Reconstruction of long-lived radionuclide intakes for Techa riverside residents: 137Cs.
Tolstykh, E I; Degteva, M O; Peremyslova, L M; Shagina, N B; Vorobiova, M I; Anspaugh, L R; Napier, B A
2013-05-01
Radioactive contamination of the Techa River (Southern Urals, Russia) occurred from 1949-1956 due to routine and accidental releases of liquid radioactive wastes from the Mayak Production Association. The long-lived radionuclides in the releases were Sr and Cs. Contamination of the components of the Techa River system resulted in chronic external and internal exposure of about 30,000 residents of riverside villages. Data on radionuclide intake with diet are used to estimate internal dose in the Techa River Dosimetry System (TRDS), which was elaborated for the assessment of radiogenic risk for Techa Riverside residents. The Sr intake function was recently improved, taking into account the recently available archival data on radionuclide releases and in-depth analysis of the extensive data on Sr measurements in Techa Riverside residents. The main purpose of this paper is to evaluate the dietary intake of Cs by Techa Riverside residents. The Cs intake with river water used for drinking was reconstructed on the basis of the Sr intake-function and the concentration ratio Cs-to-Sr in river water. Intake via Cs transfer from floodplain soil to grass and cows' milk was evaluated for the first time. As a result, the maximal Cs intake level was indicated near the site of releases in upper-Techa River settlements (8,000-9,000 kBq). For villages located on the lower Techa River, the Cs intake was significantly less (down to 300 kBq). Cows' milk was the main source of Cs in diet in the upper-Techa River region.
Reconstruction of Long-Lived Radionuclide Intakes for Techa Riverside Residents: Cesium-137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstykh, E. I.; Degteva, M. O.; Peremyslova, L. M.
2013-05-01
Radioactive contamination of the Techa River (Southern Urals, Russia) occurred from 1949–1956 due to routine and accidental releases of liquid radioactive wastes from the Mayak Production Association. The long-lived radionuclides in the releases were 90Sr and 137Cs. Contamination of the components of the Techa River system resulted in chronic external and internal exposure of about 30,000 residents of riverside villages. Data on radionuclide intake with diet are used to estimate internal dose in the Techa River Dosimetry System (TRDS), which was elaborated for the assessment of radiogenic risk for Techa Riverside residents. The 90Sri ntake function was recently improved takingmore » into account the recently available archival data on radionuclide releases and in-depth analysis of the extensive data on 90Sr measurements in Techa Riverside residents. The main purpose of this paper is to evaluate the dietary intake of 137Cs by Techa Riverside residents. The 137Cs intake with river water used for drinking was reconstructed on the basis of the 90Sr intake-function and the concentration ratio 137Cs/90Sr in river water. Intake via 137Cs transfer from floodplain soil to grass and cows’ milk was evaluated for the first time. As a result, the maximal 137Cs intake level was indicated near the site of releases in upper-Techa River settlements (8,000–9,000 kBq). For villages located on the lower Techa River the 137Cs intake was significantly less (down to 300 kBq). Cows’ milk was the main source of 137Cs in diet in the upper-Techa.« less
Hiller, M M; Woda, C; Bougrov, N G; Degteva, M O; Ivanov, O; Ulanovsky, A; Romanov, S
2017-05-01
In the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues. In particular, organ doses from external exposure are derived from estimates of dose rate in air on the Techa River banks which were estimated from measurements and Monte Carlo modelling. Individual doses are calculated in accordance with historical records of individuals' residence histories, observational data of typical lifestyles for different age groups, and age-dependent conversion factors from air kerma to organ dose. The work here describes an experimentally independent assessment of the key input parameter of the dosimetry system, the integral air kerma, for the former village of Metlino, upper Techa River region. The aim of this work was thus to validate the Techa River Dosimetry System for the location of Metlino in an independent approach. Dose reconstruction based on dose measurements in bricks from a church tower and Monte Carlo calculations was used to model the historic air kerma accumulated in the time from 1949 to 1956 at the shoreline of the Techa River in Metlino. Main issues are caused by a change in the landscape after the evacuation of the village in 1956. Based on measurements and published information and data, two separate models for the historic pre-evacuation geometry and for the current geometry of Metlino were created. Using both models, a value for the air kerma was reconstructed, which agrees with that obtained in the Techa River Dosimetry System within a factor of two.
Radiogenic Risk of Malignant Neoplasms for Techa Riverside Residents
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akleyev, A. V.; Krestinina, L. Y.; Preston, D. L.
As a result of releases of liquid radioactive waste into the Techa River from the Mayak PA in the 1950s, residents of the riverside villages were for decades exposed to external and internal radiation resulting from consumption of locally produced food and river water. Presented in the paper is a brief description of the radiation conditions, organization of medical follow-up of the exposed population, principles for dose estimation, epidemiological analyses of cancer mortality and incidence for residents of the Techa RIverside villages. The estimates of excess relative risk of radiation-related leukemia and solid cancer mortality and incidence obtained for membersmore » of the Techa River cohort point to a clear-cut dependence of the rates on radiation exposure. Attributive risk of cancer incidence characterizing the proportion of radiation-related cancer cases among the total cancers was comparable with that for mortality: 3.2% derived for cancer incidence and 2.5% for cancer mortality. Based on the non-CLL leukemia excess relative risk (ERR) estimates calculated using the linear dose-effect model and the nature of the cohort, it was estimated that 31 (60%) out of 49 leukemia death cases (with the exclusion of 12 cases of chronic lymphatic leukemia) can be related to a long-term radiation exposure due to the contamination of the Techa River.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degteva, M. O.; Shagina, N. B.; Shishkina, Elena A.
Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949–1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teethmore » and bones that served as a source of confounding local exposures. In order to estimate and subtract doses from incorporated 89,90Sr, the EPR and FISH assays were supported by measurements of 90Sr-body burdens and estimates of 90Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR and FISH measurements for residents of the upper Techa River were found to be consistent: the mean values vary from 510 – 550 mGy for the villages located close to the site of radioactive release to 130 – 160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2 – 2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the Techa River Dosimetry System (TRDS). The TRDS external dose assessments were based on the data on contamination of the Techa River floodplain, simulation of ai r kerma above the contaminated soil, age-dependent life-styles and individual residence histories. For correct comparison TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from 137Cs incorporated in donors’ soft tissues. The TRDS-based absorbed doses in tooth enamel and muscle were in agreement with with EPR- and FISH-based estimates within uncertainty bounds. Basically, the agreement between the estimates has confirmed the validity of external doses calculated with the Techa River Dosimetry System.« less
Shagina, N B; Tolstykh, E I; Fell, T P; Smith, T J; Harrison, J D; Degteva, M O
2015-09-01
This paper presents a biokinetic model for strontium metabolism in the lactating woman and transfer to breast milk for members of Techa River communities exposed as a result of discharges of liquid radioactive wastes from the Mayak plutonium production facility (Russia) in the early 1950s. This model was based on that developed for the International Commission for Radiological Protection with modifications to account for population specific features of breastfeeding and maternal bone mineral metabolism. The model is based on a biokinetic model for the adult female with allowances made for changes in mineral metabolism during periods of exclusive and partial breast-feeding. The model for females of all ages was developed earlier from extensive data on (90)Sr-body measurements for Techa Riverside residents. Measurements of (90)Sr concentrations in the maternal skeleton and breast milk obtained in the1960s during monitoring of global fallout in the Southern Urals region were used for evaluation of strontium transfer to breast and breast milk. The model was validated with independent data from studies of global fallout in Canada and measurements of (90)Sr body-burden in women living in the Techa River villages who were breastfeeding during maximum (90)Sr-dietary intakes. The model will be used in evaluations of the intake of strontium radioisotopes in breast milk by children born in Techa River villages during the radioactive releases and quantification of (90)Sr retention in the maternal skeleton.
Degteva, M O; Shagina, N B; Shishkina, E A; Vozilova, A V; Volchkova, A Y; Vorobiova, M I; Wieser, A; Fattibene, P; Della Monaca, S; Ainsbury, E; Moquet, J; Anspaugh, L R; Napier, B A
2015-11-01
Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated (89,90)Sr, the EPR and FISH assays were supported by measurements of (90)Sr-body burdens and estimates of (90)Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from (137)Cs incorporated in donors' soft tissues. It is shown here that the TRDS-based absorbed doses in tooth enamel and muscle are in agreement with EPR- and FISH-based estimates within uncertainty bounds. Basically, this agreement between the estimates has confirmed the validity of external doses calculated with the TRDS.
Geogenic and anthropogenic impacts on indoor radon in the Techa River region.
Yarmoshenko, I; Malinovsky, G; Vasilyev, A; Onischenko, A; Seleznev, A
2016-11-15
Indoor radon concentration was studied in the 14 settlements located near the Techa River, which was contaminated by radioactive wastes in 1950-s. Results of the radon survey were used for analysis of the relationship between the indoor radon and main geologic factors (Pre-Jurassic formations, Quaternary sediments and faults), local geogenic radon potential and anthropogenic factors. Main influencing factors explain 58% of the standard deviation of indoor radon concentration. Association of the air exchange influence over radon concentration with underlying geological media was related to different contributions of geogenic advective and diffusive radon entries. The properties of geological formation to transfer radon gas in interaction with the house can be considered within the radon geogenic potential concept. The study of the radon exposure of the Techa River population can be used to estimate the contribution of natural radon to the overall radiation exposure of the local population during the period of radioactive waste discharges. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Bougrov, N. G.; Goksu, H. Y.; Haskell, E.; Degteva, M. O.; Meckbach, R.; Jacob, P.; Neta, P. I. (Principal Investigator)
1998-01-01
The potential of thermoluminescence measurements of bricks from the contaminated area of the Techa river valley, Southern Urals, Russia, for reconstructing external exposures of affected population groups has been studied. Thermoluminescence dating of background samples was used to evaluate the age of old buildings available on the river banks. The anthropogenic gamma dose accrued in exposed samples is determined by subtracting the natural radiation background dose for the corresponding age from the accumulated dose measured by thermoluminescence. For a site in the upper Techa river region, where the levels of external exposures were extremely high, the depth-dose distribution in bricks and the dependence of accidental dose on the height of the sampling position were determined. For the same site, Monte Carlo simulations of radiation transport were performed for different source configurations corresponding to the situation before and after the construction of a reservoir on the river and evacuation of the population in 1956. A comparison of the results provides an understanding of the features of the measured depth-dose distributions and height dependencies in terms of the source configurations and shows that bricks from the higher sampling positions are likely to have accrued a larger fraction of anthropogenic dose from the time before the construction of the reservoir. The applicability of the thermoluminescent dosimetry method to environmental dose reconstruction in the middle Techa region, where the external exposure was relatively low, was also investigated.
Strontium biokinetic model for the pregnant woman and fetus: application to Techa River studies.
Shagina, N B; Fell, T P; Tolstykh, E I; Harrison, J D; Degteva, M O
2015-09-01
A biokinetic model for strontium (Sr) for the pregnant woman and fetus (Sr-PWF model) has been developed for use in the quantification of doses from internal radiation exposures following maternal ingestion of Sr radioisotopes before or during pregnancy. The model relates in particular to the population of the Techa River villages exposed to significant amounts of ingested Sr radioisotopes as a result of releases of liquid radioactive wastes from the Mayak plutonium production facility (Russia) in the early 1950s. The biokinetic model for Sr metabolism in the pregnant woman was based on a biokinetic model for the adult female modified to account for changes in mineral metabolism during pregnancy. The model for non-pregnant females of all ages was developed earlier with the use of extensive data on (90)Sr-body measurements in the Techa Riverside residents. To determine changes in model parameter values to take account of changing mineral metabolism during pregnancy, data from longitudinal studies of calcium homeostasis during human pregnancy were analysed and applied. Exchanges between maternal and fetal circulations and retention in fetal skeleton and soft tissues were modelled as adaptations of previously published models, taking account of data on Sr and calcium (Ca) metabolism obtained in Russia (Southern Urals and Moscow) relating to dietary calcium intakes, calcium contents in maternal and fetal skeletons and strontium transfer to the fetus. The model was validated using independent data on (90)Sr in the fetal skeleton from global fallout as well as unique data on (90)Sr-body burden in mothers and their still-born children for Techa River residents. While the Sr-PWF model has been developed specifically for ingestion of Sr isotopes by Techa River residents, it is also more widely applicable to maternal ingestion of Sr radioisotopes at different times before and during pregnancy and different ages of pregnant women in a general population.
Solid Cancer Incidence in the Techa River Incidence Cohort: 1956-2007.
Davis, F G; Yu, K L; Preston, D; Epifanova, S; Degteva, M; Akleyev, A V
2015-07-01
Previously reported studies of the Techa River Cohort have established associations between radiation dose and the occurrence of solid cancers and leukemia (non-CLL) that appear to be linear in dose response. These analyses include 17,435 cohort members alive and not known to have had cancer prior to January 1, 1956 who lived in areas near the river or Chelyabinsk City at some time between 1956 and the end of 2007, utilized individualized dose estimates computed using the Techa River Dosimetry System 2009 and included five more years of follow-up. The median and mean dose estimates based on these doses are consistently higher than those based on earlier Techa River Dosimetry System 2000 dose estimates. This article includes new site-specific cancer risk estimates and risk estimates adjusted for available information on smoking. There is a statistically significant (P = 0.02) linear trend in the smoking-adjusted all-solid cancer incidence risks with an excess relative risk (ERR) after exposure to 100 mGy of 0.077 with a 95% confidence interval of 0.013-0.15. Examination of site-specific risks revealed statistically significant radiation dose effects only for cancers of the esophagus and uterus with an ERR per 100 mGy estimates in excess of 0.10. Esophageal cancer risk estimates were modified by ethnicity and sex, but not smoking. While the solid cancer rates are attenuated when esophageal cancer is removed (ERR = 0.063 per 100 mGy), a dose-response relationship is present and it remains likely that radiation exposure has increased the risks for most solid cancers in the cohort despite the lack of power to detect statistically significant risks for specific sites.
NASA Technical Reports Server (NTRS)
Tolstykh, E. I.; Degteva, M. O.; Kozheurov, V. P.; Burmistrov, D. S.; Neta, R. (Principal Investigator)
1998-01-01
Measurements of 90Sr in human bone of inhabitants of the Techa river region were started in 1951, and since 1974 the Techa river population has been studied with a whole-body counter. One of the dosimetric tasks that could be decided using data on 90Sr measurements is direct evaluation of strontium transfer to the fetus from the maternal skeleton. Six cases were selected for which 90Sr measurements were available both for stillborn infants and their mothers. The ratio of 90Sr concentrations in fetal bone to maternal bone for the year of pregnancy has been evaluated. Two clusters of values were found and the difference between clusters could be explained by age-dependent features of maternal bone formation and remodelling. When the mother's 90Sr intake occurred in the period of intensive compact bone growth, the transfer coefficient was very low (0.012-0.032). If 90Sr ingestion occurred during the woman's reproductive age, the transfer to fetus was equal to 0.21-0.26.
Kryshev, I I; Boyer, P; Monte, L; Brittain, J E; Dzyuba, N N; Krylov, A L; Kryshev, A I; Nosov, A V; Sanina, K D; Zheleznyak, M I
2009-03-15
This paper presents results of testing models for the radioactive contamination of river water and bottom sediments by (90)Sr, (137)Cs and (239,240)Pu. The scenario for the model testing was based on data from the Techa River (Southern Urals, Russia), which was contaminated as a result of discharges of liquid radioactive waste into the river. The endpoints of the scenario were model predictions of the activity concentrations of (90)Sr, (137)Cs and (239,240)Pu in water and bottom sediments along the Techa River in 1996. Calculations for the Techa scenario were performed by six participant teams from France (model CASTEAUR), Italy (model MARTE), Russia (models TRANSFER-2, CASSANDRA, GIDRO-W) and Ukraine (model RIVTOX), all using different models. As a whole, the radionuclide predictions for (90)Sr in water for all considered models, (137)Cs for MARTE and TRANSFER-2, and (239,240)Pu for TRANSFER-2 and CASSANDRA can be considered sufficiently reliable, whereas the prediction for sediments should be considered cautiously. At the same time the CASTEAUR and RIVTOX models estimate the activity concentrations of (137)Cs and (239,240)Pu in water more reliably than in bottom sediments. The models MARTE ((239,240)Pu) and CASSANDRA ((137)Cs) evaluated the activity concentrations of radionuclides in sediments with about the same agreement with observations as for water. For (90)Sr and (137)Cs the agreement between empirical data and model predictions was good, but not for all the observations of (239,240)Pu in the river water-bottom sediment system. The modelling of (239,240)Pu distribution proved difficult because, in contrast to (137)Cs and (90)Sr, most of models have not been previously tested or validated for plutonium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.
2009-10-23
This is the concluding Progress Report for Project 1.1 of the U.S./Russia Joint Coordinating Committee on Radiation Effects Research (JCCRER). An overwhelming majority of our work this period has been to complete our primary obligation of providing a new version of the Techa River Dosimetry System (TRDS), which we call TRDS-2009D; the D denotes deterministic. This system provides estimates of individual doses to members of the Extended Techa River Cohort (ETRC) and post-natal doses to members of the Techa River Offspring Cohort (TROC). The latter doses were calculated with use of the TRDS-2009D. The doses for the members of themore » ETRC have been made available to the American and Russian epidemiologists in September for their studies in deriving radiogenic risk factors. Doses for members of the TROC are being provided to European and Russian epidemiologists, as partial input for studies of risk in this population. Two of our original goals for the completion of this nine-year phase of Project 1.1 were not completed. These are completion of TRDS-2009MC, which was to be a Monte Carlo version of TRDS-2009 that could be used for more explicit analysis of the impact of uncertainty in doses on uncertainty in radiogenic risk factors. The second incomplete goal was to be the provision of household specific external doses (rather than village average). This task was far along, but had to be delayed due to the lead investigator’s work on consideration of a revised source term.« less
Preston, Dale L; Sokolnikov, Mikhail E; Krestinina, Lyudmila Yu; Stram, Daniel O
2017-04-01
For almost 50 y, the Life Span Study cohort of atomic bomb survivor studies has been the primary source of the quantitative estimates of cancer and non-cancer risks that form the basis of international radiation protection standards. However, the long-term follow-up and extensive individual dose reconstruction for the Russian Mayak worker cohort (MWC) and Techa River cohort (TRC) are providing quantitative information about radiation effects on cancer risks that complement the atomic bomb survivor-based risk estimates. The MWC, which includes ~26 000 men and women who began working at Mayak between 1948 and 1982, is the primary source for estimates of the effects of plutonium on cancer risks and also provides information on the effects of low-dose rate external gamma exposures. The TRC consists of ~30 000 men and women of all ages who received low-dose-rate, low-dose exposures as a consequence of Mayak's release of radioactive material into the Techa River. The TRC data are of interest because the exposures are broadly similar to those experienced by populations exposed as a consequence of nuclear accidents such as Chernobyl. In this presentation, it is described the strengths and limitations of these three cohorts, outline and compare recent solid cancer and leukemia risk estimates and discussed why information from the Mayak and Techa River studies might play a role in the development and refinement of the radiation risk estimates that form the basis for radiation protection standards. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Vorobiova, M. I.; Degteva, M. O.; Neta, M. O. (Principal Investigator)
1999-01-01
The Techa River (Southern Urals, Russia) was contaminated in 1949-1956 by liquid radioactive wastes from the Mayak complex, the first Russian facility for the production of plutonium. The measurements of environmental contamination were started in 1951. A simple model describing radionuclide transport along the free-flowing river and the accumulation of radionuclides by bottom sediments is presented. This model successfully correlates the rates of radionuclide releases as reconstructed by the Mayak experts, hydrological data, and available environmental monitoring data for the early period of contamination (1949-1951). The model was developed to reconstruct doses for people who lived in the riverside communities during the period of the releases and who were chronically exposed to external and internal irradiation. The model fills the data gaps and permits reconstruction of external gamma-exposure rates in air on the river bank and radionuclide concentrations in river water used for drinking and other household needs in 1949-1951.
FISH-based analysis of stable translocations in a Techa River population.
Bauchinger, M; Salassidis, K; Braselmann, H; Vozilova, A; Pressl, S; Stephan, G; Snigiryova, G; Kozheurov, V P; Akleyev, A
1998-06-01
Measurements of symmetrical translocations by fluorescence in situ hybridization (FISH) were performed for retrospective biodosimetry in a Techa River population exposed to external (gamma-rays) and internal (90Sr, 137Cs) irradiation. Chromosome analyses were carried out on peripheral lymphocytes from 73 radiation-exposed residents from settlements along the Techa River (Southern Urals, Russia) located 7-148 km downstream from the site of release of liquid radioactive waste from the plutonium production facility Mayak. Thirty-nine unexposed persons from non-contaminated areas were used as controls. Whole-chromosome painting probes for chromosomes 1, 4 and 12 were used simultaneously with a pancentromeric probe. A significantly elevated mean translocation frequency compared with controls was found for the total study group and for either of two subgroups of inhabitants residing in villages of the upper regions of the Techa River (7-60 km) during 1950 to 1951, or in villages of the lower regions (78-148 km) until the time of blood sampling. Within the first subgroup, subjects born between 1937 and 1949 showed higher translocation frequencies than those born between 1914 and 1936. Collective biodosimetry estimates for the various groups were between 0.24 and 0.54 Gy. Individual dose estimates for seven subjects with at least five translocations ranged between 0.77 and 1.80 Gy and compared well with doses reconstructed on the basis of 90Sr whole-body counts (WBC) and electronic paramagnetic resonance (EPR) measurements. Individual translocation frequencies from 40 subjects with existing WBC data and calculated cumulative red bone marrow doses below 0.6 Gy fall within the 95% prediction limits of the calibration curve. FISH-based translocation measurements can provide useful information for a retrospective biodosimetric interpretation. However, with the analysed number of cells, individual estimates required for a reliable evaluation of this highly variable exposure situation can be obtained only for a minority of subjects. In addition, influence of a temporal decline on the yield of stable translocations cannot be fully excluded.
Analysis of strontium metabolism in humans on the basis of the Techa river data
NASA Technical Reports Server (NTRS)
Tolstykh, E. I.; Kozheurov, V. P.; Vyushkova, O. V.; Degteva, M. O.; Neta, R. (Principal Investigator)
1997-01-01
Age and sex features of strontium metabolism have been analyzed on studies of the population residing on the banks of the Techa river which was contaminated by fission products during the years 1949-1956. Measurements of 90Sr body burden have been performed since 1974 using a whole-body counter, and these have made it possible to estimate age-specific long-term retention and elimination rates for men and women. Regarding the retention that correlated with the respective maturation ages, distinct sex differences have been observed for adolescents, whereas only postmenopausal women showed a sharp increase of their elimination rates. There were no differences concerning the reproductive ages. Our experimental findings have a clear physiological interpretation and can be used to develop metabolic models for bone-seeking radionuclides.
Reconstruction of long-lived radionuclide intakes for Techa riverside residents: strontium-90.
Tolstykh, E I; Degteva, M O; Peremyslova, L M; Shagina, N B; Shishkina, E A; Krivoshchapov, V A; Anspaugh, L R; Napier, B A
2011-07-01
Releases of radioactive materials from the Mayak Production Association in 1949-1956 resulted in contamination of the Techa River; a nuclide of major interest was 90Sr, which downstream residents consumed with water from the river and with milk contaminated by cows' consumption of river water and contaminated pasture. Over the years, several reconstructions of dose have been performed for the approximately 30,000 persons who make up the Extended Techa River Cohort. The purpose of the study described here was to derive a revised reference-90Sr-intake function for the members of this cohort. The revision was necessary because recently discovered data have provided a more accurate description of the time course of the releases, and more is now known about the importance of the pasture grass-cow-milk pathway for the members of this cohort. The fundamental basis for the derivation of the reference-90Sr-intake function remains the same: thousands of measurements of 90Sr content in bone with a special whole-body counter, thousands of measurements of beta-activity of front teeth with a special tooth-beta counter, and a variety of other measurements, including post mortem measurements of 90Sr in bone, measurements of 90Sr in cow's milk, and measurements of beta activity in human excreta. Results of the new analyses are that the major intake started in September 1950 and peaked somewhat later than originally postulated. However, the total intake for adult residents has not changed significantly. For children of some birth years, the intake and incorporation of Sr in bone tissue have changed substantially.
Vozilova, A V; Shagina, N B; Degteva, M O; Akleyev, A V
2013-08-30
This paper presents the results of a cytogenetic study conducted among residents of the Techa Riverside communities (Southern Urals, Russia) exposed in the early 1950s as a result of releases of liquid radioactive wastes from the Mayak plutonium-production facility. The study was performed 50-60 years after the beginning of the exposure for those individuals who were predominantly exposed to strontium radioisotopes ((89,90)Sr) through drinking contaminated river water and consumption of local foodstuff. Standard cytogenetic methods were used for evaluation of the frequency of unstable chromosome aberrations in exposed persons as well as in persons from the control group who were of similar age and sex, living in similar socio-economic conditions in non-contaminated territories of the Southern Urals. The exposure doses were reconstructed for the studied donors using the Techa River Dosimetry System developed in 2009. The doses of internal exposure from ingested radionuclides were evaluated using individual or family in vivo measurements of (90)Sr-body burden. Individual cumulative absorbed doses in red bone marrow (RBM) in the studied persons varied in the range of 0.01-4.4Gy. A significantly higher level of unstable chromosome aberrations (UCA) in T-cells was observed in the group of exposed individuals as compared to control group. The highest UCA level was detected in the individuals who were suspected of having chronic radiation syndrome. Copyright © 2013 Elsevier B.V. All rights reserved.
RECONSTRUCTION OF LONG-LIVED RADIONUCLIDE INTAKES FOR TECHA RIVERSIDE RESIDENTS: STRONTIUM-90
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstykh, E. I.; Degteva, M. O.; Peremyslova, L. M.
2011-07-15
Releases of radioactive materials from the Mayak Production Association in 1949-1956 resulted in contamination of the Techa River; a nuclide of major interest was 90Sr, which downstream residents consumed with water from the river and with milk contaminated by cow's consumption of river water and contaminated pasture. Over the years, several reconstructions of dose have been performed for the approximately 30,000 persons who make up the Extended Techa River Cohort. The purpose of the study described here was to derive a revised reference-90Sr-intake function for the members of this cohort. The revision was necessary because recently discovered data have providedmore » a more accurate description of the time course of the releases, and more is now known about the importance of the pasture grass-cow-milk pathway for the members of this cohort. The fundamental basis for the derivation of the reference-90Sr-intake function remains the same: thousands of measurements of 90Sr content in bone with a special whole-body counter, thousands of measurement of beta-activity of front teeth with a special tooth-beta counter, and a variety of other measurements, including post mortem measurements of 90Sr in bone, measurements of 90Sr in cow's milk, and measurements of beta activity in human excreta. Results of the new analyses are that the major intake started in September 1950 and peaked somewhat later than originally postulated. However, the total intake for adult residents has not changed significantly. For children of some birth years, the intake and incorporation of 90Sr in bone tissue have changed substantially.« less
RECONSTRUCTION OF INDIVIDUAL DOSES DUE TO MEDICAL EXPOSURES FOR MEMBERS OF THE TECHA RIVER COHORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shagina, N. B.; Golikov, V.; Degteva, M. O.
Purpose: To describe a methodology for reconstruction of doses due to medical exposures for members of the Techa River Cohort (TRC) who received diagnostic radiation at the clinic of the Urals Research Center for Radiation Medicine (URCRM) in 1952–2005. To calculate doses of medical exposure for the TRC members and compare with the doses that resulted from radioactive contamination of the Techa River. Material and Methods: Reconstruction of individual medical doses is based on data on x-ray diagnostic procedures available for each person examined at the URCRM clinics and values of absorbed dose in 12 organs per typical x-ray proceduremore » calculated with the use of a mathematical phantom. Personal data on x-ray diagnostic examinations have been complied in the computerized “Registry of x-ray diagnostic procedures.” Sources of information are archival registry books from the URCRM x-ray room (available since 1956) and records on x-ray diagnostic procedures in patient-case histories (since 1952). The absorbed doses for 12 organs of interest have been evaluated per unit typical x-ray procedure with account taken of the x-ray examination parameters characteristic for the diagnostic machines used at the URCRM clinics. These parameters have been evaluated from published data on technical characteristics of the x-ray diagnostic machines used at the URCRM clinics in 1952–1988 and taken from the x-ray room for machines used at the URCRM in 1989–2005. Absorbed doses in the 12 organs per unit typical x-ray procedure have been calculated with use of a special computer code, EDEREX, developed at the Saint-Petersburg Research Institute of Radiation Hygiene after Professor P.V. Ramzaev. Individual accumulated doses of medical exposure have been calculated with a computer code, MEDS (Medical Exposure Dosimetry System), specifically developed at the URCRM. Results: At present, the “Registry of x-ray diagnostic procedures” contains information on individual x-ray examinations for over 9,500 persons including 6,415 TRC members. Statistical analysis of the Registry data showed that the more frequent types of examinations were fluoroscopy and radiography of the chest and fluoroscopy of the stomach and the esophagus. Average absorbed doses accumulated by year 2005 calculated for the 12 organs varied from 4 mGy for testes to 40 mGy for bone surfaces. Maximum individual medical doses could reach 500–650 mGy and in some cases exceeded doses from exposure at the Techa River. Conclusions: For the first time the doses of medical exposure were calculated and analyzed for members of the Techa River Cohort who received diagnostic radiation at the URCRM clinics. These results are being used in radiation-risk analysis to adjust for this source of confounding exposure in the TRC.« less
Tolstykh, Evgenia I; Shagina, Natalia B; Degteva, Marina O
2014-08-01
The unique contamination of the Techa River (Southern Urals, Russia) in the 1950s by long-lived (90)Sr allows investigation of the accumulation of bone-seeking elements in humans. This study is based on information compiled at the Urals Research Center for Radiation Medicine (Chelyabinsk, Russia) over a long period of time. It includes the results of in vivo measurements of (90)Sr-body burden with a whole body counter (WBC), data on personal medical examinations and residence and family histories. Data on 185 women from two Techa riverside villages Muslyumovo and Brodokalmak were selected. The settlements differ in terms of (90)Sr diet intake (higher in Muslyumovo than in Brodokalmak) and ethnicity (residents were mainly Slavs in Brodokalmak and Turkic in Muslyumovo). Results of a total of 555 WBC measurements performed in 1974-1997 were available for the women studied; maximum measured values reached 40 kBq/body. The women from each settlement were subdivided into three groups according to their childbearing history: pregnancy and lactation occurred (1) during the period of maximal (90)Sr intake (1950-1951); (2) after the period of maximal intake and (3) before this period or women who were childless. An increase was found in accumulation of (90)Sr in maternal skeleton during pregnancy and lactation (group 1) by a factor of 1.5-2 in comparison with non-pregnant, non-lactating women. This result was found in both Muslyumovo and Brodokalmak samples. An increase in accumulation of toxic elements in pregnant/lactating women is associated with increased radiation/toxic doses and risk for the women's health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degteva, M.O.; Drozhko, E.; Anspaugh, L.R.
1996-02-01
This work is being carried out as a feasibility study to determine if a long-term course of work can be implemented to assess the long-term risks of radiation exposure delivered at low to moderate dose rates to the populations living in the vicinity of the Mayak Industrial Association (MIA). This work was authorized and conducted under the auspices of the US-Russian Joint Coordinating Committee on Radiation Effects Research (JCCRER) and its Executive Committee (EC). The MIA was the first Russian site for the production and separation of plutonium. This plant began operation in 1948, and during its early days theremore » were technological failures that resulted in the release of large amounts of waste into the rather small Techa River. There were also gaseous releases of radioiodines and other radionuclides during the early days of operation. In addition, there was an accidental explosion in a waste storage tank in 1957 that resulted in a significant release. The Techa River Cohort has been studied for several years by scientists from the Urals Research Centre for Radiation Medicine and an increase in both leukemia and solid tumors has been noted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kossenko, M.M.; Akleyev, A.A.; Degteva, M.O.
1994-08-01
This report was prepared for the Defense Nuclear Agency under contract number DNAOO1-92-M-0658. The report is based on information obtained from a 40-year follow-up of people exposed to radiation due to discharges of radioactive waste from an industrial facility, the Mayak Production Association, into the Techa-Iset river system. The results of the medical follow-up have been described in a number of articles published in scientific journals in Russia. This report summarizes dosimetric and medical data within the framework of deterministic effects and, in particular, chronic radiation sickness (CRS). From 1952 to 1961, 940 people out of 28,000 exposed to radiationmore » in the riverside communities on the Techa were diagnosed as having CRS. Conditions of exposure are described, irradiation dose computations are presented, and the clinical picture of CRS is characterized.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napier, Bruce A.
2014-01-01
Beginning in 1948, the Soviet Union initiated a program for production of nuclear materials for a weapons program. The first facility for production of plutonium was constructed in the central portion of the country east of the southern Ural Mountains, about halfway between the major industrial cities of Ekaterinburg and Chelyabinsk. The facility now known as the Mayak Production Association and its associated town, now known as Ozersk, were built to irradiate uranium in reactors, separate the resulting plutonium in reprocessing plants, and prepare plutonium metal. The rush to production, coupled with inexperience in handling radioactive materials, lead to largemore » radiation exposures, not only to the workers in the facilities, but also to the surrounding public. Fuel processing started with no controls on releases, and fuel dissolution and accidents in reactors resulted in release of about 37 PBq (1015 Bq) of 131I between 1948 and 1967. Designed disposals of low- and intermediate-level liquid radioactive wastes, and accidental releases via cooling water from tank farms of high-level liquid radioactive wastes, into the small Techa River caused significant contamination and exposures to residents of numerous small riverside villages downstream of the site. Discovery of the magnitude of the aquatic contamination in late 1951 caused revisions to the waste handling regimes, but not before over 200 PBq of radionuclides (with large contributions of 90Sr and 137Cs) were released. Liquid wastes were diverted to tiny Lake Karachay (which today holds over 4 EBq); cooling water was stopped in the tank farms. In 1957, one of the tanks in the tank farm overheated and exploded; over 70 PBq, disproportionately 90Sr, was blown over a large area to the northeast of the site; a large area was contaminated and many villages evacuated. This area today is known as the East Urals Radioactive Trace (EURT). Each of these releases was significant; together they have created a group of cohorts unrivaled in the world for their chronic, low-dose-rate radiation exposure. The 26,000 workers at Mayak were highly exposed to external gamma and inhaled plutonium. A cohort of individuals raised as children in Ozersk is under evaluation for their exposures to radioiodine. The Techa River Cohort consists of over 30,000 people who were born before the start of exposure in 1949 and lived along the Techa River. The Techa River Offspring Cohort consists of about 21,000 persons born to one or more exposed parents of this group - many of whom also lived along the contaminated river. The EURT Cohort consists of about 18,000 people who were evacuated from the EURT soon after the 1957 explosion and another 8000 who remained. These groups together are the focus of dose reconstruction and epidemiological studies funded by the US, Russia, and the European Union to address the question “Are doses delivered at low dose rates as effective in producing health effects as the same doses delivered at high dose rates?”« less
Effects of Techa River Radiation Contamination on the Reproductive Function of Residents
2006-06-01
The newborn 16 development histories contained information on hereditary factors both on the maternal and paternal side, labor traumas...of exposed parents , and 0.72 for controls. Thus, according to informa- tion provided by maternity homes which analyzed labor histories and neonatal...physical parameters (length, weight, head circumference) were not changed if the parents were irradiated, but deviations in both directions from the mean
Napier, Bruce A; Eslinger, Paul W; Tolstykh, Evgenia I; Vorobiova, Marina I; Tokareva, Elena E; Akhramenko, Boris N; Krivoschapov, Victor A; Degteva, Marina O
2017-11-01
Time-dependent thyroid doses were reconstructed for over 29,000 Techa River Cohort members living near the Mayak production facilities from 131 I released to the atmosphere for all relevant exposure pathways. The calculational approach uses four general steps: 1) construct estimates of releases of 131 I to the air from production facilities; 2) model the transport of 131 I in the air and subsequent deposition on the ground and vegetation; 3) model the accumulation of 131 I in environmental media; and 4) calculate individualized doses. The dose calculations are implemented in a Monte Carlo framework that produces best estimates and confidence intervals of dose time-histories. Other radionuclide contributors to thyroid dose were evaluated. The 131 I contribution was 75-99% of the thyroid dose. The mean total thyroid dose for cohort members was 193 mGy and the median was 53 mGy. Thyroid doses for about 3% of cohort members were larger than 1 Gy. About 7% of children born in 1940-1950 had doses larger than 1 Gy. The uncertainty in the 131 I dose estimates is low enough for this approach to be used in regional epidemiological studies. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Napier, Bruce A.; Eslinger, Paul W.; Tolstykh, Evgenia I.
Time-dependent thyroid doses were reconstructed for Techa River Cohort members living near the Mayak production facilities from 131I released to the atmosphere for all relevant exposure pathways. The calculational approach uses four general steps: 1) construct estimates of releases of 131I to the air from production facilities; 2) model the transport of 131I in the air and subsequent deposition on the ground and vegetation; 3) model the accumulation of 131I in soil, water, and food products (environmental media); and 4) calculate individual doses by matching appropriate lifestyle and consumption data for the individual to concentrations of 131I in environmental media.more » The dose calculations are implemented in a Monte Carlo framework that produces best estimates and confidence intervals of dose time-histories. The 131I contribution was 75-99% of the thyroid dose. The mean total thyroid dose for cohort members was 193 mGy and the median was 53 mGy. Thyroid doses for about 3% of cohort members were larger than 1 Gy. About 7% of children born in 1940-1950 had doses larger than 1 Gy. The uncertainty in the 131I dose estimates is low enough for this approach to be used in regional epidemiological studies.« less
Effects of Techa River Radiation Contamination on the Reproductive Function of Residents
2006-11-01
general somatic diseases such as diseases of the respiratory organs (bronchiectasis), diabetes , hepatic, and renal insufficiency. The method of choice...the diagnosis of CRS in some of the patients was infantilism , i.e., retard- ed and insufficient sexual development. As is indicated in a previous...legs and left forearm after a railway disaster. The two remaining women, twins born in 1944, were diagnosed with infantilism , which is evidently the
Retrospective dosimetry related to chronic environmental exposure
NASA Technical Reports Server (NTRS)
Degteva, M. O.; Kozheurov, V. P.; Tolstykh, E. I.; Neta, R. (Principal Investigator)
1998-01-01
Radioactive contamination of the environment occurred in the early fifties as a result of the releases from the Mayak plutonium production complex (Southern Urals, Russia). The releases of liquid wastes into the Techa river resulted in chronic exposure of 30,000 residents of the riverside communities. Since 1951 90Sr body burdens have been measured for over half of this cohort. This paper presents the analysis of data on 90Sr in humans and describes the reconstruction of internal doses for these people.
Retrospective dosimetry related to chronic environmental exposure.
Degteva, M O; Kozheurov, V P; Tolstykh, E I
1998-01-01
Radioactive contamination of the environment occurred in the early fifties as a result of the releases from the Mayak plutonium production complex (Southern Urals, Russia). The releases of liquid wastes into the Techa river resulted in chronic exposure of 30,000 residents of the riverside communities. Since 1951 90Sr body burdens have been measured for over half of this cohort. This paper presents the analysis of data on 90Sr in humans and describes the reconstruction of internal doses for these people.
Nikitin, Alexander I; Chumichev, Vladimir B; Valetova, Nailia K; Katrich, Ivan Yu; Kabanov, Alexander I; Dunaev, Gennady E; Shkuro, Valentina N; Rodin, Victor M; Mironenko, Alexander N; Kireeva, Elena V
2007-01-01
Data on content of (90)Sr, (137)Cs, (239,240)Pu and (3)H in water of the Tobol-Irtysh part of the Techa-Iset-Tobol-Irtysh-Ob river system (through which the "Mayak" PA radioactive wastes are transported) are presented and discussed. The data were received in 2004-2005 under the ISTC project on radioecological monitoring of the Tobol and Irtysh rivers. Monthly observations of (137)Cs, (90)Sr and (3)H content in water in the area of the Tobol and Irtysh confluence have been conducted starting from May 2004. To obtain information on the investigated river system as a whole, the radioecological survey of the Tobol and Irtysh rivers at the section from the mouth of the Iset River to the confluence with the Ob River was carried out in 2004. It is shown that the impact of "Mayak" PA waste transport by (90)Sr is distinctly traced as far as the area of the Irtysh and Ob confluence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolstykh, E I; Shagina, N B; Degteva, M O
2011-08-01
The Mayak Production Association released large amounts of 90Sr into the Techa River (Southern Urals, Russia) with peak amounts in 1950-1951. Techa Riverside residents ingested an average of about 3,000 kBq of 90Sr. The 90Sr-body burden of approximately 15,000 individuals has been measured in the Urals Research Center for Radiation Medicine in 1974-1997 with use of a special whole-body counter (WBC). Strontium-90 had mainly deposited in the cortical part of the skeleton by 25 years following intake, and 90Sr elimination occurs as a result of cortical bone resorption. The effect of 90Sr-radiation exposure on the rate of cortical bone resorptionmore » was studied. Data on 2,022 WBC measurements were selected for 207 adult persons, who were measured three or more times before they were 50-55 years old. The individual-resorption rates were calculated with the rate of strontium recirculation evaluated as 0.0018 year -1. Individual absorbed doses in red bone marrow (RBM) and bone surface (BS) were also calculated. Statistically significant negative relationships of cortical bone resorption rate were discovered related to 90Sr-body burden and dose absorbed in the RBM or the BS. The response appears to have a threshold of about 1.5-Gy RBM dose. The radiation induced decrease in bone resorption rate may not be significant in terms of health. However, a decrease in bone remodeling rate can be among several causes of an increased level of degenerative dystrophic bone pathology in exposed persons.« less
Fate and transport of radionuclides in soil-water environment. Review.
NASA Astrophysics Data System (ADS)
Konoplev, Aleksei
2017-04-01
The ease in which radionuclides move through the environment and are taken up by plants and animals is governed by their chemical forms and by site-specific environmental characteristics. The objective of this paper is to review basic mechanisms of the behavior of radiocesium and radiostrontium in the environment after the nuclear accident. Our understanding of radionuclide's speciation and migration processes seems to be adequate and explains similarities and differences of radiocesium (r-Cs) behavior in the environment after Fukushima and Chernobyl accidents. Climate and geographical conditions in Fukushima Prefecture of Japan and Chernobyl's near-field zone are obviously different. In particular, precipitation differs substantially, with the annual average for Fukushima being about 3 times higher than at Chernobyl. The landscapes and soils also differ significantly. What is more, the speciation of r-Cs in the releases was distinct (large fraction of radionuclides was deposited as fuel particles in 30-km zone around Chernobyl NPP, while in Fukushima radiocesium is mostly part of condensation particles including glassy hot particles). Radiocesium (r-Cs) in the environment is strongly bound to soil and sediment particles containing micaceous clay minerals (illite, vermiculite, etc.), which is associated with two basic processes - high selective reversible sorption and fixation. The r-Cs distribution coefficient Kd in Fukushima rivers was found to be 1-2 orders of magnitude higher than corresponding values for rivers and surface runoff of Chernobyl area. This is indicative of higher ability of Fukushima soils and sediments to bind r-Cs. Dissolved r-Cs wash-off for Fukushima river watersheds is essentially slower than those for Chernobyl. However, steeper slopes and higher precipitation in Fukushima area cause higher erosion and higher particulate r-Cs wash-off. For a comparable time after the accident the total r-Cs wash-off from contaminated catchments in Fukushima is up to one order of magnitude higher than in Chernobyl. Long-term dynamics of radionuclide concentrations in rivers is approached from the standpoint of basic mechanisms of radionuclide sorption-desorption, fixation, vertical migration in catchment soils. Corresponding semi-empirical models are presented and discussed. For the Chernobyl case, radiostrontium (r-Sr) was shown to be more mobile and moving faster in dissolved state with surface runoff and river water in comparison with r-Cs. Similar pattern was observed for Mayak area in South Ural (Russia), where r-Sr was traced up to 1500 km away from the release point migrating through Techa-Iset'-Tobol-Irtysh-Ob' river system. On the other hand, r-Cs bound to clay particles settles down in Techa river reservoirs and is transported with river water only insignificantly. For the first 3 years after the accident vertical migration of r-Cs in soils of Fukushima catchments was found to be faster than in Chernobyl due to higher air temperature, higher precipitation and higher biological activity in top soil. However, with time this process slows down because of higher r-Cs retardation in Fukushima soils. In Fukushima case, extreme floods during typhoons lead to substantial reduction in dose rate on floodplain areas due to sedimentation of relatively clean material and burial of contaminated top soil layer. In general, due to higher precipitation, higher temperatures and higher biological activities in soils, self-purification of the environment and natural attenuation in Fukushima is essentially faster than in Chernobyl area.
Smagin, A I
2006-01-01
The analysis of the ecological situation of the Southern Urals industrial water reservoirs of the nuclear fuel cycle enterprise, "Mayak" PA is represented. The study was held in the 80s - early 90s. The subjects of the study were: a cooling water reservoir--Kysyl-Tash Lake (R-2) as well as a radioactive waste storage reservoir (R-10). Irtyash Lake, which is a drinking water reservoir for the city of Ozyorsk and Alabuga and Kazhakul Lakes, located on the boundary of the Eastern Urals Radioactive Trace (EURT), were taken as control ones. Such water reservoirs as Irtyash, Kysyl-Tash and the waste storage reservoir (R-10) are incorporated into the Techa River basin; while Alabuga and Kazhakul Lakes are related to the interfluve between the Techa River and the Sinara River. The complex effect from such man--caused factors as radiation, chemical and thermal to water reservoirs' ecosystems was studied. Radionuclide specific activities of the major reservoir components (water, bottom sediments, and biological objects), cumulative stock and radiation doses to the biota were determined. Assessment of the condition of biological structures of individual reservoirs was performed. It was found that the long-term complex influence of radiation, thermal and chemical factors resulted in the formation of the unique technology-induced ecosystems being a part of "Mayak" PA process cycle. Radiation doses to the fish of the cooling water reservoir and the radioactive waste storage reservoir were experimentally estimated. These doses from the incorporated beta-emitters were not less then 2-3 Gy/year. The long-term complex influence of radiation and chemical factors didn't cause any irreversible changes either in the fish population or in the ecosystem. Water purity indicators like crayfish (Astacus leptodactilus Esch) and mollusk (Anodonta cygnea L.) were found in the cooling water reservoir. The comparative analysis of the ecological situation of the reservoirs carried out on the basis of several qualitative indicators and with the help of the formalized scoring system allowed determining that the optimum ecological conditions can be observed in Irtyash Lake. The quality of the environment of Alabuga Lake is slightly lower. The ecological conditions in Kysyl-Tash Lake are up to the standard, while in Kazhakul Lake they are lower than the standard. This is the result of the natural salinization of the ecosystem. The lowest indicator was obtained for the radioactive waste storage reservoir.
Decommissioning strategy for liquid low-level radioactive waste surface storage water reservoir.
Utkin, S S; Linge, I I
2016-11-22
The Techa Cascade of water reservoirs (TCR) is one of the most environmentally challenging facilities resulted from FSUE "PA "Mayak" operations. Its reservoirs hold over 360 mln m 3 of liquid radioactive waste with a total activity of some 5 × 10 15 Bq. A set of actions implemented under a special State program involving the development of a strategic plan aimed at complete elimination of TCR challenges (Strategic Master-Plan for the Techa Cascade of water reservoirs) resulted in considerable reduction of potential hazards associated with this facility. The paper summarizes the key elements of this master-plan: defining TCR final state, feasibility study of the main strategies aimed at its attainment, evaluation of relevant long-term decommissioning strategy, development of computational tools enabling the long-term forecast of TCR behavior depending on various engineering solutions and different weather conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
The U.S.-Russian radiation health effects research program in the Southern Urals.
Seligman, P J
2000-07-01
The Joint Coordinating Committee for Radiation Effects Research (JCCRER) was established through a bilateral U.S.-Russian agreement to support research and exchange information on radiation health effects. The U.S. member agencies include the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Department of Health and Human Services (DHHS), Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA). The Russians are represented by the Ministries of Emergencies (EMERCOM), Atomic Energy (MINATOM) and Health (MINZDRAV), and the Russian Academy of Sciences (IBRAE). The focus of this research is on the workers from the Mayak Production Association (MAYAK) in the Southern Urals and on the neighboring populations along the Techa River exposed to contamination from the plant. The goal of the program is to better define the relationship between the health effects and the chronic low dose and dose-rate exposure, these data being essential to validate current radiation protection standards and practices. The current primary areas of JCCRER research include dose reconstruction, epidemiologic health studies, molecular epidemiology/biodosimetry, and the creation of tissue banks. The organization of the ongoing research conducted under the aegis of the JCCRER and the rationale for this work are described.
Age and gender specific biokinetic model for strontium in humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.
A biokinetic model for strontium in humans is necessary for quantification of internal doses due to strontium radioisotopes. The ICRP-recommended biokinetic model for strontium has limitation for use in a population study, because it is not gender specific and does not cover all age ranges. The extensive Techa River data set on 90Sr in humans (tens of thousands of measurements) is a unique source of data on long-term strontium retention for men and women of all ages at intake. These, as well as published data, were used for evaluation of age- and gender-specific parameters for a new compartment biokinetic modelmore » for strontium (Sr-AGe model). The Sr-AGe model has similar structure as the ICRP model for the alkaline earth elements. The following parameters were mainly reevaluated: gastro-intestinal absorption and parameters related to the processes of bone formation and resorption defining calcium and strontium transfers in skeletal compartments. The Sr-AGe model satisfactorily describes available data sets on strontium retention for different kinds of intake (dietary and intravenous) at different ages (0–80 years old) and demonstrates good agreement with data sets for different ethnic groups. The Sr-AGe model can be used for dose assessment in epidemiological studies of general population exposed to ingested strontium radioisotopes.« less
The U.S.-Russian radiation health effects research program in the Southern Urals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seligman, P.J.
2000-07-01
The Joint Coordinating Committee for Radiation Effects Research (JCCRER) was established through a bilateral US-Russian agreement to support research and exchange information on radiation health effects. The U.S. member agencies include the Department of Energy (DOE), Nuclear Regulatory Commission (NRC), Department of Health and Human Services (DHHS), Department of Defense (DoD), National Aeronautics and Space Administration (NASA), and Environmental Protection Agency (EPA). The Russians are represented by the Ministries of Emergencies (EMERCOM), the Atomic Energy (MINATOM) and Health (MINZDRAV), and the Russian Academy of Sciences (IBRAE). The focus of this research is on the workers from the Mayak Production Associationmore » (MAYAK) in the Southern Urals and on the neighboring populations along the Techa River exposed to contamination from the plant. The goal of the program is to better define the relationship between the health effects and the chronic low dose and dose-rate exposure, these data being essential to validate current radiation protection standards and practices. The current primary areas of JCCRER research include dose reconstruction, epidemiologic health studies, molecular epidemiology/biodosimetry, and the creation of tissue banks. The organization of the ongoing research conducted under the aegis of the JCCRER and the rationale for this work are described.« less
Chronic Radiation Sickness Among Techa Riverside Residents
1998-02-01
people with CRS. Consequently, data listed below are considered tentative; they can- 19 1 0.3 not be used to calculate death rates nor to analyze 20...age cohort 0-14 years Death rates for patients with diagnosed CRS were from the control group; the same age cohort is ab- studied by the cohort method...mortality contains age-specific archives of the civil registrars confirmed the deaths. death rates . Copies were made of the death certificates for de- ceased
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shagina, N. B.; Tolstykh, E. I.; Degteva, M. O.
2012-06-01
The rate of cortical bone resorption was assessed from long-term in vivo measurements of 90Sr content in the skeleton for men aged 50-80 years and for women 0-30 years after menopause. Measurements of 90Sr were conducted with a whole body counter for residents of the Techa Riverside communities (Southern Urals, Russia), who ingested large amounts of 90Sr as a result of releases of liquid radioactive wastes into the river from the Mayak plutonium facility in early 1950s. The results of this study showed an increase in the rate of cortical bone resorption in both men and women, as based onmore » the use of accidentally ingested 90Sr as a tracer for bone metabolism. In men there was a continuous gradual increase in the rate of cortical bone resorption after 55 years from 2.8 to 4.5%/year by the age of 75 years. In women, there was a doubled increase in the rate of cortical bone resorption after menopause of up to 6%/year; then the rate remained unchanged for 10-12 years with a subsequent gradual decline down to 5-5.5%/year. Comparison of the rate of cortical bone resorption in men and women older than 55 years showed that women expressed significantly higher levels of cortical bone resorption.« less
NASA Astrophysics Data System (ADS)
Glinsky, M.; Hutter, A.; Drozhko, E. G.
2001-12-01
In the early 90's international organizations showed great interest concerning the contamination problems at the PA "Mayak" territory, where liquid radioactive wastes have been stored on the surface, including Lake Karachay, reservoir "Staroye Boloto" and the Techa River cascade reservoirs. As a result of this interest, international contracts funded by DOE (USA), NRRA, EC and DGXL were instituted to study the experience of radioactive waste management accumulated at the PA "Mayak" territory, including proposed rehabilitation of the contaminated territories. However, at the initial stage of international research, the works were not coordinated and often duplicated each other, which was taken by the public and mass media as a serious divergence of opinion between the scientists on the risk assessment for the population. Many years of research resulted in elaboration of a common scientific approach to the solution of the problems of water resources contamination at the PA "Mayak" territory. A successful experience of coordinating the international projects to study radionuclide migration with surface and ground waters at the PA "Mayak" territory is demonstrated, as well as the risk assessment for the population. Substantiation for rehabilitation measures can be based on long-term predictions and modeling research that are continuing under these international projects.
Schüz, Joachim; Deltour, Isabelle; Krestinina, Lyudmila Y; Tsareva, Yulia V; Tolstykh, Evgenia I; Sokolnikov, Mikhail E; Akleyev, Alexander V
2017-01-01
Background: It is scientifically uncertain whether in utero exposure to low-dose ionising radiation increases the lifetime risk of haematological malignancies. Methods: We pooled two cohorts from the Southern Urals comprising offspring of female workers of a large nuclear facility (the Mayak Production Association) and of women living in areas along the Techa River contaminated by nuclear accidents/waste from the same facility, with detailed dosimetry. Results: The combined cohort totalled 19 536 subjects with 700 504 person-years at risk over the period of incidence follow-up, and slightly more over the period of mortality follow-up, yielding 58 incident cases and 36 deaths up to age 61 years. Risk was increased in subjects who received in utero doses of ⩾80 mGy (excess relative risk (ERR): 1.27; 95% confidence interval (CI): −0.20 to 4.71), and the risk increased consistently per 100 mGy of continuous exposure in utero (ERR: 0.77; CI: 0.02 to 2.56). No association was apparent in mortality-based analyses. Results for leukaemia and lymphoma were similar. A very weak positive association was observed between incidence and postnatal exposure. Conclusions: In summary, the results suggest a positive association between in utero exposure to ionising radiation and risk of haematological malignancies, but the small number of outcomes and inconsistent incidence and mortality findings preclude firm conclusions. PMID:27855443
NASA Technical Reports Server (NTRS)
Hu, Shaowen; Cucinotta, Francis A.
2010-01-01
After the events of September 11, 2001, there is an increasing concern of the occurrence of radiological terrorism that may result in significant casualties in densely populated areas. Much effort has been made to establish various biomarkers to rapidly assess radiation dose in mass-casualty and population-monitoring scenarios, which are demanded for effective medical management and treatment of the exposed victims. Among these the count of lymphocytes in peripheral blood and their depletion kinetics are the most important early indicators of the severity of the radiation injury. In this study, we examine a biomathematical model of lymphopoiesis which has been successfully utilized to simulate and interpret experimental data of acute and chronic irradiations on rodents [1]. With revised parameters for humans, we find this model can reproduce several sets of clinical lymphocyte data of accident victims over a wide range of absorbed doses. In addition, the absolute lymphocyte counts and the depletion rate constants calculated by this model also show good correlation with the Guskova formula and the Goans model, the two empirical tools which have been widely recognized for early estimation of the exposed dose after radiation accidents [2]. We also use the model to analyze the hematological data of the Techa River residents which were exposed to chronic low-dose irradiation during 1950-1956 [3]. This model can serve as a computational tool in radiation accident management, military operations involving nuclear warfare, radiation therapy, and space radiation risk assessment.
HIGHLIGHTS OF THE RUSSIAN HEALTH STUDIES PROGRAM AND UPDATED RESEARCH FINDINGS
Fountos, Barrett N.
2017-01-01
Abstract Recognized for conducting cutting-edge science in the field of radiation health effects research, the Department of Energy's (DOE) Russian Health Studies Program has continued to generate excitement and enthusiasm throughout its 23-year mission to assess worker and public health risks from radiation exposure resulting from nuclear weapons production activities in the former Soviet Union. The three goals of the Program are to: (1) clarify the relationship between health effects and chronic, low-to-medium dose radiation exposure; (2) estimate the cancer risks from exposure to gamma, neutron, and alpha radiation; and (3) provide information to the national and international organizations that determine radiation protection standards and practices. Research sponsored by DOE's Russian Health Studies Program is conducted under the authority of the Joint Coordinating Committee for Radiation Effects Research (JCCRER), a bi-national committee representing Federal agencies in the United States and the Russian Federation. Signed in 1994, the JCCRER Agreement established the legal basis for the collaborative research between USA and Russian scientists to determine the risks associated with working at or living near Russian former nuclear weapons production sites. The products of the Program are peer-reviewed publications on cancer risk estimates from worker and community exposure to ionizing radiation following the production of nuclear weapons in Russia. The scientific return on investment has been substantial. Through 31 December 2015, JCCRER researchers have published 299 peer-reviewed publications. To date, the research has focused on the Mayak Production Association (Mayak) in Ozersk, Russia, which is the site of the first Soviet nuclear weapons production facility, and people in surrounding communities along the Techa River. There are five current projects in the Russian Health Studies Program: two radiation epidemiology studies; two historical dose reconstruction studies and a worker biorepository. National and international standard-setting organizations use cancer risk estimates computed from epidemiological and historical dose reconstruction studies to validate or revise radiation protection standards. An overview of the most important research results will be presented. PMID:27885077
Low dose radiation risks for women surviving the a-bombs in Japan: generalized additive model.
Dropkin, Greg
2016-11-24
Analyses of cancer mortality and incidence in Japanese A-bomb survivors have been used to estimate radiation risks, which are generally higher for women. Relative Risk (RR) is usually modelled as a linear function of dose. Extrapolation from data including high doses predicts small risks at low doses. Generalized Additive Models (GAMs) are flexible methods for modelling non-linear behaviour. GAMs are applied to cancer incidence in female low dose subcohorts, using anonymous public data for the 1958 - 1998 Life Span Study, to test for linearity, explore interactions, adjust for the skewed dose distribution, examine significance below 100 mGy, and estimate risks at 10 mGy. For all solid cancer incidence, RR estimated from 0 - 100 mGy and 0 - 20 mGy subcohorts is significantly raised. The response tapers above 150 mGy. At low doses, RR increases with age-at-exposure and decreases with time-since-exposure, the preferred covariate. Using the empirical cumulative distribution of dose improves model fit, and capacity to detect non-linear responses. RR is elevated over wide ranges of covariate values. Results are stable under simulation, or when removing exceptional data cells, or adjusting neutron RBE. Estimates of Excess RR at 10 mGy using the cumulative dose distribution are 10 - 45 times higher than extrapolations from a linear model fitted to the full cohort. Below 100 mGy, quasipoisson models find significant effects for all solid, squamous, uterus, corpus, and thyroid cancers, and for respiratory cancers when age-at-exposure > 35 yrs. Results for the thyroid are compatible with studies of children treated for tinea capitis, and Chernobyl survivors. Results for the uterus are compatible with studies of UK nuclear workers and the Techa River cohort. Non-linear models find large, significant cancer risks for Japanese women exposed to low dose radiation from the atomic bombings. The risks should be reflected in protection standards.
Woda, Clemens; Jacob, P; Ulanovsky, A; Fiedler, I; Mokrov, Y; Rovny, S
2009-11-01
Recently discovered historical documents indicate that large releases of noble gases (mainly (41)Ar and radioactive isotopes of Kr and Xe) from the Mayak Production Association (MPA) over the period from 1948 to 1956 may have caused considerable external exposures of both, inhabitants of Ozyorsk and former inhabitants of villages at the upper Techa River. To quantify this exposure, seven brick samples from three buildings in Ozyorsk, located 8-10 km north-northwest from the radioactive gas release points, were taken. The absorbed dose in brick was measured in a depth interval of 3-13 mm below the exposed surface of the bricks by means of the thermoluminescence (TL) and the optically stimulated luminescence (OSL) method. Generally, luminescence properties using TL were more favorable for precise dose determination than using OSL, but within their uncertainties the results from both methods agree well with each other. The absorbed dose due to natural radiation was assessed and subtracted under the assumption of the bricks to be completely dry. The weighted average of the anthropogenic dose for all samples measured by TL and OSL is 10 +/- 9 and 1 +/- 9 mGy, respectively. An upper limit for a possible anthropogenic dose in brick that would not be detected due to the measurement uncertainties is estimated at 24 mGy. This corresponds to an effective dose of about 21 mSv. A similar range of values is obtained in recently published dispersion calculations that were based on reconstructed MPA releases. It is concluded that the release of radioactive noble gases from the radiochemical and reactor plants at Mayak PA did not lead to a significant external exposure of the population of Ozyorsk. In addition, the study demonstrates the detection limit for anthropogenic doses in ca. 60-year-old bricks to be about 24 mGy, if luminescence methods are used.
