Sample records for techa river region

  1. Geogenic and anthropogenic impacts on indoor radon in the Techa River region.

    PubMed

    Yarmoshenko, I; Malinovsky, G; Vasilyev, A; Onischenko, A; Seleznev, A

    2016-11-15

    Indoor radon concentration was studied in the 14 settlements located near the Techa River, which was contaminated by radioactive wastes in 1950-s. Results of the radon survey were used for analysis of the relationship between the indoor radon and main geologic factors (Pre-Jurassic formations, Quaternary sediments and faults), local geogenic radon potential and anthropogenic factors. Main influencing factors explain 58% of the standard deviation of indoor radon concentration. Association of the air exchange influence over radon concentration with underlying geological media was related to different contributions of geogenic advective and diffusive radon entries. The properties of geological formation to transfer radon gas in interaction with the house can be considered within the radon geogenic potential concept. The study of the radon exposure of the Techa River population can be used to estimate the contribution of natural radon to the overall radiation exposure of the local population during the period of radioactive waste discharges. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. External dose reconstruction for the former village of Metlino (Techa River, Russia) based on environmental surveys, luminescence measurements, and radiation transport modelling.

    PubMed

    Hiller, M M; Woda, C; Bougrov, N G; Degteva, M O; Ivanov, O; Ulanovsky, A; Romanov, S

    2017-05-01

    In the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues. In particular, organ doses from external exposure are derived from estimates of dose rate in air on the Techa River banks which were estimated from measurements and Monte Carlo modelling. Individual doses are calculated in accordance with historical records of individuals' residence histories, observational data of typical lifestyles for different age groups, and age-dependent conversion factors from air kerma to organ dose. The work here describes an experimentally independent assessment of the key input parameter of the dosimetry system, the integral air kerma, for the former village of Metlino, upper Techa River region. The aim of this work was thus to validate the Techa River Dosimetry System for the location of Metlino in an independent approach. Dose reconstruction based on dose measurements in bricks from a church tower and Monte Carlo calculations was used to model the historic air kerma accumulated in the time from 1949 to 1956 at the shoreline of the Techa River in Metlino. Main issues are caused by a change in the landscape after the evacuation of the village in 1956. Based on measurements and published information and data, two separate models for the historic pre-evacuation geometry and for the current geometry of Metlino were created. Using both models, a value for the air kerma was reconstructed, which agrees with that obtained in the Techa

  3. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: 137Cs.

    PubMed

    Tolstykh, E I; Degteva, M O; Peremyslova, L M; Shagina, N B; Vorobiova, M I; Anspaugh, L R; Napier, B A

    2013-05-01

    Radioactive contamination of the Techa River (Southern Urals, Russia) occurred from 1949-1956 due to routine and accidental releases of liquid radioactive wastes from the Mayak Production Association. The long-lived radionuclides in the releases were Sr and Cs. Contamination of the components of the Techa River system resulted in chronic external and internal exposure of about 30,000 residents of riverside villages. Data on radionuclide intake with diet are used to estimate internal dose in the Techa River Dosimetry System (TRDS), which was elaborated for the assessment of radiogenic risk for Techa Riverside residents. The Sr intake function was recently improved, taking into account the recently available archival data on radionuclide releases and in-depth analysis of the extensive data on Sr measurements in Techa Riverside residents. The main purpose of this paper is to evaluate the dietary intake of Cs by Techa Riverside residents. The Cs intake with river water used for drinking was reconstructed on the basis of the Sr intake-function and the concentration ratio Cs-to-Sr in river water. Intake via Cs transfer from floodplain soil to grass and cows' milk was evaluated for the first time. As a result, the maximal Cs intake level was indicated near the site of releases in upper-Techa River settlements (8,000-9,000 kBq). For villages located on the lower Techa River, the Cs intake was significantly less (down to 300 kBq). Cows' milk was the main source of Cs in diet in the upper-Techa River region.

  4. FISH-based analysis of stable translocations in a Techa River population.

    PubMed

    Bauchinger, M; Salassidis, K; Braselmann, H; Vozilova, A; Pressl, S; Stephan, G; Snigiryova, G; Kozheurov, V P; Akleyev, A

    1998-06-01

    Measurements of symmetrical translocations by fluorescence in situ hybridization (FISH) were performed for retrospective biodosimetry in a Techa River population exposed to external (gamma-rays) and internal (90Sr, 137Cs) irradiation. Chromosome analyses were carried out on peripheral lymphocytes from 73 radiation-exposed residents from settlements along the Techa River (Southern Urals, Russia) located 7-148 km downstream from the site of release of liquid radioactive waste from the plutonium production facility Mayak. Thirty-nine unexposed persons from non-contaminated areas were used as controls. Whole-chromosome painting probes for chromosomes 1, 4 and 12 were used simultaneously with a pancentromeric probe. A significantly elevated mean translocation frequency compared with controls was found for the total study group and for either of two subgroups of inhabitants residing in villages of the upper regions of the Techa River (7-60 km) during 1950 to 1951, or in villages of the lower regions (78-148 km) until the time of blood sampling. Within the first subgroup, subjects born between 1937 and 1949 showed higher translocation frequencies than those born between 1914 and 1936. Collective biodosimetry estimates for the various groups were between 0.24 and 0.54 Gy. Individual dose estimates for seven subjects with at least five translocations ranged between 0.77 and 1.80 Gy and compared well with doses reconstructed on the basis of 90Sr whole-body counts (WBC) and electronic paramagnetic resonance (EPR) measurements. Individual translocation frequencies from 40 subjects with existing WBC data and calculated cumulative red bone marrow doses below 0.6 Gy fall within the 95% prediction limits of the calibration curve. FISH-based translocation measurements can provide useful information for a retrospective biodosimetric interpretation. However, with the analysed number of cells, individual estimates required for a reliable evaluation of this highly variable exposure

  5. Strontium biokinetic model for the lactating woman and transfer to breast milk: application to Techa River studies.

    PubMed

    Shagina, N B; Tolstykh, E I; Fell, T P; Smith, T J; Harrison, J D; Degteva, M O

    2015-09-01

    This paper presents a biokinetic model for strontium metabolism in the lactating woman and transfer to breast milk for members of Techa River communities exposed as a result of discharges of liquid radioactive wastes from the Mayak plutonium production facility (Russia) in the early 1950s. This model was based on that developed for the International Commission for Radiological Protection with modifications to account for population specific features of breastfeeding and maternal bone mineral metabolism. The model is based on a biokinetic model for the adult female with allowances made for changes in mineral metabolism during periods of exclusive and partial breast-feeding. The model for females of all ages was developed earlier from extensive data on (90)Sr-body measurements for Techa Riverside residents. Measurements of (90)Sr concentrations in the maternal skeleton and breast milk obtained in the1960s during monitoring of global fallout in the Southern Urals region were used for evaluation of strontium transfer to breast and breast milk. The model was validated with independent data from studies of global fallout in Canada and measurements of (90)Sr body-burden in women living in the Techa River villages who were breastfeeding during maximum (90)Sr-dietary intakes. The model will be used in evaluations of the intake of strontium radioisotopes in breast milk by children born in Techa River villages during the radioactive releases and quantification of (90)Sr retention in the maternal skeleton.

  6. Solid Cancer Incidence in the Techa River Incidence Cohort: 1956-2007.

    PubMed

    Davis, F G; Yu, K L; Preston, D; Epifanova, S; Degteva, M; Akleyev, A V

    2015-07-01

    Previously reported studies of the Techa River Cohort have established associations between radiation dose and the occurrence of solid cancers and leukemia (non-CLL) that appear to be linear in dose response. These analyses include 17,435 cohort members alive and not known to have had cancer prior to January 1, 1956 who lived in areas near the river or Chelyabinsk City at some time between 1956 and the end of 2007, utilized individualized dose estimates computed using the Techa River Dosimetry System 2009 and included five more years of follow-up. The median and mean dose estimates based on these doses are consistently higher than those based on earlier Techa River Dosimetry System 2000 dose estimates. This article includes new site-specific cancer risk estimates and risk estimates adjusted for available information on smoking. There is a statistically significant (P = 0.02) linear trend in the smoking-adjusted all-solid cancer incidence risks with an excess relative risk (ERR) after exposure to 100 mGy of 0.077 with a 95% confidence interval of 0.013-0.15. Examination of site-specific risks revealed statistically significant radiation dose effects only for cancers of the esophagus and uterus with an ERR per 100 mGy estimates in excess of 0.10. Esophageal cancer risk estimates were modified by ethnicity and sex, but not smoking. While the solid cancer rates are attenuated when esophageal cancer is removed (ERR = 0.063 per 100 mGy), a dose-response relationship is present and it remains likely that radiation exposure has increased the risks for most solid cancers in the cohort despite the lack of power to detect statistically significant risks for specific sites.

  7. Reconstruction of Long-Lived Radionuclide Intakes for Techa Riverside Residents: Cesium-137

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstykh, E. I.; Degteva, M. O.; Peremyslova, L. M.

    2013-05-01

    Radioactive contamination of the Techa River (Southern Urals, Russia) occurred from 1949–1956 due to routine and accidental releases of liquid radioactive wastes from the Mayak Production Association. The long-lived radionuclides in the releases were 90Sr and 137Cs. Contamination of the components of the Techa River system resulted in chronic external and internal exposure of about 30,000 residents of riverside villages. Data on radionuclide intake with diet are used to estimate internal dose in the Techa River Dosimetry System (TRDS), which was elaborated for the assessment of radiogenic risk for Techa Riverside residents. The 90Sri ntake function was recently improved takingmore » into account the recently available archival data on radionuclide releases and in-depth analysis of the extensive data on 90Sr measurements in Techa Riverside residents. The main purpose of this paper is to evaluate the dietary intake of 137Cs by Techa Riverside residents. The 137Cs intake with river water used for drinking was reconstructed on the basis of the 90Sr intake-function and the concentration ratio 137Cs/90Sr in river water. Intake via 137Cs transfer from floodplain soil to grass and cows’ milk was evaluated for the first time. As a result, the maximal 137Cs intake level was indicated near the site of releases in upper-Techa River settlements (8,000–9,000 kBq). For villages located on the lower Techa River the 137Cs intake was significantly less (down to 300 kBq). Cows’ milk was the main source of 137Cs in diet in the upper-Techa.« less

  8. Strontium biokinetic model for the pregnant woman and fetus: application to Techa River studies.

    PubMed

    Shagina, N B; Fell, T P; Tolstykh, E I; Harrison, J D; Degteva, M O

    2015-09-01

    A biokinetic model for strontium (Sr) for the pregnant woman and fetus (Sr-PWF model) has been developed for use in the quantification of doses from internal radiation exposures following maternal ingestion of Sr radioisotopes before or during pregnancy. The model relates in particular to the population of the Techa River villages exposed to significant amounts of ingested Sr radioisotopes as a result of releases of liquid radioactive wastes from the Mayak plutonium production facility (Russia) in the early 1950s. The biokinetic model for Sr metabolism in the pregnant woman was based on a biokinetic model for the adult female modified to account for changes in mineral metabolism during pregnancy. The model for non-pregnant females of all ages was developed earlier with the use of extensive data on (90)Sr-body measurements in the Techa Riverside residents. To determine changes in model parameter values to take account of changing mineral metabolism during pregnancy, data from longitudinal studies of calcium homeostasis during human pregnancy were analysed and applied. Exchanges between maternal and fetal circulations and retention in fetal skeleton and soft tissues were modelled as adaptations of previously published models, taking account of data on Sr and calcium (Ca) metabolism obtained in Russia (Southern Urals and Moscow) relating to dietary calcium intakes, calcium contents in maternal and fetal skeletons and strontium transfer to the fetus. The model was validated using independent data on (90)Sr in the fetal skeleton from global fallout as well as unique data on (90)Sr-body burden in mothers and their still-born children for Techa River residents. While the Sr-PWF model has been developed specifically for ingestion of Sr isotopes by Techa River residents, it is also more widely applicable to maternal ingestion of Sr radioisotopes at different times before and during pregnancy and different ages of pregnant women in a general population.

  9. Strontium transfer from maternal skeleton to the fetus estimated on the basis of the Techa river data

    NASA Technical Reports Server (NTRS)

    Tolstykh, E. I.; Degteva, M. O.; Kozheurov, V. P.; Burmistrov, D. S.; Neta, R. (Principal Investigator)

    1998-01-01

    Measurements of 90Sr in human bone of inhabitants of the Techa river region were started in 1951, and since 1974 the Techa river population has been studied with a whole-body counter. One of the dosimetric tasks that could be decided using data on 90Sr measurements is direct evaluation of strontium transfer to the fetus from the maternal skeleton. Six cases were selected for which 90Sr measurements were available both for stillborn infants and their mothers. The ratio of 90Sr concentrations in fetal bone to maternal bone for the year of pregnancy has been evaluated. Two clusters of values were found and the difference between clusters could be explained by age-dependent features of maternal bone formation and remodelling. When the mother's 90Sr intake occurred in the period of intensive compact bone growth, the transfer coefficient was very low (0.012-0.032). If 90Sr ingestion occurred during the woman's reproductive age, the transfer to fetus was equal to 0.21-0.26.

  10. ANALYSIS OF EPR AND FISH STUDIES OF RADIATION DOSES IN PERSONS WHO LIVED IN THE UPPER REACHES OF THE TECHA RIVER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degteva, M. O.; Shagina, N. B.; Shishkina, Elena A.

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949–1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teethmore » and bones that served as a source of confounding local exposures. In order to estimate and subtract doses from incorporated 89,90Sr, the EPR and FISH assays were supported by measurements of 90Sr-body burdens and estimates of 90Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR and FISH measurements for residents of the upper Techa River were found to be consistent: the mean values vary from 510 – 550 mGy for the villages located close to the site of radioactive release to 130 – 160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2 – 2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the Techa River Dosimetry System (TRDS). The TRDS external dose assessments were based on the data on contamination of the Techa River floodplain, simulation of ai r kerma above the contaminated soil, age-dependent life-styles and individual residence histories. For correct comparison TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from 137Cs incorporated in donors’ soft tissues. The TRDS-based absorbed doses in tooth

  11. Radiogenic Risk of Malignant Neoplasms for Techa Riverside Residents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akleyev, A. V.; Krestinina, L. Y.; Preston, D. L.

    As a result of releases of liquid radioactive waste into the Techa River from the Mayak PA in the 1950s, residents of the riverside villages were for decades exposed to external and internal radiation resulting from consumption of locally produced food and river water. Presented in the paper is a brief description of the radiation conditions, organization of medical follow-up of the exposed population, principles for dose estimation, epidemiological analyses of cancer mortality and incidence for residents of the Techa RIverside villages. The estimates of excess relative risk of radiation-related leukemia and solid cancer mortality and incidence obtained for membersmore » of the Techa River cohort point to a clear-cut dependence of the rates on radiation exposure. Attributive risk of cancer incidence characterizing the proportion of radiation-related cancer cases among the total cancers was comparable with that for mortality: 3.2% derived for cancer incidence and 2.5% for cancer mortality. Based on the non-CLL leukemia excess relative risk (ERR) estimates calculated using the linear dose-effect model and the nature of the cohort, it was estimated that 31 (60%) out of 49 leukemia death cases (with the exclusion of 12 cases of chronic lymphatic leukemia) can be related to a long-term radiation exposure due to the contamination of the Techa River.« less

  12. Analysis of EPR and FISH studies of radiation doses in persons who lived in the upper reaches of the Techa River.

    PubMed

    Degteva, M O; Shagina, N B; Shishkina, E A; Vozilova, A V; Volchkova, A Y; Vorobiova, M I; Wieser, A; Fattibene, P; Della Monaca, S; Ainsbury, E; Moquet, J; Anspaugh, L R; Napier, B A

    2015-11-01

    Waterborne radioactive releases into the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to about 30,000 persons who lived in downstream settlements. The residents were exposed to internal and external radiation. Two methods for reconstruction of the external dose are considered in this paper, electron paramagnetic resonance (EPR) measurements of teeth, and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. The main issue in the application of the EPR and FISH methods for reconstruction of the external dose for the Techa Riverside residents was strontium radioisotopes incorporated in teeth and bones that act as a source of confounding local exposures. In order to estimate and subtract doses from incorporated (89,90)Sr, the EPR and FISH assays were supported by measurements of (90)Sr-body burdens and estimates of (90)Sr concentrations in dental tissues by the luminescence method. The resulting dose estimates derived from EPR to FISH measurements for residents of the upper Techa River were found to be consistent: The mean values vary from 510 to 550 mGy for the villages located close to the site of radioactive release to 130-160 mGy for the more distant villages. The upper bound of individual estimates for both methods is equal to 2.2-2.3 Gy. The EPR- and FISH-based dose estimates were compared with the doses calculated for the donors using the most recent Techa River Dosimetry System (TRDS). The TRDS external dose assessments are based on the data on contamination of the Techa River floodplain, simulation of air kerma above the contaminated soil, age-dependent lifestyles and individual residence histories. For correct comparison, TRDS-based doses were calculated from two sources: external exposure from the contaminated environment and internal exposure from (137)Cs incorporated in donors' soft tissues. It is shown here that the TRDS-based absorbed

  13. Chronic radioisotope effects on residents of the Techa River (Russia) region: cytogenetic analysis more than 50 years after onset of exposure.

    PubMed

    Vozilova, A V; Shagina, N B; Degteva, M O; Akleyev, A V

    2013-08-30

    This paper presents the results of a cytogenetic study conducted among residents of the Techa Riverside communities (Southern Urals, Russia) exposed in the early 1950s as a result of releases of liquid radioactive wastes from the Mayak plutonium-production facility. The study was performed 50-60 years after the beginning of the exposure for those individuals who were predominantly exposed to strontium radioisotopes ((89,90)Sr) through drinking contaminated river water and consumption of local foodstuff. Standard cytogenetic methods were used for evaluation of the frequency of unstable chromosome aberrations in exposed persons as well as in persons from the control group who were of similar age and sex, living in similar socio-economic conditions in non-contaminated territories of the Southern Urals. The exposure doses were reconstructed for the studied donors using the Techa River Dosimetry System developed in 2009. The doses of internal exposure from ingested radionuclides were evaluated using individual or family in vivo measurements of (90)Sr-body burden. Individual cumulative absorbed doses in red bone marrow (RBM) in the studied persons varied in the range of 0.01-4.4Gy. A significantly higher level of unstable chromosome aberrations (UCA) in T-cells was observed in the group of exposed individuals as compared to control group. The highest UCA level was detected in the individuals who were suspected of having chronic radiation syndrome. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Estimates of Radiation Effects on Cancer Risks in the Mayak Worker, Techa River and Atomic Bomb Survivor Studies.

    PubMed

    Preston, Dale L; Sokolnikov, Mikhail E; Krestinina, Lyudmila Yu; Stram, Daniel O

    2017-04-01

    For almost 50 y, the Life Span Study cohort of atomic bomb survivor studies has been the primary source of the quantitative estimates of cancer and non-cancer risks that form the basis of international radiation protection standards. However, the long-term follow-up and extensive individual dose reconstruction for the Russian Mayak worker cohort (MWC) and Techa River cohort (TRC) are providing quantitative information about radiation effects on cancer risks that complement the atomic bomb survivor-based risk estimates. The MWC, which includes ~26 000 men and women who began working at Mayak between 1948 and 1982, is the primary source for estimates of the effects of plutonium on cancer risks and also provides information on the effects of low-dose rate external gamma exposures. The TRC consists of ~30 000 men and women of all ages who received low-dose-rate, low-dose exposures as a consequence of Mayak's release of radioactive material into the Techa River. The TRC data are of interest because the exposures are broadly similar to those experienced by populations exposed as a consequence of nuclear accidents such as Chernobyl. In this presentation, it is described the strengths and limitations of these three cohorts, outline and compare recent solid cancer and leukemia risk estimates and discussed why information from the Mayak and Techa River studies might play a role in the development and refinement of the radiation risk estimates that form the basis for radiation protection standards. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. RECONSTRUCTION OF INDIVIDUAL DOSES DUE TO MEDICAL EXPOSURES FOR MEMBERS OF THE TECHA RIVER COHORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shagina, N. B.; Golikov, V.; Degteva, M. O.

    Purpose: To describe a methodology for reconstruction of doses due to medical exposures for members of the Techa River Cohort (TRC) who received diagnostic radiation at the clinic of the Urals Research Center for Radiation Medicine (URCRM) in 1952–2005. To calculate doses of medical exposure for the TRC members and compare with the doses that resulted from radioactive contamination of the Techa River. Material and Methods: Reconstruction of individual medical doses is based on data on x-ray diagnostic procedures available for each person examined at the URCRM clinics and values of absorbed dose in 12 organs per typical x-ray proceduremore » calculated with the use of a mathematical phantom. Personal data on x-ray diagnostic examinations have been complied in the computerized “Registry of x-ray diagnostic procedures.” Sources of information are archival registry books from the URCRM x-ray room (available since 1956) and records on x-ray diagnostic procedures in patient-case histories (since 1952). The absorbed doses for 12 organs of interest have been evaluated per unit typical x-ray procedure with account taken of the x-ray examination parameters characteristic for the diagnostic machines used at the URCRM clinics. These parameters have been evaluated from published data on technical characteristics of the x-ray diagnostic machines used at the URCRM clinics in 1952–1988 and taken from the x-ray room for machines used at the URCRM in 1989–2005. Absorbed doses in the 12 organs per unit typical x-ray procedure have been calculated with use of a special computer code, EDEREX, developed at the Saint-Petersburg Research Institute of Radiation Hygiene after Professor P.V. Ramzaev. Individual accumulated doses of medical exposure have been calculated with a computer code, MEDS (Medical Exposure Dosimetry System), specifically developed at the URCRM. Results: At present, the “Registry of x-ray diagnostic procedures” contains information on individual x

  16. Issues in the reconstruction of environmental doses on the basis of thermoluminescence measurements in the Techa riverside

    NASA Technical Reports Server (NTRS)

    Bougrov, N. G.; Goksu, H. Y.; Haskell, E.; Degteva, M. O.; Meckbach, R.; Jacob, P.; Neta, P. I. (Principal Investigator)

    1998-01-01

    The potential of thermoluminescence measurements of bricks from the contaminated area of the Techa river valley, Southern Urals, Russia, for reconstructing external exposures of affected population groups has been studied. Thermoluminescence dating of background samples was used to evaluate the age of old buildings available on the river banks. The anthropogenic gamma dose accrued in exposed samples is determined by subtracting the natural radiation background dose for the corresponding age from the accumulated dose measured by thermoluminescence. For a site in the upper Techa river region, where the levels of external exposures were extremely high, the depth-dose distribution in bricks and the dependence of accidental dose on the height of the sampling position were determined. For the same site, Monte Carlo simulations of radiation transport were performed for different source configurations corresponding to the situation before and after the construction of a reservoir on the river and evacuation of the population in 1956. A comparison of the results provides an understanding of the features of the measured depth-dose distributions and height dependencies in terms of the source configurations and shows that bricks from the higher sampling positions are likely to have accrued a larger fraction of anthropogenic dose from the time before the construction of the reservoir. The applicability of the thermoluminescent dosimetry method to environmental dose reconstruction in the middle Techa region, where the external exposure was relatively low, was also investigated.

  17. Simple model for the reconstruction of radionuclide concentrations and radiation exposures along the Techa River

    NASA Technical Reports Server (NTRS)

    Vorobiova, M. I.; Degteva, M. O.; Neta, M. O. (Principal Investigator)

    1999-01-01

    The Techa River (Southern Urals, Russia) was contaminated in 1949-1956 by liquid radioactive wastes from the Mayak complex, the first Russian facility for the production of plutonium. The measurements of environmental contamination were started in 1951. A simple model describing radionuclide transport along the free-flowing river and the accumulation of radionuclides by bottom sediments is presented. This model successfully correlates the rates of radionuclide releases as reconstructed by the Mayak experts, hydrological data, and available environmental monitoring data for the early period of contamination (1949-1951). The model was developed to reconstruct doses for people who lived in the riverside communities during the period of the releases and who were chronically exposed to external and internal irradiation. The model fills the data gaps and permits reconstruction of external gamma-exposure rates in air on the river bank and radionuclide concentrations in river water used for drinking and other household needs in 1949-1951.

  18. Model testing of radioactive contamination by 90Sr, 137Cs and 239,240Pu of water and bottom sediments in the Techa River (Southern Urals, Russia).

    PubMed

    Kryshev, I I; Boyer, P; Monte, L; Brittain, J E; Dzyuba, N N; Krylov, A L; Kryshev, A I; Nosov, A V; Sanina, K D; Zheleznyak, M I

    2009-03-15

    This paper presents results of testing models for the radioactive contamination of river water and bottom sediments by (90)Sr, (137)Cs and (239,240)Pu. The scenario for the model testing was based on data from the Techa River (Southern Urals, Russia), which was contaminated as a result of discharges of liquid radioactive waste into the river. The endpoints of the scenario were model predictions of the activity concentrations of (90)Sr, (137)Cs and (239,240)Pu in water and bottom sediments along the Techa River in 1996. Calculations for the Techa scenario were performed by six participant teams from France (model CASTEAUR), Italy (model MARTE), Russia (models TRANSFER-2, CASSANDRA, GIDRO-W) and Ukraine (model RIVTOX), all using different models. As a whole, the radionuclide predictions for (90)Sr in water for all considered models, (137)Cs for MARTE and TRANSFER-2, and (239,240)Pu for TRANSFER-2 and CASSANDRA can be considered sufficiently reliable, whereas the prediction for sediments should be considered cautiously. At the same time the CASTEAUR and RIVTOX models estimate the activity concentrations of (137)Cs and (239,240)Pu in water more reliably than in bottom sediments. The models MARTE ((239,240)Pu) and CASSANDRA ((137)Cs) evaluated the activity concentrations of radionuclides in sediments with about the same agreement with observations as for water. For (90)Sr and (137)Cs the agreement between empirical data and model predictions was good, but not for all the observations of (239,240)Pu in the river water-bottom sediment system. The modelling of (239,240)Pu distribution proved difficult because, in contrast to (137)Cs and (90)Sr, most of models have not been previously tested or validated for plutonium.

  19. FURTHER STUDIES ON UNCERTAINTY, CONFOUNDING, AND VALIDATION OF THE DOSES IN THE TECHA RIVER DOSIMETRY SYSTEM: Concluding Progress Report on the Second Phase of Project 1.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degteva, M. O.; Anspaugh, L. R.; Napier, Bruce A.

    2009-10-23

    This is the concluding Progress Report for Project 1.1 of the U.S./Russia Joint Coordinating Committee on Radiation Effects Research (JCCRER). An overwhelming majority of our work this period has been to complete our primary obligation of providing a new version of the Techa River Dosimetry System (TRDS), which we call TRDS-2009D; the D denotes deterministic. This system provides estimates of individual doses to members of the Extended Techa River Cohort (ETRC) and post-natal doses to members of the Techa River Offspring Cohort (TROC). The latter doses were calculated with use of the TRDS-2009D. The doses for the members of themore » ETRC have been made available to the American and Russian epidemiologists in September for their studies in deriving radiogenic risk factors. Doses for members of the TROC are being provided to European and Russian epidemiologists, as partial input for studies of risk in this population. Two of our original goals for the completion of this nine-year phase of Project 1.1 were not completed. These are completion of TRDS-2009MC, which was to be a Monte Carlo version of TRDS-2009 that could be used for more explicit analysis of the impact of uncertainty in doses on uncertainty in radiogenic risk factors. The second incomplete goal was to be the provision of household specific external doses (rather than village average). This task was far along, but had to be delayed due to the lead investigator’s work on consideration of a revised source term.« less

  20. Analysis of strontium metabolism in humans on the basis of the Techa river data

    NASA Technical Reports Server (NTRS)

    Tolstykh, E. I.; Kozheurov, V. P.; Vyushkova, O. V.; Degteva, M. O.; Neta, R. (Principal Investigator)

    1997-01-01

    Age and sex features of strontium metabolism have been analyzed on studies of the population residing on the banks of the Techa river which was contaminated by fission products during the years 1949-1956. Measurements of 90Sr body burden have been performed since 1974 using a whole-body counter, and these have made it possible to estimate age-specific long-term retention and elimination rates for men and women. Regarding the retention that correlated with the respective maturation ages, distinct sex differences have been observed for adolescents, whereas only postmenopausal women showed a sharp increase of their elimination rates. There were no differences concerning the reproductive ages. Our experimental findings have a clear physiological interpretation and can be used to develop metabolic models for bone-seeking radionuclides.

  1. Calculations of individual doses for Techa River Cohort members exposed to atmospheric radioiodine from Mayak releases.

    PubMed

    Napier, Bruce A; Eslinger, Paul W; Tolstykh, Evgenia I; Vorobiova, Marina I; Tokareva, Elena E; Akhramenko, Boris N; Krivoschapov, Victor A; Degteva, Marina O

    2017-11-01

    Time-dependent thyroid doses were reconstructed for over 29,000 Techa River Cohort members living near the Mayak production facilities from 131 I released to the atmosphere for all relevant exposure pathways. The calculational approach uses four general steps: 1) construct estimates of releases of 131 I to the air from production facilities; 2) model the transport of 131 I in the air and subsequent deposition on the ground and vegetation; 3) model the accumulation of 131 I in environmental media; and 4) calculate individualized doses. The dose calculations are implemented in a Monte Carlo framework that produces best estimates and confidence intervals of dose time-histories. Other radionuclide contributors to thyroid dose were evaluated. The 131 I contribution was 75-99% of the thyroid dose. The mean total thyroid dose for cohort members was 193 mGy and the median was 53 mGy. Thyroid doses for about 3% of cohort members were larger than 1 Gy. About 7% of children born in 1940-1950 had doses larger than 1 Gy. The uncertainty in the 131 I dose estimates is low enough for this approach to be used in regional epidemiological studies. Copyright © 2017. Published by Elsevier Ltd.

