and Personnel Safety (Helirescue Manual). Fourth Edition.
ERIC Educational Resources Information Center
Dalle-Molle, John
The illustrated manual includes information on various aspects of helicopter rescue missions, including mission management roles for key personnel, safety rules around helicopters, requests for helicopter support, sample military air support forms, selection of landing zones, helicopter evacuations, rescuer delivery, passenger unloading, crash…
The impact of urban operations on helicopter noise requirements
NASA Technical Reports Server (NTRS)
Spector, S. R.
1978-01-01
The interrelationship of urban helicopter operations, helicopter noise, and the establishment of urban public-use heliports is discussed. Public resistance to urban helicopter operations due to concern for safety and noise is shown to negatively impact the establishment of public-use heliports in urban centers. It is indicated that increased government and industry effort to reduce helicopter noise is needed to ensure continued growth in the helicopter industry.
Helicopter Northeast Corridor Operational Test Support.
1980-06-01
helicopters in the U. S. and Canada show a predom- inent application of small helicopters COMMERCIAL USES OF SMALL AND MEDIUM for corporate, charter, aerial...appli- HEICOPTERS cations and public safety. Medium/ U.S. and Canada. Exolessedin oercent. Small Medium heavy helicopters are used predomi- Use...safety (police. lire 17.5 4.0 fighting. etc. LTraining 6.0 - Figure 5 GROWTH FORECAST FOR SMALL AND MEDIUM HELICOPTERS For U.S. and Canada. Helicopter
XV-15 tilt rotor ship #1 and #2 parked on NASA ramp
1981-04-03
The XV-15 tilt rotor ships #1 and #2 parked on the NASA Dryden Flight Research Center ramp. The XV-15s, manufactured by Bell, were involved in limited research at Dryden in 1980 and 1981. The development of the XV-15 Tiltrotor research aircraft was initiated in 1973 with joint Army/NASA funding as a "proof of concept", or "technology demonstrator" program, with two aircraft being built by Bell Helicopter Textron (BHT) in 1977. The aircraft are powered by twin Lycoming T-53 turboshaft engines that are connected by a cross-shaft and drive three-bladed, 25 ft diameter metal rotors (the size extensively tested in a wind tunnel). The engines and main transmissions are located in wingtip nacelles to minimize the operational loads on the cross-shaft system and, with the rotors, tilt as a single unit. For takeoff, the proprotors and their engines are used in the straight-up position where the thrust is directed downward. The XV-15 then climbs vertically into the air like a helicopter. In this VTOL mode, the vehicle can lift off and hover for approximately one hour. Once off the ground, the XV-15 has the ability to fly in one of two different modes. It can fly as a helicopter, in the partially converted airplane mode. The XV-15 can also then convert from the helicopter mode to the airplane mode. This is accomplished by continuous rotation of the proprotors from the helicopter rotor position to the conventional airplane propeller position. During the ten to fifteen second conversion period, the aircraft speed increases and lift is transferred from the rotors to the wing. To land, the proprotors are rotated up to the helicopter rotor position and flown as a helicopter to a vertical landing.
14 CFR 97.3 - Symbols and terms used in procedures.
Code of Federal Regulations, 2014 CFR
2014-01-01
... procedures means helicopter procedures, with applicable minimums as prescribed in § 97.35. Helicopters may... above a designated helicopter landing area elevation used for helicopter instrument approach procedures... highest terrain/surface within a 5,200-foot radius of the missed approach point used in helicopter...
2016-06-01
HELICOPTER FLEET Hasnan bin Mohamad Rais Major, Malaysian Army B.S., University Technology of Malaysia , 2000 Submitted in partial...HELICOPTER MAINTENANCE POLICY B. The objective of MAA helicopter maintenance activities is to preserve helicopter safety and mission reliability to
46 CFR 108.653 - Helicopter facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...
46 CFR 108.653 - Helicopter facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...
46 CFR 108.653 - Helicopter facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...
14 CFR 97.3 - Symbols and terms used in procedures.
Code of Federal Regulations, 2012 CFR
2012-01-01
... procedures means helicopter procedures, with applicable minimums as prescribed in § 97.35. Helicopters may... above a designated helicopter landing area elevation used for helicopter instrument approach procedures... highest terrain/surface within a 5,200-foot radius of the missed approach point used in helicopter...
46 CFR 108.653 - Helicopter facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...
46 CFR 108.653 - Helicopter facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Helicopter facilities. 108.653 Section 108.653 Shipping... EQUIPMENT Equipment Markings and Instructions § 108.653 Helicopter facilities. (a) Each helicopter fueling facility must be marked adjacent to the fueling hose storage: “WARNING—HELICOPTER FUELING STATION—KEEP...
14 CFR 97.3 - Symbols and terms used in procedures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... procedures means helicopter procedures, with applicable minimums as prescribed in § 97.35. Helicopters may... above a designated helicopter landing area elevation used for helicopter instrument approach procedures... highest terrain/surface within a 5,200-foot radius of the missed approach point used in helicopter...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-23
...)) and Kawasaki Heavy Industries, Limited Helicopters (Kawasaki) AGENCY: Federal Aviation Administration... Columbia Helicopters, Inc.) and Kawasaki Heavy Industries, Limited Helicopters: Amendment 39-17124; Docket... Heavy Industries, Limited Model KV107-II and KV107-IIA helicopters with an upper collective pitch...
NASA Technical Reports Server (NTRS)
Gangwani, S. T.
1985-01-01
A reliable rotor aeroelastic analysis operational that correctly predicts the vibration levels for a helicopter is utilized to test various unsteady aerodynamics models with the objective of improving the correlation between test and theory. This analysis called Rotor Aeroelastic Vibration (RAVIB) computer program is based on a frequency domain forced response analysis which utilizes the transfer matrix techniques to model helicopter/rotor dynamic systems of varying degrees of complexity. The results for the AH-1G helicopter rotor were compared with the flight test data during high speed operation and they indicated a reasonably good correlation for the beamwise and chordwise blade bending moments, but for torsional moments the correlation was poor. As a result, a new aerodynamics model based on unstalled synthesized data derived from the large amplitude oscillating airfoil experiments was developed and tested.
NASA Technical Reports Server (NTRS)
Perri, Todd A.; Mckillip, R. M., Jr.; Curtiss, H. C., Jr.
1987-01-01
The development and methodology is presented for development of full-authority implicit model-following and explicit model-following optimal controllers for use on helicopters operating in the Nap-of-the Earth (NOE) environment. Pole placement, input-output frequency response, and step input response were used to evaluate handling qualities performance. The pilot was equipped with velocity-command inputs. A mathematical/computational trajectory optimization method was employed to evaluate the ability of each controller to fly NOE maneuvers. The method determines the optimal swashplate and thruster input histories from the helicopter's dynamics and the prescribed geometry and desired flying qualities of the maneuver. Three maneuvers were investigated for both the implicit and explicit controllers with and without auxiliary propulsion installed: pop-up/dash/descent, bob-up at 40 knots, and glideslope. The explicit controller proved to be superior to the implicit controller in performance and ease of design.
2000-12-08
The X-40 sub-scale technology demonstrator is suspended under a U.S. Army CH-47 Chinook cargo helicopter during a captive-carry test flight at NASA's Dryden Flight Research Center, Edwards, California. The captive carry flights are designed to verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether. Following a series of captive-carry flights, the X-40 made free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles.
A novel potential/viscous flow coupling technique for computing helicopter flow fields
NASA Technical Reports Server (NTRS)
Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul
1990-01-01
Because of the complexity of helicopter flow field, a zonal method of analysis of computational aerodynamics is required. Here, a new procedure for coupling potential and viscous flow is proposed. An overlapping, velocity coupling technique is to be developed with the unique feature that the potential flow surface singularity strengths are obtained directly from the Navier-Stokes at a smoother inner fluid boundary. The closed-loop iteration method proceeds until the velocity field is converged. This coupling should provide the means of more accurate viscous computations of the near-body and rotor flow fields with resultant improved analysis of such important performance parameters as helicopter fuselage drag and rotor airloads.
Options for liferaft entry after helicopter ditching.
Brooks, C J; Potter, P L; De Lange, D; Baranski, J V; Anderson, J
1998-08-01
Dry and wet evacuations were conducted by 24 male and 19 female subjects from the Nutec Super Puma Simulator into two different types of aviation liferaft. Dry evacuation on the windward side is the method of choice. The non-canopy raft is subjectively and objectively easier to enter both from the helicopter and the sea. The non-canopy raft is the raft of choice, the canopy raft needs a redesign to ensure that it always inflates the correct way and both rafts need a redesign of the painter anchor point. Aircrew should have special training in open water after traditional pool training. A helicopter ditching survival compass has been developed for training all who fly over water for a living.
NASA Technical Reports Server (NTRS)
Kenigsberg, I. J.; Dean, M. W.; Malatino, R.
1974-01-01
The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-04
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Jim Grossmann
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
2012-12-05
CAPE CANAVERAL, Fla. – Near the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida, a space agency team installed and tested hazard avoidance instrumentation on a Huey helicopter. Led by the Johnson Space Center and supported by Jet Propulsion Laboratory and Langley Research Center, the Autonomous Landing Hazard Avoidance Technology, or ALHAT, laser system provides a planetary lander the ability to precisely land safely on a surface while detecting any dangerous obstacles such as rocks, holes and slopes. Just north of Kennedy's Shuttle Landing Facility runway, a rock- and crater-filled planetary scape has been built so engineers can test the ability to negotiate away from risks. Photo credit: NASA/Dmitri Gerondidakis
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
... non-critical control functions, since this model helicopter has been certificated to meet the... Canada Limited (Bell) model 407 helicopter. This model helicopter will have novel or unusual design..., Rotorcraft Directorate, Regulations and Policy Group (ASW-111), 2601 Meacham Blvd., Fort Worth, Texas 76137...
46 CFR 108.486 - Helicopter decks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...
33 CFR 149.655 - What are the requirements for helicopter fueling facilities?
Code of Federal Regulations, 2014 CFR
2014-07-01
... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...
33 CFR 149.655 - What are the requirements for helicopter fueling facilities?
Code of Federal Regulations, 2013 CFR
2013-07-01
... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...
14 CFR 36.11 - Acoustical change: Helicopters.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Acoustical change: Helicopters. 36.11...: Helicopters. This section applies to all helicopters in the primary, normal, transport, and restricted... appendix H of this part, or, for helicopters having a maximum certificated takeoff weight of not more than...
14 CFR 36.11 - Acoustical change: Helicopters.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Acoustical change: Helicopters. 36.11...: Helicopters. This section applies to all helicopters in the primary, normal, transport, and restricted... appendix H of this part, or, for helicopters having a maximum certificated takeoff weight of not more than...
14 CFR 29.71 - Helicopter angle of glide: Category B.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...
14 CFR 36.11 - Acoustical change: Helicopters.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Acoustical change: Helicopters. 36.11...: Helicopters. This section applies to all helicopters in the primary, normal, transport, and restricted... appendix H of this part, or, for helicopters having a maximum certificated takeoff weight of not more than...
33 CFR 149.655 - What are the requirements for helicopter fueling facilities?
Code of Federal Regulations, 2010 CFR
2010-07-01
... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...
14 CFR 29.71 - Helicopter angle of glide: Category B.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...
14 CFR 29.71 - Helicopter angle of glide: Category B.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...
46 CFR 108.486 - Helicopter decks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...
14 CFR 29.71 - Helicopter angle of glide: Category B.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...
14 CFR 36.11 - Acoustical change: Helicopters.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Acoustical change: Helicopters. 36.11...: Helicopters. This section applies to all helicopters in the primary, normal, transport, and restricted... appendix H of this part, or, for helicopters having a maximum certificated takeoff weight of not more than...
33 CFR 149.655 - What are the requirements for helicopter fueling facilities?
Code of Federal Regulations, 2012 CFR
2012-07-01
... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...
14 CFR 36.11 - Acoustical change: Helicopters.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Acoustical change: Helicopters. 36.11...: Helicopters. This section applies to all helicopters in the primary, normal, transport, and restricted... appendix H of this part, or, for helicopters having a maximum certificated takeoff weight of not more than...
46 CFR 108.486 - Helicopter decks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...
46 CFR 108.486 - Helicopter decks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...
46 CFR 108.486 - Helicopter decks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Helicopter decks. 108.486 Section 108.486 Shipping COAST... Fire Extinguishing Systems Fire Protection for Helicopter Facilities § 108.486 Helicopter decks. At least two of the accesses to the helicopter landing deck must each have a fire hydrant on the unit's...