The linear nonthreshold (LNT) model as used in radiation protection: an NCRP update.
Boice, John D
2017-10-01
The linear nonthreshold (LNT) model has been used in radiation protection for over 40 years and has been hotly debated. It relies heavily on human epidemiology, with support from radiobiology. The scientific underpinnings include NCRP Report No. 136 ('Evaluation of the Linear-Nonthreshold Dose-Response Model for Ionizing Radiation'), UNSCEAR 2000, ICRP Publication 99 (2004) and the National Academies BEIR VII Report (2006). NCRP Scientific Committee 1-25 is reviewing recent epidemiologic studies focusing on dose-response models, including threshold, and the relevance to radiation protection. Recent studies after the BEIR VII Report are being critically reviewed and include atomic-bomb survivors, Mayak workers, atomic veterans, populations on the Techa River, U.S. radiological technologists, the U.S. Million Person Study, international workers (INWORKS), Chernobyl cleanup workers, children given computerized tomography scans, and tuberculosis-fluoroscopy patients. Methodologic limitations, dose uncertainties and statistical approaches (and modeling assumptions) are being systematically evaluated. The review of studies continues and will be published as an NCRP commentary in 2017. Most studies reviewed to date are consistent with a straight-line dose response but there are a few exceptions. In the past, the scientific consensus process has worked in providing practical and prudent guidance. So pragmatic judgment is anticipated. The evaluations are ongoing and the extensive NCRP review process has just begun, so no decisions or recommendations are in stone. The march of science requires a constant assessment of emerging evidence to provide an optimum, though not necessarily perfect, approach to radiation protection. Alternatives to the LNT model may be forthcoming, e.g. an approach that couples the best epidemiology with biologically-based models of carcinogenesis, focusing on chronic (not acute) exposure circumstances. Currently for the practical purposes of radiation protection, the LNT hypothesis reigns supreme as the best of the rest, but new epidemiology and radiobiology might change these conclusions. Stay tuned!
HIGHLIGHTS OF THE RUSSIAN HEALTH STUDIES PROGRAM AND UPDATED RESEARCH FINDINGS.
Fountos, Barrett N
2017-04-01
Recognized for conducting cutting-edge science in the field of radiation health effects research, the Department of Energy's (DOE) Russian Health Studies Program has continued to generate excitement and enthusiasm throughout its 23-year mission to assess worker and public health risks from radiation exposure resulting from nuclear weapons production activities in the former Soviet Union. The three goals of the Program are to: (1) clarify the relationship between health effects and chronic, low-to-medium dose radiation exposure; (2) estimate the cancer risks from exposure to gamma, neutron, and alpha radiation; and (3) provide information to the national and international organizations that determine radiation protection standards and practices. Research sponsored by DOE's Russian Health Studies Program is conducted under the authority of the Joint Coordinating Committee for Radiation Effects Research (JCCRER), a bi-national committee representing Federal agencies in the United States and the Russian Federation. Signed in 1994, the JCCRER Agreement established the legal basis for the collaborative research between USA and Russian scientists to determine the risks associated with working at or living near Russian former nuclear weapons production sites. The products of the Program are peer-reviewed publications on cancer risk estimates from worker and community exposure to ionizing radiation following the production of nuclear weapons in Russia. The scientific return on investment has been substantial. Through 31 December 2015, JCCRER researchers have published 299 peer-reviewed publications. To date, the research has focused on the Mayak Production Association (Mayak) in Ozersk, Russia, which is the site of the first Soviet nuclear weapons production facility, and people in surrounding communities along the Techa River. There are five current projects in the Russian Health Studies Program: two radiation epidemiology studies; two historical dose reconstruction studies and a worker biorepository. National and international standard-setting organizations use cancer risk estimates computed from epidemiological and historical dose reconstruction studies to validate or revise radiation protection standards. An overview of the most important research results will be presented. Published by Oxford University Press 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Akleyev, Alexander; Pashkov, Igor; Kisselyov, Mikhail; Noskin, Leonid A.
1999-12-01
The issue of stochastic effects of radiation exposure (mostly leukemia and cancer), and early detection of malignant tumors, as a key aspect of the problem, is of crucial importance to the population chronically exposed due to the activities of the Mayak Production Association in the Urals region, Russia). Given the large number of exposed population, screening is considered to be the most expedient method to organize medical observation of exposed persons. As was shown by the results of medical examinations conducted for 1 391 residents of the Techa riverside villages, laser correlation spectrometry (LCS) of blood plasma has proved to be a highly effective screening method for early (pre-clinical) detection of malignant neoplasms and pre-cancerous conditions. It was established that LC- spectra of blood plasma in persons with cancer and pre- cancer can easily be differentiated from non-cancer conditions. Of particular diagnostic significance is the high-frequency range of the spectrum. The development of a diagnostic algorithm has allowed to carry out a computer- based classification of blood plasma LC spectra as a component of exposed population health monitoring system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area. 165.510 Section 165.510... Limited Access Areas Fifth Coast Guard District § 165.510 Delaware Bay and River, Salem River, Christina...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area. 165.510 Section 165.510... Limited Access Areas Fifth Coast Guard District § 165.510 Delaware Bay and River, Salem River, Christina...
The ecohealth assessment and ecological restoration division of urban water system in Beijing
Liu, J.; Ma, M.; Zhang, F.; Yang, Z.; Domagalski, Joseph L.
2009-01-01
Evaluating six main rivers and six lakes in Beihuan water system (BWS) and diagnosing the limiting factors of eco-health were conducted for the ecohealth assessment and ecological restoration division of urban water system (UWS) for Beijing. The results indicated that Jingmi River and Nanchang River were in a healthy state, the degree of membership to unhealthy were 0.358, 0.392, respectively; while Yongding River, Beihucheng River, Liangma River, Tongzi River and six lakes were in an unhealthy state, their degree of membership to unhealthy were between 0.459 and 0.927. The order of that was Liangma > Beihucheng > Tongzi > Yongding > six lakes > Jingmi > Nanchang, in which Liangma Rivers of that was over 0.8. The problems of Rivers and lakes in BWS are different. Jingmi River and Nanchang River were ecotype limiting; Yongding River, Tongzi River and six lakes were water quality and ecotype limiting. Beihucheng River and Liangma River were water quantity, water quality and ecotype limiting. BWS could be divided into 3 restoration divisions, pollution control division including Yongding River, Tongzi River and six lakes; Jingmi River and Nanchang River were ecological restoration zone, while Beihucheng River and Liangma River were in comprehensive improvement zone. Restoration potentiality of Jingmi River and Nanchang River were higher, and Liangma River was hardest to restore. The results suggest a new idea to evaluate the impact of human and environmental factors on UWS. ?? Springer Science+Business Media, LLC 2009.
Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho, Annual Report 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochnauer, Tim; Claire, Christopher
In 2002 Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South Fork Clearwater River, Lochsa River, Selway River, and Middle Fork Clearwater River subbasins. Five-hundred forty-one ammocoetes were captured electroshocking 70 sites in the South Fork Clearwater River, Lochsa River, Selway River, Middle Fork Clearwater River, Clearwater River, and their tributaries in 2002. Habitat utilization surveys in Red River support previous work indicating Pacific lamprey ammocoetemore » densities are greater in lateral scour pool habitats compared to riffles and rapids. Presence-absence survey findings in 2002 augmented 2000 and 2001 indicating Pacific lamprey macrothalmia and ammocoetes are not numerous or widely distributed. Pacific lamprey distribution was confined to the lower reaches of Red River below rkm 8.0, the South Fork Clearwater River, Lochsa River (Ginger Creek to mouth), Selway River (Race Creek to mouth), Middle Fork Clearwater River, and the Clearwater River (downstream to Potlatch River).« less
Code of Federal Regulations, 2012 CFR
2012-10-01
... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...
Code of Federal Regulations, 2013 CFR
2013-10-01
... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...
Code of Federal Regulations, 2014 CFR
2014-10-01
... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook... River salmon (except reaches above impassable natural falls, and Dworshak and Hells Canyon Dams...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls. 207.380 Section 207.380 Navigation and Navigable... Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls. (a) Parties...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls. 207.380 Section 207.380 Navigation and Navigable... Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls. (a) Parties...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls. 207.380 Section 207.380 Navigation and Navigable... Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls. (a) Parties...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls. 207.380 Section 207.380 Navigation and Navigable... Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls. (a) Parties...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls. 207.380 Section 207.380 Navigation and Navigable... Red Lake River, Minn.; logging regulations for portion of river above Thief River Falls. (a) Parties...
3. ENVIRONMENT, FROM SOUTH, SHOWING RIVER ROAD RIDGE CARRYING CASSELMAN ...
3. ENVIRONMENT, FROM SOUTH, SHOWING RIVER ROAD RIDGE CARRYING CASSELMAN RIVER ROAD OVER CASSELMAN RIVER - River Road Bridge, Crossing Casselman River on Casselman River Road, Grantsville, Garrett County, MD
[Variation characteristics of runoff coefficient of Taizi River basin in 1967-2006].
Deng, Jun-Li; Zhang, Yong-Fang; Wang, An-Zhi; Guan, De-Xin; Jin, Chang-Jie; Wu, Jia-Bing
2011-06-01
Based on the daily precipitation and runoff data of six main embranchments (Haicheng River, Nansha River, Beisha River, Lanhe River, Xihe River, and Taizi River south embranchment) of Taizi River basin in 1967-2006, this paper analyzed the variation trend of runoff coefficient of the embranchments as well as the relationship between this variation trend and precipitation. In 1967-2006, the Taizi River south embranchment located in alpine hilly area had the largest mean annual runoff coefficient, while the Haicheng River located in plain area had the relatively small one. The annual runoff coefficient of the embranchments except Nansha River showed a decreasing trend, being more apparent for Taizi River south embranchment and Lanhe River. All the embranchments except Xihe River had an obvious abrupt change in the annual runoff coefficient, and the beginning year of the abrupt change differed with embranchment. Annual precipitation had significant effects on the annual runoff coefficient.
River habitat assessment for ecological restoration of Wei River Basin, China.
Yang, Tao; Wang, Shuo; Li, Xiaoping; Wu, Ting; Li, Li; Chen, Jia
2018-04-11
As an important composition component of river ecosystems, river habitats must undergo quality assessment to potentially provide scientific basis for river ecological restoration. Substrate composition, habitat complexity, bank erosion degree, river meandering degree, human activity intensity, vegetation buffer width, water quality, and water condition were determined as indicators for river habitat assessment. The comprehensive habitat quality index (CHQI) was established for the Wei River Basin. In addition, the indicator values were determined on the basis of a field investigation at 12 national hydrological stations distributed across the Wei, Jing, and Beiluo Rivers. The analytic hierarchy process was used to determine the indicator weights and thus distinguish the relative importance of the assessment indicator system. Results indicated that the average CHQIs for the Wei, Jing, and Beiluo Rivers were 0.417, 0.508, and 0.304, respectively. The river habitat quality for the three rivers was well. As for the whole river basin, the river habitat quality for 25% of the cross section was very well, the other 25% was well, and the 50% remaining was in critical state. The river habitat quality of the Jing River was better than that of the Wei and Beiluo Rivers.
Code of Federal Regulations, 2010 CFR
2010-10-01
... salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. 226.205 Section... Snake River sockeye salmon, Snake River fall chinook salmon, and Snake River spring/summer chinook salmon. The following areas consisting of the water, waterway bottom, and adjacent riparian zone of...
The economic value of Trinity River water
Douglas, A.J.; Taylor, J.G.
1999-01-01
The Trinity River, largest tributary of the Klamath River, has its head-waters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the Sacramento River, and power production at three of these installations would diminish if no Trinity River water were diverted to the Sacramento River. After Trinity River water reaches the Sacramento River, it flows toward the Sacramento-San Joaquin Delta and San Francisco Bay. Trinity River water is pumped via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The social cost of putting more water down the Trinity River is the sum of the value of the foregone consumer surplus from hydropower production as well as the value of the foregone irrigation water. Sharply diminished instream flows have also severely affected the size and robustness of Trinity River salmon, steelhead, shad and sturgeon runs. Survey data were used to estimate the non-market benefits of augmenting Trinity River instream flows by letting more water flow down the Trinity and moving less water to the Sacramento River. Preservation benefits for Trinity River instream flows and fish runs are $803 million per annum for the scenario that returns the most water down the Trinity River, a value that greatly exceeds the social cost estimate.The Trinity River, largest tributary of the Klamath River, has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the Sacramento River, and power production at three of these installations would diminish if no Trinity River water were diverted to the Sacramento River. After Trinity River water reaches the Sacramento River, it flows toward the Sacramento-San Joaquin Delta and San Francisco Bay. Trinity River water is pumped via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The social cost of putting more water down the Trinity River is the sum of the value of the foregone consumer surplus from hydropower production as well as the value of the foregone irrigation water. Sharply diminished instream flows have also severely affected the size and robustness of Trinity River salmon, steelhead, shad and sturgeon runs. Survey data were used to estimate the non-market benefits of augmenting Trinity River instream flows by letting more water flow down the Trinity and moving less water to the Sacramento River. Preservation benefits for Trinity River instream flows and fish runs are $803 million per annum for the scenario that returns the most water down the Trinity River, a value that greatly exceeds the social cost estimate.
NASA Astrophysics Data System (ADS)
Yu, Matthew; Cartwright, Ian
2014-05-01
Defining the relationship between the river and its river bank is important in constraining baseflow to a river and enhancing our ability in protecting water resources and riparian ecology. Hydraulic heads, geochemistry and 3H were measured in river banks along the Ovens River, southeast Australia. The Ovens River is characterised by the transition from a single channel river residing within a mountain valley to a multi-channel meandering river on broad alluvial plains in the lower catchment. The 3H concentrations of most near-river groundwater (less than 10 m from river channel) and bank water (10 - 30 m from the river channel) in the valley range between 1.93 and 2.52 TU. They are similar to those of the river, which are between 2.37 and 2.24 TU. These groundwater also have a Na/Cl ratio of 2.7 - 4.7 and are close to the river Na/Cl ratios. These similarities suggest that most river banks in the valley are recharged by the river. The hydraulic heads and EC values indicate that some of these river banks are recharged throughout the year, while others are only recharged during high flow events. Some near-river groundwater and bank water in the valley have a much lower 3H concentration, ranging from 0.97 to 1.27 TU. They also have a lower Na/Cl ratio of 1.6 - 3.1. These differences imply that some of the river banks in the valley are rarely recharged by the river. The lack of infiltration is supported by the constant head gradient toward the river and the constant EC values in these river banks. The river banks with bank infiltration are located in the first few hundred kilometres in the valley and in the middle catchment where the valley is broaden. In the first few hundred kilometres in the valley, it has a relatively flat landscape and does not allow a high regional water table to form. The river thus is always above the water table and recharges the river banks and the valley aquifers. In the broader valley, the relatively low lateral hydraulic gradient is sometimes reversed during high flow events, causing river to infiltrate the river banks. The river banks with no infiltration are in a location where the river runs in the middle of valley with a relatively steep incised bank. Thus, a strong lateral heads gradient toward the river can from in the bank, preventing river water from infiltration, even during a high flow event.
4. ENVIRONMENT, FROM NORTH, SHOWING RIVER ROAD BRIDGE CARRYING CASSELMAN ...
4. ENVIRONMENT, FROM NORTH, SHOWING RIVER ROAD BRIDGE CARRYING CASSELMAN RIVER ROAD OVER CASSELMAN RIVER, WITH MARYLAND GEOLOGICAL SURVEY STREAM-GAUGING STATION AT NORTHEAST CORNER OF BRIDGE - River Road Bridge, Crossing Casselman River on Casselman River Road, Grantsville, Garrett County, MD
Evaluating the effects of monthly river flow trends on Environmental Flow allocation
NASA Astrophysics Data System (ADS)
Torabi Haghighi, Ali; Klove, Bjorn
2010-05-01
The Natural river flow regime can be changed by the construction of hydraulic structures such as dams, hydropower plants, pump stations and so on. Due to the new river flow regime, some parts of water resources must be allocated to environmental flow (EF). There are more than 62 hydrological methods which have been proposed for calculating EF, although these methods don't have enough acceptability to be used in practical cases and The so other methods are preferred such as holistic,….. Most hydrological methods do not take basin physiography, climate, location of hydraulic structures, monthly river flow regime, historical trend of river (annually regime), purpose of hydraulic structures and so on, into consideration. In the present work, data from more than 180 rivers from Asia (71 rivers and 16 countries), Europe (79 Rivers and 23 countries), Americas (23 rivers and 10 countries) and Africa (12 rivers and 6 countries) were used to assess EF. The rivers were divided into 5 main groups of regular permanent rivers, semi regular permanent rivers, irregular permanent rivers, seasonal rivers and dry rivers, for each groups EF calculated by some hydrological methods and compared with the natural flow regime. The results showed that besides the amount of EF, the monthly distribution of flow is very important and should be considered in reservoir operation. In seasonal rivers and dry rivers, hydraulic structure construction can be useful for conserving aquatic ecosystems
River water pollution condition in upper part of Brantas River and Bengawan Solo River
NASA Astrophysics Data System (ADS)
Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.
2018-01-01
Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.
Occurrence and effects of endocrine-disrupting chemicals in the St. Croix River
Elliott, Sarah M.; Lee, Kathy E.
2016-01-01
The St. Croix River is one of the last undisturbed, large floodplain rivers in the upper Mississippi River System. The Saint Croix National Scenic Riverway encompasses 255 river miles from the St. Croix Flowage and Namekagon River to the confluence of the St. Croix River with the Mississippi River at Prescott, Wisconsin. The Wild and Scenic Rivers Act of 1968 includes protection of the “outstandingly remarkable values” of the St. Croix and Namekagon rivers, which are included in the first eight designated wild and scenic rivers. The National Park Service (NPS) supports efforts to ensure these high-quality waters are not degraded by endocrine-disrupting or pharmaceutically active chemicals.
Initial river test of a monostatic RiverSonde streamflow measurement system
Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.; ,
2003-01-01
A field experiment was conducted on May 7-8, 2002 using a CODAR RiverSonde UHF radar system at Vernalis, California on the San Joaquin River. The monostatic radar configuration on one bank of the river, with the antennas looking both upriver and downriver, provided very high-quality data. Estimates of both along-river and cross-river surface current were generated using several models, including one based on normal-mode analysis. Along-river surface velocities ranged from about 0.6 m/s at the river banks to about 1.0 m/s near the middle of the river. Average cross-river surface velocities were 0.02 m/s or less.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35622] SteelRiver Infrastructure Partners LP, SteelRiver Infrastructure Associates LLC, SteelRiver Infrastructure Fund North America LP, and Patriot Funding LLC--Control Exemption--Patriot Rail Corp., et al. SteelRiver...
Assessment of Long-Term Changes in River Stage of the Lowermost Mississippi River
NASA Astrophysics Data System (ADS)
Joshi, S.; Xu, Y. J.
2016-02-01
Long-term changes in river stage can reflect dynamics of river beds. Such changes in the lower reach of a river entering the sea can also indicate sea level rise and land subsidence. The lowermost Mississippi River has experienced changes in its stages over the past several decades which, however, have not been studied yet. Comprehensive analysis of long-term changes in stages of this river can aid in understanding its route downstream and differentiate between sediment erosion and deposition mechanics at several of its sites. In this study, we utilize long-term records on river stages along a 320-km reach of the lowermost Mississippi River from the Old River Control Structure to New Orleans in order to assess the channel dynamics of the highly engineered river. Eight locations along the reach are selected, including Red River Landing, Bayou Sara, St. Francisville, Baton Rouge, Dolandsonville, College Point, Bonnet Carre, and Carrolton. River stages at the locations are analyzed under the low-, medium-, and high-flow conditions over the past three decades. Changes in slope of the river stages between these locations are determined based on difference in their river stages and length of their reach. Preliminary results from this study show that the river stages drop systematically as the river moves downstream. The drop is very low from Red River Landing to Baton Rouge; it suddenly increases from Baton Rouge to the next site at Bonnet Carre, then decreases for the next few sites up to Carrolton. We also found that some river reaches experienced deposition while other river reaches had erosion during the past decades. This paper will present major findings in long term changes in lowermost Mississippi river stages and their slopes. It will also discuss implications of these findings for sediment accumulation and possible river diversion locations.
76 FR 13572 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-14
.... Specifically, it addresses the following flooding sources: Left Bank Overflow Main Stem Skagit River, Left Bank Overflow Main Stem Skagit River/South Fork Skagit River, Left Bank Overflow North Fork Skagit River, Main Stem Skagit River, North Fork Skagit River, Overflow from the Main Stem Skagit River between the North...
Moring, J. Bruce
2012-01-01
The total number of fish species collected was the same in the Devils River and Pecos River, but the species found in the two rivers varied slightly. The number of fish species generally increased from the site farthest upstream to the site farthest downstream in the Devils River, and decreased between the site farthest upstream and site farthest downstream in the Pecos River. The redbreast sunfish was the most abundant species collected in the Devils River, and the blacktail shiner was the most abundant species collected in the Pecos River. Comparing the species from each river, the percentage of omnivorous fish species was larger at the more downstream sites closer to Amistad Reservoir, and the percentage of species tolerant of environmental stressors was larger in the Pecos River. The fish community, assessed on the basis of the number of shared species among the sites sampled, was more similar to the fish community at the other sites on the same river than it was to the fish community from any other site in the other river. More macroinvertebrate taxa were collected in the Devils River than in the Pecos River. The largest number of macroinvertebrate taxa were from the site second farthest downstream on the Devils River, and the smallest numbers of macroinvertebrate taxa were from the farthest downstream site on the Pecos River. Mayflies were more common in the Devils River, and caddisflies were less common than mayflies at most sites. Net-spinning caddisflies were more common at the Devils River sites. The combined percent of mayfly, caddisfly, and stonefly taxa was generally larger at the Pecos River sites. Riffle beetles were the most commonly collected beetle taxon among all sites, and water-penny beetles were only collected at the Pecos River sites. A greater number of true midge taxa were collected more than any other taxa at the genus and species taxonomic level. Non-insect macroinvertebrate taxa were more common at the Devils River sites. Corbicula sp. (presumably the introduced Asian clam) was found at sites in both rivers, and amphipods were more abundant in the Devils River. The Margalef species richness index, based on aquatic insect taxa only, was larger at the Devils River sites than at the Pecos River sites. The Hilsenhoff's biotic index was largest at the site farthest downstream in the Devils River and smallest at the site second farthest downstream in the Pecos River. Overall similarity among sites based on the number of shared macroinvertebrate taxa indicated that each site is more similar to other sites on the same river than to sites on the other river.
Brabets, Timothy P.
2001-01-01
Flow data were collected from two adjacent rivers in Yukon?Charley Rivers National Preserve, Alaska?the Nation River (during 1991?2000) and the Kandik River (1994?2000)?and from the Yukon River (1950?2000) at Eagle, Alaska, upstream from the boundary of the preserve. These flow records indicate that most of the runoff from these rivers occurs from May through September and that the average monthly discharge during this period ranges from 1,172 to 2,210 cubic feet per second for the Nation River, from 1,203 to 2,633 cubic feet per second for the Kandik River, and from 112,000 to 224,000 cubic feet per second for the Yukon River. Water-quality data were collected for the Nation River and several of its tributaries from 1991 to 1992 and for the Yukon River at Eagle from 1950 to 1994. Three tributaries to the Nation River (Waterfall Creek, Cathedral Creek, and Hard Luck Creek) have relatively high concentrations of calcium, magnesium, and sulfate. These three watersheds are underlain predominantly by Paleozoic and Precambrian rocks. The Yukon River transports 33,000,000 tons of suspended sediment past Eagle each year. Reflecting the inputs from its major tributaries, the water of the Yukon River at Eagle is dominated by calcium?magnesium bicarbonate.
Aerial view of the entire bridge crossing the Tennessee River ...
Aerial view of the entire bridge crossing the Tennessee River looking up river. The swing bridge, when open, permits river navigational traffic to ply the river. Construction of a replacement bridge, to be located 93.27 feet down river, has now started. - Bridgeport Swing Span Bridge, Spanning Tennessee River, Bridgeport, Jackson County, AL
A new framework for assessing river ecosystem health with consideration of human service demand.
Luo, Zengliang; Zuo, Qiting; Shao, Quanxi
2018-06-01
In order to study river health status from harmonic relationship between human and natural environment, a river health evaluation method was proposed from the aspects of ecosystem integrity and human service demand, and the understanding of river health connotation. The proposed method is based on the harmony theory and two types of river health assessment methods (the forecasting model and index evaluation). A new framework for assessing river water health was then formed from the perspective of harmony and dynamic evolution between human service demand and river ecosystem integrity. As a case study, the method and framework were applied to the Shaying River Basin, a tributary of the most polluted Huaihe River Basin in China. The health status of the river's ecosystem and its effect on the mainstream of Huaihe River were evaluated based on water ecological experiment. The results indicated that: (1) the water ecological environment in Shaying River was generally poor and showed a gradual changing pattern along the river. The river health levels were generally "medium" in the upstream but mostly "sub-disease" in the midstream and downstream, indicating that the water pollution in Shaying River were mainly concentrated in the midstream and downstream; (2) the water pollution of Shaying River had great influence on the ecosystem of Huaihe River, and the main influencing factors were TN, followed by TP and COD Mn ; (3) the natural attribute of river was transferring toward to the direction of socialization due to the increasing human activities. The stronger the human activity intervention is, the faster the transfer will be and the more river's attributes will match with human service demand. The proposed framework contributes to the research in water ecology and environment management, and the research results can serve as an important reference for basin management in Shaying River and Huaihe River. Copyright © 2018. Published by Elsevier B.V.
Characteristics of water quality of rivers related to land-use in Penang Island Malaysia
NASA Astrophysics Data System (ADS)
Yen, Lim Jia; Matsumoto, Yoshitaka; Yin, Chee Su; Wern, Hong Chern; Inoue, Takanobu; Usami, Akiko; Iwatsuki, Eiji; Yagi, Akihiko
2017-10-01
A study of the Water Quality Index (WQI) of rivers in Penang Island, Malaysia conducted by Universiti Sains Malaysia from October 2012 to January 2013 shows that almost all rivers in Penang Island were slightly polluted or polluted. However, WQI does not clarify each water quality indices, for example nutrients and organic pollutants, that reflect the land-use and pollution source in the catchment. Therefore, in this research, the main objectives are to investigate the interaction of land-use and the water quality of rivers in Penang Island, the quantity of pollutant loads discharged, and identification of the pollution sources along the rivers. The procedure starts from the selection of rivers and parameters for investigation, carrying out field survey and sampling, measuring and analyzing each sample, and lastly, providing a conclusion. The three rivers selected are Pinang River, Keluang River and Burung River. In this research, the results show that total organic carbon (TOC) increases generally as the rivers flow towards the river mouths, which means the degree of organic pollution increases along the rivers. In Pinang River, TOC increases as the tributaries from housing areas flow into the mainstream whereas in Keluang River, a marked increase of TOC is shown in the location where the wastewater from a sewage treatment plant discharges. In Burung River, TOC increases as the river flows through the paddy fields. In the principal component analysis, all sampling points of the three rivers are able to be classified into five groups based on the characteristics of water quality. For example, upstream of Keluang River and Burung River show mutual characteristics in terms of man-made pollution index and heavy metal pollution index. As a conclusion, the results in this research show that the characteristics of water quality in Penang Island are highly affected by land-use surrounding the rivers.
GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, RIVER SPAN, ...
GENERAL VIEW OF SOUTH SAN GABRIEL RIVER BRIDGE, RIVER SPAN, LOOKING NORTHWEST. - South San Gabriel River Bridge, Spanning South Fork of San Gabriel River at Georgetown at Business Route 35, Georgetown, Williamson County, TX
O'Donnell, T. K.; Galat, D.L.
2007-01-01
The Upper Mississippi River is characterized by a series of locks and dams, shallow impoundments, and thousands of river channelization structures that facilitate commercial navigation between Minneapolis, Minnesota, and Cairo, Illinois. Agriculture and urban development over the past 200 years have degraded water quality and increased the rate of sediment and nutrient delivery to surface waters. River enhancement has become an important management tool employed to address causes and effects of surface water degradation and river modification in the Upper Mississippi River Basin. We report information on individual river enhancement projects and contrast project densities, goals, activities, monitoring, and cost between commercially non-navigated and navigated rivers (Non-navigated and Navigated Rivers, respectively). The total number of river enhancement projects collected during this effort was 62,108. Cost of all projects reporting spending between 1972 and 2006 was about US$1.6 billion. Water quality management was the most cited project goal within the basin. Other important goals in Navigated Rivers included in-stream habitat improvement and flow modification. Most projects collected for Non-navigated Rivers and their watersheds originated from the U.S. Department of Agriculture (USDA). The U.S. Army Corps of Engineers and the USDA were important sources for projects in Navigated Rivers. Collaborative efforts between agencies that implement projects in Non-navigated and Navigated Rivers may be needed to more effectively address river impairment. However, the current state of data sources tracking river enhancement projects deters efficient and broad-scale integration. ?? Journal compilation ?? 2007 Society for Ecological Restoration International.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
...-AA08 Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount... at Patriots Point on the Cooper River. Approximately 600 swimmers will be participating in the swim... Special Local Regulations; Lowcountry Splash Open Water Swim, Wando River and Cooper River, Mount Pleasant...
1987-11-01
Des P/o,,nes River Grant Cut -off V 1Kankrokee Cut- off Drsdn slndCountyI Line Bordwell Isi. V _ KankakeKRiver 2 */0 7r Prairle Cr 6 0 1 M1 Survey date...2 x 10 6t 81 279 River 279 13 February 1986 275 Kankak Des P/amnes RIver Gran7 Cree Cut-off DrsenIladCount y Line Bordwell Isr. 0 1 M1 ’kornkokee A...Gat Cut - off KankakeeFiver ’e Drsdn slndCounty Line Bordwell s 1 mi 2urve date FerarM1,i Kankakee River :2.4 oCr. X9Kankakcee River :14 ML 0- 5
Lucchitta, Ivo; Holm, Richard F.; Lucchitta, Baerbel K.
2013-01-01
The southwesterly course of the probably pre–early Miocene and possibly Oligocene Crooked Ridge River can be traced continuously for 48 km and discontinuously for 91 km in northern Arizona (United States). The course is visible today in inverted relief. Pebbles in the river gravel came from at least as far northeast as the San Juan Mountains (Colorado). The river valley was carved out of easily eroded Jurassic and Cretaceous rocks whose debris overloaded the river with abundant detritus, probably steepening the gradient. After the river became inactive, the regional drainage network was rearranged three times, and the nearby Four Corners region was lowered 1–2 km by erosion. The river provides constraints on the early evolution of the Colorado River and Grand Canyon. Continuation of this river into lakes in Arizona or Utah is unlikely, as is integration through Grand Canyon by lake spillover. The downstream course of the river probably was across the Kaibab arch in a valley roughly coincident with the present eastern Grand Canyon. Beyond this point, the course may have continued to the drainage basin of the Sacramento River, or to the proto–Snake River drainage. Crooked Ridge River was beheaded by the developing San Juan River, which pirated its waters and probably was tributary to a proto–Colorado River, flowing roughly along its present course west of the Monument upwarp.
Human impacts on fluvial systems - A small-catchment case study
NASA Astrophysics Data System (ADS)
Pöppl, Ronald E.; Glade, Thomas; Keiler, Margreth
2010-05-01
Regulations of nearly two-thirds of the rivers worldwide have considerable influences on fluvial systems. In Austria, nearly any river (or) catchment is affected by humans, e.g. due to changing land-use conditions and river engineering structures. Recent studies of human impacts on rivers show that morphologic channel changes play a major role regarding channelization and leveeing, land-use conversions, dams, mining, urbanization and alterations of natural habitats (ecomorphology). Thus 'natural (fluvial) systems' are scarce and humans are almost always inseparably interwoven with them playing a major role in altering them coincidentally. The main objective of this study is to identify human effects (i.e. different land use conditions and river engineering structures) on river bed sediment composition and to delineate its possible implications for limnic habitats. The study area watersheds of the 'Fugnitz' River (~ 140km²) and the 'Kaja' River (~ 20km²) are located in the Eastern part of the Bohemian Massif in Austria (Europe) and drain into the 'Thaya' River which is the border river to the Czech Republic in the north of Lower Austria. Furthermore the 'Thaya' River is eponymous for the local National Park 'Nationalpark Thayatal'. In order to survey river bed sediment composition and river engineering structures facies mapping techniques, i.e. river bed surface mapping and ecomorphological mapping have been applied. Additionally aerial photograph and airborne laserscan interpretation has been used to create land use maps. These maps have been integrated to a numerical DEM-based spatial model in order to get an impression of the variability of sediment input rates to the river system. It is hypothesized that this variability is primarily caused by different land use conditions. Finally river bed sites affected by river engineering structures have been probed and grain size distributions have been analyzed. With these data sedimentological and ecological/ecomorphological effects of various river engineering structures (i.e. dams, weirs, river bank- and river bed protection works) on river bed sediment composition and on limnic habitats are evaluated. First results reveal that 'land use' is a dominant factor concerning river bed sediment composition and limnic habitat conditions. Further outcomes will be presented on European Geosciences Union General Assembly, 2010.
Barrett, Dominic A.; Leslie, David M.
2012-01-01
Examination of age structures and sex ratios is useful in the management of northern river otters (Lontra canadensis) and other furbearers. Reintroductions and subsequent recolonizations of river otters have been well documented, but changes in demographics between expanding and established populations have not been observed. As a result of reintroduction efforts, immigration from Arkansas and northeastern Texas, and other efforts, river otters have become partially reestablished throughout eastern and central Oklahoma. Our objective was to examine age structures of river otters in Oklahoma and identify trends that relate to space (watersheds, county) and time (USDA Animal and Plant Health Inspection Service county trapping records). We predicted that river otters in western areas of the state were younger than river otters occurring farther east. From 2005–2007, we obtained salvaged river otter carcasses from federal and state agencies, and we live-captured other river otters using leg hold traps. Seventy-two river otters were sampled. Overall, sex ratios were skewed toward females (1F∶0.8M), but they did not differ among spatiotemporal scales examined. Teeth were removed from salvaged and live-captured river otters (n = 63) for aging. One-year old river otters represented the largest age class (30.2%). Proportion of juveniles (<1 y old) in Oklahoma (19.0%) was less than other states. Mean age of river otters decreased from east-to-west in the Arkansas River and its tributaries. Mean age of river otters differed between the Canadian River Watershed (0.8 y) and the Arkansas River Watershed (2.9 y) and the Canadian River Watershed and the Red River Watershed (2.4 y). Proportion of juveniles did not differ among spatiotemporal scales examined. Similar to age structure variations in other mammalian carnivores, colonizing or growing western populations of river otters in Oklahoma contained younger ages than more established eastern populations.
2003-01-01
Sockeye salmon ( Oncorhynchus nerka ) Snake River Endangered Stream Yearling + 11/2/91 Steelhead trout ( Oncorhynchus mykiss) Snake River... Oncorhynchus tshawytscha) Snake River spring/summer Threatened Stream Yearling + 4/22/92 Snake River fall Threatened Ocean Subyearling 4...Willamette River Threatened Ocean Subyearling + 3/24/99 Chum salmon ( Oncorhynchus keta) Columbia River Threatened Ocean Subyearling 3/25/99
The Wabash River is a tributary of the Ohio River. This river system consists of headwaters and small streams, medium river reaches in the upper Wabash watershed, and large river reaches in the lower Wabash watershed. A large part of the river system is situated in agricultural a...
Water quality of arctic rivers in Finnish Lapland.
Niemi, Jorma
2010-02-01
The water quality monitoring data of eight rivers situated in the Finnish Lapland above the Arctic Circle were investigated. These rivers are icebound annually for about 200 days. They belong to the International River Basin District founded according to the European Union Water Framework Directive and shared with Norway. They are part of the European river monitoring network that includes some 3,400 river sites. The water quality monitoring datasets available varied between the rivers, the longest comprising the period 1975-2003 and the shortest 1989-2003. For each river, annual medians of eight water quality variables were calculated. In addition, medians and fifth and 95th percentiles were calculated for the whole observation periods. The medians indicated good river water quality in comparison to other national or foreign rivers. However, the river water quality oscillated widely. Some rivers were in practice in pristine state, whereas some showed slight human impacts, e.g., occasional high values of hygienic indicator bacteria.
Naomi Cohn
1998-01-01
What's been done on Chicago Area Rivers is truly an inspiration. People's ability to improve these rivers shows what can be improved anywhere, even in a highly developed and complex urban setting like Chicago. A veteran staffer with the Friends of the Chicago River recently concluded: "People look at what's being accomplished on the Chicago River...
NASA Astrophysics Data System (ADS)
Yang, S. Y.; Jan, C. D.; Wang, Y. C.
2014-12-01
Active evolving rivers are some of the most dynamic and sensitive parts of landscapes. From geologic and geomorphic perspectives, a stable river channel can adjust its width, depth, and slope to prevent significant aggradation or degradation caused by external triggers, e.g., hydrologic events caused by typhoon storms. In particular, the processes of lateral riverbank erosion play a majorly important role in forming horizontal river geomorphology, dominating incised river widens and meanders. Sediment materials produced and mobilized from riverbanks can also be substantial sediment supplying into river channel networks, affecting watershed sediment yield. In Taiwan, the geological and climatic regimes usually combine to generate severely lateral erosion and/or riverbed deposition along river channels, causing the significant change in river width. In the August of 2009, Typhoon Morakot brought severe rainfall of about 2000 mmin Southern Taiwan during three days at the beginning of Aug. 5, leading to significant changes in geomorphic system. Here we characterized river width widening (including Cishan, Laonong, and Ilao Rivers) in the Kaoping River watershed after Typhoon Morakot disturbance interpreted through a power law. On the basis of a temporal pair (2008 and 2009) of Formosat-II (Formosa satellite II) images analysis, the river channels were digitalized within geographic information system (GIS), and river widths were extracted per 100 m along the rivers, then differentiating the adjustment of river width before and after Typhoon Morkot. The river width adjusted from -83 m (contracting) to 1985 m (widening), with an average of 170 m. The noncumulative frequency-magnitude distribution for river width adjustment caused by Typhoon Morakot in the study area satisfies a power-law relation with a determined coefficient (r2) of 0.95, over the range from 65 m to 2373m in the study area. Moreover, the value of the power-law exponent is equal to -2.09. This pattern suggests that river channel widening caused by large, infrequent hydrologic episodes has self-organized criticality. This study can provide useful information to river and watershed management, thereby refining the prevention and mitigation of hazard risks due to the effect of river width widening.
NASA Astrophysics Data System (ADS)
Wang, Juan; Wang, Yue; Yang, Haizhen; Lu, Zhibo; Xu, Xiaotian
2010-11-01
The River Bailianjing is an iconic landscape feature known to all residents in Pudong area and running through the Shanghai Expo 2010 Park. The river and its basin was a complex living ecosystem which supports a unique variety of flora and fauna several decades ago. However, as a result of unsuccessful pollution source control, sewage and first flow of the storm water is directly coming into the river in some catchment. The water quality of the river is seriously organically polluted now. The typical organic pollutants are COD, NH3-N, TN and TP, which cause the extinction of the water plants and aquatic. Furthermore, the artificial hard river banks isolate the river course and the land, which damaged the whole ecological system totally. The nature of the River Bailianjing and its history has resulted in many government departments and authorities and non government organizations having jurisdiction and/or an interest in the river's management. As a new tool to improve river management, the river health assessment has become the major focus of ecological and environmental science. Consequently, research on river health evaluation and its development on river management are of great theoretical and practical significance. In order to evaluate the healthy status of the River Bailianjing and prepare comprehensive scientific background data for the integrated river ecological rehabilitation planning, the health evaluation indicator system for River Bailianjing is brought forward. The indicator system has three levels: the first is target layer; the second is criteria layer, including five fields: water quality characteristics, hydrology characteristics, river morphology, biological characteristics and river scenic beauty; the third is an index layer, a total of 15 specific indicators included. Fuzzy AHP method is used to evaluate the target river's health status, and five grades are set up to describe it: healthy, sub health, marginal, unhealthy and pathological. The methodology and experience of the urban river health evaluation illustrated in the paper can be good case study materials for other cities with the similar situation.
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Shreya; Saha, Sushmita; Ghosh, Kapil; Kumar De, Sunil
2013-07-01
The main objective of the paper is to find the probable causes behind the shifting course of the Haora River, one of the major rivers of West Tripura and detachment of one of its major tributaries, the Katakhal River. From a recent satellite image, we observed that the River Haora has changed its course drastically near the confluence. Earlier, it used to take a sharp northward bend to meet with the River Titas immediately after crossing the Indo-Bangladesh border; but presently it is flowing westward to do so. Moreover, the Katakhal River, a right bank tributary of the River Haora, that used to flow through the northern side of the city of Agartala and meet with the River Haora at Bangladesh, is no longer a tributary of the Haora River. Now it is completely detached from the Haora River and meets with the River Titas separately. Spatiotemporal maps have been used to detect the changes. Field investigation, with the help of GPS, has been done in order to find the link between the Haora River and the Katakhal River within the Indian territory. Changing patterns of the Haora and Katakhal River confluences are also analysed, and earlier courses are identified. The shifting trends of both of these two rivers are found along the flanks of the interfluvial area because of microscale tectonic activity, i.e., upliftment of the interfluvial zone.
Setting Preferences of High and Low Use River Recreationists: How Different are They?
NASA Astrophysics Data System (ADS)
Kainzinger, Silvia; Arnberger, Arne; Burns, Robert C.
2016-11-01
Whitewater boaters often choose a river based on their preferences for attributes important for their trip experience. This study explored whether preferences and tradeoffs of whitewater boaters for social, resource, and managerial attributes of riverscapes differ among a high and a low use river in the United States by employing a stated choice approach. River trip scenarios were displayed using verbal descriptions and computer-generated photographs. Results indicate that use levels were more important for boaters on the low use river, whereas river difficulty and river access fee was of higher importance for the high use river boaters, who are more involved in this whitewater activity. Preferences for waiting times and trip length did not differ between the samples. Findings suggest that whitewater boaters of high and low use rivers have a different tradeoff behavior among river setting attributes, which has implications for river recreation management.
Qing, Xu-yao; Ren, Yu-fen; Lü, Zhi-qiang; Wang, Xiao-ke; Pang, Rong; Deng, Rui; Meng, Ling; Ma, Hui-ya
2015-07-01
To understand the secondary river quality in Chongqing urban area, six typical secondary rivers were chosen to investigate the pollution characteristics of total nitrogen and total phosphorus and to evaluate the water eutrophication level according to the monitoring data of water physicochemical characteristics and chlorophyll content from April 2013 to March 2014. The study results showed that: the six rivers mentioned above have been seriously polluted by TN and TP, with the monthly mean values of TN and TP far exceeding the universally accepted threshold values of water eutrophication. Water eutrophicaton appraisal result indicated that all rivers in each season were in a state of eutrophication, and the eutrophication level could be arranged in the order of Panxi River > Qingshui River > Tiaodeng River > Huaxi River > Funiu River > Chaoyang River. The seasonal changes in TN and TP of secondary rivers were significant, with high concentrations of TN and TP in spring and winter, and lower concentrations in summer and autumn. TN and TP of the rivers showed a trend of increasing from the upstream to the downstream in each season. Pollutant concentration accumulated gradually along rivers and the maximum accumulation rate reached 1. 25 mg . (L . km) -1. Therefore, further study on urban secondary river pollution characteristics is of great significance to urban water pollution control.
Liu, Dong; Pan, Delu; Bai, Yan; He, Xianqiang; Wang, Difeng; Zhang, Lin
2015-11-15
Real-time monitoring of riverine dissolved organic carbon (DOC) and the associated controlling factors is essential to coastal ocean management. This study was the first to simulate the monthly DOC concentrations at the Datong Hydrometric Station for the Changjiang River and at the Lijin Hydrometric Station for the Yellow River from 2000 to 2013 using a multilayer back-propagation neural network (MBPNN), along with basin remote-sensing products and river in situ data. The average absolute error between the modeled values and in situ values was 9.98% for the Changjiang River and 10.84% for the Yellow River. As an effect of water dilution, the variations of DOC concentrations in the two rivers were significantly negatively affected by discharge, with lower values reported during the wet season. Moreover, vegetation growth status and agricultural activities, represented by the gross primary product (GPP) and cropland area percent (CropPer) in the river basin, respectively, also significantly affected the DOC concentration in the Changjiang River, but not the Yellow River. The monthly riverine DOC flux was calculated using modeled DOC concentrations. In particular, the riverine DOC fluxes were affected by discharge, with 71.06% being reported for the Changjiang River and 90.71% for the Yellow River. Over the past decade, both DOC concentration and flux in the two rivers have not shown significant changes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zou, Junyu
2016-01-01
The carbon isotopic composition (δ13C) of dissolved and particulate inorganic carbon (DIC; PIC) was used to compare and analyze the origin, dynamics and evolution of inorganic carbon in two headwater tributaries of the Xi River, Southwest China. Carbonate dissolution and soil CO2 were regarded as the primary sources of DIC on the basis of δ13CDIC values which varied along the Nanpan and Beipan Rivers, from −13.9‰ to 8.1‰. Spatial trends in DIC differed between the two rivers (i.e., the tributaries), in part because factors controlling pCO2, which strongly affected carbonate dissolution, differed between the two river basins. Transport of soil CO2 and organic carbon through hydrologic conduits predominately controlled the levels of pCO2 in the Nanpan River. However, pCO2 along the upper reaches of the Nanpan River also was controlled by the extent of urbanization and industrialization relative to agriculture. DIC concentrations in the highly urbanized upper reaches of the Nanpan River were typical higher than in other carbonate-dominated areas of the upper Xi River. Within the Beipan River, the oxidation of organic carbon is the primary process that maintains pCO2 levels. The pCO2 within the Beipan River was more affected by sulfuric acid from coal industries, inputs from a scenic spot, and groundwater than along the Nanpan River. With regards to PIC, the contents and δ13C values in the Nanpan River were generally lower than those in the Beipan River, indicating that chemical and physical weathering contributes more marine carbonate detritus to the PIC along the Beipan River. The CO2 evasion flux from the Nanpan River was higher than that in the Beipan River, and generally higher than along the middle and lower reaches of the Xi River, demonstrating that the Nanpan River is an important net source of atmospheric CO2 in Southwest China. PMID:27513939
Macek-Rowland, Kathleen M.
2000-01-01
Annual suspended-sediment loads for water years 1954 through 1998 were estimated for the major tributaries in the Missouri River Basin between Garrison Dam and Lake Oahe in North Dakota and for the Missouri River at Garrison Dam and the Missouri River at Bismarck, N. Dak. The major tributaries are the Knife River, Turtle Creek, Painted Woods Creek, Square Butte Creek, Burnt Creek, Heart River, and Apple Creek. Sediment and streamflow data used to estimate the suspended-sediment loads were from selected U.S. Geological Survey streamflow-gaging stations located within each basin. Some of the stations had no sediment data available and limited continuous streamflow data for water years 1954 through 1998. Therefore, data from nearby streamflow-gaging stations were assumed for the calculations. The Heart River contributed the largest amount of suspended sediment to the Missouri River for 1954-98. Annual suspended-sediment loads in the Heart River near Mandan ranged from less than 1 to 40 percent of the annual suspended-sediment load in the Missouri River. The Knife River contributed the second largest amount of suspended sediment to the Missouri River. Annual suspended-sediment loads in the Knife River at Hazen ranged from less than 1 to 19 percent of the annual suspended-sediment load in the Missouri River. Apple Creek, Turtle Creek, Painted Woods Creek, Square Butte Creek, and Burnt Creek all contributed 2 percent or less of the annual suspended-sediment load in the Missouri River. The Knife River and the Heart River also had the largest average suspended-sediment yields for the seven tributaries. The yield for the Knife River was 91.1 tons per square mile, and the yield for the Heart River was 133 tons per square mile. The remaining five tributaries had yields of less than 24 tons per square mile based on total drainage area.
Angradi, Ted R.; Bolgriend, David W.; Jicha, Terri M.; Pearson, Mark S.; Taylor, Debra L.; Moffett, Mary F.; Blocksom, Karen A.; Walters, David M.; Elonen, Colleen M.; Anderson, Leroy E.; Lazorchak, James M.; Reavie, Euan D.; Kireta, Amy R.; Hill, Brian H.
2011-01-01
We assessed the North American mid-continent great rivers (Upper Mississippi, Missouri, and Ohio). We estimated the extent of each river in most- (MDC) or least-disturbed condition (LDC) based on multiple biological response indicators: fish and macroinvertebrate, trophic state based on chlorophyll a, macrophyte cover, and exposure of fish-eating wildlife to toxic contaminants in fish tissue (Hg, total chlordane, total DDT, PCBs). We estimated the extent of stressors on each river including nutrients, suspended solids, sediment toxicity, invasive species, and land use (agriculture and impervious surface). All three rivers had a greater percent of their river length in MDC than in LDC based on fish assemblages. The Upper Mississippi River had the greatest percent of river length with eutrophic status. The Ohio River had the greatest percent of river length with fish with tissue contaminant levels toxic to wildlife. Overall, condition indices based on fish assemblages were more sensitive to stress than macroinvertebrate indices. Compared to the streams in its basin, more of the Upper Mississippi and Missouri Rivers were in MDC for nutrients than the Ohio River. Invasive species (Asian carp and Dreissenid mussels) were less widespread and less abundant on the Missouri River than on the other great rivers. The Ohio River had the most urbanized floodplains (greatest percent impervious surface). The Missouri River had the most floodplain agriculture. The effect of large urban areas on river condition was apparent for several indicators. Ecosystem condition based in fish assemblages, trophic state, and fish tissue contamination was related to land use on the floodplain and at the subcatchment scale. This is the first unbiased bioassessment of the mid-continent great rivers in the United States. The indicators, condition thresholds, results, and recommendations from this program are a starting point for improved future great river assessments.
NASA Astrophysics Data System (ADS)
Paz-Alberto, Annie Melinda; Sison, Melissa Joy M.; Bulaong, Edmark Pablo; Pakaigue, Marietta A.
2016-06-01
Geophysical changes in river outlet, river upstream and coastlines near the rivers of Bucao and Santo Tomas in Zambales, Philippines were analyzed using the Google Earth's historical satellite imageries from 2004 to 2013. Data in 2015 were gathered from in situ field measurements ground validation. The study aimed to measure and determine changes in the width of river outlet, width of river bank upstream and shifting of coastline. Results revealed that there was a decrease and increase in the width size of the Bucao and Santo Tomas river outlets, respectively during the study period. Geophysical changes occurred in the two rivers due to the continuous supply of lahar as an after effect of the Mount Pinatubo eruption in 1991. Coastline positions near the two rivers also changed. The highest rate of erosion along the coastal area was prevalently observed near the river outlet of both rivers. Moreover, accretion was observed in the coastline of Santo Tomas and erosion phenomenon was observed in the North and South coastlines of Bucao River. The shifting was caused by natural processes such as erosion, sedimentation and natural calamities as well as anthropogenic processes such as reclamation/quarrying. Occurrence of erosion and sedimentation played active roles in the changes of coastlines during the study period. Furthermore, the upstream of the Bucao river changed physically due to deposits of lahar present in the upstream which are being discharged directly and continuously going down to the river. Generally, the width of the Bucao River upstream decreased its size because of the accumulated sediment in the riverbank. On the other hand, the observed erosion is caused by high velocity of river during heavy rains and typhoons. The width of the Santo Tomas river bank upstream did not change due to the construction of concrete dikes which prevent the lahar-filled river from breaching the embankment and flooding the agricultural, residential and commercial areas near the river.
Ebbert, James C.
2003-01-01
The U.S. Geological Survey, Washington State Department of Ecology, and Puyallup Tribe of Indians monitored water temperature, specific conductance, pH, and dissolved-oxygen concentrations in the White River at river miles 4.9 and 1.8 from August until mid-October 2002. Water diverted from the White River upstream from the monitoring sites into Lake Tapps is returned to the river at river mile 3.6 between the two sites. The same characteristics were measured in a cross section of the Puyallup River estuary at river mile 1.5 during high and low tides in September 2002. In late August, maximum daily water temperatures in the White River of 21.1°C (degrees Celsius) at river mile 4.9 and 19.6°C at river mile 1.8 exceeded the water-quality standard of 18°C at both monitoring sites. In mid-September, maximum daily water temperatures at river mile 4.9 exceeded the standard on 5 days. From August 2-25, water temperatures at both monitoring sites were similar and little or no water was discharged from Lake Tapps to the White River. Increases in water temperature at river mile 1.8 in late September and early October were caused by the mixing of warmer water discharged from Lake Tapps with cooler water in the White River.Specific conductance in the White River usually was lower at river mile 1.8 than at river mile 4.9 because of mixing with water from Lake Tapps, which has a lower specific conductance. Maximum values of pH in the White River at river mile 4.9 often exceeded the upper limit of the water-quality standard, 8.5 pH units, from early September until mid-October, when turbidity decreased. The pH standard was not exceeded at river mile 1.8. Dissolved-oxygen concentrations in the White River were often lower at river mile 1.8 than at river mile 4.9 because of mixing with water discharged from Lake Tapps, which has lower dissolved-oxygen concentrations. The lowest concentration of dissolved oxygen observed was 7.9 mg/L (milligrams per liter) at river mile 1.8. The lower limit allowed by the water-quality standard is 8 mg/L. Concentrations of dissolved oxygen measured in a cross section of the Puyallup River estuary at high tide on September 12, 2002, ranged from 9.9 to 10.2 mg/L in fresh water at the surface and from 8.1 to 8.4 mg/L in salt water near the riverbed. These values were within limits set by Washington State water-quality standards for dissolved oxygen of 8 mg/L in fresh water and 6 mg/L in marine water.
49 CFR Appendix B to Part 194 - High Volume Areas
Code of Federal Regulations, 2010 CFR
2010-10-01
.... Mississippi River Woodriver, IL. Mississippi River St. James, LA. Mississippi River New Roads, LA. Mississippi River Ball Club, MN. Mississippi River Mayersville, MS. Mississippi River New Roads, LA. Mississippi... Arthur Kill Channel, NY Cook Inlet, AK Freeport, TX Los Angeles/Long Beach Harbor, CA Port Lavaca, TX San...
Code of Federal Regulations, 2010 CFR
2010-07-01
...) Mississippi River between its sources and mile 235, Above Head of Passes; (ii) Tributaries emptying into the Mississippi River above mile 235; (iii) Atchafalaya River above its junction with the Plaquemine-Morgan City alternate waterway and the Red River; and (iv) The Tennessee River from its confluence with the Ohio River...
36 CFR 292.62 - Valid existing rights.
Code of Federal Regulations, 2010 CFR
2010-07-01
... RECREATION AREAS Smith River National Recreation Area § 292.62 Valid existing rights. (a) Definition. For the... “wild” segments of the Wild and Scenic Smith River, Middle Fork Smith River, North Fork Smith River, Siskiyou Fork Smith River, South Fork Smith River, and their designated tributaries, except Peridotite...
78 FR 48813 - Final Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... Unincorporated Areas of Green River). the Green River to Butler County. approximately 0.6 mile upstream of the... with +428 Unincorporated Areas of Green River). the Green River to Butler County. approximately 0.5... with +433 Unincorporated Areas of Green River). the Green River to Butler County. approximately 1,202...
33 CFR 165.150 - New Haven Harbor, Quinnipiac River, Mill River.
Code of Federal Regulations, 2010 CFR
2010-07-01
... River, Mill River. 165.150 Section 165.150 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... New Haven Harbor, Quinnipiac River, Mill River. (a) The following is a regulated navigation area: The... 303°T to point D at the west bank of the mouth of the Mill River 41°18′05″ N, 72°54′23″ W thence south...
Meng, Qingpeng; Zhang, Jing; Zhang, Zhaoyu; Wu, Tairan
2016-04-01
Dissolved trace elements and heavy metals in the Dan River drainage basin, which is the drinking water source area of South-to-North Water Transfer Project (China), affect large numbers of people and should therefore be carefully monitored. To investigate the distribution, sources, and quality of river water, this study integrating catchment geology and multivariate statistical techniques was carried out in the Dan River drainage from 99 river water samples collected in 2013. The distribution of trace metal concentrations in the Dan River drainage was similar to that in the Danjiangkou Reservoir, indicating that the reservoir was significantly affected by the Dan River drainage. Moreover, our results suggested that As, Sb, Cd, Mn, and Ni were the major pollutants. We revealed extremely high concentrations of As and Sb in the Laoguan River, Cd in the Qingyou River, Mn, Ni, and Cd in the Yinhua River, As and Sb in the Laojun River, and Sb in the Dan River. According to the water quality index, water in the Dan River drainage was suitable for drinking; however, an exposure risk assessment model suggests that As and Sb in the Laojun and Laoguan rivers could pose a high risk to humans in terms of adverse health and potential non-carcinogenic effects.
Jaeger, Kristin L.; Curran, Christopher A.; Anderson, Scott W.; Morris, Scott T.; Moran, Patrick W.; Reams, Katherine A.
2017-11-01
The Sauk River is a federally designated Wild and Scenic River that drains a relatively undisturbed landscape along the western slope of the North Cascade Mountain Range, Washington, which includes the glaciated volcano, Glacier Peak. Naturally high sediment loads characteristic of basins draining volcanoes like Glacier Peak make the Sauk River a dominant contributor of sediment to the downstream main stem river, the Skagit River. Additionally, the Sauk River serves as important spawning and rearing habitat for several salmonid species in the greater Skagit River system. Because of the importance of sediment to morphology, flow-conveyance, and ecosystem condition, there is interest in understanding the magnitude and timing of suspended sediment and turbidity from the Sauk River system and its principal tributaries, the White Chuck and Suiattle Rivers, to the Skagit River.Suspended-sediment measurements, turbidity data, and water temperature data were collected at two U.S. Geological Survey streamgages in the upper and middle reaches of the Sauk River over a 4-year period extending from October 2011 to September 2015, and at a downstream location in the lower river for a 5-year period extending from October 2011 to September 2016. Over the collective 5-year study period, mean annual suspended-sediment loads at the three streamgages on the upper, middle, and lower Sauk River streamgages were 94,200 metric tons (t), 203,000 t, and 940,000 t streamgages, respectively. Fine (smaller than 0.0625 millimeter) total suspended-sediment load averaged 49 percent at the upper Sauk River streamgage, 42 percent at the middle Sauk River streamgage, and 34 percent at the lower Sauk River streamgage.
Pan, Xiao-xue; Ma, Ying-qun; Qin, Yan-wen; Zou, Hua
2015-08-01
Overall 20 surface water samples were collected from the Yangtze River, the Wangyu River and the Gonghu Bay (Lake Taihu) to clarify the pollution characteristics of nitrogen and phosphorus during 2 sample stages of "Water Transfers on Lake Taihu from the Yangtze River" in August and December of 2013 respectively. The results showed that the mass concentrations of NO2- -N, NO3- -N, NH4+ -N and TN in the Gonghu Bay were lower than those of the Yangtze River and Wangyu River during the 2 water transfer processes. However, there was higher level of DON content in the Gonghu Bay than that of the Yangtze River and Wangyu River. The percentages of various N species showed that NO3- -N was the major N species in the Yangtze River and Wangyu River during the 2 water transfer processes. TP contents in samples collected from the Yangtze River displayed a constant trend compared with the Wangyu River. However, the percentages of various P species were different with each other during the 2 water transfer processes. Mass concentrations of DON and TP in surface water in August were higher than those in December and the contents of NO3- -N and TDP were lower in August than those in December. In general, NO3- -N and TPP were the main N and P species in Wangyu River from the Yangtze River. NO3- -N, PO4(3-) -P and TPP were the main N and P species in Gonghu Bay from Wangyu River during the 2 water transfer processes.
River mouth morphodynamics - Examples from small, mountainous rivers (Invited)
NASA Astrophysics Data System (ADS)
Warrick, J. A.
2013-12-01
Small, high-sediment yield rivers are known to discharge massive amounts of sediment to the world's oceans. Because of these high rates of sediment discharge, many of these small rivers provide important sources of sediment to littoral cells, such as those along the west coasts of North and South America. Sediment discharge from these small watersheds is commonly ephemeral and dominated by infrequent high flow. Thus, the morphodynamic states of these river mouths will vary with time, often being 'wave dominated' for the majority of the year and then changing to 'river dominated' during river sediment discharge events. Here I will provide a summary of recent observations of the morphodynamics of river mouths along California that reveal that sediment dispersal and deposition patterns vary owing to the sediment transport processes at the river mouths, which are influenced by the buoyancy of the river discharge. During low rates of sediment discharge and low river sediment concentrations, sediment dispersal will occur in hypopycnal (positively buoyant) plumes and sand deposition will be close to the river mouth. These conditions commonly result in transfer of sand from the river delta to the littoral cell during the first 1-2 years following the river discharge event. During high rates of sediment discharge and high river sediment concentrations, river discharge may form hyperpycnal (negatively buoyant) plumes and disperse sand to deeper portions of the continental shelf, where transfer back to the littoral cell may take decades or may not occur. High-resolution bathymetry from southern California provides several examples of sand dispersal by hyperpycnal plumes to regions of the inner and middle continental shelf. Thus, sediment dispersal from river mouths influences coastal morphodynamics, morphology, and the rates and timing of sediment supply to littoral cells.
Accumulated state assessment of the Peace-Athabasca-Slave River system.