  2. Calculations of individual doses for Techa River Cohort members exposed to atmospheric radioiodine from Mayak releases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, Bruce A.; Eslinger, Paul W.; Tolstykh, Evgenia I.

    Time-dependent thyroid doses were reconstructed for Techa River Cohort members living near the Mayak production facilities from 131I released to the atmosphere for all relevant exposure pathways. The calculational approach uses four general steps: 1) construct estimates of releases of 131I to the air from production facilities; 2) model the transport of 131I in the air and subsequent deposition on the ground and vegetation; 3) model the accumulation of 131I in soil, water, and food products (environmental media); and 4) calculate individual doses by matching appropriate lifestyle and consumption data for the individual to concentrations of 131I in environmental media.more » The dose calculations are implemented in a Monte Carlo framework that produces best estimates and confidence intervals of dose time-histories. The 131I contribution was 75-99% of the thyroid dose. The mean total thyroid dose for cohort members was 193 mGy and the median was 53 mGy. Thyroid doses for about 3% of cohort members were larger than 1 Gy. About 7% of children born in 1940-1950 had doses larger than 1 Gy. The uncertainty in the 131I dose estimates is low enough for this approach to be used in regional epidemiological studies.« less

  3. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: strontium-90.

    PubMed

    Tolstykh, E I; Degteva, M O; Peremyslova, L M; Shagina, N B; Shishkina, E A; Krivoshchapov, V A; Anspaugh, L R; Napier, B A

    2011-07-01

    Releases of radioactive materials from the Mayak Production Association in 1949-1956 resulted in contamination of the Techa River; a nuclide of major interest was 90Sr, which downstream residents consumed with water from the river and with milk contaminated by cows' consumption of river water and contaminated pasture. Over the years, several reconstructions of dose have been performed for the approximately 30,000 persons who make up the Extended Techa River Cohort. The purpose of the study described here was to derive a revised reference-90Sr-intake function for the members of this cohort. The revision was necessary because recently discovered data have provided a more accurate description of the time course of the releases, and more is now known about the importance of the pasture grass-cow-milk pathway for the members of this cohort. The fundamental basis for the derivation of the reference-90Sr-intake function remains the same: thousands of measurements of 90Sr content in bone with a special whole-body counter, thousands of measurements of beta-activity of front teeth with a special tooth-beta counter, and a variety of other measurements, including post mortem measurements of 90Sr in bone, measurements of 90Sr in cow's milk, and measurements of beta activity in human excreta. Results of the new analyses are that the major intake started in September 1950 and peaked somewhat later than originally postulated. However, the total intake for adult residents has not changed significantly. For children of some birth years, the intake and incorporation of Sr in bone tissue have changed substantially.

  4. RECONSTRUCTION OF LONG-LIVED RADIONUCLIDE INTAKES FOR TECHA RIVERSIDE RESIDENTS: STRONTIUM-90

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstykh, E. I.; Degteva, M. O.; Peremyslova, L. M.

    2011-07-15

    Releases of radioactive materials from the Mayak Production Association in 1949-1956 resulted in contamination of the Techa River; a nuclide of major interest was 90Sr, which downstream residents consumed with water from the river and with milk contaminated by cow's consumption of river water and contaminated pasture. Over the years, several reconstructions of dose have been performed for the approximately 30,000 persons who make up the Extended Techa River Cohort. The purpose of the study described here was to derive a revised reference-90Sr-intake function for the members of this cohort. The revision was necessary because recently discovered data have providedmore » a more accurate description of the time course of the releases, and more is now known about the importance of the pasture grass-cow-milk pathway for the members of this cohort. The fundamental basis for the derivation of the reference-90Sr-intake function remains the same: thousands of measurements of 90Sr content in bone with a special whole-body counter, thousands of measurement of beta-activity of front teeth with a special tooth-beta counter, and a variety of other measurements, including post mortem measurements of 90Sr in bone, measurements of 90Sr in cow's milk, and measurements of beta activity in human excreta. Results of the new analyses are that the major intake started in September 1950 and peaked somewhat later than originally postulated. However, the total intake for adult residents has not changed significantly. For children of some birth years, the intake and incorporation of 90Sr in bone tissue have changed substantially.« less

  5. Increase in accumulation of strontium-90 in the maternal skeleton during pregnancy and lactation: analysis of the Techa River data.

    PubMed

    Tolstykh, Evgenia I; Shagina, Natalia B; Degteva, Marina O

    2014-08-01

    The unique contamination of the Techa River (Southern Urals, Russia) in the 1950s by long-lived (90)Sr allows investigation of the accumulation of bone-seeking elements in humans. This study is based on information compiled at the Urals Research Center for Radiation Medicine (Chelyabinsk, Russia) over a long period of time. It includes the results of in vivo measurements of (90)Sr-body burden with a whole body counter (WBC), data on personal medical examinations and residence and family histories. Data on 185 women from two Techa riverside villages Muslyumovo and Brodokalmak were selected. The settlements differ in terms of (90)Sr diet intake (higher in Muslyumovo than in Brodokalmak) and ethnicity (residents were mainly Slavs in Brodokalmak and Turkic in Muslyumovo). Results of a total of 555 WBC measurements performed in 1974-1997 were available for the women studied; maximum measured values reached 40 kBq/body. The women from each settlement were subdivided into three groups according to their childbearing history: pregnancy and lactation occurred (1) during the period of maximal (90)Sr intake (1950-1951); (2) after the period of maximal intake and (3) before this period or women who were childless. An increase was found in accumulation of (90)Sr in maternal skeleton during pregnancy and lactation (group 1) by a factor of 1.5-2 in comparison with non-pregnant, non-lactating women. This result was found in both Muslyumovo and Brodokalmak samples. An increase in accumulation of toxic elements in pregnant/lactating women is associated with increased radiation/toxic doses and risk for the women's health.

  6. Does the cortical bone resorption rate change due to 90Sr-radiation exposure? Analysis of data from Techa Riverside residents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstykh, E I; Shagina, N B; Degteva, M O

    2011-08-01

    The Mayak Production Association released large amounts of 90Sr into the Techa River (Southern Urals, Russia) with peak amounts in 1950-1951. Techa Riverside residents ingested an average of about 3,000 kBq of 90Sr. The 90Sr-body burden of approximately 15,000 individuals has been measured in the Urals Research Center for Radiation Medicine in 1974-1997 with use of a special whole-body counter (WBC). Strontium-90 had mainly deposited in the cortical part of the skeleton by 25 years following intake, and 90Sr elimination occurs as a result of cortical bone resorption. The effect of 90Sr-radiation exposure on the rate of cortical bone resorptionmore » was studied. Data on 2,022 WBC measurements were selected for 207 adult persons, who were measured three or more times before they were 50-55 years old. The individual-resorption rates were calculated with the rate of strontium recirculation evaluated as 0.0018 year -1. Individual absorbed doses in red bone marrow (RBM) and bone surface (BS) were also calculated. Statistically significant negative relationships of cortical bone resorption rate were discovered related to 90Sr-body burden and dose absorbed in the RBM or the BS. The response appears to have a threshold of about 1.5-Gy RBM dose. The radiation induced decrease in bone resorption rate may not be significant in terms of health. However, a decrease in bone remodeling rate can be among several causes of an increased level of degenerative dystrophic bone pathology in exposed persons.« less

  7. The current content of artificial radionuclides in the water of the Tobol-Irtysh river system (from the mouth of the Iset River to the confluence with the Ob River).

    PubMed

    Nikitin, Alexander I; Chumichev, Vladimir B; Valetova, Nailia K; Katrich, Ivan Yu; Kabanov, Alexander I; Dunaev, Gennady E; Shkuro, Valentina N; Rodin, Victor M; Mironenko, Alexander N; Kireeva, Elena V

    2007-01-01

    Data on content of (90)Sr, (137)Cs, (239,240)Pu and (3)H in water of the Tobol-Irtysh part of the Techa-Iset-Tobol-Irtysh-Ob river system (through which the "Mayak" PA radioactive wastes are transported) are presented and discussed. The data were received in 2004-2005 under the ISTC project on radioecological monitoring of the Tobol and Irtysh rivers. Monthly observations of (137)Cs, (90)Sr and (3)H content in water in the area of the Tobol and Irtysh confluence have been conducted starting from May 2004. To obtain information on the investigated river system as a whole, the radioecological survey of the Tobol and Irtysh rivers at the section from the mouth of the Iset River to the confluence with the Ob River was carried out in 2004. It is shown that the impact of "Mayak" PA waste transport by (90)Sr is distinctly traced as far as the area of the Irtysh and Ob confluence.

  8. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Regional or river basin... Responsibilities § 725.7 Regional or river basin planning. (a) In agreements between river basin commissions or other regional planning sponsors and the Council for the preparation and revision of regional and river...

  9. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Regional or river basin... Responsibilities § 725.7 Regional or river basin planning. (a) In agreements between river basin commissions or other regional planning sponsors and the Council for the preparation and revision of regional and river...

  10. Urban rivers as hotspots of regional nitrogen pollution.

    PubMed

    Zhang, Xiaohong; Wu, Yiyun; Gu, Baojing

    2015-10-01

    Excess nitrogen inputs to terrestrial ecosystems via human activities have deteriorated water qualities on regional scales. Urban areas as settlements of over half global population, however, were usually not considered in the analysis of regional water pollution. Here, we used a 72-month monitoring data of water qualities in Hangzhou, China to test the role of urban rives in regional nitrogen pollution and how they response to the changes of human activities. Concentrations of ammonium nitrogen in urban rivers were 3-5 times higher than that in regional rivers. Urban rivers have become pools of reactive nitrogen and hotspots of regional pollution. Moreover, this river pollution is not being measured by current surface water monitoring networks that are designed to measure broader regional patterns, resulting in an underestimation of regional pollution. This is crucial to urban environment not only in China, but also in other countries, where urban rivers are seriously polluted. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Bank storage buffers rivers from saline regional groundwater: an example from the Avon River Australia

    NASA Astrophysics Data System (ADS)

    Gilfedder, Benjamin; Hofmann, Harald; Cartwrighta, Ian

    2014-05-01

    Groundwater-surface water interactions are often conceptually and numerically modeled as a two component system: a groundwater system connected to a stream, river or lake. However, transient storage zones such as hyporheic exchange, bank storage, parafluvial flow and flood plain storage complicate the two component model by delaying the release of flood water from the catchment. Bank storage occurs when high river levels associated with flood water reverses the hydraulic gradient between surface water and groundwater. River water flows into the riparian zone, where it is stored until the flood water recede. The water held in the banks then drains back into the river over time scales ranging from days to months as the hydraulic gradient returns to pre-flood levels. If the frequency and amplitude of flood events is high enough, water held in bank storage can potentially perpetually remain between the regional groundwater system and the river. In this work we focus on the role of bank storage in buffering river salinity levels against saline regional groundwater on lowland sections of the Avon River, Victoria, Australia. We hypothesize that the frequency and magnitude of floods will strongly influence the salinity of the stream water as banks fill and drain. A bore transect (5 bores) was installed perpendicular to the river and were instrumented with head and electrical conductivity loggers measuring for two years. We also installed a continuous 222Rn system in one bore. This data was augmented with long-term monthly EC from the river. During high rainfall events very fresh flood waters from the headwaters infiltrated into the gravel river banks leading to a dilution in EC and 222Rn in the bores. Following the events the fresh water drained back into the river as head gradients reversed. However the bank water salinities remained ~10x lower than regional groundwater levels during most of the time series, and only slightly above river water. During 2012 SE Australia

  12. Development of a regional macroinvertebrate index for large river bioassessment

    EPA Science Inventory

    Large river bioassessment protocols lag far behind those of wadeable streams and often rely on fish assemblages of individual rivers. We developed a regional macroinvertebrate index and assessed relative condition of six large river tributaries to the upper Mississippi and Ohio r...

  13. Homogenization of regional river dynamics by dams and global biodiversity implications.

    PubMed

    Poff, N Leroy; Olden, Julian D; Merritt, David M; Pepin, David M

    2007-04-03

    Global biodiversity in river and riparian ecosystems is generated and maintained by geographic variation in stream processes and fluvial disturbance regimes, which largely reflect regional differences in climate and geology. Extensive construction of dams by humans has greatly dampened the seasonal and interannual streamflow variability of rivers, thereby altering natural dynamics in ecologically important flows on continental to global scales. The cumulative effects of modification to regional-scale environmental templates caused by dams is largely unexplored but of critical conservation importance. Here, we use 186 long-term streamflow records on intermediate-sized rivers across the continental United States to show that dams have homogenized the flow regimes on third- through seventh-order rivers in 16 historically distinctive hydrologic regions over the course of the 20th century. This regional homogenization occurs chiefly through modification of the magnitude and timing of ecologically critical high and low flows. For 317 undammed reference rivers, no evidence for homogenization was found, despite documented changes in regional precipitation over this period. With an estimated average density of one dam every 48 km of third- through seventh-order river channel in the United States, dams arguably have a continental scale effect of homogenizing regionally distinct environmental templates, thereby creating conditions that favor the spread of cosmopolitan, nonindigenous species at the expense of locally adapted native biota. Quantitative analyses such as ours provide the basis for conservation and management actions aimed at restoring and maintaining native biodiversity and ecosystem function and resilience for regionally distinct ecosystems at continental to global scales.

  14. Carbon Emission from Tibet Plateau Rivers: a Case Study of the Yellow River Headwater Region

    NASA Astrophysics Data System (ADS)

    Lu, X. X.; Yang, X.; Tian, M. Y.; Su, Y. R.; Ran, L.; Hu, H. Z.; Yu, R. H.

    2017-12-01

    Global warming will have major impacts on the high-altitude environments, including glacier retreats and permafrost thawing. Permafrost soils contain enormous amounts of organic carbon, which could act as a positive feedback to global climate change due to enhanced respiration rates with warming. Study on riverine sediment and carbon fluxes from permafrost thawing and glacial retreat at high latitudes can help to identify the potential hazards of carbon emissions and provide scientific references for formulating climate adaptation strategy. The headwater region of the Yellow River, located in the north eastern Tibetan Plateau, retains a huge amount of organic carbon stored in the widely distributed meadow and steppe soils, which has been and will be affected by climate change. For example, carbon storage in the Ruoergai (Zoige) wetlands surrounded by mountain glaciers and permafrost is estimated at 23.2 Gt, representing a very high percentage of the soil carbon in the entire Tibet Plateau. Global warming will have far-reaching impacts on riverine sediment and carbon fluxes in this region. However, the amount of riverine carbon released by glacier retreat and permafrost thawing has not been well studied in this region. This talk will report our results obtained from 4 rounds of field campaign in the headwater region of the Yellow River, with a focus of the river and stream systems in the Ruoergai peatland and the Anyemaqen glacier. Our preliminary results indicated that riverine carbon emission from the headwater region was much higher than our previous report estimated from water chemistry data. With increase in temperature the rivers in Himalayas and Tibet Plateau are potential carbon source areas.

  15. Development of an Unsaturated Region Below a Perennial River

    NASA Astrophysics Data System (ADS)

    Su, G. W.; Zhou, Q.; Constantz, J.; Hatch, C.

    2004-12-01

    Field observations at the Russian River Bank Filtration Facility in Sonoma County, California indicate that an unsaturated region exists below the streambed near two adjacent groundwater pumping wells located along the riverbank. Understanding the conditions that give rise to unsaturated flow below the streambed is critical for improving and optimizing riverbank well pumping operations. To investigate the development of an unsaturated region below a perennial river near pumping wells, a three-dimensional model was developed using the multi-phase subsurface flow model, TOUGH2. The model is based on the region around the two pumping wells in the Russian River Bank Filtration Facility. The pumping wells consist of 9 perforated pipes that are projected horizontally into the aquifer at a depth of approximately 20 m below the land surface. A grid was developed for the TOUGH2 model with finer resolution near the wells to represent individual pipes. The effect of varying the pumping operation and the streambed permeability on the extent of the unsaturated region was investigated with the TOUGH2 model. The formation remained saturated below the streambed when only one of the wells was pumped at a rate of 1600 m3/hr, but an unsaturated region developed below the streambed when the two wells each pumped at a rate of 1600 m3/hr. This unsaturated region was deeper when the permeability of the streambed was lower than the aquifer material compared to when the streambed and aquifer permeabilities were the same.

  16. The Demographics of Travel in the Two Rivers-Ottauquechee Region

    DOT National Transportation Integrated Search

    2009-02-19

    In March of 2008, the Two Rivers-Ottauquechee Regional Commission (TRORC) contracted with TranSystems, a consulting firm based in Montpelier, to conduct a regional transportation planning study for the region. Called the Demographics of Transportatio...

  17. 19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. REGIONAL MAP, SALINAS RIVER PROJECT, CAMP SAN LUIS OBISPO, IN CENTRAL PORTION OF SAN LUIS OBISPO, CALIFORNIA. Leeds Hill Barnard & Jewett - Consulting Engineers, February 1942. - Salinas River Project, Cuesta Tunnel, Southeast of U.S. 101, San Luis Obispo, San Luis Obispo County, CA

  18. Analysis of the ancient river system in Loulan period in Lop Nur region

    NASA Astrophysics Data System (ADS)

    Zhu, Jianfeng; Jia, Peng; Nie, Yueping

    2010-09-01

    The Lop Nur region is located in the east of the Tarim Basin. It has served as the strategic passage and communication hub of the Silk Road since Han Dynasty. During Wei-Jin period, the river system there was well developed and the ancient city of Loulan was bred there. In this study, GIS is used to accomplish automatic extraction of the river course in the Lop Nur region at first using ArcGIS. Then the RCI index is constituted to extract ancient river course from Landsat ETM image with band 3 and band 4. It is concluded that the north river course of Peacock River conformed before the end of the 4th century AD according to the distribution of the entire river course of the Lop Nur region. Later, the Peacock River changed its way to south to Tarim River, and flowed into Lop Nur along the direction paralleling Altun Mountain from west to east. It was the change of the river system that mainly caused the decrease in water supply around ancient city of Loulan before the end of 4th century. The ancient city of Loulan has been gradually ruined in the sand because of the absence of water supply since then.

  19. Regional economic impacts of Grand Canyon river runners.

    PubMed

    Hjerpe, Evan E; Kim, Yeon-Su

    2007-10-01

    Economic impact analysis (EIA) of outdoor recreation can provide critical social information concerning the utilization of natural resources. Outdoor recreation and other non-consumptive uses of resources are viewed as environmentally friendly alternatives to extractive-type industries. While outdoor recreation can be an appropriate use of resources, it generates both beneficial and adverse socioeconomic impacts on rural communities. The authors used EIA to assess the regional economic impacts of rafting in Grand Canyon National Park. The Grand Canyon region of northern Arizona represents a rural US economy that is highly dependent upon tourism and recreational expenditures. The purpose of this research is twofold. The first is to ascertain the previously unknown regional economic impacts of Grand Canyon river runners. The second purpose is to examine attributes of these economic impacts in terms of regional multipliers, leakage, and types of employment created. Most of the literature on economic impacts of outdoor recreation has focused strictly on the positive economic impacts, failing to illuminate the coinciding adverse and constraining economic impacts. Examining the attributes of economic impacts can highlight deficiencies and constraints that limit the economic benefits of recreation and tourism. Regional expenditure information was obtained by surveying non-commercial boaters and commercial outfitters. The authors used IMPLAN input-output modeling to assess direct, indirect, and induced effects of Grand Canyon river runners. Multipliers were calculated for output, employment, and income. Over 22,000 people rafted on the Colorado River through Grand Canyon National Park in 2001, resulting in an estimated $21,100,000 of regional expenditures to the greater Grand Canyon economy. However, over 50% of all rafting-related expenditures were not captured by the regional economy and many of the jobs created by the rafting industry are lower-wage and seasonal. Policy

  20. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Regional or river basin planning. 725.7 Section 725.7 Conservation of Power and Water Resources WATER RESOURCES COUNCIL... basin Level B Studies and regional water resource management plans, the responsible official...

  1. River reach classification for the Greater Mekong Region at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Ouellet Dallaire, C.; Lehner, B.

    2014-12-01

    River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of

  2. Eco-environmental degradation in the source region of the Yellow River, Northeast Qinghai-Xizang Plateau.

    PubMed

    Feng, Jianmin; Wang, Tao; Xie, Changwei

    2006-11-01

    The Yellow River is the second longest river in China and the cradle of the Chinese civilization. The source region of the Yellow River is the most important water holding area for the Yellow River, about 49.2% of the whole runoff comes from this region. However, for the special location, it is a region with most fragile eco-environment in China as well. Eco-environmental degradation in the source region of the Yellow River has been a very serious ecological and socially economic problem. According to census data, historical documents and climatic information, during the last half century, especially the last 30 years, great changes have taken place in the eco-environment of this region. Such changes are mainly manifested in the temporal-spatial changes of water environment, deglaciation, permafrost reduction, vegetation degeneracy and desertification extent, which led to land capacity decreasing and river disconnecting. At present, desertification of the region is showing an accelerating tendency. This paper analyzes the present status of eco-environment degradation in this region supported by GIS and RS, as well as field investigation and indoor analysis, based on knowledge, multi-source data is gathered and the classification is worked out, deals with their natural and anthropogenic causes, and points out that in the last half century the desertification and environmental degradation of this region are mainly attributed to human activities under the background of regional climate changes. To halt further degradation of the environment of this region, great efforts should be made to use land resources rationally, develop advantages animal agriculture and protect the natural grassland.

  3. Pumping-Induced Unsaturated Regions Beneath a Perennial River

    NASA Astrophysics Data System (ADS)

    Su, G. W.; Jasperse, J.; Seymour, D.; Constantz, J.; Delaney, C.; Zhou, Q.

    2006-12-01

    The development of an unsaturated region beneath a streambed during groundwater pumping near streams reduces the capacity of the pumping system, changes flow paths, and alters the types of biological transformations in the streambed sediments. To investigate the formation of an unsaturated region beneath the streambed during near-stream groundwater pumping, a three-dimensional, multi-phase flow model was developed using TOUGH2 of the region near two horizontal collector wells operated by the Sonoma County Water Agency along the Russian River near Forestville, California. The simulations focus on the impact of streambed permeability on the development of an unsaturated region since streambed permeability controls the flux of river water entering and recharging the aquifer. The results indicate that as the streambed permeability decreases relative to the aquifer permeability, the size of the unsaturated region beneath the streambed increases. The simulations also demonstrate that the streambed permeabilities over which the aquifer beneath the streambed is unsaturated and able to extract water at the specified rate of 3200 m3/hr occurs over a relatively narrow range of values. Field measurements of streambed flow velocities, volumetric water content, and temperatures near the collector wells are also presented and compared with the simulation results. This work was supported by the Sonoma County Water Agency, through U.S. Department of Energy Contract No. DE-AC03-76SF00098.

  4. Summer precipitation prediction in the source region of the Yellow River using climate indices

    NASA Astrophysics Data System (ADS)

    Yuan, F.

    2016-12-01

    The source region of the Yellow River contributes about 35% of the total water yield in the Yellow River basin playing an important role in meeting downstream water resources requirements. The summer precipitation from June to September in the source region of the Yellow River accounts for about 70% of the annual total, and its decrease would cause further water shortage problems. Consequently, the objectives of this study are to improve the understanding of the linkages between the precipitation in the source region of the Yellow River and global teleconnection patterns, and to predict the summer precipitation based on revealed teleconnections. Spatial variability of precipitation was investigated based on three homogeneous sub-regions. Principal component analysis and singular value decomposition were used to find significant relations between the precipitation in the source region of the Yellow River and global teleconnection patterns using climate indices. A back-propagation neural network was developed to predict the summer precipitation using significantly correlated climate indices. It was found that precipitation in the study area is positively related to North Atlantic Oscillation, West Pacific Pattern and El Nino Southern Oscillation, and inversely related to Polar Eurasian pattern. Summer precipitation was overall well predicted using these significantly correlated climate indices, and the Pearson correlation coefficient between predicted and observed summer precipitation was in general larger than 0.6. The results are useful for integrated water resources management in the Yellow River basin.

  5. Time-Series Analysis of Remotely-Sensed SeaWiFS Chlorophyll in River-Influenced Coastal Regions

    NASA Technical Reports Server (NTRS)

    Acker, James G.; McMahon, Erin; Shen, Suhung; Hearty, Thomas; Casey, Nancy

    2009-01-01

    The availability of a nearly-continuous record of remotely-sensed chlorophyll a data (chl a) from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission, now longer than ten years, enables examination of time-series trends for multiple global locations. Innovative data analysis technology available on the World Wide Web facilitates such analyses. In coastal regions influenced by river outflows, chl a is not always indicative of actual trends in phytoplankton chlorophyll due to the interference of colored dissolved organic matter and suspended sediments; significant chl a timeseries trends for coastal regions influenced by river outflows may nonetheless be indicative of important alterations of the hydrologic and coastal environment. Chl a time-series analysis of nine marine regions influenced by river outflows demonstrates the simplicity and usefulness of this technique. The analyses indicate that coastal time-series are significantly influenced by unusual flood events. Major river systems in regions with relatively low human impact did not exhibit significant trends. Most river systems with demonstrated human impact exhibited significant negative trends, with the noteworthy exception of the Pearl River in China, which has a positive trend.

  6. Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zullo, V.A.; Harris, W.B.; Price, V.

    1990-12-31

    The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geologymore » in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.« less

  7. Gold placers of the historical Fortymile River region, Alaska

    USGS Publications Warehouse

    Yeend, Warren E.

    1996-01-01

    The Fortymile River region in east-central Alaska has a long and colorful history as the site of the first major gold discovery in interior Alaska. Placer gold has been mined in the region nearly every year since its original discovery in 1886. Total gold production is approximately 500,000 troy ounces. Although many of the rich deposits have been mined, there still exist areas that contain gold. Areas of mined and unmined gold-bearing creek and terrace gravels are outlined on the accompanying geologic map. The early history of the Fortymile area centered on the small frontier settlement of Fortymile City located at the junction of the Fortymile and Yukon Rivers in Canadian territory. This was the supply and jumping-off point for prospectors who worked their way into Alaska up the Fortymile River and found gold on many of its tributaries. Hand mining, both underground and surface, using sluice boxes and (or) rockers were the earliest methods; later, hydraulicking, dredging, and draglining methods were used. More recently, bulldozers and elevated trammels have been used, as well as very portable floating suction dredges. The rich mining lore of the area is closely associated with events of the nearby world-famous Klondike District. Bedrock and placer geology and mining history of individual gold-rich creeks are herein updated. The Fortymile area, which is part of the Yukon-Tanana Upland, contains quartzite, schist, gneiss, amphibolite, marble, serpentinite, and granite overlain by basalt, sandstone, conglomerate, shale, tuff, and coal; overlying these rocks are several deposits of varying ages consisting of gold-bearing gravel and colluvium. The close spatial association of creeks containing placer gold and the gneiss, schist, amphibolite, and marble unit strongly suggests this metamorphic unit is the gold source. High terrace gravels record a time from the late Tertiary to early Pleistocene when the ancestral Fortymile River and its major tributaries, the North and

  8. 18 CFR 725.7 - Regional or river basin planning.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Regional or river basin planning. 725.7 Section 725.7 Conservation of Power and Water Resources WATER RESOURCES COUNCIL... preservation and restoration of natural and beneficial floodplain values; (4) Where avoidance of wetlands...

  9. Heavy metal contamination status and source apportionment in sediments of Songhua River Harbin region, Northeast China.

    PubMed

    Li, Ning; Tian, Yu; Zhang, Jun; Zuo, Wei; Zhan, Wei; Zhang, Jian

    2017-02-01

    The Songhua River represents one of the seven major river systems in China. It flows through Harbin city with 66 km long, locating in the northern China with a longer winter time. This paper aimed to study concentration distributions, stability, risk assessment, and source apportionment of heavy metals including chromium (Cr), cadmium (Cd), lead (Pb), mercury (Hg), arsenic (As), copper (Cu), zinc (Zn), and nickel (Ni) in 11 selected sections of the Songhua River Harbin region. Results showed that Cr, Cd, Pb, Hg, and As exceeded their respective geochemical background values in sediments of most monitoring sections. Compared with other important rivers and lakes in China, Cr, Hg, Cd, and As pollutions in surface sediments were above medium level. Further analysis of chemical speciation indicated that Cr and As in surface sediments were relatively stable while Pb and Cd were easily bioavailable. Correlation analysis revealed sources of these metals except As might be identical. Pollution levels and ecological risks of heavy metals in surface sediments presented higher in the mainstream region (45° 47.0' N ~ 45° 53.3' N, 126° 37.0' E ~ 126° 42.1' E). Source apportionment found Hejiagou and Ashi River were the main contributors to metal pollution of this region. Thus, anthropogenic activities along the Hejiagou and Ashi River should be restricted in order to protect the Songhua River Harbin region from metal contamination.

  10. 76 FR 58533 - Powder River Regional Coal Team Activities; Notice of Public Meeting in Casper, WY

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLWYP00000-L13200000-EL0000] Powder River Regional Coal Team Activities; Notice of Public Meeting in Casper, WY AGENCY: Bureau of Land Management, Interior. ACTION: Notice of Public Meeting. SUMMARY: The Powder River Regional Coal Team (RCT) has...

  11. 78 FR 23951 - Powder River Regional Coal Team Activities: Notice of Public Meeting in Casper, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLWY922000-L13200000-EL0000] Powder River Regional Coal Team Activities: Notice of Public Meeting in Casper, Wyoming AGENCY: Bureau of Land Management, Interior. ACTION: Notice of public meeting. SUMMARY: The Powder River Regional Coal Team (RCT...

  12. Groundwater Discharges to Rivers in the Western Canadian Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Ellis, J.; Jasechko, S.