33 CFR 149.655 - What are the requirements for helicopter fueling facilities?
Code of Federal Regulations, 2011 CFR
2011-07-01
... helicopter fueling facilities? 149.655 Section 149.655 Navigation and Navigable Waters COAST GUARD... EQUIPMENT Design and Equipment Helicopter Fueling Facilities § 149.655 What are the requirements for helicopter fueling facilities? Helicopter fueling facilities must comply with 46 CFR 108.489 or an equivalent...
14 CFR 29.71 - Helicopter angle of glide: Category B.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Helicopter angle of glide: Category B. 29... AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Performance § 29.71 Helicopter angle of glide: Category B. For each category B helicopter, except multiengine helicopters meeting the...
Research on an autonomous vision-guided helicopter
NASA Technical Reports Server (NTRS)
Amidi, Omead; Mesaki, Yuji; Kanade, Takeo
1994-01-01
Integration of computer vision with on-board sensors to autonomously fly helicopters was researched. The key components developed were custom designed vision processing hardware and an indoor testbed. The custom designed hardware provided flexible integration of on-board sensors with real-time image processing resulting in a significant improvement in vision-based state estimation. The indoor testbed provided convenient calibrated experimentation in constructing real autonomous systems.
Leadership Styles in United States Marine Corps Transport Helicopter Squadrons
1989-12-01
This thesis examined leadership styles in United States Marine Corps transport helicopter squadrons. Analyses were conducted to determine how... leadership styles related to subordinate extra effort, leader effectiveness, satisfaction with leader, unit cohesion, and unit morale. The importance of...military history to the development of military leaders was also examined. Leadership styles of officers were evaluated by the leader himself as well as
Implementation of a Helicopter Flight Simulator with Individual Blade Control
NASA Astrophysics Data System (ADS)
Zinchiak, Andrew G.
2011-12-01
Nearly all modern helicopters are designed with a swashplate-based system for control of the main rotor blades. However, the swashplate-based approach does not provide the level of redundancy necessary to cope with abnormal actuator conditions. For example, if an actuator fails (becomes locked) on the main rotor, the cyclic inputs are consequently fixed and the helicopter may become stuck in a flight maneuver. This can obviously be seen as a catastrophic failure, and would likely lead to a crash. These types of failures can be overcome with the application of individual blade control (IBC). IBC is achieved using the blade pitch control method, which provides complete authority of the aerodynamic characteristics of each rotor blade at any given time by replacing the normally rigid pitch links between the swashplate and the pitch horn of the blade with hydraulic or electronic actuators. Thus, IBC can provide the redundancy necessary for subsystem failure accommodation. In this research effort, a simulation environment is developed to investigate the potential of the IBC main rotor configuration for fault-tolerant control. To examine the applications of IBC to failure scenarios and fault-tolerant controls, a conventional, swashplate-based linear model is first developed for hover and forward flight scenarios based on the UH-60 Black Hawk helicopter. The linear modeling techniques for the swashplate-based helicopter are then adapted and expanded to include IBC. Using these modified techniques, an IBC based mathematical model of the UH-60 helicopter is developed for the purposes of simulation and analysis. The methodology can be used to model and implement a different aircraft if geometric, gravimetric, and general aerodynamic data are available. Without the kinetic restrictions of the swashplate, the IBC model effectively decouples the cyclic control inputs between different blades. Simulations of the IBC model prove that the primary control functions can be manually reconfigured after local actuator failures are initiated, thus preventing a catastrophic failure or crash. Furthermore, this simulator promises to be a useful tool for the design, testing, and analysis of fault-tolerant control laws.
Eksert, Sami; Aşık, Mehmet Burak; Akay, Sinan; Keklikçi, Kenan; Aydın, Fevzi Nuri; Çoban, Mehmet; Kantemir, Ali; Güngör, Onur; Garip, Beyazıt; Turgut, Mustafa Suphi; Olcay, Kenan
2017-05-01
Coordination of an emergency response team is an important determinant of prompt treatment for combat injuries in hospitals. The authors hypothesized that instant messaging applications for smartphones could be appropriate tools for notifying emergency response team members. The objective of this study was to investigate the efficiency of a commercial instant messaging application (WhatsApp, Mountain View, CA) as a communication tool for the emergency team in a level-I trauma center. We retrospectively evaluated the messages in the instant messaging application group that was formed to coordinate responses to patients who suffered from combat injuries and who were transported to our hospital via helicopter during an 8-week period. We evaluated the response times, response time periods during or outside of work hours, and the differences in the response times of doctors, nurses, and technicians among the members of the emergency team to the team leader's initial message about the patients. A total of 510 emergency call messages pertaining to 17 combat injury emergency cases were logged. The median time of emergency response was 4.1 minutes, 6 minutes, and 5.3 minutes for doctors, nurses, and the other team members, respectively. The differences in these response times between the groups were statistically significant (p=0.03), with subgroup analyses revealing significant differences between doctors and nurses (p=0.038). However, no statistically significant differences were observed between the doctors and the technicians (p=0.19) or the nurses and the technicians (p=1.0). From the team leader's perspective, using this application reduced the workload and the time loss, and also encouraged the team. Instant messaging applications for smartphones can be efficient, easy-to-operate, and time-saving communication tools in the transfer of medical information and the coordination of emergency response team members in hospitals.
Methods for Finding Legacy Wells in Large Areas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammack, Richard W.; Veloski, Garret A.; Hodges, D. Greg
United States. When abandoned, many wells were not adequately sealed and now provide a potential conduit for the vertical movement of liquids and gases. Today, groundwater aquifers can be contaminated by surface pollutants flowing down wells or by deep, saline water diffusing upwards. Likewise, natural gas, carbon dioxide (CO2), or radon can travel upwards via these wells to endanger structures or human health on the surface. Recently, the need to find and plug wells has become critical with the advent of carbon dioxide injection into geologic formations for enhanced oil recovery (EOR) or carbon storage. The potential for natural gasmore » or brine leakage through existing wells has also been raised as a concern in regions where shale resources are hydraulically fractured for hydrocarbon recovery. In this study, the National Energy Technology Laboratory (NETL) updated existing, effective well finding techniques to be able to survey large areas quickly using helicopter or ground-vehicle-mounted magnetometers, combined with mobile methane detection. For this study, magnetic data were collected using airborne and ground vehicles equipped with two boom-mounted magnetometers, or on foot using a hand-held magnetometer with a single sensor. Data processing techniques were employed to accentuate well-casing-type magnetic signatures. To locate wells with no magnetic signature (wells where the steel well casing had been removed), the team monitored for anomalous concentrations of methane, which could indicate migration of volatile compounds from deeper sedimentary strata along a well or fracture pathway. Methane measurements were obtained using the ALPIS DIfferential Absorption Lidar (DIAL) sensor for helicopter surveys and the Apogee leak detection system (LDS) for ground surveys. These methods were evaluated at a 100-year-old oilfield in Wyoming, where a helicopter magnetic survey accurately located 93% of visible wells. In addition, 20% of the wells found by the survey were previously unknown or inaccurately located. This study found helicopter magnetic surveys to be an accurate, cost- and time-effective means to locate steel-cased wells in large areas, and is a first step in evaluating whether well detection techniques can be applied effectively for well location screening across broad geographic areas.« less
The 3600 hp split-torque helicopter transmission
NASA Technical Reports Server (NTRS)
White, G.
1985-01-01
Final design details of a helicopter transmission that is powered by GE twin T 700 engines each rated at 1800 hp are presented. It is demonstrated that in comparison with conventional helicopter transmission arrangements the split torque design offers: weight reduction of 15%; reduction in drive train losses of 9%; and improved reliability resulting from redundant drive paths between the two engines and the main shaft. The transmission fits within the NASA LeRC 3000 hp Test Stand and accepts the existing positions for engine inputs, main shaft, connecting drive shafts, and the cradle attachment points. One necessary change to the test stand involved gear trains of different ratio in the tail drive gearbox. Progressive uprating of engine input power from 3600 to 4500 hp twin engine rating is allowed for in the design. In this way the test transmission will provide a base for several years of analytical, research, and component development effort targeted at improving the performance and reliability of helicopter transmission.
14 CFR 29.33 - Main rotor speed and pitch limits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... helicopters required to have a main rotor low speed warning under paragraph (e) of this section, it must be... warning for helicopters. For each single engine helicopter, and each multiengine helicopter that does not... be furnished either through the inherent aerodynamic qualities of the helicopter or by a device. (3...
14 CFR 29.33 - Main rotor speed and pitch limits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... helicopters required to have a main rotor low speed warning under paragraph (e) of this section, it must be... warning for helicopters. For each single engine helicopter, and each multiengine helicopter that does not... be furnished either through the inherent aerodynamic qualities of the helicopter or by a device. (3...
14 CFR 27.33 - Main rotor speed and pitch limits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... helicopters required to have a main rotor low speed warning under paragraph (e) of this section. It must be... warning for helicopters. For each single engine helicopter, and each multiengine helicopter that does not... be furnished either through the inherent aerodynamic qualities of the helicopter or by a device. (3...
14 CFR 27.33 - Main rotor speed and pitch limits.
Code of Federal Regulations, 2014 CFR
2014-01-01
... helicopters required to have a main rotor low speed warning under paragraph (e) of this section. It must be... warning for helicopters. For each single engine helicopter, and each multiengine helicopter that does not... be furnished either through the inherent aerodynamic qualities of the helicopter or by a device. (3...
14 CFR 27.33 - Main rotor speed and pitch limits.
Code of Federal Regulations, 2012 CFR
2012-01-01
... helicopters required to have a main rotor low speed warning under paragraph (e) of this section. It must be... warning for helicopters. For each single engine helicopter, and each multiengine helicopter that does not... be furnished either through the inherent aerodynamic qualities of the helicopter or by a device. (3...
14 CFR 29.33 - Main rotor speed and pitch limits.
Code of Federal Regulations, 2013 CFR
2013-01-01
... helicopters required to have a main rotor low speed warning under paragraph (e) of this section, it must be... warning for helicopters. For each single engine helicopter, and each multiengine helicopter that does not... be furnished either through the inherent aerodynamic qualities of the helicopter or by a device. (3...
75 FR 793 - Damage Tolerance and Fatigue Evaluation of Composite Rotorcraft Structures
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-06
... there are six U.S. part 27 helicopter manufacturers that produce composite helicopters. MD Helicopters... and is not expected to produce composite heliopters in the future.. 8/10/2009 Part 29 Helicopter... helicopter inspection time for a composite part will be the same as or less than for a metallic part...
NASA Astrophysics Data System (ADS)
Sealfon, C. D.; Plummer, J. D.
2012-08-01
The Women in Aerospace and Technology Project (WATP) is a collaborative effort between the Girl Scouts of Eastern Pennsylvania, the American Helicopter Museum, Boeing Rotorcraft, Sikorsky Global Helicopters, Drexel University, West Chester University, and Arcadia University. The program aims to increase the representation of women in STEM (Science, Technology, Engineering, and Math) fields; the evaluation team identified a secondary goal to assess growth in participants' understanding of scientific inquiry. Girls, grades 4-12, were invited to join Girl Scout troops formed at the American Helicopter Museum to participate in a series of eight workshops on the physics and engineering of flight. Five college women majoring in physics and engineering were recruited as mentors for the girls. Lessons were written by local aerospace industry partners (including Boeing and Sikorsky); the mentors then taught the lessons and activities during the workshops. To evaluate the impact of this project, we collected data to answer two research questions: 1) In what ways does the program impact participants' attitudes towards science and interest in pursuing science as a career? 2) In what ways does the program impact participants' understanding of the nature of scientific inquiry? In this article we summarize results from two sources of data: before and after survey of attitudes about science and end-of-workshop informal questionnaires. Across the seven months of data collection, two challenges became apparent. First, our assessment goals, focusing on scientific interest and inquiry, seemed misaligned with the workshop curricula, which emphasized engineering and design. Secondly, there was little connection among activities within workshops and across the program.
NASA Technical Reports Server (NTRS)
Lindsay, Howard A.; Motoyama, Stephen M.; Smith, Kent F.