Dubé, Monique G; Wilson, Julie E
2013-07-01
Effects-based analysis is a fundamental component of watershed cumulative effects assessment. This study conducted an effects-based analysis for the Peace-Athabasca-Slave River System, part of the massive Mackenzie River Basin, encompassing 20% of Canada's total land mass and influenced by cumulative contributions of the W.A.C. Bennett Dam (Peace River) and industrial activities including oil sands mining (Athabasca River). This study assessed seasonal changes in 1) Peace River water quality and quantity before and after dam development, 2) Athabasca River water quality and quantity before and after oil sands developments, 3) tributary inputs from the Peace and Athabasca Rivers to the Slave River, and 4) upstream to downstream differences in water quality in the Slave River. In addition, seasonal benchmarks were calculated for each river based on pre-perturbation post-perturbation data for future cumulative effects assessments. Winter discharge (January-March) from the Peace and Slave Rivers was significantly higher than before dam construction (pre-1967) (p < 0.05), whereas summer peak flows (May-July) were significantly lower than before the dam showing that regulation has significantly altered seasonal flow regimes. During spring freshet and summer high flows, the Peace River strongly influenced the quality of the Slave River, as there were no significant differences in loadings of dissolved N, total P (TP), total organic C (TOC), total As, total Mn, total V, and turbidity and specific conductance between these rivers. In the Athabasca River, TP and specific conductance concentrations increased significantly since before oil sands developments (1967-2010), whereas dissolved N and sulfate have increased after the oil sands developments (1977-2010). Recently, the Athabasca River had significantly higher concentrations of dissolved N, TP, TOC, dissolved sulfate, specific conductance, and total Mn than either the Slave or the Peace Rivers during the winter months. The transboundary nature of the Peace, Athabasca, and Slave River basins has resulted in fragmented monitoring and reporting of the state of these rivers, and a more consistent monitoring framework is recommended. Copyright © 2012 SETAC.
NASA Astrophysics Data System (ADS)
Xu, Y. J.
2016-02-01
Dujiangyan, also known as the Dujiangyan Project, is a hydraulic engineering complex built more than 2260 years ago on the Mingjiang River near Chengdu in China's Sichuan Province. The complex splits the river into two channels, a so-called "inner river" (Leijiang) and an "outer river" (Waijiang) that carry variable water volumes and sediment loads under different river flow conditions. The inner river and its numerous distributary canals are primarily man-made for irrigation over the past 2000 years, while the outer river is the natural channel and flows southward before entering into the Yangtze River. Under normal flow, 60% of the Mingjiang River goes into the inner river for irrigating nearly 1 million hectares of agricultural land on the Chengdu plain. During floods, however, less than 40% of the Mingjiang River flows into the inner river. Under both flow conditions, about 80% of the riverine sediments is carried by the outer river and continues downstream. This hydrology is achieved through a weir work complex that comprises three major components: a V-shaped bypass dike in the center of the Mingjiang River (the Yuzui Bypass Dike, see photo below), a sediment diversion canal in the inner river below the bypass dike (the Feishayan Floodgate), and a flow control in the inner river below the sediment diversion canal (the Baopingkou Diversion Passage). Together with ancillary embankments, these structures have not only ensured a regular supply of silt-reduced water to the fertile Chengdu plain, but have provided great benefits in flood control, sediment transport, and water resources regulation over the past two thousand years. The design of this ancient hydraulic complex ingeniously conforms to the natural environment while incorporating many sophisticated techniques, reflecting the concept that humankind is an integral part of nature. As we are urgently seeking solutions today to save the sinking Mississippi River Delta, examination of the ancient engineering marvel may offer insights into sustainable practices in river engineering of the lower Mississippi under climate change and sea level rise. This paper will introduce the Dujiangyan Project and will discuss possibilities of applying Dujiangyan's fundamental concept for sediment diversions in the Lower Mississippi River.
Owen-Joyce, Sandra J.; Wilson, Richard P.; Carpenter, Michael C.; Fink, James B.
2000-01-01
Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. The accounting-surface method developed for the area upstream from Laguna Dam was modified for use downstream from Laguna Dam to identify wells outside the flood plain of the lower Colorado River that yield water that will be replaced by water from the river. Use of the same method provides a uniform criterion of identification for all users pumping water from wells by determining if the static water-level elevation in the well is above or below the elevation of the accounting surface. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the Colorado River. Wells that have a static water-level elevation above the accounting surface are presumed to yield river water stored above river level. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The subsurface limit of the river aquifer is the nearly impermeable bedrock of the bottom and sides of the basins that underlie the Yuma area and adjacent valleys. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain of the Colorado River that would exist if the river were the only source of water to the river aquifer. The accounting surface was generated by using water-surface profiles of the Colorado River from Laguna Dam to about the downstream limit of perennial flow at Morelos Dam. The accounting surface extends outward from the edges of the flood plain to the subsurface boundary of the river aquifer. Maps at a scale of 1:100,000 show the extent of the river aquifer and elevation of the accounting surface downstream from Laguna Dam in Arizona and California.
Pawcatuck and Woonasquatucket River Basins and Narragansett Bay Local Drainage Area. Main Report.
1981-10-01
building and housing codes are recommended. Flood warning systems, urban renewal, tax incentives, and public open space acquisition will also help...RIVER GROUP WATERSHEDLD LOCAL DRAINAGE PD, WOONASQUATUCKET - MOSI4ASSUCK - PROVIDENCE RIVERS SUB-BASIN PD2 BLACKSTONE RIVER SUB-BASIN orPD 3 TENMiLE...of the Taunton River Basin in Massachusetts, 1979 PNB Water Supply Study, January 1979 Big River Reservoir Project, July 1981 Blackstone River
This curriculum was developed as a significant component of the project, Always a River: The Ohio River and the American Experience, a six-state collaboration devoted to exploring the historical and cultural development of the Ohio River. The Always a River project is being joint...
78 FR 49918 - Drawbridge Operation Regulation; Taunton River, Fall River and Somerset, MA
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2013-0291] RIN 1625-AA09 Drawbridge Operation Regulation; Taunton River, Fall River and Somerset, MA AGENCY: Coast Guard... Operation Regulation: Taunton River, Fall River and Somerset, MA'' in the Federal Register (78 FR 31457). We...
33 CFR 117.353 - Atlantic Intracoastal Waterway, Savannah River to St. Marys River.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Atlantic Intracoastal Waterway, Savannah River to St. Marys River. 117.353 Section 117.353 Navigation and Navigable Waters COAST GUARD....353 Atlantic Intracoastal Waterway, Savannah River to St. Marys River. (a) General. Public vessels of...
75 FR 51945 - Safety Zone; Potomac River, St. Mary's River, St. Inigoes, MD
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-24
...-AA00 Safety Zone; Potomac River, St. Mary's River, St. Inigoes, MD AGENCY: Coast Guard, DHS. ACTION... of the St. Mary's River, a tributary of the Potomac River. This action is necessary to provide for.... Navy helicopter located near St. Inigoes, Maryland. This safety zone is intended to protect the...
33 CFR 117.911 - Atlantic Intracoastal Waterway, Little River to Savannah River.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Little River to Savannah River. 117.911 Section 117.911 Navigation and Navigable Waters COAST GUARD... § 117.911 Atlantic Intracoastal Waterway, Little River to Savannah River. (a) General. Public vessels of.... 16, 1985] Editorial Note: For Federal Register citations affecting § 117.911, see the List of CFR...
33 CFR 117.911 - Atlantic Intracoastal Waterway, Little River to Savannah River.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Little River to Savannah River. 117.911 Section 117.911 Navigation and Navigable Waters COAST GUARD... § 117.911 Atlantic Intracoastal Waterway, Little River to Savannah River. (a) General. Public vessels of.... 16, 1985] Editorial Note: For Federal Register citations affecting § 117.911, see the List of CFR...
33 CFR 117.911 - Atlantic Intracoastal Waterway, Little River to Savannah River.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Little River to Savannah River. 117.911 Section 117.911 Navigation and Navigable Waters COAST GUARD... § 117.911 Atlantic Intracoastal Waterway, Little River to Savannah River. (a) General. Public vessels of.... 16, 1985] Editorial Note: For Federal Register citations affecting § 117.911, see the List of CFR...
33 CFR 117.911 - Atlantic Intracoastal Waterway, Little River to Savannah River.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Little River to Savannah River. 117.911 Section 117.911 Navigation and Navigable Waters COAST GUARD... § 117.911 Atlantic Intracoastal Waterway, Little River to Savannah River. (a) General. Public vessels of.... 16, 1985] Editorial Note: For Federal Register citations affecting § 117.911, see the List of CFR...
33 CFR 117.911 - Atlantic Intracoastal Waterway, Little River to Savannah River.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., Little River to Savannah River. 117.911 Section 117.911 Navigation and Navigable Waters COAST GUARD... § 117.911 Atlantic Intracoastal Waterway, Little River to Savannah River. (a) General. Public vessels of... Register citations affecting § 117.911, see the List of CFR Sections Affected, which appears in the Finding...
33 CFR 125.06 - Western rivers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Western rivers. 125.06 Section... VESSELS § 125.06 Western rivers. The term western rivers as used in the regulations in this subchapter shall include only the Red River of the North, the Mississippi River and its tributaries above the Huey...
4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...
4. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROPOSED SECTION OF DIVERSION DAM ACROSS SNAKE RIVER, SHEET 1 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID
78 FR 53666 - Drawbridge Operation Regulation; Wolf River, Gills Landing and Winneconne, WI
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-30
... the Upper Fox River. The Wolf River has two drawbridges over the waterway. The Winneconne Highway... the Fox River that connect directly with the Wolf River. This rule will establish consistent operating... by WDOT and Fox River Valley Navigation Authority for the past 10 to 15 years. These agencies, along...
Altenritter, Matthew E.; Zydlewski, Gayle B.; Kinnison, Michael T.; Zydlewski, Joseph D.; Wippelhauser, Gail S.
2018-01-01
Movement of shortnose sturgeon (Acipenser brevirostrum) among major river systems in the Gulf of Maine is common and has implications for the management of this endangered species. Directed movements of 61 telemetered individuals monitored between 2010 and 2013 were associated with the river of tagging and individual characteristics. While a small proportion of fish tagged in the Kennebec River moved to the Penobscot River (5%), a much higher proportion of fish tagged in the Penobscot River moved to the Kennebec River (66%), during probable spawning windows. This suggests that Penobscot River fish derive from a migratory contingent within a larger Kennebec River population. Despite this connectivity, fish captured in the Penobscot River were larger (∼100 mm fork length) and had higher condition factors (median Fulton’s K: 0.76) than those captured in the Kennebec River (median Fulton’s K: 0.61). Increased abundance and resource limitation in the Kennebec River may be constraining growth and promoting migration to the Penobscot River by individuals with sufficient initial size and condition. Migrants could experience an adaptive reproductive advantage relative to nonmigratory individuals.
RIVER LEVEL ESTIMATION USING ARTIFICIAL NEURAL NETWORK FOR URBAN SMALL RIVER IN TIDAL REACH
NASA Astrophysics Data System (ADS)
Takasaki, Tadakatsu; Kawamura, Akira; Amaguchi, Hideo
Prediction of water level in small rivers is great interest for flood control in an urban area located in the river mouth. The tidal river water level is affected by not only flood discharge but also tide, atmospheric pressure, wind direction and speed. We propose a method of estimating river water level considering these factors using an artificial neural network model for the Kanda River located in the center of Tokyo. The effects by those factors are quantitatively investigated. As for the effects by the atmospheric pressure, river water level rises about 7cm per 5hPa increase of the pressure regardless of river discharge under the conditions of 1m/s wind speed and north wind direction. The accurate rating curve for the tidal river is finally obtained.
Dispersal scaling from the world's rivers
Warrick, J.A.; Fong, D.A.
2004-01-01
Although rivers provide important biogeochemical inputs to oceans, there are currently no descriptive or predictive relationships of the spatial scales of these river influences. Our combined satellite, laboratory, field and modeling results show that the coastal dispersal areas of small, mountainous rivers exhibit remarkable self-similar scaling relationships over many orders of magnitude. River plume areas scale with source drainage area to a power significantly less than one (average = 0.65), and this power relationship decreases significantly with distance offshore of the river mouth. Observations of plumes from large rivers reveal that this scaling continues over six orders of magnitude of river drainage basin areas. This suggests that the cumulative area of coastal influence for many of the smallest rivers of the world is greater than that of single rivers of equal watershed size. Copyright 2004 by the American Geophysical Union.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochnauer, Tim; Claire, Christopher
2009-05-07
Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based onmore » potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.« less
NASA Astrophysics Data System (ADS)
Wei, R.; Frasson, R. P. M.; Williams, B. A.; Rodriguez, E.; Pavelsky, T.; Altenau, E. H.; Durand, M. T.
2017-12-01
The upcoming Surface Water and Ocean Topography (SWOT) mission will measure river widths and water surface elevations of rivers wider than 100 m. In preparation for the SWOT mission, the Jet Propulsion Laboratory built the SWOT hydrology simulator with the intent of generating synthetic SWOT overpasses over rivers with realistic error characteristics. These synthetic overpasses can be used to guide the design of processing methods and data products, as well as develop data assimilation techniques that will incorporate the future SWOT data into hydraulic and hydrologic models as soon as the satellite becomes operational. SWOT simulator uses as inputs water depth, river bathymetry, and the surrounding terrain digital elevation model to create simulated interferograms of the study area. Next, the simulator emulates the anticipated processing of SWOT data by attempting to geolocate and classify the radar returns. The resulting cloud of points include information on water surface elevation, pixel area, and surface classification (land vs water). Finally, we process the pixel clouds by grouping pixels into equally spaced nodes located at the river centerline. This study applies the SWOT simulator to six different rivers: Sacramento River, Tanana River, Saint Lawrence River, Platte River, Po River, and Amazon River. This collection of rivers covers a range of size, slope, and planform complexity with the intent of evaluating the impact of river width, slope, planform complexity, and surrounding topography on the anticipated SWOT height, width, and slope error characteristics.
Summary of Bed-Sediment Measurements Along the Platte River, Nebraska, 1931-2009
Kinzel, P.J.; Runge, J.T.
2010-01-01
Rivers are conduits for water and sediment supplied from upstream sources. The sizes of the sediments that a river bed consists of typically decrease in a downstream direction because of natural sorting. However, other factors can affect the caliber of bed sediment including changes in upstream water-resource development, land use, and climate that alter the watershed yield of water or sediment. Bed sediments provide both a geologic and stratigraphic record of past fluvial processes and quantification of current sediment transport relations. The objective of this fact sheet is to describe and compare longitudinal measurements of bed-sediment sizes made along the Platte River, Nebraska from 1931 to 2009. The Platte River begins at the junction of the North Platte and South Platte Rivers near North Platte, Nebr. and flows east for approximately 500 kilometers before joining the Missouri River at Plattsmouth, Nebr. The confluence of the Loup River with the Platte River serves to divide the middle (or central) Platte River (the Platte River upstream from the confluence with the Loup River) and lower Platte River (the Platte River downstream from the confluence with Loup River). The Platte River provides water for a variety of needs including: irrigation, infiltration to public water-supply wells, power generation, recreation, and wildlife habitat. The Platte River Basin includes habitat for four federally listed species including the whooping crane (Grus americana), interior least tern (Sterna antillarum), piping plover (Charadrius melodus), and pallid sturgeon (Scaphirhynchus albus). A habitat recovery program for the federally listed species in the Platte River was initiated in 2007. One strategy identified by the recovery program to manage and enhance habitat is the manipulation of streamflow. Understanding the longitudinal and temporal changes in the size gradation of the bed sediment will help to explain the effects of past flow regimes and anticipated manipulation of streamflows on the channel morphology and habitat.
Coherence between coastal and river flooding along the California coast
Odigie, Kingsley O.; Warrick, Jonathan
2018-01-01
Water levels around river mouths are intrinsically determined by sea level and river discharge. If storm-associated coastal water-level anomalies coincide with extreme river discharge, landscapes near river mouths will be flooded by the hydrodynamic interactions of these two water masses. Unfortunately, the temporal relationships between ocean and river water masses are not well understood. The coherence between extreme river discharge and coastal water levels at six California river mouths across different climatic and geographic regions was examined. Data from river gauges, wave buoys, and tide gauges from 2007 to 2014 were integrated to investigate the relationships between extreme river discharge and coastal water levels near the mouths of the Eel, Russian, San Lorenzo, Ventura, Arroyo Trabuco, and San Diego rivers. Results indicate that mean and extreme coastal water levels during extreme river discharge are significantly higher compared with background conditions. Elevated coastal water levels result from the combination of nontidal residuals (NTRs) and wave setups. Mean and extreme (>99th percentile of observations) NTRs are 3–20 cm and ∼30 cm higher during extreme river discharge conditions, respectively. Mean and extreme wave setups are up to 40 cm and ∼20–90 cm higher during extreme river discharge than typical conditions, respectively. These water-level anomalies were generally greatest for the northern rivers and least for the southern rivers. Time-series comparisons suggest that increases in NTRs are largely coherent with extreme river discharge, owing to the low atmospheric pressure systems associated with storms. The potential flooding risks of the concurrent timing of these water masses are tempered by the mixed, semidiurnal tides of the region that have amplitudes of 2–2.5 m. In summary, flooding hazard assessments for floodplains near California river mouths for current or future conditions with sea-level rise should include the temporal coherence of fluvial and oceanic water levels.
Setiawan, B B
2002-01-01
The settlement along the bank of the Code River in Yogyakarta, Indonesia provides housing for a large mass of the city's poor. Its strategic location and the fact that most urban poor do not have access to land, attracts people to "illegally" settle along the bank of the river. This brings negative consequences for the environment, particularly the increasing domestic waste along the river and the annual flooding in the rainy season. While the public controversies regarding the existence of the settlement along the Code River were still not resolved, at the end of the 1980s, a group of architects, academics and community members proposed the idea of constructing a dike along the River as part of a broader settlement improvement program. From 1991 to 1998, thousands of local people mobilized their resources and were able to construct 6,000 metres of riverside dike along the Code River. The construction of the riverside dike along the River has become an important "stimulant" that generated not only settlement improvement, but also a better treatment of river water. As all housing units located along the River are now facing the River, the River itself is considered the "front-yard". Before the dike was constructed, the inhabitants used to treat the River as the "backyard" and therefore just throw waste into the River. They now really want to have a cleaner river, since the River is an important part of their settlement. The settlement along the Code River presents a complex range of persistent problems with informal settlements in Indonesia; such problems are related to the issues of how to provide more affordable and adequate housing for the poor, while at the same time, to improve the water quality of the river. The project represents a good case, which shows that through a mutual partnership among stakeholders, it is possible to integrate environmental goals into urban redevelopment schemes.
The Role of Forests in Regulating the River Flow Regime of Large Basins of the World
NASA Astrophysics Data System (ADS)
Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.
2016-12-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.
The Role of Forests in Regulating the River Flow Regime of Large Basins of the World
NASA Astrophysics Data System (ADS)
Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.
2017-12-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.
NASA Astrophysics Data System (ADS)
Lakshmi, V.; Sen, I. S.; Mishra, G.
2017-12-01
There has been much discussion amongst biologists, ecologists, chemists, geologists, environmental firms, and science policy makers about the impact of human activities on river health. As a result, multiple river restoration projects are on going on many large river basins around the world. In the Indian subcontinent, the Ganges River is the focal point of all restoration actions as it provides food and water security to half a billion people. Serious concerns have been raised about the quality of Ganga water as toxic chemicals and many more enters the river system through point-sources such as direct wastewater discharge to rivers, or non-point-sources. Point source pollution can be easily identified and remedial actions can be taken; however, non-point pollution sources are harder to quantify and mitigate. A large non-point pollution source in the Indo-Gangetic floodplain is the network of small floodplain rivers. However, these rivers are rarely studied since they are small in catchment area ( 1000-10,000 km2) and discharge (<100 m3/s). As a result, the impact of these small floodplain rivers on the dissolved chemical load of large river systems is not constrained. To fill this knowledge gap we have monitored the Pandu River for one year between February 2015 and April 2016. Pandu river is 242 km long and is a right bank tributary of Ganges with a total catchment area of 1495 km2. Water samples were collected every month for dissolved major and trace elements. Here we show that the concentration of heavy metals in river Pandu is in higher range as compared to the world river average, and all the dissolved elements shows a large spatial-temporal variation. We show that the Pandu river exports 192170, 168517, 57802, 32769, 29663, 1043, 279, 241, 225, 162, 97, 28, 25, 22, 20, 8, 4 Kg/yr of Ca, Na, Mg, K, Si, Sr, Zn, B, Ba, Mn, Al, Li, Rb, Mo, U, Cu, and Sb, respectively, to the Ganga river, and the exported chemical flux effects the water chemistry of the Ganga river downstream of its confluence point. We further speculate that small floodplain rivers is an important source that contributes to the dissolved chemical budget of large river systems, and they must be better monitored to address future challenges in river basin management.
Hughes, Curt A.
2003-01-01
Instantaneous arsenic loads calculated for August 1999 were similar to mean monthly loads determined in August 1989 at two intensive fixed sites located on the Yakima main stem. In August 1999, arsenic loads increased twofold between the Yakima River at river mile 72 above Satus and the Yakima River at Kiona at river mile 29.9. The dissolved arsenic loads for the Yakima River at Euclid Bridge at river mile 55 near Grandview and Yakima River at Kiona were within 13 percent of the August 1989 levels.
A drifter for measuring water turbidity in rivers and coastal oceans.
Marchant, Ross; Reading, Dean; Ridd, James; Campbell, Sean; Ridd, Peter
2015-02-15
A disposable instrument for measuring water turbidity in rivers and coastal oceans is described. It transmits turbidity measurements and position data via a satellite uplink to a processing server. The primary purpose of the instrument is to help document changes in sediment runoff from river catchments in North Queensland, Australia. The 'river drifter' is released into a flooded river and drifts downstream to the ocean, measuring turbidity at regular intervals. Deployment in the Herbert River showed a downstream increase in turbidity, and thus suspended sediment concentration, while for the Johnstone River there was a rapid reduction in turbidity where the river entered the sea. Potential stranding along river banks is a limitation of the instrument. However, it has proved possible for drifters to routinely collect data along 80 km of the Herbert River. One drifter deployed in the Fly River, Papua New Guinea, travelled almost 200 km before stranding. Copyright © 2014 Elsevier Ltd. All rights reserved.
Toohey, Ryan C; Herman-Mercer, Nicole M.; Schuster, Paul F.; Mutter, Edda A.; Koch, Joshua C.
2016-01-01
The Yukon River Basin, underlain by discontinuous permafrost, has experienced a warming climate over the last century that has altered air temperature, precipitation, and permafrost. We investigated a water chemistry database from 1982 to 2014 for the Yukon River and its major tributary, the Tanana River. Significant increases of Ca, Mg, and Na annual flux were found in both rivers. Additionally, SO4 and P annual flux increased in the Yukon River. No annual trends were observed for dissolved organic carbon (DOC) from 2001 to 2014. In the Yukon River, Mg and SO4 flux increased throughout the year, while some of the most positive trends for Ca, Mg, Na, SO4, and P flux occurred during the fall and winter months. Both rivers exhibited positive monthly DOC flux trends for summer (Yukon River) and winter (Tanana River). These trends suggest increased active layer expansion, weathering, and sulfide oxidation due to permafrost degradation throughout the Yukon River Basin.
Galloway, Joel M.; Blanchard, Robert A.; Ellison, Christopher A.
2011-01-01
Most of the bedload samples had particle sizes in the 0.5 to 1 millimeter and 0.25 to 0.5 millimeter ranges from the Maple River, Wild Rice River, Rush River, Buffalo River, and Red River sites. The Rush and Lower Branch Rush Rivers also had a greater portion of larger particle sizes in the 1 to 2 millimeter range. The Sheyenne River sites had a greater portion of smaller particle sizes in the bedload in the 0.125 to 0.5 millimeter range compared to the other sites. The bed material in samples collected during the 2011 spring high-flow event demonstrated a wider distribution of particle sizes than were observed in the bedload; the coarsest material was found at the Red River near Christine and the Lower Branch Rush River and the finest material at the Sheyenne River sites.
Regional distribution of mercury in sediments of the main rivers of French Guiana (Amazonian basin).
Laperche, Valérie; Hellal, Jennifer; Maury-Brachet, Régine; Joseph, Bernard; Laporte, Pierre; Breeze, Dominique; Blanchard, François
2014-01-01
Use of mercury (Hg) for gold-mining in French Guiana (up until 2006) as well as the presence of naturally high background levels in soils, has led to locally high concentrations in soils and sediments. The present study maps the levels of Hg concentrations in river sediments from five main rivers of French Guiana (Approuague River, Comté River, Mana River, Maroni River and Oyapock River) and their tributaries, covering more than 5 450 km of river with 1 211 sampling points. The maximum geological background Hg concentration, estimated from 241 non-gold-mined streams across French Guiana was 150 ng g(-1). Significant differences were measured between the five main rivers as well as between all gold-mining and pristine areas, giving representative data of the Hg increase due to past gold-mining activities. These results give a unique large scale vision of Hg contamination in river sediments of French Guiana and provide fundamental data on Hg distribution in pristine and gold-mined areas.
Luo, Xiao-Jun; Chen, She-Jun; Mai, Bi-Xian; Zeng, Yong-Ping; Sheng, Guo-Ying; Fu, Jia-Mo
2005-07-01
Polycyclic aromatic hydrocarbons (PAHs) are measured in surface sediments from rivers and estuary of Pearl River Delta and its nearby South China Sea. Total PAH concentration varied from 255.9 - 16 670.3 ng/g and a moderate to low level compare to relevant areas worldwide. The order of PAHs concentration in sediments was: rivers of Pearl River Delta > estuary > South China Sea, and the most significant PAH contamination was at Guangzhou channel of Zhujiang river. A decrease trend for PAHs concentration with distance from estuary to open sea can be sees in South China Sea. Coal and biomass combustion is the major source of PAHs in nearshore of South China Sea, and petroleum combustion is the main source of pyrolytic PAHs in rivers and estuary of Pearl River Delta according to PAHs diagnostic ratios. Petroleum PAHs are revealed have a high contribution to PAHs in Xijiang River, estuary and some stations in Zhujiang River. A comparison of data from study in 1997 with data from present study indicates that there is no clear change in the PAH concentration over time but the source of PAHs in Pearl River Delta have been change from a main coal combustion to petroleum combustion and being reflect in the sediments in rivers and estuary of Pearl River Delta where there have high sedimentation rate.
Wood duck brood movements and habitat use on prairie rivers in South Dakota
Granfors, D.A.; Flake, Lester D.
1999-01-01
Wood duck (Aix sponsa) populations have been increasing in the Central Flyway, but little is known about wood duck brood rearing in prairie ecosystems. We compared movements and habitat use of radiomarked female wood ducks with broods in South Dakota on 2 rivers with contrasting prairie landscapes. The perennial Big Sioux River had a broad floodplain and riparian forest, whereas the intermittent Maple River had emergent vegetation along the river channel. Movements between nest sites and brood-rearing areas were longer on the Maple River than on the Big Sioux River (P = 0.02) and were among the longest reported for wood duck broods. Movements on the Big Sioux River were longer in 1992 (P = 0.01), when the floodplain was dry, than in 1993 or 1994. Before flooding occurred on the Big Sioux River, broods used semipermanent wetlands and tributaries outside the floodplain; thereafter, females selected forested wetlands along the river. Broods on the Maple River used emergent vegetation along the river channel throughout the study. Because median length of travel to brood-rearing areas was 2-3 km we recommend maintenance of brood-rearing habitat every 3-5 km along prairie rivers. Wildlife managers should encourage landowners to retain riparian vegetation along perennial rivers and emergent vegetation along intermittent streams to provide brood-rearing habitat during wet and dry cycles.
NASA Astrophysics Data System (ADS)
Li, Z.; Li, C.
2017-12-01
Connectivity is one of the most important characteristics of a river, which is derived from the natural water cycle and determine the renewability of river water. The water conservancy project can change the connectivity of natural river networks, and directly threaten the health and stability of the river ecosystem. Based on the method of Dendritic Connectivity Index (DCI), the impacts from sluices and dams on the connectivity of river network are deeply discussed herein. DCI quantitatively evaluate the connectivity of river networks based on the number of water conservancy facilities, the connectivity of fish and geographical location. The results show that the number of water conservancy facilities and their location in the river basin have a great influence on the connectivity of the river network. With the increase of the number of sluices and dams, DCI is decreasing gradually, but its decreasing range is becoming smaller and smaller. The dam located in the middle of the river network cuts the upper and lower parts of the whole river network, and destroys the connectivity of the river network more seriously. Therefore, this method can be widely applied to the comparison of different alternatives during planning of river basins and then provide a reference for the site selection and design of the water conservancy project and facility concerned.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-15
... to the local maritime community via broadcast notice to mariners. 2. Impact on Small Entities Under...-AA08 Special Local Regulation; Low Country Splash, Wando River, Cooper River, and Charleston Harbor... establishing a special local regulation on the waters of the Wando River, Cooper River, and Charleston Harbor...
77 FR 75917 - Drawbridge Operation Regulation; New Haven Harbor, Quinnipiac and Mill Rivers, CT
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-26
...-AA09 Drawbridge Operation Regulation; New Haven Harbor, Quinnipiac and Mill Rivers, CT AGENCY: Coast..., mile 1.3, across the Quinnipiac River, and the Chapel Street Bridge, mile 0.4, across the Mill River..., across the Quinnipiac River, and the Chapel Street Bridge, mile 0.4, across the Mill River, to reduce the...
33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. (a) San Joaquin River Deep Water Channel between Suisun Bay and the easterly end of the channel at...
33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. (a) San Joaquin River Deep Water Channel between Suisun Bay and the easterly end of the channel at...
33 CFR 162.205 - Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., Sacramento River, and connecting waters, CA. 162.205 Section 162.205 Navigation and Navigable Waters COAST... NAVIGATION REGULATIONS § 162.205 Suisun Bay, San Joaquin River, Sacramento River, and connecting waters, CA. (a) San Joaquin River Deep Water Channel between Suisun Bay and the easterly end of the channel at...
76 FR 22033 - Safety Zone; Red River Safety Zone, Red River, MN
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
...-AAOO Safety Zone; Red River Safety Zone, Red River, MN AGENCY: Coast Guard, DHS. ACTION: Temporary... a temporary safety zone on the Red River, MN. This safety zone is being established to ensure the... Red River in the State of Minnesota north of a line drawn across latitude 46[deg]20'00'' N, including...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Special Local Regulations; Low Country Splash, Wando River, Cooper River, and Charleston Harbor, Charleston, SC. 100.T07-0110 Section 100... Splash, Wando River, Cooper River, and Charleston Harbor, Charleston, SC. (a) Regulated Areas. The...
76 FR 25545 - Safety Zone; Blue Crab Festival Fireworks Display, Little River, Little River, SC
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-05
...-AA00 Safety Zone; Blue Crab Festival Fireworks Display, Little River, Little River, SC AGENCY: Coast... zone on the waters of Little River in Little River, South Carolina during the Blue Crab Festival... this rule because the Coast Guard did not receive notice of the Blue Crab Festival Fireworks Display...
3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, ...
3. SNAKE RIVER VALLEY IRRIGATION DISTRICT, PHOTOGRAPHIC COPY OF DRAWING, PROFILE AND ALIGNMENT OF DAM ACROSS WEST CHANNEL OF SNAKE RIVER, SHEET 3 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID
36 CFR 292.45 - Use of motorized and non-motorized rivercraft.
Code of Federal Regulations, 2012 CFR
2012-07-01
... use and enjoyment of the rivers: Provided, that where wild and scenic rivers are concerned, the... except on the Snake River and that portion of the Salmon River in the HCNRA administered by the Forest... for the safe use and enjoyment of the rivers: Provided, that where wild and scenic rivers are involved...
36 CFR 292.45 - Use of motorized and non-motorized rivercraft.
Code of Federal Regulations, 2011 CFR
2011-07-01
... use and enjoyment of the rivers: Provided, that where wild and scenic rivers are concerned, the... except on the Snake River and that portion of the Salmon River in the HCNRA administered by the Forest... for the safe use and enjoyment of the rivers: Provided, that where wild and scenic rivers are involved...
36 CFR 292.45 - Use of motorized and non-motorized rivercraft.
Code of Federal Regulations, 2013 CFR
2013-07-01
... use and enjoyment of the rivers: Provided, that where wild and scenic rivers are concerned, the... except on the Snake River and that portion of the Salmon River in the HCNRA administered by the Forest... for the safe use and enjoyment of the rivers: Provided, that where wild and scenic rivers are involved...
36 CFR 292.45 - Use of motorized and non-motorized rivercraft.
Code of Federal Regulations, 2014 CFR
2014-07-01
... use and enjoyment of the rivers: Provided, that where wild and scenic rivers are concerned, the... except on the Snake River and that portion of the Salmon River in the HCNRA administered by the Forest... for the safe use and enjoyment of the rivers: Provided, that where wild and scenic rivers are involved...
ZumBerge, Jeremy Ryan; Lee, Kathy E.; Goldstein, Robert M.
2003-01-01
Biological communities in the Mississippi River reflected changes in water quality and physical habitat as the Minnesota and St. Croix Rivers join the Mississippi River. Periphyton density and biovolume, and the relative abundance of blue-green algae density increased in the Mississippi River at the confluence compared to the Minnesota and St. Croix Rivers. Relative abundance of benthic invertebrate taxa richness and diversity generally decreased downstream in the large rivers as urban and agricultural land use become more prevalent. Impoundments and dredging of the Mississippi River in and downstream from the TCMA exacerbate effects of increasing river size to produce a more lake-like system.
The influence of the macro-sediment from the mountainous area to the river morphology in Taiwan
NASA Astrophysics Data System (ADS)
Chen, S. C.; Wu, C.; Shih, P.
2012-12-01
Chen, Su-Chin scchen@nchu.edu.tw Wu, Chun-Hung* chwu@mail.nchu.edu.tw Dept. Soil & Water Conservation, National Chung Hsing University, Taichung, Taiwan. The Chenyulan River was varied changed with the marco-sediment yielded source area, Shenmu watershed, with 10 debris flow events in the last decade, in Central Taiwan. Multi-term DEMs, the measurement data of the river topographic profile and aerial photos are adopted to analyze the decade influences of the marco-sediment to the river morphology in Chenyulan River. The changes of river morphology by observing the river pattern, calculating the multi-term braided index, and estimating the distribution of sediment deposition and main channel in the river. The response for the macro-sediment from the mountainous areas into the river in the primary stage is the increase in river width, the depth of sediment deposition and volume of sediment transport. The distribution of sediment deposition from upstream landslide and river bank erosion along the river dominates the change of river morphology in the primary stage. The river morphology achieves stable gradually as the river discharge gradually decreases in the later stage. Both of the braided index and the volume of sediment transport decrease, and the river flow maintains in a main channel instead of the braided pattern in this stage. The decade sediment deposition depth is estimated as > 0.5 m, especially > 3.5 m in the sections closed to the sediment-yield source areas, the mean river width increases 15%, and the sediment with a total volume of 8×107 tons has been transported in last decade in Chenyulan River. The river morphology in Chenyulan River maintains a short-term stable, i.e. 2 or 3 years, and changes again because of the flooding events with a large amount of sediment caused by frequently heavy rainfall events in Taiwan. Furthermore, the response of river morphology in Chenyulan River due to the heavy rainfall with a total precipitation of around 860 mm in 3 days in 2009 Typhoon Morakot is also discussed in the study. A extreme river discharge with the return period of 100 year transported the macro sediment with the total volume of around 3.2×107 m3 in 8 days during 2009 Typhoon Morakot, and it also resulted in 18.1% increase of the mean river width and 4 m increase of the mean scouring depth in Chenyulan River, especially the mean increase of 50 m in river width resulted from the total sediment volume of 1.9×107 m3 deposited within 8 km from the sediment-yielded area, i.e. Shenmu watershed. Furthermore, the distribution of sediment deposition in a narrow pass is also discussed in the research. Sediment deposited apparently in the upstream of a narrow pass and also results in the disordered river patterns. The high velocity flow due to the contraction of the river width in the narrow pass section also leads to the headwater erosion in the upstream of the narrow pass section. Contrarily, the unapparent sediment deposition in the downstream of the narrow pass section brings about the stable main channel and swinging flow patterns from our decade observation.
NASA Astrophysics Data System (ADS)
Habets, F.; Vergnes, J.
2013-12-01
The Upper Rhine alluvial aquifer is an important transboundary water resource which is particularly vulnerable to pollution from the rivers due to anthropogenic activities. A realistic simulation of the groundwater-river exchanges is therefore of crucial importance for effective management of water resources, and hence is the main topic of the NAPROM project financed by the French Ministry of Ecology. Characterization of these fluxes in term of quantity and spatio-temporal variability depends on the choice made to represent the river water stage in the model. Recently, a couple surface-subsurface model has been applied to the whole aquifer basin. The river stage was first chosen to be constant over the major part of the basin for the computation of the groundwater-river interactions. The present study aims to introduce a variable river water stage to better simulate these interactions and to quantify the impact of this process over the simulated hydrological variables. The general modeling strategy is based on the Eau-Dyssée modeling platform which couples existing specialized models to address water resources and quality in regional scale river basins. In this study, Eau-Dyssée includes the RAPID river routing model and the SAM hydrogeological model. The input data consist in runoff and infiltration coming from a simulation of the ISBA land surface scheme covering the 1986-2003 period. The QtoZ module allows to calculate river stage from simulated river discharges, which is then used to calculate the exchanges between aquifer units and river. Two approaches are compared. The first one uses rating curves derived from observed river discharges and river stages. The second one is based on the Manning's formula. Manning's parameters are defined with geomorphological parametrizations and topographic data based on Digital Elevation Model (DEM). First results show a relatively good agreement between observed and simulated river water height. Taking into account a variable river stage seems to increase the amount of water exchanged between groundwater and river. Systematic biases are nevertheless found between simulated and observed mean river stage elevation. They show that the primary source of errors when simulating river stage - and hence groundwater-river interactions - is the uncertainties associated with the topographic data used to define the riverbed elevation. Thus, this study confirms the need to access to more accurate DEM for estimating riverbed elevation and studying groundwater-river interactions, at least at regional scale.
Owen-Joyce, Sandra J.; Wilson, Richard P.
1994-01-01
In the Colorado River valley between the east end of Lake Mead and the international boundary with Mexico (see figure), the river is the principal source of water for agricultural, domestic, municipal, industrial, hydroelectric-power generation, and recreational purposes. Water is stored in surface reservoirs and in the river aquifer---permeable sediments and sedimentary rocks that fill the lower Colorado River valley and adjacent tributary valleys. The hydraulic connection between the river and the river aquifer, overbank flow prior to building of the dams, and infiltration as the reservoirs filled allowed the sediments and sedimentary rocks to become saturated with water from the river. Ratios of isotopes of hydrogen and oxygen in water from wells indicate that most of the water in the river aquifer beneath the flood plain and in many places beneath the adjacent alluvial slopes originated from the river. The water table in the river aquifer extends from the river, beneath the flood plain, and under the alluvial slopes until it intersects bedrock. Precipitation in the surrounding mountains and inflow from tributary valleys also contribute small quantities of water to the river aquifer. Consumptive use of river water in the valley results from evapotranspiration by vegetation (crops and phreatophytes) on the flood plain, pumpage from wells to meet domestic and municipal needs, and pumpage from the river for export to areas in California, Arizona, and Nevada outside of the river valley. Most crops are grown on the flood plain; in a few areas, land on the adjacent terraces has been cultivated. Crops were grown on about 70 percent of the total vegetated area in 1984. Phreatophytes---natural vegetation that obtains water from the river aquifer---covered the remaining vegetated areas on the uncultivated flood plain. Most of the water used for irrigation is diverted or pumped directly from the river and reservoirs. Most of the water used for domestic and municipal purposes is pumped from wells on the flood plain, on adjacent alluvial slopes, and in tributary valleys. River water also is delivered to Mexico in accordance with an international treaty.
Effect of human activities on overall trend of sedimentation in the lower Yellow River, China.
Jiongxin, Xu
2004-05-01
The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil-water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30-40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.
NASA Astrophysics Data System (ADS)
Harvey, J. W.; Gomez-Velez, J. D.; Scott, D.; Boyer, E. W.; Schmadel, N. M.; Alexander, R. B.; Eng, K.; Golden, H. E.; Kettner, A.; Konrad, C. P.; Moore, R. B.; Pizzuto, J. E.; Schwarz, G. E.; Soulsby, C.
2017-12-01
The functional values of rivers depend on more than just wetted river channels. Instead, the river channel exchanges water and suspended materials with adjacent riparian, floodplain, hyporheic zones, and ponded waters such as lakes and reservoirs. Together these features comprise a larger functional unit known as the river corridor. The exchange of water, solutes, and sediments within the river corridor alters downstream water quality and ecological functions, but our understanding of the large-scale, cumulative impacts is inadequate and has limited advancements in sustainable management practices. A problem with traditional watershed, groundwater, and river water quality models is that none of them explicitly accounts for river corridor storage and processing, and the exchanges of water, solutes, and sediments that occur many times between the channel and off-channel environments during a river's transport to the sea. Our River Corridor Working Group at the John Wesley Powell Center is quantifying the key components of river corridor functions. Relying on foundational studies that identified floodplain, riparian, and hyporheic exchange flows and resulting enhancement of chemical reactions at river reach scales, we are assembling the datasets and building the models to upscale that understanding onto 2.6 million river reaches in the U.S. A principal goal of the River Corridor Working group is to develop a national-scale river corridor model for the conterminous U.S. that will reveal, perhaps for the first time, the relative influences of hyporheic, riparian, floodplain, and ponded waters at large spatial scales. The simple but physically-based models are predictive for changing conditions and therefore can directly address the consequences and effectiveness of management actions in sustaining valuable river corridor functions. This presentation features interpretation of useful river corridor connectivity metrics and ponded water influences on nutrient and sediment processing in river networks of the Mid-Atlantic and Northeastern U.S. This research is a product of the John Wesley Powell Center River Corridor Working Group https://powellcenter.usgs.gov/view-project
Kratzer, Charles R.; Zamora, Celia; Knifong, Donna L.
2002-01-01
The application of diazinon and chlorpyrifos on dormant orchards in 2000 in the San Joaquin River Basin was less than 21 percent of application in 1993 and 1994. A total of 13 sites were sampled weekly during nonstorm periods and more frequently during two storm periods. The sites included five major river and eight minor tributary sites. The highest concentrations of diazinon and chlorpyrifos occurred during the storm periods. Four samples from major river sites (Tuolumne River and two San Joaquin River sites) had diazinon concentrations greater than 0.08 microgram per liter, the concentration being considered by the state of California as its criterion maximum concentration for the protection of aquatic habitat. One sample from a major river site (San Joaquin River) exceeded the equivalent State guideline of 0.02 microgram per liter for chlorpyrifos. At the eight minor tributary sites, 24 samples exceeded the diazinon guideline and four samples exceeded the chlorpyrifos guideline. The total diazinon load in the San Joaquin River near Vernalis during January and February 2000 was 19.6 pounds active ingredient; of this, 8.17 pounds active ingredient was transported during two storms. In 1994, 27.4 pounds active ingredient was transported during two storms. The total chlorpyrifos load in the San Joaquin River near Vernalis during January and February 2000 was 5.68 pounds active ingredient; of this, 2.17 pounds active ingredient was transported during the two storms. During the frequently sampled February 2000 storm, the main sources of diazinon in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (25 percent), Tuolumne River Basin (14 percent), and the Stanislaus River Basin (10 percent). The main sources of chlorpyrifos in the San Joaquin River Basin were the San Joaquin River near Stevinson Basin (17 percent), Tuolumne River Basin (13 percent), and the Merced River Basin (11 percent). The total January and February diazinon load in the San Joaquin River near Vernalis was 0.17 percent of dormant application; total January and February chlorpyrifos load was 0.16 percent of dormant application.
Đorđievski, Stefan; Ishiyama, Daizo; Ogawa, Yasumasa; Stevanović, Zoran
2018-06-22
Bor, Krivelj, and Bela Rivers belong to the watershed of Timok River, which is a tributary of transboundary Danube River. These rivers receive metal-rich acidic wastewater from metallurgical facilities and acid mine drainage (AMD) from mine wastes around Bor copper mines. The aim of this study was to determine the mobility and natural attenuation of metals and arsenic in rivers from Bor copper mines to Danube River during the year 2015. The results showed that metallurgical facilities had the largest impact on Bor River by discharging about 400 t of Cu per year through highly acidic wastewater (pH = 2.6). The highest measured concentrations of Cu in river water and sediments were 40 mg L -1 and 1.6%, respectively. Dissolution of calcite from limestone bedrock and a high concentration of bicarbonate ions in natural river water (about 250 mg L -1 ) enhanced the neutralization of acidic river water and subsequent chemical precipitation of metals and arsenic. Decreases in the concentrations of Al, Fe, Cu, As, and Pb in river water were mainly due to precipitation on the river bed. On the other hand, dilution played an important role in the decreases in concentrations of Mn, Ni, Zn, and Cd. Chemically precipitated materials and flotation tailings containing Fe-rich minerals (fayalite, magnetite, and pyrite) were transported toward Danube River during the periods of high discharge. This study showed that processes of natural attenuation in catchments with limestone bedrock play an important role in reducing concentrations of metals and arsenic in AMD-bearing river water.
Spatial and temporal variations of river nitrogen exports from major basins in China.
Ti, Chaopu; Yan, Xiaoyuan
2013-09-01
Provincial-level data for population, livestock, land use, economic growth, development of sewage systems, and wastewater treatment rates were used to construct a river nitrogen (N) export model in this paper. Despite uncertainties, our results indicated that river N export to coastal waters increased from 531 to 1,244 kg N km(-2) year(-1) in the Changjiang River basin, 107 to 223 kg N km(-2) year(-1) in the Huanghe River basin, and 412 to 1,219 kg N km(-2) year(-1) in the Zhujiang River basin from 1980 to 2010 as a result of rapid population and economic growth. Significant temporal changes in water N sources showed that as the percentage of runoff from croplands increased, contributions of natural system runoff and rural human and livestock excreta decreased in the three basins from 1980 to 2010. Moreover, the nonpoint source N decreased from 72 to 58 % in the Changjiang River basin, 80 to 67 % in the Huanghe River basin, and 69 to 51 % in the Zhujiang River basin, while the contributions of point sources increased greatly during the same period. Estimated results indicated that the N concentrations in the Changjiang, Huanghe, and Zhujiang rivers during 1980-2004 were higher than those in the St. Lawrence River in Canada and lower than those in the Thames, Donau, Rhine, Seine, and Han rivers during the same period. River N export will reduce by 58, 54, and 57 % for the Changjiang River, Huanghe River, and Zhujiang River in the control scenario in 2050 compared with the basic scenario.
Climatic control of bedrock river incision.
Ferrier, Ken L; Huppert, Kimberly L; Perron, J Taylor
2013-04-11
Bedrock river incision drives the development of much of Earth's surface topography, and thereby shapes the structure of mountain belts and modulates Earth's habitability through its effects on soil erosion, nutrient fluxes and global climate. Although it has long been expected that river incision rates should depend strongly on precipitation rates, quantifying the effects of precipitation rates on bedrock river incision rates has proved difficult, partly because river incision rates are difficult to measure and partly because non-climatic factors can obscure climatic effects at sites where river incision rates have been measured. Here we present measurements of river incision rates across one of Earth's steepest rainfall gradients, which show that precipitation rates do indeed influence long-term bedrock river incision rates. We apply a widely used empirical law for bedrock river incision to a series of rivers on the Hawaiian island of Kaua'i, where mean annual precipitation ranges from 0.5 metres to 9.5 metres (ref. 12)-over 70 per cent of the global range-and river incision rates averaged over millions of years can be inferred from the depth of river canyons and the age of the volcanic bedrock. Both a time-averaged analysis and numerical modelling of transient river incision reveal that the long-term efficiency of bedrock river incision across Kaua'i is positively correlated with upstream-averaged mean annual precipitation rates. We provide theoretical context for this result by demonstrating that our measurements are consistent with a linear dependence of river incision rates on stream power, the rate of energy expenditure by the flow on the riverbed. These observations provide rare empirical evidence for the long-proposed coupling between climate and river incision, suggesting that previously proposed feedbacks among topography, climate and tectonics may occur.
How Do Morphodynamic Signatures Vary Along the Ucayali, a Large Transitional River?
NASA Astrophysics Data System (ADS)
Dauer, K.; Frias, C. E.; Abad, J. D.; Paredes, J.; Vizcarra, J.; Holguin, C.
2013-12-01
The Ucayali River, with an average discharge of 11, 260 m3 ● s-1 at the Requena station, is one of the largest rivers in Peru, and at its confluence with the Maranon River, the Amazon River is born. The Ucayali River transitions from purely meandering to quasi-anabranching planform near the confluence with the Marañon River. In addition, it carries large amounts of suspended sediment and has been shown to display high rates of migration. Prompted by evidence of changing trends in rainfall and discharge in the Amazon basin, where the Ucayali is located, we have performed a baseline characterization of the planform metrics, thus to determine if effects of climatic change on the morphodynamics are happening in this transitional river, which is a vital transportation route for cities in the jungle such as Iquitos, Peru. Herein, the morphodynamics of the Ucayali River are characterized from its upstream end in Atalaya, Peru to its confluence with the Marañon near Nauta City. First, the migration rates along the Ucayali River are calculated from temporal Landsat images. Then migration rates and planform characteristics, such as wavelength and sinuosity, along the river are compared with the slope along the river to distinguish spatial dominant scales. In addition, bathymetry and velocity measurements taken in 2013 along the Ucayali River help us to understand the complex morphodynamics of the river. Specific case studies have been done at Pucallpa and Jenaro-Herrera, Peru using hydrodynamic and bathymetric measurements complemented with high-resolution shallow water modeling to understand the process of cutoff formation in different locations along the river. This study discusses the frequency at which meanders along the Ucayali River shift from low sinuosity to complete maturity in order to produce cutoffs.
Reach-scale characterization of large woody debris in a low-gradient, Midwestern U.S.A. river system
NASA Astrophysics Data System (ADS)
Martin, Derek J.; Pavlowsky, Robert T.; Harden, Carol P.
2016-06-01
Addition of large woody debris (LWD) to rivers has increasingly become a popular stream restoration strategy, particularly in river systems of the Midwestern United States. However, our knowledge of LWD dynamics is mostly limited to high gradient montane river systems, or coastal river systems. The LWD-related management of low-gradient, Midwestern river systems is thus largely based on higher gradient analogs of LWD dynamics. This research characterizes fluvial wood loads and investigates the relationships between fluvial wood, channel morphology, and sediment deposition in a relatively low-gradient, semiconfined, alluvial river. The LWD and channel morphology were surveyed at nine reaches along the Big River in southeastern Missouri to investigate those relationships in comparison to other regions. Wood loads in the Big River are low (3-114 m3/100 m) relative to those of higher gradient river systems of the Pacific Northwest, but high relative to lower-gradient river systems of the Eastern United States. Wood characteristics such as size and orientation suggest that the dominant LWD recruitment mechanism in the Big River is bank erosion. Also, ratios of wood geometry to channel geometry show that the Big River maintains a relatively high wood transport capacity for most of its length. Although LWD creates sites for sediment storage, the overall impact on reach-scale sediment storage in the Big River is low (< 4.2% of total in-channel storage). However, wood loads, and thus opportunities for sediment storage, have the potential to grow in the future as Midwestern riparian forests mature. This study represents the first of its kind within this particular type of river system and within this region and thus serves as a basis for understanding fluvial wood dynamics in low-gradient river systems of the Midwestern United States.
My River My Home: Both Art and Science
NASA Astrophysics Data System (ADS)
Gillies, S. L.; Janmaat, A.; Marsh, S. J.; Peucker-Ehrenbrink, B.; Voss, B.; Holmes, R. M.; King, S.; Bertrand, K.
2014-12-01
The University of the Fraser Valley has been researching the water chemistry of the Fraser River since 2009 as a member of the Global Rivers Observatory coordinated by Woods Hole Oceanographic Institution and Woods Hole Research Center. The Global Rivers Observatory is advancing our understanding of how climate change, deforestation, and other disturbances are impacting river chemistry and land-ocean linkages. This knowledge is vital for tracking the health of Earth's watersheds and predicting how Earth's water and chemical cycles will change in the future. The Global Rivers Observatory also promotes the communication of science to the general public. In September 2013, the My River My Home art and science exhibit opened at the Fraser River Discovery Centre, New Westminster, BC. The exhibit is a global exchange of artwork created by children living along the rivers being studied by the Global Rivers Observatory scientists. The exhibit is intended to inspire young students to develop an awareness of the environment and the importance of rivers. Scientists from UFV, WHOI, and WHRC worked together with the Fraser River Discovery Centre on the science communication aspects of the display and to develop hands-on science activities looking at different aspects of river water quality. The exhibition has led to the creation of My River My Home, An Activity Kit for Educators about the sustainability of the Fraser River. The kit is being offered through the Fraser River Discovery Centre and deals with issues such as the importance of water, water quality, and encouraging a global perspective. The resource kit was classroom tested by several teachers, and four UBC teacher candidates worked on incorporating teacher suggestions into the kit. The resource kit will be available on-line at the end of September 2014 and contains inquiry based activities suitable for a variety of educational levels.
Environmental and hydrologic overview of the Yukon River basin, Alaska and Canada
Brabets, Timothy P.; Wang, Bronwen; Meade, Robert H.
2000-01-01
The Yukon River, located in northwestern Canada and central Alaska, drains an area of more than 330,000 square miles, making it the fourth largest drainage basin in North America. Approximately 126,000 people live in this basin and 10 percent of these people maintain a subsistence lifestyle, depending on the basin's fish and game resources. Twenty ecoregions compose the Yukon River Basin, which indicates the large diversity of natural features of the watershed, such as climate, soils, permafrost, and geology. Although the annual mean discharge of the Yukon River near its mouth is more than 200,000 cubic feet per second, most of the flow occurs in the summer months from snowmelt, rainfall, and glacial melt. Eight major rivers flow into the Yukon River. Two of these rivers, the Tanana River and the White River, are glacier-fed rivers and together account for 29 percent of the total water flow of the Yukon. Two others, the Porcupine River and the Koyukuk River, are underlain by continuous permafrost and drain larger areas than the Tanana and the White, but together contribute only 22 percent of the total water flow in the Yukon. At its mouth, the Yukon River transports about 60 million tons of suspended sediment annually into the Bering Sea. However, an estimated 20 million tons annually is deposited on flood plains and in braided reaches of the river. The waters of the main stem of the Yukon River and its tributaries are predominantly calcium magnesium bicarbonate waters with specific conductances generally less than 400 microsiemens per centimeter. Water quality of the Yukon River Basin varies temporally between summer and winter. Water quality also varies spatially among ecoregions
Zheng, Na; Wang, Qichao; Liang, Zhongzhu; Zheng, Dongmei
2008-07-01
Wuli River, Cishan River, and Lianshan River are three freshwater rivers flowing through Huludao City, in a region of northeast China strongly affected by industrialization. Contamination assessment has never been conducted in a comprehensive way. For the first time, the contamination of three rivers impacted by different sources in the same city was compared. This work investigated the distribution and sources of Hg, Pb, Cd, Zn and Cu in the surface sediments of Wuli River, Cishan River, and Lianshan River, and assessed heavy metal toxicity risk with the application of two different sets of Sediment Quality Guideline (SQG) indices (effect range low/effect range median values, ERL/ERM; and threshold effect level/probable effect level, TEL/PEL). Furthermore, this study used a toxic unit approach to compare and gauge the individual and combined metal contamination for Hg, Pb, Cd, Zn and Cu. Results showed that Hg contamination in the sediments of Wuli River originated from previous sediment contamination of the chlor-alkali producing industry, and Pb, Cd, Zn and Cu contamination was mainly derived from atmospheric deposition and unknown small pollution sources. Heavy metal contamination to Cishan River sediments was mainly derived from Huludao Zinc Plant, while atmospheric deposition, sewage wastewater and unknown small pollution were the primary sources for Lianshan River. The potential acute toxicity in sediment of Wuli River may be primarily due to Hg contamination. Hg is the major toxicity contributor, accounting for 53.3-93.2%, 7.9-54.9% to total toxicity in Wuli River and Lianshan River, respectively, followed by Cd. In Cishan River, Cd is the major sediment toxicity contributor, however, accounting for 63.2-66.9% of total toxicity.
Numerical Simulation of Missouri River Bed Evolution Downstream of Gavins Point Dam
NASA Astrophysics Data System (ADS)
Sulaiman, Z. A.; Blum, M. D.; Lephart, G.; Viparelli, E.
2016-12-01
The Missouri River originates in the Rocky Mountains in western Montana and joins the Mississippi River near Saint Louis, Missouri. In the 1900s dam construction and river engineering works, such as river alignment, narrowing and bank protections were performed in the Missouri River basin to control the flood flows, ensure navigation and use the water for agricultural, industrial and municipal needs, for the production of hydroelectric power generation and for recreation. These projects altered the flow and the sediment transport regimes in the river and the exchange of sediment between the river and the adjoining floodplain. Here we focus on the long term effect of dam construction and channel narrowing on the 1200 km long reach of the Missouri River between Gavins Point Dam, Nebraska and South Dakota, and the confluence with the Mississippi River. Field observations show that two downstream migrating waves of channel bed degradation formed in this reach in response to the changes in flow regime, sediment load and channel geometry. We implemented a one dimensional morphodynamic model for large, low slope sand bed rivers, we validated the model at field scale by comparing the numerical results with the available field data and we use the model to 1) predict the magnitude and the migration rate of the waves of degradation at engineering time scales ( 150 years into the future), 2) quantify the changes in the sand load delivered to the Mississippi River, where field observations at Thebes, i.e. downstream of Saint Louis, suggest a decline in the mean annual sand load in the past 50 years, and 3) identify the role of the main tributaries - Little Sioux River, Platte River and Kansas River - on the wave migration speed and the annual sand load in the Missouri River main channel.
The science and practice of river restoration
NASA Astrophysics Data System (ADS)
Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.
2015-08-01
River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.
Breck, S.W.; Wilson, K.R.; Andersen, D.C.
2001-01-01
We assessed the effects of flow regulation on the demography of beavers (Castor canadensis) by comparing the density, home-range size, and body size of bank-dwelling beavers on two sixth-order alluvial river systems, the flow-regulated Green River and the free-flowing Yampa River, from 1997 to 2000. Flow regulation on the Green River has altered fluvial geomorphic processes, influencing the availability of willow and cottonwood, which, in turn, has influenced the demography of beavers. Beaver density was higher on the Green River (0.50.6 colonies per kilometre of river) than on the Yampa River (0.35 colonies per kilometre of river). Adult and subadult beavers on the Green River were in better condition, as indicated by larger body mass and tail size. There was no detectable difference in home-range size, though there were areas on the Yampa River that no beavers used. We attribute the improved habitat quality on the Green River to a greater availability of willow. We suggest that the sandy flats and sandbars that form during base flows and the ice cover that forms over winter on the Yampa River increase the energy expended by the beavers to obtain food and increase predation risk and thus lowers the availability of woody forage.
Sacramento River Water Treatment Plant Intake Pier & Access Bridge, ...
Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA
A fish survey of the White River, Nevada
Scoppettone, G. Gary; Rissler, Peter H.; Shea, Sean
2004-01-01
In spring and summer 1991 and 1992, we surveyed fishes of the White River system, Nye and White Pine Counties, Nevada, to determine the status of natives. There are 5 known native fishes to the White River: Lepidomeda albivallis (White River spinedace), Crenichthys baileyi albivallis (Preston White River springfish), Crenichthys baileyi thermophilus (Moorman White River springfish), Catostomus clarki intermedius (White River desert sucker), and Rhinichthys osculus ssp. (White River speckled dace). All 5 had declined in range. Lepidomeda albivallis had experienced the greatest decline, with less than 50 remaining, and these were restricted to a 70-m stream reach. Rhinichthys osculus spp. was most widespread, found in 18 spring systems. Cottus bairdi (mottled sculpin) was collected for the 1st time from the White River system, where it was probably native. Protective measures should be implemented to conserve all native White River fishes to include C. bairdi.
Toxicity of water from three South Carolina rivers to larval striped bass
Finger, Susan E.; Bulak, James S.
1988-01-01
The toxicity of water from three rivers in the Santee-Cooper drainage of South Carolina was evaluated in a series of on-site studies with larval striped bass Morone saxatilis. Mortality and swimming behavior were assessed daily for larvae exposed to serial dilutions of water collected from the Santee, Congaree, and Wateree rivers. After 96 h, cumulative mortality was 90% in the Wateree River, and a dose–response pattern was evident in serial dilutions of the water. Larvae exposed to water from the Santee and Congaree rivers swam lethargically, but no appreciable mortality was observed. Acutely toxic concentrations of inorganic contaminants were not detected in the rivers; however, pentachloroanisole, a methylated by-product of pentachlorophenol, was twice as high in the Wateree River as it was in the other two rivers. Phenolic compounds may have contributed to larval mortality in the Wateree River and to lethargic activity of larvae in the Santee and Congaree rivers.
Impact of urbanization on the ecology of Mukuvisi River, Harare, Zimbabwe
NASA Astrophysics Data System (ADS)
Moyo, N. A. G.; Rapatsa, M. M.