    2016-12-01

    Groundwater discharges into rivers impacts the movement and fate of nutrients and contaminants in the environment. Understanding groundwater-surface water interactions is especially important in the western Canadian oil sands, where groundwater contamination risks are elevated and baseline water chemistry data is lacking, leading to substantial uncertainties about anthropogenic influences on local river quality. High salinity groundwater springs sourced from deep aquifers, comprised of Pleistocene-aged glacial meltwater, are known to discharge into many rivers in the oil sands. Understanding connections between deep aquifers and surficial waterways is important in order to determine natural inputs into these rivers and to assess the potential for injected wastewater or oil extraction fluids to enter surface waters. While these springs have been identified, their spatial distribution along rivers has not been fully characterized. Here we present river chemistry data collected along a number of major river corridors in the Canadian oil sands region. We show that saline groundwater springs vary spatially along the course of these rivers and tend to be concentrated where the rivers incise Devonian- or Cretaceous-aged aquifers along an evaporite dissolution front. Our results suggest that water sourced from Devonian aquifers may travel through bitumen-bearing Cretaceous units and discharge into local rivers, implying a strong groundwater-surface water connection in specialized locations. These findings indicate that oil sands process-affected waters that are injected at depth have the potential to move through these aquifers and reach the rivers at the surface at some time in the future. Groundwater-surface water interactions remain key to understanding the risks oil sands activities pose to aquatic ecosystems and downstream communities.

  13. Identification of hydrologically homogeneous regions in Ganga-Brahmaputra river basin using Self Organising Maps

    NASA Astrophysics Data System (ADS)

    Ojha, C. S. P.; Sharma, C.

    2017-12-01

    Identification of hydrologically homogeneous regions is crucial for topographically complex regions such as Himalayan river basins. Ganga-Brahmaputra river basin extends through three countries, i.e., India Nepal and China. High elevations and rugged topography impose challenge for in-situ gauges. So, it is always recommended to use data from hydrological similar site in absence of site records. We have tried to find out hydrologically homogeneous regions using Self-Organising-Map (SOM) in Ganga-Brahmaputra river basin. The station characteristics used for identification of homogeneous regions are annual precipitation, total wet season (July to September) precipitation, total dry season (January to March) precipitation, Latitude, Longitude and elevation. Precipitation data was obtained from Climate Research Unit (CRU). Number of cluster are find out using hierarchical k-means clustering. We found that the basin can be divided in 9 clusters. Mere division of regions in clusters does not clarify that identified cluster are homogeneous. The homogeneity of the clusters is found out using Hosking and Wallis heterogeneity test. All the clusters were found to be acceptably homogeneous with the value of Hosking-Wallis test static H<1.

  14. Regional implications of heat flow of the Snake River Plain, Northwestern United States

    NASA Astrophysics Data System (ADS)

    Blackwell, D. D.

    1989-08-01

    The Snake River Plain is a major topographic feature of the Northwestern United States. It marks the track of an upper mantle and crustal melting event that propagated across the area from southwest to northeast at a velocity of about 3.5 cm/yr. The melting event has the same energetics as a large oceanic hotspot or plume and so the area is the continental analog of an oceanic hotspot track such as the Hawaiian Island-Emperor Seamount chain. Thus, the unique features of the area reflect the response of a continental lithosphere to a very energetic hotspot. The crust is extensively modified by basalt magma emplacement into the crust and by the resulting massive rhyolite volcanism from melted crustal material, presently occurring at Yellowstone National Park. The volcanism is associated with little crustal extension. Heat flow values are high along the margins of the Eastern and Western Snake River Plains and there is abundant evidence for low-grade geothermal resources associated with regional groundwater systems. The regional heat flow pattern in the Western Snake River Plains reflects the influence of crustal-scale thermal refraction associated with the large sedimentary basin that has formed there. Heat flow values in shallow holes in the Eastern Snake River Plains are low due to the Snake River Plains aquifer, an extensive basalt aquifer where water flow rates approach 1 km/yr. Below the aquifer, conductive heat flow values are about 100 mW m -2. Deep holes in the region suggest a systematic eastward increase in heat flow in the Snake River Plains from about 75-90 mW m -2 to 90-110 mW m -2. Temperatures in the upper crust do not behave similarly because the thermal conductivity of the Plio-Pleistocene sedimentary rocks in the west is lower than that in the volcanic rocks characteristic of the Eastern Snake River Plains. Extremely high heat loss values (averaging 2500 mW m -2) and upper crustal temperatures are characteristic of the Yellowstone caldera.

  15. A Regional Survey of River-plume Sedimentation on the Mississippi River Delta Front

    NASA Astrophysics Data System (ADS)

    Courtois, A. J.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.; Chaytor, J. D.; Smith, J.

    2017-12-01

    Many studies of the Mississippi River and Delta (MRD) have shown historic declines in sediment load reaching the main river distributaries over the last few decades. Recent studies also reported that 50% of the suspended load during floods is sequestered within the delta. While the impact of declining sediment load on wetland loss is well documented, submarine sedimentary processes on the delta front during this recent period of declining sediment load are understudied. To better understand modern sediment dispersal and deposition across the Mississippi River Delta Front, 31 multicores were collected in June 2017 from locations extending offshore from Southwest Pass, South Pass, and Pass a Loutre (the main river outlets) in water depths of 25-280 m. Core locations were selected based on multibeam bathymetry and morphology collected by the USGS in May 2017; the timing of collection coincided with the end of annual peak discharge on the Mississippi River. This multi-agency survey is the first to study delta-front sedimentary processes regionally with such a wide suite of tools. Target locations for coring included the dominant depositional environments: mudflow lobes, gullies, and undisturbed prodelta. Cores were subsampled at 2 cm intervals and analyzed for Beryllium-7 activity via gamma spectrometry; in such settings, Be-7 can be used as a tracer of sediment recently delivered from fluvial origin. Results indicate a general trend of declining Be-7 activity with increasing distance from source, and in deeper water. Inshore samples near Southwest Pass show the deepest penetration depth of Be-7 into the sediment (24-26 cm), which is a preliminary indicator of rapid seasonal sedimentation. Nearshore samples from South Pass exhibited similar Be-7 penetration depths, with results near Pass a Loutre to 14-16 cm depth. Be-7 remains detectable to 2 cm in water 206 m deep, approximately 20 km from South Pass. Sediment dispersal remains impressive offshore from all three

  16. Regional assessment of the hydropower potential of rivers in West Africa

    NASA Astrophysics Data System (ADS)

    Kling, Harald; Stanzel, Philipp; Fuchs, Martin

    2016-04-01

    The 15 countries of the Economic Community of West African States (ECOWAS) face a constant shortage of energy supply, which limits sustained economic growth. Currently there are about 50 operational hydropower plants and about 40 more are under construction or refurbishment. The potential for future hydropower development - especially for small-scale plants in rural areas - is assumed to be large, but exact data are missing. This study supports the energy initiatives of the "ECOWAS Centre for Renewable Energy and Energy Efficiency" (ECREEE) by assessing the hydropower potential of all rivers in West Africa. For more than 500,000 river reaches the hydropower potential was computed from channel slope and mean annual discharge. In large areas there is a lack of discharge observations. Therefore, an annual water balance model was used to simulate discharge. The model domain covers 5 Mio km², including e.g. the Niger, Volta, and Senegal River basins. The model was calibrated with observed data of 410 gauges, using precipitation and potential evapotranspiration data as inputs. Historic variations of observed annual discharge between 1950 and 2010 are simulated well by the model. As hydropower plants are investments with a lifetime of several decades we also assessed possible changes in future discharge due to climate change. To this end the water balance model was driven with bias-corrected climate projections of 15 Regional Climate Models for two emission scenarios of the CORDEX-Africa ensemble. The simulation results for the river network were up-scaled to sub-areas and national summaries. This information gives a regional quantification of the hydropower potential, expected climate change impacts, as well as a regional classification for general suitability (or non-suitability) of hydropower plant size - from small-scale to large projects.

  17. Hydrogeological Controls on Regional-Scale Indirect Nitrous Oxide Emission Factors for Rivers.

    PubMed

    Cooper, Richard J; Wexler, Sarah K; Adams, Christopher A; Hiscock, Kevin M

    2017-09-19

    Indirect nitrous oxide (N 2 O) emissions from rivers are currently derived using poorly constrained default IPCC emission factors (EF 5r ) which yield unreliable flux estimates. Here, we demonstrate how hydrogeological conditions can be used to develop more refined regional-scale EF 5r estimates required for compiling accurate national greenhouse gas inventories. Focusing on three UK river catchments with contrasting bedrock and superficial geologies, N 2 O and nitrate (NO 3 - ) concentrations were analyzed in 651 river water samples collected from 2011 to 2013. Unconfined Cretaceous Chalk bedrock regions yielded the highest median N 2 O-N concentration (3.0 μg L -1 ), EF 5r (0.00036), and N 2 O-N flux (10.8 kg ha -1 a -1 ). Conversely, regions of bedrock confined by glacial deposits yielded significantly lower median N 2 O-N concentration (0.8 μg L -1 ), EF 5r (0.00016), and N 2 O-N flux (2.6 kg ha -1 a -1 ), regardless of bedrock type. Bedrock permeability is an important control in regions where groundwater is unconfined, with a high N 2 O yield from high permeability chalk contrasting with significantly lower median N 2 O-N concentration (0.7 μg L -1 ), EF 5r (0.00020), and N 2 O-N flux (2.0 kg ha -1 a -1 ) on lower permeability unconfined Jurassic mudstone. The evidence presented here demonstrates EF 5r can be differentiated by hydrogeological conditions and thus provide a valuable proxy for generating improved regional-scale N 2 O emission estimates.

  18. Determination of microwave vegetation optical depth and water content in the source region of the Yellow River

    NASA Astrophysics Data System (ADS)

    Liu, R.; Wen, J.; Wang, X.

    2017-12-01

    In this study, we use dual polarization brightness temperature observational data at the K frequency band collected by the Micro Wave Radiation Imager (MWRI) on board the Fengyun-3B satellite (FY-3B) to improve the τ-ω model by considering the contribution of water bodies in the pixels to radiation in the wetland area of the Yellow River source region. We define a dual polarization slope parameter and express the surface emissivity in the τ-ω model as the sum of the soil and water body emissivity to retrieve the vegetation optical depth (VOD); however, in regions without water body coverage, we still use the τ-ω model to solve for the VOD. By using the field observation data on the vegetation water content (VWC) in the source region of the Yellow River during the summer of 2012, we establish the regression relationship between the VOD and VWC and retrieve the spatial distribution of the VWC. The results indicate that in the entire source region of the Yellow River in 2012, the VOD was in the range of 0.20-1.20 and the VWC was in the range of 0.20 to 1.40, thereby exhibiting a trend of low values in the west and high values in the east. The area with the largest regional variation is along the Yellow River. We compare the results from remote-sensing estimated and ground-measured vegetation water content, and the root-mean-square error is 0.12. The analysis results indicated that by considering the coverage of seasonal wetlands in the source region of the Yellow River, the microwave remote sensing data collected by the FY-3B MWRI can be used to retrieve the vegetation water content in the source region of the Yellow River.

  19. Climate Drivers of Spatiotemporal Variability of Precipitation in the Source Region of Yangtze River

    NASA Astrophysics Data System (ADS)

    Du, Y.; Berndtsson, R.; An, D.; Yuan, F.

    2017-12-01

    Variability of precipitation regime has significant influence on the environment sustainability in the source region of Yangtze River, especially when the vegetation degradation and biodiversity reduction have already occurred. Understanding the linkage between variability of local precipitation and global teleconnection patterns is essential for water resources management. Based on physical reasoning, indices of the climate drivers can provide a practical way of predicting precipitation. Due to high seasonal variability of precipitation, climate drivers of the seasonal precipitation also varies. However, few reports have gone through the teleconnections between large scale patterns with seasonal precipitation in the source region of Yangtze River. The objectives of this study are therefore (1) assessment of temporal trend and spatial variability of precipitation in the source region of Yangtze River; (2) identification of climate indices with strong influence on seasonal precipitation anomalies; (3) prediction of seasonal precipitation based on revealed climate indices. Principal component analysis and Spearman rank correlation were used to detect significant relationships. A feed-forward artificial neural network(ANN) was developed to predict seasonal precipitation using significant correlated climate indices. Different influencing climate indices were revealed for precipitation in each season, with significant level and lag times. Significant influencing factors were selected to be the predictors for ANN model. With correlation coefficients between observed and simulated precipitation over 0.5, the results were eligible to predict the precipitation of spring, summer and winter using teleconnections, which can improve integrated water resources management in the source region of Yangtze River.

  20. Explanatory characteristics for nutrient concentrations and loads in the Sava River Catchment and cross-regionally

    NASA Astrophysics Data System (ADS)

    Levi, L.; Cvetkovic, V.; Destouni, G.

    2015-12-01

    This study compiles estimates of waterborne nutrient concentrations and loads in the Sava River Catchment (SRC). Based on this compilation, we investigate hotspots of nutrient inputs and retention along the river, as well as concentration and load correlations with river discharge and various human drivers of excess nutrient inputs to the SRC. For cross-regional assessment and possible generalization, we also compare corresponding results between the SRC and the Baltic Sea Drainage Basin (BSDB). In the SRC, one small incremental subcatchment, which is located just downstream of Zagreb and has the highest population density among the SRC subcatchments, is identified as a major hotspot for net loading (input minus retention) of both total nitrogen (TN) and total phosphorus (TP) to the river and through it to downstream areas of the SRC. The other SRC subcatchments exhibit relatively similar characteristics with smaller net nutrient loading. The annual loads of both TN and TP along the Sava River exhibit dominant temporal variability with considerably higher correlation with annual river discharge (R2 = 0.51 and 0.28, respectively) than that of annual average nutrient concentrations (R2 = 0.0 versus discharge for both TN and TP). Nutrient concentrations exhibit instead dominant spatial variability with relatively high correlation with population density among the SRC subcatchments (R2=0.43-0.64). These SRC correlation characteristics compare well with corresponding ones for the BSDB, even though the two regions are quite different in their hydroclimatic, agricultural and wastewater treatment conditions. Such cross-regional consistency in dominant variability type and explanatory catchment characteristics may be a useful generalization basis, worthy of further investigation, for at least first-order estimation of nutrient concentration and load conditions in less data-rich regions.

  1. Punctuated Sediment Discharge during Early Pliocene Birth of the Colorado River: Evidence from Regional Stratigraphy, Sedimentology, and Paleontology

    NASA Astrophysics Data System (ADS)

    Dorsey, Rebecca J.; O'Connell, Brennan; McDougall, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at 5.4-5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough. These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment

  2. Regional effects of agricultural conservation practices on nutrient transport in the Upper Mississippi River Basin

    USGS Publications Warehouse

    Garcia, Ana Maria.; Alexander, Richard B.; Arnold, Jeffrey G.; Norfleet, Lee; White, Michael J.; Robertson, Dale M.; Schwarz, Gregory E.

    2016-01-01

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  3. Regional Effects of Agricultural Conservation Practices on Nutrient Transport in the Upper Mississippi River Basin.

    PubMed

    García, Ana María; Alexander, Richard B; Arnold, Jeffrey G; Norfleet, Lee; White, Michael J; Robertson, Dale M; Schwarz, Gregory

    2016-07-05

    Despite progress in the implementation of conservation practices, related improvements in water quality have been challenging to measure in larger river systems. In this paper we quantify these downstream effects by applying the empirical U.S. Geological Survey water-quality model SPARROW to investigate whether spatial differences in conservation intensity were statistically correlated with variations in nutrient loads. In contrast to other forms of water quality data analysis, the application of SPARROW controls for confounding factors such as hydrologic variability, multiple sources and environmental processes. A measure of conservation intensity was derived from the USDA-CEAP regional assessment of the Upper Mississippi River and used as an explanatory variable in a model of the Upper Midwest. The spatial pattern of conservation intensity was negatively correlated (p = 0.003) with the total nitrogen loads in streams in the basin. Total phosphorus loads were weakly negatively correlated with conservation (p = 0.25). Regional nitrogen reductions were estimated to range from 5 to 34% and phosphorus reductions from 1 to 10% in major river basins of the Upper Mississippi region. The statistical associations between conservation and nutrient loads are consistent with hydrological and biogeochemical processes such as denitrification. The results provide empirical evidence at the regional scale that conservation practices have had a larger statistically detectable effect on nitrogen than on phosphorus loadings in streams and rivers of the Upper Mississippi Basin.

  4. Water quality in select regions of Cauvery Delta River basin, southern India, with emphasis on monsoonal variation.

    PubMed

    Solaraj, Govindaraj; Dhanakumar, Selvaraj; Murthy, Kuppuraj Rutharvel; Mohanraj, Rangaswamy

    2010-07-01

    Delta regions of the Cauvery River basin are one of the significant areas of rice production in India. In spite of large-scale utilization of the river basin for irrigation and drinking purposes, the lack of appropriate water management has seemingly deteriorated the water quality due to increasing anthropogenic activities. To assess the extent of deterioration, physicochemical characteristics of surface water were analyzed monthly in select regions of Cauvery Delta River basin, India, during July 2007 to December 2007. Total dissolved solids, chemical oxygen demand, and phosphate recorded maximum levels of 1,638, 96, and 0.43 mg/l, respectively, exceeding the permissible levels at certain sampling stations. Monsoonal rains in Cauvery River basin and the subsequent increase in river flow rate influences certain parameters like dissolved solids, phosphate, and dissolved oxygen. Agricultural runoff from watershed, sewage, and industrial effluents are suspected as probable factors of water pollution.

  5. Ecological restoration and effect investigation of a river wetland in a semi-arid region, China

    NASA Astrophysics Data System (ADS)

    Xu, S.; Jiang, X.; Liu, Y.; Fu, Y.; Zhao, Q.

    2015-05-01

    River wetlands are heavily impacted by human intervention. The degradation and loss of river wetlands has made the restoration of river ecosystems a top priority. How to rehabilitate rivers and their services has been a research focus. The main goal of it is to restore the river wetland ecosystems with ecological methods. The Gudong River was selected as a study site in Chaoyang city in this study. Based on the analysis of interference factors in the river wetland degradation, a set of restoration techniques were proposed and designed for regional water level control, including submerged dikes, ecological embankments, revegetation and dredging. The restoration engineering has produced good results in water quality, eco-environment, and landscape. Monthly reports of the Daling River show that the water quality of Gudong River was better than Grade III in April 2013 compared with Grade V in May 2012. The economic benefit after restoration construction is 1.71 million RMB per year, about 1.89 times that before. The ratio of economic value, social value and eco-environmental value is 1:4:23.

  6. Run-of-river power plants in Alpine regions: Whither optimal capacity?

    NASA Astrophysics Data System (ADS)

    Lazzaro, G.; Botter, G.

    2015-07-01

    Although run-of-river hydropower represents a key source of renewable energy, it cannot prevent stresses on river ecosystems and human well-being. This is especially true in Alpine regions, where the outflow of a plant is placed several kilometers downstream of the intake, inducing the depletion of river reaches of considerable length. Here multiobjective optimization is used in the design of the capacity of run-of-river plants to identify optimal trade-offs between two contrasting objectives: the maximization of the profitability and the minimization of the hydrologic disturbance between the intake and the outflow. The latter is evaluated considering different flow metrics: mean discharge, temporal autocorrelation, and streamflow variability. Efficient and Pareto-optimal plant sizes are devised for two representative case studies belonging to the Piave river (Italy). Our results show that the optimal design capacity is strongly affected by the flow regime at the plant intake. In persistent regimes with a reduced flow variability, the optimal trade-off between economic exploitation and hydrologic disturbance is obtained for a narrow range of capacities sensibly smaller than the economic optimum. In erratic regimes featured by an enhanced flow variability, instead, the Pareto front is discontinuous and multiple trade-offs can be identified, which imply either smaller or larger plants compared to the economic optimum. In particular, large capacities reduce the impact of the plant on the streamflow variability at seasonal and interannual time scale. Multiobjective analysis could provide a clue for the development of policy actions based on the evaluation of the environmental footprint of run-of-river plants.

  7. Application of HEC-RAS for flood forecasting in perched river-A case study of hilly region, China

    NASA Astrophysics Data System (ADS)

    Sun, Pingping; Wang, Shuqian; Gan, Hong; Liu, Bin; Jia, Ling

    2017-04-01

    Flooding in small and medium rivers are seriously threatening the safety of human beings’ life and property. The simulation forecasting of the river flood and bank risk in hilly region has gradually become a hotspot. At present, there are few studies on the simulation of hilly perched river, especially in the case of lacking section flow data. And the method of how to determine the position of the levee breach along the river bank is not much enough. Based on the characteristics of the sections in hilly perched river, an attempt is applied in this paper which establishes the correlation between the flow profile computed by HEC-RAS model and the river bank. A hilly perched river in Lingshi County, Shanxi Province of China, is taken as the study object, the levee breach positions along the bank are simulated under four different design storm. The results show that the flood control standard of upper reach is high, which can withstand the design storm of 100 years. The current standard of lower reach is low, which is the flooding channel with high frequency. As the standard of current channel between the 2rd and the 11th section is low, levee along that channel of the river bank is considered to be heighten and reinforced. The study results can provide some technical support for flood proofing in hilly region and some reference for the reinforcement of river bank.

  8. Towards a publicly available, map-based regional software tool to estimate unregulated daily streamflow at ungauged rivers

    USGS Publications Warehouse

    Archfield, Stacey A.; Steeves, Peter A.; Guthrie, John D.; Ries, Kernell G.

    2013-01-01

    Streamflow information is critical for addressing any number of hydrologic problems. Often, streamflow information is needed at locations that are ungauged and, therefore, have no observations on which to base water management decisions. Furthermore, there has been increasing need for daily streamflow time series to manage rivers for both human and ecological functions. To facilitate negotiation between human and ecological demands for water, this paper presents the first publicly available, map-based, regional software tool to estimate historical, unregulated, daily streamflow time series (streamflow not affected by human alteration such as dams or water withdrawals) at any user-selected ungauged river location. The map interface allows users to locate and click on a river location, which then links to a spreadsheet-based program that computes estimates of daily streamflow for the river location selected. For a demonstration region in the northeast United States, daily streamflow was, in general, shown to be reliably estimated by the software tool. Estimating the highest and lowest streamflows that occurred in the demonstration region over the period from 1960 through 2004 also was accomplished but with more difficulty and limitations. The software tool provides a general framework that can be applied to other regions for which daily streamflow estimates are needed.

  9. Regional patterns of total nitrogen concentrations in the National Rivers and Streams Assessment

    USGS Publications Warehouse

    Omernik, James M.; Paulsen, Steven G.; Griffith, Glenn E.; Weber, Marc H.

    2016-01-01

    Patterns of nitrogen (N) concentrations in streams sampled by the National Rivers and Streams Assessment (NRSA) were examined semiquantitatively to identify regional differences in stream N levels. The data were categorized and analyzed by watershed size classes to reveal patterns of the concentrations that are consistent with the spatial homogeneity in natural and anthropogenic characteristics associated with regional differences in N levels. Ecoregions and mapped information on human activities including agricultural practices were used to determine the resultant regions. Marked differences in N levels were found among the nine aggregations of ecoregions used to report the results of the NRSA. We identified distinct regional patterns of stream N concentrations within the reporting regions that are associated with the characteristics of specific Level III ecoregions, groups of Level III ecoregions, groups of Level IV ecoregions, certain geographic characteristics within ecoregions, and/or particular watershed size classes. We described each of these regions and illustrated their areal extent and median and range in N concentrations. Understanding the spatial variability of nutrient concentrations in flowing waters and the apparent contributions that human and nonhuman factors have on different sizes of streams and rivers is critical to the development of effective water quality assessment and management plans. This semi-quantitative analysis is also intended to identify areas within which more detailed quantitative work can be conducted to determine specific regional factors associated with variations in stream N concentrations.

  10. A regional neural network model for predicting mean daily river water temperature

    USGS Publications Warehouse

    Wagner, Tyler; DeWeber, Jefferson Tyrell

    2014-01-01

    Water temperature is a fundamental property of river habitat and often a key aspect of river resource management, but measurements to characterize thermal regimes are not available for most streams and rivers. As such, we developed an artificial neural network (ANN) ensemble model to predict mean daily water temperature in 197,402 individual stream reaches during the warm season (May–October) throughout the native range of brook trout Salvelinus fontinalis in the eastern U.S. We compared four models with different groups of predictors to determine how well water temperature could be predicted by climatic, landform, and land cover attributes, and used the median prediction from an ensemble of 100 ANNs as our final prediction for each model. The final model included air temperature, landform attributes and forested land cover and predicted mean daily water temperatures with moderate accuracy as determined by root mean squared error (RMSE) at 886 training sites with data from 1980 to 2009 (RMSE = 1.91 °C). Based on validation at 96 sites (RMSE = 1.82) and separately for data from 2010 (RMSE = 1.93), a year with relatively warmer conditions, the model was able to generalize to new stream reaches and years. The most important predictors were mean daily air temperature, prior 7 day mean air temperature, and network catchment area according to sensitivity analyses. Forest land cover at both riparian and catchment extents had relatively weak but clear negative effects. Predicted daily water temperature averaged for the month of July matched expected spatial trends with cooler temperatures in headwaters and at higher elevations and latitudes. Our ANN ensemble is unique in predicting daily temperatures throughout a large region, while other regional efforts have predicted at relatively coarse time steps. The model may prove a useful tool for predicting water temperatures in sampled and unsampled rivers under current conditions and future projections of climate

  11. Regional patterns of total nitrogen concentrations in the National Rivers and Streams Assessment

    EPA Science Inventory

    Patterns of nitrogen concentrations in streams sampled by the National Rivers and Streams Assessment (NRSA) were examined semi-quantitatively to identify regional differences in stream nitrogen levels. The data were categorized and analyzed by watershed size classes to reveal pat...

  12. Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau.

    PubMed

    Ma, Xiaoliang; Liu, Guimin; Wu, Xiaodong; Smoak, Joseph M; Ye, Linlin; Xu, Haiyan; Zhao, Lin; Ding, Yongjian

    2018-07-15

    The Qinghai-Tibetan plateau (QTP) stores a large amount of soil organic carbon and is the headwater region for several large rivers in Asia. Therefore, it is important to understand the influence of environmental factors on river water quality and the dissolved organic carbon (DOC) export in this region. We examined the water physico-chemical characteristics, DOC concentrations and export rates of 7 rivers under typical land cover types in the Three Rivers Headwater Region during August 2016. The results showed that the highest DOC concentrations were recorded in the rivers within the catchment of alpine wet meadow and meadow. These same rivers had the lowest total suspended solids (TSS) concentrations. The rivers within steppe and desert had the lowest DOC concentrations and highest TSS concentrations. The discharge rates and catchment areas were negatively correlated with DOC concentrations. The SUVA 254 values were significantly negatively correlated with DOC concentrations. The results suggest that the vegetation degradation, which may represent permafrost degradation, can lead to a decrease in DOC concentration, but increasing DOC export and soil erosion. In addition, some of the exported DOC will rapidly decompose in the river, and therefore affect the regional carbon cycle, as well as the water quality in the source water of many large Asian rivers. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Run-of-river power plants in Alpine regions: whither optimal capacity?

    NASA Astrophysics Data System (ADS)

    Lazzaro, Gianluca; Botter, Gianluca

    2015-04-01

    Hydropower is the major renewable electricity generation technology worldwide. The future expansion of this technology mostly relies on the development of small run-of-river projects, in which a fraction of the running flows is diverted from the river to a turbine for energy production. Even though small hydro inflicts a smaller impact on aquatic ecosystems and local communities compared to large dams, it cannot prevent stresses on plant, animal, and human well-being. This is especially true in mountain regions where the plant outflow is located several kilometers downstream of the intake, thereby inducing the depletion of river reaches of considerable length. Moreover, the negative cumulative effects of run-of-river systems operating along the same river threaten the ability of stream networks to supply ecological corridors for plants, invertebrates or fishes, and support biodiversity. Research in this area is severely lacking. Therefore, the prediction of the long-term impacts associated to the expansion of run-of-river projects induced by global-scale incentive policies remains highly uncertain. This contribution aims at providing objective tools to address the preliminary choice of the capacity of a run-of-river hydropower plant when the economic value of the plant and the alteration of the flow regime are simultaneously accounted for. This is done using the concepts of Pareto-optimality and Pareto-dominance, which are powerful tools suited to face multi-objective optimization in presence of conflicting goals, such as the maximization of the profitability and the minimization of the hydrologic disturbance induced by the plant in the river reach between the intake and the outflow. The application to a set of case studies belonging to the Piave River basin (Italy) suggests that optimal solutions are strongly dependent the natural flow regime at the plant intake. While in some cases (namely, reduced streamflow variability) the optimal trade-off between economic

  14. Dose reconstruction for the Urals population. Joint Coordinating Committee on Radiation Effects Research, Project 1.1 -- Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degteva, M.O.; Drozhko, E.; Anspaugh, L.R.