1990-01-01
The development of composite-related technology applicable to armored crashworthy helicopter crewseats is discussed. The main objective was to achieve a significant weight reduction relative to the first-generation seats exemplified by the UH-60A and the AH-64A designs. This weight reduction was achieved while maintaining full compliance with the most recent version of the military crashworthy crewseat specification, MIL-S-58095A. The technology developed during this effort is intended to apply to the next generation of Army helicopters, such as LHX.
An evaluation of helicopter noise and vibration ride qualities criteria
NASA Technical Reports Server (NTRS)
Hammond, C. E.; Hollenbaugh, D. D.; Clevenson, S. A.; Leatherwood, J. D.
1981-01-01
Two methods of quantifying helicopter ride quality; absorbed power for vibration only and the NASA ride comfort model for both noise and vibration are discussed. Noise and vibration measurements were obtained on five operational US Army helicopters. The data were converted to both absorbed power and DISC's (discomfort units used in the NASA model) for specific helicopter flight conditions. Both models indicate considerable variation in ride quality between the five helicopters and between flight conditions within each helicopter.
Helicopter discrimination apparatus for the murine radar
Webb, Jr., John G.; Gray, Roger M.
1977-01-01
A helicopter discrimination apparatus for a radar utilizing doppler filtering to discriminate between a missile and ground clutter. The short duration of the doppler filter pulses which are emitted by helicopter rotor blades are processed to prevent false alarms, thus allowing the radar-protected helicopter to operate in formation with other helicopters while maintaining protection against infra-red-seeking missiles.
Andruszkow, Hagen; Hildebrand, Frank; Lefering, Rolf; Pape, Hans-Christoph; Hoffmann, Reinhard; Schweigkofler, Uwe
2014-10-01
Helicopter emergency medical service (HEMS) has been established in the preclinical treatment of multiple traumatised patients despite an ongoing controversy towards the potential benefit. Celebrating the 20th anniversary of TraumaRegister DGU(®) of the German Trauma Society (DGU) the presented study intended to provide an overview of HEMS rescue in Germany over the last 10 years analysing the potential beneficial impact of a nationwide helicopter rescue in multiple traumatised patients. We analysed TraumaRegister DGU(®) including multiple traumatised patients (ISS ≥ 16) between 2002 and 2012. In-hospital mortality was defined as main outcome. An adjusted, multivariate regression with 13 confounders was performed to evaluate the potential survival benefit. 42,788 patients were included in the present study. 14,275 (33.4%) patients were rescued by HEMS and 28,513 (66.6%) by GEMS. Overall, 66.8% (n=28,569) patients were transported to a level I trauma centre and 28.2% (n=12,052) to a level II trauma centre. Patients rescued by HEMS sustained a higher injury severity compared to GEMS (ISS HEMS: 29.5 ± 12.6 vs. 27.5 ± 11.8). Helicopter rescue teams performed more on-scene interventions, and mission times were increased in HEMS rescue (HEMS: 77.2 ± 28.7 min. vs. GEMS: 60.9 ± 26.9 min.). Linear regression analysis revealed that the frequency of HEMS rescue has decreased significantly between 2002 and 2012. In case of transportation to level I trauma centres a decrease of 1.7% per year was noted (p<0.001) while a decline of 1.6% per year (p<0.001) was measured for level II trauma centre admissions. According to multivariate logistic regression HEMS was proven a positive independent survival predictor between 2002 and 2012 (OR 0.863; 95%-CI 0.800-0.930; Nagelkerkes-R(2) 0.539) with only little differences between each year. This study was able to prove an independent survival benefit of HEMS in multiple traumatised patients during the last 10 years. Despite this fact, a constant decline of HEMS rescue missions was found in multiple trauma patients due to unknown reasons. We concluded that HEMS should be used more often in case of trauma in order to guarantee the proven benefit for multiple traumatised patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Small helicopter could find niche in remote heavy lift operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-21
A new helicopter specifically designed for external vertical lift operations, such as moving transportable rig components or seismic equipment in remote locations, operates more efficiently than most other medium or heavy-lift helicopters, according to manufacturer Kaman Aerospace. The single-pilot helicopter was designed as an aerial truck for efficient lifting of heavy loads but with the operating costs of a light-lift craft. The K-Max helicopter can lift more pounds of cargo per gallon of fuel consumed than other similar helicopters, according to Kaman. For example, to transport a 5,000-lb load at an elevation of 8,000 ft, the K-Max helicopter consumes 85more » gal of fuel/hr. Under the same load conditions, the next most efficient commercially available helicopter consumes 160 gal of fuel/hr and requires two pilots. The 4,500-lb helicopter can lift 5,000 lb to an altitude of 8,000 ft or about 6,000 lb at low altitudes.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
...This proposed rule addresses air ambulance and commercial helicopter operations, part 91 helicopter operations, and load manifest requirements for all part 135 aircraft. From 2002 to 2008, there has been an increase in fatal helicopter air ambulance accidents. To address these safety concerns, the FAA is proposing to implement operational procedures and require additional equipment on board helicopter air ambulances. Many of these proposed requirements currently are found in agency guidance publications and would address National Transportation Safety Board (NTSB) safety recommendations. Some of these safety concerns are not unique to the helicopter air ambulance industry and affect all commercial helicopter operations. Accordingly, the FAA also is proposing to amend regulations pertaining to all commercial helicopter operations conducted under part 135 to include equipment requirements, pilot training, and alternate airport weather minima. The changes are intended to provide certificate holders and pilots with additional tools and procedures that will aid in preventing accidents.
Improved Continuous-Time Higher Harmonic Control Using Hinfinity Methods
NASA Astrophysics Data System (ADS)
Fan, Frank H.
The helicopter is a versatile aircraft that can take-off and land vertically, hover efficiently, and maneuver in confined space. This versatility is enabled by the main rotor, which also causes undesired harmonic vibration during operation. This unwanted vibration has a negative impact on the practicality of the helicopter and also increases its operational cost. Passive control techniques have been applied to helicopter vibration suppression, but these methods are generally heavy and are not robust to changes in operating conditions. Feedback control offers the advantages of robustness and potentially higher performance over passive control techniques, and amongst the various feedback schemes, Shaw's higher harmonic control algorithm has been shown to be an effective method for attenuating harmonic disturbance in helicopters. In this thesis, the higher harmonic disturbance algorithm is further developed to achieve improved performance. One goal in this thesis is to determine the importance of periodicity in the helicopter rotor dynamics for control synthesis. Based on the analysis of wind tunnel data and simulation results, we conclude the helicopter rotor can be modeled reasonably well as linear and time-invariant for control design purposes. Modeling the helicopter rotor as linear time-invariant allows us to apply linear control theory concepts to the higher harmonic control problem. Another goal in this thesis is to find the limits of performance in harmonic disturbance rejection. To achieve this goal, we first define the metrics to measure the performance of the controller in terms of response speed and robustness to changes in the plant dynamics. The performance metrics are incorporated into an Hinfinity control problem. For a given plant, the resulting Hinfinity controller achieves the maximum performance, thus allowing us to identify the performance limitation in harmonic disturbance rejection. However, the Hinfinity controllers are of high order, and may have unstable poles, leading us to develop a design method to generate stable, fixed-order, and high performance controllers. Both the Hinfinity and the fixed-order controllers are designed for constant flight conditions. A gain-scheduled control law is used to reduce the vibration throughout the flight envelope. The gain-scheduling is accomplished by blending the outputs from fixed-order controllers designed for different flight conditions. The structure of the fixed-order controller allows the usage of a previously developed anti-windup scheme, and the blending function results in a bumpless full flight envelope control law. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
2013-01-01
Helicopter Structure Christopher Dore Air Vehicles Division Defence Science and Technology Organisation DSTO-TN-1136 ABSTRACT A...of rotary wing aircraft structure was conducted. The comparison utilised a graphical hierarchy-based methodology developed as an improvement on text...Science and Technology Organisation researchers on the intent of the subject documents and the similarities and differences between them. RELEASE
Parametric study of helicopter aircraft systems costs and weights
NASA Technical Reports Server (NTRS)
Beltramo, M. N.
1980-01-01
Weight estimating relationships (WERs) and recurring production cost estimating relationships (CERs) were developed for helicopters at the system level. The WERs estimate system level weight based on performance or design characteristics which are available during concept formulation or the preliminary design phase. The CER (or CERs in some cases) for each system utilize weight (either actual or estimated using the appropriate WER) and production quantity as the key parameters.
NASA Technical Reports Server (NTRS)
Baisley, R. L.
1973-01-01
The results of an evaluation of police helicopter effectiveness revealed a need for improved visual capability. A JPL program developed a method that would enhance visual observation capability for both day and night usage and demonstrated the feasibility of the adopted approach. This approach made use of remote pointable optics, a display screen, a slaved covert searchlight, and a coupled camera. The approach was proved feasible through field testing and by judgement against evaluation criteria.
Mathematical model of the SH-3G helicopter
NASA Technical Reports Server (NTRS)
Phillips, J. D.
1982-01-01
A mathematical model of the Sikorsky SH-3G helicopter based on classical nonlinear, quasi-steady rotor theory was developed. The model was validated statically and dynamically by comparison with Navy flight-test data. The model incorporates ad hoc revisions which address the ideal assumptions of classical rotor theory and improve the static trim characteristics to provide a more realistic simulation, while retaining the simplicity of the classical model.
Conceptual Design and Performance Analysis for a Large Civil Compound Helicopter
NASA Technical Reports Server (NTRS)
Russell, Carl; Johnson, Wayne
2012-01-01
A conceptual design study of a large civil compound helicopter is presented. The objective is to determine how a compound helicopter performs when compared to both a conventional helicopter and a tiltrotor using a design mission that is shorter than optimal for a tiltrotor and longer than optimal for a helicopter. The designs are generated and analyzed using conceptual design software and are further evaluated with a comprehensive rotorcraft analysis code. Multiple metrics are used to determine the suitability of each design for the given mission. Plots of various trade studies and parameter sweeps as well as comprehensive analysis results are presented. The results suggest that the compound helicopter examined for this study would not be competitive with a tiltrotor or conventional helicopter, but multiple possibilities are identified for improving the performance of the compound helicopter in future research.
Modeling Tool Advances Rotorcraft Design
NASA Technical Reports Server (NTRS)
2007-01-01
Continuum Dynamics Inc. (CDI), founded in 1979, specializes in advanced engineering services, including fluid dynamic modeling and analysis for aeronautics research. The company has completed a number of SBIR research projects with NASA, including early rotorcraft work done through Langley Research Center, but more recently, out of Ames Research Center. NASA Small Business Innovation Research (SBIR) grants on helicopter wake modeling resulted in the Comprehensive Hierarchical Aeromechanics Rotorcraft Model (CHARM), a tool for studying helicopter and tiltrotor unsteady free wake modeling, including distributed and integrated loads, and performance prediction. Application of the software code in a blade redesign program for Carson Helicopters, of Perkasie, Pennsylvania, increased the payload and cruise speeds of its S-61 helicopter. Follow-on development resulted in a $24 million revenue increase for Sikorsky Aircraft Corporation, of Stratford, Connecticut, as part of the company's rotor design efforts. Now under continuous development for more than 25 years, CHARM models the complete aerodynamics and dynamics of rotorcraft in general flight conditions. CHARM has been used to model a broad spectrum of rotorcraft attributes, including performance, blade loading, blade-vortex interaction noise, air flow fields, and hub loads. The highly accurate software is currently in use by all major rotorcraft manufacturers, NASA, the U.S. Army, and the U.S. Navy.
[Development of the helicopter-rescue concept in the Basel region].
Demartines, N; Castelli, I; Scheidegger, D; Harder, F
1992-03-24
1927 medical helicopter transports were performed in Basle between 1986 and 1989. Of the total flights, 173 transports without patients and 186 incubator transports were excluded from the study. Treatment and transportation were provided for 1085 victims of trauma (70.2%) and 461 medical-surgical patients (29.8%), mostly with life-threatening conditions. 589 trauma patients were treated at the scene of accident and later transported by helicopter to a nearby medical center (54.3%). The 4.3% rate of negative emergency flights is low. Since introduction of the helicopter rescue system at Basle in 1975, scene flights have increased from 29% in 1984 to 46% in 1989. 47.4% of all patients were categorized as seriously ill or severely injured. 36.4% of all patients required intubation and assisted ventilation. Of the trauma patients, 54.3% involved scene-flights requiring in-field intensive therapy. Helicopter transport provides not only a rapid source of transportation, but also vital medical assistance at the scene of emergency. Transport generally occurs only after stabilization of vital functions. These factors contribute to the low mortality before return flights (3%) as well as during transport (0.3%). We conclude that early aggressive in-field intensive therapy can help to decrease both morbidity and mortality in emergency-care patients.