2016-04-01
The main objective in this study was to compare the physico-chemical characteristics and biota of a river (Mukuvisi) passing through an urban area to that of a non-urbanised river (Gwebi). Five sites in the Mukuvisi River and five sites in the Gwebi River were sampled for water physico-chemical parameters (pH, conductivity, DO, BOD, TDS, ammonia, Cl, SO42-, PO42-, NO33-, F-, Pb, Cu, Fe, Mn, Zn and Cr) once every month between August, 2012-August, 2013. Cluster analysis based on the physico-chemical parameters grouped the sites into two groups. Mukuvisi River sites formed their own grouping except for one site which was grouped with Gwebi River sites. Principal Component Analysis (PCA) was used to extract the physico-chemical parameters that account for most variations in water quality in the Mukuvisi and Gwebi Rivers. PCA identified sulphate, chloride, fluoride, iron, manganese and zinc as the major factors contributing to the variability of Mukuvisi River water quality. In the Gwebi river, sulphate, nitrate, fluoride and copper accounted for most of the variation in water quality. Canonical Correspondence Analysis (CCA) was used to explore the relationship between physico-chemical parameters and macroinvertebrate communities. CCA plots in both Mukuvisi and Gwebi Rivers showed significant relationships between macroinvertebrate communities and water quality variables. Phosphate, ammonia and nitrates were correlated with Chironomidae and Simulidae. Gwebi River had higher (P < 0.05, ANOVA) macroinvertebrates and fish diversity than Mukuvisi River. Clarias gariepinus from the Mukuvisi River had high liver histological lesions and low AChE activity and this led to lower growth rates in this river.
Mastin, M.C.; Fosness, R.L.
2009-01-01
Yakima County is collaborating with the Bureau of Reclamation on a study of the hydraulics and sediment-transport in the lower Naches River and in the Yakima River between Union Gap and Selah Gap in Washington. River bathymetry and topographic data of the river channels are needed for the study to construct hydraulic models. River survey data were available for most of the study area, but river bathymetry and near-river topography were not available for Selah Gap, near the confluence of the Naches and Yakima Rivers, and for Union Gap. In August 2008, the U.S. Geological Survey surveyed the areas where data were not available. If possible, the surveys were made with a boat-mounted, single-beam echo sounder attached to a survey-grade Real-Time Kinematic (RTK) global positioning system (GPS). An RTK GPS rover was used on a walking survey of the river banks, shallow river areas, and river bed areas that were impenetrable to the echo sounder because of high densities of macrophytes. After the data were edited, 95,654 bathymetric points from the boat survey with the echo sounder and 1,069 points from the walking survey with the GPS rover were used in the study. The points covered 4.6 kilometers on the Yakima River and 0.6 kilometers on the Naches River. GPS-surveyed points checked within 0.014 to 0.047 meters in the horizontal direction and -0.036 to 0.078 meters in the vertical direction compared to previously established survey control points
Life history and ecological characteristics of the Santa Ana sucker, Catostomus santaanae
Saiki, Michael K.; Martin, Barbara A.; Knowles, Glen W.; Tennant, Patrick W.
2007-01-01
This study was conducted to document the life history and ecological characteristics of the Santa Ana sucker, Catostomus santaanae, within its native range in southern California. Electrofishing surveys were conducted at 3-month intervals from December 1998 to December 1999 at one site on the San Gabriel River and two sites on the Santa Ana River. Suckers were captured in the San Gabriel River (average, 6.6 fish/10-minutes electrofishing) and at an upstream Santa Ana River site (average, 2.3 fish/10-minutes electrofishing) but not at a downstream Santa Ana River site. Length frequency distributions indicated that at least three year classes (modal groups) of suckers were present in the San Gabriel River, whereas one or two year classes were present in the Santa Ana River. Collection of 21-30 mm standard length (SL) juveniles in June in the Santa Ana River and in September in the San Gabriel River indicated that reproduction occurred over several months. In December, Age-0 suckers averaged 36-48 mm SL in the San Gabriel River and 63-65 mm SL in the Santa Ana River, whereas Age-1 suckers averaged 86 mm SL in the San Gabriel River and 115 mm SL in the Santa Ana River. On average, suckers were in better body condition in the San Gabriel River than in the Santa Ana River. Highest abundance of suckers was associated with relativelypristine environmental conditions (especially low specific conductance) where other native fishes were also common or abundant.
78 FR 46258 - Safety Zone; Upper Mississippi River, Mile 662.8 to 663.9
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-31
...-AA00 Safety Zone; Upper Mississippi River, Mile 662.8 to 663.9 AGENCY: Coast Guard, DHS. ACTION... Upper Mississippi River, from mile 662.8 to 663.9, extending the entire width of the river. This safety... mile 662.8 to 663.9 on the Upper Mississippi River. Anticipated traffic on the river presents safety...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-09
... Regulations; Cape Fear River and Northeast Cape Fear River, in Wilmington, NC AGENCY: Coast Guard, DHS. ACTION..., mile 26.8, and the Isabel S. Holmes Bridge, across Northeast Cape Fear River, mile 1.0, both in... Isabel S. Holmes Bridge, across Northeast Cape Fear River, mile 1.0, a bascule lift bridge, has a...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-06
... Operation Regulation; Cape Fear River, and Northeast Cape Fear River, in Wilmington, NC AGENCY: Coast Guard... Northeast Cape Fear River, at mile 1.0, both in Wilmington, NC. The deviation restricts the operation of the... across Northeast Cape Fear River, at mile 1.0, both in Wilmington, NC, requested a temporary deviation...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon Hydrologic unit name Hydrologic unit number Sockeye salmon Spring...
Limnological aspects of the St. Clair River
Griffiths, Ronald W.; Thornley, Stewart; Edsall, Thomas A.
1991-01-01
To better characterize neoplasm epizootics in the Great Lakes basin and their association with families of contaminants, we sampled five locations: the Fox and Menominee rivers, Lake Michigan; Munuscong Lake, St. Mary's River; and the Black and Cuyahoga rivers, Lake Erie. Frequencies of external and liver tumors were determined for brown bullhead (Ictalurus nebulosus) from all locations except the Black River and for walleye (Stizostedion vitreum) from the Lake Michigan and St. Mary's River sites. Sediment samples were analyzed for metals, polychlorinated aromatics, and polynuclear aromatic hydrocarbons (PAH). Liver neoplasms occurred in brown bullhead from the Cuyahoga River and Munuscong Lake; brown bullhead captured from Munuscong Lake were older than those collected from the other locations. Brown bullhead from these same two rivers had elevated hepatosomatic indexes. No liver neoplasms were found in brown bullhead from the Fox and Menominee rivers, although polychlorinated aromatics were highest in both Fox River sediment and Fox and Menominee brown bullhead, and arsenic was highest in Menominee River sediment and fish. Liver neoplasms in brown bullhead from the Cuyahoga River fit the prevailing hypothesis that elevated PAH in sediment can induce cancer in wild fish. The cause of the liver neoplasms in Munuscong Lake brown bullhead is undetermined.
Turnipseed, D. Phil; Allen, Yvonne C.; Couvillion, Brady R.; McKee, Karen L.; Vervaeke, William C.
2014-01-01
The 2011 Mississippi River flood in the Lower Mississippi River Basin was one of the largest flood events in recorded history, producing the largest or next to largest peak streamflow for the period of record at a number of streamgages on the lower Mississippi River. Ecosystem effects include changes to wetlands, nutrient transport, and land accretion and sediment deposition changes. Direct effects to the wetland ecosystems in the Lower Mississippi River Basin were minimized because of the expansive levee system built to pass floodwaters. Nutrients carried by the Mississippi River affect water quality in the Lower Mississippi River Basin. During 2011, nutrient fluxes in the lower Mississippi River were about average. Generally, nutrient delivery of the Mississippi and Atchafalaya Rivers contributes to the size of the hypoxic zone in the Gulf of Mexico. Based on available limited post-flood satellite imagery, some land expansion in both the Wax Lake and Atchafalaya River Deltas was observed. A wetland sediment survey completed in June 2011 indicated that recent sediment deposits were relatively thicker in the Atchafalaya and Mississippi River (Birdsfoot) Delta marshes compared to marshes farther from these rivers.
[Distribution of diatoms in central city of Beijing].
Li, Li-Ping; Sun, Ting-Yi; Liu, Hong-Xia; Zhang, Hai-Dong; Bai, Ying-Jie; Wang, Rong-Shuai; Liu, Liang
2012-08-01
To explore the quantity and distribution of diatoms in main rivers and lakes in Xicheng, Dongcheng, Chaoyang, Haidian, Fengtai and Shijingshan Districts of the city of Beijing. Water samples were examined through the method of disorganizing, which were collected from 16 rivers and lakes in the central city of Beijing in September and October 2011. Diatom species and proportions of water samples were analyzed using DotSlide microscope station. A total of 10 species of diatoms were detected. Cyclotella, Synedra and Melosira etc. were found to be the dominant species via quantitative analysis. Significant differences were observed for diatom species and proportions among the different rivers and lakes. Melosira was found to be the dominant species in the Chang River; Synedra, in the Zhuan River, the Kunyu River and the Taoranting Park; Cyclotella, in the East Moat River, the Ba River, the Liangshui River and the Yongding River; and Navicula, in the Liangma River; Nitzschia, in the diversion canal of the Yongding River. The features of distribution of diatoms in the central city of Beijing are outlined. The morphological and relative constituent ratio database of diatoms are established in central city of Beijing.
Ecological comparisons of Lake Erie tributaries with elevated incidence of fish tumors
Smith, Stephen B.; Blouin, Marc A.; Mac, Michael J.
1994-01-01
Ecological comparisons were made between two Lake Erie tributaries (Black and Cuyahoga rivers) with contaminated sediments and elevated rates of tumors in fish populations and a third, relatively unpolluted, reference tributary, the Huron River. Fish populations, benthic invertebrates, and sediments were evaluated in all three Ohio rivers. Community structure analyses indicated similar total densities but lower species diversity for fish and benthic invertebrates in the contaminated rivers when compared with the reference river. Growth rates in fish from the contaminated areas were either similar to or higher than those offish from the reference site. Brown bullhead (Ameiurus nebulosus) from the two contaminated tributaries exhibited 51% (Black River) and 45% (Cuyahoga River) incidence of liver lesions (neoplastic and preneoplastic) as compared with a 4% incidence of liver lesions in brown bullhead from the reference river (Huron River). Incidence of external abnormalities on brown bullhead was 54% (Black River) and 73% (Cuyahoga River) as compared with a 14% incidence on fish from the Huron River. On a regional basis, incidence of external abnormalities on particular benthic fish species may be an effective method to quickly indicate areas for more intensive contaminant studies.
Caldwell, Rodney R.; Bowers, Craig L.
2003-01-01
Although trace-element concentrations sometimes exceeded aquatic-life criteria in the water of the Spokane River and were elevated above national median values in the bed sediment, trace-element concentrations of all river and ground-water samples were at levels less than U.S. Environmental Protection Agency drinking-water standards. The Spokane River appears to be a source of cadmium, copper, zinc, and possibly lead in the near-river ground water. Dissolved cadmium, copper, and lead concentrations generally were less than 1 microgram per liter (µg/L) in the river water and ground water. During water year 2001, dissolved zinc concentrations were similar in water from near-river wells (17-71 µg/L) and the river water (22-66 µg/L), but were less than detection levels in wells farther from the river. Arsenic, found to be elevated in ground water in parts of the aquifer, does not appear to have a river source. Although the river does influence the ground-water chemistry in proximity to the river, it does not appear to adversely affect the ground-water quality to a level of human-health concern.
Stability of backwater-influenced river bifurcations: A study of the Mississippi-Atchafalaya system
NASA Astrophysics Data System (ADS)
Edmonds, D. A.
2012-04-01
In this paper I use numerical modeling to show that the hydraulic backwater profile creates a feedback that may stabilize river bifurcations. The numerical model simulates flow and sediment transport in the Mississippi-Atchafalaya River system without the Old River Control Structure. The results show that bifurcation evolution strongly depends on the discharge upstream of the bifurcation. At upstream discharges greater than 12600 m3 s-1 the Atchafalaya River discharge increases through time at the expense of the Mississippi River. Interestingly, at upstream discharges lower than 12600 m3 s-1 the opposite occurs and the Mississippi River discharge increases at the expense of the Atchafalaya River. The capture direction changes because the backwater profile of each river varies enough at high and low discharge to invert the water surface slope ratio. These results suggest that the capture direction would change at high and low flow, which would have a stabilizing effect by preventing the runaway growth of one channel. Accounting for this, I calculate that in the absence of the Old River Control Structure capture would not happen catastrophically, but rather the Atchafalaya River would capture the Mississippi River in ˜300 years from present day.
Human impacts on river ice regime in the Carpathian Basin
NASA Astrophysics Data System (ADS)
Takács, Katalin; Nagy, Balázs; Kern, Zoltán
2014-05-01
River ice is a very important component of the cryosphere, and is especially sensitive to climatic variability. Historical records of appearance or disappearance and timing of ice phenomena are useful indicators for past climatic variations (Williams, 1970). Long-term observations of river ice freeze-up and break-up dates are available for many rivers in the temperate or cold region to detect and analyze the effects of climate change on river ice regime. The ice regime of natural rivers is influenced by climatic, hydrological and morphological factors. Regular ice phenomena observation mostly dates back to the 19th century. During this long-term observation period, the human interventions affecting the hydrological and morphological factors have become more and more intensive (Beltaos and Prowse, 2009). The anthropogenic effects, such as river regulation, hydropower use or water pollution causes different changes in river ice regime (Ashton, 1986). To decrease the occurrence of floods and control the water discharge, nowadays most of the rivers are regulated. River regulation changes the morphological parameters of the river bed: the aim is to create solid and equable bed size and stream gradient to prevent river ice congestion. For the satisfaction of increasing water demands hydropower is also used. River damming results a condition like a lake upstream to the barrage; the flow velocity and the turbulence are low, so this might be favourable for river ice appearance and freeze-up (Starosolsky, 1990). Water pollution affects ice regime in two ways; certain water contaminants change the physical characteristics of the water, e.g. lessens the freezing point of the water. Moreover the thermal stress effect of industrial cooling water and communal wastewater is also important; in winter these water sources are usually warmer, than the water body of the river. These interventions result different changes in the characteristic features of river ice regime. Selected examples from the Carpathian Basin represent some of the most common human impacts (engineering regulation, hydropower usage, water pollution), disturbing natural river ice regimes of mid-latitude rivers with densely populated or dynamically growing urban areas along their courses. In addition simple tests are also introduced to detect not only the climatic, but also the effect of anthropogenic impacts on river ice regime. As a result of river regulation on River Danube at Budapest a vanishing trend in river ice phenomena could be detected in the Danube records. The average ice-affected season shortened from 40 to 27 days, the average ice-covered season reduced greatly, from 27 to 7 days. In historical times the ice jams on the River Danube caused many times ice floods. The relative frequency of the break-up jam also decreased; moreover no ice flood occurred over the past 50 years. The changes due to hydropower usage are different upstream and downstream to the damming along the river. On Raba River upstream of the Nick dam at Ragyogóhíd, the ice-affected and ice-covered seasons were lengthened by 4 and 9 days, in contrast, downstream of the dam, the length of the ice-covered season was shortened by 7 days, and the number of ice-affected days decreased by 8 days at Árpás. During the observation period at Budapest on Danube River, the temperature requirements for river ice phenomena occurrence changed. Nowadays, much lower temperatures are needed to create the same ice phenomena compared to the start of the observations. For ice appearance, the mean winter air temperature requirements decreased from +2.39 °C to +1.71 °C. This investigation focused on anthropogenic effects on river ice regime, eliminating the impact of climatic conditions. Different forms of anthropogenic effects cause in most cases, a shorter length of ice-affected seasons and decreasing frequency of ice phenomena occurrence. Rising winter temperatures result the same changes in river ice regime. Climate change and river ice regime research should also take into account these anthropogenic impacts. Reference: Ashton, W.D. 1986. River and lake ice engineering. Water Resources Publication, USA 485 p. Starosolszky, Ö., 1990. Effect of river barrages on ice regime. Journal of Hydraulic Research 28/6, 711-718. Williams, G.P., 1970. A note on the break-up of lakes and rivers as indicators of climate change. Atmosphere 8 (1), 23-24.
Flood of August 24–25, 2016, Upper Iowa River and Turkey River, northeastern Iowa
Linhart, S. Mike; O'Shea, Padraic S.
2018-02-05
Major flooding occurred August 24–25, 2016, in the Upper Iowa River Basin and Turkey River Basin in northeastern Iowa following severe thunderstorm activity over the region. About 8 inches of rain were recorded for the 24-hour period ending at 4 p.m., August 24, at Decorah, Iowa, and about 6 inches of rain were recorded for the 24-hour period ending at 7 a.m., August 24, at Cresco, Iowa, about 14 miles northwest of Spillville, Iowa. A maximum peak-of-record discharge of 38,000 cubic feet per second in the Upper Iowa River at streamgage 05388250 Upper Iowa River near Dorchester, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at six locations along the Upper Iowa River between State Highway 26 near the mouth at the Mississippi River and State Highway 76 about 3.5 miles south of Dorchester, Iowa, a distance of 15 river miles. Along the profiled reach of the Turkey River, a maximum peak-of-record discharge of 15,300 cubic feet per second at streamgage 05411600 Turkey River at Spillville, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 1–2 percent. A maximum peak discharge of 35,700 cubic feet per second occurred on August 25, 2016, along the profiled reach of the Turkey River at streamgage 05411850 Turkey River near Eldorado, Iowa, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at 11 locations along the Turkey River between County Road B64 in Elgin and 220th Street, located about 4.5 miles northwest of Spillville, Iowa, a distance of 58 river miles. The high-water marks were used to develop flood profiles for the Upper Iowa River and Turkey River.
Implications of river morphology response to Dien Bien Phu fault in NW Vietnam
NASA Astrophysics Data System (ADS)
Lai, K.; Chen, Y.; Lam, D.
2007-12-01
In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.
Implications of river morphology response to Dien Bien Phu fault in NW Vietnam
NASA Astrophysics Data System (ADS)
Lai, K.; Chen, Y.; Lam, D.
2004-12-01
In northern Vietnam, most rivers are flowing southeastward sub- or parallel to the valley of Red River and characterized by long but narrow catchments. The Dien Bien Phu fault is associated with the most seismically active zone in Vietnam and situated in the potential eastern boundary of the rotating southeastern Tibetan block. It cuts the Da River, the largest tributary of Red River in northwest Vietnam and has distorted the drainage basin resulting in complex river patterns. To assess the river morphology response to active Dien Bien Phu fault, we use 1/50,000 topographic data and ASTER images to map the precise river courses and digital elevation model data of SRTM to retrieve and analyze the river profiles. From the mapping results, the N-S striking fault results in three conspicuous north-trending river valleys coincided with the different fault segments to facilitate the measurement and reconstruction of the offsets along the fault. Further combining the longitudinal profile analysis we obtain ca. 10 km offsets by deflected river as the largest left-lateral displacement recorded along the active fault. The restored results show the downstream paleochannel of the Da River had been abandoned and becomes two small tributaries in opposite flow directions at present due to differential crustal uplift. Also the present crisscross valley at the junction of the Da River and the fault is resulted from the capture by another river which has been also deflected by the neotectonics. Based on our observations on river response, the Dien Bien Phu fault is a sinistral dominant fault with an uplift occurring in its eastern block. Furthermore the active Dien Bien Phu fault does not cut through the Red River northward indicating the western block of the fault can not be regarded as a single rigid block. There should be possible to find NW-SE trending faults paralleling to Red River to accommodate the deformation of the western block of the fault.
NASA Astrophysics Data System (ADS)
Wang, C.; Peifang, W.; Wang, X.; Hou, J.; Miao, L.
2017-12-01
Lotic river system plays an important part in water-vapor transfer and biogenic substances migration and transformation. Anthropogenic activities, including wastewater discharging and river damming, have altered river ecosystem and continuum. However, as the longest alpine river in China and suffered from increasing anthropogenic activities, the Yarlung Tsangpo River has been rarely studied. Recently, more attention has also been paid to the bacteria in river sediment as they make vital contributions to the biogeochemical nutrient cycling. Here, the distribution of biogenic substances, including nitrogen, phosphorus, silicon and carbon, was explored in both water and sediment of the Yarlung Tsangpo River. By using the next generation 16S rRNA sequencing, the bacterial diversity and structure in river sediment were presented. The results indicated that the nutrient concentrations increased in densely populated sites, revealing that biogenic substance distribution corresponded with the intensity of anthropogenic activity along the river. Nitrogen, phosphorus, silicon and carbon in water and sediment were all retained by the Zangmu Dam which is the only dam in the mainstream of the river. Moreover, the river damming decreased the biomass and diversity of bacteria in sediment, but no significant alteration of community structure was observed upstream and downstream of the dam. The most dominant bacteria all along the river was Proteobacteria. Meanwhile, Verrucomicrobia and Firmicutes also dominated the community composition in upstream and downstream of the river, respectively. In addition, total organic carbon (TOC) was proved to be the most important environmental factor shaping the bacterial community in river sediment. Our study offered the preliminary insights into the biogenic substance distribution and bacterial community in sediment along an alpine river which was affected by anthropogenic activities. In the future, more studies are needed to reveal the relationship between anthropogenic activity, biogenic substance cycling and bacterial community, especially along the alpine rivers.
NASA Astrophysics Data System (ADS)
Allen, G. H.; Pavelsky, T.
2015-12-01
The width of a river reflects complex interactions between river water hydraulics and other physical factors like bank erosional resistance, sediment supply, and human-made structures. A broad range of fluvial process studies use spatially distributed river width data to understand and quantify flood hazards, river water flux, or fluvial greenhouse gas efflux. Ongoing technological advances in remote sensing, computing power, and model sophistication are moving river system science towards global-scale studies that aim to understand the Earth's fluvial system as a whole. As such, a global spatially distributed database of river location and width is necessary to better constrain these studies. Here we present the Global River Width from Landsat (GRWL) Database, the first global-scale database of river planform at mean discharge. With a resolution of 30 m, GRWL consists of 58 million measurements of river centerline location, width, and braiding index. In total, GRWL measures 2.1 million km of rivers wider than 30 m, corresponding to 602 thousand km2 of river water surface area, a metric used to calculate global greenhouse gas emissions from rivers to the atmosphere. Using data from GRWL, we find that ~20% of the world's rivers are located above 60ºN where little high quality information exists about rivers of any kind. Further, we find that ~10% of the world's large rivers are multichannel, which may impact the development of the new generation of regional and global hydrodynamic models. We also investigate the spatial controls of global fluvial geomorphology and river hydrology by comparing climate, topography, geology, and human population density to GRWL measurements. The GRWL Database will be made publically available upon publication to facilitate improved understanding of Earth's fluvial system. Finally, GRWL will be used as an a priori data for the joint NASA/CNES Surface Water and Ocean Topography (SWOT) Satellite Mission, planned for launch in 2020.
Houser, J.N.; Richardson, W.B.
2010-01-01
Existing research on nutrients (nitrogen and phosphorus) in the Upper Mississippi River (UMR) can be organized into the following categories: (1) Long-term changes in nutrient concentrations and export, and their causes; (2) Nutrient cycling within the river; (3) Spatial and temporal patterns of river nutrient concentrations; (4) Effects of elevated nutrient concentrations on the river; and (5) Actions to reduce river nutrient concentrations and flux. Nutrient concentration and flux in the Mississippi River have increased substantially over the last century because of changes in land use, climate, hydrology, and river management and engineering. As in other large floodplain rivers, rates of processes that cycle nitrogen and phosphorus in the UMR exhibit pronounced spatial and temporal heterogeneity because of the complex morphology of the river. This spatial variability in nutrient processing creates clear spatial patterns in nutrient concentrations. For example, nitrate concentrations generally are much lower in off-channel areas than in the main channel. The specifics of in-river nutrient cycling and the effects of high rates of nutrient input on UMR have been less studied than the factors affecting nutrient input to the river and transport to the Gulf of Mexico, and important questions concerning nutrient cycling in the UMR remain. Eutrophication and resulting changes in river productivity have only recently been investigated the UMR. These recent studies indicate that the high nutrient concentrations in the river may affect community composition of aquatic vegetation (e. g., the abundance of filamentous algae and duckweeds), dissolved oxygen concentrations in off-channel areas, and the abundance of cyanobacteria. Actions to reduce nutrient input to the river include changes in land-use practices, wetland restoration, and hydrological modifications to the river. Evidence suggests that most of the above methods can contribute to reducing nutrient concentration in, and transport by, the UMR, but the impacts of mitigation efforts will likely be only slowly realized. ?? USGS, US Government 2010.
Stark, James R.
1996-01-01
Physical and aquatic biological conditions differ among the Mississippi River and its major tributaries (the St. Croix and Minnesota Rivers) in Minnesota and Wisconsin. The quality of surface water and the ecological condition of rivers affect the ways in which we use them. The St. Croix River is used for recreation; the Mississippi River is used for recreation and is a corridor for commerce; and the Minnesota River primarily drains agricultural lands. Analysis of the environmental framework of the basins and water-quality and ecological information by the National Water-Quality Assessment (NAWQA) Program shows that the conditions of the rivers are a product of a combination of factors including climate, hydrology, geology, soils, land use, land cover, water management, and water use.
Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutfin, Nicholas Alan
This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek;more » Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.« less
River-aquifer interactions, geologic heterogeneity, and low-flow management
Fleckenstein, J.H.; Niswonger, R.G.; Fogg, G.E.
2006-01-01
Low river flows are commonly controlled by river-aquifer exchange, the magnitude of which is governed by hydraulic properties of both aquifer and aquitard materials beneath the river. Low flows are often important ecologically. Numerical simulations were used to assess how textural heterogeneity of an alluvial system influences river seepage and low flows. The Cosumnes River in California was used as a test case. Declining fall flows in the Cosumnes River have threatened Chinook salmon runs. A ground water-surface water model for the lower river basin was developed, which incorporates detailed geostatistical simulations of aquifer heterogeneity. Six different realizations of heterogeneity and a homogenous model were run for a 3-year period. Net annual seepage from the river was found to be similar among the models. However, spatial distribution of seepage along the channel, water table configuration and the level of local connection, and disconnection between the river and aquifer showed strong variations among the different heterogeneous models. Most importantly, the heterogeneous models suggest that river seepage losses can be reduced by local reconnections, even when the regional water table remains well below the riverbed. The percentage of river channel responsible for 50% of total river seepage ranged from 10% to 26% in the heterogeneous models as opposed to 23% in the homogeneous model. Differences in seepage between the models resulted in up to 13 d difference in the number of days the river was open for salmon migration during the critical fall months in one given year. Copyright ?? 2006 The Author(s).
Bi, Shipu; Yang, Yuan; Xu, Chengfen; Zhang, Yong; Zhang, Xiaobo; Zhang, Xianrong
2017-08-15
Estuary sediment is a major pollutant enrichment medium and is an important biological habitat. This sediment has attracted the attention of the marine environmental scientists because it is a more stable and effective medium than water for monitoring regional environmental quality conditions and trends. Based on a large amount of measurement data, we analyzed the concentrations, distribution, and sources of seven heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) in the surface sediment of typical estuaries that empty into the sea in eastern China: the Liaohe River Estuary, Yellow River Estuary, Yangtze River Estuary, Minjiang River Estuary, and Pearl River Estuary. The heavy metal concentrations in the sediments vary considerably from one estuary to the next. The Liaohe River Estuary sediment contains elevated levels of Cd, Hg, and Zn. The Yellow River Estuary sediment contains elevated levels of As. The sediments in the Yangtze River and Minjiang River estuaries contain elevated levels of Cd and Cu and of Pb and Zn, respectively. The sediment in the Pearl River Estuary contains elevated levels of all seven heavy metals. We used the Nemerow index method to assess the environment quality. The heavy metal pollution in the Liaohe River and Pearl River estuaries is more severe than that in the other estuaries. Additional work indicates that the heavy metal pollution in the Liaohe River and Pearl River estuaries is caused mainly by human activity. Copyright © 2017. Published by Elsevier Ltd.
Geomorphic Assessment of the Brazos River, Texas
NASA Astrophysics Data System (ADS)
Hamilton, P.; May, D.; Haring, C.
2017-12-01
The Brazos River is a large lowland river that traverses Texas before reaching the Gulf of Mexico. Of particular interest is the Brazos River reach through Fort Bend County, TX. This area is rapidly developing and as such there are concerns regarding infrastructure near the river. Rivers maintain a state of dynamic equilibrium wherein the system makes adjustments to external perturbations. This is of no concern in the abstract; the boundary conditions for the river change and the river adjusts to accommodate the change. However, because of development near the river, natural river adjustment can have catastrophic consequences. For example, bank failure along the Brazos River in Fort Bend County threatens SH 99, a major hurricane evacuation route, as well as flood control levees and county offices. Herein we present the results of hydraulic modeling conducted through the project area as well as the results of a geomorphic assessment. The Brazos River has a regional degradational trend throughout the project area in conjunction with subtly increasing sinuosity. Additionally, headcutting has greatly widened many of the tributary valleys and increased the local sediment supply to the river. Bank failure is an issue at several locations and there have been various solutions proposed for different sites. Part of the fear in addressing issues at a particular site is that money will be spent curing the symptoms along the river without confronting the underlying regional illness. Here we show some of the regional issues and how it they potentially interact with local solutions.
Discovery of ammocrypta clara (western sand darter) in the Upper Ohio River of West Virginia
Cincotta, Dan A.; Welsh, Stuart A.
2010-01-01
Ammocrypta clara Jordan and Meek (western sand darter) occurs primarily in the western portions of Mississippi River system, but also has been reported from a Lake Michigan drainage and a few eastern Texas Gulf Slope rivers. Additional range records depict a semi-disjunct distribution within the Ohio River drainage, including collections from Wabash River in Indiana, the Cumberland, Green, Kentucky and Big Sandy rivers of Kentucky, and the upper Tennessee River in Tennessee and Virginia. This paper documents the occurrence of A. clara from the upper Ohio River drainage within the lower Elk River, West Virginia, based on collections from 1986, 1991, 1995, 2005 and 2006. The Elk River population, consistent with those of other Ohio River drainages, has slightly higher counts for numbers of dorsal-fin rays, scales below lateral line and lateral line scales when compared to data from populations outside of the Ohio River drainage. Modal counts of meristic characters are similar among populations, except for higher modal counts of lateral line scales in the Ohio River population. The discovery of the Elk River population extends the range distribution of A. clara in the Eastern Highlands region, documents wide distributional overlap and additional sympatry with its sister species,A. pellucida (eastern sand darter), and softens support for an east-west Central Highlands vicariance hypothesis for the present distribution of A. clara and A. pellucida.
76 FR 54415 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-01
... following flooding sources: Bear Creek (backwater effects from Cumberland River), Big Renox Creek (backwater effects from Cumberland River), Big Whetstone Creek (backwater effects from Cumberland River), Big Willis... River), Big Renox Creek (backwater effects from Cumberland River), Big Whetstone Creek (backwater...
Dissolved silica in the tidal Potomac River and Estuary, 1979-81 water years
Blanchard, Stephen F.
1988-01-01
The Potomac River at Chain Bridge is the major riverine source of dissolved silica (DSi) to the tidal Potomac River and Estuary. DSi concentrations at Chain Bridge are positively correlated with river discharge; river discharge is an important factor controlling rates of supply, dilution, and residence time. When river flow is high, the longitudinal DSi distribution is conservative. When river flow is low, other processes, such as phytoplankton uptake, benthic flux, resuspension, ground-water discharge, and water-column dissolution of diatoms, tend to be more influential than the river. Elevated concentrations of DSi in sewage-treatment-plant effluent in the Washington, D.C., area raise the DSi concentration of receiving Potomac River water. The tidal river zone serves as a net sink for DSi as a result of phytoplankton uptake. Ultimately, the biogenic silica from the tidal river is transported to the transition zone, where it is mineralized. As a result, the DSi concentration in the transition zone increases during summer. The DSi concentrations in the estuarine zone are largely controlled by dilution by Chesapeake Bay water and by phytoplankton uptake.
Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, R. A.
In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the springmore » and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.« less
Scaling properties reveal regulation of river flows in the Amazon through a forest reservoir
NASA Astrophysics Data System (ADS)
Salazar, Juan Fernando; Villegas, Juan Camilo; María Rendón, Angela; Rodríguez, Estiven; Hoyos, Isabel; Mercado-Bettín, Daniel; Poveda, Germán
2018-03-01
Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir
hypothesis to describe the natural capacity of river basins to regulate river flows through land-atmosphere interactions (mainly precipitation recycling) that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.
Geocode of River Networks in Global Plateaus
NASA Astrophysics Data System (ADS)
Ni, J.; Wang, Y.; Wang, T.
2017-12-01
As typical hierarchical systems, river networks are of great significance to aquatic organisms and its diversity. Different aspects of river networks have been investigated in previous studies such as network structure, formation cause, material transport, nutrient cycle and habitat variation. Nevertheless, river networks function as biological habitat is far from satisfactory in plateau areas. This paper presents a hierarchical method for habitat characterization of plateau river networks with the geocode extracted from abiotic factors including historical geologic period, climate zone, water source and geomorphic process at different spatial scales. As results, characteristics of biological response with vertical differentiation within typical plateau river networks are elucidated. Altitude, climate and landform are of great influence to habitat and thereby structure of aquatic community, while diverse water source and exogenic action would influence biological abundance or spatiotemporal distribution. Case studies are made in the main stream of the Yellow River and the Yangtze River, respectively extended to the river source to Qinghai-Tibet Plateau, which demonstrate high potentials for decision making support to river protection, ecological rehabilitation and sustainable management of river ecosystems.
14 CFR 93.351 - General requirements for operating in the East River and/or Hudson River Exclusions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... TRAFFIC RULES New York Class B Airspace Hudson River and East River Exclusion Special Flight Rules Area... River or Hudson River as depicted on the New York VFR Terminal Area Chart (TAC) and/or New York Helicopter Route Chart. (d) Have a current New York TAC chart and/or New York Helicopter Route Chart in the...
Rivers as Political Boundaries: Peru and its Dynamic Borders
NASA Astrophysics Data System (ADS)
Abad, J. D.; Escobar, C.; Garcia, A. M. P.; Ortals, C.; Frias, C. E.; Vizcarra, J.
2014-12-01
Rivers, although inherently dynamic, have been chosen as political boundaries since the beginning of colonization for several reasons. Such divisions were chosen namely for their defensive capabilities and military benefits, and because they were often the first features mapped out by explorers. Furthermore, rivers were indisputable boundaries that did not require boundary pillars or people to guard them. However, it is important to understand the complexities of a river as a boundary. All rivers inevitably change over time through processes such as accretion, deposition, cut-off, or avulsion, rendering a political boundary subject to dispute. Depending upon the flow, size, and surrounding land, a river will migrate differently than others. As these natural features migrate one country loses land while another gains land leading to tension between legal rigidity and fluid dynamism. This in turn can manifest in social disruption due to cultural differences, political upheaval, or conflict risk as a result of scarce water resources. The purpose of this research is to assess the temporal and spatial variability of the political boundaries of Peru that follow rivers. Peru shares borders with Colombia, Brazil, Bolivia, Chile, and Ecuador. A large part of its northern border with Colombia follows the Putumayo River and later the Amazon River. Part of its eastern border with Brazil follows the Yavari River and later the Yaquirana River. These rivers are natural features used as political boundaries yet they differ in how each migrates. By means of a spatial and temporal analysis of satellite images it was possible to obtain erosion and deposition areas for the Putumayo River, the portion of the Amazon River that is part of the Peruvian boundary, the Yavari River, and the Yaquirana River. The erosion and deposition areas were related to land distribution among Peru, Colombia, and Brazil. By examining the Digital Elevation Model one can see how the altitude of the surrounding land affects the watersheds and thus better understand the dynamic of rivers. Ultimately, this research combines data regarding the morphodynamics of these rivers with historical insight on border treaties in order to gain a comprehensive understanding of political implications and social repercussions of dynamic boundaries.
Thieme, Michele L.; McIvor, Carole; Brouder, Mark J.; Hoffnagle, Timothy L.
2001-01-01
Flannelmouth sucker, Catostomus latipinnis, a fish endemic to the Colorado River basin in the western United States, appears to experience poor recruitment to adult size in the Colorado River, downstream of Glen Canyon Dam. Lack or impermanence of rearing areas for young-of-year (YOY) fish is hypothesized to be the problem. Knowing the importance of tributary mouths as rearing areas in other river systems, we studied use of the mouth of the Paria River, a tributary of the Colorado River, by YOY flannelmouth suckers, and the availability of rearing area in the mouth at different flow levels in the Colorado River in 1996 and 1997. We also examined the relationship between flash floods in the Paria River and catch-per-unit-effort (CPUE) of YOY in the Paria River between 1991 and 1996.Maximum mean daily discharge in the Paria River was inversely correlated with CPUE of YOY flannelmouth suckers (Spearman Rho=−0.9856, p=0.0003) during their critical rearing period (15 March–30 June). Thus, it appears that YOY flannelmouth suckers rear longer in the Paria River in years when flash flooding is minimal.Recruitment of YOY flannelmouth suckers at the Paria River may also be improved by enhancing pool formation during spring and summer rearing seasons. YOY flannelmouth sucker was captured in a pool created by high Colorado River flows (≥336 m3/s) that inundated the mouth of the Paria River during spring and summer, 1996. In 1997, high flows (about 550–750 m3/s) in the Colorado River during winter and spring initially inundated the Paria River and formed a pool in the mouth. However, these high flows eventually caused 0.5–1.0 m of suspended sediment from the incoming Paria River to deposit in the mouth. Thus, despite higher flows than 1996, the slackwater area formed only occasionally in 1997. Differences in pool formation between 1996 and 1997 demonstrate that pool formation cannot be inferred solely from Colorado River flows.
Wilson, Timothy P.; Bonin, Jennifer L.
2008-01-01
Samples of surface water and suspended sediment were collected from the Passaic and Elizabeth Rivers and their tributaries in New Jersey from July 2003 to February 2004 to determine the concentrations of selected chlorinated organic and inorganic constituents. This sampling and analysis was conducted as Phase II of the New York-New Jersey Harbor Estuary Workplan?Contaminant Assessment and Reduction Program (CARP), which is overseen by the New Jersey Department of Environmental Protection. Phase II of the New Jersey Workplan was conducted to define upstream tributary and point sources of contaminants in those rivers sampled during Phase I work, with special emphasis on the Passaic and Elizabeth Rivers. Samples were collected from three groups of tributaries: (1) the Second, Third, and Saddle Rivers; (2) the Pompton and upper Passaic Rivers; and (3) the West Branch and main stem of the Elizabeth River. The Second, Third, and Saddle Rivers were sampled near their confluence with the tidal Passaic River, but at locations not affected by tidal flooding. The Pompton and upper Passaic Rivers were sampled immediately upstream from their confluence at Two Bridges, N.J. The West Branch and the main stem of the Elizabeth River were sampled just upstream from their confluence at Hillside, N.J. All tributaries were sampled during low-flow discharge conditions using the protocols and analytical methods for organic constituents used in low-flow sampling in Phase I. Grab samples of streamflow also were collected at each site and were analyzed for trace elements (mercury, methylmercury, cadmium, and lead) and for suspended sediment, particulate organic carbon, and dissolved organic carbon. The measured concentrations and available historical suspended-sediment and stream-discharge data (where available) were used to estimate average annual loads of suspended sediment and organic compounds in these rivers. Total suspended-sediment loads for 1975?2000 were estimated using rating curves developed from historical U.S. Geological Survey (USGS) suspended-sediment and discharge data, where available. Average annual loads of suspended sediment, in millions of kilograms per year (Mkg/yr), were estimated to be 0.190 for the Second River, 0.23 for the Third River, 1.00 for the Saddle River, 1.76 for the Pompton River, and 7.40 for the upper Passaic River. On the basis of the available discharge records, the upper Passaic River was estimated to provide approximately 60 percent of the water and 80 percent of the total suspended-sediment load at the Passaic River head-of-tide, whereas the Pompton River provided roughly 20 percent of the total suspended-sediment load estimated at the head-of-tide. The combined suspended-sediment loads of the upper Passaic and Pompton Rivers (9.2 Mkg/yr), however, represent only 40 percent of the average annual suspended-sediment load estimated for the head-of-tide (23 Mkg/yr) at Little Falls, N.J. The difference between the combined suspended-sediment loads of the tributaries and the estimated load at Little Falls represents either sediment trapped upriver from the dam at Little Falls, additional inputs of suspended sediment downstream from the tributary confluence, or uncertainty in the suspended-sediment and discharge data that were used. The concentrations of total suspended sediment-bound polychlorinated biphenyls (PCBs) in the tributaries to the Passaic River were 194 ng/g (nanograms per gram) in the Second River, 575 ng/g in the Third River, 2,320 ng/g in the Saddle River, 200 ng/g in the Pompton River, and 87 ng/g in the upper Passic River. The dissolved PCB concentrations in the tributaries were 563 pg/L (picograms per liter) in the Second River, 2,510 pg/L in the Third River, 2,270 pg/L in the Saddle River, 887 pg/L in the Pompton River, and 1,000 pg/L in the upper Passaic River. Combined with the sediment loads and discharge, these concentrations resulted in annual loads of suspended sediment-bound PCBs, i
Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan
NASA Astrophysics Data System (ADS)
Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.
2015-12-01
Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.
Reconnaissance Report for Upper Mississippi River Navigation Study. (Revised)
1992-09-01
Contaminants may include ammonia, arsenic, cadmium , chlordane, chromium, copper, dioxins, lead, nickel, nitrogen, PCBs, phosphorus, zinc, various...al 1981 Rock River, Upper Mississippi River, Little Wabash River, Lower Wabash River Units (I, III-north, aid VIII). In Predictive Models in Illinois
Application of HEC-6 to ephemeral rivers of Arizona
DOT National Transportation Integrated Search
1986-01-01
The U.S. Army Corps of Engineers, computer program HEC-6--"Scour and Deposition in Rivers and Reservoirs" was applied to three ephemeral rivers of Arizona--Agua Fria River, Salt River, and Rillito Creek. The input data development techniques and resu...
A SEDIMENT TOXICITY EVALUATION OF THREE LARGE RIVER SYSTEMS
Sediment toxicity samples were collected from selected sites on the Ohio River, Missouri River and upper Mississippi River as part of the 2004 and 2005 Environmental Monitoring and Assessment Program-Great Rivers Ecosystems Study (EMAP-GRE). Samples were collected by compositing...
NASA Astrophysics Data System (ADS)
Rowland, J. C.; Dietrich, W. E.; Day, G.
2005-05-01
Along lowland river systems across the globe the exchange of water, sediment, carbon, nutrients and biota between main stem rivers and off-river water bodies (ORWB) is facilitated by the presence of stable secondary channels referred to here as tie channels. Sixty five percent of the ORWB along the middle Fly River in Papua New Guinea connect to the river through such channels. A similar percentage of the 37 ORWB located between Baton Rouge and Memphis on the lower Mississippi River at one time were linked to the river by tie or batture (as they are locally known) channels. Levee construction and other alterations aimed at flood control or navigation on the Mississippi have left only a handful of lakes connected to the river, of these, most are heavily altered by dredging or other modifications. Tie channels were also once common along major tributaries to the Mississippi, such as the Red River. In the much less disturbed Alaskan environment, tie channels are still common, especially along Birch Creek and the Koyukuk and Black rivers. Our studies on the Mississippi River, in Alaska and in Papua New Guinea indicate that tie channels possess a common channel form that is stable and self-maintaining for hundreds to possibly a thousand years. Tie channels exhibit narrow width to depth ratios (~ 5.5) and consistently scale in cross-sectional dimensions to the size of the lake into which they flow. Variations in river and lake stage drive flow bi-directionally through tie channels. A local high or sill in the bed of tie channels controls the degree and duration of connection between the river and ORWB, with many lakes becoming isolated during periods of low stage. The life-span of a tie channel depends on the rate of sediment loading to the ORWB. Our research indicates that this rate directly corresponds to the sediment loading in the main stem river. Along the Fly River, for example, a 5 to 7 fold increase in the river sediment load has resulted increases of 6 to 17 times in tie channel progradation rates. In a few instances Fly River tie channels have become filled with sediment following the increase in sediment loading. The precise role of tie channels in the ecology of lowland river systems has yet to be quantified, but given their critical role in connecting rivers with floodplain habitats it is likely they provide an important source of refuge, breeding habitat, and biomass production for many aquatic organisms. As restoration efforts increasingly focus on the improving or reestablishing connectivity between lowland rivers and their floodplains, consideration should be given as to whether tie channels are an important missing component of such systems.
Warrick, Jonathan A.; Draut, Amy E.; McHenry, Michael L.; Miller, Ian M.; Magirl, Christopher S.; Beirne, Matthew M.; Stevens, Andrew Stevens; Logan, Joshua B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.
2011-01-01
The removal of two dams on the Elwha River will introduce massive volumes of sediment to the river, and this increase in sediment supply in the river will likely modify the shapes and forms of the river and coastal landscape downstream of the dams. This chapter provides the geologic and geomorphologic background of the Olympic Peninsula and the Elwha River with emphasis on the present river and shoreline. The Elwha River watershed was formed through the uplift of the Olympic Mountains, erosion and movement of sediment throughout the watershed from glaciers, and downslope movement of sediment from gravitational and hydrologic forces. Recent alterations to the river morphology and sediment movement through the river include the two large dams slated to be removed in 2011, but also include repeated bulldozing of channel boundaries, construction and maintenance of flood plain levees, a weir and diversion channel for water supply purposes, and engineered log jams to help enhance river habitat for salmon. The shoreline of the Elwha River delta has changed in location by several kilometers during the past 14,000 years, in response to variations in the local sea-level of approximately 150 meters. Erosion of the shoreline has accelerated during the past 80 years, resulting in landward movement of the beach by more than 200 meters near the river mouth, net reduction in the area of coastal wetlands, and the development of an armored low-tide terrace of the beach consisting primarily of cobble. Changes to the river and coastal morphology during and following dam removal may be substantial, and consistent, long-term monitoring of these systems will be needed to characterize the effects of the dam removal project.
Beeman, John W.; Hansel, Hal; Juhnke, Steve; Stutzer, Greg
2009-01-01
The survival of hatchery-origin juvenile coho salmon from the Trinity River Hatchery was estimated as they migrated seaward through the Trinity and Klamath Rivers. The purpose of the study was to collect data for comparison to a similar study in the Klamath River and provide data to the Trinity River Restoration Program. A total of 200 fish fitted with radio transmitters were released into the Trinity River near the hatchery (river kilometer 252 from the mouth of the Klamath River) biweekly from March 19 to May 28, 2008. Fish from the earliest release groups took longer to pass the first detection site 10 kilometers downstream of the hatchery than fish from the later release groups, but travel times between subsequent sites were often similar among the release groups. The travel times of individuals through the 239 kilometer study area ranged from 15.5 to 84.6 days with a median of 43.3 days. The data and models did not support differences in survival among release groups, but did support differences among river reaches. The probability of survival in the first 53 kilometers was lower than in the reaches farther downstream, which is similar to trends in juvenile coho salmon in the Klamath River. The lowest estimated survival in this study was in the first 10 kilometers from release in the Trinity River (0.676 SE 0.036) and the highest estimated survival was in the final 20 kilometer reach in the Klamath River (0.987 SE 0.013). Estimated survivals of radio-tagged juvenile coho salmon from release to Klamath River kilometer 33 were 0.639 per 100 kilometers for Trinity River fish and 0.721 per 100 kilometers for Klamath River fish.
Vining, Kevin C.; Chase, Katherine J.; Loss, Gina R.
2013-01-01
Excessive precipitation produced severe flooding in the Mississippi River and Red River of the North Basins during spring and summer 2011. The 2011 flooding was caused by weather conditions that were affected in part by a La Niña climate pattern. During the 2010–11 climatological winter (December 2010–February 2011), several low pressure troughs from the Rocky Mountains into the Ohio River subbasin produced large amounts of precipitation. Precipitation was above normal to record amounts in parts of the Missouri River, Red River of the North, and upper Mississippi River subbasins, and mostly normal to below normal in the Ohio River and lower Mississippi River subbasins. During the 2011 climatological spring (March–May 2011), a large low pressure trough over the continental States and a high pressure ridge centered in the vicinity of the Gulf of Mexico combined to produce storms with copious precipitation along frontal boundaries across the Central States. Rain totals recorded during the April 18–28, 2011, precipitation event were more than 8 inches at several locations, while an impressive total of 16.15 inches was recorded at Cape Girardeau, Missouri. Several locations in the Missouri River subbasin had rainfall totals that were nearly one-third to one-half of their 1971–2000 normal annual amounts during a May 16–31, 2011, precipitation event. During June and July, thunderstorm development along frontal boundaries resulted in areas of heavy rain across the Missouri River, Red River of the North, and upper Mississippi River subbasins, while rainfall in the lower Mississippi River subbasin was mostly below normal.
Geologic map of the Masters 7.5' quadrangle, Weld and Morgan Counties, Colorado
Berry, Margaret E.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.
2015-09-28
The Masters 7.5' quadrangle is located along the South Platte River corridor on the semiarid plains of eastern Colorado and contains surficial deposits that record alluvial, eolian, and hillslope processes that have operated in concert with environmental changes from Pleistocene to present time. The South Platte River, originating high in the Colorado Front Range, has played a major role in shaping the surficial geology of the quadrangle, which is situated downstream of where the last of the major headwater tributaries (St. Vrain, Big Thompson, and Cache la Poudre) join the river. Recurrent glaciation (and deglaciation) of basin headwaters affected river discharge and sediment supply far downstream, influencing deposition of alluvium and terrace formation in the Masters quadrangle. Kiowa and Bijou Creeks, unglaciated tributaries originating in the Colorado Piedmont east of the Front Range and joining the South Platte River just downstream of the Masters quadrangle, also have played a major role by periodically delivering large volumes of sediment to the river during flood events, which may have temporarily dammed the river. Eolian sand deposits of the Greeley (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of prolonged drought. With the onset of irrigation and damming during historical times, the South Platte River has changed from a broad, shallow sandy braided river with highly seasonal discharge to a much narrower, deeper river with braided-meandering transition morphology and more uniform discharge. Along the reach of river in the Masters quadrangle, the river has incised into Upper Cretaceous Pierre Shale, which, although buried by alluvial deposits here, is locally exposed downstream along the South Platte River bluff near the Bijou Creek confluence, in some of the larger draws, and along Wildcat Creek.
Distributions of small nongame fishes in the lower Yellowstone River
Duncan, Michael B.; Bramblett, Robert G.; Zale, Alexander V.
2016-01-01
The Yellowstone River is the longest unimpounded river in the conterminous United States. It has a relatively natural flow regime, which helps maintain diverse habitats and fish assemblages uncommon in large rivers elsewhere. The lower Yellowstone River was thought to support a diverse nongame fish assemblage including several species of special concern. However, comprehensive data on the small nongame fish assemblage of the lower Yellowstone River is lacking. Therefore, we sampled the Yellowstone River downstream of its confluence with the Clark’s Fork using fyke nets and otter trawls to assess distributions and abundances of small nongame fishes. We captured 42 species (24 native and 18 nonnative) in the lower Yellowstone River with fyke nets. Native species constituted over 99% of the catch. Emerald shiners Notropis atherinoides, western silvery minnows Hybognathus argyritis, flathead chubs Platygobio gracilis, sand shiners Notropis stramineus, and longnose dace Rhinichthys cataractae composed nearly 94% of fyke net catch and were caught in every segment of the study area. We captured 24 species by otter trawling downstream of the Tongue River. Sturgeon chubs Macrhybopsis gelida, channel catfish Ictalurus punctatus, flathead chubs, stonecats Noturus flavus, and sicklefin chubs Macrhybopsis meeki composed 89% of the otter trawl catch. The upstream distributional limit of sturgeon chubs in the Yellowstone River was the Tongue River; few sicklefin chubs were captured above Intake Diversion Dam. This study not only provides biologists with baseline data for future monitoring efforts on the Yellowstone River but serves as a benchmark for management and conservation efforts in large rivers elsewhere as the Yellowstone River represents one of the best references for a naturally functioning Great Plains river.
Occurrence of pesticides in five rivers of the Mississippi Embayment Study Unit, 1996-98
Coupe, Richard H.
2000-01-01
The occurrence and temporal distribution of more than 80 pesticides and pesticide metabolites were determined in five rivers of the Mississippi Embayment National Water-Quality Assessment study unit from February 1996 through January 1998. More than 230 samples were collected and analyzed during the 2-year study. The five rivers sampled included three rivers with small, primarily agricultural watersheds; one river with a small urban watershed in Memphis, Tennessee; and one large river with mixed land use (row-crop agriculture, pasture, forest, and urban). Pesticides, usually herbicides, were frequently detected in water samples from every river. Insecticides were frequently detected (chlorpyrifos and diazinon in all samples) only in the river that drains the urban watershed. The occurrence of pesticides in surface water varied among the agricultural watersheds as well as between the agricultural and urban watersheds. The pesticides detected in the rivers that drain the agricultural watersheds were related to the major crop types cultivated in the watershed?corn is mostly grown in the northern part of the study unit, whereas cotton and rice are mostly grown in the southern part. The occurrence of pesticides in the Yazoo River, which drains the mixed land-use watershed, was similar to pesticide occurrence in the rivers that drain smaller agricultural watersheds, although concentrations were lower in the Yazoo River. Likewise, simazine, which was detected in all urban stream samples, was also detected in all Yazoo River samples, but in lower concentrations. The aquatic-life criteria for diazinon and chlorpyrifos was exceeded in 24 of 25 and 12 of 25 urban river samples, respectively, but only once or twice in agricultural and mixed-use watershed samples. Atrazine exceeded the aquatic-life criterion in about 20 percent of the samples from each river, particularly in the spring following pesticide application.
Paraiba do Sul river delta, Brazil
1996-01-20
STS072-738-019 (11-20 Jan. 1996) --- The Delta of the Paraiba do Sul River, northeast of Rio de Janeiro, Brazil, stands out in this 70mm frame exposed from the Earth-orbiting Space Shuttle Endeavour. The brown color of the river water and offshore sediment plume show that the river is in flood stage. This delta attracts much attention from orbit because of its prominent beach ridges either side of the river mouth. River sediment from inland supplies the material which is redistributed by coastal currents to form the parallel beach ridges. The lower 20 miles of the river appear in this scene. The river flows into the Atlantic in an easterly direction.
Dynamic reorganization of river basins.
Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu
2014-03-07
River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology.
NASA Astrophysics Data System (ADS)
Wang, Gaoxu; Zeng, Xiaofan; Zhao, Na; He, Qifang; Bai, Yiran; Zhang, Ruoyu
2018-02-01
The relationships between the river discharge and the precipitation in the Jinsha River basin are discussed in this study. In addition, the future precipitation trend from 2011-2050 and its potential influence on the river discharge are analysed by applying the CCLM-modelled precipitation. According to the observed river discharge and precipitation, the annual river discharge at the two main hydrological stations displays good correlations with the annual precipitation in the Jinsha River basin. The predicted future precipitation tends to change similarly as the change that occurred during the observation period, whereas the monthly distributions over a year could be more uneven, which is unfavourable for water resources management.
River water quality and pollution sources in the Pearl River Delta, China.
Ouyang, Tingping; Zhu, Zhaoyu; Kuang, Yaoqiu
2005-07-01
Some physicochemical parameters were determined for thirty field water samples collected from different water channels in the Pearl River Delta Economic Zone river system. The analytical results were compared with the environmental quality standards for surface water. Using the SPSS software, statistical analyses were performed to determine the main pollutants of the river water. The main purpose of the present research is to investigate the river water quality and to determine the main pollutants and pollution sources. Furthermore, the research provides some approaches for protecting and improving river water quality. The results indicate that the predominant pollutants are ammonium, phosphorus, and organic compounds. The wastewater discharged from households in urban and rural areas, industrial facilities, and non-point sources from agricultural areas are the main sources of pollution in river water in the Pearl River Delta Economic Zone.
NASA Astrophysics Data System (ADS)
Govers, G.; Omengo, F.; Geeraert, N.; Bouillon, S.; Neyens, G.
2016-12-01
The lower Tana river in Kenya is an active river carrying high sediment and carbon loads, while lateral influxes from tributaries are very limited. We used this river as a natural laboratory to study the dynamics of carbon in the river-floodplain system. We measured carbon fluxes in the river as well as rates of carbon processing. Furthermore, we assessed carbon deposition in the floodplain and carbon mobilisation by river migration. We show that both within-river carbon dynamics as well as river-floodplain interaction can only be understood by accounting for autogenic river processes: the amounts of sediment (5-6 Mt yr-1) and particulate organic carbon (120-180 Mg yr-1) that are re-mobilised within the river reach (300 km) are similar to the amounts the reach receives from upstream. Carbon and sediment mobilisation are compensated for by deposition, both in the floodplain and within the river (point bars). This intensive exchange explains why the suspended sediment in the Tana river becomes finer (and more enriched in carbon) in the downstream direction, despite the deposition of fine, carbon-rich sediments in the floodplain. Contrary to what is found in temperate floodplains, overall carbon burial appears not to be very effective: most buried carbon is mineralised within decades after burial. However, burial efficiency is much higher for allochthonous organic carbon (deposited by the river) than for autochthonous organic carbon (sourced from local primary production). The Tana river does not only exchange carbon with its floodplain through deposition and remobilisation of POC. When floods occur, the floodplain acts as an important source of dissolved organic and inorganic carbon which is not only produced by organic carbon decomposition but also by weathering. Finally, there is significant CO2 outgassing from the Tana river, releasing 3-5 Mg C yr-1 to the atmosphere. Our study highlights the role of tropical river corridors as highly dynamic environments, which may be strongly affected by human management and/or climatic change. The planned construction of a major dam in the upper Tana is likely to steady the river's discharge and will limit lateral river migration and flooding, which may transform the lower Tana from a net sediment (and to a lesser extent, carbon) sink to a source.
Channel Bank Cohesion and the Maintenance of Suspension Rivers
NASA Astrophysics Data System (ADS)
Dunne, K. B. J.; Jerolmack, D. J.
2017-12-01
Gravel-bedded rivers organize their channel geometry and grain size such that transport is close to the threshold of motion at bankfull. Sand-bedded rivers, however, typically maintain bankfull fluid shear (or Shields) stresses far in excess of threshold; there is no widely accepted explanation for these "suspension rivers". We propose that all alluvial rivers are at the threshold of motion for their erosion-limiting material, i.e., the structural component of the river cross-section that is most difficult to mobilize. The entrainment threshold of gravel is large enough that bank cohesion has little influence on gravel-bed rivers. Sand, however, is the most easily entrained material; silt and clay can raise the entrainment threshold of sand by orders of magnitude. We examine a global dataset of river channel geometry and show that the shear stress range for sand-bedded channels is entirely within the range of entrainment thresholds for sand-mud mixtures - suggesting that rivers that suspend their sandy bed material are still threshold rivers in terms of bank material. We then present new findings from a New Jersey coastal-plain river examining if and how river-bank toe composition controls hydraulic geometry. We consider the toe because it is the foundation of the river bank, and its erosion leads to channel widening. Along a 20-km profile of the river we measure cross-section geometry, bed slope, and bed and bank composition, and we explore multiple methods of measuring the threshold shear stress of the the river-bank toe in-situ. As the composition of the river bed transitions from gravel to sand, we see preliminary evidence of a shift from bed-threshold to bank-threshold control on hydraulic geometry. We also observe that sub-bankfull flows are insufficient to erode (cohesive) bank materials, even though transport of sand is active at nearly all flows. Our findings highlight the importance of focusing on river-bank toe material, which in the studied stream is always submerged. The toe is more compacted and more resistant to erosion than the subaerially-exposed upper bank. We find mounting evidence that sand-bedded rivers are much like gravel-bedded river; they are near-threshold channels in which the suspended load does not play a controlling role in the determination of equilibrium hydraulic geometry.
Kresch, D.L.; Laenen, Antonius
1984-01-01
Failure of the debris dam, blocking the outflow of Spirit Lake near Mount St. Helens, could result in a mudflow down the Toutle and Cowlitz Rivers into the Columbia River. Flood elevations at the Trojan Nuclear Power Plant on the Columbia River, 5 mi upstream from the Cowlitz River, were simulated with a hydraulic routing model. The simulations are made for four Columbia River discharges in each of two scenarios, one in which Columbia River floods coincide with a mudflow and the other in which Columbia River floods follow a mudflow sediment deposit upstream from the Cowlitz River. In the first scenario, Manning 's roughness coefficients for clear water and for mudflow in the Columbia River are used; in the second scenario only clear water coefficients are used. The grade elevation at the power plant is 45 ft above sea level. The simulated elevations exceed 44 ft if the mudflow coincides with a Columbia River discharge that has a recurrence interval greater than 10 years (610,000 cu ft/sec); the mudflow is assumed to extend downstream from the Cowlitz River to the mouth of the Columbia River, and Manning 's roughness coefficients for a mudflow are used. The simulated elevation is 32 ft if the mudflow coincides with a 100-yr flood (820,000 cu ft/sec) and clear-water Manning 's coefficients are used throughout the entire reach of the Columbia River. The elevations exceed 45 ft if a flow exceeding the 2-yr peak discharge in the Columbia River (410,000 cu ft/sec) follows the deposit of 0.5 billion cu yd of mudflow sediment upstream of the Cowlitz River before there has been any appreciable scour or dredging of the deposit. In this simulation it is assumed that: (1) the top of the sediment deposited in the Columbia River is at an elevation of 30 ft at the mouth of the Cowlitz River, (2) the surface elevation of the sediment deposit decreases in an upstream direction at a rate of 2.5 ft/mi, and (3) clear water Manning 's coefficients apply to the entire modeled reach of the Columbia River. (Author 's abstract)
Leake, Stanley A.; Owen-Joyce, Sandra J.; Heilman, Julian A.