    1996-02-01

    This work is being carried out as a feasibility study to determine if a long-term course of work can be implemented to assess the long-term risks of radiation exposure delivered at low to moderate dose rates to the populations living in the vicinity of the Mayak Industrial Association (MIA). This work was authorized and conducted under the auspices of the US-Russian Joint Coordinating Committee on Radiation Effects Research (JCCRER) and its Executive Committee (EC). The MIA was the first Russian site for the production and separation of plutonium. This plant began operation in 1948, and during its early days theremore » were technological failures that resulted in the release of large amounts of waste into the rather small Techa River. There were also gaseous releases of radioiodines and other radionuclides during the early days of operation. In addition, there was an accidental explosion in a waste storage tank in 1957 that resulted in a significant release. The Techa River Cohort has been studied for several years by scientists from the Urals Research Centre for Radiation Medicine and an increase in both leukemia and solid tumors has been noted.« less

  15. Distribution and sources of (129)I in rivers of the Baltic region.

    PubMed

    Aldahan, A; Kekli, A; Possnert, G

    2006-01-01

    The concentration of (129)I was measured in 54 river waters discharging into the Baltic Sea from Sweden, Finland, Estonia, Latvia, Lithuania, Poland and Germany. Sample collection was performed during a well-bracketed time interval (June-July 1999), thus allowing comparison of the rivers over a wide latitude range without the effect of long temporal spread. Although there is no direct input of anthropogenic (129)I in the watersheds, the concentration of the isotope is about two to three orders of magnitude higher than the expected pre-nuclear era natural values in the rivers of Finland and northern Sweden, and in the rivers of southern Sweden, Lithuania, Estonia, Latvia, Poland and Germany; the (129)I concentration may reach five orders of magnitude higher. Furthermore, there are significant correlations between the (129)I concentration and latitude and/or distance from the North Sea and between (129)I and Cl. These findings suggest seawater as a main source of (129)I to the rivers through atmospheric transport. Of the many chemical parameters investigated, the pH may account for some of the variability in (129)I concentrations of the rivers. The contribution from nuclear weapon tests and the Chernobyl accident to the riverine (129)I is insignificant compared to the releases from the nuclear fuel reprocessing facilities. The total flux of (129)I by rivers to the Baltic Sea and related basins represents minor amounts of the isotope pool in these marine waters. External radioactivity hazards from (129)I are considered to be negligible in the Baltic region. However, as the main (129)I intake to the human body is likely through water, due to the large amount of daily water consumption, more concern should be given to internal radioactivity hazard that may be associated with the isotope's localized elevated concentration in the human organs.

  16. Application of Entropy Method in River Health Evaluation Based on Aquatic Ecological Function Regionalization

    NASA Astrophysics Data System (ADS)

    Shi, Yan-ting; Liu, Jie; Wang, Peng; Zhang, Xu-nuo; Wang, Jun-qiang; Guo, Liang

    2017-05-01

    With the implementation of water environment management in key basins in China, the monitoring and evaluation system of basins are in urgent need of innovation and upgrading. In view of the heavy workload of existing evaluation methods and the cumbersome calculation of multi-factor weighting method, the idea of using entroy method to assess river health based on aquatic ecological function regionalization was put forward. According to the monitoring data of songhua river in the year of 2011-2015, the entropy weight method was used to calculate the weight of 9 evaluation factors of 29 monitoring sections, and the river health assessment was carried out. In the study area, the river health status of the biodiversity conservation function area (4.111 point) was good, the water conservation function area (3.371 point), the habitat maintenance functional area (3.262 point), the agricultural production maintenance functional area (3.695 point) and the urban supporting functional area (3.399 point) was light pollution.

  17. Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology

    USGS Publications Warehouse

    Dorsey, Rebecca J.; O’Connell, Brennan; McDougall-Reid, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between ~ 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at ~ 5.4–5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between ~ 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between ~ 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at ~ 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough.These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on

  18. Simulation of river plume behaviors in a tropical region: Case study of the Upper Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Yu, Xiaojie; Guo, Xinyu; Morimoto, Akihiko; Buranapratheprat, Anukul

    2018-02-01

    River plumes are a general phenomenon in coastal regions. Most previous studies focus on river plumes in middle and high latitudes with few studies examining those in low latitude regions. Here, we apply a numerical model to the Upper Gulf of Thailand (UGoT) to examine a river plume in low latitudes. Consistent with observational data, the modeled plume has seasonal variation dependent on monsoon conditions. During southwesterly monsoons, the plume extends northeastward to the head of the gulf; during northeasterly monsoons, it extends southwestward to the mouth of the gulf. To examine the effects of latitude, wind and river discharge on the river plume, we designed several numerical experiments. Using a middle latitude for the UGoT, the bulge close to the river mouth becomes smaller, the downstream current flows closer to the coast, and the salinity in the northern UGoT becomes lower. The reduction in the size of the bulge is consistent with the relationship between the offshore distance of a bulge and the Coriolis parameter. Momentum balance of the coastal current is maintained by advection, the Coriolis force, pressure gradient and internal stresses in both low and middle latitudes, with the Coriolis force and pressure gradient enlarged in the middle latitude. The larger pressure gradient in the middle latitude is induced by more offshore freshwater flowing with the coastal current, which induces lower salinity. The influence of wind on the river plume not only has the advection effects of changing the surface current direction and increasing the surface current speed, but also decreases the current speed due to enhanced vertical mixing. Changes in river discharge influence stratification in the UGoT but have little effect on the behavior of the river plume.

  19. Simulation of the Regional Ground-Water-Flow System and Ground-Water/Surface-Water Interaction in the Rock River Basin, Wisconsin

    USGS Publications Warehouse

    Juckem, Paul F.

    2009-01-01

    A regional, two-dimensional, areal ground-water-flow model was developed to simulate the ground-water-flow system and ground-water/surface-water interaction in the Rock River Basin. The model was developed by the U.S. Geological Survey (USGS), in cooperation with the Rock River Coalition. The objectives of the regional model were to improve understanding of the ground-water-flow system and to develop a tool suitable for evaluating the effects of potential regional water-management programs. The computer code GFLOW was used because of the ease with which the model can simulate ground-water/surface-water interactions, provide a framework for simulating regional ground-water-flow systems, and be refined in a stepwise fashion to incorporate new data and simulate ground-water-flow patterns at multiple scales. The ground-water-flow model described in this report simulates the major hydrogeologic features of the modeled area, including bedrock and surficial aquifers, ground-water/surface-water interactions, and ground-water withdrawals from high-capacity wells. The steady-state model treats the ground-water-flow system as a single layer with hydraulic conductivity and base elevation zones that reflect the distribution of lithologic groups above the Precambrian bedrock and a regionally significant confining unit, the Maquoketa Formation. In the eastern part of the Basin where the shale-rich Maquoketa Formation is present, deep ground-water flow in the sandstone aquifer below the Maquoketa Formation was not simulated directly, but flow into this aquifer was incorporated into the GFLOW model from previous work in southeastern Wisconsin. Recharge was constrained primarily by stream base-flow estimates and was applied uniformly within zones guided by regional infiltration estimates for soils. The model includes average ground-water withdrawals from 1997 to 2006 for municipal wells and from 1997 to 2005 for high-capacity irrigation, industrial, and commercial wells. In addition

  20. The Pleistocene rivers of the English Channel region

    NASA Astrophysics Data System (ADS)

    Antoine, Pierre; Coutard, Jean-Pierre; Gibbard, Philip; Hallegouet, Bernard; Lautridou, Jean-Pierre; Ozouf, Jean-Claude

    2003-02-01

    The Pleistocene history of river systems that enter the English Channel from northern France and southern England is reviewed. During periods of low sea-level (cold stages) these streams were tributaries of the Channel River. In southern England the largest, the River Solent, is an axial stream that has drained the Hampshire Basin from the Early Pleistocene or late Pliocene. Other streams of southern England may be of similar antiquity but their records are generally short and their sedimentary history have been destroyed, as in northern Brittany, by coastal erosion and valley deepening as a consequence of tectonic uplift. In northern France, the Seine and Somme rivers have very well developed terrace systems recording incision that began at around 1 Ma. The uplift rate, deduced from the study of these terrace systems, is of 55 to 60 m myr-1 since the end of the Early Pleistocene. Generally the facies and sedimentary structures indicate that the bulk of the deposits in these rivers accumulated in braided river environments under periglacial climates in all the area around the Channel. Evolution of the rivers reflects their responses to climatic change, local geological structure and long-term tectonic activity. In this context the Middle Somme valley is characterised by a regular pattern in which incision occurs at the beginning of each glacial period within a general background of uplift. Nevertheless the response of the different rivers to climatic variations, uplift and sea-level changes is complex and variable according to the different parts of the river courses.

  1. Sources of excess urban carbonaceous aerosol in the Pearl River delta region, China

    EPA Science Inventory

    Carbonaceous aerosol is one of the important constituents of fine particulate matter (PM2.5) in Southern China, including the Pearl River Delta (PRD) region and Hong Kong (HK). During the study period (October and December of 2002, and March and June of 2003), the monthly average...

  2. Estimating Error in SRTM Derived Planform of a River in Data-poor Region and Subsequent Impact on Inundation Modeling

    NASA Astrophysics Data System (ADS)

    Bhuyian, M. N. M.; Kalyanapu, A. J.

    2017-12-01

    Accurate representation of river planform is critical for hydrodynamic modeling. Digital elevation models (DEM) often falls short in accurately representing river planform because they show the ground as it was during data acquisition. But, water bodies (i.e. rivers) change their size and shape over time. River planforms are more dynamic in undisturbed riverine systems (mostly located in data-poor regions) where remote sensing is the most convenient source of data. For many of such regions, Shuttle Radar Topographic Mission (SRTM) is the best available source of DEM. Therefore, the objective of this study is to estimate the error in SRTM derived planform of a river in a data-poor region and estimate the subsequent impact on inundation modeling. Analysis of Landsat image, SRTM DEM and remotely sensed soil data was used to classify the planform activity in an 185 km stretch of the Kushiyara River in Bangladesh. In last 15 years, the river eroded about 4.65 square km and deposited 7.55 square km area. Therefore, current (the year 2017) river planform is significantly different than the SRTM water body data which represents the time of SRTM data acquisition (the year 2000). The rate of planform shifting significantly increased as the river traveled to downstream. Therefore, the study area was divided into three reaches (R1, R2, and R3) from upstream to downstream. Channel slope and meandering ratio changed from 2x10-7 and 1.64 in R1 to 1x10-4 and 1.45 in R3. However, more than 60% erosion-deposition occurred in R3 where a high percentage of Fluvisols (98%) and coarse particles (21%) were present in the vicinity of the river. It indicates errors in SRTM water body data (due to planform shifting) could be correlated with the physical properties (i.e. slope, soil type, meandering ratio etc.) of the riverine system. The correlations would help in zoning activity of a riverine system and determine a timeline to update DEM for a given region. Additionally, to estimate the

  3. Deformation Rates in the Snake River Plain and Adjacent Basin and Range Regions Based on GPS Measurements

    NASA Astrophysics Data System (ADS)

    Payne, S. J.; McCaffrey, R.; King, R. W.; Kattenhorn, S. A.

    2012-12-01

    We estimate horizontal velocities for 405 sites using Global Positioning System (GPS) phase data collected from 1994 to 2010 within the Northern Basin and Range Province, U.S.A. The velocities reveal a slowly-deforming region within the Snake River Plain in Idaho and Owyhee-Oregon Plateau in Oregon separated from the actively extending adjacent Basin and Range regions by shear. Our results show a NE-oriented extensional strain rate of 5.6 ± 0.7 nanostrain/yr in the Centennial Tectonic Belt and an ~E-oriented extensional strain rate of 3.5 ± 0.2 nanostrain/yr in the Great Basin. These extensional rates contrast with the very low strain rate within the 125 km x 650 km region of the Snake River Plain and Owyhee-Oregon Plateau which is not distinguishable from zero (-0.1 ± 0.4 x nanostrain/yr). Inversions of Snake River Plain velocities with dike-opening models indicate that rapid extension by dike intrusion in volcanic rift zones, as previously hypothesized, is not currently occurring. GPS data also disclose that rapid extension in the surrounding regions adjacent to the slowly-deforming region of the Snake River Plain drives shear between them. We estimate right-lateral shear with slip rates of 0.3-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic Belt and left-lateral oblique extension with slip rates of 0.5-1.5 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic Belt. The fastest lateral shearing evident in the GPS occurs near the Yellowstone Plateau where earthquakes with right-lateral strike-slip focal mechanisms are within a NE-trending zone of seismicity. The regional velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic Belt, Snake River Plain, Owyhee-Oregon Plateau, and eastern Oregon, indicating that clockwise rotation is not locally driven by Yellowstone hotspot volcanism, but instead by extension to the south across the Wasatch fault possibly due to gravitational

  4. Joint US/Russian Studies of Population Exposures Resulting from Nuclear Production Activities in the Southern Urals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Napier, Bruce A.

    2014-01-01

    Beginning in 1948, the Soviet Union initiated a program for production of nuclear materials for a weapons program. The first facility for production of plutonium was constructed in the central portion of the country east of the southern Ural Mountains, about halfway between the major industrial cities of Ekaterinburg and Chelyabinsk. The facility now known as the Mayak Production Association and its associated town, now known as Ozersk, were built to irradiate uranium in reactors, separate the resulting plutonium in reprocessing plants, and prepare plutonium metal. The rush to production, coupled with inexperience in handling radioactive materials, lead to largemore » radiation exposures, not only to the workers in the facilities, but also to the surrounding public. Fuel processing started with no controls on releases, and fuel dissolution and accidents in reactors resulted in release of about 37 PBq (1015 Bq) of 131I between 1948 and 1967. Designed disposals of low- and intermediate-level liquid radioactive wastes, and accidental releases via cooling water from tank farms of high-level liquid radioactive wastes, into the small Techa River caused significant contamination and exposures to residents of numerous small riverside villages downstream of the site. Discovery of the magnitude of the aquatic contamination in late 1951 caused revisions to the waste handling regimes, but not before over 200 PBq of radionuclides (with large contributions of 90Sr and 137Cs) were released. Liquid wastes were diverted to tiny Lake Karachay (which today holds over 4 EBq); cooling water was stopped in the tank farms. In 1957, one of the tanks in the tank farm overheated and exploded; over 70 PBq, disproportionately 90Sr, was blown over a large area to the northeast of the site; a large area was contaminated and many villages evacuated. This area today is known as the East Urals Radioactive Trace (EURT). Each of these releases was significant; together they have created a group of

  5. Evolution of regional stress state based on faulting and folding near the pit river, Shasta county, California

    NASA Astrophysics Data System (ADS)

    Austin, Lauren Jean

    We investigate the evolution of the regional stress state near the Pit River, northern California, in order to understand the faulting style in a tectonic transition zone and to inform the hazard analysis of Fault 3432 near the Pit 3 Dam. By analyzing faults and folds preserved in and adjacent to a diatomite mine north of the Pit River, we have determined principal stress directions preserved during the past million years. We find that the stress state has evolved from predominantly normal to strike slip and most recently to reverse, which is consistent with regional structures such as the extensional Hat Creek Fault to the south and the compressional folding of Mushroom Rock to the north. South of the Pit River, we still observe normal and strike slip faults, suggesting that changes in stress state are moving from north to south through time.

  6. Rapid changes in glacier surface processes and downstream river basin in the Central Himalayan region

    NASA Astrophysics Data System (ADS)

    Haritashya, U. K.; Strattman, K.; Kargel, J. S.

    2017-12-01

    A high altitude glacierized region in the central Himalaya hosts thousands of glaciers and originates major rivers like the Ganges and Yamuna. This region has seen significant changes in last few decades due to climate system coupling involving the westerlies and the monsoon, high seismic activities, complex topography, extensive glacier debris cover, and widespread mass movement. Consequently, we analyzed regional variability in hundreds of glacier surface processes and downstream river basins of varying geomorphology using a variety of satellite imagery from the early 1990s to 2017. Our results indicate a massive increase in supraglacial ponds in south facing glaciers. Several of these ponds are either seasonal and forms exactly at the same location every year or forms at the beginning of the melt season and drains out as the season progresses from April to July/August. We also observed evolution in size of these ponds in the last two decades to the point where some of them now seem to be stationary and might increase in size and develop large lake in the future. To understand our result and melting pattern in the region, we also analyzed ice velocity and surface temperature; both of which reveals a temporal shift in the pattern. Glacier surface temperatures, especially show a warming pattern in recent years and strong correlation with debris cover. Additionally, we also observed changes in the downstream region both around the river bed and steep slopes where massive erosion of Himalayan glaciers are depositing and transporting excessive amount of sediments. Overall, our results are discussed in the context of better landscape evolution modeling from the top of the glacier to the several km downstream from the glacier terminus.

  7. Analysis of chronic radiation sickness cases in the population of the southern urals. Contract report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kossenko, M.M.; Akleyev, A.A.; Degteva, M.O.

    1994-08-01

    This report was prepared for the Defense Nuclear Agency under contract number DNAOO1-92-M-0658. The report is based on information obtained from a 40-year follow-up of people exposed to radiation due to discharges of radioactive waste from an industrial facility, the Mayak Production Association, into the Techa-Iset river system. The results of the medical follow-up have been described in a number of articles published in scientific journals in Russia. This report summarizes dosimetric and medical data within the framework of deterministic effects and, in particular, chronic radiation sickness (CRS). From 1952 to 1961, 940 people out of 28,000 exposed to radiationmore » in the riverside communities on the Techa were diagnosed as having CRS. Conditions of exposure are described, irradiation dose computations are presented, and the clinical picture of CRS is characterized.« less

  8. The potential contribution of the Queensland wet tropics region natural resource plan to river improvement and water quality.

    PubMed

    McDonald, G; Weston, N; Dorrington, B

    2003-01-01

    This paper reports on work in progress on the new Wet Tropics Regional Natural Resource Management Plan and its potential to deliver river management and water quality outcomes. The plan is being prepared in accordance with the guidelines of the Nation Action Plan for Salinity and Water Quality/Natural Heritage Trust (NAP/NHT2). In particular the paper discusses the technical basis for priorities, target setting and implementation and the most effective instruments for achieving river improvement and water quality outcomes in the region.

  9. Development of a global river-coastal coupling model and its application to flood simulation in Asian mega-delta regions

    NASA Astrophysics Data System (ADS)

    Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip; Verlaan, Martin; Winsemius, Hessel; Kanae, Shinjiro

    2017-04-01

    The world's mega-delta regions and estuaries are susceptible to various water-related disasters, such as river flooding and storm surge. Moreover, simultaneous occurrence of them would be more devastating than a situation where they occur in isolation. Therefore, it is important to provide information about compound risks of fluvial and coastal floods at a large scale, both their statistical dependency as well as their combined resulting flooding in delta regions. Here we report on a first attempt to address this issue globally by developing a method to couple a global river model (CaMa-Flood) and a global tide and surge reanalysis (GTSR) dataset. A state-of-the-art global river routing model, CaMa-Flood, was modified to represent varying sea levels due to tides and storm surges as downstream boundary condition, and the GTSR dataset was post-processed to serve as inputs to the CaMa-Flood river routing simulation and a long-term simulation was performed to incorporate the temporal dependency between coastal tide and surge on the one hand, and discharge on the other. The coupled model was validated against observations, showing better simulation results of water levels in deltaic regions than simulation without GTSR. For example in the Ganges Delta, correlation coefficients were increased by 0.06, and root mean square errors were reduced by 0.22 m. Global coupling simulations revealed that storm surges affected river water levels in coastal regions worldwide, especially in low-lying flat areas with increases in water level larger than 0.5 m. By employing enhanced storm surge simulation with tropical storm tracks, we also applied the model to examine impacts of past hurricane and cyclone storm events on river flood inundation.

  10. Centennial- to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years

    NASA Astrophysics Data System (ADS)

    Tan, Liangcheng; Cai, Yanjun; Cheng, Hai; Edwards, Lawrence R.; Gao, Yongli; Xu, Hai; Zhang, Haiwei; An, Zhisheng

    2018-01-01

    The upper Hanjiang River region is the recharge area of the middle route of South-to-North Water Transfer Project. The region is under construction of the Hanjiang-Weihe River Water Transfer Project in China. Monsoon precipitation variations in this region are critical to water resource and security of China. In this study, high-resolution monsoon precipitation variations were reconstructed in the upper Hanjiang River region over the past 6650 years from δ18O and δ13C records of four stalagmites in Xianglong cave. The long term increasing trend of stalagmite δ18O record since the middle Holocene is consistent with other speleothem records from monsoonal China. This trend follows the gradually decreasing Northern Hemisphere summer insolation, which indicates that solar insolation may control the orbital-scale East Asian summer monsoon (EASM) variations. Despite the declined EASM intensity since the middle Holocene, local precipitation may not have decreased remarkably, as revealed by the δ13C records. A series of centennial- to decadal-scale cyclicity was observed, with quasi-millennium-, quasi-century-, 57-, 36- and 22-year cycles by removing the long-term trend of stalagmite δ18O record. Increased monsoon precipitation during periods of 4390-3800 a BP, 3590-2960 a BP, 2050-1670 a BP and 1110-790 a BP had caused four super-floods in the upper reach of Hanjiang River. Dramatically dry climate existed in this region during the 5.0 ka and 2.8 ka events, coinciding with notable droughts in other regions of monsoonal China. Remarkably intensified and southward Westerly jet, together with weakened summer monsoon, may delay the onset of rainy seasons, resulting in synchronous decreasing of monsoon precipitation in China during the two events. During the 4.2 ka event and the Little Ice Age, the upper Hanjiang River region was wet, which was similar to the climate conditions in central and southern China, but was the opposite of drought observed in northern China. We

  11. MERCURY CONTAMINATION OF SUBSISTENCE FISHERIES ON TRIBAL LANDS: A PARTNERSHIP OF ORD, REGION 8 AND CHEYENNE RIVER SIOUX RESERVATION

    EPA Science Inventory

    In a prior collaborative 3 year study with the Cheyenne River Sioux Tribe Department of Environmental Protection (CRST DEP), and the Agencies' Environmental Response Team, RegionVIII investigated Hg levels in fish tissues from the Cheyenne River and Lake Oahe in South Dakota. In...

  12. Modelling and Analysis of Hydrodynamics and Water Quality for Rivers in the Northern Cold Region of China

    PubMed Central

    Tang, Gula; Zhu, Yunqiang; Wu, Guozheng; Li, Jing; Li, Zhao-Liang; Sun, Jiulin

    2016-01-01

    In this study, the Mudan River, which is the most typical river in the northern cold region of China was selected as the research object; Environmental Fluid Dynamics Code (EFDC) was adopted to construct a new two-dimensional water quality model for the urban sections of the Mudan River, and concentrations of CODCr and NH3N during ice-covered and open-water periods were simulated and analyzed. Results indicated that roughness coefficient and comprehensive pollutant decay rate were significantly different in those periods. To be specific, the roughness coefficient in the ice-covered period was larger than that of the open-water period, while the decay rate within the former period was smaller than that in the latter. In addition, according to the analysis of the simulated results, the main reasons for the decay rate reduction during the ice-covered period are temperature drop, upstream inflow decrease and ice layer cover; among them, ice sheet is the major contributor of roughness increase. These aspects were discussed in more detail in this work. The model could be generalized to hydrodynamic water quality process simulation researches on rivers in other cold regions as well. PMID:27070631

  13. Spatiotemporal distribution and the characteristics of the air temperature of a river source region of the Qinghai-Tibet Plateau.

    PubMed

    Deng, Cai; Zhang, Wanchang

    2018-05-30

    As the backland of the Qinghai-Tibet Plateau, the river source region is highly sensitive to changes in global climate. Air temperature estimation using remote sensing satellite provides a new way of conducting studies in the field of climate change study. A geographically weighted regression model was applied to estimate synchronic air temperature from 2001 to 2015 using Moderate-Resolution Imaging Spectroradiometry (MODIS) data. The results were R 2  = 0.913 and RMSE = 2.47 °C, which confirmed the feasibility of the estimation. The spatial distribution and variation characteristics of the average annual and seasonal air temperature were analyzed. The findings are as follows: (1) the distribution of average annual air temperature has significant terrain characteristics. The reduction in average annual air temperature along the elevation of the region is 0.19 °C/km, whereas the reduction in the average annual air temperature along the latitude is 0.04 °C/degree. (2) The average annual air temperature increase in the region is 0.37 °C/decade. The average air temperature increase could be arranged in the following decreasing order: Yangtze River Basin > Mekong River Basin > Nujiang River Basin > Yarlung Zangbo River Basin > Yellow River Basin. The fastest, namely, Yangtze River Basin, is 0.47 °C/decade. (3) The average air temperature rise in spring, summer, and winter generally increases with higher altitude. The average annual air temperature in different types of lands following a decreasing order is as follows: wetland > construction land > bare land glacier > shrub grassland > arable land > forest land > water body and that of the fastest one, wetland, is 0.13 °C/year.

  14. Mercury and arsenic in the gold mining regions of the Ankobra River basin in Ghana

    NASA Astrophysics Data System (ADS)

    Bannerman, W.; Potin-Gautier, M.; Amoureux, D.; Tellier, S.; Rambaud, A.; Babut, M.; Adimado, A.; Beinhoff, C.

    2003-05-01

    The river Ankobra flows through the principal gold mining centres in Western Ghana, draining a total area of 8272 km^2 to join the Atlantic ocean. Mercury is used by thousands of small-scale miners in the region to amalgamate gold. Ores mined in some deep shafts and surface mines are arsenopyrites and the region is marked by the presence of heaps of arsenic - rich mine tailings from both past and recent activities. This study was conducted to assess the impact of mining activities on the distribution and speciation of arsenic and mercury in the aquatic environment of the Ankobra River. In all, water (filtered and non-filtered) and bed sediments were collected from various locations within the watershed. Principal parameters investigated include total mercury, arsenic (III), arsenic (V), monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA). Seasonal and spatial variations of these parameters were investigated. Quality control systems were adopted at both the environmental and analytical stages of the study. ln general, areas close to the mining centres are the most pollilited. As (V)/As (III) ratios in water are reversed after the first 100-km of the river length with the onset of industrial influence downstream.

  15. Chronology of Miocene-Pliocene deposits at Split Mountain Gorge, Southern California: A record of regional tectonics and Colorado River evolution

    USGS Publications Warehouse

    Dorsey, R.J.; Fluette, A.; McDougall, K.; Housen, B.A.; Janecke, S.U.; Axen, G.J.; Shirvell, C.R.

    2007-01-01

    Late Miocene to early Pliocene deposit at Split Mountain Gorge, California, preserve a record of basinal response to changes in regional tectonics, paleogeography, and evolution of the Colorado River. The base of the Elephant Trees Formation, magnetostratigraphically dated as 8.1 ?? 0.4 Ma, provides the earliest well-dated record of extension in the southwestern Salton Trough. The oldest marine sediments are ca. 6.3 Ma. The nearly synchronous timing of marine incursion in the Salton Trough and northern Gulf of California region supports a model for localization of Pacific-North America plate motion in the Gulf ca. 6 Ma. The first appearance of Colorado River sand at the Miocene-Pliocene boundary (5.33 Ma) suggests rapid propagation of the river to the Salton Trough, and supports a lake-spillover hypothesis for initiation of the lower Colorado River. ?? 2007 Geological Society of America.

  16. Examining the Impact of Nitrous Acid Chemistry on Ozone and PM over the Pearl River Delta Region

    EPA Science Inventory

    The impact of nitrous acid (HONO) chemistry on regional ozone and particulate matter in Pearl River Delta region was investigated using the community multiscale air quality (CMAQ) modeling system and the CB05 mechanism. Model simulations were conducted for a ten-day period in Oct...

  17. Sea level variability influencing coastal flooding in the Swan River region, Western Australia

    NASA Astrophysics Data System (ADS)

    Eliot, Matt

    2012-02-01

    Coastal flooding refers to the incidence of high water levels produced by water level fluctuations of marine origin, rather than riverine floods. An understanding of the amplitude and frequency of high water level events is essential to foreshore management and the design of many coastal and estuarine facilities. Coastal flooding events generally determine public perception of sea level phenomena, as they are commonly associated with erosion events. This investigation has explored the nature of coastal flooding events affecting the Swan River Region, Western Australia, considering water level records at four sites in the estuary and lower river, extending from the mouth of the Swan River to 40 km upstream. The analysis examined the significance of tides, storms and mean sea level fluctuations over both seasonal and inter-annual time scales. The relative timing of these processes is significant for the enhanced or reduced frequency of coastal flooding. These variations overlie net sea level rise previously reported from the coastal Fremantle record, which is further supported by changes to the distribution of high water level events at an estuarine tidal station. Seasonally, coastal flooding events observed in the Swan River region are largely restricted to the period from May to July due to the relative phases of the annual mean sea fluctuation and biannual tidal cycle. Although significant storm surge events occur outside this period, their impact is normally reduced, as they are superimposed on lower tidal and mean sea level conditions. Over inter-annual time scales tide, storminess and mean sea level produce cycles of enhanced and depressed frequency of coastal flooding. For the Swan River region, the inter-annual tidal variation is regular, dominated by the 18.6 year lunar nodal cycle. Storminess and mean sea level variations are independent and irregular, with cycles from 3 to 10 year duration. Since 1960, these fluctuations have not occurred in phase

  18. Regionally coherent, downstream propagating trends of river bed incision and aggradation in glaciated basins of western Washington, USA

    NASA Astrophysics Data System (ADS)

    Anderson, S. W.; Konrad, C. P.

    2016-12-01

    Understanding the connections between climate and river bed morphology is relevant both for interpreting the geologic record and understanding modern channel change. Here, we use changing stage-discharge relations at USGS stream-gage sites in western Washington State to infer local bed-elevation changes over the past 50 to 90 years. A network of gages in a large, unregulated basin with active glaciation show decadal periods of aggradation and incision that are strongly correlated when lagged. Best-fit lag times indicate the downstream propagation of single coherent signal at a slope-dependent velocity of 1-4 km/yr. This same pattern of change is observed at the outlets of regional rivers with glaciated headwaters but is absent in unglaciated river systems. Sites high in glaciated river systems also show coherency across basins, suggesting that the similarity in the downstream trends across glaciated basins is the result of the downstream propagation of a regionally coherent headwater signal. Incisional trends emanating from headwaters between 1950 and 1980 match a period when regional glaciers were stable or advancing, but assigning causation is complicated by hydroclimatic trends with similar temporal patterns. The recent trend is aggradational, though current bed elevations are generally similar to those prior to 1950, and are consistent with regional data indicating that sediment production in glaciated basins from 1950 to 1980 was anomalously low relative to conditions over the past several hundred years. Regionally, our results suggest the possibility of forecasting periods of aggradation and increased flood hazards several years to decades in advance in populated downstream settings. More broadly, the methods used in this analysis involve simple calculations on publically available data and provide a low-cost means of assessing local channel change wherever USGS stream-gages have been operated.