Computer simulation of multiple pilots flying a modern high performance helicopter
NASA Technical Reports Server (NTRS)
Zipf, Mark E.; Vogt, William G.; Mickle, Marlin H.; Hoelzeman, Ronald G.; Kai, Fei; Mihaloew, James R.
1988-01-01
A computer simulation of a human response pilot mechanism within the flight control loop of a high-performance modern helicopter is presented. A human response mechanism, implemented by a low order, linear transfer function, is used in a decoupled single variable configuration that exploits the dominant vehicle characteristics by associating cockpit controls and instrumentation with specific vehicle dynamics. Low order helicopter models obtained from evaluations of the time and frequency domain responses of a nonlinear simulation model, provided by NASA Lewis Research Center, are presented and considered in the discussion of the pilot development. Pilot responses and reactions to test maneuvers are presented and discussed. Higher level implementation, using the pilot mechanisms, are discussed and considered for their use in a comprehensive control structure.
Flight-test evaluation of civil helicopter terminal approach operations using differential GPS
NASA Technical Reports Server (NTRS)
Edwards, F. G.; Hegarty, D. M.
1989-01-01
A civil code differential Global Positioning System (DGPS) has been developed and flight-tested by the NASA Ames Research Center. The system was used to evaluate the performance of the DGPS for support of helicopter terminal approach operations. The airborne component of the DGPS was installed in a NASA helicopter. The ground-reference component was installed in a mobile van and equipped with a real-time VHF telemetry data link to transmit correction information to the aircraft system. An extensive series of tests was conducted to evaluate the performance of the system for several different configurations of the airborne navigation filter. This paper will describe the systems, the results of the flight tests, and the results of the posttest analysis.
Noise characteristics of eight helicopters
DOT National Transportation Integrated Search
1977-07-01
This report describes the noise characteristics of Eight Helicopters during level flyovers, simulated approaches, and hover. The data was obtained during an FAA/DOT Helicopter Noise Program to acquire a data base for possible helicopter noise regulat...
Dynamic stability of a helicopter with hinged rotor blades
NASA Technical Reports Server (NTRS)
Hohenemser, K
1939-01-01
The present report is a study of the dynamic stability of a helicopter with hinged rotor blades under hovering conditions. While in this case perfect stability can in general not be obtained it is possible by means of design features to prolong the period of the spontaneous oscillations of the helicopter and reduce their amplification, and so approximately assure neutral equilibrium. The possibility of controlled stability of a helicopter fitted with hinged blades is proved by the successful flights of various helicopters, particularly of the Focker FW61 helicopter.
NASA Technical Reports Server (NTRS)
Matsumoto, Joy Hamerman; Rogers, Steven; Mccauley, Michael; Salinas, AL
1992-01-01
The U.S. Army Crew Station Research and Development Branch (CSRDB) of the Aircraft Simulation Division (AVSCOM) was tasked by the Light Helicopter Program Manager (LH-PM) to provide training to Army personnel in advanced aircraft simulation technology. The purpose of this training was to prepare different groups of pilots to support and evaluate two contractor simulation efforts during the Demonstration/Validation (DEM/VAL) phase of the LH program. The personnel in the CSRDB developed mission oriented training programs to accomplish the objectives, conduct the programs, and provide guidance to army personnel and support personnel throughout the DEM/VAL phase.
Application of higher harmonic blade feathering for helicopter vibration reduction
NASA Technical Reports Server (NTRS)
Powers, R. W.
1978-01-01
Higher harmonic blade feathering for helicopter vibration reduction is considered. Recent wind tunnel tests confirmed the effectiveness of higher harmonic control in reducing articulated rotor vibratory hub loads. Several predictive analyses developed in support of the NASA program were shown to be capable of calculating single harmonic control inputs required to minimize a single 4P hub response. In addition, a multiple-input, multiple-output harmonic control predictive analysis was developed. All techniques developed thus far obtain a solution by extracting empirical transfer functions from sampled data. Algorithm data sampling and processing requirements are minimal to encourage adaptive control system application of such techniques in a flight environment.
Developments in the design, analysis, and fabrication of advanced technology transmission elements
NASA Technical Reports Server (NTRS)
Drago, R. J.; Lenski, J. W., Jr.
1982-01-01
Over the last decade, the presently reported proprietary development program for the reduction of helicopter drive system weight and cost and the enhancement of reliability and survivability has produced high speed roller bearings, resin-matrix composite rotor shafts and transmission housings, gear/bearing/shaft system integrations, photoelastic investigation methods for gear tooth strength, and the automatic generation of complex FEM models for gear/shaft systems. After describing the design features and performance capabilities of the hardware developed, attention is given to the prospective benefits to be derived from application of these technologies, with emphasis on the relationship between helicopter drive system performance and cost.
Helicopter noise analysis : round-robin test
DOT National Transportation Integrated Search
1981-08-01
This report documents the results of an international round robin test on the analysis of helicopter noise. Digital spectral noise data of a 3.5-second simulated helicopter flyover and identical analog test tapes containing helicopter noise data, ref...
Prehospital airway management on rescue helicopters in the United Kingdom.
Schmid, M; Mang, H; Ey, K; Schüttler, J
2009-06-01
Adequate equipment is one prerequisite for advanced, out of hospital, airway management. There are no data on current availability of airway equipment on UK rescue helicopters. An internet search revealed all UK rescue helicopters, and a questionnaire was sent to the bases asking for available airway management items. We identified 27 helicopter bases and 26 (96%) sent the questionnaire back. Twenty-four bases (92%) had at least one supraglottic airway device; 16 (62%) helicopters had material for establishing a surgical airway (e.g. a cricothyroidotomy set); 88% of the helicopters had CO(2) detection; 25 (96%) helicopters carried automatic ventilators; among these, four (15%) had sophisticated ventilators and seven (27%) helicopters carried special face masks suitable for non-invasive ventilation. We found a wide variation in the advanced airway management equipment that was carried routinely on air ambulances. Current guidelines for airway management are not met by all UK air ambulances.
Stuhr, M; Dethleff, D; Weinrich, N; Nielsen, M; Hory, D; Kowald, B; Seide, K; Kerner, T; Nau, C; Jürgens, C
2016-05-01
Offshore windfarms are constructed in the German North and Baltic Seas. The off-coast remoteness of the windfarms, particular environmental conditions, limitations in offshore structure access, working in heights and depths, and the vast extent of the offshore windfarms cause significant challenges for offshore rescue. Emergency response systems comparable to onshore procedures are not fully established yet. Further, rescue from offshore windfarms is not part of the duty of the German Maritime Search and Rescue Organization or SAR-Services due to statute and mandate reasons. Scientific recommendations or guidelines for rescue from offshore windfarms are not available yet. The present article reflects the current state of medical care and rescue from German offshore windfarms and related questions. The extended therapy-free interval until arrival of the rescue helicopter requires advanced first-aid measures as well as improved first-aider qualification. Rescue helicopters need to be equipped with a winch system in order to dispose rescue personnel on the wind turbines, and to hoist-up patients. For redundancy reasons and for conducting rendezvous procedures, adequate sea-bound rescue units need to be provided. In the light of experiences from the offshore oil and gas industry and first offshore wind analyses, the availability of professional medical personnel in offshore windfarms seems advisible. Operational air medical rescue services and specific offshore emergency reaction teams have established a powerful rescue chain. Besides the present development of medical standards, more studies are necessary in order to place the rescue chain on a long-term, evidence-based groundwork. A central medical offshore registry may help to make a significant contribution at this point.
Eich, Christoph; Russo, Sebastian G; Heuer, Jan F; Timmermann, Arnd; Gentkow, Uta; Quintel, Michael; Roessler, Markus
2009-08-01
In Germany, as in many other countries, for the vast majority of cases, critical out-of-hospital (OOH) paediatric emergencies are attended by non-specialised emergency physicians (EPs). As it is assumed that this may lead to deficient service we aimed to gather robust data on the characteristics of OOH paediatric emergencies. We retrospectively evaluated all OOH paediatric emergencies (0-14 years) within a 9-year period and attended by physician-staffed ground- or helicopter-based emergency medical service (EMS or HEMS) teams from our centre. We identified 2271 paediatric emergencies, making up 6.3% of all cases (HEMS 8.5%). NACA scores IV-VII were assigned in 27.3% (HEMS 32.0%). The leading diagnosis groups were age dependent: respiratory disorders (infants 34.5%, toddlers 21.8%, school children 15.0%), convulsions (17.2%, 43.2%, and 16.0%, respectively), and trauma (16.0%, 19.5%, and 44.4%, respectively). Endotracheal intubation was performed in 4.2% (HEMS 7.6%) and intraosseous canulation in 0.7% (HEMS 1.0%) of children. Cardiopulmonary resuscitation (CPR) was commenced in 2.3% (HEMS 3.4%). Thoracocentesis, chest drain insertion and defibrillation were rarities. HEMS physicians attended a particularly high fraction of drowning (80.0%), head injury (73.9%) and SIDS (60.0%) cases, whereas 75.6% of all respiratory emergencies were attended by ground-based EPs. Our data suggest that EPs need to be particularly confident with the care of children suffering respiratory disorders, convulsions, and trauma. The incidence of severe paediatric OOH emergencies requiring advanced interventions is higher in HEMS-attended cases. However, well-developed skills in airway management, CPR, and intraosseous canulation in children are essential for all EPs.
Eye injury risk associated with remote control toy helicopter blades.
Alphonse, Vanessa D; Kemper, Andrew R; Rowson, Steven; Duma, Stefan M
2012-01-01
Eye injuries can be caused by a variety of consumer products and toys. Recently, indoor remote controlled (RC) toy helicopters have become very popular. The purpose of this study is to quantify eye injury risk associated with five commercially available RC toy helicopter blades. An experimental matrix of 25 tests was developed to test five different RC toy helicopter blades at full battery power on six postmortem human eyes. A pressure sensor inserted through the optic nerve measured intraocular pressure. Corneal abrasion was assessed post-impact using fluorescein dye. Intraocular pressure was correlated to injury risk for hyphema, lens damage, retinal damage, and globe rupture using published risk functions. All tests resulted in corneal abrasions; however, no other injuries were observed. The 25 tests produced an increase intraocular pressure between 15.2 kPa and 99.3 kPa (114.3 mmHg and 744.7 mmHg). Calculated blade velocities ranged between 16.0 m/s and 25.4 m/s. Injury risk for hyphema was a maximum of 0.2%. Injury risk for lens damage, retinal damage, and globe rupture was 0.0% for all tests. Blade design parameters such as length and mass did not affect the risk of eye injury. This is the first study to quantify the risk of eye injury from RC toy helicopter blades. While corneal abrasions were observed, more serious eye injuries were neither observed nor predicted to have occurred. Results from this study are critical for establishing safe design thresholds for RC toy helicopter blades so that more serious injuries can be prevented.
A NASA helicopter returns to PAFB after being painted
NASA Technical Reports Server (NTRS)
2000-01-01
At S.R. 3 a NASA helicopter returns to Patrick Air Force Base. The helicopter is one of four UH-1H helicopters that have had its blades painted, changing the previous black color to a pattern of white and yellow stripes. The pattern provides better visibility in smoke and fire conditions. When the rotors are turning, the stripes create a yellow and white circle that is more easily seen by a second helicopter from above. The helicopters, primarily used for security and medical evacuation for NASA, will be used to deliver water via buckets during brush fires. The change was made to comply with U.S. Fish and Wildlife and Department of Forestry regulations for helicopter-assisted fire control.
A NASA helicopter lifts off from KSC after being painted
NASA Technical Reports Server (NTRS)
2000-01-01
At S.R. 3 a NASA helicopter lifts off to return to Patrick Air Force Base. The helicopter is one of four UH-1H helicopters that have had its blades painted, changing the previous black color to a pattern of white and yellow stripes. The pattern provides better visibility in smoke and fire conditions. When the rotors are turning, the stripes create a yellow and white circle that is more easily seen by a second helicopter from above. The helicopters, primarily used for security and medical evacuation for NASA, will be used to deliver water via buckets during brush fires. The change was made to comply with U.S. Fish and Wildlife and Department of Forestry regulations for helicopter-assisted fire control.