2013-01-01
Water use along the lower Colorado River is allocated as “consumptive use,” which is defined to be the amount of water diverted from the river minus the amount that returns to the river. Diversions of water from the river include surface water in canals and water removed from the river by pumping wells in the aquifer connected to the river. A complication in accounting for water pumped by wells occurs if the pumping depletes water in drains and reduces measured return flow in those drains. In that case, consumptive use of water pumped by the wells is accounted for in the reduction of measured return flow. A method is needed to understand where groundwater pumping will deplete water in the river and where it will deplete water in drains. To provide a basis for future accounting for pumped groundwater in the Parker-Palo Verde-Cibola area, a superposition model was constructed. The model consists of three layers of finite-difference cells that cover most of the aquifer in the study area. The model was run repeatedly with each run having a pumping well in a different model cell. The source of pumped water that is depletion of the river, expressed as a fraction of the pumping rate, was computed for all active cells in model layer 1, and maps were constructed to understand where groundwater pumping depletes the river and where it depletes drains. The model results indicate that if one or more drains exist between a pumping well location and the river, nearly all of the depletion will be from drains, and little or no depletion will come from the Colorado River. Results also show that if a well pumps on a side of the river with no drains in the immediate area, depletion will come from the Colorado River. Finally, if a well pumps between the river and drains that parallel the river, a fraction of the pumping will come from the river and the rest will come from the drains. Model results presented in this report may be considered in development or refinement of strategies for accounting for groundwater pumping in the river aquifer connected to the Colorado River in the study area.
Downstream on the Mississippi.
ERIC Educational Resources Information Center
Parfit, Michael
1993-01-01
Recounts a trip down the Lower Mississippi River starting in Memphis, describing the features of the river at different stops along the way. Aspects of life along the river discussed include the levee system built to contain the waters, flooding on the river, and travel on the river. (MDH)
WATER QUALITY EFFECTS OF HYPORHEIC PROCESSING IN A LARGE RIVER
Water quality changes along hyporheic flow paths may have
important effects on river water quality and aquatic habitat. Previous
studies on the Willamette River, Oregon, showed that river water follows
hyporheic flow paths through highly porous deposits created by river...
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.G. Crook Company; United States. Bonneville Power Administration
1993-07-01
This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.
Eight river principles for navigating the science–policy interface
Scientists and policymakers often work together to develop policy about the sustainable use of river ecosystems. River science plays an important role in developing river policy but how can key aspects of river science be conveyed as a heuristic to navigate the interface between ...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., its territories and possessions: (1) Volume I, Atlantic Coast, from St. Croix River, Maine, to Shrewsbury River, New Jersey. (2) Volume II, Atlantic Coast, from Shrewsbury River, New Jersey, to Little River, South Carolina. (3) Volume III, Atlantic and Gulf Coasts, from Little River, South Carolina, to...
Dissolved-oxygen and algal conditions in selected locations of the Willamette River basin, Oregon
Rinella, F.A.; McKenzie, S.W.; Wille, S.A.
1981-01-01
During July and August 1978, the U.S. Geological Survey, in cooperation with the Oregon Department of Enviromental Quality, made three intensive river-quality dissolved-oxygen studies in the upper Willamette River basin. Two studies were made on the upper Willamette River and one was made on the Santiam River, a Willamette River tributary. Nitrification, occurring in both the upper Willamette and South Santiam Rivers, accounted for about 62% and 92% of the DO sag in the rivers, respectively. Rates of nitrification were found to be dependent on ammonia concentrations in the rivers. Periphyton and phytoplankton algal samples were collected on the main stem Willamette River and selected tributaries during August 1978. Diatoms were the dominant group in both the periphyton and phytoplankton samples. The most common diatom genera were Melosira, Stephanodiscus, Cymbella, Achnanthes, and Nitzschia. Comparisons with historical data indicate no significant difference from previous years in the total abundance or diversity of the algae. (USGS)
Tillman, Fred D.
2015-01-01
The Colorado River and its tributaries supply water to more than 35 million people in the United States and 3 million people in Mexico, irrigating more than 4.5 million acres of farmland, and generating about 12 billion kilowatt hours of hydroelectric power annually. The Upper Colorado River Basin, encompassing more than 110,000 square miles (mi2), contains the headwaters of the Colorado River (also known as the River) and is an important source of snowmelt runoff to the River. Groundwater discharge also is an important source of water in the River and its tributaries, with estimates ranging from 21 to 58 percent of streamflow in the upper basin. Planning for the sustainable management of the Colorado River in future climates requires an understanding of the Upper Colorado River Basin groundwater system. This report documents input datasets for a Soil-Water Balance groundwater recharge model that was developed for the Upper Colorado River Basin.
Broshears, R.E.; Clark, G.M.; Jobson, H.E.
2001-01-01
Stream discharge and the transport of nitrate, atrazine, and metolachlor in the Mississippi River Basin were simulated using the DAFLOW/BLTM hydrologic model. The simulated domain for stream discharge included river reaches downstream from the following stations in the National Stream Quality Accounting Network: Mississippi River at Clinton, IA; Missouri River at Hermann, MO: Ohio River at Grand Chain, IL: And Arkansas River at Little Rock, AR. Coefficients of hydraulic geometry were calibrated using data from water year 1996; the model was validated by favourable simulation of observed discharges in water years 1992-1994. The transport of nitrate, atrazine, and metolachlor was simulated downstream from the Mississippi River at Thebes, IL, and the Ohio River at Grand Chain. Simulated concentrations compared favourably with observed concentrations at Baton Rouge, LA. Development of this model is a preliminary step in gaining a more quantitative understanding of the sources and fate of nutrients and pesticides delivered from the Mississippi River Basin to the Gulf of Mexico.
Modeling water quality, temperature, and flow in Link River, south-central Oregon
Sullivan, Annett B.; Rounds, Stewart A.
2016-09-09
The 2.1-km (1.3-mi) Link River connects Upper Klamath Lake to the Klamath River in south-central Oregon. A CE-QUAL-W2 flow and water-quality model of Link River was developed to provide a connection between an existing model of the upper Klamath River and any existing or future models of Upper Klamath Lake. Water-quality sampling at six locations in Link River was done during 2013–15 to support model development and to provide a better understanding of instream biogeochemical processes. The short reach and high velocities in Link River resulted in fast travel times and limited water-quality transformations, except for dissolved oxygen. Reaeration through the reach, especially at the falls in Link River, was particularly important in moderating dissolved oxygen concentrations that at times entered the reach at Link River Dam with marked supersaturation or subsaturation. This reaeration resulted in concentrations closer to saturation downstream at the mouth of Link River.
NASA Astrophysics Data System (ADS)
Ward, A. S.; Schmadel, N.; Wondzell, S. M.
2017-12-01
River networks are broadly recognized to expand and contract in response to hydrologic forcing. Additionally, the individual controls on river corridor dynamics of hydrologic forcing and geologic setting are well recognized. However, we currently lack tools to integrate our understanding of process dynamics in the river corridor and make predictions at the scale of river networks. In this study, we develop a perceptual model of the river corridor in mountain river networks, translate this into a reduced-complexity mechanistic model, and implement the model in a well-studied headwater catchment. We found that the river network was most sensitive to hydrologic dynamics under the lowest discharges (Qgauge < 1 L s-1). We also demonstrate a discharge-dependence on the dominant controls on network expansion, contraction, and river corridor exchange. Finally, we suggest this parsimonious model will be useful to managers of water resources who need to estimate connectivity and flow initiation location along the river corridor over broad, unstudied catchments.
River flow modeling using artificial neural networks in Kapuas river, West Kalimantan, Indonesia
NASA Astrophysics Data System (ADS)
Herawati, Henny; Suripin, Suharyanto
2017-11-01
Kapuas River is located in the province of West Kalimantan. Kapuas river length is 1,086 km and river basin areas about 100,000 Km2. The availability of river flow data in the Long River and very wide catchments are difficult to obtain, while river flow data are essential for planning waterworks. To predict the water flow in the catchment area requires a lot of hydrology coefficient, so it is very difficult to predict and obtain results that closer to the real conditions. This paper demonstrates that artificial neural network (ANN) could be used to predict the water flow. The ANN technique can be used to predict the incidence of water discharge that occurs in the Kapuas River based on rainfall and evaporation data. With the data available to do training on the artificial neural network model is obtained mean square error (MSE) 0.00007. The river flow predictions could be carried out after the training. The results showed differences in water discharge measurement and prediction of about 4%.
A survey of whitewater recreation impacts along five West Virginia rivers
Leung, Y.-F.; Marion, J.L.
1998-01-01
Results are reported from an assessment of whitewater river recreation impacts at river accesses and recreation sites along five West Virginia rivers: the New, Gauley, Cheat, Tygart, and Shenandoah. Procedures were developed and applied to assess resource conditions on 24 river access roads, 68 river accesses, and 151 recreation sites. The majority of river accesses and recreation sites are located on the New and Gauley rivers, which account for most of the state?s whitewater recreation use. Site conditions are variable. While some river accesses and sites are situated on resistant rocky substrates, many are poorly designed and/or located on erodible soil and sand substrates. Recreation site sizes and other areal measures of site disturbance are quite large, coincident with the large group sizes associated with commercially outfitted whitewater rafting trips. Recommendations are offered for managing river accesses and sites and whitewater visitation and the selection of indicators and standards as part of a Limits of Acceptable Change management process. Procedures and recommendations for continued visitor impact monitoring are also offered.
Backwater effects in the Amazon River basin of Brazil
Meade, R.H.; Rayol, J.M.; Da Conceicao, S.C.; Natividade, J.R.G.
1991-01-01
The Amazon River mainstem of Brazil is so regulated by differences in the timing of tributary inputs and by seasonal storage of water on floodplains that maximum discharges exceed minimum discharges by a factor of only 3. Large tributaries that drain the southern Amazon River basin reach their peak discharges two months earlier than does the mainstem. The resulting backwater in the lowermost 800 km of two large southern tributaries, the Madeira and Puru??s rivers, causes falling river stages to be as much as 2-3 m higher than rising stages at any given discharge. Large tributaries that drain the northernmost Amazon River basin reach their annual minimum discharges three to four months later than does the mainstem. In the lowermost 300-400 km of the Negro River, the largest northern tributary and the fifth largest river in the world, the lowest stages of the year correspond to those of the Amazon River mainstem rather than to those in the upstream reaches of the Negro River. ?? 1991 Springer-Verlag New York Inc.
Hupp, C.R.
2000-01-01
Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat. Copyright ?? 2000 John Wiley & Sons, Ltd.Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation. Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.
Terrebonne Parish-Wide Forced Drainage System, Terrebonne Parish, Louisiana.
1983-08-01
Gibson, Louisiana show Bayou Lafourche deposits at the surface capping Red River deposits, in turn overlying Teche Mississippi levees. There are five...eastern side of the alluvial *valley. Following the diversion of the Mississippi River from the Teche channel, the Red River continued to flow within...the Mississippi River and Red River . These alluvial sediments were left by the distributary streams of several deltas of the Mississippi River . The
Lower Charles River Bathymetry: 108 Years of Fresh Water
NASA Astrophysics Data System (ADS)
Yoder, M.; Sacarny, M.
2017-12-01
The Lower Charles River is a heavily utilized urban river that runs between Cambridge and Boston in Massachusetts. The recreational usage of the river is dependent on adequate water depths, but there have been no definitive prior studies on the sedimentation rate of the Lower Charles River. The river transitioned from tidal to a freshwater basin in 1908 due to the construction of the (old) Charles River Dam. Water surface height on the Lower Charles River is maintained within ±1 foot through controlled discharge at the new Charles River Dam. The current study area for historical comparisons is from the old Charles River Dam to the Boston University Bridge. This study conducted a bathymetric survey of the Lower Charles River, digitized three prior surveys in the study area, calculated volumes and depth distributions for each survey, and estimated sedimentation rates from fits to the volumes over time. The oldest chart digitized was produced in 1902 during dam construction deliberations. The average sedimentation rate is estimated as 5-10 mm/year, which implies 1.8-3.5 feet sedimentation since 1908. Sedimentation rates and distributions are necessary to develop comprehensive management plans for the river and there is evidence to suggest that sedimentation rates in the shallow upstream areas are higher than the inferred rates in the study area.
Hamad, Samera Hussein; Schauer, James Jay; Shafer, Martin Merrill; Abed Al-Raheem, Esam; Satar, Hyder
2012-01-01
The distribution of dissolved and particulate forms of 49 elements was investigated along transect of the Tigris River (one of the major rivers of the world) within Baghdad city and in its major tributary (Diyala River) from 11 to 28 July 2011. SF-ICP-MS was used to measure total and filterable elements at 17 locations along the Tigris River transect, two samples from the Diyala River, and in one sample from the confluence of the two rivers. The calculated particulate forms were used to determine the particle-partition coefficients of the metals. No major changes in the elements concentrations down the river transect. Dissolved phases dominated the physical speciation of many metals (e.g., As, Mo, and Pt) in the Tigris River, while Al, Fe, Pb, Th, and Ti were exhibiting high particulate fractions, with a trend of particle partition coefficients of [Ti(40) > Th(35) > Fe(15) > Al(13) > Pb(4.5)] ∗ 106 L/kg. Particulate forms of all metals exhibited high concentrations in the Diyala River, though the partition coefficients were low due to high TSS (~270 mg/L). A comparison of Tigris with the major rivers of the world showed that Tigris quality in Baghdad is comparable to Seine River quality in Paris. PMID:23304083
River-corridor habitat dynamics, Lower Missouri River
Jacobson, Robert B.
2010-01-01
Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.
Kircher, J.E.
1981-01-01
Sediment samples were collected on the South Platte, North Platte, and Platte Rivers in Colorado and Nebraska during the 1979 and 1980 runoff seasons. Suspended-sediment concentrations ranged from 62 to 3,705 milligrams per liter and the maximum load was 45,547 metric tons per day. The percentage of suspended sediment samller than sand (less than 0.062 millimeter) was as follows: 23 to 78 percent for the South Platte River, 9 to 30 percent for the North Platte River, and 2 to 89 percent for the Platte River. Bedload-transport rates ranged from 0.0085 to 0.67 kilogram per second per meter of channel width for the entire study area. The median grain size of bedload ranged from 0.6 to 2.6 millimeters for the South Platte River, 0.5 to 0.8 millimeter for the North Platte River, and 0.6 to 1.2 millimeters for th Platte River. The median grain size of bed material for the South Platte River ranged from 0.3 to 2.4 millimeters, compared to 0.5 to 0.9 millimeter for the North Platte River, and 0.4 to 3.1 millimeters for the Platte River. (USGS)
Chloride control and monitoring program in the Wichita River Basin, Texas, 1996-2009
Haynie, M.M.; Burke, G.F.; Baldys, Stanley
2011-01-01
Water resources of the Wichita River Basin in north-central Texas are vital to the water users in Wichita Falls, Tex., and surrounding areas. The Wichita River Basin includes three major forks of the Wichita River upstream from Lake Kemp, approximately 50 miles southwest of Wichita Falls, Tex. The main stem of the Wichita River is formed by the confluence of the North Wichita River and Middle Fork Wichita River upstream from Truscott Brine Lake. The confluence of the South Wichita River with the Wichita River is northwest of Seymour, Tex. (fig. 1). Waters from the Wichita River Basin, which is part of the Red River Basin, are characterized by high concentrations of chloride and other salinity-related constituents from salt springs and seeps (hereinafter salt springs) in the upper reaches of the basin. These salt springs have their origins in the Permian Period when the Texas Panhandle and western Oklahoma areas were covered by a broad shallow sea. Over geologic time, evaporation of the shallow seas resulted in the formation of salt deposits, which today are part of the geologic formations underlying the area. Groundwater in these formations is characterized by high chloride concentrations from these salt deposits, and some of this groundwater is discharged by the salt springs into the Wichita River.
Breck, S.W.; Wilson, K.R.; Andersen, D.C.
2003-01-01
We compared beaver (Castor canadensis) foraging patterns on Fremont cottonwood (Populus deltoides subsp. wislizenii) saplings and the probability of saplings being cut on a 10 km reach of the flow-regulated Green River and a 8.6 km reach of the free-flowing Yampa River in northwestern Colorado. We measured the abundance and density of cottonwood on each reach and followed the fates of individually marked saplings in three patches of cottonwood on the Yampa River and two patches on the Green River. Two natural floods on the Yampa River and one controlled flood on the Green River between May 1998 and November 1999 allowed us to assess the effect of flooding on beaver herbivory. Independent of beaver herbivory, flow regulation on the Green River has caused a decrease in number of cottonwood patches per kilometre of river, area of patches per kilometre, and average stem density within cottonwood patches. The number of saplings cut per beaver colony was three times lower on the Green River than on the Yampa River but the probability of a sapling being cut by a beaver was still higher on the Green River because of lower sapling density there. Controlled flooding appeared to increase the rate of foraging on the Green River by inundating patches of cottonwood, which enhanced access by beaver. Our results suggest regulation can magnify the impact of beaver on cottonwood through interrelated effects on plant spatial distribution and cottonwood density, with the result that beaver herbivory will need to be considered in plans to enhance cottonwood populations along regulated rivers.
Riverine based eco-tourism: Trinity River non-market benefits estimates
Douglas, A.J.; Taylor, J.G.
1998-01-01
California's Central Valley Project (CVP) was approved by voters in a statewide referendum in 1933. CVP referendum approval initiated funding for construction of important water development projects that had far reaching effects on regional water supplies. The construction of Trinity Dam in 1963 and the subsequent transbasin diversion of Trinity River flow was one of several CVP projects that had noteworthy adverse environmental and regional economic impacts. The Trinity River is the largest tributary of the Klamath River, and has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel. Before 1963, the Trinity River was a major recreation resource of Northern California. The loss of streamflow has had a marked adverse impact on Trinity River-related recreation activities and the size and robustness of Trinity River salmon, steelhead, shad, and sturgeon runs. Trinity River water produces hydropower during its transit via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The benefits provided by Trinity River instream flow-related environmental amenities were estimated with the travel cost method (TCM). Trinity River non-market benefits are about $406 million per annum, while the social cost of sending water down the Trinity River ranges from $17 to $42 million per annum, depending on the exact flow. We also discuss the relative magnitude of Trinity River survey data contingent value method (CVM) benefits estimates.
NASA Astrophysics Data System (ADS)
Lininger, K. B.; Wohl, E.; Rose, J. R.
2018-03-01
Floodplains accumulate and store organic carbon (OC) and release OC to rivers, but studies of floodplain soil OC come from small rivers or small spatial extents on larger rivers in temperate latitudes. Warming climate is causing substantial change in geomorphic process and OC fluxes in high latitude rivers. We investigate geomorphic controls on floodplain soil OC concentrations in active-layer mineral sediment in the Yukon Flats, interior Alaska. We characterize OC along the Yukon River and four tributaries in relation to geomorphic controls at the river basin, segment, and reach scales. Average OC concentration within floodplain soil is 2.8% (median = 2.2%). Statistical analyses indicate that OC varies among river basins, among planform types along a river depending on the geomorphic unit, and among geomorphic units. OC decreases with sample depth, suggesting that most OC accumulates via autochthonous inputs from floodplain vegetation. Floodplain and river characteristics, such as grain size, soil moisture, planform, migration rate, and riverine DOC concentrations, likely influence differences among rivers. Grain size, soil moisture, and age of surface likely influence differences among geomorphic units. Mean OC concentrations vary more among geomorphic units (wetlands = 5.1% versus bars = 2.0%) than among study rivers (Dall River = 3.8% versus Teedrinjik River = 2.3%), suggesting that reach-scale geomorphic processes more strongly control the spatial distribution of OC than basin-scale processes. Investigating differences at the basin and reach scale is necessary to accurately assess the amount and distribution of floodplain soil OC, as well as the geomorphic controls on OC.
Anderson, Elizabeth P.; Pringle, Catherine M.; Freeman, Mary C.
2008-01-01
Costa Rica has recently experienced a rapid proliferation of dams for hydropower on rivers draining its northern Caribbean slope. In the Sarapiquí River Basin, eight hydropower plants were built between 1990 and 1999 and more projects are either under construction or proposed. The majority of these dams are small (<15 m tall) and operate as water diversion projects.While the potential environmental effects of individual projects are evaluated prior to dam construction, there is a need for consideration of the basin-scale ecological consequences of hydropower development. This study was a first attempt to quantify the extent of river fragmentation by dams in the Sarapiquí River Basin.Using simple spatial analyses, the length of river upstream from dams and the length of de-watered reaches downstream from dams was measured. Results indicated that there are currently 306.8 km of river (9.4% of the network) upstream from eight existing dams in the Sarapiquí River Basin and 30.6 km of rivers (0.9% of the network) with significantly reduced flow downstream from dams. Rivers upstream from dams primarily drain two life zones: Premontane Rain Forest (107.9 km) and Lower Montane Rain Forest (168.2 km).Simple spatial analyses can be used as a predictive or planning tool for considering the effects of future dams in a basin-scale context. In the Sarapiquí River Basin, we recommend that future dam projects be constructed on already dammed rivers to minimize additional river fragmentation and to protect remaining riverine connectivity.
Modeling a three-dimensional river plume over continental shelf using a 3D unstructured grid model
Cheng, R.T.; Casulli, V.; ,
2004-01-01
River derived fresh water discharging into an adjacent continental shelf forms a trapped river plume that propagates in a narrow region along the coast. These river plumes are real and they have been observed in the field. Many previous investigations have reported some aspects of the river plume properties, which are sensitive to stratification, Coriolis acceleration, winds (upwelling or downwelling), coastal currents, and river discharge. Numerical modeling of the dynamics of river plumes is very challenging, because the complete problem involves a wide range of vertical and horizontal scales. Proper simulations of river plume dynamics cannot be achieved without a realistic representation of the flow and salinity structure near the river mouth that controls the initial formation and propagation of the plume in the coastal ocean. In this study, an unstructured grid model was used for simulations of river plume dynamics allowing fine grid resolution in the river and in regions near the coast with a coarse grid in the far field of the river plume in the coastal ocean, in the vertical, fine fixed levels were used near the free surface, and coarse vertical levels were used over the continental shelf. The simulations have demonstrated the uniquely important role played by Coriolis acceleration. Without Coriolis acceleration, no trapped river plume can be formed no matter how favorable the ambient conditions might be. The simulation results show properties of the river plume and the characteristics of flow and salinity within the estuary; they are completely consistent with the physics of estuaries and coastal oceans.
NASA Technical Reports Server (NTRS)
DelCastillo, Carlos E.; Miller, Richard L.
2007-01-01
We investigated the use of ocean color remote sensing to measure transport of dissolved organic carbon (DOC) by the Mississippi River to the Gulf of Mexico. From 2000 to 2005 we recorded surface measurements of DOC, colored dissolved organic matter (CDOM), salinity, and water-leaving radiances during five cruises to the Mississippi River Plume. These measurements were used to develop empirical relationships to derive CDOM, DOC, and salinity from monthly composites of SeaWiFS imagery collected from 1998 through 2005. We used river flow data and a two-end-member mixing model to derive DOC concentrations in the river end-member, river flow, and DOC transport using remote sensing data. We compared our remote sensing estimates of river flow and DOC transport with data collected by the United States Geological Survey (USGS) from 1998 through 2005. Our remote sensing estimates of river flow and DOC transport correlated well (r2 0.70) with the USGS data. Our remote sensing estimates and USGS field data showed low variability in DOC concentrations in the river end-member (7-11%), and high seasonal variability in river flow (50%). Therefore, changes in river flow control the variability in DOC transport, indicating that the remote sensing estimate of river flow is the most critical element of our DOC transport measurement. We concluded that it is possible to use this method to estimate DOC transport by other large rivers if there are data on the relationship between CDOM, DOC, and salinity in the river plume.
Estimation of global plastic loads delivered by rivers into the sea
NASA Astrophysics Data System (ADS)
Schmidt, Christian; Krauth, Tobias; Klöckner, Phillipp; Römer, Melina-Sophie; Stier, Britta; Reemtsma, Thorsten; Wagner, Stephan
2017-04-01
A considerable fraction of marine plastic debris likely originates from land-based sources. Transport of plastics by rivers is a potential mechanism that connects plastic debris generated on land with the marine environment. We analyze existing and experimental data of plastic loads in rivers and relate these to the amount of mismanaged plastic waste (MMPW) generated in the river catchments. We find a positive relationship between the plastic load in rivers and the amount of MMPW. Using our empirical MMPW-plastic river load-relationship we estimated the annual plastic load for 1494 rivers, ranging from small first order streams to large rivers, which have an outlet to the sea. We estimate that the global load of plastic debris delivered by rivers to the sea is 39000 tons per year with a large 95% prediction interval between 247 tons per year and 16.7 million tons per year, respectively. Our best estimate is considerably lower than the estimated total land-based inputs which range between 4.8-12.7 million tons anually (Jambeck et al. 2015). Approximately 75% of the total load is transported by the 10 top-ranked rivers which are predominantly located in Asia. These river catchments encompass countries with a large population and high economic growth but an insufficient waste infrastructure. Reducing the plastic loads in these rivers by 50% would reduce the global inputs by 37%. Of the total MMPW generated within river catchments, only a small fraction of about 0.05 % has been found to be mobile in rivers. Thus, either only a small fraction of MMPW enters the river systems, or a substantial fraction of plastic debris accumulates in river systems world wide. References: Jambeck, J. R., R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law (2015), Plastic waste inputs from land into the ocean, Science, 347(6223), 768-771, doi:10.1126/science.1260352.
Wilson, Richard P.; Owen-Joyce, Sandra J.
1994-01-01
Accounting for the use of Colorado River water is required by the U.S. Supreme Court decree, 1964, Arizona v. California. Water pumped from wells on the flood plain and from certain wells on alluvial slopes outside the flood plain is presumed to be river water and is accounted for as Colorado River water. A method was developed to identify wells outside the f1ood plain of the lower Colorado River that yield water that will be replaced by water from the river. The method provides a uniform criterion of identification for all users pumping water from wells. Wells that have a static water-level elevation equal to or below the accounting surface are presumed to yield water that will be replaced by water from the river. Wells that have a static water-level elevation above the accounting surface are presumed to yield water that will be replaced by water from precipitation and inflow from tributary valleys. The method is based on the concept of a river aquifer and an accounting surface within the river aquifer. The river aquifer consists of permeable, partly saturated sediments and sedimentary rocks that are hydraulically connected to the Colorado River so that water can move between the river and the aquifer in response to withdrawal of water from the aquifer or differences in water-level elevations between the river and the aquifer. The accounting surface represents the elevation and slope of the unconfined static water table in the river aquifer outside the flood plain and reservoirs that would exist if the river were the only source of water to the river aquifer. Maps at a scale of 1:100,000 show the extent and elevation of the accounting surface from the area surrounding Lake Mead to Laguna Dam near Yuma, Arizona.
Ellsworth, Craig M.; VanderKooi, Scott P.
2011-01-01
The Chiloquin Dam was located at river kilometer (rkm) 1.3 on the Sprague River near the town of Chiloquin, Oregon. The dam was identified as a barrier that potentially inhibited or prevented the upstream spawning migrations and other movements of endangered Lost River suckers (Deltistes luxatus), shortnose suckers (Chasmistes brevirostris), and other fish in the Sprague River. Our research objectives in 2009 were to evaluate adult catostomid spawning migration patterns using radio telemetry to identify and describe shifts in spawning area distribution and migration behavior following the removal of Chiloquin Dam in 2008. We attached external radio transmitters to 58 Lost River suckers and 59 shortnose suckers captured at the Williamson River fish weir. A total of 17 radio-tagged Lost River suckers and one radio-tagged shortnose sucker were detected approaching the site of the former Chiloquin Dam but only two radio-tagged fish (one male Lost River sucker and one female Lost River sucker) were detected crossing upstream of the dam site. A lower proportion of radio-tagged shortnose suckers were detected migrating into the Sprague River when compared with previous years. Detections on remote passive integrated transponder (PIT) tag arrays located in the Sprague River show that although the proportion of fish coming into the Sprague River is small when compared to the number of fish crossing the Williamson River fish weir, the number of fish migrating upstream of the Chiloquin Dam site increased exponentially in the first year since its removal. These data will be used in conjunction with larval production and adult spawning distribution data to evaluate the effectiveness of dam removal in order to provide increased access to underutilized spawning habitat located further upstream in the Sprague River and to reduce the crowding of spawning fish below the dam site.
The Columbia River--on the Leading Edge
NASA Astrophysics Data System (ADS)
O'Connor, J. E.
2005-05-01
On the leading edge of the North American plate, the Columbia River is the largest of the world's 40 or so rivers with drainage areas greater than 500,000 square kilometers to drain toward a convergent plate boundary. This unique setting results in a unique continental river basin; marked by episodic and cataclysmic geologic disturbance, but also famously fecund with perhaps 10 to 16 million salmon historically spawning in its waters each year. Now transformed by dams, transportation infrastructure, dikes and diversions, the Columbia River presents an expensive conundrum for management of its many values. Inclusion of river ecology and geomorphology in discussions of river management is generally limited to observations of the last 200 years-a time period of little natural disturbance and low sediment transport. However, consideration of longer timescales provides additional perspective of historical ecologic and geomorphic conditions. Only 230 km from its mouth, the Columbia River bisects the volcanic arc of the Cascade Range, forming the Columbia River Gorge. Cenozoic lava flows have blocked the river, forcing diversions and new canyon cutting. Holocene eruptions of Mount Mazama (Crater Lake), Mount Hood, Mount St. Helens, and Mount Rainier have shed immense quantities of sediment into the lower Columbia River, forming a large percentage of the Holocene sediment transported through the lower river. Quaternary landslides, perhaps triggered by great earthquakes, have descended from the 1000-m-high gorge walls, also blocking and diverting the river, one as recently as 550 years ago. These geologic disturbances, mostly outside the realm of historical observation and operating at timescales of 100s to 1000s of years in the gorge and elsewhere, have clearly affected basin geomorphology, riverine ecology, and past and present cultural utilization of river resources. The historic productivity of the river, however, hints at extraordinary resilience (and perhaps dependence) of the Columbia River system to such disturbances, many of which are similar to engineered disturbances of the last 200 years.
NASA Astrophysics Data System (ADS)
Ding, Hu; Liu, Cong-Qiang; Zhao, Zhi-Qi; Li, Si-Liang; Lang, Yun-Chao; Li, Xiao-Dong; Hu, Jian; Liu, Bao-Jian
2017-05-01
This study focuses on the chemical and Sr isotopic compositions of the dissolved load of the rivers in the Liao River basin, which is one of the principal river systems in northeast China. Water samples were collected from both the tributaries and the main channel of the Liao River, Daling River and Hun-Tai River. Chemical and isotopic analyses indicated that four major reservoirs (carbonates (+gypsum), silicates, evaporites and anthropogenic inputs) contribute to the total dissolved solutes. Other than carbonate (+gypsum) weathering, anthropogenic inputs provide the majority of the solutes in the river water. The estimated chemical weathering rates (as TDS) of silicate, carbonate (+gypsum) and evaporites are 0.28, 3.12 and 0.75 t/km2/yr for the main stream of the Liao River and 7.01, 25.0 and 2.80 t/km2/yr for the Daliao River, respectively. The associated CO2 consumption rates by silicate weathering and carbonate (+gypsum) weathering are 10.1 and 9.94 × 103 mol/km2/yr in the main stream of the Liao River and 69.0 and 80.4 × 103 mol/km2/yr in the Hun-Tai River, respectively. The Daling River basin has the highest silicate weathering rate (TDSsil, 3.84 t/km2/yr), and the Hun-Tai River has the highest carbonate weathering rate (TDScarb, 25.0 t/km2/yr). The Raoyang River, with an anthropogenic cation input fraction of up to 49%, has the lowest chemical weathering rates, which indicates that human impact is not a negligible parameter when studying the chemical weathering of these rivers. Both short-term and long-term study of riverine dissolved loads are needed to a better understanding of the chemical weathering and controlling factors.
Influence of urban area on the water quality of the Campo River basin, Paraná State, Brazil.
Carvalho, K Q; Lima, S B; Passig, F H; Gusmão, L K; Souza, D C; Kreutz, C; Belini, A D; Arantes, E J
2015-12-01
The Campo River basin is located on the third plateau of the Paraná State or trap plateau of Paraná, at the middle portion between the rivers Ivaí and Piquiri, southern Brazil, between the coordinates 23° 53 and 24° 10' South Latitude and 52° 15' and 52° 31' West Longitude. The basin has 384 Km² area, being 247 km² in the municipality of Campo Mourão and 137 km² in the municipality of Peabiru, in Paraná State. The Campo River is a left bank tributary of the Mourão River, which flows into the Ivaí River. The objective of this study was to monitor water quality in the Km 119 River and the Campo River, tributaries of the Mourão River, with monthly collection of water samples to determine pH, temperature, turbidity, biochemical oxygen demand, dissolved oxygen, fecal coliforms, total solids, total nitrogen, ammoniacal nitrogen, nitrite, nitrate and total phosphorus. The results obtained were compared with the indices established by the environmental legislation and applied in the determination of the Water Quality Index (WQI) used by the Water Institute of Paraná State, regulating environmental agency. Poor water quality in these rivers presents a worrying scenario for the region, since this river is the main source of water supply for the public system. Results of organic matter, fecal coliforms and total phosphorus were higher than the limits established by Resolution CONAMA 357/2005 to river class 2, specially at downstream of the Km 119 River and the Campo River, due to the significant influence of the urban anthropic activity by the lack of tertiary treatment and also rural by the lack of basic sanitation in this area. Results of WQI of Km 119 River and do Campo River indicated that water quality can be classified as average in 71% and good in 29% of the sites evaluated.
Araújo, Cristiano V M; Griffith, Daniel M; Vera-Vera, Victoria; Jentzsch, Paul Vargas; Cervera, Laura; Nieto-Ariza, Beatriz; Salvatierra, David; Erazo, Santiago; Jaramillo, Rusbel; Ramos, Luis A; Moreira-Santos, Matilde; Ribeiro, Rui
2018-04-01
Aquatic ecotoxicity assays used to assess ecological risk assume that organisms living in a contaminated habitat are forcedly exposed to the contamination. This assumption neglects the ability of organisms to detect and avoid contamination by moving towards less disturbed habitats, as long as connectivity exists. In fluvial systems, many environmental parameters vary spatially and thus condition organisms' habitat selection. We assessed the preference of zebra fish (Danio rerio) when exposed to water samples from two western Ecuadorian rivers with apparently distinct disturbance levels: Pescadillo River (highly disturbed) and Oro River (moderately disturbed). Using a non-forced exposure system in which water samples from each river were arranged according to their spatial sequence in the field and connected to allow individuals to move freely among samples, we assayed habitat selection by D. rerio to assess environmental disturbance in the two rivers. Fish exposed to Pescadillo River samples preferred downstream samples near the confluence zone with the Oro River. Fish exposed to Oro River samples preferred upstream waters. When exposed to samples from both rivers simultaneously, fish exhibited the same pattern of habitat selection by preferring the Oro River samples. Given that the rivers are connected, preference for the Oro River enabled us to predict a depression in fish populations in the Pescadillo River. Although these findings indicate higher disturbance levels in the Pescadillo River, none of the physical-chemical variables measured was significantly correlated with the preference pattern towards the Oro River. Non-linear spatial patterns of habitat preference suggest that other environmental parameters like urban or agricultural contaminants play an important role in the model organism's habitat selection in these rivers. The non-forced exposure system represents a habitat selection-based approach that can serve as a valuable tool to unravel the factors that dictate organisms' spatial distribution in connected ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Depositional settings of sand beaches along whitewater rivers
Vincent, K.R.; Andrews, E.D.
2008-01-01
The numbers and sizes of sand beaches suitable for recreation along selected whitewater rivers in the western United States depend on sand concentrations, range of discharge and the size, frequency and type of depositional settings. River-width expansions downstream from constrictions are the predominant depositional setting for sand beaches in the upper Grand Canyon and along five Wild and Scenic Rivers in Idaho, but not along other rivers. Beaches located upstream from constrictions are rare, in general, except in the Grand Canyon. Beaches found in expansions without constrictions dominate depositional sites along the Yampa and Green Rivers, are fairly common along the rivers in Idaho, but are relatively rare in the Grand Canyon. The magnitude of flow expansion is a reliable predictor of beach size. Beaches located on the inside of curves are uncommon, in general, but can be important recreation sites. The mid-channel bar setting is the least important from a recreation standpoint because that setting is rare and beaches there are typically small, and emergent only at low flow. The frequency of beaches is highly variable among rivers and the concentration of sand in transport is only partially responsible. Of the rivers studied, the unregulated Yampa River carries the highest concentrations of suspended sand and has among the most beaches (1.2 beaches km-1). Emergent sand beaches are essentially nonexistent along the Deschutes River and are rare along other Oregon rivers, yet these rivers transport some sand. Sand beaches are fairly common (0.8-1.1 beaches km-1) along the regulated Colorado River, but are comparatively rare (0.6 beaches km-1) along the unregulated Middle Fork Salmon River. The suspended sand concentrations in study reaches of these two rivers are similar, and the difference in the frequency of beaches may be largely because the processes that create beach-deposition settings are less active along the Middle Fork Salmon.
Communicating River Level Data and Information to Stakeholders with Different Interests
NASA Astrophysics Data System (ADS)
Macleod, K.; Sripada, S.; Ioris, A.; Arts, K.; van der Wal, R.
2012-12-01
There is a need to increase the effectiveness of how river level data are communicated to a range of stakeholders with an interest in river level information to increase the use of data collected by regulatory agencies. Currently, river level data is provided to members of the public through a web site without any formal engagement with river users having taken place. In our research project called wikiRivers, we are working with the suppliers of river level data as well as the users of this data to explore and improve from the user perspective how river level data and information is made available online. We are focusing on the application of natural language generation technology to create textual summaries of river level data tailored for specific interest groups. These tailored textual summaries will be presented among other modes of information presentation (e.g. maps and visualizations) with the aim to increase communication effectiveness. Natural language generation involves developing computational models that use non-linguistic input data to produce natural language as their output. Acquiring accurate correct system knowledge for natural language generation is a key step in developing such an effective computer software system. In this paper we set out the needs for this project based on discussions with the stakeholder who supplies the river level data and current cyberinfrastructure and report on what we have learned from those individuals and groups who use river level data. Stages in the wikiRivers stakeholder identification, engagement and cyberinfrastructure development. S1- interviews with collectors and suppliers of river level data. S2- river level data stakeholder analysis, including analysis of their interests in individual river networks in Scotland and what they require from the cyberinfrastructure. S3-5 Iterative development and testing of cyberinfrastructure and modelling of river level data with domain and stakeholder knowledge.
77 FR 55466 - Barren River Lake Hydro LLC; Notice Soliciting Scoping Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-10
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 13022-003] Barren River Lake Hydro LLC; Notice Soliciting Scoping Comments Take notice that the following hydroelectric..., 2012. d. Applicant: Barren River Lake Hydro LLC (Barren River Hydro). e. Name of Project: Barren River...
NASA Astrophysics Data System (ADS)
Pan, Feifei; Wang, Cheng; Xi, Xiaohuan
2016-09-01
Remote sensing from satellites and airborne platforms provides valuable data for monitoring and gauging river discharge. One effective approach first estimates river stage from satellite-measured inundation area based on the inundation area-river stage relationship (IARSR), and then the estimated river stage is used to compute river discharge based on the stage-discharge rating (SDR) curve. However, this approach is difficult to implement because of a lack of data for constructing the SDR curves. This study proposes a new method to construct the SDR curves using remotely sensed river cross-sectional inundation areas and river bathymetry. The proposed method was tested over a river reach between two USGS gauging stations, i.e., Kingston Mines (KM) and Copperas Creek (CC) along the Illinois River. First a polygon over each of two cross sections was defined. A complete IARSR curve was constructed inside each polygon using digital elevation model (DEM) and river bathymetric data. The constructed IARSR curves were then used to estimate 47 river water surface elevations at each cross section based on 47 river inundation areas estimated from Landsat TM images collected during 1994-2002. The estimated water surface elevations were substituted into an objective function formed by the Bernoulli equation of gradually varied open channel flow. A nonlinear global optimization scheme was applied to solve the Manning's coefficient through minimizing the objective function value. Finally the SDR curve was constructed at the KM site using the solved Manning's coefficient, channel cross sectional geometry and the Manning's equation, and employed to estimate river discharges. The root mean square error (RMSE) in the estimated river discharges against the USGS measured river discharges is 112.4 m3/s. To consider the variation of the Manning's coefficient in the vertical direction, this study also suggested a power-law function to describe the vertical decline of the Manning's coefficient with the water level from the channel bed lowest elevation to the bank-full level. The constructed SDR curve with the vertical variation of the Manning's coefficient reduced the RMSE in the estimated river discharges to 83.9 m3/s. These results indicate that the method developed and tested in this study is effective and robust, and has the potential for improving our ability of remote sensing of river discharge and providing data for water resources management, global water cycle study, and flood forecasting and prevention.
Hinck, Jo Ellen; Blazer, Vicki; Denslow, Nancy D.; Echols, Kathy R.; Gale, Robert W.; May, Tom W.; Claunch, Rachael; Wieser, Carla; Anderson, Patrick J.; Coyle, James J.; Gross, Timothy S.; Tillitt, Donald E.
2007-01-01
Largemouth bass (Micropterus salmoides) and common carp (Cyprinus carpio) were collected from 13 sites in 4 river basins in the southeastern United States to document spatial trends in accumulative contaminants, health indicators, and reproductive biomarkers. Organochlorine residues, 2,3,7,8- tetrachlorodibenzo-p-dioxin-like activity (TCDD-EQ), and elemental contaminants were measured in composite samples of whole fish, grouped by species and gender, from each site. Fish were field-examined for external and internal anomalies, selected organs were weighed to compute somatic indices, and tissue and fluid samples were preserved for fish health and reproductive biomarker analyses. Mercury concentrations in bass samples from all sites exceeded toxicity thresholds for mammals [>0.1 micrograms per gram wet weight (ug/g ww)], fish (>0.2 ug/g ww), and birds (>0.3 ug/g ww) and were greatest (>0.5 ug/g ww) in samples from the Alabama River at Eureka Landing, Alabama; the Mobile River at Bucks, Alabama; the Apalachicola River at Blountstown, Florida; the Savannah River at Sylvania, Georgia; and the Pee Dee River at Bucksport, South Carolina. Selenium concentrations were relatively high (>0.75 ug/g ww) in fish from the Tombigbee River at Lavaca, Alabama; the Mobile River at Bucks; and the Chattahoochee River at Omaha, Georgia compared to those from other sites. Concentrations of 2,2-bis (p-chlorophenyl)- 1,1-dichloroethylene (p,p'-DDE) were high in fish from the Chattahoochee River at Omaha and the Mobile River near Bucks, which was near a 2,2-bis (p-chlorophenyl)-1,1- dichloroethylene (DDT) formulating facility that historically discharged into the lower Mobile River. Toxaphene concentrations in fish from the Flint River near Albany, Georgia (60-100 nanograms per gram (ng/g) ww) may pose a risk to fish. Concentrations of other formerly used (total chlordanes, dieldrin, endrin, aldrin, mirex, and hexachlorobenzene) and currently used (pentachlorobenzene, pentachloroanisole, dacthal, endosulfan, y-HCH, and methoxychlor) organochlorine residues generally were low or did not exceed toxicity thresholds. Total polychlorinated biphenyls concentrations in samples from the Coosa River at Childersburg, Alabama; the Apalachicola River at Omaha; the Apalachicola River at Blountstown; and the Pee Dee River at Bucksport were >480 ng/g ww and may be a risk to piscivorous wildlife. Dioxin-like activity as measured by TCDD-EQ was greatest [>10 picograms per gram (pg/g)] in male fish from the Coosa River at Childersburg and the Mobile River at Bucks. Hepatic ethoxyresorufin O-deethylase activity generally was greatest in carp from the Mobile River Basin [means >10 picomols per minute per milligram of protein (pmol/min/mg)] and in bass from the Tombigbee River at Lavaca and Pee Dee River at Pee Dee, South Carolina (means >65 pmol/min/mg). Altered biomarkers were noted in fish from all basins. The field necropsy and histopathological examination determined that fish from the Mobile River Basin generally were in poorer health than those from the other basins. In bass, health assessment index scores were correlated with mercury and p,p'-DDE concentrations. High health assessment index scores in Mobile River Basin fish were widespread and caused primarily by parasitic infestations, which were most severe in fish from the Tombigbee River at Lavaca and the Alabama River at Eureka Landing. Tumors were present in few fish (n = 5; 0.01%). Ovarian tumors of the same origin (smooth muscle) were present in two older carp from the Chattahoochee River near Omaha, Georgia and may be contaminant related. Reproductive biomarkers including gonadosomatic index, vitellogenin concentrations, and steroid hormone concentrations were anomalous in fish from various sites but were not consistently related to any particular chemical contaminant. Intersex gonads were identified in 47 male bass (42%) representing 12 sites and may indicate exposure to endocrine disrupting comp
Life history and status of Shortnose Sturgeon (Acipenser brevirostrum LeSueur, 1818)
Kynard, Boyd; Bolden, Stephania; Kieffer, Micah; Collins, Mark; Brundage, Hal; Hilton, Eric; Litvak, Mark; Kinnison, Michael T.; King, Timothy L.; Peterson, Douglas C.
2016-01-01
Shortnose Sturgeon = SNS (Acipenser brevirostrum) is a small diadromous species with most populations living in large Atlantic coast rivers and estuaries of North America from New Brunswick, Canada, to GA, USA. There are no naturally landlocked populations, so all populations require access to fresh water and salt water to complete a natural life cycle. The species is amphidromous with use of fresh water and salt water (the estuary) varied across the species range, a pattern that may reflect whether freshwater or saltwater habitats provide optimal foraging and growth conditions. Migration is a dominant behavior during life history, beginning when fish are hatchling free embryos (southern SNS) or larvae (northeastern and far northern SNS). Migration continues by juveniles and nonspawning adult life stages on an individual time schedule with fish moving between natal river and estuary to forage or seek refuge, and by spawning adults migrating to and from riverine spawning grounds. Coastal movements by adults throughout the range (but particularly in the Gulf of Maine = GOM and among southern rivers) suggest widespread foraging, refuge use, and widespread colonization of new rivers. Colonization may also be occurring in the Potomac River, MD–VA–DC (midAtlantic region). Genetic studies (mtDNA and nDNA) identified distinct individual river populations of SNS, and recent rangewide nDNA studies identified five distinct evolutionary lineages of SNS in the USA: a northern metapopulation in GOM rivers; the Connecticut River; the Hudson River; a Delaware River–Chesapeake Bay metapopulation; and a large southern metapopulation (SC rivers to Altamaha River, GA). The Saint John River, NB, Canada, in the Bay of Fundy (north of the GOM), is the sixth distinct genetic lineage within SNS. Life history information from telemetry tracking supports the genetic information documenting extensive movement of adults among rivers within the three metapopulations. However, individual river populations with spawning adults are still the best basal unit for management and recovery planning. The focus on individual river populations should be complemented with attention to migratory processes and corridors that foster metapopulation level risks and benefits. The species may be extirpated at the center of the range, i.e., the midAtlantic region (Chesapeake Bay, MD–VA, and probably, NC), but large rivers in VA, including the James and Potomac rivers, need study. The largest SNS populations in GOM and northeastern rivers, like the Kennebec, Hudson, and Delaware rivers, typically have tens of thousands of adults. This contrasts with southern rivers, where rivers typically have much fewer (6000 adults). River damming in the 19th and 20th Centuries extirpated some populations, and also, created two dysfunctional segmented populations: the Connecticut River SNS in CT–MA and the SanteeCooper rivers–Lake Marion SNS in SC. The major anthropogenic impact on SNS in marine waters is fisheries bycatch. The major impacts that determine annual recruitment success occur in freshwater firstly, where adult spawning migrations and spawning are blocked or spawning success is affected by river regulation and secondly, where poor survival of early life stages is caused by river dredging, pollution, and unregulated impingement/entrainment in water withdrawal facilities. Climate warming has the potential to reduce abundance or eliminate SNS in many rivers, particularly in the South. In 1998, the National Marine Fisheries Service (NMFS) recommended management of 19 rivers as distinct population segments (DPSs) based on strong fidelity to natal rivers. A Biological Assessment completed in 2010 reaffirmed this approach. NMFS has not formally listed DPSs under the ESA and the species remains listed as endangered rangewide in the USA.
NASA Astrophysics Data System (ADS)
Dorsey, Rebecca J.; O'Connell, Brennan; McDougall, Kristin; Homan, Mindy B.
2018-01-01
The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at 5.4-5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough. These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment discharge are assessed by comparing the depositional chronology to the record of global sea-level change. The lower Colorado River Valley and Salton Trough experienced marine transgression during a gradual fall in global sea level between 6.3 and 5.5 Ma, implicating tectonic subsidence as the main driver of latest Miocene relative sea-level rise. A major fall of global sea level at 5.3 Ma outpaced subsidence and drove regional delta progradation, earliest flushing of Colorado River sand into the northern Gulf of California, and erosion of Bouse basal carbonate and siliciclastic members. The lower Colorado River valley was re-flooded by shallow marine waters during smaller changes in global sea level 5.1-4.8 Ma, after the river first ran through it, which requires a mechanism to stop delivery of sand to the lower river valley. We propose that tectonically controlled subsidence along the lower Colorado River, upstream of the southern Bouse study area, temporarily trapped sediment and stopped delivery of sand to the lower river valley and northern Gulf of California for 200-300 kyr. Massive progradation of the fluvial-deltaic system back down the river valley into the Salton Trough starting 4.8-4.5 Ma apparently was driven by a huge increase in sediment discharge that overwhelmed the sediment-storage capacity of sub-basins along the lower river corridor and established the fully integrated river channel network. Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology". Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology". Accompanies Dorsey et al. "Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology".
Thiros, Susan A.
2017-03-23
The U.S. Geological Survey (USGS), in cooperation with the Colorado River Basin Salinity Control Forum, studied trends in dissolved-solids loads at selected sites in and near the Uinta Basin, Utah. The Uinta Basin study area includes the Duchesne River Basin and the Middle Green River Basin in Utah from below Flaming Gorge Reservoir to the town of Green River.Annual dissolved-solids loads for water years (WY) 1989 through 2013 were estimated for 16 gaging stations in the study area using streamflow and water-quality data from the USGS National Water Information System database. Eight gaging stations that monitored catchments with limited or no agricultural land use (natural subbasins) were used to assess loads from natural sources. Four gaging stations that monitored catchments with agricultural land in the Duchesne River Basin were used to assess loads from agricultural sources. Four other gaging stations were included in the dissolved-solids load and trend analysis to help assess the effects of agricultural areas that drain to the Green River in the Uinta Basin, but outside of the Duchesne River Basin.Estimated mean annual dissolved-solids loads for WY 1989–2013 ranged from 1,520 tons at Lake Fork River above Moon Lake, near Mountain Home, Utah (UT), to 1,760,000 tons at Green River near Green River, UT. The flow-normalized loads at gaging stations upstream of agricultural activities showed no trend or a relatively small change. The largest net change in modeled flow-normalized load was -352,000 tons (a 17.8-percent decrease) at Green River near Green River, UT.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.The flow-normalized dissolved-solids loads estimated at Duchesne River near Randlett, UT, and White River near Watson, UT, decreased by 68,000 and 55,300 tons, or 27.8 and 20.8 percent respectively, when comparing 1989 to 2013. The drainage basins for both rivers have undergone salinity-control projects since the early 1980s to reduce the dissolved-solids load entering the Colorado River. Approximately 19 percent of the net change in flow-normalized load at Green River at Green River, UT, is from changes in load modeled at Duchesne River near Randlett, UT, and 16 percent from changes in load modeled at White River near Watson, UT. The net change in flow-normalized load estimated at Green River near Greendale, UT, for WY 1989–2013 accounts for about 45 percent of the net change estimated at Green River at Green River, UT.Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites in the Duchesne River Basin show that 75,400 tons or 44 percent of the load at the Duchesne River near Randlett, UT, gaging station was not accounted for at any of the upstream gages. Most of this unmonitored load is derived from tributary inflow, groundwater discharge, unconsumed irrigation water, and irrigation tail water.A mass balance of WY 1989–2013 flow-normalized loads estimated at sites in the Duchesne River Basin indicates that the flow-normalized load of unmonitored inflow to the Duchesne River between the Myton and Randlett gaging stations decreased by 38 percent. The total net decrease in flow-normalized load calculated for unmonitored inflow in the drainage basin accounts for 94 percent of the decrease in WY 1989–2013 flow-normalized load modeled at the Duchesne River near Randlett, UT, gaging station. Irrigation improvements in the drainage basin have likely contributed to the decrease in flow-normalized load.Reductions in dissolved-solids load estimated by the Natural Resources Conservation Service (NRCS) and the Bureau of Reclamation (Reclamation) from on- and off-farm improvements in the Uinta Basin totaled about 135,000 tons in 2013 (81,900 tons from on-farm improvements and 53,300 tons from off-farm improvements). The reduction in dissolved-solids load resulting from on- and off-farm improvements facilitated by the NRCS and Reclamation in the Price River Basin from 1989 to 2013 was estimated to be 64,800 tons.The amount of sprinkler-irrigated land mapped in the drainage area or subbasin area for a gaging station was used to estimate the reduction in load resulting from the conversion from flood to sprinkler irrigation. Sprinkler-irrigated land mapped in the Uinta Basin totaled 109,630 acres in 2012. Assuming conversion to wheel-line sprinklers, a reduction in dissolved-solids load in the Uinta Basin of 95,800 tons in 2012 was calculated using the sprinkler-irrigation acreage and a pre-salinity-control project dissolved-solids yield of 1.04 tons per acre.A reduction of 72,800 tons in dissolved-solids load from irrigation improvements was determined from sprinkler-irrigated lands in the Ashley Valley and Jensen, Pelican Lake, and Pleasant Valley areas (mapped in 2012); and in the Price River Basin (mapped in 2011). This decrease in dissolved-solids load is 8,800 tons more than the decrease in unmonitored flow-normalized dissolved-solids load (-64,000 tons) determined for the Green River between the Jensen and Green River gaging stations.The net WY 1989–2013 change in flow-normalized dissolved-solids load at the Duchesne River near Randlett, UT, and the Green River between the Jensen and Green River, UT, gaging stations determined from mass-balance calculations was compared to reported reductions in dissolved-solids load from on- and off-farm improvements and estimated reductions in load determined from mapped sprinkler-irrigated areas in the Duchesne River Basin and the area draining to the Green River between the Jensen and Green River gaging stations. The combined NRCS and Reclamation estimates of reduction in dissolved-solids load from on- and off-farm improvements in the study area (200,000 tons) is more than the reduction in load estimated using the acreage with sprinkler improvements (136,000 tons) or the mass-balance of flow-normalized load (132,000 tons).
29 CFR 1917.126 - River banks.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 7 2011-07-01 2011-07-01 false River banks. 1917.126 Section 1917.126 Labor Regulations...) MARINE TERMINALS Terminal Facilities § 1917.126 River banks. (a) This section applies to temporary installations or temporary operations near a river bank. (b) Where working surfaces at river banks slope so...
27 CFR 9.164 - River Junction.
Code of Federal Regulations, 2013 CFR
2013-04-01
..., follow the levee along the San Joaquin River onto the Ripon, CA quadrangle map; (3) Then in a northerly... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction..., CA 1969, photorevised 1980; (2) Vernalis, CA 1969, photorevised 1980. (c) Boundaries. The River...
27 CFR 9.164 - River Junction.
Code of Federal Regulations, 2012 CFR
2012-04-01
..., follow the levee along the San Joaquin River onto the Ripon, CA quadrangle map; (3) Then in a northerly... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction..., CA 1969, photorevised 1980; (2) Vernalis, CA 1969, photorevised 1980. (c) Boundaries. The River...
27 CFR 9.164 - River Junction.
Code of Federal Regulations, 2010 CFR
2010-04-01
..., follow the levee along the San Joaquin River onto the Ripon, CA quadrangle map; (3) Then in a northerly... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction..., CA 1969, photorevised 1980; (2) Vernalis, CA 1969, photorevised 1980. (c) Boundaries. The River...
27 CFR 9.164 - River Junction.
Code of Federal Regulations, 2011 CFR
2011-04-01
..., follow the levee along the San Joaquin River onto the Ripon, CA quadrangle map; (3) Then in a northerly... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction..., CA 1969, photorevised 1980; (2) Vernalis, CA 1969, photorevised 1980. (c) Boundaries. The River...
27 CFR 9.164 - River Junction.
Code of Federal Regulations, 2014 CFR
2014-04-01
..., follow the levee along the San Joaquin River onto the Ripon, CA quadrangle map; (3) Then in a northerly... River Junction. (a) Name. The name of the viticultural area described in this section is “River Junction..., CA 1969, photorevised 1980; (2) Vernalis, CA 1969, photorevised 1980. (c) Boundaries. The River...
40 CFR Appendix A to Part 97 - Final Section 126 Rule: EGU Allocations, 2004-2007
Code of Federal Regulations, 2012 CFR
2012-07-01
... VA POSSUM POINT 3804 4 528 VA POSSUM POINT 3804 5 322 VA POTOMAC RIVER 3788 1 203 VA POTOMAC RIVER 3788 2 139 VA POTOMAC RIVER 3788 3 232 VA POTOMAC RIVER 3788 4 223 VA POTOMAC RIVER 3788 5 222 VA SEI...
40 CFR Appendix A to Part 97 - Final Section 126 Rule: EGU Allocations, 2004-2007
Code of Federal Regulations, 2013 CFR
2013-07-01
... VA POSSUM POINT 3804 4 528 VA POSSUM POINT 3804 5 322 VA POTOMAC RIVER 3788 1 203 VA POTOMAC RIVER 3788 2 139 VA POTOMAC RIVER 3788 3 232 VA POTOMAC RIVER 3788 4 223 VA POTOMAC RIVER 3788 5 222 VA SEI...
40 CFR Appendix A to Part 97 - Final Section 126 Rule: EGU Allocations, 2004-2007
Code of Federal Regulations, 2014 CFR
2014-07-01
... VA POSSUM POINT 3804 4 528 VA POSSUM POINT 3804 5 322 VA POTOMAC RIVER 3788 1 203 VA POTOMAC RIVER 3788 2 139 VA POTOMAC RIVER 3788 3 232 VA POTOMAC RIVER 3788 4 223 VA POTOMAC RIVER 3788 5 222 VA SEI...
Earl C. Leatherberry; David W. Lime; Jerrilyn Lavarre Thompson
1980-01-01
Participation in river recreation has been expanding at a rapid rate. This paper reviews selected phenomenon associated with the growing popularity of rivers as recreational resources. The paper will: (1) describe the river recreation resource (the supply situation); (2) present selected indicators of increased river recreation use (the demand situation); (3) present...
ERIC Educational Resources Information Center
Koussouris, Theodore; And Others
1990-01-01
Presented is a survey of a river including physiochemical measurements and river fauna observations. It is shown that the self-purification gradient of river water quality and the possible ecological disturbances due to pollutants entering the river create an unpredictable pattern of recovery. (CW)
77 FR 30518 - Support of Deployment of Prototype Small Modular Reactors at the Savannah River Site
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
... DEPARTMENT OF ENERGY Support of Deployment of Prototype Small Modular Reactors at the Savannah River Site AGENCY: Savannah River Operations Office, Department of Energy (DOE). ACTION: Notice of availability. SUMMARY: DOE-Savannah River Operations Office (SR), in conjunction with the Savannah River...
ERIC Educational Resources Information Center
Turner, James S.
1991-01-01
Discusses "Always a River," a joint project of six midwestern state humanities councils that focuses on the Ohio River Valley's history, ecology, and development. Highlights exhibitions to be set up on a river barge that will tour Ohio River towns and cities during 1991. Stresses interrelationships between the river and the communities…
76 FR 8978 - Proposed Flood Elevation Determinations
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-16
... White River ted Areas effects from confluence of Taney White River). to County. approximate ly 685 feet upstream of the White River confluence Bee Creek From the None +698 Unincorpora (backwater White River ted Areas effects from confluence of Taney White River). to County. approximate ly 1,700 feet upstream of...
33 CFR 117.734 - Navesink River (Swimming River).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navesink River (Swimming River). 117.734 Section 117.734 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... (Swimming River). The Oceanic Bridge, mile 4.5, shall open on signal; except that, from December 1 through...
Habitat and Hydrology Condition Indices for the Upper Mississippi, Missouri, and Ohio Rivers
Habitat and hydrology indices were developed to assess the conditions in reaches of the impounded Upper Mississippi River, the Fort Peck and Garrison reaches of the Upper Missouri River, the Missouri National Recreational River, and the channelized Lower Missouri River, and the O...
2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF ...
2. SNAKE RIVER VALLEY IRRIGATION DISTRICT DAM, PHOTOGRAPHIC COPY OF DRAWING, PLAN, SHEET 5 OF 5, 1924 (on file at the Idaho State Office of Water Resources, Boise, Idaho) - Snake River Valley Irrigation District, East Side of Snake River (River Mile 796), Shelley, Bingham County, ID
DETECTING FOREST STRESS AND DECLINE IN RESPONSE TO INCREASING RIVER FLOW IN SOUTHWEST FLORIDA, USA
Forest stress and decline resulting from increased river flows were investigated in Myakka River State Park (MRSP), Florida, USA. Since 1977, land-use changes around the upper Myakka River watershed have resulted in significant increases in water entering the river, which have...
29 CFR 1917.126 - River banks.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) MARINE TERMINALS Terminal Facilities § 1917.126 River banks. (a) This section applies to temporary installations or temporary operations near a river bank. (b) Where working surfaces at river banks slope so... 29 Labor 7 2010-07-01 2010-07-01 false River banks. 1917.126 Section 1917.126 Labor Regulations...