  19. Reconciling Environmental and Flood Control Goals on an Arid-Zone River: Case Study of the Limitrophe Region of the Lower Colorado River in the United States and Mexico

    NASA Astrophysics Data System (ADS)

    Glenn, Edward P.; Hucklebridge, Kate; Hinojosa-Huerta, Osvel; Nagler, Pamela L.; Pitt, Jennifer

    2008-03-01

    Arid zone rivers have highly variable flow rates, and flood control projects are needed to protect adjacent property from flood damage. On the other hand, riparian corridors provide important wildlife habitat, especially for birds, and riparian vegetation is adapted to the natural variability in flows on these rivers. While environmental and flood control goals might appear to be at odds, we show that both goals can be accommodated in the Limitrophe Region (the shared border between the United States and Mexico) on the Lower Colorado River. In 1999, the International Boundary and Water Commission proposed a routine maintenance project to clear vegetation and create a pilot channel within the Limitrophe Region to improve flow capacity and delineate the border. In 2000, however, Minute 306 to the international water treaty was adopted, which calls for consideration of environmental effects of IBWC actions. We conducted vegetation and bird surveys within the Limitrophe and found that this river segment is unusually rich in native cottonwood and willow trees, marsh habitat, and resident and migratory birds compared to flow-regulated segments of river. A flood-frequency analysis showed that the existing levee system can easily contain a 100 year flood even if vegetation is not removed, and the existing braided channel system has greater carrying capacity than the proposed pilot channel.

  20. Reconciling environmental and flood control goals on an arid-zone river: case study of the limitrophe region of the lower colorado river in the United States and Mexico.

    PubMed

    Glenn, Edward P; Hucklebridge, Kate; Hinojosa-Huerta, Osvel; Nagler, Pamela L; Pitt, Jennifer

    2008-03-01

    Arid zone rivers have highly variable flow rates, and flood control projects are needed to protect adjacent property from flood damage. On the other hand, riparian corridors provide important wildlife habitat, especially for birds, and riparian vegetation is adapted to the natural variability in flows on these rivers. While environmental and flood control goals might appear to be at odds, we show that both goals can be accommodated in the Limitrophe Region (the shared border between the United States and Mexico) on the Lower Colorado River. In 1999, the International Boundary and Water Commission proposed a routine maintenance project to clear vegetation and create a pilot channel within the Limitrophe Region to improve flow capacity and delineate the border. In 2000, however, Minute 306 to the international water treaty was adopted, which calls for consideration of environmental effects of IBWC actions. We conducted vegetation and bird surveys within the Limitrophe and found that this river segment is unusually rich in native cottonwood and willow trees, marsh habitat, and resident and migratory birds compared to flow-regulated segments of river. A flood-frequency analysis showed that the existing levee system can easily contain a 100 year flood even if vegetation is not removed, and the existing braided channel system has greater carrying capacity than the proposed pilot channel.

  1. Characterizing and modelling river channel migration rates at a regional scale: Case study of south-east France.

    PubMed

    Alber, Adrien; Piégay, Hervé

    2017-11-01

    An increased awareness by river managers of the importance of river channel migration to sediment dynamics, habitat complexity and other ecosystem functions has led to an advance in the science and practice of identifying, protecting or restoring specific erodible corridors across which rivers are free to migrate. One current challenge is the application of these watershed-specific goals at the regional planning scales (e.g., the European Water Framework Directive). This study provides a GIS-based spatial analysis of the channel migration rates at the regional-scale. As a case study, 99 reaches were sampled in the French part of the Rhône Basin and nearby tributaries of the Mediterranean Sea (111,300 km 2 ). We explored the spatial correlation between the channel migration rate and a set of simple variables (e.g., watershed area, channel slope, stream power, active channel width). We found that the spatial variability of the channel migration rates was primary explained by the gross stream power (R 2  = 0.48) and more surprisingly by the active channel width scaled by the watershed area. The relationship between the absolute migration rate and the gross stream power is generally consistent with the published empirical models for freely meandering rivers, whereas it is less significant for the multi-thread reaches. The discussion focused on methodological constraints for a regional-scale modelling of the migration rates, and the interpretation of the empirical models. We hypothesize that the active channel width scaled by the watershed area is a surrogate for the sediment supply which may be a more critical factor than the bank resistance for explaining the regional-scale variability of the migration rates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of the Changiang river discharge on the change in ocean and atmosphere over the East Asian region

    NASA Astrophysics Data System (ADS)

    Kim, M. H.; Lim, Y. J.; Kang, H. S.; Kim, B. J.; Cho, C.

    2017-12-01

    This study investigates the effects of freshwater from the Changiang river basin over the East Asian region for summer season. To do this, we simulated global seasonal forecasting system (GloSea5) of KMA (Korea Meteorology Administration). GloSea5 consists of atmosphere, ocean, sea ice and land model. Also, it has river routing model (TRIP), which links between land and ocean using freshwater. It is very important component in long-term forecast because of be able to change the air-sea interaction. To improve more the freshwater performance over the East Asian region, we realistically modified the river mouth, direction and storage around Changiang river basin of TRIP in GloSea5. Here, the comparison study among the no freshwater forcing experiment to ocean model (TRIP-OFF), the operated original file based freshwater coupled experiment (TRIP-ON) and the improved one (TRIP-MODI) has been carried out and the results are evaluated against the reanalysis data. As a result, the amount of fresh water to the Yellow Sea increase in TRIP-ON experiment and it attributes to the improvement of bias and RMSE of local SST over the East Asia. The implementation of the realistic river related ancillary files (TRIP-MODI) improves the abnormal salinity distribution around the Changjiang river gate and its related SST reduces cold bias about 0.37˚C for July over the East Sea. Warm SST over this region is caused by barrier layer (BL). Freshwater flux and salinity changes can create a pronounced salinity-induced mixed layer (ML) above the top of the thermocline. The layer between the base of the ML and the top of the thermocline is called a barrier layer (BL), because it isolates the warm surface water from cold deep water. In addition, the improved fresh water forcing can lead to the change in the local volume transport from the Kuroshio to the Strait of Korea and Changed the transport and SST over the Straits of Korea have correlation 0.57 at 95% confidence level. For the

  3. Regional nutrient trends in streams and rivers of the United States, 1993-2003

    USGS Publications Warehouse

    Sprague, Lori A.; Lorenz, David L.

    2009-01-01

    Trends in flow-adjusted concentrations (indicators of anthropogenic changes) and observed concentrations (indicators of natural and anthropogenic changes) of total phosphorus and total nitrogen from 1993 to 2003 were evaluated in the eastern, central, and western United States by adapting the Regional Kendall trend test to account for seasonality and spatial correlation. The only significant regional trend was an increase in flow-adjusted concentrations of total phosphorus in the central United States, which corresponded to increases in phosphorus inputs from fertilizer in the region, particularly west of the Mississippi River. A similar upward regional trend in observed total phosphorus concentrations in the central United States was not found, likely because precipitation and runoff decreased during drought conditions in the region, offsetting the increased source loading on the land surface. A greater number of regional trends would have been significant if spatial correlation had been disregarded, indicating the importance of spatial correlation modifications in regional trend assessments when sites are not spatially independent.

  4. Macroinvertebrate distribution and aquatic ecology in the Ruoergai (Zoige) Wetland, the Yellow River source region

    NASA Astrophysics Data System (ADS)

    Zhao, Na; Xu, Mengzhen; Li, Zhiwei; Wang, Zhaoyin; Zhou, Hanmi

    2017-09-01

    The Ruoergai (Zoige) Wetland, the largest plateau peatland in the world, is located in the Yellow River source region. The discharge of the Yellow River increases greatly after flowing through the Ruoergai Wetland. The aquatic ecosystem of the Ruoergai Wetland is crucial to the whole Yellow River basin. The Ruoergai wetland has three main kinds of water bodies: rivers, oxbow lakes, and marsh wetlands. In this study, macroinvertebrates were used as indicators to assess the aquatic ecological status because their assemblage structures indicate long-term changes in environments with high sensitivity. Field investigations were conducted in July, 2012 and in July, 2013. A total of 72 taxa of macroinvertebrates belonging to 35 families and 67 genera were sampled and identified. Insecta was the dominant group in the Ruoergai Basin. The alpha diversity of macroinvertebrates at any single sampling site was low, while the alpha diversity on a basin-wide scale was much higher. Macroinvertebrate assemblages in rivers, oxbow lakes, and marsh wetlands differ markedly. Hydrological connectivity was a primary factor causing the variance of the bio-community. The river channels had the highest alpha diversity of macroinvertebrates, followed by marsh wetlands and oxbow lakes. The density and biomass of Gastropoda, collector filterers, and scrapers increased from rivers to oxbow lakes and then to marsh wetlands. The river ecology was particular in the Ruoergai Wetland with the high beta diversity of macroinvertebrates, the low alpha diversity of macroinvertebrates, and the low taxa richness, density, and biomass of EPT (Ephemeroptera, Plecoptera, Trichoptera). To maintain high alpha diversity of macroinvertebrates macroinvertebrates in the Ruoergai Wetland, moderate connectivity of oxbow lakes and marsh wetlands with rivers and measures to control headwater erosion are both crucial.

  5. The Role of Agriculture in the Social and Economic Development of the Lower Mississippi River Delta Region. Proceedings of a Regional Conference (Memphis, Tennessee, February 26-28, 1990).

    ERIC Educational Resources Information Center

    North Central Regional Center for Rural Development, Ames, IA.

    The lower Mississippi River delta region comprises 214 counties in Louisiana, Mississippi, Arkansas, Missouri, Kentucky, Tennessee, and Illinois. The region is heavily dependent on agriculture and contains unusually high proportions of small farms, poor farmers, and black farmers. A conference planned by the region's 13 land-grant institutions and…

  6. Ecological health of river basins in forested regions of eastern Washington and Oregon.

    Treesearch

    Robert C. Wissmar; Jeanette E. Smith; Bruce A. McIntosh; Hiram W. Li; Gordon H. Reeves; James R. Sedell

    1994-01-01

    A retrospective examination of the history of the cumulative influences of past land and water uses on the ecological health of select river basins in forest regions of eastern Washington and Oregon indicates the loss of fish and riparian habitat diversity and quality since the 19th century. A physiographic framework of the eastern Washington and Oregon in terms of...

  7. Plan of study for the regional aquifer-system analysis of the Snake River plain, Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, Gerald F.

    1981-01-01

    The 15,600-square-mile Snake River Plain is largely in southern Idaho and includes one of the Nation 's major regional aquifers. A comprehensive investigation of the area 's ground-water resources will be made as part of the U.S. Geological Survey 's Regional Aquifer-System Analysis (RASA) program. Basaltic and sedimentary rocks in the Snake River Plain yield large quantities of water that are vital to the area 's agricultural economy. Basaltic rocks predominate in the eastern Snake River Plain and have especially high water-yielding capabilities. Surface water, largely from the Snake River, is extensively used for irrigation and is a major source of recharge to the ground-water system. Springs issuing from basaltic rocks that form the Snake River Canyon wall near Twin Falls are the major points of ground-water discharge. Increased use of ground water for irrigation is causing concern as to the effect of large-scale withdrawals on spring flow. Ground-water flow models will be used to improve understanding of the hydrologic system, and, if feasible, to aid in evaluating management alternatives. Ground-water quality will be defined and geochemical techniques used to determine the effects of water-rock reactions on water quality. Several reports are planned on different phases of the project, concluding with a summary report. (USGS)

  8. [Knowledge, attitude and practice related to schistosomiasis control among rural residents in Wanjiang River region after a flood].

    PubMed

    Huan, Liu; Ai-Xia, Wang; Yuan-Zhen, Li; Ming-Ming, Zhou

    2017-02-22

    To investigate the status of knowledge, attitude and behavior of schistosomiasis control of rural residents in Wanjiang River region after a flood, so as to provide the reference for targeted health education. The multistage sampling was applied to select the respondents in rural residents in Wanjiang River region, and the self-designed questionnaire was used to investigate the current situation of knowledge, attitude and behavior of schistosomiasis prevention and control of the rural residents. The total awareness rate of knowledge about the prevention and control of schistosomiasis was 47.92%. The age, education, family income, relatives and friends with medical background, and health education significantly influenced the awareness rate ( χ 2 = 12.76, 89.19, 18.19, 50.83 and 92.60 respectively, all P < 0.05). The accuracy rates of attitude and behavior in schistosomiasis control were 62.89% and 52.37% respectively. The awareness rate of knowledge about the prevention and control of schistosomiasis, and the accuracy rates of attitude and behavior in schistosomiasis control of the rural residents in Wanjiang River region are all inefficient, and therefore, the targeted health education should be strengthened to decrease the risk of schistosomiasis transmission.

  9. Molybdenum, vanadium, and uranium weathering in small mountainous rivers and rivers draining high-standing islands

    NASA Astrophysics Data System (ADS)

    Gardner, Christopher B.; Carey, Anne E.; Lyons, W. Berry; Goldsmith, Steven T.; McAdams, Brandon C.; Trierweiler, Annette M.

    2017-12-01

    Rivers draining high standing islands (HSIs) and small mountainous rivers (SMRs) are known to have extremely high sediment fluxes, and can also have high chemical weathering yields, which makes them potentially important contributors to the global riverine elemental flux to the ocean. This work reports on the riverine concentrations, ocean flux, and weathering yields of Molybdenum (Mo), Vanadium (V), and Uranium (U) in a large number of small but geochemically important rivers using 338 river samples from ten lithologically-diverse regions. These redox-sensitive elements are used extensively to infer paleo-redox conditions in the ocean, and Mo and V are also important rock-derived micronutrients used by microorganisms in nitrogen fixation. Unlike in large river systems, in which dissolved Mo has been attributed predominately to pyrite dissolution, Mo concentrations in these rivers did not correlate with sulfate concentrations. V was found to correlate strongly with Si in terrains dominated by silicate rocks, but this trend was not observed in primarily sedimentary regions. Many rivers exhibited much higher V/Si ratios than larger rivers, and rivers draining young Quaternary volcanic rocks in Nicaragua had much higher dissolved V concentrations (mean = 1306 nM) than previously-studied rivers. U concentrations were generally well below the global average with the exception of rivers draining primarily sedimentary lithologies containing carbonates and shales. Fluxes of U and Mo from igneous terrains of intermediate composition are lower than the global average, while fluxes of V from these regions are higher, and up to two orders of magnitude higher in the Nicaragua rivers. Weathering yields of Mo and V in most regions are above the global mean, despite lower than average concentrations measured in some of those systems, indicating that the chemical weathering of these elements are higher in these SMR watersheds than larger drainages. In regions of active boundaries

  10. [Anthropogenic ammonia emission inventory and characteristics in the Pearl River Delta Region].

    PubMed

    Yin, Sha-sha; Zheng, Jun-yu; Zhang, Li-jun; Zhong, Liu-ju

    2010-05-01

    Based on the collected activity data and emission factors of anthropogenic ammonia sources, a 2006-based anthropogenic ammonia emission inventory was developed for the Pearl River Delta (PRD) region by source categories and cities with the use of appropriate estimation methods. The results show: (1) the total NH3 emission from anthropogenic sources in the PRD region was 194. 8 kt; (2) the agriculture sources were major contributors of anthropogenic ammonia sources, in which livestock sources shared 62.1% of total NH3 emission and the contribution of application of nitrogen fertilizers was 21.7%; (3) the broiler was the largest contributor among the livestock sources, accounting for 43.4% of the livestock emissions, followed by the hog with a contribution of 32.1%; (4) Guangzhou was the largest ammonia emission city in the PRD region, and then Jiangmen, accounting for 23.4% and 19.1% of total NH3 emission in the PRD region respectively, with major sources as livestock sources and application of nitrogen fertilizers.

  11. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, G.F.

    1993-01-01

    The 15,600 sq mi Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. Quaternary basalt of the Snake River Group underlies most of the 10,800 square mile eastern plain and constitutes the most productive aquifers. Transmissivity of the upper 200 feet of the basalt aquifer commonly ranges from 100,000 to 1,000,000 square feet per day. Vertical hydraulic conductivity is several orders of magnitude lower than horizontal hydraulic conductivity and is related to the degree of jointing. Alluvial sand and gravel in the Boise River valley constitutes the most productive aquifers in the 4,800 square mile western plain. Along much of its length, the Snake River gains groundwater. Between Milner and King Hill, the river gained 4.7 million acre-ft in 1980, most as spring flow from the north side. The chemical composition of groundwater in the plain is essentially the same as that in streams and ground- water from tributary drainage basins. The use of surface water for irrigation for 100 years has caused major changes in the hydrologic system on the plain. During that time, recharge on the main part of the eastern plain increased about 70 percent, discharge about 80 percent. In 1980, about 8.9 million acre-ft of Snake River water was diverted and 2.3 million acre-ft of groundwater was pumped from 5,300 wells for irrigation.

  12. Multispecies Fisheries in the Lower Amazon River and Its Relationship with the Regional and Global Climate Variability

    PubMed Central

    Buss de Souza, Ronald; Freire, Juan; Isaac, Victoria Judith

    2016-01-01

    This paper aims to describe the spatial-temporal variability in catch of the main fishery resources of the Amazon River and floodplain lakes of the Lower Amazon, as well as relating the Catch per Unit of Effort with anomalies of some of the Amazon River, atmosphere and Atlantic Ocean system variables, determining the influence of the environment on the Amazonian fishery resources. Finfish landings data from the towns and villages of the Lower Amazon for the fisheries of three sites (Óbidos, Santarém and Monte Alegre), were obtained for the period between January 1993 and December 2004. Analysis of variance, detrended correspondence analysis, redundancy analysis and multiple regression techniques were used for the statistical analysis of the distinct time series. Fisheries production in the Lower Amazon presents differences between the Amazon River and the floodplain lakes. Production in the Amazon River is approximately half of the one of the floodplain lakes. This variability occurs both along the Lower Amazon River region (longitudinal gradient) and laterally (latitudinal gradient) for every fishing ground studied here. The distinct environmental variables alone or in association act differently on the fishery stocks and the success of catches in each fishery group studied here. Important variables are the flooding events; the soil the sea surface temperatures; the humidity; the wind and the occurence of El Niño-Southern Oscillation events. Fishery productivity presents a large difference in quantity and distribution patterns between the river and floodplain lakes. This variability occurs in the region of the Lower Amazon as well as laterally for each fishery group studied, being dependent on the ecological characteristics and life strategies of each fish group considered here. PMID:27314951

  13. Effects of stream flow intermittency on riparian vegetation of a semiarid region river (San Pedro River, Arizona)

    USGS Publications Warehouse

    Stromberg, J.C.; Bagstad, K.J.; Leenhouts, J.M.; Lite, S.J.; Makings, E.

    2005-01-01

    The San Pedro River in the southwestern United States retains a natural flood regime and has several reaches with perennial stream flow and shallow ground water. However, much of the river flows intermittently. Urbanization-linked declines in regional ground-water levels have raised concerns over the future status of the riverine ecosystem in some parts of the river, while restoration-linked decreases in agricultural ground-water pumping are expected to increase stream flows in other parts. This study describes the response of the streamside herbaceous vegetation to changes in stream flow permanence. During the early summer dry season, streamside herbaceous cover and species richness declined continuously across spatial gradients of flow permanence, and composition shifted from hydric to mesic species at sites with more intermittent flow. Hydrologic threshold values were evident for one plant functional group: Schoenoplectus acutus, Juncus torreyi, and other hydric riparian plants declined sharply in cover with loss of perennial stream flow. In contrast, cover of mesic riparian perennials (including Cynodon dactylon, an introduced species) increased at sites with intermittent flow. Patterns of hydric and mesic riparian annuals varied by season: in the early summer dry season their cover declined continuously as flow became more intermittent, while in the late summer wet season their cover increased as the flow became more intermittent. Periodic drought at the intermittent sites may increase opportunities for establishment of these annuals during the monsoonal flood season. During the late summer flood season, stream flow was present at most sites, and fewer vegetation traits were correlated with flow permanence; cover and richness were correlated with other environmental factors including site elevation and substrate nitrate level and particle size. Although perennial-flow and intermittent-flow sites support different streamside plant communities, all of the plant

  14. Multiple episodes of fast exhumation since Late Cretaceous in the Three Rivers region, SE Tibetan Plateau, revealed by low-temperature thermochronology

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zhang, J.; McPhillips, D.; Reiners, P. W.; Wang, W.; Pik, R.; Zeng, L.; Hoke, G. D.; Xie, K.; Xiao, P.; Zheng, D.; Ge, Y.

    2017-12-01

    The Three Rivers region in southeast Tibet is characterized by deeply incised river valleys separated by a perched low relief landscape that gently descends from the high Tibetan plateau towards the southeast. When and how this unique landscape formed is debated. The onset of increased river incision is often interpreted as a proxy for the timing of surface uplift. Here,apatite and zircon U-Th/He and apatite fission track thermochronology are employed to map the spatial and temporal pattern of exhumation in the region. Vertical profiles of granitic rocks were collected near Deqin ( 28.5°N) and Weixi ( 27.5°N). The two transects share a similar exhumation history, with two episodes of relatively fast exhumation ( 100-300 m/Myr): during the Paleocene to Eocene (60-40 Ma) and Miocene to present (20-0 Ma), separated by an intervening period of slow exhumation. A pulse of moderate to high exhumation (70-300 m/Myr) during the mid- to late-Cretaceous (120-80 Ma) is also present in the data. Overall, the rate and total amount of exhumation near Deqin is larger than at Weixi and is especially pronounced in the interval between 20 Ma to present. This difference is likely related to whether a profile's is exposed adjacent to the more erosive trunk stream (Deqin) or contained within tributary (Weixi). In addition, the Paleocene to Eocene episode of fast exhumation in the Three Rivers region occurred prior to that observed on the eastern plateau margin. This Paleocene to Eocene period of rapid exhumation is likely due to early Cenozoic deformation related to the transpressional collision of the Indian plate with this region. Pre-Miocene episodes of fast exhumation corroborate with recent paleoaltimetry studies, which shows that the Three Rivers region was elevated prior to the Oligocene.

  15. Design rainfall depth estimation through two regional frequency analysis methods in Hanjiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Xu, Yue-Ping; Yu, Chaofeng; Zhang, Xujie; Zhang, Qingqing; Xu, Xiao

    2012-02-01

    Hydrological predictions in ungauged basins are of significant importance for water resources management. In hydrological frequency analysis, regional methods are regarded as useful tools in estimating design rainfall/flood for areas with only little data available. The purpose of this paper is to investigate the performance of two regional methods, namely the Hosking's approach and the cokriging approach, in hydrological frequency analysis. These two methods are employed to estimate 24-h design rainfall depths in Hanjiang River Basin, one of the largest tributaries of Yangtze River, China. Validation is made through comparing the results to those calculated from the provincial handbook approach which uses hundreds of rainfall gauge stations. Also for validation purpose, five hypothetically ungauged sites from the middle basin are chosen. The final results show that compared to the provincial handbook approach, the Hosking's approach often overestimated the 24-h design rainfall depths while the cokriging approach most of the time underestimated. Overall, the Hosking' approach produced more accurate results than the cokriging approach.

  16. The Contribution of the Future SWOT Mission to Improve Simulations of River Stages and Stream-Aquifer Interactions at Regional Scale

    NASA Astrophysics Data System (ADS)

    Saleh, Firas; Filipo, Nicolas; Biancamaria, Sylvain; Habets, Florence; Rodriguez, Enersto; Mognard, Nelly

    2013-09-01

    The main objective of this study is to provide a realistic simulation of river stage in regional river networks in order to improve the quantification of stream-aquifer exchanges and better assess the associated aquifer responses that are often impacted by the magnitude and the frequency of the river stage fluctuations. This study extends the earlier work to improve the modeling of the Seine basin with a focus on simulating the hydrodynamics behavior of the Bassée alluvial wetland, a 120 km reach of the Seine River valley located south- east of Paris. The Bassée is of major importance for the drinking-water supply of Paris and surroundings, in addition to its particular hydrodynamic behavior due to the presence of a number of gravels. In this context, the understanding of stream-aquifer interactions is required for water quantity and quality preservation. A regional distributed process-based hydro(geo)logical model, Eau-Dyssée, is used. It aims at the integrated modeling of the hydrosystem to manage the various elements involved in the quantitative and qualitative aspects of water resources. Eau-Dyssée simulates pseudo 3D flow in aquifer systems solving the diffusivity equation with a finite difference numerical scheme. River flow is simulated with a Muskingum model. In addition to the in-stream discharge, a river stage estimate is needed to calculate the water exchange at the stream-aquifer interface using a conductance model. In this context, the future SWOT mission and its high-spatial resolution imagery can provide surface water level measurements at the regional scale that will permit to better characterize the Bassée complex hydro(geo)logical system and better assess soil water content. Moreover, the Bassée is considered as a potential target for the framework of the AirSWOT airborne campaign in France, 2013.

  17. Process analysis of regional aerosol pollution during spring in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Fan, Qi; Lan, Jing; Liu, Yiming; Wang, Xuemei; Chan, Pakwai; Hong, Yingying; Feng, Yerong; Liu, Yexin; Zeng, Yanjun; Liang, Guixiong

    2015-12-01

    A numerical simulation analysis was performed for three air pollution episodes in the Pearl River Delta (PRD) region during March 2012 using the third-generation air quality modeling system Models-3/CMAQ. The results demonstrated that particulate matter was the primary pollutant for all three pollution episodes and was accompanied by relatively low visibility in the first two episodes. Weather maps indicate that the first two episodes occurred under the influence of warm, wet southerly air flow systems that led to high humidity throughout the region. The liquid phase reaction of gaseous pollutants resulted in the generation of fine secondary particles, which were identified as the primary source of pollution in the first two episodes. The third pollution episode occurred during a warming period following a cold front. Relative humidity was lower during this episode, and coarse particles were the major pollution contributor. Results of process analysis indicated that emissions sources, horizontal transport and vertical transport were the primary factors affecting pollutant concentrations within the near-surface layer during all three episodes, while aerosol processes, cloud processes, horizontal transport and vertical transport had greater influence at approximately 900 m above ground. Cloud processes had a greater impact during the first two pollution episodes because of the higher relative humidity. In addition, by comparing pollution processes from different cities (Guangzhou and Zhongshan), the study revealed that the first two pollution episodes were the result of local emissions within the PRD region and transport between surrounding cities, while the third episode exhibited prominent regional pollution characteristics and was the result of regional pollutant transport.

  18. A simple method to predict regional fish abundance: an example in the McKenzie River Basin, Oregon

    Treesearch

    D.J. McGarvey; J.M. Johnston

    2011-01-01

    Regional assessments of fisheries resources are increasingly called for, but tools with which to perform them are limited. We present a simple method that can be used to estimate regional carrying capacity and apply it to the McKenzie River Basin, Oregon. First, we use a macroecological model to predict trout densities within small, medium, and large streams in the...

  19. Regional precipitation trend analysis at the Langat River Basin, Selangor, Malaysia

    NASA Astrophysics Data System (ADS)

    Palizdan, Narges; Falamarzi, Yashar; Huang, Yuk Feng; Lee, Teang Shui; Ghazali, Abdul Halim

    2014-08-01

    Various hydrological and meteorological variables such as rainfall and temperature have been affected by global climate change. Any change in the pattern of precipitation can have a significant impact on the availability of water resources, agriculture, and the ecosystem. Therefore, knowledge on rainfall trend is an important aspect of water resources management. In this study, the regional annual and seasonal precipitation trends at the Langat River Basin, Malaysia, for the period of 1982-2011 were examined at the 95 % level of significance using the regional average Mann-Kendall (RAMK) test and the regional average Mann-Kendall coupled with bootstrap (RAMK-bootstrap) method. In order to identify the homogeneous regions respectively for the annual and seasonal scales, firstly, at-site mean total annual and separately at-site mean total seasonal precipitation were spatialized into 5 km × 5 km grids using the inverse distance weighting (IDW) algorithm. Next, the optimum number of homogeneous regions (clusters) is computed using the silhouette coefficient approach. Next, the homogeneous regions were formed using the K-mean clustering method. From the annual scale perspective, all three regions showed positive trends. However, the application of two methods at this scale showed a significant trend only in the region AC1. The region AC2 experienced a significant positive trend using only the RAMK test. On a seasonal scale, all regions showed insignificant trends, except the regions I1C1 and I1C2 in the Inter-Monsoon 1 (INT1) season which experienced significant upward trends. In addition, it was proven that the significance of trends has been affected by the existence of serial and spatial correlations.

  20. Analysis of water use strategies of the desert riparian forest plant community in inland rivers of two arid regions in northwestern China

    NASA Astrophysics Data System (ADS)

    Chen, Y. N.; Li, W. H.; Zhou, H. H.; Chen, Y. P.; Hao, X. M.; Fu, A. H.; Ma, J. X.