A NASA helicopter arrives at KSC for painting
NASA Technical Reports Server (NTRS)
2000-01-01
The pilot of the NASA helicopter secures the rotary blade before the helicopter's transfer to Ransom Road at KSC. It is one of four UH-1H helicopters that will have its blades painted, changing the black to a pattern of white and yellow stripes. The pattern provides better visibility in smoke and fire conditions. When the rotors are turning, the stripes create a yellow and white circle that is more easily seen by a second helicopter from above. The helicopters, primarily used for security and medical evacuation for NASA, will be used to deliver water via buckets during brush fires. The change was made to comply with U.S. Fish and Wildlife and Department of Forestry regulations for helicopter-assisted fire control.
NDARC - NASA Design and Analysis of Rotorcraft Validation and Demonstration
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2010-01-01
Validation and demonstration results from the development of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are presented. The principal tasks of NDARC are to design a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft chosen as NDARC development test cases are the UH-60A single main-rotor and tail-rotor helicopter, the CH-47D tandem helicopter, the XH-59A coaxial lift-offset helicopter, and the XV-15 tiltrotor. These aircraft were selected because flight performance data, a weight statement, detailed geometry information, and a correlated comprehensive analysis model are available for each. Validation consists of developing the NDARC models for these aircraft by using geometry and weight information, airframe wind tunnel test data, engine decks, rotor performance tests, and comprehensive analysis results; and then comparing the NDARC results for aircraft and component performance with flight test data. Based on the calibrated models, the capability of the code to size rotorcraft is explored.
Generic Helicopter-Based Testbed for Surface Terrain Imaging Sensors
NASA Technical Reports Server (NTRS)
Alexander, James; Goldberg, Hannah; Montgomery, James; Spiers, Gary; Liebe, Carl; Johnson, Andrew; Gromov, Konstantin; Konefat, Edward; Lam, Raymond; Meras, Patrick
2008-01-01
To be certain that a candidate sensor system will perform as expected during missions, we have developed a field test system and have executed test flights with a helicopter-mounted sensor platform over desert terrains, which simulate Lunar features. A key advantage to this approach is that different sensors can be tested and characterized in an environment relevant to the flight needs prior to flight. Testing the various sensors required the development of a field test system, including an instrument to validate the truth of the sensor system under test. The field test system was designed to be flexible enough to cover the test needs of many sensors (lidar, radar, cameras) that require an aerial test platform, including helicopters, airplanes, unmanned aerial vehicles (UAV), or balloons. To validate the performance of the sensor under test, the dynamics of the test platform must be known with sufficient accuracy to provide accurate models for input into algorithm development. The test system provides support equipment to measure the dynamics of the field test sensor platform, and allow computation of the truth position, velocity, attitude, and time.
NASA Technical Reports Server (NTRS)
Adams, K. M.; Lucas, J. J.
1975-01-01
The development of a frame/stringer/skin fabrication technique for composite airframe construction was studied as a low cost approach to the manufacture of large helicopter airframe components. A center cabin aluminum airframe section of the Sikorsky CH-53D helicopter was selected for evaluation as a composite structure. The design, as developed, is composed of a woven KEVLAR-49/epoxy skin and graphite/epoxy frames and stringers. To support the selection of this specific design concept a materials study was conducted to develop and select a cure compatible graphite and KEVLAR-49/epoxy resin system, and a foam system capable of maintaining shape and integrity under the processing conditions established. The materials selected were, Narmco 5209/Thornel T-300 graphite, Narmco 5209/KEVLAR-49 woven fabric, and Stathane 8747 polyurethane foam. Eight specimens were fabricated, representative of the frame, stringer, and splice joint attachments. Evaluation of the results of analysis and test indicate that design predictions are good to excellent except for some conservatism of the complex frame splice.
Research requirements to reduce maintenance costs of civil helicopters
NASA Technical Reports Server (NTRS)
Million, D. J.; Waters, K. T.
1978-01-01
The maintenance problems faced by the operators of civil helicopters that result in high costs are documented. Existing technology that can be applied to reduce maintenance costs and research that should be carried out were identified. Good design practice and application of existing technology were described as having a significant impact on reducing maintenance costs immediately. The research and development that have potential for long range reduction of maintenance costs are presented.
2014-10-02
potential advantages of using multi- variate classification/discrimination/ anomaly detection meth- ods on real world accelerometric condition monitoring ...case of false anomaly reports. A possible explanation of this phenomenon could be given 8 ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT...of those helicopters. 1. Anomaly detection by means of a self-learning Shewhart control chart. A problem highlighted by the experts of Agusta- Westland
78 FR 47531 - Airworthiness Directives; Various Restricted Category Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-06
... Technology, Inc.; Hagglund Helicopters, LLC (previously Western International Aviation, Inc.); International.... This AD requires creating a component history card or equivalent record for each main rotor grip (grip....); California Department of Forestry; Garlick Helicopters, Inc.; Global Helicopter Technology, Inc.; Hagglund...
Study of the Army Helicopter Design Hover Criterion Using Temperature and Pressure Altitude
2017-09-01
the Advanced Scout Helicopter Special Study Group reexamined the design point requirement. They recommended increasing the design point pressure...other combinations group between these two extremes. Ultimately, the design point for a helicopter has to be determined by the user of the...helicopter designs . 6. References Aviation Agency. 1972. “Heavy Lift Helicopter (HLH) Concept Formulation Study (U)”, Action Control Number 2958
The effect of a helicopter on DC fields and ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, E.L.; Rindall, B.D.; Tarko, N.J.
1993-10-01
When a plan was initiated to utilize a helicopter to perform work on an energized, high voltage dc transmission line by bonding the helicopter to the conductor, it was necessary to determine what effect, if any, the helicopter would have on the dc fields and ions. In addition, it was necessary to determine the possible effect on helicopter instrumentation and communications. A test site and research facility at Lundar, Manitoba, Canada, provided the ideal location for making these tests. As a result, the information obtained determined that a helicopter-airborne platform could safely be used to perform the work.
Face Gear Technology for Aerospace Power Transmission Progresses
NASA Technical Reports Server (NTRS)
2005-01-01
The use of face gears in an advanced rotorcraft transmission design was first proposed by the McDonnell Douglas Helicopter Company during their contracted effort with the U.S. Army under the Advanced Rotorcraft Transmission (ART) program. Face gears would be used to turn the corner between the horizontal gas turbine engine and the vertical output rotor shaft--a function currently done by spiral bevel gears. This novel gearing arrangement would substantially lower the drive system weight partly because a face gear mesh would be used to split the input power between two output gears. However, the use of face gears and their ability to operate successfully at the speeds and loads required for an aerospace environment was unknown. Therefore a proof-of-concept phase with an existing test stand at the NASA Lewis Research Center was pursued. Hardware was designed that could be tested in Lewis' Spiral Bevel Gear Test Rig. The initial testing indicated that the face gear mesh was a feasible design that could be used at high speeds and load. Surface pitting fatigue was the typical failure mode, and that could lead to tooth fracture. An interim project was conducted to see if slight modifications to the gear tooth geometry or an alternative heat treating process could overcome the surface fatigue problems. From the initial and interim tests, it was apparent that for the surface fatigue problems to be overcome the manufacturing process used for this component would have to be developed to the level used for spiral bevel gears. The current state of the art for face gear manufacturing required using less than optimal gear materials and manufacturing techniques because the surface of the tooth form does not receive final finishing after heat treatment as it does for spiral bevel gears. This resulted in less than desirable surface hardness and manufacturing tolerances. An Advanced Research and Projects Agency (ARPA) Technology Reinvestment Project has been funded to investigate the effects of manufacturing process improvements on the operating characteristics of face gears. The program is being conducted with McDonnell Douglas Helicopter Co., Lucas Western Inc., the University of Illinois at Chicago, and a NASA/U.S. Army team. The goal of the project is develop the grinding process, experimentally verify the improvement in face gear fatigue life, and conduct a full-scale helicopter transmission test. The theory and methodology to grind face gears has been completed, and manufacture of the test hardware is ongoing. Experimental verification on test hardware is scheduled to begin in fiscal 1996.
Back symptoms in aviators flying different aircraft.
Grossman, Alon; Nakdimon, Idan; Chapnik, Leah; Levy, Yuval
2012-07-01
Back pain is a common complaint among military aviators of various aircraft. We attempted to define the epidemiologic characteristics of this complaint in military aviators of the Israeli Air Force. Aviators of various aircraft (fighter, attack helicopter, utility helicopter, and transport and cargo) completed 566 questionnaires. The questionnaires included various demographic variables as well as questions specifically addressing type of aircraft, location, and severity of pain. Questionnaires were analyzed according to aircraft type, weekly and total number of flight hours. Back pain was significantly more common among utility and attack helicopter pilots. Compared with only 64.02% of fighter pilots, 89.38% of utility and 74.55% of attack helicopter pilots reported some degree of back pain. Cervical region pain was more common among fighter pilots (47.2%) and utility helicopter pilots (47.3%) compared with attack helicopter (36.4%) and transport (22.3%) pilots. Cervical region pain of moderate-severe degree was more common among utility helicopter pilots (7.1%). Mid and low back pain at all degrees of severity were more common among helicopter pilots. A significant proportion of subjects suffered from pain in multiple regions, particularly among utility helicopter pilots (32.74%). Severity of pain was graded higher in all three regions (cervical, mid, and lower back) in utility helicopter pilots. Utility helicopter pilots have more prevalent and more severe back pain than pilots of other platforms. Yet, it is difficult to make a clear association between type of aircraft and the region of back pain.
Development of Handling Qualities Criteria for Rotorcraft with Externally Slung Loads
NASA Technical Reports Server (NTRS)
Hoh, Roger H.; Heffley, Robert K.; Mitchell, David G.
2006-01-01
Piloted simulations were performed on the NASA-Ames Vertical Motion Simulator (VMS) to explore handling qualities issues for large cargo helicopters, particularly focusing on external slung load operations. The purpose of this work was based upon the need to include handling qualities criteria for cargo helicopters in an upgrade to the U.S. Army's rotorcraft handling qualities specification, Aeronautical Design Standard-33 (ADS-33E-PRF). From the VMS results, handling qualities criteria were developed fro cargo helicopters carrying external slung loads in the degraded visual environment (DVE). If satisfied, these criteria provide assurance that the handling quality rating (HQR) will be 4 or better for operations in the DVE, and with a load mass ratio of 0.33 or less. For lighter loads, flying qualities were found to be less dependent on the load geometry and therefore the significance of the criteria is less. For heavier loads, meeting the criteria ensures the best possible handling qualities, albeit Level 2 for load mass ratios greater than 0.33.
NASA Technical Reports Server (NTRS)
Mookerjee, P.; Molusis, J. A.; Bar-Shalom, Y.
1985-01-01
An investigation of the properties important for the design of stochastic adaptive controllers for the higher harmonic control of helicopter vibration is presented. Three different model types are considered for the transfer relationship between the helicopter higher harmonic control input and the vibration output: (1) nonlinear; (2) linear with slow time varying coefficients; and (3) linear with constant coefficients. The stochastic controller formulations and solutions are presented for a dual, cautious, and deterministic controller for both linear and nonlinear transfer models. Extensive simulations are performed with the various models and controllers. It is shown that the cautious adaptive controller can sometimes result in unacceptable vibration control. A new second order dual controller is developed which is shown to modify the cautious adaptive controller by adding numerator and denominator correction terms to the cautious control algorithm. The new dual controller is simulated on a simple single-control vibration example and is found to achieve excellent vibration reduction and significantly improves upon the cautious controller.
Helicopter human factors research
NASA Technical Reports Server (NTRS)
Nagel, David C.; Hart, Sandra G.
1988-01-01
Helicopter flight is among the most demanding of all human-machine integrations. The inherent manual control complexities of rotorcraft are made even more challenging by the small margin for error created in certain operations, such as nap-of-the-Earth (NOE) flight, by the proximity of the terrain. Accident data recount numerous examples of unintended conflict between helicopters and terrain and attest to the perceptual and control difficulties associated with low altitude flight tasks. Ames Research Center, in cooperation with the U.S. Army Aeroflightdynamics Directorate, has initiated an ambitious research program aimed at increasing safety margins for both civilian and military rotorcraft operations. The program is broad, fundamental, and focused on the development of scientific understandings and technological countermeasures. Research being conducted in several areas is reviewed: workload assessment, prediction, and measure validation; development of advanced displays and effective pilot/automation interfaces; identification of visual cues necessary for low-level, low-visibility flight and modeling of visual flight-path control; and pilot training.