RiverHeath: Neighborhood Loop Geothermal Exchange System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geall, Mark
2016-07-11
The goal of the RiverHeath project is to develop a geothermal exchange system at lower capital infrastructure cost than current geothermal exchange systems. The RiverHeath system features an innovative design that incorporates use of the adjacent river through river-based heat exchange plates. The flowing water provides a tremendous amount of heat transfer. As a result, the installation cost of this geothermal exchange system is lower than more traditional vertical bore systems. Many urban areas are located along rivers and other waterways. RiverHeath will serve as a template for other projects adjacent to the water.
High flow and riparian vegetation along the San Miguel River, Colorado
Friedman, J.M.; Auble, G.T.
2000-01-01
Riparian ecosystems are characterized by abundance of water and frequent flow related disturbance. River regulation typically decreases peak flows, reducing the amount of disturbance and altering the vegetation. The San Miguel River is one of the last relatively unregulated rivers remaining in the Colorado River Watershed. One goal of major landowners along the San Miguel including the Bureau of Land Management and The Nature Conservancy is to maintain their lands in a natural condition. Conservation of an entire river corridor requires an integrated understanding of the variability in ecosystems and external influences along the river. Therefore, the Bureau of Land Management and others have fostered a series of studies designed to catalogue that variability, and to characterize the processes that maintain the river as a whole. In addition to providing information useful to managers, these studies present a rare opportunity to investigate how a Colorado river operates in the absence of regulation.
Industrial pollution and the management of river water quality: a model of Kelani River, Sri Lanka.
Gunawardena, Asha; Wijeratne, E M S; White, Ben; Hailu, Atakelty; Pandit, Ram
2017-08-19
Water quality of the Kelani River has become a critical issue in Sri Lanka due to the high cost of maintaining drinking water standards and the market and non-market costs of deteriorating river ecosystem services. By integrating a catchment model with a river model of water quality, we developed a method to estimate the effect of pollution sources on ambient water quality. Using integrated model simulations, we estimate (1) the relative contribution from point (industrial and domestic) and non-point sources (river catchment) to river water quality and (2) pollutant transfer coefficients for zones along the lower section of the river. Transfer coefficients provide the basis for policy analyses in relation to the location of new industries and the setting of priorities for industrial pollution control. They also offer valuable information to design socially optimal economic policy to manage industrialized river catchments.
Butyltin compounds in River Otters (Lutra canadensis) from the Northwestern United States
Kannan, K.; Grove, Robert A.; Senthilkumar, K.; Henny, Charles J.; Geisy, J.P.
1999-01-01
Butyltin compounds, including mono-, di-, and tributyltin (MBT, DBT, and TBT) were measured in livers of 40 adult river otters (Lutra canadensis) collected from rivers and coastal bays in Washington and Oregon, USA. Butyltins were found in all the river otters, at a concentration range of 8.5a??2,610 ng/g, WW. The greatest concentration of total butyltins of 2,610 ng/g, WW, was found in a river otter collected in Puget Sound from Fort Ward, Washington. River otters collected near areas with major shipping activities, such as the Puget Sound, contained significantly greater concentrations (geometric mean: 367 ng/g, WW) of butyltins than those from rivers. Among butyltin compounds, MBT and DBT predominated in livers. The concentrations of butyltins in river otters ranged from comparable (Puget Sound) to less (rivers) than what was found in coastal cetaceans.
River meander modeling of the Wabash River near the Interstate 64 Bridge near Grayville, Illinois
Lant, Jeremiah G.; Boldt, Justin A.
2018-01-16
Natural river channels continually evolve and change shape over time. As a result, channel evolution or migration can cause problems for bridge structures that are fixed in the flood plain. A once-stable bridge structure that was uninfluenced by a river’s shape could be encroached upon by a migrating river channel. The potential effect of the actively meandering Wabash River on the Interstate 64 Bridge at the border with Indiana near Grayville, Illinois, was studied using a river migration model called RVR Meander. RVR Meander is a toolbox that can be used to model river channel meander migration with physically based bank erosion methods. This study assesses the Wabash River meandering processes through predictive modeling of natural meandering over the next 100 years, climate change effects through increased river flows, and bank protection measures near the Interstate 64 Bridge.
Water quality of Cisadane River based on watershed segmentation
NASA Astrophysics Data System (ADS)
Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin
2018-05-01
The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.
Regulation causes nitrogen cycling discontinuities in Mediterranean rivers.
von Schiller, Daniel; Aristi, Ibon; Ponsatí, Lídia; Arroita, Maite; Acuña, Vicenç; Elosegi, Arturo; Sabater, Sergi
2016-01-01
River regulation has fundamentally altered large sections of the world's river networks. The effects of dams on the structural properties of downstream reaches are well documented, but less is known about their effect on river ecosystem processes. We investigated the effect of dams on river nutrient cycling by comparing net uptake of total dissolved nitrogen (TDN), phosphorus (TDP) and organic carbon (DOC) in river reaches located upstream and downstream from three reservoir systems in the Ebro River basin (NE Iberian Peninsula). Increased hydromorphological stability, organic matter standing stocks and ecosystem metabolism below dams enhanced the whole-reach net uptake of TDN, but not that of TDP or DOC. Upstream from dams, river reaches tended to be at biogeochemical equilibrium (uptake≈release) for all nutrients, whereas river reaches below dams acted as net sinks of TDN. Overall, our results suggest that flow regulation by dams may cause relevant N cycling discontinuities in rivers. Higher net N uptake capacity below dams could lead to reduced N export to downstream ecosystems. Incorporating these discontinuities could significantly improve predictive models of N cycling and transport in complex river networks. Copyright © 2015. Published by Elsevier B.V.
Hydrologic alteration affects aquatic plant assemblages in an arid-land river
Vinson, Mark; Hestmark, Bennett; Barkworth, Mary E.
2014-01-01
We evaluated the effects of long-term flow alteration on primary-producer assemblages. In 1962, Flaming Gorge Dam was constructed on the Green River. The Yampa River has remained an unregulated hydrologically variable river that joins the Green River 100 km downstream from Flaming Gorge Dam. In the 1960s before dam construction only sparse occurrences of two macroalgae, Cladophora and Chara, and no submerged vascular plants were recorded in the Green and Yampa rivers. In 2009–2010, aquatic plants were abundant and widespread in the Green River from the dam downstream to the confluence with the Yampa River. The assemblage consisted of six vascular species, Elodea canadensis, Myriophyllum sibiricum, Nasturtium officinale,Potamogeton crispus, Potamogeton pectinatus, and Ranunculus aquatilis, the macroalgae Chara and Cladophora, and the bryophyte, Amblystegium riparium. In the Green River downstream from the Yampa River, and in the Yampa River, only sparse patches of Chara and Cladophora growing in the splash zone on boulders were collected. We attribute the observed changes in the Green River to an increase in water transparency and a reduction in suspended and bed-load sediment and high flow disturbances. The lack of hydrophyte colonization downstream from the confluence with the Yampa River has implications for understanding tributary amelioration of dam effects and for designing more natural flow-regime schedules downstream from large dams.
Attributes of an alluvial river and their relation to water policy and management
Trush, William J.; McBain, Scott M.; Leopold, Luna B.
2000-01-01
Rivers around the world are being regulated by dams to accommodate the needs of a rapidly growing global population. These regulatory efforts usually oppose the natural tendency of rivers to flood, move sediment, and migrate. Although an economic benefit, river regulation has come at unforeseen and unevaluated cumulative ecological costs. Historic and contemporary approaches to remedy environmental losses have largely ignored hydrologic, geomorphic, and biotic processes that form and maintain healthy alluvial river ecosystems. Several commonly known concepts that govern how alluvial channels work have been compiled into a set of “attributes” for alluvial river integrity. These attributes provide a minimum checklist of critical geomorphic and ecological processes derived from field observation and experimentation, a set of hypotheses to chart and evaluate strategies for restoring and preserving alluvial river ecosystems. They can guide how to (i) restore alluvial processes below an existing dam without necessarily resorting to extreme measures such as demolishing one, and (ii) preserve alluvial river integrity below proposed dams. Once altered by dam construction, a regulated alluvial river will never function as before. But a scaled-down morphology could retain much of a river's original integrity if key processes addressed in the attributes are explicitly provided. Although such a restoration strategy is an experiment, it may be the most practical solution for recovering regulated alluvial river ecosystems and the species that inhabit them. Preservation or restoration of the alluvial river attributes is a logical policy direction for river management in the future. PMID:11050220
Baldys, Stanley; Schalla, Frank E.
2012-01-01
Streamflow was measured at 66 sites from June 6–9, 2010, and at 68 sites from October 16–19, 2010, to identify reaches in the upper Brazos River Basin that were gaining or losing streamflow. Gaining reaches were identified in each of the five subbasins. The gaining reach in the Salt Fork Brazos River Basin began at USGS streamflow-gaging station 08080940 Salt Fork Brazos River at State Highway 208 near Clairemont, Tex. (site SF–6), upstream from where Duck Creek flows into the Salt Fork Brazos River and continued downstream past USGS streamflow-gaging station 08082000 Salt Fork Brazos River near Aspermont, Tex. (site SF–9), to the outlet of the basin. In the Double Mountain Fork Brazos River Basin, a gaining reach from near Post, Tex., downstream to the outlet of the basin was identified. Two gaining reaches were identified in the Clear Fork Brazos River Basin—one from near Roby, Tex., downstream to near Noodle, Tex., and second from Hawley, Tex., downstream to Nugent, Tex. Most of the North Bosque River was characterized as gaining streamflow. Streamflow gains were identified in the main stem of the Brazos River from where the Brazos River main stem forms at the confluence of the Salt Fork Brazos River and Double Mountain Fork Brazos River near Knox City, Tex., downstream to near Seymour, Tex.
Wilson, Richard P.; Owen-Joyce, Sandra J.
2002-01-01
During a period of sustained base-flow conditions in the Bill Williams River below Alamo Dam in west central Arizona from March to July 2000, the channel of the river through Planet Valley was dry, and the water table sloped almost due west parallel to the main slope of the flood plain. Water from the river infiltrated into the channel bottom at the head of Planet Valley, moved downgradient in the subsurface, and reappeared in the channel about 0.3 mile downstream from the east boundary of the Bill Williams River National Wildlife Refuge. A river aquifer in hydraulic connection with the Bill Williams River was mapped from a point 6.3 miles upstream from Highway 95 to the upstream end of Planet Valley. Formations that make up the river aquifer in Planet Valley are younger alluvium, older alluviums, and fanglomerate. Total thickness of the river aquifer probably is less than 200 feet in the bedrock canyons to as much as 1,035 feet in Planet Valley. The purpose of this study was to investigate the current hydrologic conditions along the Bill Williams River, which included an inventory of wells within the river aquifer of the Colorado River and in Planet Valley, and to determine the configuration of the water table. A map shows the elevation and configuration of the water table from the east end of Planet Valley to the confluence of the Bill Williams River with Lake Havasu.
NASA Astrophysics Data System (ADS)
Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing
2018-05-01
Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.
River as a part of ground battlefield
NASA Astrophysics Data System (ADS)
Vračar, Miodrag S.; Pokrajac, Ivan; Okiljević, Predrag
2013-05-01
The rivers are in some circumstances part of the ground battlefield. Microseisms induced at the riverbed or ground at the river surrounding might be consequence of military activities (military ground transports, explosions, troop's activities, etc). Vibrations of those fluid-solid structures are modeled in terms of solid displacement and change of fluid pressure. This time varying fluid pressure in river, which originates from ground microseisms, is possible to detect with hydrophones. Therefore, hydroacoustic measurements in rivers enables detecting, identification and localization various types of military noisy activities at the ground as and those, which origin is in the river water (hydrodynamics of water flow, wind, waves, river vessels, etc). In this paper are presented river ambient noise measurements of the three great rivers: the Danube, the Sava and the Tisa, which flows in north part of Serbia in purpose to establish limits in detection of the ground vibrations in relatively wide frequency range from zero to 20 kHz. To confirm statement that the river is a part of ground battlefield, and that hydroacoustic noise is possible to use in detecting and analyzing ground microseisms induced by civil or military activities, some previous collected data of hydroacoustic noise measurement in the rivers are used. The data of the river ambient noise include noise induced by civil engineering activities, that ordinary take place in large cities, noise that produced ships and ambient noise of the river when human activities are significantly reduced. The poly spectral method was used in analysis such events.
Hunt, Charles B.
1969-01-01
John Wesley Powell clearly recognized that the spectacular features of the Colorado River - its many grand canyons - were dependent upon the structural history of the mountainous barriers crossed by the river. He conceived of three different historical relationships between rivers and structural features: (1) Newly uplifted land surfaces have rivers that flow down the initial slope of the uplift; these relationships he termed consequent. (2) A river may be older than an uplift that it crosses because it has been able to maintain its course by eroding downward as the uplift progresses; this relationship he named antecedent. (3) An uplifted block may have been buried by younger deposits upon which a river becomes established. The river, in cutting downward, uncovers the uplifted block and becomes incised into it; this relationship he called superimposed.The geologic history of the Colorado River involves all three relationships. In addition, although the position of the river course through a particular structural barrier may have been the result of superposition, the depth of the canyon at that point may be largely due to renewed uplift of the barrier; such deepening of the canyon, therefore, is due to antecedence. The problem of the Colorado River remains today very much as G. K. Gilbert stated it nearly 100 years ago: "How much is antecedent and how much is superimposed?" The question must be asked separately for each stretch of the river.
Monitoring changes in the Platte River riparian corridor with serial LiDAR surveys
Kinzel, Paul J.; Nelson, Jonathan M.; Wright, C. Wayne
2006-01-01
The Platte River in central Nebraska is a wide, sand-bedded river that provides habitat for migratory water birds along the North American flyway. The central Platte River functions as critical habitat for the endangered whooping crane (Grus americana) and also is an important habitat for the endangered least tern (Sterna antillarum) and the threatened piping plover (Charadrius melodus). Upstream water-resource development over the last century has decreased the water and sediment supplied to the central Platte River. This has resulted in vegetation encroachment and narrowing of Platte River channels. The National Academy of Sciences' National Research Council, in a recent review of these critical habitat designations, concluded that the current morphology of Platte River channels is limiting the recovery of the endangered and threatened avian species. Habitat-enhancement efforts along the Platte River currently (2006) are focused on the clearing of vegetation from in-channel and riparian areas, whereas future plans propose the release of water from upstream dams as a means to prevent vegetation from encroaching on the active river channel. For this reason, monitoring the physical response of the river channel to these management treatments is an important component of a proposed habitat recovery program. Understanding the effects of management strategies on Platte River riparian habitat also is a key objective of the U.S. Geological Survey's Platte River Priority Ecosystem Program (http://mcmcweb.er.usgs.gov/platte/). This fact sheet describes applications of LiDAR to monitor changes in the Platte River riparian corridor.
NASA Astrophysics Data System (ADS)
Casado, Ana; Peiry, Jean-Luc; Campo, Alicia M.
2016-09-01
This paper investigates post-dam geomorphic and vegetation changes in the Sauce Grande River, a meandering dryland river impounded by a large water-conservation dam. As the dam impounds a river section with scarce influence of tributaries, sources for fresh water and sediment downstream are limited. Changes were inspected based on (i) analysis of historical photographs/imagery spanning pre- (1961) and post-dam (1981, 2004) channel conditions for two river segments located above and below the dam, and (ii) field survey of present channel conditions for a set of eight reference reaches along the river segments. Whilst the unregulated river exhibited active lateral migration with consequent adjustments of the channel shape and size, the river section below the dam was characterized by (i) marked planform stability (93 to 97%), and by (ii) vegetation encroachment leading to alternating yet localized contraction of the channel width (up to 30%). The present river displays a moribund, stable channel where (i) redistribution of sediment along the river course no longer occurs and (ii) channel forms constitute a remnant of a fluvial environment created before closing the dam, under conditions of higher energy. In addition to providing new information on the complex geomorphic response of dryland rivers to impoundment, this paper represents the very first geomorphic assessment of the regulated Sauce Grande and therefore provides an important platform to underpin further research assessing the geomorphic state of this highly regulated dryland river.
Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, William; Kucera, Paul
2003-07-01
In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 inmore » order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the repository by Washington Department of Fish and Wildlife and Columbia River Intertribal Fish Commission, respectively. To date, a total of 3,928 Columbia River salmon and steelhead gamete samples and three Kootenai River white sturgeon are preserved in the repository. Samples are stored in independent locations at the University of Idaho (UI) and Washington State University (WSU).« less
Effects of land use on the concentration and emission of nitrous oxide in nitrogen-enriched rivers.
Yang, Libiao; Lei, Kun
2018-07-01
Nitrous oxide (N 2 O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Nitrogen-enriched rivers are significant sources of atmospheric N 2 O. This study conducted a one-year field campaign in seven N-enriched rivers draining urban, rural, and agricultural land to determine the link between the production, concentrations, and emissions of N 2 O and land use. Estimated N 2 O fluxes varied between 1.30 and 1164.38 μg N 2 O-N m -2 h -1 with a mean value of 154.90 μg N 2 O-N m -2 h -1 , indicating that rivers were the net sources of atmospheric N 2 O. Concentrations of N 2 O ranged between 0.23 and 29.21 μg N 2 O-N L -1 with an overall mean value of 3.81 μg N 2 O-N L -1 . Concentrations of ammonium and nitrate in urban and rural rivers were high in the cold season. The concentrations were also high in agricultural rivers in the wet season. N 2 O concentrations and emissions in rural and urban rivers followed a similar pattern to ammonium and a similar pattern to nitrate in agricultural rivers. A strong link between the concentrations and emissions of N 2 O and land use was observed. N 2 O concentrations in and emissions from the rivers draining the urban and rural areas were significantly higher than the rivers draining the agricultural areas (P < 0.01). Stepwise regression analysis indicated that dissolved N 2 O were primarily influenced by NH 4 + in agricultural rivers and by NO 3 - in rural rivers; while dissolved N 2 O in urban rivers was primarily predicted by temperature and reflected the integrated impact of sewage input and river hydrology. Nitrate-N and NO 3- -O isotope data and linear regression of N 2 O and river water variables strongly indicated that dissolved N 2 O was mainly derived from nitrification in agricultural rivers and denitrification in rural and urban rivers. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fernández-Nóvoa, D.; deCastro, M.; Des, M.; Costoya, X.; Mendes, R.; Gómez-Gesteira, M.
2017-08-01
Turbid plumes formed by the main Iberian rivers were analyzed and compared in order to determine similarities and differences among them. Five Atlantic rivers (Minho, Douro, Tagus, Guadiana and Guadalquivir) and one Mediterranean river (Ebro) were considered. Plume extension and turbidity were evaluated through synoptic patterns obtained by means of MODIS imagery over the period 2003-2014. River discharge showed to be the main forcing. In fact, the dependence of plume extension on runoff is moderate or high for all rivers, except for Ebro. In addition, most of river plumes adjust immediately to runoff fluctuations. Only the extension of Tagus and Guadalquivir plumes is lagged with respect to river runoff, due to the high residence time generated by their large estuaries. Wind is a secondary forcing, being only noticeable under high discharges. Actually, the dependence of plume extension on wind is moderate or high for all rivers, except Guadalquivir and Ebro. All the Atlantic rivers show the maximum (minimum) near- field plume extension under landward (oceanward) cross-shore winds. The opposite situation was observed for Ebro River. Tide is also a secondary forcing although less important than wind. Actually, the dependence of plume extension on tide is only high for Guadiana River. Nevertheless, all Atlantic river plumes still have some dependence on semidiurnal tidal cycle, they increase under low tides and decrease under high tides. In addition, Tagus River plume also depends on the fortnightly tidal cycle being larger during spring tides than during neap tides. This is due to particular shape of the estuary, where the river debouches into a semi-enclosed embayment connected to the Atlantic Ocean through a strait. Ebro River constitutes a particular case since it has a low dependence on runoff and wind and a negligible dependence on tide. In fact, its plume is mainly driven by the Liguro-Provençal coastal current. Guadalquivir River also shows some unique features due to its high sediment load. It generates the largest Iberian plume in terms of turbid signal and extension even being the second smallest river in terms of discharge.
Changes in the channel-bed level of the western Carpathian rivers over the last 40years
NASA Astrophysics Data System (ADS)
Kijowska-Strugała, Małgorzata; Bucała-Hrabia, Anna
2017-04-01
Channel-bed level is constantly changing in time and space, and the process is dependent on both natural and anthropogenic factors. In mountain areas this is one of the more visible morphological processes. The main aim of the research was to analyze the dynamics of the position of river channel beds. Three rivers located within the western part of Polish Carpathians were chosen for the analysis: the Ropa river, the Kamienica Nawojowska river and the Ochotnica river. They are typical rivers for the Beskidy Mountains, medium Flysch mountains. To assess changes in the position of channel bed long-term series of data of minimum water stages in the river were used. The Ropa river is the biggest left tributary of the Wisłoka river (basin a of the upper Vistula River). The total length of the river amounts to 80 km, its gradient equals 58.9‰ and the water basin area amounts to 974 km2. The Kamienica Nawojowska river, with a length of 32.2 km is a right tributary of Dunajec river. The average decrease for the entire watercourse is 18.1‰. The catchment area is 238 km2. The Ochotnica river is 22.7 km long and it is a left tributary of the Dunajec river. The average slope for the entire watercourse is 36.1‰. The Ochotnica river characterized by deep valleys (catchment area 107.6 km2). Analysis of trends in minimum annual water stages in the alluvial Ropa river channel throughout the multi-year period of 1995-2014 shows an increasing trend amounting to 0.8 cm/year. In the Kamienica Nawojowska river the tendency of incision was observed starting from the 1960 to 2014. Average annual rate of increase of the minimum stages was between 0.4 to 1.2 cm/year. On the basis of the analysis of the minimum water levels in the years 1972-2011 two periods can be seen with different tendencies to change the position of the Ochotnica channel bottom. The first covers the years 1972-1996, where aggradation (3.9 cm/year) was the predominant process while in the period 1997-2011 incision (3.2 cm/year) was dominated. Two main factors determine changes in the position of the rivers channel beds: natural (floods, tributaries, type of the channel bed substrate) and anthropogenic (control works in the channel, extraction gravels, reservoir backwater. The deep erosion observed in the Carpathians rivers in the last decade is also associated with changes in land use that have increased due to the economic transformation of the country, and in recent years, the Polish accession to the EU.
Dorsey, Rebecca J.; O’Connell, Brennan; McDougall-Reid, Kristin; Homan, Mindy B.
2018-01-01
The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between ~ 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at ~ 5.4–5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between ~ 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between ~ 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at ~ 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough.These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment discharge are assessed by comparing the depositional chronology to the record of global sea-level change. The lower Colorado River Valley and Salton Trough experienced marine transgression during a gradual fall in global sea level between ~ 6.3 and 5.5 Ma, implicating tectonic subsidence as the main driver of latest Miocene relative sea-level rise. A major fall of global sea level at 5.3 Ma outpaced subsidence and drove regional delta progradation, earliest flushing of Colorado River sand into the northern Gulf of California, and erosion of Bouse basal carbonate and siliciclastic members. The lower Colorado River valley was re-flooded by shallow marine waters during smaller changes in global sea level ~ 5.1–4.8 Ma, after the river first ran through it, which requires a mechanism to stop delivery of sand to the lower river valley. We propose that tectonically controlled subsidence along the lower Colorado River, upstream of the southern Bouse study area, temporarily trapped sediment and stopped delivery of sand to the lower river valley and northern Gulf of California for ~ 200–300 kyr. Massive progradation of the fluvial-deltaic system back down the river valley into the Salton Trough starting ~ 4.8–4.5 Ma apparently was driven by a huge increase in sediment discharge that overwhelmed the sediment-storage capacity of sub-basins along the lower river corridor and established the fully integrated river channel network.
Eikenberry, Barbara C. Scudder; Bell, Amanda H.; Olds, Hayley T.; Burns, Daniel J.
2016-07-25
Recent data are lacking to assess whether impairments still exist at four of Wisconsin’s largest Lake Michigan harbors that were designated as Areas of Concern (AOCs) in the late 1980s due to sediment contamination and multiple Beneficial Use Impairments (BUIs), such as those affecting benthos (macroinvertebrates) and plankton (zooplankton and phytoplankton) communities. During three seasonal sampling events (“seasons”) in May through August 2012, the U.S. Geological Survey collected sediment benthos and water plankton at the four AOCs as well as six less-degraded non-AOCs along the western Lake Michigan shoreline to assess whether AOC communities were degraded in comparison to non-AOC communities. The four AOCs are the Lower Menominee River, the Lower Green Bay and Fox River, the Sheboygan River, and the Milwaukee Estuary. Due to their size and complexity, multiple locations or “subsites” were sampled within the Lower Green Bay and Fox River AOC (Lower Green Bay, the Fox River near Allouez, and the Fox River near De Pere) and within the Milwaukee Estuary AOC (the Milwaukee River, the Menomonee River, and the Milwaukee Harbor) and single locations were sampled at the other AOCs and non-AOCs. The six non-AOCs are the Escanaba River in Michigan, and the Oconto River, Ahnapee River, Kewaunee River, Manitowoc River, and Root River in Wisconsin. Benthos samples were collected by using Hester-Dendy artificial substrates deployed for 30 days and by using a dredge sampler; zooplankton were collected by net and phytoplankton by whole-water sampler. Except for the Lower Green Bay and Milwaukee Harbor locations, communities at each AOC were compared to all non-AOCs as a group and to paired non-AOCs using taxa relative abundances and metrics, including richness, diversity, and an Index of Biotic Integrity (IBI, for Hester-Dendy samples only). Benthos samples collected during one or more seasons were rated as degraded for at least one metric at all AOCs. In the Milwaukee Estuary, benthos richness was lower in the Milwaukee River subsite spring and summer samples and in the Menomonee River subsite spring sample relative to the paired non-AOCs. Benthos diversity and IBIs at the Menomonee River subsite and IBIs at the Milwaukee River subsite and Sheboygan River were significantly lower than at all non-AOCs as a group across all seasons and therefore were rated as degraded. In addition, IBIs at the Lower Menominee River were significantly lower than those at the paired non-AOCs during all seasons and were therefore rated degraded. Benthos at both Fox River subsites and the Milwaukee River subsite were significantly different from their paired non-AOCs during all three seasons, based on a comparison of the relative abundances of taxa using multivariate testing. Metrics for plankton at AOCs were not significantly lower than those at the paired or group non-AOCs during all seasons; however, zooplankton richness in spring at the Sheboygan River and in fall at the Menomonee River subsite was rated as degraded in comparison to paired non-AOCs. Also, zooplankton richness in fall at the Fox River near Allouez subsite and in spring at the Milwaukee River subsite was rated degraded overall because values were lower than at all non-AOCs as a group and lower than at the paired non-AOCs. Zooplankton diversity in fall at the Fox River near Allouez subsite and the Lower Menominee River was rated degraded in comparison to paired non-AOC comparison sites. Zooplankton communities at the Fox River near Allouez subsite were significantly different from the paired non-AOCs when multivariate comparisons were made without rotifers other than A. priodonta. Overall, benthos and zooplankton BUIs remained at the AOCs in 2012 but no AOCs with a phytoplankton BUI were rated degraded in comparison to non-AOCs. The use of a multiple ecological measures, structural and functional, and multiple statistical analyses, biological metrics and multivariate statistics, provided assessments that defined 2012 status of communities relative to less-impaired non-AOCs in the Great Lakes area.
Booth, Amanda C.; Soderqvist, Lars E.
2016-12-12
Freshwater flow to the Ten Thousand Islands estuary has been altered by the construction of the Tamiami Trail and the Southern Golden Gate Estates. The Picayune Strand Restoration Project, which is associated with the Comprehensive Everglades Restoration Plan, has been implemented to improve freshwater delivery to the Ten Thousand Islands estuary by removing hundreds of miles of roads, emplacing hundreds of canal plugs, removing exotic vegetation, and constructing three pump stations. Quantifying the tributary flows and salinity patterns prior to, during, and after the restoration is essential to assessing the effectiveness of upstream restoration efforts.Tributary flow and salinity patterns during preliminary restoration efforts and prior to the installation of pump stations were analyzed to provide baseline data and preliminary analysis of changes due to restoration efforts. The study assessed streamflow and salinity data for water years1 2007–2014 for the Faka Union River (canal flow included), East River, Little Wood River, Pumpkin River, and Blackwater River. Salinity data from the Palm River and Faka Union Boundary water-quality stations were also assessed.Faka Union River was the dominant contributor of freshwater during water years 2007–14 to the Ten Thousand Islands estuary, followed by Little Wood and East Rivers. Pumpkin River and Blackwater River were the least substantial contributors of freshwater flow. The lowest annual flow volumes, the highest annual mean salinities, and the highest percentage of salinity values greater than 35 parts per thousand (ppt) occurred in water year 2011 at all sites with available data, corresponding with the lowest annual rainfall during the study. The highest annual flow volumes and the lowest percentage of salinities greater than 35 ppt occurred in water year 2013 for all sites with available data, corresponding with the highest rainfall during the study.In water year 2014, the percentage of monitored annual flow contributed by East River increased and the percentage of flow contributed by Faka Union River decreased, compared to the earlier years. No changes in annual flow occurred at any sites west of Faka Union River. No changes in the relative flow contributions were observed during the wet season; however, the relative amounts of streamflow increased during the dry season at East River in 2014. East River had only 1 month of negative flow in 2014 compared to 6 months in 2011 and 7 months in 2008. Higher dry season flows in East River may be in response to restoration efforts. The sites to the west of Faka Union River had higher salinities on average than Faka Union River and East River. Faka Union River had the highest range in salinities, and Faka Union Boundary had the lowest range in salinities. Pumpkin River was the tributary with the lowest range in salinities.1Water year is defined as the 12-month period from October 1, for any given year, through September 30 of the following year.
Guo, Wei; Li, Xiang-Zhong; Liu, Wei-Guo
2013-04-01
In this study, the content and isotopic compositions of water dissolved inorganic carbon (DIC) from four typical rivers (Chanhe, Bahe, Laohe and Heihe) around Xi'an City were studied to trace the possible sources of DIC. The results of this study showed that the content of DIC in the four rivers varied from 0.34 to 5.66 mmol x L(-1) with an average value of 1.23 mmol x L(-1). In general, the content of DIC increased from the headstream to the river mouth. The delta13C(DIC) of four rivers ranged from -13.3 per thousand to -7.2 per thousand, with an average value of -10.1 per thousand. The delta13C(DIC) values of river water were all negative (average value of -12.6 per thousand) at the headstream of four rivers, but the delta13C(DIC) values of downstream water were more positive (with an average value of -9.4 per thousand). In addition, delta13C(DIC) of river water showed relatively negative values (the average value of delta13C(DIC) was -10.5 per thousand) near the estuary of the rivers. The variation of the DIC content and its carbon isotope suggested that the DIC sources of the rivers varied from the headstream to the river mouth. The negative delta13C(DIC) value indicated that the DIC may originate from the soil CO2 at the headstream of the rivers. On the other hand, the delta13C(DIC) values of river water at the middle and lower reaches of rivers were more positive, and it showed that soil CO2 produced by respiration of the C4 plants (like corn) and soil carbonates with positive delta13C values may be imported into river water. Meanwhile, the input of pollutants with low delta13C(DIC) values may result in a decrease of delta13C(DIC) values in the rivers. The study indicated that the DIC content and carbon isotope may be used to trace the sources of DIC in rivers around Xi'an City. Our study may provide some basic information for tracing the sources of DIC of rivers in the small watershed area in the Loess Plateau of China.
Hunter, Shelby L.; Ashworth, Chad E.; Smith, S. Jerrod
2017-09-26
In February 2017, the Grand River Dam Authority filed to relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission. The predominant feature of the Pensacola Hydroelectric Project is Pensacola Dam, which impounds Grand Lake O’ the Cherokees (locally called Grand Lake) in northeastern Oklahoma. Identification of information gaps and assessment of project effects on stakeholders are central aspects of the Federal Energy Regulatory Commission relicensing process. Some upstream stakeholders have expressed concerns about the dynamics of sedimentation and flood flows in the transition zone between major rivers and Grand Lake O’ the Cherokees. To relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission, the hydraulic models for these rivers require high-resolution bathymetric data along the river channels. In support of the Federal Energy Regulatory Commission relicensing process, the U.S. Geological Survey, in cooperation with the Grand River Dam Authority, performed bathymetric surveys of (1) the Neosho River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, (2) the Spring River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, and (3) the Elk River from Noel, Missouri, to the Oklahoma State Highway 10 bridge near Grove, Oklahoma. The Neosho River and Spring River bathymetric surveys were performed from October 26 to December 14, 2016; the Elk River bathymetric survey was performed from February 27 to March 21, 2017. Only areas inundated during those periods were surveyed.The bathymetric surveys covered a total distance of about 76 river miles and a total area of about 5 square miles. Greater than 1.4 million bathymetric-survey data points were used in the computation and interpolation of bathymetric-survey digital elevation models and derived contours at 1-foot (ft) intervals. The minimum bathymetric-survey elevation of the Neosho River was 709.18 ft above North American Vertical Datum of 1988, which corresponds to a maximum depth of 34.22 ft. The minimum bathymetric-survey elevation of the Spring River was 714.18 ft above North American Vertical Datum of 1988, which corresponds to a maximum depth of 29.22 ft. The minimum bathymetric-survey elevation of the Elk River was 715.62 ft above North American Vertical Datum of 1988, which corresponds to a maximum depth of 27.78 ft.
Floods of July 23-26, 2010, in the Little Maquoketa River and Maquoketa River Basins, Northeast Iowa
Eash, David A.
2012-01-01
Minor flooding occurred July 23, 2010, in the Little Maquoketa River Basin and major flooding occurred July 23–26, 2010, in the Maquoketa River Basin in northeast Iowa following severe thunderstorm activity over the region during July 22–24. A breach of the Lake Delhi Dam on July 24 aggravated flooding on the Maquoketa River. Rain gages at Manchester and Strawberry Point, Iowa, recorded 72-hour-rainfall amounts of 7.33 and 12.23 inches, respectively, on July 24. The majority of the rainfall occurred during a 48-hour period. Within the Little Maquoketa River Basin, a peak-discharge estimate of 19,000 cubic feet per second (annual flood-probability estimate of 4 to 10 percent) at the discontinued 05414500 Little Maquoketa River near Durango, Iowa streamgage on July 23 is the sixth largest flood on record. Within the Maquoketa River Basin, peak discharges of 26,600 cubic feet per second (annual flood-probability estimate of 0.2 to 1 percent) at the 05416900 Maquoketa River at Manchester, Iowa streamgage on July 24, and of 25,000 cubic feet per second (annual flood-probability estimate of 1 to 2 percent) at the 05418400 North Fork Maquoketa River near Fulton, Iowa streamgage on July 24 are the largest floods on record for these sites. A peak discharge affected by the Lake Delhi Dam breach on July 24 at the 05418500 Maquoketa River near Maquoketa, Iowa streamgage, located downstream of Lake Delhi, of 46,000 cubic feet per second on July 26 is the third highest on record. High-water marks were measured at five locations along the Little Maquoketa and North Fork Little Maquoketa Rivers between U.S. Highway 52 near Dubuque and County Road Y21 near Rickardsville, a distance of 19 river miles. Highwater marks were measured at 28 locations along the Maquoketa River between U.S. Highway 52 near Green Island and State Highway 187 near Arlington, a distance of 142 river miles. High-water marks were measured at 13 locations along the North Fork Maquoketa River between Rockdale Road near Maquoketa and U.S. Highway 52 near Luxemburg, a distance of 90 river miles. The high-water marks were used to develop flood profiles for the Little Maquoketa, North Fork Little Maquoketa, Maquoketa, and North Fork Maquoketa Rivers.
Endangered river fish: factors hindering conservation and restoration
Cooke, Steven J.; Paukert, Craig P.; Hogan, Zeb
2012-01-01
Globally, riverine fish face many anthropogenic threats including riparian and flood plain habitat degradation, altered hydrology, migration barriers, fisheries exploitation, environmental (climate) change, and introduction of invasive species. Collectively, these threats have made riverine fishes some of the most threatened taxa on the planet. Although much effort has been devoted to identifying the threats faced by river fish, there has been less effort devoted to identifying the factors that may hinder our ability to conserve and restore river fish populations and their watersheds. Therefore, we focus our efforts on identifying and discussing 10 general factors (can also be viewed as research and implementation needs) that constrain or hinder effective conservation action for endangered river fish: (1) limited basic natural history information; (2) limited appreciation for the scale/extent of migrations and the level of connectivity needed to sustain populations; (3) limited understanding of fish/river-flow relationships; (4) limited understanding of the seasonal aspects of river fish biology, particularly during winter and/or wet seasons; (5) challenges in predicting the response of river fish and river ecosystems to both environmental change and various restoration or management actions; (6) limited understanding of the ecosystem services provided by river fish; (7) the inherent difficulty in studying river fish; (8) limited understanding of the human dimension of river fish conservation and management; (9) limitations of single species approaches that often fail to address the broader-scale problems; and (10) limited effectiveness of governance structures that address endangered river fish populations and rivers that cross multiple jurisdictions. We suggest that these issues may need to be addressed to help protect, restore, or conserve river fish globally, particularly those that are endangered.
NASA Astrophysics Data System (ADS)
Santos, Andre Luis Martinelli Real dos; Martinez, Jean Michel; Filizola, Naziano Pantoja; Armijos, Elisa; Alves, Luna Gripp Simões
2018-01-01
The Purus River is one of the major tributaries of Solimões River in Brazil, draining an area of 370,091 km2 and stretching over 2765 km. Unlike those of the other main tributaries of the Amazon River, the Purus River's sediment discharge is poorly characterized. In this study, as an alternative to the logistic difficulties and considering high monitoring costs, we report an experiment where field measurement data and 2700 satellite (MODIS) images are combined to retrieve both seasonal and interannual dynamics in terms of the Purus river sediment discharge near its confluence with the Solimões River. Field radiometric and hydrologic measurements were acquired during 18 sampling trips, including 115 surface water samples and 61 river discharge measurements. Remote sensing reflectance gave important results in the red and infrared levels. They were very well correlated with suspended sediment concentration. The values of R2 are greater than 0.8 (red band) and 0.9 (NIR band). A retrieval algorithm based on the reflectance in both the red and the infrared was calibrated using the water samples collected for the determination of the surface-suspended sediment concentration (SSS). The algorithm was used to calculate 16 years of SSS time series with MODIS images at the Purus River near its confluence with the Solimões River. Results from satellite data correlated with in situ SSS values validate the use of satellite data to be used as a tool to monitor SSS in the Purus River. We evidenced a very short and intense sediment discharge pulse with 55% of the annual sediment budget discharged during the months of January and February. Using river discharge records, we calculated the mean annual sediment discharge of the Purus River at about of 17 Mt·yr-1.
Transport of diazinon in the San Joaquin River Basin, California
Kratzer, C.R.
1999-01-01
Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federal-state collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991-1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 ??g/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin.
NASA Astrophysics Data System (ADS)
Duan, Shuiwang; Bianchi, Thomas S.; Shiller, Alan M.; Dria, Karl; Hatcher, Patrick G.; Carman, Kevin R.
2007-06-01
In this study, we examined the temporal and spatial variability of dissolved organic matter (DOM) abundance and composition in the lower Mississippi and Pearl rivers and effects of human and natural influences. In particular, we looked at bulk C/N ratio, stable isotopes (δ15N and δ13C) and 13C nuclear magnetic resonance (NMR) spectrometry of high molecular weight (HMW; 0.2 μm to 1 kDa) DOM. Monthly water samples were collected at one station in each river from August 2001 to 2003. Surveys of spatial variability of total dissolved organic carbon (DOC) and nitrogen (DON) were also conducted in June 2003, from 390 km downstream in the Mississippi River and from Jackson to Stennis Space Center in the Pearl River. Higher DOC (336-1170 μM), C/N ratio,% aromaticity, and more depleted δ15N (0.76-2.1‰) were observed in the Pearl than in the lower Mississippi River (223-380 μM, 4.7-11.5‰, respectively). DOC, C/N ratio, δ13C, δ15N, and % aromaticity of Pearl River HMW DOM were correlated with water discharge, which indicated a coupling between local soil inputs and regional precipitation events. Conversely, seasonal variability in the lower Mississippi River was more controlled by spatial variability of a larger integrative signal from the watershed as well as in situ DOM processing. Spatially, very little change occurred in total DOC in the downstream survey of the lower Mississippi River, compared to a decrease of 24% in the Pearl River. Differences in DOM between these two rivers were reflective of the Mississippi River having more extensive river processing of terrestrial DOM, more phytoplankton inputs, and greater anthropogenic perturbation than the Pearl River.
NASA Astrophysics Data System (ADS)
Sun, Xilin; Li, Chang'an; Kuiper, Kuiper; Zhang, Zengjie; Wijbrans, Jan
2017-04-01
The development of the river systems in East Asia is closely linked to the uplift of the Tibetan plateau caused by collision of the India-Eurasia. The Yangtze River is the largest river in Asia and the timing and exact causes of its formation are still a matter of debate. Controversy exists for example on the start of the connection of the eastern Tibetan rivers to the eastward flowing Yangtze instead of the southward flowing Red River. Here we use the 40Ar/39Ar dating of detrital micas (muscovite and biotite) and muscovite geochemistry to constrain the sediment provenance in the eastern Tibetan Plateau. The remarkable spatial and temporal variation in sediment provenance allow us to extract information about the evolution of the upper Yangtze River. The combined data suggest that the upper Jinsha River upstream from Shigu town lost its connection with the southward flowing Red River at least earlier than the Pliocene. To the east of Shigu, the Yalong and Jinsha rivers flowed across the Yuanmou Basin into the Red River before 3.1 Ma, but abandoned this connection and turned east somewhere between 3.1 and 2.1 Ma. Our results rule out the possibility of a west-flowing Jinsha River since 1.58 Ma. The current stream directions between Shigu and Panzhihua go north, south and east and must have been formed at that time. Our data also shed new light on the evolution of the Dadu River. The Dadu River did not flow southward into Yuanmou Basin at least since 4.8 Ma but flowed into the Jinsha River along the Anninghe Fault. These capture events are closely linked to the tectonism of the eastern Tibetan Plateau and intensification of the East Asia monsoon.
Warrick, J.A.; Washburn, L.; Brzezinski, Mark A.; Siegel, D.A.
2005-01-01
The Santa Clara River delivers nutrient rich runoff to the eastern Santa Barbara Channel during brief (???1-3 day) episodic events. Using both river and oceanographic measurements, we evaluate river loading and dispersal of dissolved macronutrients (silicate, inorganic N and P) and comment on the biological implications of these nutrient contributions. Both river and ocean observations suggest that river nutrient concentrations are inversely related to river flow rates. Land use is suggested to influence these concentrations, since runoff from a subwatershed with substantial agriculture and urban areas had much higher nitrate than runoff from a wooded subwatershed. During runoff events, river nutrients were observed to conservatively mix into the buoyant, surface plume immediately seaward of the Santa Clara River mouth. Dispersal of these river nutrients extended 10s of km into the channel. Growth of phytoplankton and nutrient uptake was low during our observations (1-3 days following runoff), presumably due to the very low light levels resulting from high turbidity. However, nutrient quality of runoff (Si:N:P = 16:5:1) was found to be significantly different than upwelling inputs (13:10:1), which may influence different algal responses once sediments settle. Evaluation of total river nitrate loads suggests that most of the annual river nutrient fluxes to the ocean occur during the brief winter flooding events. Wet winters (such as El Nin??o) contribute nutrients at rates approximately an order-of-magnitude greater than "average" winters. Although total river nitrate delivery is considerably less than that supplied by upwelling, the timing and location of these types of events are very different, with river discharge (upwelling) occurring predominantly in the winter (summer) and in the eastern (western) channel. ?? 2004 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Keshavarzi, M.; Baker, A.; Andersen, M. S.; Kelly, B. F. J.
2016-12-01
Groundwater systems connected to rivers can act as carbon sinks and sources, but little is known about the distribution, transformation, and retention of organic carbon in rivers connected to aquifers as few studies are available. The characterisation of dissolved organic matter (DOM) using optical absorbance in connected water systems has potential to provide novel insights about the organic component of carbon fluxes. Here, the optical absorbance of the river and groundwater samples is investigated in a river reach that is hydraulically connected to an adjoining alluvial and karst aquifer system, within a semi-arid agricultural catchment in New South Wales, Australia. Water samples were collected from the river and groundwater within monitoring boreholes and intercepted by caves. These water samples were analysed for absorbance, dissolved organic carbon (DOC) and inorganic chemical constituents. Groundwater samples collected close to the river have DOM characteristics similar to the river water, indicating losing conditions. While, groundwater samples collected further away from the river have lower DOC and absorbance, higher SUVA, and a lower and more variable spectral slope, compared to the river. We infer that this change in DOM character reveals the presence of sedimentary OM, which provides a source of relatively high molecular weight DOM that is subsequently transformed. In a dry period, when there was low flow in the river, three downstream river-water samples exhibited low absorbance and spectral slope similar to the groundwater, while the contemporaneous upstream river-water samples had higher absorbance and spectral slope. This suggests gaining conditions and a contribution of groundwater organic carbon into the river. It is concluded that optical analyses can be used to study organic carbon fluxes to differentiate and quantify the source of organic matter, and identify losing and gaining streams.
Havlíková, Petra; Chuman, Tomáš; Janský, Bohumír
2017-11-17
The aim of the thesis was to specify key differences in chemistry and biota (zooplankton communities) among fluvial lakes in three regions of the Czech Republic: the central part of the Elbe River, the upper part of the Lužnice River and the upper part of the Svratka River. The ten studied lakes of the three regions differ in size, geology, shading, connection with the river and the level of anthropogenic impact. The following hypotheses were tested: (1) The water chemistry of fluvial lakes significantly differs in different floodplains. In the central Elbe River floodplain, there are the highest values of conductivity and concentrations of organic matter and nutrients. Fluvial lakes of the Svratka River floodplain show the lowest level of these parameters, and fluvial lakes of the upper Lužnice River have levels intermediate between the two previous regions. (2) The chemistry of fluvial lakes that have contact with the river through surface connection is significantly influenced by the river. (3) The structure of zooplankton differs in different lakes due to the geographical distance between locations, their different altitude and water chemistry. The PCA analysis of selected parameters of the water chemistry revealed a close relationship of locations in the central Elbe River floodplain on the one side and close relationship of the locations in the upper Lužnice River and Svratka River on the other. However, the amount of organic matter, nitrogen (with the exception of nitrates) and phosphorus was independent of the region. The relationship between the extent of the lake-river connection and the water chemistry was not significant. The hypothesis that the zooplankton differ in different lakes was not proved-the species composition was similar in all the lakes.
Ichthyophoniasis: An emerging disease of Chinook salmon in the Yukon River
Kocan, R.; Hershberger, P.; Winton, J.
2004-01-01
Before 1985, Ichthyophonus was unreported among Pacific salmon Oncorhynchus spp. from the Yukon River; now it infects more than 40% of returning adult Chinook salmon O. tshawytscha. Overall infection prevalence reached about 45% in the Yukon River and about 30% in the Tanana River between 1999 and 2003. Mean infection prevalence was greater in females than males in the main-stem Yukon River during each of the 5 years of the study, but the infection prevalence in males increased each year until the difference was no longer significant. Clinical signs of ichthyophoniasis (presence of visible punctate white lesions in internal organs) were least at the mouth of the Yukon River (∼10%) but increased to 29% when fish reached the middle Yukon River and was 22% at the upper Tanana River. However, clinical signs increased each year from 7% in 1999 to 27% in 2003 at the mouth of the river. As fish approached the upper reaches of the Yukon River (Canada) and the spawning areas of the Chena and Salcha rivers (Alaska), infection prevalence dropped significantly to less than 15% in females on the Yukon River and less than 10% for both sexes in the Chena and Salcha rivers, presumably because of mortality among infected prespawn fish. Age was not a factor in infection prevalence, nor was the position of fish within the run. The source of infection was not determined, but Ichthyophonus was not found in 400 Pacific herring Clupea pallasi from the Bering Sea or in 120 outmigrating juvenile Chinook salmon from two drainages in Alaska and Canada. Freshwater burbot Lota lota from the middle Yukon River were subclinically infected with Ichthyophonus, but the origin and relationship of this agent to the Chinook salmon isolate is unknown.
NASA Astrophysics Data System (ADS)
Onodera, S.; Saito, M.; Maruyama, Y.; Jin, G.; Miyaoka, K.; Shimizu, Y.
2013-12-01
In coastal megacities, sever groundwater depression and water pollution occurred. These impacts affected to river environment change. Especially, the river mouth area has been deposited the polluted matters. These areas have characteristics of water level fluctuation which causes river water-groundwater interaction and the associated change in dynamics of nutrients. However, these effects on the nutrient transport in tidal reaches and nutrient load to the sea have not been fully evaluated in previous studies. Therefore, we aimed to clarify the characteristics of the nutrient transport with the river water-groundwater interaction in the tidal river of Osaka metropolitan city. We conducted the field survey from the river mouth to the 7km upstream area of Yamato River, which has a length of 68km and a watershed area of 1070 km2. Spatial variations in radon (222Rn) concentrations and the difference of hydraulic potential between river waters and the pore waters suggest that the groundwater discharges to the river channel in the upstream area. In contrast, the river water recharged into the groundwater near the river mouth area. It may be caused by the lowering of groundwater level associated with the excess abstraction of groundwater in the urban area. The result also implies the seawater intrusion would accelerate the salinization of groundwater. The spatial and temporal variations in nutrient concentrations indicate that nitrate-nitrogen (NO3-N) concentrations changed temporally and it negative correlated with dissolved organic nitrogen (DON) concentrations. Inorganic phosphorous (PO4-P) concentrations showed the increasing trend with the increase of the river water level. Based on the mass balance, nutrient reproduction from the river bed was suggested in tidal reach. That was estimated to be 10 % of total nitrogen and 3% of phosphorus loads from the upstream.
Pinkney, A E; Harshbarger, J C; May, E B; Melancon, M J
2004-05-01
Brown bullheads (Ameiurus nebulosus) were collected from 2 locations near Baltimore, Maryland, Back River and Furnace Creek, and 1 (reference) location, Tuckahoe River, to compare the prevalence of tumors (liver and skin) and visible skin lesions (fin erosion and abnormal barbels). Cytochrome P450 activity measured as ethoxyresorufin-O-deethylase, biliary PAH-like fluorescent metabolites, and fillet contaminant concentrations were determined as indicators of exposure in a randomly selected subset of the fish. There were no significant differences in liver tumor prevalence: Back River = 8% (4/50), Furnace Creek = 0% (0/50), and Tuckahoe River = 2.6% (1/39; p = 0.20, extension of Fisher's exact test). Skin tumor prevalence was as follows: Furnace Creek = 12% (6/50), Back River = 8% (4/50), and Tuckahoe River = 0% (0/39; p = 0.063). In the Back River fish, there was a 40% (20/50) prevalence of fin erosion and a 28% (14/50) prevalence of abnormal (shortened, clubbed, or missing) barbels. Fin erosion was not observed in the other collections, and only 10% (5/50) of the Furnace Creek fish had abnormal barbels (p < 0.001 for both lesions). There were statistically significant differences in mean EROD activity, with levels in Furnace Creek and Back River fish approximately twice that found in Tuckahoe River fish. There were also significant differences in mean benzo(a)pyrene-like bile metabolite concentrations: the lowest mean was in the Tuckahoe River fish, 8 times higher in Furnace Creek fish, and 13 times higher in Back River fish. Of the 3 groups, the Back River bullheads appear to be most adversely affected by contaminant exposure because they had the highest prevalence of liver tumors, fin erosion, and abnormal barbels.
Pinkney, A.E.; Harshbarger, J.C.; May, E.B.; Melancon, M.J.
2004-01-01
Brown bullheads (Ameiurus nebulosus) were collected from 2 locations near Baltimore, Maryland, Back River and Furnace Creek, and 1 (reference) location, Tuckahoe River, to compare the prevalence of tumors (liver and skin) and visible skin lesions (fin erosion and abnormal barbels). Cytochrome P450 activity measured as ethoxyresorufin-O-deethylase, biliary PAH-like fluorescent metabolites, and fillet contaminant concentrations were determined as indicators of exposure in a randomly selected subset of the fish. There were no significant differences in liver tumor prevalence: Back River = 8% (4/50), Furnace Creek = 0% (0/50), and Tuckahoe River = 2.6% (1/39; p = 0.20, extension of Fishers exact test). Skin tumor prevalence was as follows: Furnace Creek = 12% (6/50), Back River = 8% (4/50), and Tuckahoe River = 0% (0/39; p = 0.063). In the Back River fish, there was a 40% (20/50) prevalence of fin erosion and a 28% (14/50) prevalence of abnormal (shortened, clubbed, or missing) barbels. Fin erosion was not observed in the other collections, and only 10% (5/50) of the Furnace Creek fish had abnormal barbels (p < 0.001 for both lesions). There were statistically significant differences in mean EROD activity, with levels in Furnace Creek and Back River fish approximately twice that found in Tuckahoe River fish. There were also significant differences in mean benzo(a)pyrene-like bile metabolite concentrations: the lowest mean was in the Tuckahoe River fish, 8 times higher in Furnace Creek fish, and 13 times higher in Back River fish. Of the 3 groups, the Back River bullheads appear to be most adversely affected by contaminant exposure because they had the highest prevalence of liver tumors, fin erosion, and abnormal barbels.
Hood River Production Master Plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Toole, Patty
1991-07-01
The Northwest Power Planning Council's 1987 Columbia River Fish and Wildlife Program authorizes the development of artificial production facilities to raise chinook salmon and steelhead for enhancement in the Hood, Umatilla, Walla Walla, Grande Ronde and Imnaha rivers and elsewhere. On February 26, 1991 the Council agreed to disaggregate Hood River from the Northeast Oregon Hatchery Project, and instead, link the Hood River Master Plan (now the Hood River Production Plan) to the Pelton Ladder Project (Pelton Ladder Master Plan 1991).
Code of Federal Regulations, 2012 CFR
2012-07-01
.... and La., Mile 0.0 to Mile 338.0 (Camden, Ark.) above the mouth of the Black River; the Red River, La., Mile 6.7 (Junction of Red, Atchafalaya and Old Rivers) to Mile 276.0 (Shreveport, La.); use.... and La., Mile 0.0 to Mile 338.0 (Camden, Ark.) above the mouth of the Black River; the Red River, La...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... and La., Mile 0.0 to Mile 338.0 (Camden, Ark.) above the mouth of the Black River; the Red River, La., Mile 6.7 (Junction of Red, Atchafalaya and Old Rivers) to Mile 276.0 (Shreveport, La.); use.... and La., Mile 0.0 to Mile 338.0 (Camden, Ark.) above the mouth of the Black River; the Red River, La...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... and La., Mile 0.0 to Mile 338.0 (Camden, Ark.) above the mouth of the Black River; the Red River, La., Mile 6.7 (Junction of Red, Atchafalaya and Old Rivers) to Mile 276.0 (Shreveport, La.); use.... and La., Mile 0.0 to Mile 338.0 (Camden, Ark.) above the mouth of the Black River; the Red River, La...
Designing and Implementation of River Classification Assistant Management System
NASA Astrophysics Data System (ADS)
Zhao, Yinjun; Jiang, Wenyuan; Yang, Rujun; Yang, Nan; Liu, Haiyan
2018-03-01
In an earlier publication, we proposed a new Decision Classifier (DCF) for Chinese river classification based on their structures. To expand, enhance and promote the application of the DCF, we build a computer system to support river classification named River Classification Assistant Management System. Based on ArcEngine and ArcServer platform, this system implements many functions such as data management, extraction of river network, river classification, and results publication under combining Client / Server with Browser / Server framework.
Kankakee River Basin: Evaluation of Sediment Management Strategies
2013-09-01
extends from South Bend, Indiana, to its confluence with the Illinois River near Wilmington, Illinois. The river has a 5,165- square-mile drainage area and...confluence with the Illinois River near Wilmington, IL (Figure 1.1). It has a 5,165-square-mile drainage area and a river length of approximately 150 miles...Yellow River drainage area is overlain by sand-sized sediment. The Rock Island, St. Louis, Chicago, and Detroit Districts collaborated to produce the
Roseman, Edward F.; Kennedy, Gregory W.; Manny, Bruce A.; Boase, James; McFee, James; Tallman, Ross F.; Howland, Kimberly L.; Rennie, Michael D.; Mills, Kenneth; Tallman, Ross F.; Howland, Kimberly L.; Rennie, Michael D.; Mills, Kenneth
2012-01-01
The Detroit River is part of a channel connecting Lakes Huron and Erie and was once a prolific spawning area for lake whitefish, Coregonus clupeaformis. Large numbers of lake whitefish migrated into the river to spawn where they were harvested by commercial fisheries and for fish culture operations. Prior to our study, the last lake whitefish was landed from the Detroit River in 1925. Loss of spawning habitat during shipping channel construction and over-fishing, likely reduced lake whitefish spawning runs. Because lake whitefish are recovering in Lake Erie, and spawning in the western basin, we suspected they may also be spawning in the Detroit River. We sampled in the Detroit River for lake whitefish adults and eggs in October–December 2005–07 and for larvae during March–May 2006–08. A total of 15 spawning-ready lake whitefish from 4 to 18 years old, were collected. Viable eggs were collected during mid-November 2006–07; highest egg densities were found mid-river. Sac-fry whitefish larvae were collected in the river and near the river mouth. No whitefish larvae were retained in the river. Because high numbers of larvae were collected from mid- and downstream river sites, reproduction of lake whitefish in the Detroit River could contribute substantially to the Lake Erie lake whitefish metapopulation.
NASA Astrophysics Data System (ADS)
Xu, Wei; Su, Xiaosi; Dai, Zhenxue; Yang, Fengtian; Zhu, Pucheng; Huang, Yong
2017-11-01
Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river-groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river-groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river-groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paller, M.
1992-03-26
Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in themore » river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.« less
NASA Astrophysics Data System (ADS)
Dorava, Joseph M.; Milner, Alexander M.
2000-10-01
Rivers fed by glaciers constitute a major part of the freshwater runoff into the Cook Inlet basin of south-central Alaska. This basin is very important to the economy of the State of Alaska because it is home to more than half of the population and it supports multi-million dollar commercial, subsistence and sport fisheries. Hence an understanding of how glacial runoff influences biological productivity is important for managing rivers that drain into Cook Inlet. This paper examines the ways in which the regulation of glacier-fed rivers by proglacial lakes affects salmon productivity, with particular reference to the Kenai River. Salmon escapement per unit channel length on the Kenai River is between two and ten times that found for rain-and-snowmelt dominated rivers and glacier-fed rivers lacking lake regulation.Lakes are shown to influence biological processes in glacier-fed rivers by attenuating peak flows, sustaining high flows throughout the summer, supplementing winter low flows, settling suspended sediment, and increasing river temperatures. Downstream from large lakes, glacier-fed rivers are less disturbed, channels are relatively stable and have well-developed salmonid habitats. The positive influences are indicated by the high diversity and abundances of benthic macroinvertebrates, which are important food resources for juvenile salmonids. High summer flows allow access for up-river salmon runs and lakes also provide both overwintering and rearing habitat.
Kraemer, Thomas F.; Brabets, Timothy P.
2012-01-01
The ability to detect hydrologic variation in large arctic river systems is of major importance in understanding and predicting effects of climate change in high-latitude environments. Monitoring uranium isotopes (234U and 238U) in river water of the Yukon River Basin of Alaska and northwestern Canada (2001–2005) has enhanced the ability to identify water sources to rivers, as well as detect flow changes that have occurred over the 5-year study. Uranium isotopic data for the Yukon River and major tributaries (the Porcupine and Tanana rivers) identify several sources that contribute to river flow, including: deep groundwater, seasonally frozen river-valley alluvium groundwater, and high-elevation glacial melt water. The main-stem Yukon River exhibits patterns of uranium isotopic variation at several locations that reflect input from ice melt and shallow groundwater in the spring, as well as a multi-year pattern of increased variability in timing and relative amount of water supplied from higher elevations within the basin. Results of this study demonstrate both the utility of uranium isotopes in revealing sources of water in large river systems and of incorporating uranium isotope analysis in long-term monitoring of arctic river systems that attempt to assess the effects of climate change.
Colman, John A.