    2014-10-01

    Studies of the water use of the desert riparian forest plant community in arid regions and analyses of the response and adaptive strategies of plants to environmental stress are of great significance to the formulation of effective ecological conservation and restoration strategies. Taking two inland rivers in the arid regions of northwestern China, downstream of the Tarim River and Heihe River Basin as the research target regions, this paper explored the stem water potential, sap flow, root hydraulic lift, and characteristics of plant water sources of the major constructive species in the desert riparian forest, Populus euphratica and Tamarix ramosissima. Specifically, this was accomplished by combining the monitoring of field physiological and ecological indicators, and the analysis of laboratory tests. Then, the water use differences of species in different ecological environments and their ecological significance were analyzed. This study indicated that: (1) in terms of water sources, Populus euphratica and Tamarix ramosissima mainly used deep subsoil water and underground water, but the plant root system in the downstream of the Tarim River was more diversified than that in the downstream of the Heihe River in water absorption, (2) in terms of water distribution, Populus euphratica root possessed hydraulic lift capacity, but Populus euphratica root in the downstream of the Tarim River presented stronger hydraulic lift capacity and more significant ecological effect of water redistribution, (3) in terms of water transport, the plants in the downstream of the Heihe River can adapt to the environment through the current limiting of branch xylem, while plants in the downstream of the Tarim River substantially increased the survival probability of the whole plant by sacrificing weak branches and improving the water acquisition capacity of dominant branches; and (4) in terms of water dissipation, the water use and consumption of Populus euphratica at night exhibited

  1. The Importance of the Regional Species Pool, Ecological Species Traits and Local Habitat Conditions for the Colonization of Restored River Reaches by Fish

    PubMed Central

    Stoll, Stefan; Kail, Jochem; Lorenz, Armin W.; Sundermann, Andrea; Haase, Peter

    2014-01-01

    It is commonly assumed that the colonization of restored river reaches by fish depends on the regional species pools; however, quantifications of the relationship between the composition of the regional species pool and restoration outcome are lacking. We analyzed data from 18 German river restoration projects and adjacent river reaches constituting the regional species pools of the restored reaches. We found that the ability of statistical models to describe the fish assemblages established in the restored reaches was greater when these models were based on ‘biotic’ variables relating to the regional species pool and the ecological traits of species rather than on ‘abiotic’ variables relating to the hydromorphological habitat structure of the restored habitats and descriptors of the restoration projects. For species presence in restored reaches, ‘biotic’ variables explained 34% of variability, with the occurrence rate of a species in the regional species pool being the most important variable, while ’abiotic’ variables explained only the negligible amount of 2% of variability. For fish density in restored reaches, about twice the amount of variability was explained by ‘biotic’ (38%) compared to ‘abiotic’ (21%) variables, with species density in the regional species pool being most important. These results indicate that the colonization of restored river reaches by fish is largely determined by the assemblages in the surrounding species pool. Knowledge of species presence and abundance in the regional species pool can be used to estimate the likelihood of fish species becoming established in restored reaches. PMID:24404187

  2. Suspended and Dissolved Matter in the Sacramento River and Delta Region Under Drought Conditions

    NASA Astrophysics Data System (ADS)

    Ackleson, S. G.; Rhea, W. J.; Blaser, S.; Wilkerson, F. P.; Dugdale, R. C.; Davis, C. O.; Tufillaro, N. B.

    2016-02-01

    The State of California is experiencing the fourth year of a historic drought that, as it continues to worsen, has raised concerns about future agricultural production and prompted emergency water restrictions. The Sacramento River drainage basin and estuary fall within the drought area classified as extreme to exceptional. To document the ecological effects of this drought and to serve as baseline conditions with which to compare future non-drought conditions, a series of seasonal field campaigns were conducted between June 2014 and October 2015 to characterize the concentration, composition, and morphology of particulate and dissolved matter within the lower reaches of the Sacramento River and delta region. In situ measurements of spectral light scatter and absorption due to water impurities are compared with water sample analyses for pigment and suspended sediment concentration. In situ measurements are used to derive remote sensing algorithms for impurity concentration and composition from above-water and remotely sensed radiometric measurements. Results indicate a seasonally stable riverine water mass and particle population feeding into a delta region with complicated hydrodynamics, point sources of wetland detritus and dissolved organic matter, and heterogeneous particle assemblages. Possible changes as a result of an El Nino are discussed.

  3. Mapping hotspots of threatened species traded in bushmeat markets in the Cross-Sanaga rivers region.

    PubMed

    Fa, John E; Farfán, Miguel Angel; Marquez, Ana Luz; Duarte, Jesús; Nackoney, Janet; Hall, Amy; Dupain, Jef; Seymour, Sarah; Johnson, Paul J; MacDonald, David W; Vargas, J Mario

    2014-02-01

    Bushmeat markets exist in many countries in West and Central Africa, and data on species sold can be used to detect patterns of wildlife trade in a region. We surveyed 89 markets within the Cross-Sanaga rivers region, West Africa. In each market, we counted the number of carcasses of each taxon sold. During a 6-month period (7594 market days), 44 mammal species were traded. Thirteen species were on the International Union for Conservation of Nature (IUCN) Red List or protected under national legislation, and at least 1 threatened species was traded in 88 of the 89 markets. We used these data to identify market groups that traded similar species assemblages. Using cluster analyses, we detected 8 market groups that were also geographically distinct. Market groups differed in the diversity of species, evenness of species, and dominant, prevalent, and characteristic species traded. We mapped the distribution of number of threatened species traded across the study region. Most threatened species were sold in markets nearest 2 national parks, Korup National Park in Cameroon and Cross River in Nigeria. To assess whether the threatened-species trade hotspots coincided with the known ranges of these species, we mapped the overlap of all threatened species traded. Markets selling more threatened species overlapped with those regions that had higher numbers of these. Our study can provide wildlife managers in the region with better tools to discern zones within which to focus policing efforts and reduce threats to species that are threatened by the bushmeat trade. © 2013 Society for Conservation Biology.

  4. Regional variations of organophosphorus flame retardants - Fingerprint of large river basin estuaries/deltas in Europe compared with China.

    PubMed

    Wolschke, Hendrik; Sühring, Roxana; Massei, Riccardo; Tang, Jianhui; Ebinghaus, Ralf

    2018-05-01

    This study reports the occurrence and distribution of organophosphorus flame retardants and plasticizer (OPEs) in sediments of eight large river basin estuaries and deltas across Europe. A robust and sensitive OPE analysis method was developed through the application of an in-cell clean-up in an accelerated solvent extraction and the use of an GC-MSMS System for instrumental analyses. OPEs were detected in all sediment samples with sum concentrations of up to 181 ng g -1 dw. A fingerprinting method was used to identify river specific pattern to compare river systems. The estuaries and deltas were chosen to have a conglomerate print of the whole river. The results are showing very similar OPE patterns across Europe with minor differences driven by local industrial input. The European estuary concentrations and patterns were compared with OPEs detected in the Xiaoquing River in China, as an example for a region with other production, usage and legislative regulations. The Chinese fingerprint differed significant from the overall European pattern. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Quantifying the Contribution of Regional Aquifers to Stream Flow in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Masbruch, M.; Dickinson, J.

    2017-12-01

    The growing population of the arid and semiarid southwestern U.S. relies on over-allocated surface water resources and poorly quantified groundwater resources. In the Upper Colorado River Basin, recent studies have found that about 50 percent of the surface water at U.S. Geological Survey (USGS) stream gages is derived from groundwater contributions as base flow. Prior USGS and other studies for the Colorado Plateau region have mainly examined groundwater and surface water as separate systems, and there has yet to be regional synthesis of groundwater availability in aquifers that contribute to surface water. A more physically based representation of groundwater flow could improve simulations of surface-water capture by groundwater pumping, and changes of groundwater discharge to surface water caused by possible shifts in the distribution, magnitude, and timing of recharge in the future. We seek to improve conceptual and numerical models of groundwater and surface-water interactions in the Colorado Plateau region as part of a USGS regional groundwater availability assessment. Numerical modeling is used to simulate and quantify the base flow from groundwater to the Colorado River and its major tributaries. Groundwater/surface-water interactions will be simulated using the USGS code GSFLOW, which couples the Precipitation Runoff Modeling System (PRMS) to the groundwater flow model MODFLOW. Initial results suggest that interactions between groundwater and surface water are important for projecting long-term changes in surface water budgets.

  6. [Numerical simulation study of SOA in Pearl River Delta region].

    PubMed

    Cheng, Yan-li; Li, Tian-tian; Bai, Yu-hua; Li, Jin-long; Liu, Zhao-rong; Wang, Xue-song

    2009-12-01

    Secondary organic aerosols (SOA) is an important component of the atmospheric particle pollution, thus, determining the status and sources of SOA pollution is the premise of deeply understanding the occurrence, development law and the influence factors of the atmospheric particle pollution. Based on the pollution sources and meteorological data of Pearl River Delta region, the study used the two-dimensional model coupled with SOA module to stimulate the status and source of SOA pollution in regional scale. The results show: the generation of SOA presents obvious characteristics of photochemical reaction, and the high concentration appears at about 14:00; SOA concentration is high in some areas of Guangshou and Dongguan with large pollution source-emission, and it is also high in some areas of Zhongshan, Zhuhai and Jiangmen which are at downwind position of Guangzhou and Dongguan. Contribution ratios of several main pollution sources to SOA are: biogenic sources 72.6%, mobile sources 30.7%, point sources 12%, solvent and oil paint sources 12%, surface sources less than 5% respectively.

  7. Occurrence and transport of 17 perfluoroalkyl acids in 12 coastal rivers in south Bohai coastal region of China with concentrated fluoropolymer facilities.

    PubMed

    Wang, Pei; Lu, Yonglong; Wang, Tieyu; Fu, Yaning; Zhu, Zhaoyun; Liu, Shijie; Xie, Shuangwei; Xiao, Yang; Giesy, John P

    2014-07-01

    Perfluoroalkyl acids (PFAAs) are emerging contaminants that have raised great concern in recent years. While PFAAs manufacturing becomes regulated in developed countries, production has been partly shifted to China. Eight fluoropolymer manufacturing facilities located in the South Bohai coastal region, one of the most populated areas of China, have been used to manufacture PFAA-related substances since 2001. The environmental consequence of the intensive production of PFAAs in this region remains largely unknown. We analyzed 17 PFAAs in twelve coastal rivers of this region, and found staggeringly high concentrations of perfluorooctanoic acid (PFOA) ranging from 0.96 to 4534.41 ng/L. The highest concentration was observed in the Xiaoqing River which received effluents from certain fluoropolymer facilities. Principal component analysis indicated similar sources of several perfluoroalkyl carboxylic acids (PFCAs) in all rivers, which indicated that atmospheric transport, wastewater treatment and surface runoff also acted as important supplements to direct discharge to surface water. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Regional L-Moment-Based Flood Frequency Analysis in the Upper Vistula River Basin, Poland

    NASA Astrophysics Data System (ADS)

    Rutkowska, A.; Żelazny, M.; Kohnová, S.; Łyp, M.; Banasik, K.

    2017-02-01

    The Upper Vistula River basin was divided into pooling groups with similar dimensionless frequency distributions of annual maximum river discharge. The cluster analysis and the Hosking and Wallis (HW) L-moment-based method were used to divide the set of 52 mid-sized catchments into disjoint clusters with similar morphometric, land use, and rainfall variables, and to test the homogeneity within clusters. Finally, three and four pooling groups were obtained alternatively. Two methods for identification of the regional distribution function were used, the HW method and the method of Kjeldsen and Prosdocimi based on a bivariate extension of the HW measure. Subsequently, the flood quantile estimates were calculated using the index flood method. The ordinary least squares (OLS) and the generalised least squares (GLS) regression techniques were used to relate the index flood to catchment characteristics. Predictive performance of the regression scheme for the southern part of the Upper Vistula River basin was improved by using GLS instead of OLS. The results of the study can be recommended for the estimation of flood quantiles at ungauged sites, in flood risk mapping applications, and in engineering hydrology to help design flood protection structures.

  9. Retrospective dosimetry related to chronic environmental exposure

    NASA Technical Reports Server (NTRS)

    Degteva, M. O.; Kozheurov, V. P.; Tolstykh, E. I.; Neta, R. (Principal Investigator)

    1998-01-01

    Radioactive contamination of the environment occurred in the early fifties as a result of the releases from the Mayak plutonium production complex (Southern Urals, Russia). The releases of liquid wastes into the Techa river resulted in chronic exposure of 30,000 residents of the riverside communities. Since 1951 90Sr body burdens have been measured for over half of this cohort. This paper presents the analysis of data on 90Sr in humans and describes the reconstruction of internal doses for these people.

  10. Retrospective dosimetry related to chronic environmental exposure.

    PubMed

    Degteva, M O; Kozheurov, V P; Tolstykh, E I

    1998-01-01

    Radioactive contamination of the environment occurred in the early fifties as a result of the releases from the Mayak plutonium production complex (Southern Urals, Russia). The releases of liquid wastes into the Techa river resulted in chronic exposure of 30,000 residents of the riverside communities. Since 1951 90Sr body burdens have been measured for over half of this cohort. This paper presents the analysis of data on 90Sr in humans and describes the reconstruction of internal doses for these people.

  11. Climate Change and Its Impact on the Eco-Environment of the Three-Rivers Headwater Region on the Tibetan Plateau, China.

    PubMed

    Jiang, Chong; Zhang, Linbo

    2015-09-25

    This study analyzes the impact of climate change on the eco-environment of the Three-Rivers Headwater Region (TRHR), Tibetan Plateau, China. Temperature and precipitation experienced sharp increases in this region during the past 57 years. A dramatic increase in winter temperatures contributed to a rise in average annual temperatures. Moreover, annual runoff in the Lancang (LRB) and Yangtze (YARB) river basins showed an increasing trend, compared to a slight decrease in the Yellow River Basin (YRB). Runoff is predominantly influenced by rainfall, which is controlled by several monsoon systems. The water temperature in the YRB and YARB increased significantly from 1958 to 2007 (p < 0.001), driven by air temperature changes. Additionally, owing to warming and wetting trends in the TRHR, the net primary productivity (NPP) and normalized difference vegetation index (NDVI) showed significant increasing trends during the past half-century. Furthermore, although an increase in water erosion due to rainfall erosivity was observed, wind speeds declined significantly, causing a decline in wind erosion, as well as the frequency and duration of sandstorms. A clear regional warming trend caused an obvious increasing trend in glacier runoff, with a maximum value observed in the 2000s.

  12. Climate Change and Its Impact on the Eco-Environment of the Three-Rivers Headwater Region on the Tibetan Plateau, China

    PubMed Central

    Jiang, Chong; Zhang, Linbo

    2015-01-01

    This study analyzes the impact of climate change on the eco-environment of the Three-Rivers Headwater Region (TRHR), Tibetan Plateau, China. Temperature and precipitation experienced sharp increases in this region during the past 57 years. A dramatic increase in winter temperatures contributed to a rise in average annual temperatures. Moreover, annual runoff in the Lancang (LRB) and Yangtze (YARB) river basins showed an increasing trend, compared to a slight decrease in the Yellow River Basin (YRB). Runoff is predominantly influenced by rainfall, which is controlled by several monsoon systems. The water temperature in the YRB and YARB increased significantly from 1958 to 2007 (p < 0.001), driven by air temperature changes. Additionally, owing to warming and wetting trends in the TRHR, the net primary productivity (NPP) and normalized difference vegetation index (NDVI) showed significant increasing trends during the past half-century. Furthermore, although an increase in water erosion due to rainfall erosivity was observed, wind speeds declined significantly, causing a decline in wind erosion, as well as the frequency and duration of sandstorms. A clear regional warming trend caused an obvious increasing trend in glacier runoff, with a maximum value observed in the 2000s. PMID:26404333

  13. Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary.

    PubMed

    Yin, Su; Wu, Yuehan; Xu, Wei; Li, Yangyang; Shen, Zhenyao; Feng, Chenghong

    2016-07-01

    To determine whether the discharge control of heavy metals in the Yangtze River basin can significantly change the pollution level in the estuary, this study analyzed the sources (upper river, the estuarine region, and the adjacent sea) of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in dissolved and particulate phases in the surface water of the estuary during wet, normal, and dry seasons. Metal sources inferred from section fluxes agree with those in statistical analysis methods. Heavy metal pollution in the surface water of Yangtze Estuary primarily depends on the sediment suspension and the wastewater discharge from estuary cities. Upper river only constitutes the main source of dissolved heavy metals during the wet season, while the estuarine region and the adjacent sea (especially the former) dominate the dissolved metal pollution in the normal and dry seasons. Particulate metals are mainly derived from sediment suspension in the estuary and the adjacent sea, and the contribution of the upper river can be neglected. Compared with the hydrologic seasons, flood-ebb tides exert a more obvious effect on the water flow directions in the estuary. Sediment suspension, not the upper river, significantly affects the suspended particulate matter concentration in the estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. River terrace development in the NE Mediterranean region (Syria and Turkey): Patterns in relation to crustal type

    NASA Astrophysics Data System (ADS)

    Bridgland, David R.; Demir, Tuncer; Seyrek, Ali; Daoud, Mohamad; Abou Romieh, Mohammad; Westaway, Rob

    2017-06-01

    It is widely recognized that the optimal development of river terraces globally has been in the temperate latitudes, with NW and Central Europe being areas of particular importance for the preservation of such archives of Quaternary environmental change. There is also a growing consensus that the principal drivers of terrace formation have been climatic fluctuation against a background of progressive (but variable) uplift. Nonetheless river terraces are widely preserved in the Mediterranean region, where they have often been attributed to the effects of neotectonic activity, with a continuing debate about the relative significance of fluctuating temperature (glacials-interglacials) and precipitation (pluvials-interpluvials). Research in Syria and southern-central Turkey (specifically in the valleys of the Tigris and Ceyhan in Turkey, the Kebir in Syria and the trans-border rivers Orontes and Euphrates) has underlined the importance of uplift rates in dictating the preservation pattern of fluvial archives and has revealed different patterns that can be related to crustal type. The NE Mediterranean coastal region has experienced unusually rapid uplift in the Late Quaternary. The relation between the Kebir terraces and the staircase of interglacial raised beaches preserved along the Mediterranean coastline of NW Syria reinforces previous conclusions that the emplacement of the fluvial terrace deposits in the Mediterranean has occurred during colder climatic episodes.

  15. Evapotranspiration Calculations for an Alpine Marsh Meadow Site in Three-river Headwater Region

    NASA Astrophysics Data System (ADS)

    Zhou, B.; Xiao, H.

    2016-12-01

    Daily radiation and meteorological data were collected at an alpine marsh meadow site in the Three-river Headwater Region(THR). Use them to assess radiation models determined after comparing the performance between Zuo model and the model recommend by FAO56P-M.Four methods, FAO56P-M, Priestley-Taylor, Hargreaves, and Makkink methods were applied to determine daily reference evapotranspiration( ETr) for the growing season and built the empirical models for estimating daily actual evapotranspiration ETa between ETr derived from the four methods and evapotranspiration derived from Bowen Ratio method on alpine marsh meadow in this region. After comparing the performance of four empirical models by RMSE, MAE and AI, it showed these models all can get the better estimated daily ETaon alpine marsh meadow in this region, and the best performance of the FAO56 P-M, Makkink empirical model were better than Priestley-Taylor and Hargreaves model.

  16. Simulation of Regional Ground-Water Flow in the Suwannee River Basin, Northern Florida and Southern Georgia

    USGS Publications Warehouse

    Planert, Michael

    2007-01-01

    The Suwannee River Basin covers a total of nearly 9,950 square miles in north-central Florida and southern Georgia. In Florida, the Suwannee River Basin accounts for 4,250 square miles of north-central Florida. Evaluating the impacts of increased development in the Suwannee River Basin requires a quantitative understanding of the boundary conditions, hydrogeologic framework and hydraulic properties of the Floridan aquifer system, and the dynamics of water exchanges between the Suwannee River and its tributaries and the Floridan aquifer system. Major rivers within the Suwannee River Basin are the Suwannee, Santa Fe, Alapaha, and Withlacoochee. Four rivers west of the Suwannee River are the Aucilla, the Econfina, the Fenholloway, and the Steinhatchee; all drain to the Gulf of Mexico. Perhaps the most notable aspect of the surface-water hydrology of the study area is that large areas east of the Suwannee River are devoid of channelized, surface drainage; consequently, most of the drainage occurs through the subsurface. The ground-water flow system underlying the study area plays a critical role in the overall hydrology of this region of Florida because of the dominance of subsurface drain-age, and because ground-water flow sustains the flow of the rivers and springs. Three principal hydrogeologic units are present in the study area: the surficial aquifer system, the intermediate aquifer system, and the Floridan aquifer system. The surficial aquifer system principally consists of unconsoli-dated to poorly indurated siliciclastic deposits. The intermediate aquifer system, which contains the intermediate confining unit, lies below the surficial aquifer system (where present), and generally consists of fine-grained, uncon-solidated deposits of quartz sand, silt, and clay with interbedded limestone of Miocene age. Regionally, the intermediate aquifer system and intermediate con-fining unit act as a confining unit that restricts the exchange of water between the over

  17. First records of Enchytraeidae (Annelida, Clitellata) from the Three Parallel Rivers region.

    PubMed

    Chen, Jing; Jiang, Wanxiang; Xie, Zhicai

    2016-03-21

    The Three Parallel Rivers region is not only an important World Natural Heritage area but also one of the hotspots of world biodiversity with many endemic organisms. However, little is known about the soil fauna of this region, and nothing about enchytraeids. Here we describe two species from the Laojun Mountain, one of the eight eminent mountain chains in this region, Chamaedrilus cf. ozensis Torii, 2015 and Mesenchytraeus laojunensis sp. nov. The latter belongs to a group of Mesenchytraeus species characterized by spermathecae with one ampullar diverticulum and a communication with the oesophagus, and is thus far the southernmost member of this genus in China. It has two exceptional traits within Mesenchytraeus: a large sperm funnel (more than 2000 µm in length) and a subterminal attachment of the vas deferens to the atrium. In addition, it is distinguished from the other congeners within this group by coelomocytes with distinct refractile vesicles, five pairs of preclitellar nephridia, and the presence of abundant and flame-shaped sperm bundles in sperm sacs, which extend backwards into XVII-XXII.

  18. An ECOMAG-based Regional Hydrological Model for the Mackenzie River basin

    NASA Astrophysics Data System (ADS)

    Motovilov, Yury; Kalugin, Andrey; Gelfan, Alexander

    2017-04-01

    A physically-based distributed model of runoff generation has been developed for the Mackenzie River basin (the catchment area is 1 660 000 km2). The model is based on the ECOMAG (ECOlogical Model for Applied Geophysics) hydrological modeling platform and describes processes of interception of rainfall/snowfall by the canopy, snow accumulation and melt, soil freezing and thawing, water infiltration into unfrozen and frozen soil, evapotranspiration, thermal and water regime of soil, overland, subsurface and ground flow, flow routing through a channel network accounting for flow regulation by lakes and reservoirs. The governing model's equations are derived from integration of the basic hydro- and thermodynamics equations of water and heat vertical transfer in snowpack, frozen/unfrozen soil, horizontal water flow under and over catchment slopes, etc. The Mackenzie basin's schematization was performed on the basis of the global DEM data (1-km resolution) from the HYDRO1K database of the U.S. Geological Survey. Most of the model parameters are physically meaningful and derived through the global datasets of the basin characteristics: FAO/IIASA Harmonized World Soil Database, USGS EROS Global Land Cover Characteristics project, etc. The 0.5ox0.5o WATCH reanalysis daily precipitation, air temperature and air humidity data were used as the model input for the period of 1971-2002. The daily discharge data provided by the Water Survey of Canada for 10 streamflow gauges, which are located at the Mackenzie River and the main tributaries (Peel River, Great Bear River, Liard River, Slave River and Athabasca River), were used for calibration (1991-2001) and validation (1971-1990) of the model. The gauges' catchment areas vary from 70600 km2 (Peel River above Fort Mopherson) to 1 660 000 km2 (Mackenzie River at Arctic Red River). The model demonstrated satisfactory performance in terms of Nash-and Sutcliffe efficiency (NSE(daily)0.60 and NSE(monthly)0.70) and percent bias

  19. Latent resonance in tidal rivers, with applications to River Elbe

    NASA Astrophysics Data System (ADS)

    Backhaus, Jan O.

    2015-11-01

    We describe a systematic investigation of resonance in tidal rivers, and of river oscillations influenced by resonance. That is, we explore the grey-zone between absent and fully developed resonance. Data from this study are the results of a one-dimensional numerical channel model applied to a four-dimensional parameter space comprising geometry, i.e. length and depths of rivers, and varying dissipation and forcing. Similarity of real rivers and channels from parameter space is obtained with the help of a 'run-time depth'. We present a model-channel, which reproduces tidal oscillations of River Elbe in Hamburg, Germany with accuracy of a few centimetres. The parameter space contains resonant regions and regions with 'latent resonance'. The latter defines tidal oscillations that are elevated yet not in full but juvenile resonance. Dissipation reduces amplitudes of resonance while creating latent resonance. That is, energy of resonance radiates into areas in parameter space where periods of Eigen-oscillations are well separated from the period of the forcing tide. Increased forcing enhances the re-distribution of resonance in parameter space. The River Elbe is diagnosed as being in a state of anthropogenic latent resonance as a consequence of ongoing deepening by dredging. Deepening the river, in conjunction with the expected sea level rise, will inevitably cause increasing tidal ranges. As a rule of thumb, we found that 1 m deepening would cause 0.5 m increase in tidal range.

  20. A new interpretation of deformation rates in the Snake River Plain and adjacent basin and range regions based on GPS measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.J. Payne; R. McCaffrey; R.W. King

    2012-04-01

    We evaluate horizontal Global Positioning System (GPS) velocities together with geologic, volcanic, and seismic data to interpret extension, shear, and contraction within the Snake River Plain and the Northern Basin and Range Province, U.S.A. We estimate horizontal surface velocities using GPS data collected at 385 sites from 1994 to 2009 and present an updated velocity field within the Stable North American Reference Frame (SNARF). Our results show an ENE-oriented extensional strain rate of 5.9 {+-} 0.7 x 10{sup -9} yr{sup -1} in the Centennial Tectonic belt and an E-oriented extensional strain rate of 6.2 {+-} 0.3 x 10{sup -9} yr{supmore » -1} in the Intermountain Seismic belt combined with the northern Great Basin. These extensional strain rates contrast with the regional north-south contraction of -2.6 {+-} 1.1 x 10{sup -9} yr{sup -1} calculated in the Snake River Plain and Owyhee-Oregon Plateau over a 125 x 650 km region. Tests that include dike-opening reveal that rapid extension by dike intrusion in volcanic rift zones does not occur in the Snake River Plain at present. This slow internal deformation in the Snake River Plain is in contrast to the rapidly-extending adjacent Basin and Range provinces and implies shear along boundaries of the Snake River Plain. We estimate right-lateral shear with slip rates of 0.5-1.5 mm/yr along the northwestern boundary adjacent to the Centennial Tectonic belt and left-lateral oblique extension with slip rates of <0.5 to 1.7 mm/yr along the southeastern boundary adjacent to the Intermountain Seismic belt. The fastest lateral shearing occurs near the Yellowstone Plateau where strike-slip focal mechanisms and faults with observed strike-slip components of motion are documented. The regional GPS velocity gradients are best fit by nearby poles of rotation for the Centennial Tectonic belt, Idaho batholith, Snake River Plain, Owyhee-Oregon Plateau, and central Oregon, indicating that clockwise rotation is driven by extension to

  1. Groundwater Discharge of Legacy Nitrogen to River Networks: Linking Regional Groundwater Models to Streambed Groundwater-Surface Water Exchange and Nitrogen Processing

    NASA Astrophysics Data System (ADS)

    Barclay, J. R.; Helton, A. M.; Briggs, M. A.; Starn, J. J.; Hunt, A.

    2017-12-01

    Despite years of management, excess nitrogen (N) is a pervasive problem in many aquatic ecosystems. More than half of surface water in the United States is derived from groundwater, and widespread N contamination in aquifers from decades of watershed N inputs suggest legacy N discharging from groundwater may contribute to contemporary N pollution problems in surface waters. Legacy N loads to streams and rivers are controlled by both regional scale flow paths and fine-scale processes that drive N transformations, such as groundwater-surface water exchange across steep redox gradients that occur at stream bed interfaces. Adequately incorporating these disparate scales is a challenge, but it is essential to understanding legacy N transport and making informed management decisions. We developed a regional groundwater flow model for the Farmington River, a HUC-8 basin that drains to the Long Island Sound, a coastal estuary that suffers from elevated N loads despite decades of management, to understand broad patterns of regional transport. To evaluate and refine the regional model, we used thermal infrared imagery paired with vertical temperature profiling to estimate groundwater discharge at the streambed interface. We also analyzed discharging groundwater for multiple N species to quantify fine scale patterns of N loading and transformation via denitrification at the streambed interface. Integrating regional and local estimates of groundwater discharge of legacy N to river networks should improve our ability to predict spatiotemporal patterns of legacy N loading to and transformation within surface waters.

  2. Estimation of evapotranspiration in an arid region by remote sensing—A case study in the middle reaches of the Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Li, Xingmin; Lu, Ling; Yang, Wenfeng; Cheng, Guodong

    2012-07-01

    Estimating surface evapotranspiration is extremely important for the study of water resources in arid regions. Data from the National Oceanic and Atmospheric Administration's Advanced Very High Resolution Radiometer (NOAA/AVHRR), meteorological observations and data obtained from the Watershed Allied Telemetry Experimental Research (WATER) project in 2008 are applied to the evaporative fraction model to estimate evapotranspiration over the Heihe River Basin. The calculation method for the parameters used in the model and the evapotranspiration estimation results are analyzed and evaluated. The results observed within the oasis and the banks of the river suggest that more evapotranspiration occurs in the inland river basin in the arid region from May to September. Evapotranspiration values for the oasis, where the land surface types and vegetations are highly variable, are relatively small and heterogeneous. In the Gobi desert and other deserts with little vegetation, evapotranspiration remains at its lowest level during this period. These results reinforce the conclusion that rational utilization of water resources in the oasis is essential to manage the water resources in the inland river basin. In the remote sensing-based evapotranspiration model, the accuracy of the parameter estimate directly affects the accuracy of the evapotranspiration results; more accurate parameter values yield more precise values for evapotranspiration. However, when using the evaporative fraction to estimate regional evapotranspiration, better calculation results can be achieved only if evaporative fraction is constant in the daytime.