2000-12-08
With a small stabilization parachute trailing behind, the X-40 sub-scale technology demonstrator is suspended under a U.S. Army CH-47 Chinook cargo helicopter during a captive-carry test flight at NASA's Dryden Flight Research Center, Edwards, California. The captive carry flights are designed to verify the X-40's navigation and control systems, rigging angles for its sling, and stability and control of the helicopter while carrying the X-40 on a tether. Following a series of captive-carry flights, the X-40 made free flights from a launch altitude of about 15,000 feet above ground, gliding to a fully autonomous landing. The X-40 is an unpowered 82 percent scale version of the X-37, a Boeing-developed spaceplane designed to demonstrate various advanced technologies for development of future lower-cost access to space vehicles.
NASA Technical Reports Server (NTRS)
Phatak, A. V.
1980-01-01
A systematic analytical approach to the determination of helicopter IFR precision approach requirements is formulated. The approach is based upon the hypothesis that pilot acceptance level or opinion rating of a given system is inversely related to the degree of pilot involvement in the control task. A nonlinear simulation of the helicopter approach to landing task incorporating appropriate models for UH-1H aircraft, the environmental disturbances and the human pilot was developed as a tool for evaluating the pilot acceptance hypothesis. The simulated pilot model is generic in nature and includes analytical representation of the human information acquisition, processing, and control strategies. Simulation analyses in the flight director mode indicate that the pilot model used is reasonable. Results of the simulation are used to identify candidate pilot workload metrics and to test the well known performance-work-load relationship. A pilot acceptance analytical methodology is formulated as a basis for further investigation, development and validation.
Dallmeier, Francisco; Alonso, Alfonso; Jones, Murray
2002-05-01
The Smithsonian Institution's Monitoring and Assessment of Biodiversity Program joined Shell Prospecting and Development Peru (SPDP) to protect biodiversity during a natural gas exploration project. Emphasis was on long-term societal and environmental benefits in addition to financial gain for the company. The systematic, cyclical adaptive management process was used to generate feedback for SPDP managers. Adaptive management enables ongoing improvement of management policies and practices based on lessons learned from operational activities. Previous to this study, very little information about the local biodiversity was available. Over a 2-year period, the team conducted biological assessments of six taxonomic groups at five sites located within 600 km2. A broad range of management options such as location, timing and technology were developed from the beginning of the project. They were considered in conjunction with emerging lessons from the biodiversity assessments. Critical decisions included location of a gas plant and the cost of helicopter access versus roads to service the full field development. Both of these decisions were evaluated to ensure that they were economically and environmentally feasible. Project design changes, addressed in the planning stage, were accepted once consensus was achieved. Stakeholders were apprised of the implications of the baseline biodiversity assessments.
77 FR 54796 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-06
... Airworthiness Directives; Eurocopter France Helicopters AGENCY: Federal Aviation Administration (FAA), DOT... France Model AS350 helicopters. This AD requires installing protection sleeves over certain forward... helicopters have been approved by the aviation authority of France and are approved for operation in the...
77 FR 44118 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-27
... Airworthiness Directives; Eurocopter France Helicopters AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) for Eurocopter France (Eurocopter) Model EC155B1 helicopters with a certain... Determination These helicopters have been approved by the aviation authority of France and are approved for...
77 FR 5994 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-07
... Airworthiness Directives; Eurocopter France Helicopters AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) for all Eurocopter France EC130B4 helicopters that have not had Eurocopter... actions. FAA's Determination These helicopters have been approved by the aviation authority of France and...
Helicopter Control Energy Reduction Using Moving Horizontal Tail
Oktay, Tugrul; Sal, Firat
2015-01-01
Helicopter moving horizontal tail (i.e., MHT) strategy is applied in order to save helicopter flight control system (i.e., FCS) energy. For this intention complex, physics-based, control-oriented nonlinear helicopter models are used. Equations of MHT are integrated into these models and they are together linearized around straight level flight condition. A specific variance constrained control strategy, namely, output variance constrained Control (i.e., OVC) is utilized for helicopter FCS. Control energy savings due to this MHT idea with respect to a conventional helicopter are calculated. Parameters of helicopter FCS and dimensions of MHT are simultaneously optimized using a stochastic optimization method, namely, simultaneous perturbation stochastic approximation (i.e., SPSA). In order to observe improvement in behaviors of classical controls closed loop analyses are done. PMID:26180841
A NASA helicopter is prepared for return to PAFB after being painted
NASA Technical Reports Server (NTRS)
2000-01-01
At S.R. 3 a pilot prepares a NASA helicopter for a return flight to Patrick Air Force Base. The helicopter is one of four UH-1H helicopters that have had its blades painted, changing the previous black color to a pattern of white and yellow stripes. The pattern provides better visibility in smoke and fire conditions. When the rotors are turning, the stripes create a yellow and white circle that is more easily seen by a second helicopter from above. The helicopters, primarily used for security and medical evacuation for NASA, will be used to deliver water via buckets during brush fires. The change was made to comply with U.S. Fish and Wildlife and Department of Forestry regulations for helicopter-assisted fire control.
Optimal landing of a helicopter in autorotation
NASA Technical Reports Server (NTRS)
Lee, A. Y. N.
1985-01-01
Gliding descent in autorotation is a maneuver used by helicopter pilots in case of engine failure. The landing of a helicopter in autorotation is formulated as a nonlinear optimal control problem. The OH-58A helicopter was used. Helicopter vertical and horizontal velocities, vertical and horizontal displacement, and the rotor angle speed were modeled. An empirical approximation for the induced veloctiy in the vortex-ring state were provided. The cost function of the optimal control problem is a weighted sum of the squared horizontal and vertical components of the helicopter velocity at touchdown. Optimal trajectories are calculated for entry conditions well within the horizontal-vertical restriction curve, with the helicopter initially in hover or forwared flight. The resultant two-point boundary value problem with path equality constraints was successfully solved using the Sequential Gradient Restoration Technique.
NASA Technical Reports Server (NTRS)
McCoy, Allen H.
1998-01-01
Helicopter external air transportation plays an important role in today's world. For both military and civilian helicopters, external sling load operations offer an efficient and expedient method of handling heavy, oversized cargo. With the ability to reach areas otherwise inaccessible by ground transportation, helicopter external load operations are conducted in industries such as logging, construction, and fire fighting, as well as in support of military tactical transport missions. Historically, helicopter and load combinations have been qualified through flight testing, requiring considerable time and cost. With advancements in simulation and flight test techniques there is potential to substantially reduce costs and increase the safety of helicopter sling load certification. Validated simulation tools make possible accurate prediction of operational flight characteristics before initial flight tests. Real time analysis of test data improves the safety and efficiency of the testing programs. To advance these concepts, the U.S. Army and NASA, in cooperation with the Israeli Air Force and Technion, under a Memorandum of Agreement, seek to develop and validate a numerical model of the UH-60 with sling load and demonstrate a method of near real time flight test analysis. This thesis presents results from flight tests of a U.S. Army Black Hawk helicopter with various external loads. Tests were conducted as the U.S. first phase of this MOA task. The primary load was a container express box (CONEX) which contained a compact instrumentation package. The flights covered the airspeed range from hover to 70 knots. Primary maneuvers were pitch and roll frequency sweeps, steps, and doublets. Results of the test determined the effect of the suspended load on both the aircraft's handling qualities and its control system's stability margins. Included were calculations of the stability characteristics of the load's pendular motion. Utilizing CIFER(R) software, a method for near-real time system identification was also demonstrated during the flight test program.
Integrated modeling and robust control for full-envelope flight of robotic helicopters
NASA Astrophysics Data System (ADS)
La Civita, Marco
Robotic helicopters have attracted a great deal of interest from the university, the industry, and the military world. They are versatile machines and there is a large number of important missions that they could accomplish. Nonetheless, there are only a handful of documented examples of robotic-helicopter applications in real-world scenarios. This situation is mainly due to the poor flight performance that can be achieved and---more important---guaranteed under automatic control. Given the maturity of control theory, and given the large body of knowledge in helicopter dynamics, it seems that the lack of success in flying high-performance controllers for robotic helicopters, especially by academic groups and by small industries, has nothing to do with helicopters or control theory as such. The problem lies instead in the large amount of time and resources needed to synthesize, test, and implement new control systems with the approach normally followed in the aeronautical industry. This thesis attempts to provide a solution by presenting a modeling and control framework that minimizes the time, cost, and both human and physical resources necessary to design high-performance flight controllers. The work is divided in two main parts. The first consists of the development of a modeling technique that allows the designer to obtain a high-fidelity model adequate for both real-time simulation and controller design, with few flight, ground, and wind-tunnel tests and a modest level of complexity in the dynamic equations. The second consists of the exploitation of the predictive capabilities of the model and of the robust stability and performance guarantees of the Hinfinity loop-shaping control theory to reduce the number of iterations of the design/simulated-evaluation/flight-test-evaluation procedure. The effectiveness of this strategy is demonstrated by designing and flight testing a wide-envelope high-performance controller for the Carnegie Mellon University robotic helicopter.
Hirshon, Jon Mark; Galvagno, Samuel M; Comer, Angela; Millin, Michael G; Floccare, Douglas J; Alcorta, Richard L; Lawner, Benjamin J; Margolis, Asa M; Nable, Jose V; Bass, Robert R
2016-03-01
Helicopter emergency medical services (EMS) has become a well-established component of modern trauma systems. It is an expensive, limited resource with potential safety concerns. Helicopter EMS activation criteria intended to increase efficiency and reduce inappropriate use remain elusive and difficult to measure. This study evaluates the effect of statewide field trauma triage changes on helicopter EMS use and patient outcomes. Data were extracted from the helicopter EMS computer-aided dispatch database for in-state scene flights and from the state Trauma Registry for all trauma patients directly admitted from the scene or transferred to trauma centers from July 1, 2000, to June 30, 2011. Computer-aided dispatch flights were analyzed for periods corresponding to field triage protocol modifications intended to improve system efficiency. Outcomes were separately analyzed for trauma registry patients by mode of transport. The helicopter EMS computer-aided dispatch data set included 44,073 transports. There was a statewide decrease in helicopter EMS usage for trauma patients of 55.9%, differentially affecting counties closer to trauma centers. The Trauma Registry data set included 182,809 patients (37,407 helicopter transports, 128,129 ambulance transports, and 17,273 transfers). There was an increase of 21% in overall annual EMS scene trauma patients transported; ground transports increased by 33%, whereas helicopter EMS transports decreased by 49%. Helicopter EMS patient acuity increased, with an attendant increase in patient mortality. However, when standardized with W statistics, both helicopter EMS- and ground-transported trauma patients showed sustained improvement in mortality. Modifications to state protocols were associated with decreased helicopter EMS use and overall improved trauma patient outcomes. Copyright © 2015 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
The making of helicopters: its strategic implications for EMS helicopter operations.
Thomas, F
1998-01-01
The purpose of this article is to provide EMS helicopter personnel with an understanding of the civil helicopter manufacturing industry. Specifically, this article examines the current helicopter marketplace and how various manufactures are responding to the recent decline in new helicopter sales. This article further describes how helicopters are designed and manufactured and how global markets, international competition, and strategic considerations are influencing future helicopter design and production. Data for this paper were obtained from a literature search through the ABI-inform Telnet Services offered through the University of Utah Marriott Library. On a search of "helicopter" during the past 5 years, 566 abstracts were identified, all of which were reviewed for information related to the purpose of this article. Forty-seven articles were identified and read in detail for information that may have related to the purpose of this article. In addition, a library search to identify textbooks that describe helicopter production systems was undertaken but did not identify any written resources. Because of the lack of written resources available in writing this article, a direct interview survey of leading helicopter manufactures, associations, and industry writers was conducted. Only information that was considered "public knowledge" was available because of concerns by the various manufactures that publication of confidential information could be detrimental to their competitive advantage. Because helicopter-manufacturing plants were not located within easy travel range, no direct observation of the production facilities could be undertaken. Furthermore, information regarding production and operational management was not easily accessible because the data were not published or were considered confidential. Therefore industry analysis had to take place through direct survey interviewing technique and data obtained through an analysis of the available published data.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A helicopter is landing near rescue team members taking part in a Mode VII emergency landing simulation at Kennedy Space Center. The purpose of Mode VII is to exercise emergency preparedness personnel, equipment and facilities in rescuing astronauts from a downed orbiter and providing immediate medical attention. This simulation presents an orbiter that has crashed short of the Shuttle Landing Facility in a wooded area 2-1/2 miles south of Runway 33. Emergency crews are responding to the volunteer astronauts simulating various injuries inside an orbiter crew compartment mock-up. Rescuers must remove the crew, provide triage and transport to hospitals those who need further treatment. Local hospitals are participating in the exercise.