2001-01-01
Measurements of elevated concentrations of polychlorinated biphenyls (PCBs) in fish and in streambed sediments of the Millers River Basin, Massachusetts and New Hampshire, have been reported without evidence of the PCB source. In 1999, an investigation was initiated to determine the source(s) of the elevated PCB concentrations observed in fish and to establish the extent of fish exposure to PCBs along the entire main stems of the Millers River and one of its tributaries, the Otter River. Passive samplers deployed for 2-week intervals in the water-column at 3 1 stations, during summer and fall 1999, were used to assess PCB concentrations in the Millers River Basin. The samplers concentrate PCBs, which diffuse from the water column through a polyethylene membrane to hexane (0.200 liters) contained inside the samplers. Only dissolved PCBs (likely equivalent to the bioavailable fraction) are subject to diffusion through the membrane. The summed concentrations of all targeted PCB congeners (summed PCB) retrieved from the samplers ranged from 1 to 8,000 nanograms per hexane sample. Concentration and congener-pattern comparisons indicated that the historical release of PCBs in the Millers River Basin likely occurred on the Otter River at the upstream margin of Baldwinville, Mass. Elevated water-column concentrations measured in a wetland reach on the Otter River downstream from Baldwinville were compatible with a conceptual model for a present-day (1999) source in streambed sediments, to which the PCBs partitioned after their original introduction into the Otter River and from which PCBs are released to the water now that the original discharge has ceased or greatly decreased. Two four-fold decreases in summed PCB concentrations in the Millers River, by comparison with the highest concentration on the Otter River, likely were caused by (1) dilution with water from the relatively uncontaminated upstream Millers River and (2) volatilization of PCBs from the Millers River in steep-gradient reaches. A relatively constant concentration of summed PCBs in the reach of the Millers River from river mile 20 to river mile 10 was likely a consequence of a balance between decreased volatilization rates in that relatively low-gradient reach and resupply of PCBs to the water column from contaminated streambed sediments. A second high-gradient reach from river mile 10 to the confluence of the Millers River with the Connecticut River also was associated with a decrease in concentration of water-column summed PCBs. Volatilization as a loss mechanism was supported by evidence in the form of slight changes of the congener pattern in the reaches where decreases occurred. Exposure of fish food webs to concentrations of dissolved PCBs exceeded the U.S. Environmental Protection Agency's water-quality criterion for PCBs throughout most of the Millers River and Otter River main stems. Because the apparent source of PCBs discharged was upstream on the Otter River, a large number of river miles downstream (more than 30 mi) had summer water-column PCB concentrations that would likely lead to high concentrations of PCBs in fish.
43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund... deposited by Western and shall be available without further appropriation for: (1) Defraying the costs of... River Basin Project Act; (5) Transfers to the Lower Colorado River Basin Development Fund and subsequent...
1. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING ...
1. OVERALL VIEW OF INTAKE PIER AND ACCESS BRIDGE, LOOKING NORTHEAST FROM WESTERN LEVEE OF THE SACRAMENTO RIVER. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA
18 CFR 725.7 - Regional or river basin planning.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Regional or river basin... Responsibilities § 725.7 Regional or river basin planning. (a) In agreements between river basin commissions or other regional planning sponsors and the Council for the preparation and revision of regional and river...
18 CFR 725.7 - Regional or river basin planning.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Regional or river basin... Responsibilities § 725.7 Regional or river basin planning. (a) In agreements between river basin commissions or other regional planning sponsors and the Council for the preparation and revision of regional and river...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-23
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL13-20-000] Marble River... Commission's (Commission) Rules of Practice and Procedure, Marble River, LLC (Marble River or Complainant.... (NYISO or Respondent), alleging that Noble failed to pay Marble River for headroom created by common...
27 CFR 9.78 - Ohio River Valley.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ohio River Valley. 9.78... River Valley. (a) Name. The name of the viticultural area described in this section is “Ohio River Valley.” (b) Approved maps. The approved maps for determining the boundary of the Ohio River Valley...
Quantifying flooding regime in floodplain forests to guide river restoration
Christian O. Marks; Keith H. Nislow; Francis J. Magilligan
2014-01-01
Determining the flooding regime needed to support distinctive floodplain forests is essential for effective river conservation under the ubiquitous human alteration of river flows characteristic of the Anthropocene Era. At over 100 sites throughout the Connecticut River basin, the largest river system in New England, we characterized species composition, valley and...
River-to-Great Lake transition zones are hydrologically, biogeochemically and biologically dynamic areas that regulate nutrient and energy fluxes between rivers and Great Lakes. Our goal is to characterize the biogeochemical properties of the river-lake transition zones and under...
Complex ecosystems form where coastal rivers enter the Laurentian Great Lakes. These ecosystems span a river-to-Great Lake transition zone encompassing a mosaic of river channel, drowned river mouth, littoral, wetland and coastal habitats. Our goals were to determine whether we c...
76 FR 63858 - Drawbridge Operation Regulation; Trent River, New Bern, NC
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-14
... River Bridge Runs. This deviation allows the bridge to remain in the closed position to ensure safe..., Docket Operations, telephone 202-366-9826. SUPPLEMENTARY INFORMATION: The Neuse River Bridge Run... River, mile 0.0, at New Bern, NC. The route of the three Neuse River Bridge Run races cross the bridge...
76 FR 18669 - Safety Zone, Newport River; Morehead City, NC
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-05
...-AA00 Safety Zone, Newport River; Morehead City, NC AGENCY: Coast Guard, DHS. ACTION: Notice of proposed... River under the main span US 70/Morehead City--Newport River high rise bridge in Carteret County, NC... Newport River at Morehead City, North Carolina. The contract provides for cleaning, painting, and steel...
76 FR 23227 - Safety Zone, Newport River; Morehead City, NC
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-26
...-AA00 Safety Zone, Newport River; Morehead City, NC AGENCY: Coast Guard, DHS. ACTION: Notice of proposed... River under the main span US 70/Morehead City--Newport River high rise bridge in Carteret County, NC... Newport River at Morehead City, North Carolina. The contract provides for cleaning, painting, and steel...
43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...
43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...
43 CFR 431.7 - Administration and management of the Colorado River Dam Fund.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Colorado River Dam Fund. 431.7 Section 431.7 Public Lands: Interior Regulations Relating to Public Lands... management of the Colorado River Dam Fund. Reclamation is responsible for the repayment of the Project and the administration of the Colorado River Dam Fund and the Lower Colorado River Basin Development Fund...
76 FR 13171 - Leaf River Energy Center LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-10
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP11-107-000] Leaf River Energy Center LLC; Notice of Application On February 25, 2011, Leaf River Energy Center LLC (Leaf River... Docket No. CP08-8-000 to authorize Leaf River to relocate and construct two of its certificated and not...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-26
...-AA11 Regulated Navigation Area--Weymouth Fore River, Fore River Bridge Construction, Weymouth and... vicinity of the Fore River Bridge (Mile 3.5) between Weymouth and Quincy, MA. This rule will place temporary speed, wake, and entry restrictions on vessels during bridge replacement operations. This rule is...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
...-AA11 Regulated Navigation Area--Weymouth Fore River, Fore River Bridge Construction, Weymouth and... under and surrounding the Fore River Bridge (Mile 3.5) between Weymouth and Quincy, MA until December 31... prohibit all vessel traffic through the RNA during bridge replacement operations, both planned and...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-19
... portion of the Delaware River from operating while a fireworks event is taking place. This temporary...-AA00 Safety Zone; Delaware River Waterfront Corp. Fireworks Display, Delaware River; Camden, NJ AGENCY: Coast Guard, DHS. ACTION: Temporary final rule. SUMMARY: The Coast Guard is establishing a temporary...
Water resources of the Big Sioux River Valley near Sioux Falls, South Dakota
Jorgensen, Donald G.; Ackroyd, Earl A.
1973-01-01
Water from the river is generally less mineralized, softer, and easier to treat than ground water. Water pumped from wells near the river is similar in quality to the river water, but does not have the objectionable odors or tastes often present in water from the river.
33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Annual River Race Augusta... River Race Augusta; Savannah River, Augusta GA. (a) Definitions: (1) Regulated Area. The regulated area... Race Augusta each day, and during intervals between scheduled events, at the discretion of the Coast...
33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Annual River Race Augusta... River Race Augusta; Savannah River, Augusta GA. (a) Definitions: (1) Regulated Area. The regulated area... Race Augusta each day, and during intervals between scheduled events, at the discretion of the Coast...
33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Annual River Race Augusta... River Race Augusta; Savannah River, Augusta GA. (a) Definitions: (1) Regulated Area. The regulated area... Race Augusta each day, and during intervals between scheduled events, at the discretion of the Coast...
33 CFR 100.732 - Annual River Race Augusta; Savannah River, Augusta GA.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Annual River Race Augusta... River Race Augusta; Savannah River, Augusta GA. (a) Definitions: (1) Regulated Area. The regulated area... Race Augusta each day, and during intervals between scheduled events, at the discretion of the Coast...
NASA Astrophysics Data System (ADS)
Broshears, Robert E.; Clark, Gregory M.; Jobson, Harvey E.
2001-05-01
Stream discharge and the transport of nitrate, atrazine, and metolachlor in the Mississippi River Basin were simulated using the DAFLOW/BLTM hydrologic model. The simulated domain for stream discharge included river reaches downstream from the following stations in the National Stream Quality Accounting Network: Mississippi River at Clinton, IA; Missouri River at Hermann, MO; Ohio River at Grand Chain, IL; and Arkansas River at Little Rock, AR. Coefficients of hydraulic geometry were calibrated using data from water year 1996; the model was validated by favourable simulation of observed discharges in water years 1992-1994. The transport of nitrate, atrazine, and metolachlor was simulated downstream from the Mississippi River at Thebes, IL, and the Ohio River at Grand Chain. Simulated concentrations compared favourably with observed concentrations at Baton Rouge, LA. Development of this model is a preliminary step in gaining a more quantitative understanding of the sources and fate of nutrients and pesticides delivered from the Mississippi River Basin to the Gulf of Mexico. Published in 2001 by John Wiley & Sons, Ltd.
Zhang, Yichuan; Wang, Jiangping
2015-07-01
Rivers serve as a highly valued component in ecosystem and urban infrastructures. River planning should follow basic principles of maintaining or reconstructing the natural landscape and ecological functions of rivers. Optimization of planning scheme is a prerequisite for successful construction of urban rivers. Therefore, relevant studies on optimization of scheme for natural ecology planning of rivers is crucial. In the present study, four planning schemes for Zhaodingpal River in Xinxiang City, Henan Province were included as the objects for optimization. Fourteen factors that influenced the natural ecology planning of urban rivers were selected from five aspects so as to establish the ANP model. The data processing was done using Super Decisions software. The results showed that important degree of scheme 3 was highest. A scientific, reasonable and accurate evaluation of schemes could be made by ANP method on natural ecology planning of urban rivers. This method could be used to provide references for sustainable development and construction of urban rivers. ANP method is also suitable for optimization of schemes for urban green space planning and design.
Ecological restoration and effect investigation of a river wetland in a semi-arid region, China
NASA Astrophysics Data System (ADS)
Xu, S.; Jiang, X.; Liu, Y.; Fu, Y.; Zhao, Q.
2015-05-01
River wetlands are heavily impacted by human intervention. The degradation and loss of river wetlands has made the restoration of river ecosystems a top priority. How to rehabilitate rivers and their services has been a research focus. The main goal of it is to restore the river wetland ecosystems with ecological methods. The Gudong River was selected as a study site in Chaoyang city in this study. Based on the analysis of interference factors in the river wetland degradation, a set of restoration techniques were proposed and designed for regional water level control, including submerged dikes, ecological embankments, revegetation and dredging. The restoration engineering has produced good results in water quality, eco-environment, and landscape. Monthly reports of the Daling River show that the water quality of Gudong River was better than Grade III in April 2013 compared with Grade V in May 2012. The economic benefit after restoration construction is 1.71 million RMB per year, about 1.89 times that before. The ratio of economic value, social value and eco-environmental value is 1:4:23.
Historic changes in fish assemblage structure in midwestern nonwadeable rivers
Parks, Timothy P.; Quist, Michael C.; Pierce, Clay L.
2014-01-01
Historical change in fish assemblage structure was evaluated in the mainstems of the Des Moines, Iowa, Cedar, Wapsipinicon, and Maquoketa rivers, in Iowa. Fish occurrence data were compared in each river between historical and recent time periods to characterize temporal changes among 126 species distributions and assess spatiotemporal patterns in faunal similarity. A resampling procedure was used to estimate species occurrences in rivers during each assessment period and changes in species occurrence were summarized. Spatiotemporal shifts in species composition were analyzed at the river and river section scale using cluster analysis, pairwise Jaccard's dissimilarities, and analysis of multivariate beta dispersion. The majority of species exhibited either increases or declines in distribution in all rivers with the exception of several “unknown” or inconclusive trends exhibited by species in the Maquoketa River. Cluster analysis identified temporal patterns of similarity among fish assemblages in the Des Moines, Cedar, and Iowa rivers within the historical and recent assessment period indicating a significant change in species composition. Prominent declines of backwater species with phytophilic spawning strategies contributed to assemblage changes occurring across river systems.
Effects of water-resource development on Yellowstone River streamflow, 1928-2002
Eddy-Miller, Cheryl A.; Chase, Katherine J.
2015-01-01
Major floods in 1996 and 1997 intensified public concern about the effects of human activities on the Yellowstone River in Montana. In 1999, the Yellowstone River Conservation District Council, whose members are primarily representatives from the conservation districts bordering the main stem of the Yellowstone River, was formed to promote wise use and conservation of the Yellowstone River’s natural resources. The Yellowstone River Conservation District Council is working with the U.S. Army Corps of Engineers to understand the cumulative hydrologic effects of water-resource development in the Yellowstone River Basin. The U.S. Army Corps of Engineers, Yellowstone River Conservation District Council, and U.S. Geological Survey began cooperatively studying the Yellowstone River in 2010, publishing four reports describing streamflow information for selected sites in the Yellowstone River Basin, 1928–2002. Detailed information about the methods used, as well as summary streamflow statistics, are available in the four reports. The purpose of this fact sheet is to highlight findings from the published reports and describe the effects of water use and structures, primarily dams, on the Yellowstone River streamflow.
Reid, S.M.; Wilson, C.C.; Carl, L.M.; Zorn, T.G.
2008-01-01
We used microsatellite DNA markers to test whether fragmentation of the Trent River (Ontario, Canada) has reduced genetic diversity and increased genetic differentiation among populations of river redhorse (Moxostoma carinatum) and shorthead redhorse (Moxostoma macrolepidotum). Allelic richness of both species was significantly greater along the free-flowing Muskegon River (Michigan, USA) than along the fragmented Trent River. Contrary to expectations, there was no evidence of a fragment length effect on genetic diversity, recent population bottlenecks, or increased relatedness among individuals in fragmented populations. High levels of linkage disequilibrium indicate extinction-recolonization population dynamics along the Trent River. For both species, pairwise FST tests identified weak but statistically significant population differentiation. In the Trent River, differentiation was significantly greater for river redhorse than for shorthead redhorse and, for both species, greater than in the Muskegon River. Moderate fragmentation effects likely reflect the permeability of the dam-lock system to redhorse movement. Differences between species indicate that as a result of smaller effective population sizes, habitat specialists and species at the periphery of their geographic range are more sensitive to river fragmentation. ?? 2008 NRC.
Asbury, C.E.; Oaksford, E.T.
1997-01-01
Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and Suwannee (7.0 percent) Rivers exporting the highest percentage of phosphorus.Although instream nutrient loads constitute only one of the various pathways nutrients may take in leaving a river basin, only a relatively small part of nutrient input to the basin leaves the basin in stream discharge for the major coastal rivers examined in this study. The actual amount of nutrient transported in a river basin depends on the ways in which nutrients are physically handled, geographically distributed, and chemically assimilated within a river basin.
Geomorphology of the lower Copper River, Alaska
Brabets, T.P.
1996-01-01
The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1996, 11 bridges were located along this section of the highway. These bridges cross parts or all of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. At the peak outflow rate from Van Cleve Lake, the flow of the Copper River will increase an additional 140,000 and 190,000 cubic feet per second. Bedload sampling and continuous seismic reflection were used to show that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lakes, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow- gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake, long-term flow characteristics of the lower Copper River were synthesized. Historical discharge and cross-section data indicate that as late as 1970, most of the flow of the lower Copper River was through the first three bridges of the Copper River Highway as it begins to traverse the alluvial flood plain. In the mid 1980's, a percentage of the flow had shifted away from these three bridges and in 1995, only 51 percent of the flow of the Copper River passed through them. Eight different years of aerial photography of the lower Copper River were analyzed using Geographical Information System techniques. This analysis indicated that no major channel changes were caused by the 1964 earthquake. A flood in 1981 that had a recurrence interval of more than 100 years caused significant channel changes in the lower Copper River. A probability analysis of the lower Copper River indicated stable areas and the long-term locations of channels. By knowing the number of times a particular area has been occupied by water and the last year an area was occupied by water, areas of instability can be located. A Markov analysis of the lower Copper River indicated that the tendency of the flood plain is to remain in its current state. Large floods of the magnitude of the 1981 event are believed to be the cause of major changes in the lower Copper River.
Geomorphology of the lower Copper River, Alaska
Brabets, Timothy P.
1997-01-01
The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1995, 11 bridges were located along this section of the highway. These bridges cross parts of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. When the outflow rate from Van Cleve Lake reaches it peak, the flow of the Copper River will increase between 150,000 to 190,000 cubic feet per second. Data collected by bedload sampling and continuous seismic reflection indicated that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lake, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow-gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake, long-term flow characteristics of the lower Copper River were synthesized. Historical discharge and cross-section data indicate that as late as 1970, most of the flow of the lower Copper River was through the first three bridges of the Copper River Highway as it begins to traverse the alluvial flood plain. In the mid 1980's, a percentage of the flow had shifted away from these three bridges and in 1995, only 51 percent of the flow of the Copper River passed through them. Eight different years of aerial photography of the lower Copper River were analyzed using Geographical Information System techniques. This analysis indicated that no major channel changes were caused by the 1964 earthquake. However, a flood in 1981 that had a recurrence interval of more than 100 years caused significant channel changes in the lower Copper River. A probability analysis of the lower Copper River indicated stable areas and the long-term locations of channels. By knowing the number of times a particular area has been occupied by water and the last year an area was occupied by water, areas of instability can be located. A Markov analysis of the lower Copper River indicated that the tendency of the flood plain is to remain in its current state. Large floods of the magnitude of the 1981 event are believed to be the cause of major changes in the lower Copper River.
The late early Miocene Sabine River
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, E.
Work on a new late early Miocene vertebrate fossil site, in a paleochannel deposit of the upper Carnahan Bayou Member of the lower Fleming Formation, has revealed unexpected data on the course and nature of the Sabine River of that time. Screen washing for smaller vertebrate remains at the site, just west of the Sabine River in Newton County, central eastern Texas, has resulted in the recovery of early Permian, Early Cretaceous, Late Cretaceous (Maestrichtian), Paleocene/Eocene, late Eocene, and Oligocene/Miocene fossils, in addition to the main early Miocene fauna. The reworked fossils, as well as distinctive mineral grains, show thatmore » the late early Miocene Sabine River was connected to the Texas/Oklahoma/Arkansas boundary section of the Red River, as well as to rivers draining the southern Ouachita Mountains. These rivers must have joined the Texas/Louisiana boundary section of the Sabine River somewhere in northwest Louisiana at that time. This suggests that the Louisiana section of the present Red River pirated the Texas/Oklahoma/Arkansas boundary section of the river some time after the early Miocene. The preservation of recognizable fossils transported hundreds of miles in a large river itself requires explanation. It is speculated here that the late early Miocene Sabine River incorporated a large amount of the then recently deposited volcanic ash from the Trans-Pecos Volcanic Field. Montmorillonite clay from the altered volcanic ash would have made the river very turbid, which could have allowed coarse sand-sized particles to be carried in the suspended load of the river, rather than in its bed load (where they would have been destroyed by the rolling chert gravel). Additional evidence for such long-distance fossil transport in the late early Miocene rivers of the western Gulf Coastal Plain comes from the abundant Cretaceous fossils of the upper Oakville Formation of southeast Texas and the Siphonina davisi zone of the southeast Texas subsurface.« less
Macfall, Janet; Robinette, Paul; Welch, David
2014-01-01
The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2-3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arntzen, Evan V.; Geist, David R.; Dresel, P. Evan
2006-10-31
Physicochemical relationships in the boundary zone between groundwater and surface water (i.e., the hyporheic zone) are controlled by surface water hydrology and the hydrogeologic properties of the riverbed. We studied how sediment permeability and river discharge altered the vertical hydraulic gradient (VHG) and water quality of the hyporheic zone within the Hanford Reach of the Columbia River. The Columbia River at Hanford is a large, cobble-bed river where water level fluctuates up to 2 m daily because of hydropower generation. Concomitant with recording river stage, continuous readings were made of water temperature, specific conductance, dissolved oxygen, and water level ofmore » the hyporheic zone. The water level data were used to calculate VHG between the river and hyporheic zone. Sediment permeability was estimated using slug tests conducted in piezometers installed into the river bed. The response of water quality measurements and VHG to surface water fluctuations varied widely among study sites, ranging from no apparent response to co-variance with river discharge. At some sites, a hysteretic relationship between river discharge and VHG was indicated by a time lag in the response of VHG to changes in river stage. The magnitude, rate of change, and hysteresis of the VHG response varied the most at the least permeable location (hydraulic conductivity (K) = 2.9 x 10-4 cms-1), and the least at the most permeable location (K=8.0 x 10-3 cms-1). Our study provides empirical evidence that sediment properties and river discharge both control the water quality of the hyporheic zone. Regulated rivers, like the Columbia River at Hanford, that undergo large, frequent discharge fluctuations represent an ideal environment to study hydrogeologic processes over relatively short time scales (i.e., days to weeks) that would require much longer periods of time to evaluate (i.e., months to years) in un-regulated systems.« less
Macfall, Janet; Robinette, Paul; Welch, David
2014-01-01
The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2–3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows. PMID:25302956
Zhao, Jian-Liang; Ying, Guang-Guo; Wang, Li; Yang, Ji-Feng; Yang, Xiao-Bing; Yang, Li-Hua; Li, Xu
2009-01-01
An analytical method for phenolic endocrine disrupting chemicals and acidic pharmaceuticals in river water was developed using gas chromatography mass spectrometry (GC-MS) coupled with negative chemical ionization (NCI) technique, and used for the determination of these compounds in the Pearl Rivers (Liuxi, Zhujiang and Shijing Rivers). Derivatization using pentafluorobenzoyl chloride (PFBOCl) and pentafluorobenzyl bromide (PFBBr) before GC-MS analysis were applied and optimized for phenolic compounds and acidic compounds, respectively. The target compounds were analyzed for river waters from the upstream to downstream of the Pearl Rivers. Phenolic compounds 4-tert-octylphenol (4-t-OP), 4-nonylphenol (4-NP), bisphenol-A (BPA), estrone (E1), estradiol (E2) and triclosan (TCS) were detected at trace or low levels in the water samples from Liuxi River and Zhujiang River. Diethylstilbestrol (DES) was not detected in the Pearl Rivers. The highest concentrations of the phenolic compounds were found in Shijing River, and they were 3150 ng/L for 4-t-OP, 11,300 ng/L for 4-NP, 1040 ng/L for BPA, 79 ng/L for E1, 7.7 ng/L for E2 and 355 ng/L for TCS, respectively. Only a few acidic pharmaceuticals were detected at low concentrations in water from Liuxi River and Zhujiang River, but the highest concentrations for the acidic pharmaceuticals were also found in Shijing River. The highest concentrations detected for clofibric acid, ibuprofen, gemfibrozil, naproxen, mefenamic acid and diclofenac were 17 ng/L, 685 ng/L, 19.8 ng/L, 125 ng/L, 24.6 ng/l and 150 ng/L, respectively. The results suggest Liuxi and Zhujiang Rivers are only slightly contaminated and can be used as drinking water sources, but Shijing River is heavily polluted by the wastewater from nearby towns.
Geologic map of the Weldona 7.5' quadrangle, Morgan County, Colorado
Berry, Margaret E.; Taylor, Emily M.; Slate, Janet L.; Paces, James B.; Hanson, Paul R.; Brandt, Theodore R.
2018-03-21
The Weldona 7.5′ quadrangle is located on the semiarid plains of northeastern Colorado, along the South Platte River corridor where the river has incised into Upper Cretaceous Pierre Shale. The Pierre Shale is largely covered by surficial deposits that formed from alluvial, eolian, and hillslope processes operating in concert with environmental changes from the Pleistocene to the present. The South Platte River, originating high in the Colorado Rocky Mountains, has played a major role in shaping surficial geology in the map area, which is several tens of kilometers downstream from where headwater tributaries join the river. Recurrent glaciation (and deglaciation) of basin headwaters has affected river discharge and sediment supply far downstream, influencing deposition of alluvium and river incision in the Weldona quadrangle. During the Pleistocene the course of the river within the map area shifted progressively southward as it incised, and by late middle Pleistocene the river was south of its present position, cutting and filling deep paleochannels now covered by younger alluvium. The river shifted back to the north during the late Pleistocene. Kiowa and Bijou Creeks are unglaciated tributaries originating in the Colorado Piedmont east of the Front Range that also have played a major role in shaping surficial geology of the map area. Periodically during the late Pleistocene, major flood events on these tributaries deposited large volumes of sediment at their confluences, forming a broad, low-gradient fan of sidestream alluvium that could have occasionally dammed the river for short periods of time. Eolian sand deposits of the Sterling (north of river) and Fort Morgan (south of river) dune fields cover much of the quadrangle and record past episodes of sand mobilization during times of prolonged drought. With the onset of irrigation and damming during historical times, the South Platte River has changed from a broad, shallow, and sandy braided river with highly variable seasonal discharge to a much narrower, deeper river with braided-meandering transition morphology and more uniform discharge.
Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui
2013-12-01
Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.
Turbulent forces within river plumes affect spread
NASA Astrophysics Data System (ADS)
Bhattacharya, Atreyee
2012-08-01
When rivers drain into oceans through narrow mouths, hydraulic forces squeeze the river water into buoyant plumes that are clearly visible in satellite images. Worldwide, river plumes not only disperse freshwater, sediments, and nutrients but also spread pollutants and organisms from estuaries into the open ocean. In the United States, the Columbia River—the largest river by volume draining into the Pacific Ocean from North America—generates a plume at its mouth that transports juvenile salmon and other fish into the ocean. Clearly, the behavior and spread of river plumes, such as the Columbia River plume, affect the nation's fishing industry as well as the global economy.
Water Quality Assessment of the Buffalo River, Arkansas, United States
NASA Astrophysics Data System (ADS)
Bolin, K. L.; Ruhl, L. S.
2017-12-01
The Buffalo River was established as a National River by the U.S. Congress in 1972, and runs approximately 150 miles from Newton County, Arkansas to Baxter County where it joins the White River. The Buffalo National River is the one of the last free flowing rivers in the continental U.S. with a rich cultural and political history surrounding it. The geology surrounding the river can be characterized by its karst environment, which has led to the many caves, depressions, and sinkholes found along the river. Karst environments are more susceptible to groundwater pollution so drainage from septic systems is a major concern for towns along the river. There are also numerous abandoned mines in the Buffalo River watershed, especially in the Rush area, which was mined for lead and zinc. Additionally, an increase in livestock production in the area is also a concern for increased nitrate and phosphate, along with fertilizer runoff from agricultural areas. The purpose of this study was to determine the water quality changes along the Buffalo River from human and environmental influences. Samples at six different locations along the river were collected along with parameters such as pH, conductivity, salinity, and temperature during several trips in the summer of 2017. Water samples were analyzed for cations and anions by IC, trace metals by ICPMS, and Escherichia coli with agar plate colony counts. The results were used to map geochemical changes in the Buffalo River watershed, and calculate enrichment factors of constituents (like nitrate, phosphate, and trace elements) as the water flowed downstream.
Spatiotemporal Responses of Groundwater Flow and Aquifer-River Exchanges to Flood Events
NASA Astrophysics Data System (ADS)
Liang, Xiuyu; Zhan, Hongbin; Schilling, Keith
2018-03-01
Rapidly rising river stages induced by flood events lead to considerable river water infiltration into aquifers and carry surface-borne solutes into hyporheic zones which are widely recognized as an important place for the biogeochemical activity. Existing studies for surface-groundwater exchanges induced by flood events usually limit to a river-aquifer cross section that is perpendicular to river channels, and neglect groundwater flow in parallel with river channels. In this study, surface-groundwater exchanges to a flood event are investigated with specific considerations of unconfined flow in direction that is in parallel with river channels. The groundwater flow is described by a two-dimensional Boussinesq equation and the flood event is described by a diffusive-type flood wave. Analytical solutions are derived and tested using the numerical solution. The results indicate that river water infiltrates into aquifers quickly during flood events, and mostly returns to the river within a short period of time after the flood event. However, the rest river water will stay in aquifers for a long period of time. The residual river water not only flows back to rivers but also flows to downstream aquifers. The one-dimensional model of neglecting flow in the direction parallel with river channels will overestimate heads and discharge in upstream aquifers. The return flow induced by the flood event has a power law form with time and has a significant impact on the base flow recession at early times. The solution can match the observed hydraulic heads in riparian zone wells of Iowa during flood events.
Blacksom, Karen A.; Walters, David M.; Jicha, Terri M.; Lazorchak, James M.; Angradi, Theodore R.; Bolgrien, David W.
2010-01-01
Great rivers of the central United States (Upper Mississippi, Missouri, and Ohio rivers) are valuable economic and cultural resources, yet until recently their ecological condition has not been well quantified. In 2004–2005, as part of the Environmental Monitoring and Assessment Program for Great River Ecosystems (EMAP-GRE), we measured legacy organochlorines (OCs) (pesticides and polychlorinated biphenyls, PCBs) and emerging compounds (polybrominated diphenyl ethers, PBDEs) in whole fish to estimate human and wildlife exposure risks from fish consumption. PCBs, PBDEs, chlordane, dieldrin and dichlorodiphenyltrichloroethane (DDT) were detected in most samples across all rivers, and hexachlorobenzene was detected in most Ohio River samples. Concentrations were highest in the Ohio River, followed by the Mississippi and Missouri Rivers, respectively. Dieldrin and PCBs posed the greatest risk to humans. Their concentrations exceeded human screening values for cancer risk in 27–54% and 16–98% of river km, respectively. Chlordane exceeded wildlife risk values for kingfisher in 11–96% of river km. PBDE concentrations were highest in large fish in the Missouri and Ohio Rivers (mean > 1000 ng g−1 lipid), with congener 47 most prevalent. OC and PBDE concentrations were positively related to fish size, lipid content, trophic guild, and proximity to urban areas. Contamination of fishes by OCs is widespread among great rivers, although exposure risks appear to be more localized and limited in scope. As an indicator of ecological condition, fish tissue contamination contributes to the overall assessment of great river ecosystems in the U.S.
Spatial and temporal genetic analysis of Walleyes in the Ohio River
Page, Kevin S.; Zweifela, Richard D.; Stott, Wendylee
2017-01-01
Previous genetic analyses have shown that Walleyes Sander vitreus in the upper Ohio River comprise two distinct genetic strains: (1) fish of Great Lakes origin that were stocked into the Ohio River basin and (2) a remnant native strain (Highlands strain). Resource agencies are developing management strategies to conserve and restore the native strain within the upper reaches of the Ohio River. Hybridization between strains has impacted the genetic integrity of the native strain. To better understand the extent and effects of hybridization on the native strain, we used mitochondrial DNA and microsatellite markers to evaluate the spatial (river sections) and temporal (pre- and poststocking) genetic diversity of Ohio River Walleyes. Contemporary Lake Erie Walleyes and archival museum specimens collected from the Ohio River basin were used for comparison to contemporary Ohio River samples. Although there was evidence of hybridization between strains, most of the genetic diversity within the Ohio River was partitioned by basin of origin (Great Lakes versus the Ohio River), with greater similarity among river sections than between strains within the same section. Results also suggested that the native strain has diverged from historical populations. Furthermore, notable decreases in measures of genetic diversity and increased relatedness among native-strain Walleyes within two sections of the Ohio River may be related to stocking aimed at restoration of the Highlands strain. Our results suggest that although the Highlands strain persists within the Ohio River, it has diverged over time, and managers should consider the potential impacts of future management practices on the genetic diversity of this native strain.
NASA Astrophysics Data System (ADS)
Campbell, K.
2016-12-01
The Belterra Clay is a sedimentary deposit that covers much of the eastern Amazon Basin in Brazil. It is notable in forming a very flat plain that occurs on both sides of the Amazon River, the Tapajos River, the Xingu River, and many smaller, tributary rivers east of 56° 32' W. The origin of the Belterra Clay is very controversial, with proponents of both allochthonous and autochthonous means of formation. There is little agreement as to its age. The fact that it occurs on both sides of the Amazon River indicates that its origin predates the formation of the modern Amazon River system, the timing of origin of which is itself highly controversial, with age estimates given for the river system formation that extend from the late Miocene, or 10 mya, to the late Pleistocene. From the time of origin of the Belterra Clay deposit until the modern Amazon River evolved, it formed an unbroken, terrestrial connection between the Brazilian Shield to the south and the Guiana Shield to the north, as well as east-west connections across what are today major river valleys, such as the Tapajos River and Xingu River. The formation and later severing of this once unbroken plain are predicted to have had major impacts on the distribution and evolutionary pathways of biotas inhabiting the region as once disparate communities were joined and later separated once again. Molecular clock ages for sister taxa north and south of the Amazon River have the potential of dating the time of formation of the Amazon River.
Hydrologic data for the Obed River watershed, Tennessee
Knight, Rodney R.; Wolfe, William J.; Law, George S.
2014-01-01
The Obed River watershed drains a 520-square-mile area of the Cumberland Plateau physiographic region in the Tennessee River basin. The watershed is underlain by conglomerate, sandstone, and shale of Pennsylvanian age, which overlie Mississippian-age limestone. The larger creeks and rivers of the Obed River system have eroded gorges through the conglomerate and sandstone into the deeper shale. The largest gorges are up to 400 feet deep and are protected by the Wild and Scenic Rivers Act as part of the Obed Wild and Scenic River, which is managed by the National Park Service. The growing communities of Crossville and Crab Orchard, Tennessee, are located upstream of the gorge areas of the Obed River watershed. The cities used about 5.8 million gallons of water per day for drinking water in 2010 from Lake Holiday and Stone Lake in the Obed River watershed and Meadow Park Lake in the Caney Fork River watershed. The city of Crossville operates a wastewater treatment plant that releases an annual average of about 2.2 million gallons per day of treated effluent to the Obed River, representing as much as 10 to 40 percent of the monthly average streamflow of the Obed River near Lancing about 35 miles downstream, during summer and fall. During the past 50 years (1960–2010), several dozen tributary impoundments and more than 2,000 small farm ponds have been constructed in the Obed River watershed. Synoptic streamflow measurements indicate a tendency towards dampened high flows and slightly increased low flows as the percentage of basin area controlled by impoundments increases.
Adeogun, Aina O; Chukwuka, Azubuike V; Okoli, Chukwunonso P; Arukwe, Augustine
2016-01-01
The distributions of polychlorinated biphenyl (PCB) congeners were determined in sediment and muscle of the African sharptooth catfish (Clarias gariepinus) from the Ogun and Ona rivers, southwest Nigeria. In addition, the effect of PCB congeners on condition factor (CF) and associated human health risk was assessed using muscle levels for a noncarcinogenic hazard quotient (HQ) calculation. Elevated concentrations of high-molecular-weight (HMW) PCB congeners were detected in sediment and fish downstream of discharge points of both rivers. A significant reduction in fish body weight and CF was observed to correlate with high PCB congener concentrations in the Ona River. A principal component (PC) biplot revealed significant site-related PCB congener distribution patterns for HMW PCB in samples from the Ogun River (71.3%), while the Ona River (42.6%) showed significant PCB congener patterns for low-molecular-weight (LMW) congeners. Biota-sediment accumulation factor (BSAF) was higher downstream for both rivers, presenting PCB congener-specific accumulation patterns in the Ona River. Significant decreases in fish body weight, length and CF were observed downstream compared to upstream in the Ona River. The non-carcinogenic HQ of dioxin-like congener 189 downstream in both rivers exceeded the HQ = 1 threshold for children and adults for both the Ogun and Ona rivers. Overall, our results suggest that industrial discharges contribute significantly to PCB inputs into these rivers, with potential for significant health implications for neighboring communities that utilize these rivers for fishing and other domestic purposes.
NASA Astrophysics Data System (ADS)
Fryirs, K.
2016-12-01
In an `era of river repair' fluvial geomorphology has emerged as a key science in river management practice. Geomorphologists are ideally placed to use their science in an applied manner to provide guidance on the impact of floods and droughts, landuse and climate change, and water use on river forms, processes and evolution. Increasingly, fluvial geomorphologists are also asked to make forecasts about how systems might adjust in the future, and to work with managers to implement strategies on-the-ground. Using case study material from Eastern Australia (Bega, Hunter, Wollombi and Lockyer catchments) I will focus on how process-based understanding of rivers has developed and evolved to provide a coherent physical template for effective and proactive, river management practice. I will focus on four key principles and demonstrate how geomorphology has been, and should continue to be, used in process-based, recovery enhancement approaches to river management. How understanding the difference between river behaviour and river change is used to determine how a river is `expected' to function, and how to identify anomalous processes requiring a treatment response. How understanding evolutionary trajectory is used to make future forecasts on river condition and recovery potential, and how working with processes can enhance river recovery. How geomorphic information can be used as a physical template atop which to analyse a range of biotic processes and habitat outcomes. How geomorphic information is used to effectively prioritise and plan river conservation and rehabilitation activities as part of catchment and region-scale action plans.
NASA Astrophysics Data System (ADS)
He, Baonan; He, Jiangtao; Wang, Jian; Li, Jie; Wang, Fei
2018-01-01
To understand greenhouse gas (GHG) flux in reclaimed water intake area impact on urban climate, 'static chamber' method was used to investigate the spatio-diurnal variations and the influence factors of GHG fluxes at water-air interface from Jian River to Chaobai River. Results showed that the average fluxes of CO2 from the Jian River and the Chaobai River were 73.46 mg(m2·h)-1 and -64.75 mg(m2·h)-1, respectively. CO2 was emitted the most in the Jian River, but it was absorbed from the atmosphere in the Chaobai River. Unary linear regression analyses demonstrated that Chlorophyll a (Chl a) and pH variation controlled the carbon source and sink from the Jian River to the Chaobai River. The diurnal variation of CO2 fluxes was higher at night than in the daytime in the Jian River, and it was the inverse in the Chaobai River, which highly correlated with dissociative CO2 and HCO3- transformation to CO32-. The average fluxes of CH4 from the Jian River and Chaobai River were 0.973 mg(m2·h)-1 and 5.556 mg(m2·h)-1, respectively, which increased along the water flow direction. Unary and multiple linear regression analyses demonstrated that Chl a and total organic carbon (TOC) controlled the increase of CH4 along the flow direction. The diurnal variation of CH4 fluxes was slightly higher in the daytime than at night due to the effect of water temperature.
Management scenarios for the Jordan River salinity crisis
Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, Amarisa; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.
2005-01-01
Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel-Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (???13 MCM/a) will significantly reduce the river water's flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650-2600 and 3000-3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river's discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river's ecosystem. ?? 2005 Elsevier Ltd. All rights reserved.
1975-02-03
3 Liverworts and Horworts ------------------ 4 Lichens -------------------------------- 4 Ferns ------------------------------- 5 Algae of the...Mississippi River and Illinois River Floodplains ----- 6 Mosses of the Mississippi River and Illinois River Floodplains--- 35 Liverworts and Hornworts...any alga, hornwort, liverwort , moss, or lichen in the study area. Missouri (1974) lists some mosses which are designated 0 rare or endangered, but
2017-09-18
Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental Impact Statement En vi ro nm en ta l L ab or at or y...Engineering Center-River Analysis System (HEC-RAS) Water Temperature Models Developed for the Missouri River Recovery Management Plan and Environmental...Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000 Under Project 396939, “Missouri River Recovery Management Plan and Environmental
Red River of the North Reconnaissance Report: Pembina River.
1980-12-01
the mallard, blue -winged teal, pintail, gadwall, northern shoveler, green -winged teal, American wigeon, and redhead. [ Rush Lake receives heavy use...r.D-Ri4. 787 RED RIVER OF THE NORTH RECONNAISSANCE REPORT: PEMBINA 1/2 RIVER(IJ) GULF SOUTH RESEAPRCH INST BATON ROUGE LA DEC 9 DACU77-8@-C-e8i7B...ii% ---. :w: U ;r u --- ’w AD-A140 787 RED RIVER OF THE NORTH RECONNAISSANCE , %h,%! iREPORT , _ PEMBINA ; RIVER CD j- - D FINAL RMPORT ’ December
Floods in the English River basin, Iowa
Heinitz, A.J.; Riddle, D.E.
1981-01-01
Information describing floods is essential for proper planning, design, and operation of bridges and other structures on or over streams and their flood plains. This report provides information on flood stages and discharges, flood magnitude and frequency, bench mark data, and flood profiles for the English River and some of its tributaries. It covers the English River, the North English River to near Guernsey, the south Eaglish River to Barnes City and the lower reaches of the Biddle English and Deep Rivers
The Amazon, measuring a mighty river
,
1967-01-01
The Amazon, the world's largest river, discharges enough water into the sea each day to provide fresh water to the City of New York for over 9 years. Its flow accounts for about 15 percent of all the fresh water discharged into the oceans by all the rivers of the world. By comparison, the Amazon's flow is over 4 times that of the Congo River, the world's second largest river. And it is 10 times that of the Mississippi, the largest river on the North American Continent.
River networks as biodiversity hotlines.
Décamps, Henri
2011-05-01
For several years, measures to insure healthy river functions and to protect biodiversity have focused on management at the scale of drainage basins. Indeed, rivers bear witness to the health of their drainage basins, which justifies integrated basin management. However, this vision should not mask two other aspects of the protection of aquatic and riparian biodiversity as well as services provided by rivers. First, although largely depending on the ecological properties of the surrounding terrestrial environment, rivers are ecological systems by themselves, characterized by their linearity: they are organized in connected networks, complex and ever changing, open to the sea. Second, the structure and functions of river networks respond to manipulations of their hydrology, and are particularly vulnerable to climatic variations. Whatever the scale considered, river networks represent "hotlines" for sharing water between ecological and societal systems, as well as for preserving both systems in the face of global change. River hotlines are characterized by spatial as well as temporal legacies: every human impact to a river network may be transmitted far downstream from its point of origin, and may produce effects only after a more or less prolonged latency period. Here, I review some of the current issues of river ecology in light of the linear character of river networks. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Baumann, Paul C.; Mac, Michael J.; Smith, Stephen B.; Harshbarger, John C.
1991-01-01
To better characterize neoplasm epizootics in the Great Lakes basin and their association with families of contaminants, we sampled five locations: the Fox and Menominee rivers, Lake Michigan; Munuscong Lake, St. Mary's River; and the Black and Cuyahoga rivers, Lake Erie. Frequencies of external and liver tumors were determined for brown bullhead (Ictalurus nebulosus) from all locations except the Black River and for walleye (Stizostedion vitreum) from the Lake Michigan and St. Mary's River sites. Sediment samples were analyzed for metals, polychlorinated aromatics, and polynuclear aromatic hydrocarbons (PAH). Liver neoplasms occurred in brown bullhead from the Cuyahoga River and Munuscong Lake; brown bullhead captured from Munuscong Lake were older than those collected from the other locations. Brown bullhead from these same two rivers had elevated hepatosomatic indexes. No liver neoplasms were found in brown bullhead from the Fox and Menominee rivers, although polychlorinated aromatics were highest in both Fox River sediment and Fox and Menominee brown bullhead, and arsenic was highest in Menominee River sediment and fish. Liver neoplasms in brown bullhead from the Cuyahoga River fit the prevailing hypothesis that elevated PAH in sediment can induce cancer in wild fish. The cause of the liver neoplasms in Munuscong Lake brown bullhead is undetermined.
Antibody against infectious salmon anaemia virus among feral Atlantic salmon (Salmo salar)
Cipriano, R.C.
2009-01-01
Archived sera from Atlantic salmon (Salmo salar) that returned to the Penobscot River (Maine), Merrimack River (Massachusetts), and Connecticut River (in Massachusetts) from 1995 to 2002 were analysed for antibodies against infectious salmon anaemia virus (ISAV) using an enzyme-linked immunosorbent assay (ELISA). Up to 60 samples were archived per river system per year. In a given year, the number of fish sampled by ELISA for ISAV antibodies in the Penobscot River ranged from 2.9 to 11.2, and the range of salmon sampled in the Merrimack River and the Connecticut River was 31.3-100 and 20.0-67.5, respectively. Archived sera were not available for the 1995 and 2002 year classes from the Connecticut River. In all, 1141 samples were processed; 14 serum samples tested positive for antibodies to ISAV. In the Penobscot River, serum from one fish tested positive in each of the 1995 and 1999 year-class returns, and sera from two fish tested positive in the 1998 returns. In the Merrimack River, sera from four fish tested positive in each of the 1996 and 1997 returns, and sera from two fish were positive in the 2002 return. None of the archived sera from Atlantic salmon that returned to the Connecticut River tested positive. ?? 2009 United States Government, Department of the Interior.
Radiocesium dynamics in the Hirose River basin
NASA Astrophysics Data System (ADS)
Kuramoto, T.; Taniguchi, K.; Arai, H.; Onuma, S.; Onishi, Y.
2017-12-01
A significant amount of radiocesium was deposited in Fukushima Prefecture during the accident of Fukushima Daiichi Nuclear Power Plant. In river systems, radiocesium is transported to downstream in rivers. For the safe use of river and its water, it is needed to clarify the dynamics of radiocesium in river systems. We started the monitoring of the Hirose River from December 2015. The Hirose River is a tributary of the Abukuma River flowing into the Pacific Ocean, and its catchment is close to areas where a large amount of radiocesium was deposited. We set up nine monitoring points in the Hirose River watershed. The Water level and turbidity data are continuously observed at each monitoring point. We regularly collected about 100 liters of water at each monitoring point. Radiocesium in water samples was separated into two forms; the one is the dissolved form, and the other is the suspended particulate form. Radionuclide concentrations of radiocesium in both forms were measured by a germanium semiconductor detector. Furthermore, we applied the TODAM (Time-dependent One-dimensional Degradation And Migration) code to the Hirose River basin using the monitoring data. The objectives of the modeling are to understand a redistribution pattern of radiocesium adsorbed by sediments during flooding events and to determine the amount of radiocesium flux into the Abukuma River.
NASA Astrophysics Data System (ADS)
Bernárdez, Patricia; Prego, Ricardo; Filgueiras, Ana Virginia; Ospina-Álvarez, Natalia; Santos-Echeandía, Juan; Álvarez-Vázquez, Miguel Angel; Caetano, Miguel
2017-12-01
Scarce research about small European rivers from non-human impacted areas to determine their natural background state has been undertaken. During the annual hydrological cycle of 2008-9 the patterns of particulate supply (SPM, POC, PON, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, V, Zn) from the rivers Sor, Mera Landro, Lourido and Landoi to the Northern Galician Rias (SW Bay of Biscay) were tackled. No differences in the composition of the SPM were detected for the studied rivers regarding Al, Fe and POC but the relative percentage of particulate trace elements (PTE) discriminate the rivers. So, Cr, Co and Ni in the Lourido, and Landoi rivers, and Cu in the Mera River, are controlled by watershed minerals of Ortegal Geological Complex while for the rest rivers PTE are by granitic and Ollo de Sapo bedrock watershed. Therefore, the imprint of PTE in the parental rocks of the river basins is reflected on the coastal sediments of the Rias. The main process controlling the dynamics and variations of chemical elements in the particulate form is the river discharge. This fact exemplifies that these rivers presents a natural behavior not being highly influenced by anthropogenic activities.
ERIC Educational Resources Information Center
Turkall, Sheila Florian
1996-01-01
Describes an integrated student-designed investigation in which students explore different aspects of the Chagrin River including the river ecosystem, velocity and average depth, river flooding, water quality, and economic and political factors. (JRH)
NASA Astrophysics Data System (ADS)
Frasson, R. P. M.; Wei, R.; Minear, J. T.; Tuozzolo, S.; Domeneghetti, A.; Durand, M. T.
2016-12-01
Averaging is a powerful method to reduce measurement noise associated with remote sensing observation of water surfaces. However, when dealing with river measurements, the choice of which points are averaged may affect the quality of the products. We examine the effectiveness of three fully automated reach definition strategies: In the first, we break up reaches at regular intervals measured along the rivers' centerlines. The second strategy consists of identifying hydraulic controls by searching for inflection points on water surface profiles. The third strategy takes into consideration river planform features, breaking up reaches according to channel sinuosity. We employed the Jet Propulsion Laboratory's (JPL) SWOT hydrology simulator to generate 9 synthetic SWOT observations of the Sacramento River in California, USA and 14 overpasses of the Po River in northern Italy. In order to create the synthetic SWOT data, the simulator requires the true water digital elevation model (DEM), which we constructed from hydraulic models of both rivers, and the terrain DEM, which we built from LiDAR data of both basins. We processed the simulated pixel clouds using the JPL's RiverObs package, which traces the river centerline and estimates water surface height and river width on equally spaced nodes located along the centerline. Subsequently, we applied the three reach definition methodologies to the nodes and to the hydraulic models' outputs to generate simulated reach-averaged observations and the reach-averaged truth respectively. Our results generally indicate that height, width, slope, and discharge errors decrease with increasing reach length, with most of the accuracy gains occurring when reach length increases to up to 15 km for both the narrow (Sacramento) and the wide (Po) rivers. The "smart" methods led to smaller slope, width, and discharge errors for the Sacramento River when compared to arbitrary reaches of similar length whereas, for the for the Po River all methods had comparable performance. Our results suggest that river segmentation strategies that take into consideration the hydraulic characteristics of rivers may lead to more meaningful reach boundaries and to better products especially for narrower and more complex rivers.
River rehabilitation for the delivery of multiple ecosystem services at the river network scale.
Gilvear, David J; Spray, Chris J; Casas-Mulet, Roser
2013-09-15
This paper presents a conceptual framework and methodology to assist with optimising the outcomes of river rehabilitation in terms of delivery of multiple ecosystem services and the benefits they represent for humans at the river network scale. The approach is applicable globally, but was initially devised in the context of a project critically examining opportunities and constraints on delivery of river rehabilitation in Scotland. The spatial-temporal approach highlighted is river rehabilitation measure, rehabilitation scale, location on the stream network, ecosystem service and timescale specific and could be used as initial scoping in the process of planning rehabilitation at the river network scale. The levels of service delivered are based on an expert-derived scoring system based on understanding how the rehabilitation measure assists in reinstating important geomorphological, hydrological and ecological processes and hence intermediate or primary ecosystem function. The framework permits a "total long-term (>25 years) ecosystem service score" to be calculated which is the cumulative result of the combined effect of the number of and level of ecosystem services delivered over time. Trajectories over time for attaining the long-term ecosystem service score for each river rehabilitation measures are also given. Scores could also be weighted according to societal values and economic valuation. These scores could assist decision making in relation to river rehabilitation at the catchment scale in terms of directing resources towards alternative scenarios. A case study is presented of applying the methodology to the Eddleston Water in Scotland using proposed river rehabilitation options for the catchment to demonstrate the value of the approach. Our overall assertion is that unless sound conceptual frameworks are developed that permit the river network scale ecosystem services of river rehabilitation to be evaluated as part of the process of river basin planning and management, the total benefit of river rehabilitation may well be reduced. River rehabilitation together with a 'vision' and framework within which it can be developed, is fundamental to future success in river basin management. Copyright © 2013 Elsevier Ltd. All rights reserved.
Historical and current perspectives on fish assemblages of the Snake River, Idaho and Wyoming
Maret, T.R.; Mebane, C.A.
2005-01-01
The Snake River is the tenth longest river in the United States, extending 1,667 km from its origin in Yellowstone National Park in western Wyoming to its union with the Columbia River at Pasco, Washington. Historically, the main-stem Snake River upstream from the Hells Canyon Complex supported at least 26 native fish species, including anadromous stocks of Chinook salmon Oncorhynchus tshawytscha, steelhead O. mykiss, Pacific lamprey Lampetra tridentata, and white sturgeon Acipenser transmontanus. Of these anadromous species, only the white sturgeon remains in the Snake River between the Hells Canyon Complex and Shoshone Falls. Today, much of the Snake River has been transformed into a river with numerous impoundments and flow diversions, increased pollutant loads, and elevated water temperatures. Current (1993-2002) fish assemblage collections from 15 sites along the Snake River and Henrys Fork contained 35 fish species, including 16 alien species. Many of these alien species such as catfish (Ictaluridae), carp (Cyprinidae), and sunfish (Centrarchidae) are adapted for warmwater impounded habitats. Currently, the Snake River supports 19 native species. An index of biotic integrity (IBI), developed to evaluate large rivers in the Northwest, was used to evaluate recent (1993-2002) fish collections from the Snake River and Henrys Fork in southern Idaho and western Wyoming. Index of biotic integrity site scores and component metrics revealed a decline in biotic integrity from upstream to downstream in both the Snake River and Henrys Fork. Two distinct groups of sites were evident that correspond to a range of IBI scores-an upper Snake River and Henrys Fork group with relatively high biotic integrity (mean IBI scores of 46-84) and a lower Snake River group with low biotic integrity (mean IBI scores of 10-29). Sites located in the lower Snake River exhibited fish assemblages that reflect poor-quality habitat where coldwater and sensitive species are rare or absent, and where tolerant, less desirable species predominate. Increases in percentages of agricultural land, total number of diversions, and number of constructed channels were strongly associated with these decreasing IBI scores.
NASA Astrophysics Data System (ADS)
Hsieh, C.; Li, M.
2013-12-01
Dissolved organic matter (DOM) is a chemically complex mixture of organic polymers that plays an important role in river ecosystems and originates from various sources. Some DOMs are autochthonous originating through phytoplankton and microbial activity in situ. On the other hand, some DOMs are allochthonous which are transported to river from the surrounding watershed by natural or anthropogenic activities. The studies of DOM in river are usually conducted at the watershed scale; however, factors of local spatial scale affecting DOM composition also need to take into consideration for the study of DOM in an urbanized watershed. Through increasing urbanization, changes in a watershed occur not only in land use patterns but also in river channel characteristics. The objective of this study is to investigate effects of different river channel characteristics and patterns on changes in DOM source and composition. In this study, we chose three tributaries of Tamsui river in Taiwan according to its land use pattern and river channel characteristics. At each sub-basin, river water samples were sampled from three study sites. River water DOM was measured by using optical measurements of UV absorption and fluorescence spectroscopy. Water samples were also collected for laboratory analysis of different water quality parameters. From our study sites, they are from three sub-basins which are in the similar physical environments but with different river channel types: the highly channelized Keelung river, the less channelized Xindian river, and less channelized Dahan river with five human-made wetlands. From the upstream to the urbanized downstream, composition of DOM showed variation among different sampled sites. In all three sub-basins, the trends of 5-day biochemical oxygen demand (BOD5) and suspended solids (SS) are also different. The changes in DOM source and composition as well as different water quality parmaters occur at the local spatial-scale depended on their river channel characters in urbanized watersheds. Based on our result, it indicates river channel characters which can have effects on biogeochemical processes of DOM. This knowledge can help us in understanding biogeochemical processes controlled or manipulated by anthropogenic activities at different spatial scales, and help us to make an integrative river health management in a watershed.
Greenhouse gases emission from the sewage draining rivers.
Hu, Beibei; Wang, Dongqi; Zhou, Jun; Meng, Weiqing; Li, Chongwei; Sun, Zongbin; Guo, Xin; Wang, Zhongliang
2018-01-15
Carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) concentration, saturation and fluxes in rivers (Beitang drainage river, Dagu drainage rive, Duliujianhe river, Yongdingxinhe river and Nanyunhe river) of Tianjin city (Haihe watershed) were investigated during July and October in 2014, and January and April in 2015 by static headspace gas chromatography method and the two-layer model of diffusive gas exchange. The influence of environmental variables on greenhouse gases (GHGs) concentration under the disturbance of anthropogenic activities was discussed by Spearman correlative analysis and multiple stepwise regression analysis. The results showed that the concentration and fluxes of CO 2 , CH 4 and N 2 O were seasonally variable with >winter>fall>summer, spring>summer>winter>fall and summer>spring>winter>fall for concentrations and spring>summer>fall>winter, spring>summer>winter>fall and summer>spring>fall>winter for fluxes respectively. The GHGs concentration and saturation were higher in comprehensively polluted river sites and lower in lightly polluted river sites. The three GHGs emission fluxes in two sewage draining rivers of Tianjin were clearly higher than those of other rivers (natural rivers) and the spatial variation of CH 4 was more obvious than the others. CO 2 and N 2 O air-water interface emission fluxes of the sewage draining rivers in four seasons were about 1.20-2.41 times and 1.13-3.12 times of those in the natural rivers. The CH 4 emission fluxes of the sewage draining rivers were 3.09 times in fall to 10.87 times in spring of those in the natural rivers in different season. The wind speed, water temperature and air temperature were related to GHGs concentrations. Nitrate and nitrite (NO 3 - +NO 2 - -N) and ammonia (NH 4 + -N) were positively correlated with CO 2 concentration and CH 4 concentration; and dissolved oxygen (DO) concentration was negatively correlated with CH 4 concentration and N 2 O concentration. The effect of human activities on carbon and nitrogen cycling in river is great. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tan, Hongbing; Chen, Jun; Rao, Wenbo; Zhang, Wenjie; Zhou, Huifang
2012-06-01
Some rivers on the northern slope of the eastern Kunlun Mountains in the Qaidam Basin, China, show very high concentrations of boron and lithium. Correspondingly, the salt lakes fed by these rivers show an unusual enrichment of boron and lithium, and become an important economic resource. The origin of boron and lithium has long been debated. The aim of this study is to analyze the water chemistry and hydrogen and oxygen isotopic composition of river water to understand the unusual enrichment of boron and lithium in the salt lakes of the Qaidam Basin. Oxygen and hydrogen isotope data show that the source of river water in the winter and summer originates from the Kunlun Mountain ice and snow melt water, respectively. The water chemistry shows that boron and lithium contents are high but little variable with seasons in the Nalenggele River and Wutumeiren River waters. By contrast, other rivers have much lower lithium and boron contents. Moreover, the contents of B3+ and Li+ in the river loads or bed sands show little difference amongst the rivers. This indicates that removal by adsorption or input by surface rock weathering is not the main controlling factor of the B3+ and Li+ variation in the rivers. Rivers with high B3+ and Li+ content are chemically similar to geothermal waters in the Tibetan Plateau. In addition, the source area of the Nalenggele River is located in a collision zone of the Kunlun Mountains and Altun Mountains. Large and deep faults can serve as conduits for geothermal fluids. Thus, deep geothermal waters in the source area can easily migrate to the surface and discharge as springs feeding the rivers. They are an important source of B3+ and Li+ to the rivers. The abnormally high contents of B3+ and Li+ in the Nalenggele and Wutumeiren Rivers also suggest that the geothermal source area may be a future target for boron and lithium resources.
Hyporheic Zone Residence Time Distributions in Regulated River Corridors
NASA Astrophysics Data System (ADS)
Song, X.; Chen, X.; Shuai, P.; Gomez-Velez, J. D.; Ren, H.; Hammond, G. E.
2017-12-01
Regulated rivers exhibit stage fluctuations at multiple frequencies due to both natural processes (e.g., seasonal cycle) and anthropogenic activities (e.g., dam operation). The interaction between the dynamic river flow conditions and the heterogeneous aquifer properties results in complex hydrologic exchange pathways that are ubiquitous in free-flowing and regulated river corridors. The dynamic nature of the exchange flow is reflected in the residence time distribution (RTD) of river water within the groundwater system, which is a key metric that links river corridor biogeochemical processes with the hydrologic exchange. Understanding the dynamics of RTDs is critical to gain the mechanistic understanding of hydrologic exchange fluxes and propose new parsimonious models for river corridors, yet it is understudied primarily due to the high computational demands. In this study, we developed parallel particle tracking algorithms to reveal how river flow variations affect the RTD of river water in the alluvial aquifer. Particle tracking was conducted using the velocity outputs generated by three-dimensional groundwater flow simulations of PFLOTRAN in a 1600 x 800 x 20m model domain within the DOE Hanford Site. Long-term monitoring data of inland well water levels and river stage were used for eight years of flow simulation. Nearly a half million particles were continually released along the river boundary to calculate the RTDs. Spectral analysis of the river stage data revealed high-frequency (sub-daily to weekly) river stage fluctuations caused by dam operations. The higher frequencies of stage variation were progressively filtered to generate multiple sets of flow boundary conditions. A series of flow simulations were performed by using the filtered flow boundary conditions and various degrees of subsurface heterogeneity to study the relative contribution of flow dynamics and physical heterogeneity on river water RTD. Our results revealed multimodal RTDs of river water as a result of the highly variable exchange pathways driven by interactions between dynamic flow and aquifer heterogeneity. A relationship between the RTD and frequency of flow variation was built for each heterogeneity structure, which can be used to assess the potential ecological consequences of dam operations in regulated rivers.
Baldigo, Barry P.; Mulvihill, C.I.; Ernst, A.G.; Boisvert, B.A.