  3. A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region

    NASA Astrophysics Data System (ADS)

    He, Zhibin; Wen, Xiaohu; Liu, Hu; Du, Jun

    2014-02-01

    Data driven models are very useful for river flow forecasting when the underlying physical relationships are not fully understand, but it is not clear whether these data driven models still have a good performance in the small river basin of semiarid mountain regions where have complicated topography. In this study, the potential of three different data driven methods, artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for forecasting river flow in the semiarid mountain region, northwestern China. The models analyzed different combinations of antecedent river flow values and the appropriate input vector has been selected based on the analysis of residuals. The performance of the ANN, ANFIS and SVM models in training and validation sets are compared with the observed data. The model which consists of three antecedent values of flow has been selected as the best fit model for river flow forecasting. To get more accurate evaluation of the results of ANN, ANFIS and SVM models, the four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), root mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and mean absolute relative error (MARE), were employed to evaluate the performances of various models developed. The results indicate that the performance obtained by ANN, ANFIS and SVM in terms of different evaluation criteria during the training and validation period does not vary substantially; the performance of the ANN, ANFIS and SVM models in river flow forecasting was satisfactory. A detailed comparison of the overall performance indicated that the SVM model performed better than ANN and ANFIS in river flow forecasting for the validation data sets. The results also suggest that ANN, ANFIS and SVM method can be successfully applied to establish river flow with complicated topography forecasting models in the semiarid mountain regions.

  4. Linking hyporheic flow and nitrogen cycling near the Willamette River - A large river in Oregon, USA

    USGS Publications Warehouse

    Hinkle, S.R.; Duff, J.H.; Triska, F.J.; Laenen, A.; Gates, E.B.; Bencala, K.E.; Wentz, D.A.; Silva, S.R.

    2001-01-01

    Several approaches were used to characterize ground water/surface water interactions near the Willamette River - A large (ninth order) river in Oregon, USA. A series of potentiometric surface maps demonstrated the presence of highly dynamic hydraulic gradients between rivers and the adjacent aquifer. Hyporheic zone gradients extended on the order of hundreds of meters. River gains and losses at the river stretch scale (tens of kilometers) were consistent with fluxes implied by the potentiometric surface maps, and apparently reflect regional ground water/surface water interactions. Gains and losses of up to 5-10% of streamflow were observed at this scale. On the river reach scale (1-2 km), gains and losses on the order of 5% of streamflow were interpreted as representing primarily local hyporheic exchange. Isotopic and chemical data collected from shallow hyporheic zone wells demonstrated interaction between regional ground water and river water. The origin of sampled hyporheic zone water ranged from a mixture dominated by regional ground water to water containing 100% river water. The common assumption that ground and river water mix primarily in the river channel is not applicable in this system. Isotopic and chemical data also indicated that significant (nearly complete) vegetative nitrate uptake and/or nitrate reduction occurred in water from 4 of 12 hyporheic zone sites. In these cases, it was primarily nitrate transported to the hyporheic zone in regional ground water that was removed from solution. Isotopes of water and nitrate indicated that hyporheic zone water sampled at two sites was composed of water originating as river water and demonstrated that significant vegetative nitrate uptake and nitrate reduction occurred along these hyporheic zone flowpaths. Thus, the hyporheic zone may, in some instances, serve to remove nitrate from river water. Additional investigations with chemical tools and microbial enzyme assays were conducted at one hyporheic site. A

  5. Managing Environmental Flows for Impounded Rivers in Semi-Arid Regions- A Habitat Suitability Index (HSI) Approach for the Assessment of River Habitat for Salmonid Populations

    NASA Astrophysics Data System (ADS)

    Pai, H.; Sivakumaran, K.; Villamizar, S. R.; Flanagan, J.; Guo, Q.; Harmon, T. C.

    2013-12-01

    Balancing ecosystem health in water-scarce, agriculturally dominated river basins remains a challenge. In dry water years, maintaining conditions for restored and sustained indigenous fish populations (a frequently used indicator for ecosystem health) is particularly challenging. Competing human demands include urban and agricultural water supplies, hydropower, and flood control. In many semi-arid regions, increasing drought intensity and frequency under future climate scenarios will combine with population increases to water scarcity. The goal of this work is to better understand how reservoir releases affect fish habitat and overall river aquatic ecosystem quality. Models integrating a diverse array of physical and biological processes and system state are used to forecast the river ecosystem response to changing drivers. We propose a distributed parameter-based Habitat Suitability Index (HSI) approach for assessing fish habitat quality. Our river ecosystem HSI maps are based on a combination of the following: (1) In situ data describing stream flow and water quality conditions; (2) Spatial observations, including surveyed cross-sections, aerial imagery and digital elevation maps (DEM) of the river and its riparian corridor; and (3) Simulated spatially distributed water depths, flow velocities, and temperatures estimated from 1D and 2D river flow and temperature models (HEC-RAS and CE-QUAL-W2, respectively). With respect to (2), image processing schemes are used to classify and map key habitat features, namely riparian edge and shallow underwater vegetation. HSI maps can be modified temporally to address specific life cycle requirements of indicator fish species. Results are presented for several reaches associated with the San Joaquin River Restoration Project, focusing on several components of the Chinook salmon life cycle. HSI maps and interpretations are presented in the context of a range of prescribed reservoir release hydrographs linked to California water

  6. The KULTURisk Regional Risk Assessment methodology for flood risk: the case of Sihl river in Zurich

    NASA Astrophysics Data System (ADS)

    Ronco, Paolo; Bullo, Martina; Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Semenzin, Elena; Buchecker, Matthias; Marcomini, Antonio

    2014-05-01

    In recent years, the frequency of catastrophes induced by natural hazard has increased and flood events in particular have been recognized as one of the most threatening water-related disasters. Severe floods have occurred in Europe over the last decade causing loss of life, displacement of people and heavy economic losses. Flood disasters are growing as a consequence of many factors both climatic and non-climatic. Indeed, the current increase of water-related disasters can be mainly attributed to the increase of exposure (elements potentially at risk in floodplains area) and vulnerability (i.e. economic, social, geographic, cultural, and physical/environmental characteristics of the exposure). Besides these factors, the strong effect of climate change is projected to radically modify the usual pattern of the hydrological cycle by intensifying the frequency and severity of flood events both at local, regional and global scale. Within this context, it is necessary to develop effective and pro-active strategies, tools and actions which allow to assess and (possibly) to reduce the risk of floods. In light of the recent European Flood Directive (FD), the KULTURisk-FP7 Project developed a state-of-the-art Regional Risk Assessment (RRA) methodology for assessing the risk imposed by floods events. The KULTURisk RRA methodology is based on the concept of risk being function of hazard, exposure and vulnerability. It is a flexible that can be adapted to different case studies (i.e. large rivers, alpine/mountain catchments, urban areas and coastal areas) and spatial scales (i.e. from the large river to the urban scale) that integrates the outputs of various hydrodynamics models (hazard) with sito-specific geophysical and socio-economic indicators (exposure and vulnerability factors such as land cover, slope, soil permeability, population density, economic activities, etc.). The main outputs of the methodology are GIS-based risk maps that identify and prioritize relative hot

  7. An Integrated Geophysical and Tectonic Study of the Structure and Evolution of the Crust in the Snake River Plain Region, Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Keller, G. R.; Khatiwada, M.

    2016-12-01

    The Snake River Plain region in the Pacific Northwest of North America has been the target of a number of recent studies that have revealed further complexities in its structure and tectonic evolution. Based on surface morphology and Late Cenozoic volcanic activity, the Snake River Plain consists of an eastern and western arm (ESRP and WSRP) that are similar in many respects but also quite different in other respects. Thus, its origin, evolution, structural complexities, the role of extension and magmatism in its formation, and the tectonic drivers are still subjects of debate. Numerous seismic studies have specifically focused on the structure of the ESRP and Yellowstone area. However, crustal-scale studies of the WSRP are limited. We added new gravity data to the existing coverage in the WSRP region and undertook a regional, integrated analysis approach that included magnetic, seismic reflection and refraction profiling, receiver function results, geological and geospatial data, and interpreted well logs. Our integrated geophysical modeling focused on the structure of the WSRP. We generated two crustal models across it at locations where the most existing geophysical and geological constraints were available. We observed both differences and similarities in the structure of the WSRP and ESRP. Although, the shallow crustal structures are different, a mid-crustal mafic intrusion is a major source of the high gravity anomaly values. Within the context of recent studies in the surrounding region, the intersection of the two arms of the Snake River Plain emerges as a major element of a complex tectonic intersection that includes the High Lava Plains of eastern Oregon, the Northern Nevada Rift, a southwestern extension of the ESRP into northern Nevada, as well as, faulting and volcanism extending northwestward to connect with the Columbia River Basalts region.

  8. [Study on distribution characteristics and potential ecological risk of soil heavy metals in the Yellow River beach region in Kaifeng City].

    PubMed

    Zhang, Peng-yan; Qin, Ming-zhou; Chen, Long; Hu, Chang-hui; Zhao, Ya-ping; Dong, Wei-jun

    2013-09-01

    The distributions, soil environment status and potential ecological risk of heavy metals were studied in beach soil of returning the cropland into Yellow River beach region in Kaifeng by the Nemerows and Håkansons methods. The results showed that (1) as Among the average contents of the five heavy metals Pb, Cr, Hg, As and Cd, the highest was the average content of Cr, and the lowest was the average content of Pb and Hg. In addition to Hg, the coefficients of variation of other heavy metals were relatively small, indicating that the content of heavy metals was quite different at different sites, and to some extent, relecting that Hg, As and Pb were the major elements polluting the soil, among which, Pb pollution was the pollution with universality. There was little difference in the contents of Cr and Cd from village to village the coefficient of variation was small, and the contents were below the national standard level. (2) There was significant difference in the spatial distribution of soil heavy metal elements in the upper, the middle and lower sections of the study area. The upper section was clean, the middle section was slightly polluted, and the lower section was enriched with pollutants. (3) The distribution of heavy metals in the beach region inside and outside the levees of Yellow River was closely related to the distribution of the residential regions. In the upper section of the beach region (southwest), the population was large and the contents of heavy metals were high. The contents of heavy metals were lower in the near river zone than outside the levees of Yellow River. And the heavy metal contents in the middle and lower section were higher than those outside the levees of Yellow River, while the lower section (northwest) showed a tendency of pollution enrichment. (4) In the view of the average individual potential ecological risk index of heavy metals (E(r)i), the potential ecological risk of Hg reached intense levels, and the potential

  9. An operational methodology for riparian land cover fine scale regional mapping for the study of landscape influence on river ecological status

    NASA Astrophysics Data System (ADS)

    Tormos, T.; Kosuth, P.; Souchon, Y.; Villeneuve, B.; Durrieu, S.; Chandesris, A.

    2010-12-01

    Preservation and restoration of river ecosystems require an improved understanding of the mechanisms through which they are influenced by landscape at multiple spatial scales and particularly at river corridor scale considering the role of riparian vegetation for regulating and protecting river ecological status and the relevance of this specific area for implementing efficient and realistic strategies. Assessing correctly this influence over large river networks involves accurate broad scale (i.e. at least regional) information on Land Cover within Riparian Areas (LCRA). As the structure of land cover along rivers is generally not accessible using moderate-scale satellite imagery, finer spatial resolution imagery and specific mapping techniques are needed. For this purpose we developed a generic multi-scale Object Based Image Analysis (OBIA) scheme able to produce LCRA maps in different geographic context by exploiting information available from very high spatial resolution imagery (satellite or airborne) and/or metric to decametric spatial thematic data on a given study zone thanks to fuzzy expert knowledge classification rules. A first experimentation was carried out on the Herault river watershed (southern of France), a 2650 square kilometers basin that presents a contrasted landscape (different ecoregions) and a total stream length of 1150 Km, using high and very high multispectral remotely-sensed images (10m Spot5 multispectral images and 0.5m aerial photography) and existing spatial thematic data. Application of the OBIA scheme produced a detailed (22 classes) LCRA map with an overall accuracy of 89% and a Kappa index of 83% according to a land cover pressures typology (six categories). A second experimentation (using the same data sources) was carried out on a larger test zone, a part of the Normandy river network (25 000 square kilometers basin; 6000 km long river network; 155 ecological stations). This second work aimed at elaborating a robust statistical

  10. Soil phosphorus forms and profile distributions in the tidal river network region in the Yellow River Delta estuary.

    PubMed

    Yu, Junbao; Qu, Fanzhu; Wu, Huifeng; Meng, Ling; Du, Siyao; Xie, Baohua

    2014-01-01

    Modified Hedley fraction method was used to study the forms and profile distribution in the tidal river network region subjected to rapid deposition and hydrologic disturbance in the Yellow River Delta (YRD) estuary, eastern China. The results showed that the total P (Pt) ranged from 612.1 to 657.8 mg kg(-1). Dilute HCl extractable inorganic P (Pi) was the predominant form in all profiles, both as absolute values and as a percentage of total extracted Pi. The NaOH extractable organic P (Po) was the predominant form of total extracted Po, while Bicarb-Pi and C.HCl-Po were the lowest fractions of total extracted Pi and Po in all the P forms. The Resin-P concentrations were high in the top soil layer and decreased with depth. The Pearson correlation matrix indicated that Resin-P, Bicarb-Pi, NaOH-Pi, and C.HCl-Pi were strongly positively correlated with salinity, TOC, Ca, Al, and Fe but negatively correlated with pH. The significant correlation of any studied form of organic P (Bicarb-Po, NaOH-Po, and C.HCl-Po) with geochemical properties were not observed in the study. Duncan multiple-range test indicated that the P forms and distribution heterogeneity in the profiles could be attributed to the influences of vegetation cover and hydrologic disturbance.

  11. Geomorphic Assessment of the Brazos River, Texas

    NASA Astrophysics Data System (ADS)

    Hamilton, P.; May, D.; Haring, C.

    2017-12-01

    The Brazos River is a large lowland river that traverses Texas before reaching the Gulf of Mexico. Of particular interest is the Brazos River reach through Fort Bend County, TX. This area is rapidly developing and as such there are concerns regarding infrastructure near the river. Rivers maintain a state of dynamic equilibrium wherein the system makes adjustments to external perturbations. This is of no concern in the abstract; the boundary conditions for the river change and the river adjusts to accommodate the change. However, because of development near the river, natural river adjustment can have catastrophic consequences. For example, bank failure along the Brazos River in Fort Bend County threatens SH 99, a major hurricane evacuation route, as well as flood control levees and county offices. Herein we present the results of hydraulic modeling conducted through the project area as well as the results of a geomorphic assessment. The Brazos River has a regional degradational trend throughout the project area in conjunction with subtly increasing sinuosity. Additionally, headcutting has greatly widened many of the tributary valleys and increased the local sediment supply to the river. Bank failure is an issue at several locations and there have been various solutions proposed for different sites. Part of the fear in addressing issues at a particular site is that money will be spent curing the symptoms along the river without confronting the underlying regional illness. Here we show some of the regional issues and how it they potentially interact with local solutions.

  12. International Trade, Pollution Accumulation and Sustainable Growth: A VAR Estimation from the Pearl River Delta Region

    NASA Astrophysics Data System (ADS)

    Zuo, Hui; Tian, Lu

    2018-03-01

    In order to investigate international trade influence in the regional environment. This paper constructs a vector auto-regression (VAR) model and estimates the equations with the environment and trade data of the Pearl River Delta Region. The major mechanisms to the lag are discussed and the fit simulation of the environmental change by the international impulse is given. The result shows that impulse of pollution-intensive export deteriorates the environment continuously and impulse of such import improves it. These effects on the environment are insignificantly correlated with contemporary regional income but significantly correlative to early-stage trade feature. To a typical trade-dependent economy, both export and import have hysteresis influence in the regional environment. The lagged impulse will change environmental development in the turning point, maximal pollution level and convergence.

  13. Geologic history of the Colorado River: Chapter C in The Colorado River region and John Wesley Powell (Professional Paper 669)

    USGS Publications Warehouse

    Hunt, Charles B.

    1969-01-01

    John Wesley Powell clearly recognized that the spectacular features of the Colorado River - its many grand canyons - were dependent upon the structural history of the mountainous barriers crossed by the river. He conceived of three different historical relationships between rivers and structural features: (1) Newly uplifted land surfaces have rivers that flow down the initial slope of the uplift; these relationships he termed consequent. (2) A river may be older than an uplift that it crosses because it has been able to maintain its course by eroding downward as the uplift progresses; this relationship he named antecedent. (3) An uplifted block may have been buried by younger deposits upon which a river becomes established. The river, in cutting downward, uncovers the uplifted block and becomes incised into it; this relationship he called superimposed.The geologic history of the Colorado River involves all three relationships. In addition, although the position of the river course through a particular structural barrier may have been the result of superposition, the depth of the canyon at that point may be largely due to renewed uplift of the barrier; such deepening of the canyon, therefore, is due to antecedence. The problem of the Colorado River remains today very much as G. K. Gilbert stated it nearly 100 years ago: "How much is antecedent and how much is superimposed?" The question must be asked separately for each stretch of the river.

  14. Development of river flood model in lower reach of urbanized river basin

    NASA Astrophysics Data System (ADS)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  15. When Local Extinction and Colonization of River Fishes Can Be Predicted by Regional Occupancy: the Role of Spatial Scales

    PubMed Central

    Bergerot, Benjamin; Hugueny, Bernard; Belliard, Jérôme

    2013-01-01

    Background Predicting which species are likely to go extinct is perhaps one of the most fundamental yet challenging tasks for conservation biologists. This is particularly relevant for freshwater ecosystems which tend to have the highest proportion of species threatened with extinction. According to metapopulation theories, local extinction and colonization rates of freshwater subpopulations can depend on the degree of regional occupancy, notably due to rescue effects. However, relationships between extinction, colonization, regional occupancy and the spatial scales at which they operate are currently poorly known. Methods And Findings: We used a large dataset of freshwater fish annual censuses in 325 stream reaches to analyse how annual extinction/colonization rates of subpopulations depend on the regional occupancy of species. For this purpose, we modelled the regional occupancy of 34 fish species over the whole French river network and we tested how extinction/colonization rates could be predicted by regional occupancy described at five nested spatial scales. Results show that extinction and colonization rates depend on regional occupancy, revealing existence a rescue effect. We also find that these effects are scale dependent and their absolute contribution to colonization and extinction tends to decrease from river section to larger basin scales. Conclusions In terms of management, we show that regional occupancy quantification allows the evaluation of local species extinction/colonization dynamics and reduction of local extinction risks for freshwater fish species implies the preservation of suitable habitats at both local and drainage basin scales. PMID:24367636

  16. When local extinction and colonization of river fishes can be predicted by regional occupancy: the role of spatial scales.

    PubMed

    Bergerot, Benjamin; Hugueny, Bernard; Belliard, Jérôme

    2013-01-01

    Predicting which species are likely to go extinct is perhaps one of the most fundamental yet challenging tasks for conservation biologists. This is particularly relevant for freshwater ecosystems which tend to have the highest proportion of species threatened with extinction. According to metapopulation theories, local extinction and colonization rates of freshwater subpopulations can depend on the degree of regional occupancy, notably due to rescue effects. However, relationships between extinction, colonization, regional occupancy and the spatial scales at which they operate are currently poorly known. And Findings: We used a large dataset of freshwater fish annual censuses in 325 stream reaches to analyse how annual extinction/colonization rates of subpopulations depend on the regional occupancy of species. For this purpose, we modelled the regional occupancy of 34 fish species over the whole French river network and we tested how extinction/colonization rates could be predicted by regional occupancy described at five nested spatial scales. Results show that extinction and colonization rates depend on regional occupancy, revealing existence a rescue effect. We also find that these effects are scale dependent and their absolute contribution to colonization and extinction tends to decrease from river section to larger basin scales. In terms of management, we show that regional occupancy quantification allows the evaluation of local species extinction/colonization dynamics and reduction of local extinction risks for freshwater fish species implies the preservation of suitable habitats at both local and drainage basin scales.

  17. Assessing regional climate simulations of the last 30 years (1982-2012) over Ganges-Brahmaputra-Meghna River Basin

    NASA Astrophysics Data System (ADS)

    Khandu; Awange, Joseph L.; Anyah, Richard; Kuhn, Michael; Fukuda, Yoichi

    2017-10-01

    The Ganges-Brahmaputra-Meghna (GBM) River Basin presents a spatially diverse hydrological regime due to it's complex topography and escalating demand for freshwater resources. This presents a big challenge in applying the current state-of-the-art regional climate models (RCMs) for climate change impact studies in the GBM River Basin. In this study, several RCM simulations generated by RegCM4.4 and PRECIS are assessed for their seasonal and interannual variations, onset/withdrawal of the Indian monsoon, and long-term trends in precipitation and temperature from 1982 to 2012. The results indicate that in general, RegCM4.4 and PRECIS simulations appear to reasonably reproduce the mean seasonal distribution of precipitation and temperature across the GBM River Basin, although the two RCMs are integrated over a different domain size. On average, the RegCM4.4 simulations overestimate monsoon precipitation by {˜ }26 and {˜ }5% in the Ganges and Brahmaputra-Meghna River Basin, respectively, while PRECIS simulations underestimate (overestimate) the same by {˜ }7% ({˜ }16%). Both RegCM4.4 and PRECIS simulations indicate an intense cold bias (up to 10° C) in the Himalayas, and are generally stronger in the RegCM4.4 simulations. Additionally, they tend to produce high precipitation between April and May in the Ganges (RegCM4.4 simulations) and Brahmaputra-Meghna (PRECIS simulations) River Basins, resulting in early onset of the Indian monsoon in the Ganges River Basin. PRECIS simulations exhibit a delayed monsoon withdrawal in the Brahmaputra-Meghna River Basin. Despite large spatial variations in onset and withdrawal periods across the GBM River Basin, the basin-averaged results agree reasonably well with the observed periods. Although global climate model (GCM) driven simulations are generally poor in representing the interannual variability of precipitation and winter temperature variations, they tend to agree well with observed precipitation anomalies when driven by

  18. Modeling regional variation in riverine fish biodiversity in the Arkansas-White-Red River basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schweizer, Peter E; Jager, Yetta

    The patterns of biodiversity in freshwater systems are shaped by biogeography, environmental gradients, and human-induced factors. In this study, we developed empirical models to explain fish species richness in subbasins of the Arkansas White Red River basin as a function of discharge, elevation, climate, land cover, water quality, dams, and longitudinal position. We used information-theoretic criteria to compare generalized linear mixed models and identified well-supported models. Subbasin attributes that were retained as predictors included discharge, elevation, number of downstream dams, percent forest, percent shrubland, nitrate, total phosphorus, and sediment. The random component of our models, which assumed a negative binomialmore » distribution, included spatial correlation within larger river basins and overdispersed residual variance. This study differs from previous biodiversity modeling efforts in several ways. First, obtaining likelihoods for negative binomial mixed models, and thereby avoiding reliance on quasi-likelihoods, has only recently become practical. We found the ranking of models based on these likelihood estimates to be more believable than that produced using quasi-likelihoods. Second, because we had access to a regional-scale watershed model for this river basin, we were able to include model-estimated water quality attributes as predictors. Thus, the resulting models have potential value as tools with which to evaluate the benefits of water quality improvements to fish.« less

  19. Identifying hotspots and management of critical ecosystem services in rapidly urbanizing Yangtze River Delta Region, China.

    PubMed

    Cai, Wenbo; Gibbs, David; Zhang, Lang; Ferrier, Graham; Cai, Yongli

    2017-04-15

    Rapid urbanization has altered many ecosystems, causing a decline in many ecosystem services, generating serious ecological crisis. To cope with these challenges, we presented a comprehensive framework comprising five core steps for identifying and managing hotspots of critical ecosystem services in a rapid urbanizing region. This framework was applied in the case study of the Yangtze River Delta (YRD) Region. The study showed that there was large spatial heterogeneity in the hotspots of ecosystem services in the region, hotspots of supporting services and regulating services aggregately distributing in the southwest mountainous areas while hotspots of provisioning services mainly in the northeast plain, and hotspots of cultural services widespread in the waterbodies and southwest mountainous areas. The regionalization of the critical ecosystem services was made through the hotspot analysis. This study provided valuable information for environmental planning and management in a rapid urbanizing region and helped improve China's ecological redlines policy at regional scale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Preliminary maps showing ground-water resources in the Lower Colorado River region, Arizona, Nevada, New Mexico, and Utah

    USGS Publications Warehouse

    Brown, S.G.

    1976-01-01

    This atlas was prepared to meet the need for information on the areal distribution, quantity, and availability of ground water in the lower Colorado River region, an area of about 140,000 square miles in parts of Arizona, Nevada, New Mexico, and Utah. The maps are necessarily generalized in places owing to the lack of sufficient data. In general the geohydrologic information pertains to large areas, and local exceptions occur. Users needing more detailed information for specific areas may address inquiries to the district chief of the U.S. Geological Survey at the addresses given in the section “Selected References.” The maps were prepared using data from previously published reports, data collected by other Federal State, and local agencies, and data from the files of the U.S. Geological Survey offices in Arizona, Nevada, New Mexico, and Utah. The report is the result of the lower Colorado River region Type I framework study made in cooperation with the U.S. Bureau of Reclamation.

  1. Hydrologic Conditions that Influence Streamflow Losses in a Karst Region of the Upper Peace River, Polk County, Florida

    USGS Publications Warehouse

    Metz, P.A.; Lewelling, B.R.

    2009-01-01

    The upper Peace River from Bartow to Fort Meade, Florida, is described as a groundwater recharge area, reflecting a reversal from historical groundwater discharge patterns that existed prior to the 1950s. The upper Peace River channel and floodplain are characterized by extensive karst development, with numerous fractures, crevasses, and sinks that have been eroded in the near-surface and underlying carbonate bedrock. With the reversal in groundwater head gradients, river water is lost to the underlying groundwater system through these karst features. An investigation was conducted to evaluate the hydrologic conditions that influence streamflow losses in the karst region of the upper Peace River. The upper Peace River is located in a basin that has been altered substantially by phosphate mining and increases in groundwater use. These alterations have changed groundwater flow patterns and caused streamflow declines through time. Hydrologic factors that have had the greatest influence on streamflow declines in the upper Peace River include the lowering of the potentiometric surfaces of the intermediate aquifer system and Upper Floridan aquifer beneath the riverbed elevation due to below-average rainfall (droughts), increases in groundwater use, and the presence of numerous karst features in the low-water channel and floodplain that enhance the loss of streamflow. Seepage runs conducted along the upper Peace River, from Bartow to Fort Meade, indicate that the greatest streamflow losses occurred along an approximate 2-mile section of the river beginning about 1 mile south of the Peace River at Bartow gaging station. Along the low-water and floodplain channel of this 2-mile section, there are about 10 prominent karst features that influence streamflow losses. Losses from the individual karst features ranged from 0.22 to 16 cubic feet per second based on measurements made between 2002 and 2007. The largest measured flow loss for all the karst features was about 50 cubic

  2. Spatial Differentiation of Landscape Values in the Murray River Region of Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Zhu, Xuan; Pfueller, Sharron; Whitelaw, Paul; Winter, Caroline

    2010-05-01

    This research advances the understanding of the location of perceived landscape values through a statistically based approach to spatial analysis of value densities. Survey data were obtained from a sample of people living in and using the Murray River region, Australia, where declining environmental quality prompted a reevaluation of its conservation status. When densities of 12 perceived landscape values were mapped using geographic information systems (GIS), valued places clustered along the entire river bank and in associated National/State Parks and reserves. While simple density mapping revealed high value densities in various locations, it did not indicate what density of a landscape value could be regarded as a statistically significant hotspot or distinguish whether overlapping areas of high density for different values indicate identical or adjacent locations. A spatial statistic Getis-Ord Gi* was used to indicate statistically significant spatial clusters of high value densities or “hotspots”. Of 251 hotspots, 40% were for single non-use values, primarily spiritual, therapeutic or intrinsic. Four hotspots had 11 landscape values. Two, lacking economic value, were located in ecologically important river red gum forests and two, lacking wilderness value, were near the major towns of Echuca-Moama and Albury-Wodonga. Hotspots for eight values showed statistically significant associations with another value. There were high associations between learning and heritage values while economic and biological diversity values showed moderate associations with several other direct and indirect use values. This approach may improve confidence in the interpretation of spatial analysis of landscape values by enhancing understanding of value relationships.

  3. River mouth morphodynamics - Examples from small, mountainous rivers (Invited)

    NASA Astrophysics Data System (ADS)

    Warrick, J. A.

    2013-12-01

    Small, high-sediment yield rivers are known to discharge massive amounts of sediment to the world's oceans. Because of these high rates of sediment discharge, many of these small rivers provide important sources of sediment to littoral cells, such as those along the west coasts of North and South America. Sediment discharge from these small watersheds is commonly ephemeral and dominated by infrequent high flow. Thus, the morphodynamic states of these river mouths will vary with time, often being 'wave dominated' for the majority of the year and then changing to 'river dominated' during river sediment discharge events. Here I will provide a summary of recent observations of the morphodynamics of river mouths along California that reveal that sediment dispersal and deposition patterns vary owing to the sediment transport processes at the river mouths, which are influenced by the buoyancy of the river discharge. During low rates of sediment discharge and low river sediment concentrations, sediment dispersal will occur in hypopycnal (positively buoyant) plumes and sand deposition will be close to the river mouth. These conditions commonly result in transfer of sand from the river delta to the littoral cell during the first 1-2 years following the river discharge event. During high rates of sediment discharge and high river sediment concentrations, river discharge may form hyperpycnal (negatively buoyant) plumes and disperse sand to deeper portions of the continental shelf, where transfer back to the littoral cell may take decades or may not occur. High-resolution bathymetry from southern California provides several examples of sand dispersal by hyperpycnal plumes to regions of the inner and middle continental shelf. Thus, sediment dispersal from river mouths influences coastal morphodynamics, morphology, and the rates and timing of sediment supply to littoral cells.