A rotor-mounted digital instrumentation system for helicopter blade flight research measurements
NASA Technical Reports Server (NTRS)
Knight, V. H., Jr.; Haywood, W. S., Jr.; Williams, M. L.
1978-01-01
A rotor mounted flight instrumentation system developed for helicopter rotor blade research is described. The system utilizes high speed digital techniques to acquire research data from miniature pressure transducers on advanced rotor airfoils which are flight tested on an AH-1G helicopter. The system employs microelectronic pulse code modulation (PCM) multiplexer digitizer stations located remotely on the blade and in a hub mounted metal canister. As many as 25 sensors can be remotely digitized by a 2.5 mm thick electronics package mounted on the blade near the tip to reduce blade wiring. The electronics contained in the canister digitizes up to 16 sensors, formats these data with serial PCM data from the remote stations, and transmits the data from the canister which is above the plane of the rotor. Data are transmitted over an RF link to the ground for real time monitoring and to the helicopter fuselage for tape recording. The complete system is powered by batteries located in the canister and requires no slip rings on the rotor shaft.
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Lee, M. G.
1985-01-01
The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.
Development of a helicopter rotor/propulsion system dynamics analysis
NASA Technical Reports Server (NTRS)
Warmbrodt, W.; Hull, R.
1982-01-01
A time-domain analysis of coupled engine/drive train/rotor dynamics of a twin-engine, single main rotor helicopter model has been performed. The analysis incorporates an existing helicopter model with nonlinear simulations of a helicopter turboshaft engine and its fuel controller. System dynamic behavior is studied using the resulting simulation which included representations for the two engines and their fuel controllers, drive system, main rotor, tail rotor, and aircraft rigid body motions. Time histories of engine and rotor RPM response to pilot control inputs are studied for a baseline rotor and propulsion system model. Sensitivity of rotor RPM droop to fuel controller gain changes and collective input feed-forward gain changes are studied. Torque-load-sharing between the two engines is investigated by making changes in the fuel controller feedback paths. A linear engine model is derived from the nonlinear engine simulation and used in the coupled system analysis. This four-state linear engine model is then reduced to a three-state model. The effect of this simplification on coupled system behavior is shown.
Simulation and analysis of differential global positioning system for civil helicopter operations
NASA Technical Reports Server (NTRS)
Denaro, R. P.; Cabak, A. R.
1983-01-01
A Differential Global Positioning System (DGPS) computer simulation was developed, to provide a versatile tool for assessing DGPS referenced civil helicopter navigation. The civil helicopter community will probably be an early user of the GPS capability because of the unique mission requirements which include offshore exploration and low altitude transport into remote areas not currently served by ground based Navaids. The Monte Carlo simulation provided a sufficiently high fidelity dynamic motion and propagation environment to enable accurate comparisons of alternative differential GPS implementations and navigation filter tradeoffs. The analyst has provided the capability to adjust most aspects of the system, the helicopter flight profile, the receiver Kalman filter, and the signal propagation environment to assess differential GPS performance and parameter sensitivities. Preliminary analysis was conducted to evaluate alternative implementations of the differential navigation algorithm in both the position and measurement domain. Results are presented to show that significant performance gains are achieved when compared with conventional GPS but that differences due to DGPS implementation techniques were small. System performance was relatively insensitive to the update rates of the error correction information.
NASA Technical Reports Server (NTRS)
Flourens, F.; Morel, T.; Gauthier, D.; Serafin, D.
1991-01-01
Numerical techniques such as Finite Difference Time Domain (FDTD) computer programs, which were first developed to analyze the external electromagnetic environment of an aircraft during a wave illumination, a lightning event, or any kind of current injection, are now very powerful investigative tools. The program called GORFF-VE, was extended to compute the inner electromagnetic fields that are generated by the penetration of the outer fields through large apertures made in the all metallic body. Then, the internal fields can drive the electrical response of a cable network. The coupling between the inside and the outside of the helicopter is implemented using Huygen's principle. Moreover, the spectacular increase of computer resources, as calculations speed and memory capacity, allows the modellization structures as complex as these of helicopters with accuracy. This numerical model was exploited, first, to analyze the electromagnetic environment of an in-flight helicopter for several injection configurations, and second, to design a coaxial return path to simulate the lightning aircraft interaction with a strong current injection. The E field and current mappings are the result of these calculations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...
29 CFR 1910.183 - Helicopters.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 5 2014-07-01 2014-07-01 false Helicopters. 1910.183 Section 1910.183 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Materials Handling and Storage § 1910.183 Helicopters. (a) [Reserved...) Housekeeping. Good housekeeping shall be maintained in all helicopter loading and unloading areas. (h) Load...
29 CFR 1910.183 - Helicopters.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 5 2013-07-01 2013-07-01 false Helicopters. 1910.183 Section 1910.183 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Materials Handling and Storage § 1910.183 Helicopters. (a) [Reserved...) Housekeeping. Good housekeeping shall be maintained in all helicopter loading and unloading areas. (h) Load...
29 CFR 1910.183 - Helicopters.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 5 2012-07-01 2012-07-01 false Helicopters. 1910.183 Section 1910.183 Labor Regulations... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Materials Handling and Storage § 1910.183 Helicopters. (a) [Reserved...) Housekeeping. Good housekeeping shall be maintained in all helicopter loading and unloading areas. (h) Load...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Construction and Arrangement Helicopter Facilities § 108.241 Visual aids. (a) Each helicopter deck must— (1) Have a wind direction indicator located in an unobstructed area readily visible to helicopter pilots... considering deck configuration, helicopter type, and operational requirements. (b) All markings must be in a...
78 FR 15277 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... AD are intended to prevent an uncommanded landing gear retraction that would cause the helicopter... requirements were intended to prevent an uncommanded landing gear retraction that would cause the helicopter... have caused untimely retraction of the main landing gear, causing helicopters to sink, resulting in...
General equilibrium characteristics of a dual-lift helicopter system
NASA Technical Reports Server (NTRS)
Cicolani, L. S.; Kanning, G.
1986-01-01
The equilibrium characteristics of a dual-lift helicopter system are examined. The system consists of the cargo attached by cables to the endpoints of a spreader bar which is suspended by cables below two helicopters. Results are given for the orientation angles of the suspension system and its internal forces, and for the helicopter thrust vector requirements under general circumstances, including nonidentical helicopters, any accelerating or static equilibrium reference flight condition, any system heading relative to the flight direction, and any distribution of the load to the two helicopters. Optimum tether angles which minimize the sum of the required thrust magnitudes are also determined. The analysis does not consider the attitude degrees of freedom of the load and helicopters in detail, but assumes that these bodies are stable, and that their aerodynamic forces in equilibrium flight can be determined independently as functions of the reference trajectory. The ranges of these forces for sample helicopters and loads are examined and their effects on the equilibrium characteristics are given parametrically in the results.
Classification of response-types for single-pilot NOE helicopter combat tasks
NASA Technical Reports Server (NTRS)
Mitchell, David G.; Hoh, Roger H.; Atencio, Adolph, Jr.
1987-01-01
Two piloted simulations have recently been conducted to evaluate both workload and handling qualities requirements for operation of a helicopter by a single pilot in a nap-of-the-earth combat environment. An advanced cockpit, including a moving-map display and an interactive touchpad screen, provided aircraft mission, status, and position information to the pilot. The results of the simulations are reviewed, and the impact of these results on the development of a revised helicopter handling qualities specification is discussed. Rate command is preferred over attitude command in pitch and roll, and attitude hold over groundspeed hold, for low-speed precision pointing tasks. Position hold is necessary for Level 1 handling qualities in hover when the pilot is required to perform secondary tasks. Addition of a second crew member improves pilot ratings.
Effect of bird maneuver on frequency-domain helicopter EM response
Fitterman, D.V.; Yin, C.
2004-01-01
Bird maneuver, the rotation of the coil-carrying instrument pod used for frequency-domain helicopter electromagnetic surveys, changes the nominal geometric relationship between the bird-coil system and the ground. These changes affect electromagnetic coupling and can introduce errors in helicopter electromagnetic, (HEM) data. We analyze these effects for a layered half-space for three coil configurations: vertical coaxial, vertical coplanar, and horizontal coplanar. Maneuver effect is shown to have two components: one that is purely geometric and another that is inductive in nature. The geometric component is significantly larger. A correction procedure is developed using an iterative approach that uses standard HEM inversion routines. The maneuver effect correction reduces inversion misfit error and produces laterally smoother cross sections than obtained from uncorrected data. ?? 2004 Society of Exploration Geophysicists. All rights reserved.
NASA Astrophysics Data System (ADS)
Kelly, Ryan T.
Aero-optical disturbances produced from turbulent compressible flow-fields can seriously degrade the performance of an optical signal. At compressible flight speeds these disturbances stem from the density variations present in turbulent boundary layers and free shear layers; however helicopters typically operate at incompressible speeds, which nearly eliminates the aberrating effect of these flows. For helicopter platforms the sources of aberration originate from the high subsonic flow-field near the rotor blade tips in the form of rotor-tip vortices and from the high temperatures of the engine effluence. During hover the shed rotor-tip vortices and engine effluence convect with the rotor wake encircling the airframe and subsequently a helicopter mounted optical system. The aero-optical effects of the wake beneath a hovering helicopter were analyzed using a combination of Unsteady RANS (URANS) and Large-Eddy Simulations (LES). The spatial and temporal characteristics of the numerical optical wavefronts were compared to full-scale aero-optic experimental measurements. The results indicate that the turbulence of the rotor-tip vortices contributes to the higher order aberrations measured experimentally and that the thermal exhaust plumes effectively limit the optical field-of-regard to forward- and side-looking beam directions. This information along with the computed optical aberrations of the wake can be used to guide the development of adaptive-optic systems or other beam-control approaches.
46 CFR 132.320 - Helicopter-landing decks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Helicopter-landing decks. 132.320 Section 132.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Miscellaneous § 132.320 Helicopter-landing decks. Each vessel with a helicopter-landing deck must...
46 CFR 132.320 - Helicopter-landing decks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Helicopter-landing decks. 132.320 Section 132.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Miscellaneous § 132.320 Helicopter-landing decks. Each vessel with a helicopter-landing deck must...
77 FR 56581 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-13
... HEC, in this model helicopter that now meets the Category A performance standard. DATES: We must... airworthiness directive (AD) for the Sikorsky Aircraft Corporation (Sikorsky) Model S-92A helicopter, which... external load operations, including human external cargo (HEC), because this model helicopter was not...
14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...
14 CFR 27.87 - Height-speed envelope.
Code of Federal Regulations, 2012 CFR
2012-01-01
... selected by the applicant for each altitude covered by paragraph (a)(1) of this section. For helicopters...— (1) For single-engine helicopters, full autorotation; (2) For multiengine helicopters, OEI (where... altitude or the maximum altitude capability of the helicopter, whichever is less, and (3) For other...
46 CFR 132.320 - Helicopter-landing decks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Helicopter-landing decks. 132.320 Section 132.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Miscellaneous § 132.320 Helicopter-landing decks. Each vessel with a helicopter-landing deck must...
14 CFR 27.87 - Height-speed envelope.
Code of Federal Regulations, 2014 CFR
2014-01-01
... selected by the applicant for each altitude covered by paragraph (a)(1) of this section. For helicopters...— (1) For single-engine helicopters, full autorotation; (2) For multiengine helicopters, OEI (where... altitude or the maximum altitude capability of the helicopter, whichever is less, and (3) For other...
14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...
46 CFR 132.320 - Helicopter-landing decks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Helicopter-landing decks. 132.320 Section 132.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Miscellaneous § 132.320 Helicopter-landing decks. Each vessel with a helicopter-landing deck must...
14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).
Code of Federal Regulations, 2010 CFR
2010-01-01
... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...
46 CFR 132.320 - Helicopter-landing decks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Helicopter-landing decks. 132.320 Section 132.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS FIRE-PROTECTION EQUIPMENT Miscellaneous § 132.320 Helicopter-landing decks. Each vessel with a helicopter-landing deck must...