2011-01-01
The U.S. Geological Survey (USGS), the New York State Department of Environmental Conservation (NYSDEC), and Cornell University carried out a cooperative 2-year study from the fall of 2004 through the fall of 2006 to characterize the potential effects of recreational-flow releases from Lake Abanakee on natural resources in the Indian and Hudson Rivers. Researchers gathered baseline information on hydrology, temperature, habitat, nearshore wetlands, and macroinvertebrate and fish communities and assessed the behavior and thermoregulation of stocked brown trout in study reaches from both rivers and from a control river. The effects of recreational-flow releases (releases) were assessed by comparing data from affected reaches with data from the same reaches during nonrelease days, control reaches in a nearby run-of-the-river system (the Cedar River), and one reach in the Hudson River upstream from the confluence with the Indian River. A streamgage downstream from Lake Abanakee transmitted data by satellite from November 2004 to November 2006; these data were used as the basis for developing a rating curve that was used to estimate discharges for the study period. River habitat at most study reaches was delineated by using Global Positioning System and ArcMap software on a handheld computer, and wetlands were mapped by ground-based measurements of length, width, and areal density. River temperature in the Indian and Hudson Rivers was monitored continuously at eight sites during June through September of 2005 and 2006; temperature was mapped in 2005 by remote imaging made possible through collaboration with the Rochester Institute of Technology. Fish communities at all study reaches were surveyed and characterized through quantitative, nearshore electrofishing surveys. Macroinvertebrate communities in all study reaches were sampled using the traveling-kick method and characterized using standard indices. Radio telemetry was used to track the movement and persistence of stocked brown trout (implanted with temperature-sensitive transmitters) in the Indian and Hudson Rivers during the summer of 2005 and in all three rivers during the summer of 2006. The releases had little effect on river temperatures, but increased discharges by about one order of magnitude. Regardless of the releases, river temperatures at all study sites commonly exceeded the threshold known to be stressful to brown trout. At most sites, mean and median water temperatures on release days were not significantly different, or slightly lower, than water temperatures on nonrelease days. Most differences were very small and, thus, were probably not biologically meaningful. The releases generally increased the total surface area of fast-water habitat (rapids, runs, and riffles) and decreased the total surface area of slow-water habitat (pools, glides, backwater areas, and side channels). The total surface areas of wetlands bordering the Indian River were substantially smaller than the surface areas bordering the Cedar River; however, no channel geomorphology or watershed soil and topographic data were assessed to determine whether the releases or other factors were mainly responsible for observed differences. Results from surveys of resident biota indicate that the releases generally had a limited effect on fish and macroinvertebrate communities in the Indian River and had no effect on communities in the Hudson River. Compared to fish data from Cedar River control sites, the impoundment appeared to reduce total density, biomass, and richness in the Indian River at the first site downstream from Lake Abanakee, moderately reduce the indexes at the other two sites on the Indian River, and slightly reduce the indexes at the first Hudson River site downstream from the confluence with the Indian River. The densities of individual fish populations at all Indian River sites were also reduced, but related effects on fish populations in the Hudson River were less evident. Altho
75 FR 33690 - Safety Zone, Lights on the River Fireworks Display, Delaware River, New Hope, PA
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-15
... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 100 [Docket No. USCG-2010-0443] RIN 1625-AA00 Safety Zone, Lights on the River Fireworks Display, Delaware River, New Hope, PA AGENCY: Coast... safety zone in during the ``Lights on the River'' fireworks shows. Assistance for Small Entities Under...
Koll Buer; Dave Forwalter; Mike Kissel; Bill Stohlert
1989-01-01
Native plant and wildlife communities along Northern California's middle Sacramento River (Red Bluff to Colusa) originally adapted to a changing pattern of erosion and deposition across a broad meander belt. The erosion-deposition process was in balance, with the river alternately building and eroding terraces. Human-induced changes to the Sacramento River,...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Bay, Sacramento River, San Joaquin River, and connecting waters, CA. (a) General regulations. (1..., Carquinez Strait, Suisun Bay, Sacramento River, San Joaquin River, and connecting waters, CA. 110.224... notified to move by the Captain of the Port. (4) No vessel may anchor within a tunnel, cable, or pipeline...
33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam of...
The Salmon River estuary on the central Oregon coast is river-dominated, with hydraulic residence times ranging from <1 day during winter high flows to a week during low flows. The estuary receives organic matter and nutrients from the river, the coastal ocean, and a bordering s...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-11
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14345-001] Rock River Beach.... c. Date filed: November 23, 2012. d. Applicant: Rock River Beach, Inc. e. Name of Project: Rock River Beach Hydroelectric Project. f. Location: On the Rock River, in the Town of Onota, Alger County...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-20
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14345-000] Rock River Beach.... c. Filing Date: January 5, 2012. d. Applicant: Rock River Beach, Inc. e. Name of Project: Rock River Beach Hydroelectric Project. f. Location: On the Rock River, in the Township of Onota, Alger County...
33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana River...
33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana River...
33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana River...
33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana River...
33 CFR 334.570 - Banana River near Orsino, Fla.; restricted area.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Banana River near Orsino, Fla... THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.570 Banana River near Orsino, Fla.; restricted area. (a) The area. That part of Banana River N of the NASA Banana River...
Return to the river: strategies for salmon restoration in the Columbia River Basin.
Richard N. Williams; Jack A. Standford; James A. Lichatowich; William J. Liss; Charles C. Coutant; Willis E. McConnaha; Richard R. Whitney; Phillip R. Mundy; Peter A. Bisson; Madison S. Powell
2006-01-01
The Columbia River today is a great "organic machine" (White 1995) that dominates the economy of the Pacific Northwest. Even though natural attributes remainfor example, salmon production in Washington State's Hanford Reach, the only unimpounded reach of the mainstem Columbia Riverthe Columbia and Snake River mainstems are dominated...
DOT National Transportation Integrated Search
2009-01-15
GAO determined: (1) the annual and total tonnage of commodity shipments for each state served by the Missouri River, and (2) the comparable tonnage of commodity shipments transported on the Mississippi River for states served by both the Missouri and...
Code of Federal Regulations, 2012 CFR
2012-07-01
... used, or capable of being used, as a means of transportation on water, other than rafts. (b) Waterways... to result in a condition whereby the movement of vessel (and tow) cannot be completely halted or... construction, plant engaged in river and harbor improvement, levees withstanding floodwaters, buildings...
Code of Federal Regulations, 2013 CFR
2013-07-01
... used, or capable of being used, as a means of transportation on water, other than rafts. (b) Waterways... to result in a condition whereby the movement of vessel (and tow) cannot be completely halted or... construction, plant engaged in river and harbor improvement, levees withstanding floodwaters, buildings...
Code of Federal Regulations, 2014 CFR
2014-07-01
... used, or capable of being used, as a means of transportation on water, other than rafts. (b) Waterways... to result in a condition whereby the movement of vessel (and tow) cannot be completely halted or... construction, plant engaged in river and harbor improvement, levees withstanding floodwaters, buildings...
33 CFR 207.10 - Charles River, Mass.; dam of Charles River Basin Commission.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Charles River, Mass.; dam of Charles River Basin Commission. 207.10 Section 207.10 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.10 Charles River, Mass.; dam of...
LOWER COLUMBIA RIVER ESTUARY PROGRAM COMPREHENSIVE CONSERVATION AND MANAGEMENT PLAN
An estuary is the area where the fresh water of a river meets the salt water of an ocean. In the Columbia River system, this occurs in the lower 46 river miles. In an estuary, the river has a direct, natural connection with the open sea. This transition from fresh to salt water c...
Management of a river recreation resource: the Lower Kananaskis River--a case study
Kimberley Rae; Paul F.J. Eagles
2008-01-01
This study examined recreational use of the Lower Kananaskis River in Southwestern Alberta, Canada. Surveys and participant observations helped develop a better understanding of current use levels and interviews with key policy leaders explored management issues and concerns. Users suggested the need for improvements to river infrastructure both on and off the river....
27 CFR 9.214 - Haw River Valley.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Haw River Valley. 9.214... River Valley. (a) Name. The name of the viticultural area described in this section is “Haw River Valley”. For purposes of part 4 of this chapter, “Haw River Valley” and “Haw River” are terms of viticultural...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Mississippi River Ark., and Catoosa, Okla. (2) Bridges, wharves and other structures. All bridges, wharves, and other structures in or over the waterways described in paragraph (a)(1) of this section. (3... their not being drawn away from the bank by winds, currents, or the suction of passing vessels. Towlines...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mississippi River Ark., and Catoosa, Okla. (2) Bridges, wharves and other structures. All bridges, wharves, and other structures in or over the waterways described in paragraph (a)(1) of this section. (3... their not being drawn away from the bank by winds, currents, or the suction of passing vessels. Towlines...
The Salmon River estuary on the central Oregon coast is river-dominated, with hydraulic residence times ranging from <1 day during winter high flows to a week during low flows. The estuary receives organic matter and nutrients from the river, the coastal ocean, and a bordering s...
33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...
33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...
33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...
33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...
33 CFR 334.475 - Brickyard Creek and tributaries and the Broad River at Beaufort, SC.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and the Broad River at Beaufort, SC. 334.475 Section 334.475 Navigation and Navigable Waters CORPS OF....475 Brickyard Creek and tributaries and the Broad River at Beaufort, SC. (a) The areas: (1) That...°. (9) (Laurel Bay Military Family Housing Area, Broad River). That section of the Broad River...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-12
... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 117 [Docket No. USCG-2013-0041] RIN 1625-AA09 Drawbridge Operation Regulation; Green River, Small-house, KY and Black River, Jonesboro, LA... drawbridge operation regulation for the drawbridges across Green River, mile 79.6, Small- house, KY and Black...
77 FR 19278 - Leaf River Energy Center LLC; Notice of Application
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-30
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-91-000] Leaf River Energy Center LLC; Notice of Application On March 20, 2012, Leaf River Energy Center LLC (Leaf River), 53... Docket No. CP08-8-000 as amended in Docket No. CP11-107-000, to authorize Leaf River to reallocate the...
Spiraling down the river continuum: stream ecology and the U-shaped curve
Jackson R. Webster
2007-01-01
The spiraling concept provides an explicit approach to modeling the longitudinal linkages within a river continuum. I developed a spiraling-based model for particulate organic C dynamics in the Little Tennessee River to synthesize existing data and to illustrate our current understanding of ecosystem processes in river ecosystems. The Little Tennessee River is a medium...
43 CFR 418.17 - Truckee and Carson River water use.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Truckee and Carson River water use. 418.17... Operations and Management § 418.17 Truckee and Carson River water use. Project water must be managed to make maximum use of Carson River water and to minimize diversions of Truckee River water through the Truckee...
43 CFR 418.17 - Truckee and Carson River water use.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Truckee and Carson River water use. 418.17... Operations and Management § 418.17 Truckee and Carson River water use. Project water must be managed to make maximum use of Carson River water and to minimize diversions of Truckee River water through the Truckee...
Shortnose sturgeon use small coastal rivers: The importance of habitat connectivity
Zydlewski, Gayle B.; Kinnison, M.T.; Dionne, P.E.; Zydlewski, Joseph D.; Wippelhauser, Gail S.
2011-01-01
Contrary to conventional wisdom for shortnose sturgeon (Acipenser brevirostrum), we document shortnose sturgeon use of habitats beyond large rivers. Telemetry data from 2008 to 2010 in the Gulf of Maine demonstrates that adult shortnose sturgeon (up to 70%) frequently move between Maine’s two largest rivers, the Kennebec and Penobscot Rivers. Even more interesting, small rivers located between these watersheds were used by 52% of the coastal migrants. Small river use was not trivial, 80% of observed movements extended more than 10 km upstream. However, visits were short in duration. This pattern indicates one of several possibilities: directed use of resources, searching behaviors related to reproduction (i.e. straying) or undirected wandering. Data suggest a relationship between residence time in small rivers and distance to the lowermost barrier. Restoring connectivity to upstream habitats in these rivers could allow opportunities for metapopulation expansion. Regional management of shortnose sturgeon in the Gulf of Maine should incorporate a habitat framework that considers small coastal rivers.
NASA Astrophysics Data System (ADS)
Ngueleu Kamangou, Stephane; Vogt, Tobias; Cirpka, Olaf
2010-05-01
River restoration usually includes alteration of the river channel morphology. Thereby the interaction between river and groundwater can be modified. For the design of a river restoration project - especially in the vicinity of a groundwater pumping well for drinking water production - this impact must be predicted. But a good prediction requires a proper understanding of the existing situation. Numerical models help to improve the strategy of a successful river restoration project. The main objective of this study was to investigate the vulnerability of a pumping station located at losing river in northeast Switzerland. Besides the effect that river restoration could create, a particular attention was placed on the effect of a beaver dam in a side channel close to the pumping station. Analysis of field measurements coupled with numerical modeling of the pumping station area improved the understanding of the interactions in the river corridor between the river, side channels and the alluvial aquifer.
NASA Astrophysics Data System (ADS)
Normatov, P.
2014-09-01
The Zeravshan River is a transboundary river whose water is mainly used for irrigation of agricultural lands of the Republic of Uzbekistan. Sufficiently rich hydropower resources in upstream of the Zeravshan River characterize the Republic of Tajikistan. Continuous monitoring of water resources condition is necessary for planning the development of this area taking into account hydropower production and irrigation needs. Water quality of Zeravshan River is currently one of the main problems in the relationship between the Republics of Uzbekistan and Tajikistan, and it frequently triggers conflict situations between the two countries. In most cases, the problem of water quality of the Zeravshan River is related to river pollution by wastewater of the Anzob Mountain-concentrating Industrial Complex (AMCC) in Tajikistan. In this paper results of research of chemical and bacteriological composition of the Zeravshan River waters are presented. The minimum impact of AMCC on quality of water of the river was experimentally established.
Warrick, Jonathan A.; Mertes, Leal A.K.; Washburn, Libe; Siegel, David A.
2004-01-01
River plumes are important pathways of terrestrial materials entering the sea. In southern California, rivers are known to be the dominant source of littoral, shelf and basin sediment and coastal pollution, although a basic understanding of the dynamics of these river inputs does not exist. Here we evaluate forcing parameters of a southern California river plume using ship-based hydrographic surveys and satellite remote sensing measurements to provide the first insights of river dispersal dynamics in southern California. Our results suggest that plumes of the Santa Clara River are strongly influenced by river inertia, producing jet-like structures ~10 km offshore during annual recurrence (~two-year) flood events and ~30 km during exceptional (~10-year recurrence) floods. Upwelling-favorable winds may be strong following stormwater events and can alter dispersal pathways of thse plumes. Due to similar runoff relationships and other reported satellite observations, we hypothesize that interia-dominated dispersal may be an important characteristic of the small, mountainous rivers throughout southern California.
Water Quality Assessment of Danjiangkou Reservoir and its Tributaries in China
NASA Astrophysics Data System (ADS)
Liu, Linghua; Peng, Wenqi; Wu, Leixiang; Liu, Laisheng
2018-01-01
Danjiangkou Reservoir is an important water source for the middle route of the South to North Water Diversion Project in China, and water quality of Danjiangkou Reservoir and its tributaries is crucial for the project. The purpose of this study is to evaluate the water quality of Daniiangkou Reservoir and its tributaries based on Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI). 22 water quality parameters from 25 sampling sites were analyzed to calculate WQI. The results indicate that water quality in Danjiangkou Reservoir area, Hanjiang River and Danjiang River is excellent. And the seriously polluted tributary rivers were Shending River, Jianghe River, Sihe River, Tianhe River, Jianhe River and Jiangjun River. Water quality parameters that cannot meet the standard limit for drinking water source were fecal coliform bacteria, CODcr, CODMn, BOD5, NH3-N, TP, DO, anionic surfactant and petroleum. Fecal coliform bacteria, TP, ammonia nitrogen, CODMn were the most common parameters to fail.
Augspurger, Thomas P.; Wang, Ning; Kunz, James L.; Ingersoll, Christopher G.
2014-01-01
The federally endangered Tar River spinymussel (Elliptio steinstansana) is endemic to the Tar River and Neuse River systems in North Carolina. The extent to which water quality limits Tar River spinymussels’ recovery is important to establish, and one aspect of that is understanding the species’ pollutant sensitivity. The primary objectives of this study were to 1) develop captive propagation and culture methods for Tar River spinymussels; 2) determine the pollutant sensitivity of captively propagated Tar River spinymussels; 3) examine the utility of the non-endangered yellow lance (Elliptio lanceolata), yellow lampmussel (Lampsilis cariosa) and notched rainbow (Villosa constricta) as surrogates for the Tar River spinymussels’ chemical sensitivity; 4) develop a 7-d method for conducting effluent toxicity tests starting with newly transformed mussels; 5) assess the toxicity of municipal wastewater effluents discharged into the Tar River spinymussels’ current and historic habitat; and, 6) evaluate the protection afforded by existing effluent toxicity test requirements.
NASA Astrophysics Data System (ADS)
Grzymko, T. J.; Marcantonio, F.; McKee, B. A.; Stewart, C. M.
2004-12-01
The world's 25 largest river systems contribute nearly 50% of all freshwater to the global ocean and carry large quantities of dissolved trace metals annually. Trace metal concentrations in these systems show large variances on seasonal time scales. In order to constrain the causes of these variations, consistent sampling on sub-seasonal time intervals is essential. Here, we focus on the Mississippi River, the seventh largest river in the world in terms of freshwater discharge and the third largest in terms of drainage basin area. Biweekly sampling of the lower Mississippi River at New Orleans was performed from January 2003 to August 2004. Uranium concentrations and 234U/238U activity ratios were measured for the dissolved component (<0.2 μ m-fraction) of river water. Over the course of this study, dissolved U activity ratios spanned a range of about 25%, from 1.23 to 1.60. Dissolved U concentrations ranged from 0.28 to 1.06 ppb. The relationship between concentrations, activity ratios, and lower river discharge is complicated, and no clear pattern is observed on both biweekly and seasonal timescales. However, there does seem to be a relationship between the larger seasonal trends in the lower Mississippi River and variations in the discharge of its upstream tributaries. To constrain this relationship, we have sampled water from the Missouri River, the upper Mississippi River above the confluence with the Missouri, the Ohio River, and the Arkansas River in February, April, and August of 2004. For the upstream samples measured thus far, the highest dissolved uranium concentrations are observed for the Missouri River at 2.02 ppb, while the lowest are found in the Ohio River at 0.38 ppb. Dissolved 234U/238U activity ratios are as unique for each tributary and vary from 1.36 in the Ohio River to 1.51 in the Missouri River. A preliminary mass balance analysis reveals that the lower river uranium activity ratios are controlled simply by the quantity and isotope signature of the waters discharged from the upstream tributaries. A discussion of the implications of this work for global ocean budgets of uranium will be presented.
NASA Astrophysics Data System (ADS)
Harrington, Seán T.; Harrington, Joseph R.
2013-03-01
This paper presents an assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue in Ireland. The rivers, located in the South of Ireland, are underlain by sandstone, limestones and mudstones, and the catchments are primarily agricultural. A comprehensive database of suspended sediment data is not available for rivers in Ireland. For such situations, it is common to estimate suspended sediment concentrations from the flow rate using the suspended sediment rating curve approach. These rating curves are most commonly constructed by applying linear regression to the logarithms of flow and suspended sediment concentration or by applying a power curve to normal data. Both methods are assessed in this paper for the Rivers Bandon and Owenabue. Turbidity-based suspended sediment loads are presented for each river based on continuous (15 min) flow data and the use of turbidity as a surrogate for suspended sediment concentration is investigated. A database of paired flow rate and suspended sediment concentration values, collected between the years 2004 and 2011, is used to generate rating curves for each river. From these, suspended sediment load estimates using the rating curve approach are estimated and compared to the turbidity based loads for each river. Loads are also estimated using stage and seasonally separated rating curves and daily flow data, for comparison purposes. The most accurate load estimate on the River Bandon is found using a stage separated power curve, while the most accurate load estimate on the River Owenabue is found using a general power curve. Maximum full monthly errors of - 76% to + 63% are found on the River Bandon with errors of - 65% to + 359% found on the River Owenabue. The average monthly error on the River Bandon is - 12% with an average error of + 87% on the River Owenabue. The use of daily flow data in the load estimation process does not result in a significant loss of accuracy on either river. Historic load estimates (with a 95% confidence interval) were hindcast from the flow record and average annual loads of 7253 ± 673 tonnes on the River Bandon and 1935 ± 325 tonnes on the River Owenabue were estimated to be passing the gauging stations.
Dissolved and Particulate Amino Acids in the Lower Mississippi and Pearl Rivers (USA)
NASA Astrophysics Data System (ADS)
Duan, S.; Bianchi, T. S.
2006-12-01
Seasonal changes (monthly samples) in abundance and composition of dissolved and particulate amino acids were observed at one station in the lower Mississippi and Pearl Rivers (MS, USA) from September 2001 to August 2003. Spatial variability was also observed during a 4 day transmit from river-mile 225 to river mouth (Head of Passes, LA) in the Mississippi River, and a two-day downstream sampling from Jackson (MS) to Stennis Space Center (MS). Temporal data in the lower Mississippi River showed significantly lower concentrations of dissolved combined amino acids (DCAA, 0.45-1.4 μ M) and dissolved amino acids in high molecular weight fraction (HMW DAA, 0.13-0.27 μ M) than in the Pearl River (DCAA, 0.91-2.8 μ M; HMW DAA, 0.25-0.95 μ M). DCAA and HMW DAA in both rivers were generally higher during high-flow periods. DFAA was significantly lower than DCAA in both rivers (0.05-0.08 μ M), and displayed minimal seasonal variability. Total particulate amino acids (PAA) in both rivers were in the same range (0.7-1.4 μ M). A C- normalized yield of PAA (PAA-C/POC) was negatively correlated with suspended particulate matter and positively with chl-a in both rivers. No significant difference in PAA composition was observed in the two rivers. However, PAA in both rivers was relatively enriched in arginine, alanine, methionine and leucine, and depleted in aspartic acid, serine, and non-protein amino acids, compared to DCAA. While DCAA spatial variability in the lower Mississippi River was minimal, decreases in PAA (from 1.06 to 0.43 μ M) were consistent with particulate organic carbon (POC) and particulate nitrogen (PN). Frequent variations in the PAA-C/POC ratio were inversely correlated with suspended particulate matter and PAA (R = -0.7, n = 48), suggesting short- scale sedimentation and resuspension events. A gradual increase in % non-protein AA along with a loss of phytoplankton biomass along the river, suggested was indicative of bacterial utilization of labile phytodetritus. The abundance and composition of DAA and PAA in these river systems provides important information on nitrogen and carbon cycling in very different rivers entering the coastal ocean within the same coastal plain.
Tritium hydrology of the Mississippi River basin
Michel, R.L.
2004-01-01
In the early 1960s, the US Geological Survey began routinely analysing river water samples for tritium concentrations at locations within the Mississippi River basin. The sites included the main stem of the Mississippi River (at Luling Ferry, Louisiana), and three of its major tributaries, the Ohio River (at Markland Dam, Kentucky), the upper Missouri River (at Nebraska City, Nebraska) and the Arkansas River (near Van Buren, Arkansas). The measurements cover the period during the peak of the bomb-produced tritium transient when tritium concentrations in precipitation rose above natural levels by two to three orders of magnitude. Using measurements of tritium concentrations in precipitation, a tritium input function was established for the river basins above the Ohio River, Missouri River and Arkansas River sampling locations. Owing to the extent of the basin above the Luling Ferry site, no input function was developed for that location. The input functions for the Ohio and Missouri Rivers were then used in a two-component mixing model to estimate residence times of water within these two basins. (The Arkansas River was not modelled because of extremely large yearly variations in flow during the peak of the tritium transient.) The two components used were: (i) recent precipitation (prompt outflow) and (ii) waters derived from the long-term groundwater reservoir of the basin. The tritium concentration of the second component is a function of the atmospheric input and the residence times of the groundwaters within the basin. Using yearly time periods, the parameters of the model were varied until a best fit was obtained between modelled and measured tritium data. The results from the model indicate that about 40% of the flow in the Ohio River was from prompt outflow, as compared with 10% for the Missouri River. Mean residence times of 10 years were calculated for the groundwater component of the Ohio River versus 4 years for the Missouri River. The mass flux of tritium through the Mississippi Basin and its tributaries was calculated during the years that tritium measurements were made. The cumulative fluxes, calculated in grams of 3II were: (i) 160 g for the Ohio (1961-1986), (ii) 98 g for the upper Missouri (1963-1997), (iii) 30 g for the Arkansas (1961-1997) and (iv) 780 g for the Mississippi (1961-1997). Published in 2004 by John Wiley and Sons, Ltd.
What would happen if the Mississippi River changed its course to the Atchafalaya?
NASA Astrophysics Data System (ADS)
Xu, Y. J.
2017-12-01
The Mississippi River Delta faces an uncertain future as sea level keeps rising while the land continues to subside. In its latest Master Plan draft of 2017, the Louisiana Coastal Protection and Restoration Authority has outlined a $50 billion investment for 120 projects designed to build and maintain coastal Louisiana. These projects are all developed under the assumption that the Mississippi River (MR) would remain on its current course, which is artificially maintained through a control structure built in 1963 (also known as the Old River Control Structure, or ORCS) after it was realized that the river attempted to change its course back to its old river channel - the Atchafalaya River (AR). Since the ORCS is in operation of controlling only about 25% of the MR flow into the AR, little attention has been paid to the importance of possible riverbed changes downstream the avulsion node on the MR course switch. As one of the largest alluvial river in the world, the MR avulsed every 1,000-1,500 years in the past. Alluvial rivers avulse when two conditions are met: a sufficient in-channel aggradation and a major flood. In our ongoing study on sediment transport and channel morphology of the lower Mississippi River, we found that the first 30-mile reach downstream the ORCS has been experiencing rapid bed aggradation and channel narrowing in the past three decades. A mega flood could be a triggering point to overpower the man-made ORCS and allow the river abandon its current channel - the MR main stem. This is not a desirable path; however, nature has its own mechanism of choosing river flows, which do not bow to our expectation. The Missisippi River's flow is projected to increase in the future as global temperature continues to rise and hydrologic cycle intensifies. Additionally, rapid urbanization in the river basin will create conditions that foster the emergence of mega floods. It would be impractical to spend considerable resources for a river delta without assessing the future avulsion risk of the river upstream. My presentation will discuss the possibility of a Mississippi River avulsion, its consequences, as well as what assessment data we need to develop rational strategies.
Bennett, J
2002-01-01
Rivers provide society with numerous returns. These relate to both the passive and extractive uses of the resources embodied in river environments. Some returns are manifest in the form of financial gains whilst others are non-monetary. For instance, rivers are a source of monetary income for those who harvest their fish. The water flowing in rivers is extracted for drinking and to water crops and livestock that in turn yield monetary profits. However, rivers are also the source of non-monetary values arising from biological diversity. People who use them for recreation (picnicking, swimming, boating) also receive non-monetary returns. The use of rivers to yield these returns has had negative consequences. With extraction for financial return has come diminished water quantity and quality. The result has been a diminished capacity of rivers to yield (non-extractive) environmental returns and to continue to provide extractive values. A river is like any other asset. With use, the value of an asset depreciates because its productivity declines. In order to maintain the productive capacity of their assets, managers put aside from their profits depreciation reserves that can be invested in the repair or replacement of those assets. Society now faces a situation in which its river assets have depreciated in terms of their capacity to provide monetary and non-monetary returns. An investment in river "repair" is required. But, investment means that society gives up something now in order to achieve some benefit in the future. Society thus has to grapple wih the choice between investing in river health and other investments--such as in hospitals, schools, defence etc. - as well as between investing in river health and current consumption--such as on clothes, food, cars etc. A commonly used aid for investment decision making in the public sector is benefit cost analysis. However, its usefulness in tackling the river investment problem is restricted because it requires all benefits and costs to be measured in dollar terms, and many of the benefits arising from investments in river health are non-monetary. In this paper, techniques that enable non-monetary values to be estimated in dollar terms are described. Applications of the techniques to the estimation of the environmental values of rivers are demonstrated. The values estimated are used to demonstrate the extent of returns that are possible from investing in river health.
75 FR 25877 - Colorado River Basin Salinity Control Advisory Council
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-10
... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Colorado River Basin Salinity Control Advisory... River Basin Salinity Control Advisory Council (Council) was established by the Colorado River Basin Salinity Control [[Page 25878
Leopold, Luna Bergere; Langbein, Walter Basil
1966-01-01
The striking geometric regularity of a winding river is no accident. Meanders appear to be the form in which a river does the least work in turning; hence they are the most probable form a river can take
Czuba, Jonathan A.; Barnas, Christiana R.; McKenna, Thomas E.; Justin, Gregory; Payne, Karen L.
2010-01-01
To facilitate the development of a two-dimensional hydrodynamic model of the Quillayute River estuary, the U.S. Geological Survey conducted a bathymetric survey of the Quillayute River and its tributaries, upstream of the La Push Harbor. Streamflow also was measured concurrent with the bathymetric survey. This report documents the bathymetric and streamflow data collected in the Quillayute (river mile 0.4-5.7), Dickey (river mile 0-0.4), and Bogachiel Rivers (river mile 0-0.8) on April 20-21 and May 4-6, 2010, including a longitudinal profile, about 7-miles long, of water-surface and riverbed elevations. In all, 173,800 bathymetric points were collected and streamflow measurements in the mainstem Quillayute River ranged from 3,630 to 7,800 cubic feet per second.
Jones, Simon; Prosperi-Porta, Gina; Dawe, Sheila; Taylor, Kimberley; Goh, Benjamin
2004-08-01
The myxosporean parasite Parvicapsula minibicornis is described from adult sockeye and coho salmon during spawning migrations in tributaries of the Columbia River in Canada and the United States. These observations extend the known distribution of this parasite from the Fraser River drainage basin. The parasite was identified in Columbia River salmonids using polymerase chain reaction (PCR) and by in situ hybridization, but unlike in Fraser River salmon, it was not observed in conventional histological preparations of the kidney. Prevalence of the parasite determined by PCR was higher in spawning sockeye from the Fraser River than in those from the Okanagan River. Our ability to explain the relatively low prevalence and absence of clinical P. minibicornis infections in Columbia River salmon is hampered by our poor understanding of the life cycle of this parasite.
Simulation of unsteady flow and solute transport in a tidal river network
Zhan, X.
2003-01-01
A mathematical model and numerical method for water flow and solute transport in a tidal river network is presented. The tidal river network is defined as a system of open channels of rivers with junctions and cross sections. As an example, the Pearl River in China is represented by a network of 104 channels, 62 nodes, and a total of 330 cross sections with 11 boundary section for one of the applications. The simulations are performed with a supercomputer for seven scenarios of water flow and/or solute transport in the Pearl River, China, with different hydrological and weather conditions. Comparisons with available data are shown. The intention of this study is to summarize previous works and to provide a useful tool for water environmental management in a tidal river network, particularly for the Pearl River, China.
Messinger, Terrence
2004-01-01
Polycyclic aromatic hydrocarbons (PAHs), including some on the U.S. Environmental Protection Agency's priority pollutant list, were found in bottom sediment in streams in the coal-producing region of the Kanawha River Basin in 1996-1998, and in and near the New River Gorge National River in 2002, in concentrations exceeding those thought likely to cause adverse effects to wildlife. Very low concentrations of bioavailable PAHs were measured in streams in and near the New River Gorge National River by the use of semipermeable membrane devices. The apparent contradiction between the high concentrations of total PAHs and the low concentrations of bioavailable PAHs may result from the presence of a substantial amount of particulate coal in bottom sediment.
Stable Isotopes of N2O in a Large Canadian River Impacted by Agricultural and Urban Land Use
NASA Astrophysics Data System (ADS)
Thuss, S. J.; Rosamond, M. S.; Schiff, S.; Venkiteswaran, J. J.; Elgood, R. J.
2009-05-01
N2O is a potent greenhouse gas. Although denitrification is an important process in the global N cycle, N2O flux measurements from rivers worldwide are scarce. The two main processes producing N2O in rivers -- nitrification and denitrification -- result in N2O that is widely separated in isotopic signature. However, studies on the stable isotopes of N2O in rivers are almost non-existent. Here, we report the N2O fluxes and isotopic signatures in the Grand River, a large, heavily impacted river in southern Ontario. Land use in the basin is predominately agricultural and the river receives effluent from 26 wastewater treatment plants (WWTPs). River samples were collected over a 28 hour period to capture diel variation, along the entire length of the river to capture changing land use and throughout the year to capture the seasonal variability. A dynamic model was used to correct the measured N2O values for the effects of atmospheric exchange. Isotopic analysis of both the NH4+ and the NO3- end members in the WWTP effluent and in the river allowed the determination of N2O production pathways. N2O is produced along the entire length of the river but N2O from denitrification increases dramatically in the river below WWTPs at night when dissolved oxygen is low and nitrification of NH4+ decreases.
NASA Astrophysics Data System (ADS)
Bawa, Nupur; Jain, Vikrant; Shekhar, Shashank; Kumar, Niraj; Jyani, Vikas
2014-12-01
Understanding the controls on the morphological variability of river systems constitutes one of the fundamental questions in geomorphic investigation. Channel morphology is an important indicator of river processes and is of significance for mapping the hydrology-ecologic connectivity in a river system and for predicting the future trajectory of river health in response to external forcings. This paper documents the spatial morphological variability and its natural and anthropogenic controls for the Yamuna River, a major tributary of the Ganga River, India. The Yamuna River runs through a major urban centre i.e. Delhi National Capital Region. The Yamuna River was divided into eight geomorphically distinct reaches on the basis of the assemblages of geomorphic units and the association of landscape, valley and floodplain settings. The morphological variability was analysed through stream power distribution and sediment load data at various stations. Stream power distribution of the Yamuna River basin is characterised by a non-linear pattern that was used to distinguish (a) high energy ‘natural' upstream reaches, (b) ‘anthropogenically altered', low energy middle stream reaches, and (c) ‘rejuvenated' downstream reaches again with higher stream power. The relationship between stream power and channel morphology in these reaches was integrated with sediment load data to define the maximum flow efficiency (MFE) as the threshold for geomorphic transition. This analysis supports the continuity of river processes and the significance of a holistic, basin-scale approach rather than isolated local scale analysis in river studies.
NASA Astrophysics Data System (ADS)
Feng, Xiaojuan; Feakins, Sarah J.; Liu, Zongguang; Ponton, Camilo; Wang, Renée. Z.; Karkabi, Elias; Galy, Valier; Berelson, William M.; Nottingham, Andrew T.; Meir, Patrick; West, A. Joshua
2016-05-01
While lignin geochemistry has been extensively investigated in the Amazon River, little is known about lignin distribution and dynamics within deep, stratified river channels or its transformations within soils prior to delivery to rivers. We characterized lignin phenols in soils, river particulate organic matter (POM), and dissolved organic matter (DOM) across a 4 km elevation gradient in the Madre de Dios River system, Peru, as well as in marine sediments to investigate the source-to-sink evolution of lignin. In soils, we found more oxidized lignin in organic horizons relative to mineral horizons. The oxidized lignin signature was maintained during transfer into rivers, and lignin was a relatively constant fraction of bulk organic carbon in soils and riverine POM. Lignin in DOM became increasingly oxidized downstream, indicating active transformation of dissolved lignin during transport, especially in the dry season. In contrast, POM accumulated undegraded lignin downstream during the wet season, suggesting that terrestrial input exceeded in-river degradation. We discovered high concentrations of relatively undegraded lignin in POM at depth in the lower Madre de Dios River in both seasons, revealing a woody undercurrent for its transfer within these deep rivers. Our study of lignin evolution in the soil-river-ocean continuum highlights important seasonal and depth variations of river carbon components and their connection to soil carbon pools, providing new insights into fluvial carbon dynamics associated with the transfer of lignin biomarkers from source to sink.
Hussain, Shumon T; Floss, Harald
2016-01-01
Large river valleys have long been seen as important factors to shape the mobility, communication, and exchange of Pleistocene hunter-gatherers. However, rivers have been debated as either natural entities people adapt and react to or as cultural and meaningful entities people experience and interpret in different ways. Here, we attempt to integrate both perspectives. Building on theoretical work from various disciplines, we discuss the relationship between biophysical river properties and sociocultural river semantics and suggest that understanding a river's persona is central to evaluating its role in spatial organization. By reviewing the literature and analyzing European Upper Paleolithic site distribution and raw material transfer patterns in relation to river catchments, we show that the role of prominent rivers varies considerably over time. Both ecological and cultural factors are crucial to explaining these patterns. Whereas the Earlier Upper Paleolithic record displays a general tendency toward conceiving rivers as mobility guidelines, the spatial consolidation process after the colonization of the European mainland is paralleled by a trend of conceptualizing river regimes as frontiers, separating archaeological entities, regional groups, or local networks. The Late Upper Paleolithic Magdalenian, however, is characterized again by a role of rivers as mobility and communication vectors. Tracing changing patterns in the role of certain river regimes through time thus contributes to our growing knowledge of human spatial behavior and helps to improve our understanding of dynamic and mutually informed human-environment interactions in the Paleolithic.
Quantifying urban river-aquifer fluid exchange processes: a multi-scale problem.
Ellis, Paul A; Mackay, Rae; Rivett, Michael O
2007-04-01
Groundwater-river exchanges in an urban setting have been investigated through long term field monitoring and detailed modelling of a 7 km reach of the Tame river as it traverses the unconfined Triassic Sandstone aquifer that lies beneath the City of Birmingham, UK. Field investigations and numerical modelling have been completed at a range of spatial and temporal scales from the metre to the kilometre scale and from event (hourly) to multi-annual time scales. The objective has been to quantify the spatial and temporal flow distributions governing mixing processes at the aquifer-river interface that can affect the chemical activity in the hyporheic zone of this urbanised river. The hyporheic zone is defined to be the zone of physical mixing of river and aquifer water. The results highlight the multi-scale controls that govern the fluid exchange distributions that influence the thickness of the mixing zone between urban rivers and groundwater and the patterns of groundwater flow through the bed of the river. The morphologies of the urban river bed and the adjacent river bank sediments are found to be particularly influential in developing the mixing zone at the interface between river and groundwater. Pressure transients in the river are also found to exert an influence on velocity distribution in the bed material. Areas of significant mixing do not appear to be related to the areas of greatest groundwater discharge and therefore this relationship requires further investigation to quantify the actual remedial capacity of the physical hyporheic zone.
Changes in freshwater mussel communities linked to legacy pollution in the Lower Delaware River
Blakeslee, Carrie J.; Silldorff, Erik L.; Galbraith, Heather S.
2018-01-01
Freshwater mussels are among the most-imperiled organisms worldwide, although they provide a variety of important functions in the streams and rivers they inhabit. Among Atlantic-slope rivers, the Delaware River is known for its freshwater mussel diversity and biomass; however, limited data are available on the freshwater mussel fauna in the lower, non-tidal portion of the river. This section of the Delaware River has experienced decades of water-quality degradation from both industrial and municipal sources, primarily as a function of one of its major tributaries, the Lehigh River. We completed semi-quantitative snorkel surveys in 53.5 of the 121 km of the river to document mussel community composition and the continued impacts from pollution (particularly inputs from the Lehigh River) on mussel fauna. We detected changes in mussel catch per unit effort (CPUE) below the confluence of the Lehigh River, with significant declines in the dominant species Elliptio complanata (Eastern Elliptio) as we moved downstream from its confluence—CPUE dropped from 179 to 21 mussels/h. Patterns in mussel distribution around the Lehigh confluence matched chemical signatures of Lehigh water input. Specifically, Eastern Elliptio CPUE declined more quickly moving downstream on the Pennsylvania bank, where Lehigh River water input was more concentrated compared to the New Jersey bank. A definitive causal link remains to be established between the Lehigh River and the dramatic shifts in mussel community composition, warranting continued investigation as it relates to mussel conservation and restoration in the basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paller, M.
1992-03-26
Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor`s heat exchangers where temperatures may reach 70{degrees}C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in themore » river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams & Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.« less
Characterization of stormwater runoff in Sioux Falls, South Dakota, 1995-96
Niehus, C.A.
1997-01-01
The Kenai River in southcentral Alaska is an economically important salmon river generating as much as $78 million annually in direct benefits. Resource-management agencies are concerned that increased sedimentation and loss of streamside cover associated with accelerated erosion rates caused by boat activity may threaten salmon returns to the river. Bank loss and boat activity were characterized during 1996 along 67 miles of the Kenai River, including a segment of the river several miles long where boat activity is restricted to non-motorized uses. Bank loss in the non-motorized segment of the river was about 75 percent less than that observed in the highest boat-use area of the river and 33 per cent less than that observed in the lowest boat-use area of the river. Dates of peak boat activity coincided closely with chinook salmon returns to the Kenai River and with peaks in measured bank erosion. The boat activity period began in late May, peaked on weekend days in mid-July, and declined in early August. Observed boat traffic on the Kenai River included boats from 10 to 26 feet in length that transported 1 to 8 passengers. The most commonly observed boats were between 16 and 20 feet long and carried 4 or 5 passengers. The number of boats operated by commercial fishing guides represented 40 percent of the boats counted by the Alaska Department of Natural Resources, 55 percent of the boats counted by the Alaska Department of Fish and Game, and 57 percent of those recorded by observers during this study. The maximum boat activity and the maximum bank loss were measured at the RW's Campground study site about 16 river miles upstream from the mouth of the Kenai River. Between July 12 and September 10, 1996, more than 20,100 boats traveled by this site and the streambank along the inside of the meander bend was undercut to a depth of 45 inches at one measuring point. Boat activity and bank loss were greatest in areas of the river between about river miles 9 and 18 and river miles 39 and 46. These two segments of the river are popular residential and fishing areas and have banks composed of non-cohesive soils. In addition, a meandering, un-armored channel makes the banks along these two segments susceptible to erosion. The Kenai River in southcentral Alaska is an economically important salmon river generating as much as $78 million annually in direct benefits. Resource-management agencies are concerned that increased sedimentation and loss of streamside cover associated with accelerated erosion rates caused by boat activity may threaten salmon returns to the river. Bank loss and boat activity were characterized during 1996 along 67 miles of the Kenai River, including a segment of the river several miles long where boat activity is restricted to non-motorized uses. Bank loss in the non-motorized segment of the river was about 75 percent less than that observed in the highest boat-use area of the river and 33 percent less than that observed in the lowest boat-use area of the river. Dates of peak boat activity coincided closely with chinook salmon returns to the Kenai River and with peaks in measured bank erosion. The boat activity period began in late May, peaked on weekend days in mid-July, and declined in early August. Observed boat traffic on the Kenai River included boats from 10 to 26 feet in length that transported 1 to 8 passengers. The most commonly observed boats were between 16 and 20 feet long and carried 4 or 5 passengers. The number of boats operated by commercial fishing guides represented 40 percent of the boats counted by the Alaska Department of Natural Resources, 55 percent of the boats counted by the Alaska Department of Fish and Game, and 57 percent of those recorded by observers during this study. The maximum boat activity and the maximum bank loss were measured at the RW's Campground study site about 16 river miles upstream from the mouth of the Kenai River. Between July 12 and September 10, 1996, more than 20,10
Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington
Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.
2012-01-01
A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes from the mountain indicates that rockfalls, glaciers, debris flows, and main-stem flooding act sequentially to deliver sediment from Mount Rainier to river reaches in the Puget Lowland over decadal time scales. Greater-than-normal runoff was associated with cool phases of the Pacific Decadal Oscillation. Streamflow-gaging station data from four unregulated rivers directly draining Mount Rainier indicated no statistically significant trends of increasing peak flows over the course of the 20th century. The total sediment load of the upper Nisqually River from 1945 to 2011 was determined to be 1,200,000±180,000 tonnes/yr. The suspended-sediment load in the lower Puyallup River at Puyallup, Washington, was 860,000±300,000 tonnes/yr between 1978 and 1994, but the long-term load for the Puyallup River likely is about 1,000,000±400,000 tonnes/yr. Using a coarse-resolution bedload transport relation, the long-term average bedload was estimated to be about 30,000 tonnes/yr in the lower White River near Auburn, Washington, which was four times greater than bedload in the Puyallup River and an order of magnitude greater than bedload in the Carbon River. Analyses indicate a general increase in the sediment loads in Mount Rainier rivers in the 1990s and 2000s relative to the time period from the 1960s to 1980s. Data are insufficient, however, to determine definitively if post-1990 increases in sediment production and transport from Mount Rainier represent a statistically significant increase relative to sediment-load values typical from Mount Rainier during the entire 20th century. One-dimensional river-hydraulic and sediment-transport models simulated the entrainment, transport, attrition, and deposition of bed material. Simulations showed that bed-material loads were largest for the Nisqually River and smallest for the Carbon River. The models were used to simulate how increases in sediment supply to rivers transport through the river systems and affect lowland reaches. For each simulation, the input sediment pulse evolved through a combination of translation, dispersion, and attrition as it moved downstream. The characteristic transport times for the median sediment-size pulse to arrive downstream for the Nisqually, Carbon, Puyallup, and White Rivers were approximately 70, 300, 80, and 60 years, respectively.
Hinkle, Stephen R.; Morgan, David S.; Orzol, Leonard L.; Polette, Danial J.
2007-01-01
Increasing residential development since in the 1960s has lead to increases in nitrate concentrations in shallow ground water in parts of the 247 square mile study area near La Pine, Oregon. Denitrification is the dominant nitrate-removal process that occurs in suboxic ground water, and suboxic ground water serves as a barrier to transport of most nitrate in the aquifer. Oxic ground water, on the other hand, represents a potential pathway for nitrate transport from terrestrial recharge areas to the Deschutes and Little Deschutes Rivers. The effects of present and potential future discharge of ground-water nitrate into the nitrogen-limited Deschutes and Little Deschutes Rivers are not known. However, additions of nitrogen to nitrogen-limited rivers can lead to increases in primary productivity which, in turn, can increase the magnitudes of dissolved oxygen and pH swings in river water. An understanding of the distribution of oxic ground water in the near-river environment could facilitate understanding the vulnerability of these rivers and could be a useful tool for management of these rivers. In this study, transects of temporary wells were installed in sub-river sediments beneath the Deschutes and Little Deschutes Rivers near La Pine to characterize near-river reduction/oxidation (redox) conditions near the ends of ground-water flow paths. Samples from transects installed near the center of the riparian zone or flood plain were consistently suboxic. Where transects were near edges of riparian zones, most ground-water samples also were suboxic. Oxic ground water (other than hyporheic water) was uncommon, and was only detected near the outside edge of some meander bends. This pattern of occurrence likely reflects geochemical controls throughout the aquifer as well as geochemical processes in the microbiologically active riparian zone near the end of ground-water flow paths. Younger, typically less reduced ground water generally enters near-river environments through peripheral zones, whereas older, typically more reduced ground water tends to discharge closer to the center of the river corridor. Such distributions of redox state reflect ground-water movement and geochemical evolution at the aquifer-scale. Redox state of ground water undergoes additional modification as ground water nears discharge points in or adjacent to rivers, where riparian zone processes can be important. Lateral erosion of river systems away from the center of the flood plain can decrease or even eliminate interactions between ground water and reducing riparian zone sediments. Thus, ground water redox patterns in near-river sediments appear to reflect the position of a river within the riparian zone/aquifer continuum. Spatial heterogeneity of redox conditions near the river/aquifer boundary (that is, near the riverbed) makes it difficult to extrapolate transect-scale findings to a precise delineation of the oxic-suboxic boundary in the near-river environment of the entire study area. However, the understanding of relations between near-river redox state and proximity to riparian zone edges provides a basis for applying these results to the study-area scale, and could help guide management efforts such as nitrogen-reduction actions or establishment of Total Maximum Daily Load criteria. Coupling the ground-water redox-based understanding of river vulnerability with ground-water particle-tracking-based characterization of connections between upgradient recharge areas and receiving rivers demonstrates one means of linking effects of potential nitrate loads at the beginning of ground-water flow paths with river vulnerability.
NASA Astrophysics Data System (ADS)
Nakashole, Albertina N.; Hodgson, David M.; Chapman, Robert J.; Morgan, Dan J.; Jacob, Roger J.
2018-02-01
Establishing relationships between the long-term landscape evolution of drainage basins and the fill of sedimentary basins benefits from analysis of bedrock river terrace deposits. These fragmented detrital archives help to constrain changes in river system character and provenance during sediment transfer from continents (source) to oceans (sink). Thick diamondiferous gravel terrace deposits along the lower Orange River, southern Namibia, provide a rare opportunity to investigate controls on the incision history of a continental-scale bedrock river. Clast assemblage and heavy mineral data from seven localities permit detailed characterisation of the lower Orange River gravel terrace deposits. Two distinct fining-upward gravel terrace deposits are recognised, primarily based on mapped stratigraphic relationships (cross-cutting relationships) and strath and terrace top elevations, and secondarily on the proportion of exotic clasts, referred to as Proto Orange River deposits and Meso Orange River deposits. The older early to middle Miocene Proto Orange River gravels are thick (up to 50 m) and characterised by a dominance of Karoo Supergroup shale and sandstone clasts, whereas the younger Plio-Pleistocene Meso Orange River gravels (6-23 m thick) are characterised by more banded iron formation clasts. Mapping of the downstepping terraces indicates that the Proto gravels were deposited by a higher sinuosity river, and are strongly discordant to the modern Orange River course, whereas the Meso deposits were deposited by a lower sinuosity river. The heavy minerals present in both units comprise magnetite, garnet, amphibole, epidote and ilmenite, with rare titanite and zircon grains. The concentration of amphibole-epidote in the heavy minerals fraction increases from the Proto to the Meso deposits. The decrease in incision depths, recorded by deposit thicknesses above strath terraces, and the differences in clast character (size and roundness) and type between the two units, are ascribed to a more powerful river system during Proto-Orange River time, rather than reworking of older deposits, changes in provenance or climatic variations. In addition, from Proto- to Meso-Orange River times there was an increase in the proportion of sediments supplied from local bedrock sources, including amphibole-epidote in the heavy mineral assemblages derived from the Namaqua Metamorphic Complex. This integrated study demonstrates that clast assemblages are not a proxy for the character of the matrix, and vice versa, because they are influenced by the interplay of different controls. Therefore, an integrated approach is needed to improve prediction of placer mineral deposits in river gravels, and their distribution in coeval deposits downstream.
NASA Astrophysics Data System (ADS)
Hofmann, Harald; Cartwright, Ian; Gilfedder, Benjamin
2013-04-01
Understanding the interaction between river water and regional groundwater has significant importance for water management and resource allocation. The dynamics of groundwater/surface water interactions also have implications for ecosystems, pollutant transport, and the quality and quantity of water supply for domestic, agriculture and recreational purposes. After general assumptions and for management purposes rivers are classified in loosing or gaining rivers. However, many streams alternate between gaining and loosing conditions on a range of temporal and spatial scales due to factors including: 1) river water levels in relation to groundwater head; 2) the relative response of the groundwater and river system to rainfall; 3) heterogeneities in alluvial sediments that can lead to alternation of areas of exfiltration and infiltration along a river stretch; and 4) differences in near river reservoirs, such parafluvial flow and bank storage. Spatial variability of groundwater discharge to rivers is rarely accounted for as it is assumed that groundwater discharge is constant over river stretches and only changes with the seasonal river water levels. Riverbank storage and parafluvial flow are generally not taken in consideration. Bank storage has short-term cycles and can contribute significantly to the total discharge, especially after flood events. In this study we used hydrogeochemistry to constrain spatial and temporal differences in gaining and loosing conditions in rivers and investigate potential sources. Environmental tracers, such as major ion chemistry, stables isotopes and Radon are useful tools to characterise these sources. Surface water and ground water samples were taken in the Avon River in the Gippsland Basin, Southwest Australia. Increasing TDS along the flow path from 70 to 250 mg/l, show that the Avon is a net gaining stream. The radon concentration along the river is variable and does not show a general increase downstream, but isolated peaks in some areas instead. Radon concentrations are in general low (under 0.5 Bq/l), but rise significantly when groundwater discharges to the river (up to 3 Bq/l). By using high resolution radon mapping with a water-air-gas-exchanger in combination with EC mapping on a boat we were able to show that groundwater discharge to the river is diffuse on river reaches of about 1 km length where it occurs. The discharge areas are along large alluvial riverbed deposits and are likely to be a mixture of local groundwater and parafluvial flow. High resolution radon mapping has only been used in coastal areas and this is the first study where the method was applied to river systems.
76 FR 36316 - Safety Zone; Upper Mississippi River, Mile 180.0 to 179.0
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-22
...-AA00 Safety Zone; Upper Mississippi River, Mile 180.0 to 179.0 AGENCY: Coast Guard, DHS. ACTION... Upper Mississippi River, from Mile 180.0 to 179.0, extending the entire width of the river. This safety... combat capabilities between Mile 180.0 and 179.0 on the Upper Mississippi River. This event presents...
10. DETAIL VIEW OF LOWER LEVEL OF INTAKE PIER SHOWING ...
10. DETAIL VIEW OF LOWER LEVEL OF INTAKE PIER SHOWING THE RIVER HEIGHT INDICATOR, ONE OF THE FIVE GATE OPENINGS, AND MOORINGS, LOOKING SOUTHWEST. - Sacramento River Water Treatment Plant Intake Pier & Access Bridge, Spanning Sacramento River approximately 175 feet west of eastern levee on river; roughly .5 mile downstream from confluence of Sacramento & American Rivers, Sacramento, Sacramento County, CA
J. Birdsall; G. Markin; T. Kalaris; J. Runyon
2013-01-01
The Smith River originates in west central Montana and flows north approximately 100 miles before joining the Missouri River. The central 60 miles of the river flows through a relatively inaccessible, forested, scenic limestone canyon famous for its trout fishing. Because of its popularity, the area was designated Montana's first and only controlled river, with...
Status of the Mussel Resource in Little South Fork Cumberland River
Melvin L. Warren; Wendell R. Haag; Brooks M. Burr
1999-01-01
As recently as the 198Os, the Little South Fork Cumberland River of southeastern Kentucky supported a diverse freshwater mussel fauna (Starnes and Bogan 1982; Appendix A). The Little South Fork represented one of the last rivers to support a high number of mussel species in the Cumberland River drainage of Kentucky and Tennessee. The river was first surveyed...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Broad River; U.S. Marine Corps Recruit Depot, Parris Island, South Carolina; danger zones. 334.480... DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.480 Archers Creek, Ribbon Creek, and Broad River... danger zone on Archers Creek (between the Broad River and Beaufort River), Ribbon Creek, and the Broad...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakowski, Cynthia L.; Guensch, Gregory R.; Patton, Gregory W.
Beginning in fiscal year 2003, the DOE Richland Operations Office initiated activities, including the development of data packages, to support the 2004 Composite Analysis. The river data package provides calculations of flow and transport in the Columbia River system. This document presents the data assembled to run the river module components for the section of the Columbia River from Vernita Bridge to the confluence with the Yakima River.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-12-01
The symposium was focussed on the interrelationships of Savannah River Plant operations and the environment of the Savannah River area. Environmental programs at the Savannah River Plant site began with baseline measurements before plant startup and continued with data collection into the 1980's. (ACR)
33 CFR 3.40-60 - Sector Lower Mississippi River Marine Inspection Zone and Captain of the Port Zone.
Code of Federal Regulations, 2010 CFR
2010-07-01
... the east bank of the Mississippi River at the Louisiana-Mississippi border, thence south along the... boundary of the Old River Lock Structure, thence west along the southern bank of the Lower Old River, to... River Parish and DeSoto Parish to the Texas-Louisiana Border, including Lasalle, Caldwell, Caddo...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
...-AA00 Safety Zone; Rotary Club of Fort Lauderdale New River Raft Race, New River, Fort Lauderdale, FL... Fort Lauderdale, Florida during the Rotary Club of Fort Lauderdale New River Raft Race. The race is... safety of race participants, participant vessels, spectators, and the general public during the 550 yard...
Howard, K.A.; Lundstrom, S.C.; Malmon, D.V.; Hook, S.J.
2008-01-01
Distinctive far-traveled fluvial sediment of the lower Colorado River fills 20 paleo-valleys now stranded by the river downstream of Grand Canyon as it crosses the Basin and Range Province. These sediments resulted from two or more aggradational epi sodes in Pliocene and Pleistocene times following initial incision during the early Pliocene. A review of the stratigraphic evidence of major swings in river elevation over the last 5 m.y. from alternating degradation and aggradation episodes establishes a framework for understanding the incision and filling of the paleovalleys. The paleo-valleys are found mostly along narrow bedrock canyon reaches of the river, where divides of bedrock or old deposits separate them from the modern river. The paleo-valleys are interpreted to have stemmed from periods of aggradation that filled and broadened the river valley, burying low uplands in the canyon reaches into which later channel positions were entrenched during subsequent degradation episodes. The aggradation-degradation cycles resulted in the stranding of incised river valleys that range in elevation from near the modern river to 350 m above it. ?? 2008 The Geological Society of America.
Growns, Ivor; Astles, Karen; Gehrke, Peter
2006-03-01
We studied the multiscale (sites, river reaches and rivers) and short-term temporal (monthly) variability in a freshwater fish assemblage. We found that small-scale spatial variation and short-term temporal variability significantly influenced fish community structure in the Macquarie and Namoi Rivers. However, larger scale spatial differences between rivers were the largest source of variation in the data. The interaction between temporal change and spatial variation in fish community structure, whilst statistically significant, was smaller than the variation between rivers. This suggests that although the fish communities within each river changed between sampling occasions, the underlying differences between rivers were maintained. In contrast, the strongest interaction between temporal and spatial effects occurred at the smallest spatial scale, at the level of individual sites. This means whilst the composition of the fish assemblage at a given site may fluctuate, the magnitude of these changes is unlikely to affect larger scale differences between reaches within rivers or between rivers. These results suggest that sampling at any time within a single season will be sufficient to show spatial differences that occur over large spatial scales, such as comparisons between rivers or between biogeographical regions.
Jacobson, Robert B.; Parsley, Michael J.; Annis, Mandy L.; Colvin, Michael E.; Welker, Timothy L.; James, Daniel A.
2015-01-01
This report documents the process of developing and refining conceptual ecological models (CEMs) for linking river management to pallid sturgeon (Scaphirhynchus albus) population dynamics in the Missouri River. The refined CEMs are being used in the Missouri River Pallid Sturgeon Effects Analysis to organize, document, and formalize an understanding of pallid sturgeon population responses to past and future management alternatives. The general form of the CEMs, represented by a population-level model and component life-stage models, was determined in workshops held in the summer of 2013. Subsequently, the Missouri River Pallid Sturgeon Effects Analysis team designed a general hierarchical structure for the component models, refined the graphical structure, and reconciled variation among the components and between models developed for the upper river (Upper Missouri & Yellowstone Rivers) and the lower river (Missouri River downstream from Gavins Point Dam). Importance scores attributed to the relations between primary biotic characteristics and survival were used to define a candidate set of working dominant hypotheses about pallid sturgeon population dynamics. These CEMs are intended to guide research and adaptive-management actions to benefit pallid sturgeon populations in the Missouri River.
Yang, Ji-Feng; Ying, Guang-Guo; Zhao, Jian-Liang; Tao, Ran; Su, Hao-Chang; Liu, You-Sheng
2011-01-01
The distribution and occurrence of 15 antibiotics in surface water of the Pearl River System (Liuxi River, Shijing River and Zhujiang River) and effluents of four wastewater treatment plants (WWTPs) were investigated in two sampling events representing wet season and dry season by using rapid resolution liquid chromatography-electrospray tandem mass spectrometry (RRLC-MS/MS) in positive ionization mode. Only eight antibiotics (sulfadiazine, sulfapyridine, sulfamethazine, sulfamethoxazole, trimethoprim, roxithromycin, erythromycin-H₂O and norfloxacin) were detected in the water samples of the three rivers and the effluents. The detection frequencies and levels of antibiotics in the dry season were higher than those in the wet season. This could be attributed to the dilution effects in the wet season and relatively lower temperature in the dry season under which antibiotics could persist for a longer period. The levels of the detected antibiotics in different sites are generally in a decreasing order as follows: Shijing River ≥WWTP effluent ≥Zhujiang River ≥ Liuxi River. Risk assessment based on the calculated risk quotients showed that only erythromycin-H₂O and roxithromycin detected in the Pearl Rivers might have adverse effects on aquatic organisms.
Longitudinal differences in habitat complexity and fish assemblage structure of a great plains river
Eitzmann, J.L.; Paukert, C.P.
2010-01-01
We investigated the spatial variation in the Kansas River (USA) fish assemblage to determine how fish community structure changes with habitat complexity in a large river. Fishes were collected at ten sites throughout the Kansas River for assessing assemblage structure in summer 2007. Aerial imagery indicated riparian land use within 200 m from the river edge was dominated by agriculture in the upper river reaches (>35) and tended to increase in urban land use in the lower reaches (>58). Instream habitat complexity (number of braided channels, islands) also decreased with increased urban area (<25). Canonical correspondence analysis indicated that species that prefer high-velocity flows and sandy substrate (e.g., blue sucker Cycleptus elongatus and shovelnose sturgeon Scaphirhynchus platorynchus) were associated with the upper river reaches. Abundance of omnivorous and planktivorous fish species were also higher in the lower river. The presence of fluvial dependent and fluvial specialist species was associated with sites with higher water flows, more sand bars, and log jams. Our results suggest that conserving intolerant, native species in the Kansas River may require maintaining suitable habitat for these species and restoration of impacted areas of the river.
Magam, Sami M; Zakaria, Mohamad Pauzi; Halimoon, Normala; Aris, Ahmad Zaharin; Kannan, Narayanan; Masood, Najat; Mustafa, Shuhaimi; Alkhadher, Sadeq; Keshavarzifard, Mehrzad; Vaezzadeh, Vahab; Sani, Muhamad S A; Latif, Mohd Talib
2016-03-01
This is the first extensive report on linear alkylbenzenes (LABs) as sewage molecular markers in surface sediments collected from the Perlis, Kedah, Merbok, Prai, and Perak Rivers and Estuaries in the west of Peninsular Malaysia. Sediment samples were extracted, fractionated, and analyzed using gas chromatography mass spectrometry (GC-MS). The concentrations of total LABs ranged from 68 to 154 (Perlis River), 103 to 314 (Kedah River), 242 to 1062 (Merbok River), 1985 to 2910 (Prai River), and 217 to 329 ng g(-1) (Perak River) dry weight (dw). The highest levels of LABs were found at PI3 (Prai Estuary) due to the rapid industrialization and population growth in this region, while the lowest concentrations of LABs were found at PS1 (upstream of Perlis River). The LABs ratio of internal to external isomers (I/E) in this study ranged from 0.56 at KH1 (upstream of Kedah River) to 1.35 at MK3 (Merbok Estuary) indicating that the rivers receive raw sewage and primary treatment effluents in the study area. In general, the results of this paper highlighted the necessity of continuation of water treatment system improvement in Malaysia.