14 CFR 27.87 - Height-speed envelope.
Code of Federal Regulations, 2013 CFR
2013-01-01
... selected by the applicant for each altitude covered by paragraph (a)(1) of this section. For helicopters...— (1) For single-engine helicopters, full autorotation; (2) For multiengine helicopters, OEI (where... altitude or the maximum altitude capability of the helicopter, whichever is less, and (3) For other...
14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...
14 CFR 135.271 - Helicopter hospital emergency medical evacuation service (HEMES).
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Helicopter hospital emergency medical....271 Helicopter hospital emergency medical evacuation service (HEMES). (a) No certificate holder may... certificate holder may assign a helicopter flight crewmember, and no flight crewmember may accept an...
78 FR 23462 - Airworthiness Directives; Eurocopter France Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-19
... Airworthiness Directives; Eurocopter France Helicopters AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) for Eurocopter France (Eurocopter) Model AS332C, AS332L, and AS332L1 helicopters... helicopters have been approved by the aviation authority of France and are approved for operation in the...
78 FR 44039 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
... Deutschland GmbH Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... GmbH (Eurocopter) Model MBB-BK 117 C-2 helicopters with a jettisonable sliding door (door) installed... airworthiness directive (AD): Eurocopter Deutschland GmbH Helicopters (Eurocopter): Docket No. FAA-2013-0642...
78 FR 42409 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-16
... Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters AGENCY: Federal Aviation Administration (FAA...) for Eurocopter Deutschland GmbH (Eurocopter) Model MBB-BK 117 C-2 helicopters. This AD requires... directive (AD): 2013-12-05 Eurocopter Deutschland GmbH Helicopters: Amendment 39- 17483; Docket No. FAA-2013...
[A large-scale accident in Alpine terrain].
Wildner, M; Paal, P
2015-02-01
Due to the geographical conditions, large-scale accidents amounting to mass casualty incidents (MCI) in Alpine terrain regularly present rescue teams with huge challenges. Using an example incident, specific conditions and typical problems associated with such a situation are presented. The first rescue team members to arrive have the elementary tasks of qualified triage and communication to the control room, which is required to dispatch the necessary additional support. Only with a clear "concept", to which all have to adhere, can the subsequent chaos phase be limited. In this respect, a time factor confounded by adverse weather conditions or darkness represents enormous pressure. Additional hazards are frostbite and hypothermia. If priorities can be established in terms of urgency, then treatment and procedure algorithms have proven successful. For evacuation of causalities, a helicopter should be strived for. Due to the low density of hospitals in Alpine regions, it is often necessary to distribute the patients over a wide area. Rescue operations in Alpine terrain have to be performed according to the particular conditions and require rescue teams to have specific knowledge and expertise. The possibility of a large-scale accident should be considered when planning events. With respect to optimization of rescue measures, regular training and exercises are rational, as is the analysis of previous large-scale Alpine accidents.
Wind tunnel investigation of helicopter-rotor wake effects on three helicopter fuselage models
NASA Technical Reports Server (NTRS)
Wilson, J. C.; Mineck, R. E.
1975-01-01
The effects of rotor wake on helicopter fuselage aerodynamic characteristics were investigated in the Langley V/STOL tunnel. Force, moment, and pressure data were obtained on three fuselage models at various combinations of windspeed, sideslip angle, and pitch angle. The data show that the influence of rotor wake on the helicopter fuselage yawing moment imposes a significant additional thrust requirement on the tail rotor of a single-rotor helicopter at high sideslip angles.
Technological Innovation: Roles and Implications in Army Aviations Special Operations
2008-12-01
factor in winning a war comes down to the individual soldier, not having the correct tools and equipment to efficiently complete the mission can...years later by the Army’s Signal Corps. The balloon was used as an effective tool for not only conducting aerial observation but also in...known air platform was also being developed, the helicopter. The concept of the helicopter has roots that go as far back as DaVinci with his drawings
Comparison of Test Stand and Helicopter Oil Cooler Bearing Condition Indicators
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.; Branning, Jeremy; Wade, Damiel R.; Bolander, Nathan
2010-01-01
The focus of this paper was to compare the performance of HUMS condition indicators (CI) when detecting a bearing fault in a test stand or on a helicopter. This study compared data from two sources: first, CI data collected from accelerometers installed on two UH-60 Black Hawk helicopters when oil cooler bearing faults occurred, along with data from helicopters with no bearing faults; and second, CI data that was collected from ten cooler bearings, healthy and faulted, that were removed from fielded helicopters and installed in a test stand. A method using Receiver Operating Characteristic (ROC) curves to compare CI performance was demonstrated. Results indicated the bearing energy CI responded differently for the helicopter and the test stand. Future research is required if test stand data is to be used validate condition indicator performance on a helicopter.
Aeromagnetic survey by a model helicopter at the ruin of ironwork refinement
NASA Astrophysics Data System (ADS)
Funaki, M.; Nishioka, T.
2007-12-01
It is difficult to detect the magnetic anomaly resulting from the small scale of magnetic sources as archeological or historical ruins by a helicopter due to the restraint of the low altitude flights in the narrow area. Although a relatively small unmanned helicopters has been commercialized for agriculture use etc., it is too expensive for aeromagnetic surveys. We have developed a small autonomous unmanned helicopter which modified a model helicopter for aeromagnetic survey. A model helicopter (Hirobo Co.; SF40) with a 40cc gasoline engine, length of 143cm from the nose to the tail and dry weight of 15 kg is selected in this study. The irradiated magnetic field from the bottom-center of skid of SF40 was the total magnetic field (R)=3511 nT, inclination (I)=12 degrees and declination (D)=138 degrees. It was reduced to about 1 nT at 3 m downward from the skid during the hovering. When SF40 was covered with a magnetic shield film (Amolic sheet), the distance to measure 1nT diminished to 2 m. As shielding whole body with the film is not effective for reliable and safety flights, the only servomotors having the strong magnetization were shielded by the film. The autonomous flights based on GPS data succeeded. As the control system was too large and heavy for SF40, we are developing more simple and small navigation system for this project. Magnetometer system consists of a 3-axis fluxgate magnetometer, data logger, GPS and battery, recording every second of x, y and z magnetic fields, latitude, longitude, altitude and satellite number during 3 hours. The total weight of the system is 400g. The system was hanged to 2m lower from the skid by a rope (Bird magnetometer) or 2m front form the nose by a carbon fiber pipe (Stinger magnetometer) in order to avoid the magnetic field of SF40. However, the bird magnetometer was not suitable due to the strong noise resulting from the swing of the sensor. An archeological ruin of the ironwork refinement aged 15th century in western Japan was measured by the stinger magnetometer. The survey area was 70x20m with a gentle slop. The helicopter was controlled by the manual keeping up the roughly same altitude (the 4-8m height from the surface) and speed (1m/s). The result showed the strong anomalies of 500 nT at the NW corner of the area where consists with the refinement. From these viewpoints the model helicopter is useful to find the ironwork refinements instead of the identification based on the feeling and the experience of archeologists.
46 CFR 108.233 - Location and size.
Code of Federal Regulations, 2012 CFR
2012-10-01
... EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.233 Location and size. (a) Each helicopter deck must be— (1) At least the size of the rotor diameter of the largest single main rotor helicopter that will be used on the facility; or (2) If tandem main rotor helicopters use the facility, at...
46 CFR 108.233 - Location and size.
Code of Federal Regulations, 2011 CFR
2011-10-01
... EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.233 Location and size. (a) Each helicopter deck must be— (1) At least the size of the rotor diameter of the largest single main rotor helicopter that will be used on the facility; or (2) If tandem main rotor helicopters use the facility, at...
46 CFR 108.233 - Location and size.
Code of Federal Regulations, 2014 CFR
2014-10-01
... EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.233 Location and size. (a) Each helicopter deck must be— (1) At least the size of the rotor diameter of the largest single main rotor helicopter that will be used on the facility; or (2) If tandem main rotor helicopters use the facility, at...
46 CFR 108.233 - Location and size.
Code of Federal Regulations, 2010 CFR
2010-10-01
... EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.233 Location and size. (a) Each helicopter deck must be— (1) At least the size of the rotor diameter of the largest single main rotor helicopter that will be used on the facility; or (2) If tandem main rotor helicopters use the facility, at...
46 CFR 108.233 - Location and size.
Code of Federal Regulations, 2013 CFR
2013-10-01
... EQUIPMENT Construction and Arrangement Helicopter Facilities § 108.233 Location and size. (a) Each helicopter deck must be— (1) At least the size of the rotor diameter of the largest single main rotor helicopter that will be used on the facility; or (2) If tandem main rotor helicopters use the facility, at...
Investigating Flight with a Toy Helicopter
ERIC Educational Resources Information Center
Liebl, Michael
2010-01-01
Flight fascinates people of all ages. Recent advances in battery technology have extended the capabilities of model airplanes and toy helicopters. For those who have never outgrown a childhood enthusiasm for the wonders of flight, it is possible to buy inexpensive, remotely controlled planes and helicopters. A toy helicopter offers an opportunity…
75 FR 53857 - Airworthiness Directives; Eurocopter France Model SA330J Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-02
... Airworthiness Directives; Eurocopter France Model SA330J Helicopters AGENCY: Federal Aviation Administration... known U.S. owners and operators of Eurocopter France (Eurocopter) Model SA330J helicopters by individual...'' rather than checking for ``play.'' This helicopter model is manufactured in France and is type...
78 FR 31394 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-24
... Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) for Eurocopter Deutschland GmbH (ECD) Model MBB-BK 117 C-2 helicopters. This AD... directive (AD): 2013-10-05 Eurocopter Deutschland GmbH Helicopters: Amendment 39- 17458; Docket No. FAA-2013...
78 FR 44050 - Airworthiness Directives; Eurocopter Deutschland GmbH Helicopters
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-23
... Deutschland GmbH Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Deutschland GmbH (Eurocopter) Model EC135P2+ and EC135T2+ helicopters. This proposed AD would require... adding the following new airworthiness directive (AD): Eurocopter Deutschland GmbH Helicopters: Docket No...
Aeromedical Transport Operations Using Helicopters during the 2016 Kumamoto Earthquake in Japan.
Motomura, Tomokazu; Hirabayashi, Atsushi; Matsumoto, Hisashi; Yamauchi, Nobutaka; Nakamura, Mitsunobu; Machida, Hiroshi; Fujizuka, Kenji; Otsuka, Naomi; Satoh, Tomoko; Anan, Hideaki; Kondo, Hisayoshi; Koido, Yuichi
2018-01-01
More than 6,000 people died in the Great Hanshin (Kobe) Earthquake in 1995, and it was later reported that there were around 500 preventable trauma deaths. In response, the Japanese government developed the helicopter emergency medical service in 2001, known in Japan as the "Doctor-Heli" (DH), which had 46 DHs and 2 private medical helicopters as of April 2016. DHs transport physicians and nurses to provide pre-hospital medical care at the scene of medical emergencies. Following lessons learned in the Great East Japan Earthquake in 2011, a research group in the Ministry of Health, Labour and Welfare developed a command and control system for the DH fleet as well as the Disaster Relief Aircraft Management System Network (D-NET), which uses a satellite communications network to monitor the location of the fleet and weather in real-time during disasters. During the Kumamoto Earthquake disaster in April 2016, 75 patients were transported by 13 DHs and 1 private medical helicopter in the first 5 days. When medical demand for the DHs exceeded supply, 5 patients, 8 patients, and 1 patient were transported by Self-Defense Force, Fire Department, and Coast Guard helicopters, respectively. Of the 89 patients who were transported, 30 (34%) had trauma, 3 (3%) had pulmonary embolisms caused by sleeping in vehicles, and 17 (19%) were pregnant women or newborns. This was the first time that the command and control system for aeromedical transport and D-NET, established after the Great East Japan Earthquake in 2011, were operated in an actual large-scale disaster. Aeromedical transport by DHs and helicopters belonging to several other organizations was accomplished smoothly because the commanders of the involved organizations could communicate directly with each other in person within the Aviation Coordination Section of the prefectural government office. However, ongoing challenges in the detailed operating methods for aeromedical transport were highlighted and include improving shared knowledge and training across the organizational framework. These are particularly important issues to address given the Nankai Trough and Tokyo inland earthquakes that are predicted for the near future in Japan.