  4. Flooding on California's Russian River: Role of atmospheric rivers

    USGS Publications Warehouse

    Ralph, F.M.; Neiman, P.J.; Wick, G.A.; Gutman, S.I.; Dettinger, M.D.; Cayan, D.R.; White, A.B.

    2006-01-01

    Experimental observations collected during meteorological field studies conducted by the National Oceanic and Atmospheric Administration near the Russian River of coastal northern California are combined with SSM/I satellite observations offshore to examine the role of landfalling atmospheric rivers in the creation of flooding. While recent studies have documented the characteristics and importance of narrow regions of strong meridional water vapor transport over the eastern Pacific Ocean (recently referred to as atmospheric rivers), this study describes their impact when they strike the U.S. West Coast. A detailed case study is presented, along with an assessment of all 7 floods on the Russian River since the experimental data were first available in October 1997. In all 7 floods, atmospheric river conditions were present and caused heavy rainfall through orographic precipitation. Not only do atmospheric rivers play a crucial role in the global water budget, they can also lead to heavy coastal rainfall and flooding, and thus represent a key phenomenon linkingweather and climate. Copyright 2006 by the American Geophysical Union.

  5. Development of a regional groundwater flow model for the area of the Idaho National Engineering Laboratory, Eastern Snake River Plain Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, J.M.; Arnett, R.C.; Neupauer, R.M.

    This report documents a study conducted to develop a regional groundwater flow model for the Eastern Snake River Plain Aquifer in the area of the Idaho National Engineering Laboratory. The model was developed to support Waste Area Group 10, Operable Unit 10-04 groundwater flow and transport studies. The products of this study are this report and a set of computational tools designed to numerically model the regional groundwater flow in the Eastern Snake River Plain aquifer. The objective of developing the current model was to create a tool for defining the regional groundwater flow at the INEL. The model wasmore » developed to (a) support future transport modeling for WAG 10-04 by providing the regional groundwater flow information needed for the WAG 10-04 risk assessment, (b) define the regional groundwater flow setting for modeling groundwater contaminant transport at the scale of the individual WAGs, (c) provide a tool for improving the understanding of the groundwater flow system below the INEL, and (d) consolidate the existing regional groundwater modeling information into one usable model. The current model is appropriate for defining the regional flow setting for flow submodels as well as hypothesis testing to better understand the regional groundwater flow in the area of the INEL. The scale of the submodels must be chosen based on accuracy required for the study.« less

  6. Estimation of reservoir inflow in data scarce region by using Sacramento rainfall runoff model - A case study for Sittaung River Basin, Myanmar

    NASA Astrophysics Data System (ADS)

    Myo Lin, Nay; Rutten, Martine

    2017-04-01

    The Sittaung River is one of four major rivers in Myanmar. This river basin is developing fast and facing problems with flood, sedimentation, river bank erosion and salt intrusion. At present, more than 20 numbers of reservoirs have already been constructed for multiple purposes such as irrigation, domestic water supply, hydro-power generation, and flood control. The rainfall runoff models are required for the operational management of this reservoir system. In this study, the river basin is divided into (64) sub-catchments and the Sacramento Soil Moisture Accounting (SAC-SMA) models are developed by using satellite rainfall and Geographic Information System (GIS) data. The SAC-SMA model has sixteen calibration parameters, and also uses a unit hydrograph for surface flow routing. The Sobek software package is used for SAC-SMA modelling and simulation of river system. The models are calibrated and tested by using observed discharge and water level data. The statistical results show that the model is applicable to use for data scarce region. Keywords: Sacramento, Sobek, rainfall runoff, reservoir

  7. Paleogeographic implications of Late Miocene lacustrine and nonmarine evaporite deposits in the Lake Mead region: Immediate precursors to the Colorado River

    USGS Publications Warehouse

    Faulds, James E.; Schreiber, Charlotte; Langenheim, Victoria; Hinz, Nicholas H.; Shaw, Tom; Heizler, Matthew T.; Perkins, Michael E; El Tabakh, Mohammed; Kunk, Michael J.

    2016-01-01

    Thick late Miocene nonmarine evaporite (mainly halite and gypsum) and related lacustrine limestone deposits compose the upper basin fill in half grabens within the Lake Mead region of the Basin and Range Province directly west of the Colorado Plateau in southern Nevada and northwestern Arizona. Regional relations and geochronologic data indicate that these deposits are late synextensional to postextensional (ca. 12–5 Ma), with major extension bracketed between ca. 16 and 9 Ma and the abrupt western margin of the Colorado Plateau established by ca. 9 Ma. Significant accommodation space in the half grabens allowed for deposition of late Miocene lacustrine and evaporite sediments. Concurrently, waning extension promoted integration of initially isolated basins, progressive enlargement of drainage nets, and development of broad, low gradient plains and shallow water bodies with extensive clastic, carbonate, and/or evaporite sedimentation. The continued subsidence of basins under restricted conditions also allowed for the preservation of particularly thick, localized evaporite sequences prior to development of the through-going Colorado River.The spatial and temporal patterns of deposition indicate increasing amounts of freshwater input during the late Miocene (ca. 12–6 Ma) immediately preceding arrival of the Colorado River between ca. 5.6 and 4.9 Ma. In axial basins along and proximal to the present course of the Colorado River, evaporite deposition (mainly gypsum) transitioned to lacustrine limestone progressively from east to west, beginning ca. 12–11 Ma in the Grand Wash Trough in the east and shortly after ca. 5.6 Ma in the western Lake Mead region. In several satellite basins to both the north and south of the axial basins, evaporite deposition was more extensive, with thick halite (>200 m to 2.5 km thick) accumulating in the Hualapai, Overton Arm, and northern Detrital basins. Gravity and magnetic lows suggest that thick halite may also lie within the

  8. Effects of mining activities on the release of heavy metals(HMs) in the head water regions of the Heihe River.

    NASA Astrophysics Data System (ADS)

    Wei, W., Sr.; Ma, R.; Sun, Z.; Bu, J.; Chang, Q.

    2017-12-01

    The head water regions of Heihe River were located in the Qilian orogenic belt, where belongs to the Qilian Mountains National Ecological Nature Protection and has fragile ecosystem. Previous surveys show that the regions were rich in various metal ores, and the mining activities have been intense.The environmental effect of mining activities will be going on several years, while Our field investigation show that there were 23 mines, of which 18 have been historical. This study collected water samples in main Heihe river and its tributaries, groundwaters and soil water, and the sediment samples near the ores. The concentration of HMs in both waters and sediments was measured for characterizing the spatial distribution of HMs, and determining the origin of the HMs in the river waters. Results of water quality assessment show that 67% of water samples failed to reach the Grade II environmental quality standard for surface water in China (GB3838-2002).The spatial distribution of HMs (Cr, Mn, Ni, Cu, Zn, As, Cd, and Pb) is highly correlated with the geographical distribution of local mines, suggesting that various heavy metals(HMs) were released into the Heihe River via mining activities. The Be, Co, Sn, Bi, Th, U were mainly derived from aluminosilicate weathering crusts. And the acid mine wastewater was the main source for Cu, Zn, Pb, Cd. The Serpentine wreathing was the main source for Cr and Ni. Mn and Cs were enriched by agricultural activities.

  9. Managing the three-rivers headwater region, china: from ecological engineering to social engineering.

    PubMed

    Fang, Yiping

    2013-09-01

    The three-rivers headwater region (THRHR) of Qinghai province, China plays a key role as source of fresh water and ecosystem services for central and eastern China. Global warming and human activities in the THRHR have threatened the ecosystem since the 1980s. Therefore, the Chinese government has included managing of the THRHR in the national strategy since 2003. The State Integrated Test and Demonstration Region of the THRHR highlights the connection with social engineering (focus on improving people's livelihood and well-being) in managing nature reserves. Based on this program, this perspective attempts a holistic analysis of the strategic role of the THRHR, requirements for change, indices of change, and approaches to change. Long-term success of managing nature reserves requires effective combination of ecological conservation, economic development, and social progress. Thus, the philosophy of social engineering should be employed as a strategy to manage the THRHR.

  10. Ecological restoration and its effects on a regional climate: the source region of the Yellow River, China.

    PubMed

    Li, Zhouyuan; Liu, Xuehua; Niu, Tianlin; Kejia, De; Zhou, Qingping; Ma, Tianxiao; Gao, Yunyang

    2015-05-19

    The source region of the Yellow River, China, experienced degradation during the 1980s and 1990s, but effective ecological restoration projects have restored the alpine grassland ecosystem. The local government has taken action to restore the grassland area since 1996. Remote sensing monitoring results show an initial restoration of this alpine grassland ecosystem with the structural transformation of land cover from 2000 to 2009 as low- and high-coverage grassland recovered. From 2000 to 2009, the low-coverage grassland area expanded by over 25% and the bare soil area decreased by approximately 15%. To examine the relationship between ecological structure and function, surface temperature (Ts) and evapotranspiration (ET) levels were estimated to study the dynamics of the hydro-heat pattern. The results show a turning point in approximately the year 2000 from a declining ET to a rising ET, eventually reaching the 1990 level of approximately 1.5 cm/day. We conclude that grassland coverage expansion has improved the regional hydrologic cycle as a consequence of ecological restoration. Thus, we suggest that long-term restoration and monitoring efforts would help maintain the climatic adjustment functions of this alpine grassland ecosystem.

  11. Hydrologic cycle and dynamics of aquatic macrophytes in two intermittent rivers of the semi-arid region of Brazil.

    PubMed

    Pedro, F; Maltchik, L; Bianchini, I

    2006-05-01

    The dynamics of aquatic macrophytes in intermittent rivers is generally related to the characteristics of the resistance and resilience of plants to hydrologic disturbances of flood and drought. In the semi-arid region of Brazil, intermittent rivers and streams are affected by disturbances with variable intensity, frequency, and duration throughout their hydrologic cycles. The aim of the present study is to determine the occurrence and variation of biomass of aquatic macrophyte species in two intermittent rivers of distinct hydrologic regimes. Their dynamics were determined with respect to resistance and resilience responses of macrophytes to flood and drought events by estimating the variation of biomass and productivity throughout two hydrologic cycles. Twenty-one visits were undertaken in the rewetting, drying, and drought phases in a permanent puddle in the Avelós stream and two temporary puddles in the Taperoá river, state of Paraíba, Northeast Brazil. The sampling was carried out by using the square method. Floods of different magnitudes occurred during the present study in the river and in the stream. The results showed that floods and droughts are determining factors in the occurrence of macrophytes and in the structure of their aquatic communities. The species richness of the aquatic macrophyte communities was lower in the puddles of the river and stream subject to flood events, when compared to areas where the run-off water is retained. At the beginning of the recolonization process, the intensity of the floods was decisive in the productivity and biomass of the aquatic macrophytes in the Taperoá river and the Avelós stream. In intermediate levels of disturbance, the largest values of productivity and biomass and the shortest time for starting the recolonization process occurred.

  12. Yazoo River Basin (Lower Mississippi River) Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Cheng, A.; Davidson, G.; Altinakar, M.; Holt, R.

    2004-12-01

    The proposed Yazoo River Basin Hydrologic Observatory consists of the 34,000 square km Yazoo River watershed in northwestern Mississippi and a 320 km segment of the Mississippi River separated from the watershed by a manmade levee. Discharge from the basin flows from the Yazoo River into the Mississippi River north of Vicksburg, MS. Major streams within the basin include the Yazoo, Tallahatchie, Yalobusha, Coldwater, Yocona, and Big Sunflower Rivers. Four large flood control reservoirs (Arkabutla, Enid, Sardis, and Grenada) and two national forests (Delta and Holly Springs) are also located within the basin. The watershed is divided between upland forested hills and intensively cultivated lowlands. The lowland area, locally known as the "Delta", lies on the ancestral floodplain of the Mississippi River. Flooding by the Mississippi River was once a common event, but is now limited by the levee system. Abundant wetlands occupy abandoned stream channels throughout the Delta. The Yazoo River Basin has many unique features that make it an attractive site for an Hydrologic Observatory. Example features and issues of scientific interest include: 1) Extensive system of levees which have altered recharge to the regional aquifer, shifted population centers, and created backwater flooding areas. 2) Abundant wetlands with a century-long history of response to agricultural sediment and chemical fluxes. 3) Erosion of upland streams, and stream sediment loads that are the highest in the nation. 4) Groundwater mining in spite of abundant precipitation due to a regional surface clay layer that limits infiltration. 5) A history of agricultural Best Management Practices enabling evaluation of the effectiveness of such measures. 6) Large scale catfish farming with heavy reliance on groundwater. 7) Near enough to the Gulf coast to be impacted by hurricane events. 8) Already existing network of monitoring stations for stream flow, sediment-load, and weather, including complete coverage

  13. A Study on Regional Frequency Analysis using Artificial Neural Network - the Sumjin River Basin

    NASA Astrophysics Data System (ADS)

    Jeong, C.; Ahn, J.; Ahn, H.; Heo, J. H.

    2017-12-01

    Regional frequency analysis means to make up for shortcomings in the at-site frequency analysis which is about a lack of sample size through the regional concept. Regional rainfall quantile depends on the identification of hydrologically homogeneous regions, hence the regional classification based on hydrological homogeneous assumption is very important. For regional clustering about rainfall, multidimensional variables and factors related geographical features and meteorological figure are considered such as mean annual precipitation, number of days with precipitation in a year and average maximum daily precipitation in a month. Self-Organizing Feature Map method which is one of the artificial neural network algorithm in the unsupervised learning techniques solves N-dimensional and nonlinear problems and be shown results simply as a data visualization technique. In this study, for the Sumjin river basin in South Korea, cluster analysis was performed based on SOM method using high-dimensional geographical features and meteorological factor as input data. then, for the results, in order to evaluate the homogeneity of regions, the L-moment based discordancy and heterogeneity measures were used. Rainfall quantiles were estimated as the index flood method which is one of regional rainfall frequency analysis. Clustering analysis using SOM method and the consequential variation in rainfall quantile were analyzed. This research was supported by a grant(2017-MPSS31-001) from Supporting Technology Development Program for Disaster Management funded by Ministry of Public Safety and Security(MPSS) of the Korean government.

  14. Regional and temporal variability of the isotope composition (O, S) of atmospheric sulphate in the region of Freiberg, Germany, and consequences for dissolved sulphate in groundwater and river water.

    PubMed

    Tichomirowa, Marion; Heidel, Claudia

    2012-01-01

    The isotope composition of dissolved sulphate and strontium in atmospheric deposition, groundwater, mine water and river water in the region of Freiberg was investigated to better understand the fate of these components in the regional and global water cycle. Most of the isotope variations of dissolved sulphates in atmospheric deposition from three locations sampled bi- or tri-monthly can be explained by fractionation processes leading to lower [Formula: see text] (of about 2-3‰) and higher [Formula: see text] (of about 8-10‰) values in summer compared with the winter period. These samples showed a negative correlation between [Formula: see text] and [Formula: see text] values and a weak positive correlation between [Formula: see text] and [Formula: see text] values. They reflect the sulphate formed by aqueous oxidation from long-range transport in clouds. However, these isotope variations were superimposed by changes of the dominating atmospheric sulphate source. At two of the sampling points, large variations of mean annual [Formula: see text] values from atmospheric bulk deposition were recorded. From 2008 to 2009, the mean annual [Formula: see text] value increased by about 5‰; and decreased by about 4‰ from 2009 to 2010. A change in the dominating sulphate source or oxidation pathways of SO(2) in the atmosphere is proposed to cause these shifts. No changes were found in corresponding [Formula: see text] values. Groundwater, river water and some mine waters (where groundwater was the dominating sulphate source) also showed temporal shifts in their [Formula: see text] values corresponding to those of bulk atmospheric deposition, albeit to a lower degree. The mean transit time of atmospheric sulphur through the soil into the groundwater and river water was less than a year and therefore much shorter than previously suggested. Mining activities of about 800 years in the Freiberg region may have led to large subsurface areas with an enhanced groundwater

  15. Regional scale flood modeling using NEXRAD rainfall, GIS, and HEC-HMS/RAS: a case study for the San Antonio River Basin Summer 2002 storm event.

    PubMed

    Knebl, M R; Yang, Z-L; Hutchison, K; Maidment, D R

    2005-06-01

    This paper develops a framework for regional scale flood modeling that integrates NEXRAD Level III rainfall, GIS, and a hydrological model (HEC-HMS/RAS). The San Antonio River Basin (about 4000 square miles, 10,000 km2) in Central Texas, USA, is the domain of the study because it is a region subject to frequent occurrences of severe flash flooding. A major flood in the summer of 2002 is chosen as a case to examine the modeling framework. The model consists of a rainfall-runoff model (HEC-HMS) that converts precipitation excess to overland flow and channel runoff, as well as a hydraulic model (HEC-RAS) that models unsteady state flow through the river channel network based on the HEC-HMS-derived hydrographs. HEC-HMS is run on a 4 x 4 km grid in the domain, a resolution consistent with the resolution of NEXRAD rainfall taken from the local river authority. Watershed parameters are calibrated manually to produce a good simulation of discharge at 12 subbasins. With the calibrated discharge, HEC-RAS is capable of producing floodplain polygons that are comparable to the satellite imagery. The modeling framework presented in this study incorporates a portion of the recently developed GIS tool named Map to Map that has been created on a local scale and extends it to a regional scale. The results of this research will benefit future modeling efforts by providing a tool for hydrological forecasts of flooding on a regional scale. While designed for the San Antonio River Basin, this regional scale model may be used as a prototype for model applications in other areas of the country.

  16. Which persistent organic pollutants in the rivers of the Bohai Region of China represent the greatest risk to the local ecosystem?

    PubMed

    Zhang, Yueqing; Johnson, Andrew C; Su, Chao; Zhang, Meng; Jürgens, Monika D; Shi, Yajuan; Lu, Yonglong

    2017-07-01

    Freshwater aquatic organisms can be exposed to hundreds of persistent organic pollutants (POPs) discharged by natural and anthropogenic activities. Given our limited resources it is necessary to identify, from the existing evidence, which is the greatest threat so that control measures can be targeted wisely. The focus of this study was to rank POPs according to the relative risk they represent for aquatic organisms in rivers in the Bohai Region, China. A list of 14 POPs was compiled based on the available data on their presence in these rivers and ecotoxicological data. Those that were widely detected were benzo[a]pyrene, p,p'-DDE, p,p'-DDT, endrin, fluoranthene, heptachlor, hexabromocyclododecane, hexachlorobenzene, α-hexachlorocyclohexane, γ-hexachlorocyclohexane, naphthalene, perfluorooctanoic acid, perfluorooctane sulfonate and phenanthrene. Effect concentrations were compiled for Chinese relevant and standard test species and compared with river aqueous concentrations. Only bed-sediment concentrations were available so water levels were calculated based on the known local sediment organic carbon concentration and the K oc . The POPs were ranked on the ratio between the median river and median effect concentrations. Of the POPs studied, fluoranthene was ranked as the highest threat, followed by phenanthrene, naphthalene and p,p'-DDE. The risk from p,p'-DDE may be magnified due to being highly bioaccumulative. However, the greatest overlap between river concentrations and effect levels was for lindane. Overall, fish was the most sensitive species group to the risks from POPs. Hotspots with the highest concentrations and hence risk were mainly associated with watercourses draining in Tianjin, the biggest city in the Bohai Region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Colorado River Vegetation, and Climate: Five Decades of Spatio-Temporal Dynamics in the Grand Canyon in Response to River Regulation

    NASA Astrophysics Data System (ADS)

    Ralston, B. E.; Sankey, J. B.

    2013-12-01

    Recent analysis of remotely sensed imagery of 400 km of the Colorado River confirms a net increase in vegetated area has occurred since the completion of Glen Canyon Dam in 1963. The rates and magnitude of vegetation change appear to be river stage-dependent. Riparian vegetation expansion on geomorphic surfaces at lower elevations relative to the river was greater for decades with lower peak and average discharges. Vegetation change at higher elevation relative to the river indicate that increases and decreases in vegetated area reflect regional precipitation patterns, and respectively coincide with regionally significant wet and dry periods that include the current early 21st century drought. The objective of this work was to examine the temporal persistence, and changes, in the spatial distribution of riparian vegetation relative to geomorphic characteristics of the Colorado River in Grand Canyon, dam and reservoir management, and regional climate over the 5-decade period from the mid-1960s to present. We employed archived riparian vegetation classifications that used aerial imagery from 1965, 1973, 1984, 1992, 2002, and 2009 coupled with flow regime data that is primarily related to operations of Glen Canyon Dam, field-measured rating relations, predictions of rating relations based on 1-D modeling, and detailed, geomorphic field mapping. Documentation of the effects of river regulation on riparian habitats in the SW USA has traditionally been limited to either small segments of river channels (e.g., 0.1-10km), or focused on specific plant species. The smaller geographic scale approach evaluates local hydrology, river channel changes, and serial recruitment events of riparian plants. The species-specific plant response informs larger scale patterns of riparian plant distributions across the landscape, but is less sensitive to differences of climate and hydrology among rivers. Our study is unique in that it employs datasets that allow both large-scale change

  18. Summary of the Snake River plain Regional Aquifer-System Analysis in Idaho and eastern Oregon

    USGS Publications Warehouse

    Lindholm, G.F.

    1996-01-01

    Regional aquifers underlying the 15,600-square-mile Snake River Plain in southern Idaho and eastern Oregon was studied as part of the U.S. Geological Survey's Regional Aquifer-System Analysis program. The largest and most productive aquifers in the Snake River Plain are composed of Quaternary basalt of the Snake River Group, which underlies most of the 10,8000-square-mile eastern plain. Aquifer tests and simulation indicate that transmissivity of the upper 200 feet of the basalt aquifer in the eastern plain commonly ranges from about 100,000 to 1,000,000 feet squared per day. However, transmissivity of the total aquifer thickness may be as much as 10 million feet squared per day. Specific yield of the upper 200 feet of the aquifer ranges from about 0.01 to 0.20. Average horizontal hydraulic conductivity of the upper 200 feet of the basalt aquifer ranges from less than 100 to 9,000 feet per day. Values may be one to several orders of magnitude higher in parts in individual flows, such as flow tops. Vertical hydraulic conductivity is probably several orders of magnitude lower than horizontal hydraulic conductivity and is generally related to the number of joints. Pillow lava in ancestral Snake River channels has the highest hydraulic conductivity of all rock types. Hydraulic conductivity of the basalt decreases with depth because of secondary filling of voids with calcite and silica. An estimated 80 to 120 million acre-feet of water is believed to be stored in the upper 200 feet of the basalt aquifer in the eastern plain. The most productive aquifers in the 4,800-square-mile western plain are alluvial sand and gravel in the Boise River valley. Although aquifer tests indicate that transmissivity of alluvium in the Boise River valley ranges from 5,000 to 160,000 feet squared per day, simulation suggests that average transmissivity of the upper 500 feet is generally less than 20,000 feet squared per day. Vertically averaged horizontal hydraulic conductivity of the upper

  19. Use of NARCCAP data to characterize regional climate uncertainty in the impact of global climate change on large river fish population: Missouri River sturgeon example

    NASA Astrophysics Data System (ADS)

    Anderson, C. J.; Wildhaber, M. L.; Wikle, C. K.; Moran, E. H.; Franz, K. J.; Dey, R.

    2012-12-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding the effects of change on ecosystems requires accounting for the propagation of information and uncertainty across these scales. For example, to understand potential climate change effects on fish populations in riverine ecosystems, climate conditions predicted by course-resolution atmosphere-ocean global climate models must first be translated to the regional climate scale. In turn, this regional information is used to force watershed models, which are used to force river condition models, which impact the population response. A critical challenge in such a multiscale modeling environment is to quantify sources of uncertainty given the highly nonlinear nature of interactions between climate variables and the individual organism. We use a hierarchical modeling approach for accommodating uncertainty in multiscale ecological impact studies. This framework allows for uncertainty due to system models, model parameter settings, and stochastic parameterizations. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. We use NARCCAP data to determine confidence the capability of climate models to simulate relevant processes and to quantify regional climate variability within the context of the hierarchical model of uncertainty quantification. By confidence, we mean the ability of the regional climate model to replicate observed mechanisms. We use the NCEP-driven simulations for this analysis. This provides a base from which regional change can be categorized as either a modification of previously observed mechanisms or emergence of new processes. The management implications for these categories of change are significantly different in that procedures to address impacts from existing processes may already be known and need adjustment; whereas, an emergent processes may require new management

  20. Future changes in peak river flows across northern Eurasia as inferred from an ensemble of regional climate projections under the IPCC RCP8.5 scenario

    NASA Astrophysics Data System (ADS)

    Shkolnik, Igor; Pavlova, Tatiana; Efimov, Sergey; Zhuravlev, Sergey

    2018-01-01

    Climate change simulation based on 30-member ensemble of Voeikov Main Geophysical Observatory RCM (resolution 25 km) for northern Eurasia is used to drive hydrological model CaMa-Flood. Using this modeling framework, we evaluate the uncertainties in the future projection of the peak river discharge and flood hazard by 2050-2059 relative to 1990-1999 under IPCC RCP8.5 scenario. Large ensemble size, along with reasonably high modeling resolution, allows one to efficiently sample natural climate variability and increase our ability to predict future changes in the hydrological extremes. It has been shown that the annual maximum river discharge can almost double by the mid-XXI century in the outlets of major Siberian rivers. In the western regions, there is a weak signal in the river discharge and flood hazard, hardly discernible above climate variability. Annual maximum flood area is projected to increase across Siberia mostly by 2-5% relative to the baseline period. A contribution of natural climate variability at different temporal scales to the uncertainty of ensemble prediction is discussed. The analysis shows that there expected considerable changes in the extreme river discharge probability at locations of the key hydropower facilities. This suggests that the extensive impact studies are required to develop recommendations for maintaining regional energy security.

  1. Implications of the miocene(?) crooked ridge river of northern arizona for the evolution of the colorado river and grand canyon

    USGS Publications Warehouse

    Lucchitta, Ivo; Holm, Richard F.; Lucchitta, Baerbel K.

    2013-01-01

    The southwesterly course of the probably pre–early Miocene and possibly Oligocene Crooked Ridge River can be traced continuously for 48 km and discontinuously for 91 km in northern Arizona (United States). The course is visible today in inverted relief. Pebbles in the river gravel came from at least as far northeast as the San Juan Mountains (Colorado). The river valley was carved out of easily eroded Jurassic and Cretaceous rocks whose debris overloaded the river with abundant detritus, probably steepening the gradient. After the river became inactive, the regional drainage network was rearranged three times, and the nearby Four Corners region was lowered 1–2 km by erosion. The river provides constraints on the early evolution of the Colorado River and Grand Canyon. Continuation of this river into lakes in Arizona or Utah is unlikely, as is integration through Grand Canyon by lake spillover. The downstream course of the river probably was across the Kaibab arch in a valley roughly coincident with the present eastern Grand Canyon. Beyond this point, the course may have continued to the drainage basin of the Sacramento River, or to the proto–Snake River drainage. Crooked Ridge River was beheaded by the developing San Juan River, which pirated its waters and probably was tributary to a proto–Colorado River, flowing roughly along its present course west of the Monument upwarp.

  2. Trends in streamflow of the San Pedro River, southeastern Arizona, and regional trends in precipitation and streamflow in southeastern Arizona and southwestern New Mexico

    USGS Publications Warehouse

    Thomas, Blakemore E.; Pool, Don R.

    2006-01-01

    This study was done to improve the understanding of trends in streamflow of the San Pedro River in southeastern Arizona. Annual streamflow of the river at Charleston, Arizona, has decreased by more than 50 percent during the 20th century. The San Pedro River is one of the few remaining free-flowing perennial streams in the arid Southwestern United States, and the riparian forest along the river supports several endangered species and is an important habitat for migratory birds. Trends in seasonal and annual precipitation and streamflow were evaluated for surrounding areas in southeastern Arizona and southwestern New Mexico to provide a regional perspective for the trends of the San Pedro River. Seasonal and annual streamflow trends and the relation between precipitation and streamflow in the San Pedro River Basin were evaluated to improve the understanding of the causes of trends. There were few significant trends in seasonal and annual precipitation or streamflow for the regional study area. Precipitation and streamflow records were analyzed for 11 time periods ranging from 1930 to 2002; no significant trends were found in 92 percent of the trend tests for precipitation, and no significant trends were found in 79 percent of the trend tests for streamflow. For the trends in precipitation that were significant, 90 percent were positive and most of those positive trends were in records of winter, spring, or annual precipitation that started during the mid-century drought in 1945-60. For the trends in streamflow that were significant, about half were positive and half were negative. Trends in precipitation in the San Pedro River Basin were similar to regional precipitation trends for spring and fall values and were different for summer and annual values. The largest difference was in annual precipitation, for which no trend tests were significant in the San Pedro River Basin, and 23 percent of the trend tests were significantly positive in the rest of the study area

  3. Public health and medical care for the world's factory: China's Pearl River Delta Region.

    PubMed

    Fabre, Guilhem; Rodwin, Victor G

    2011-10-04

    While the growth of urbanization, worldwide, has improved the lives of migrants from the hinterland, it also raises health risks related to population density, concentrated poverty and the transmission of infectious disease. Will megacity regions evolve into socially infected breeding grounds for the rapid transmission of disease, or can they become critical spatial entities for the protection and promotion of population health? We address this question for the Pearl River Delta Region (PRD) based on recent data from Chinese sources, and on the experience of how New York, Greater London, Tokyo and Paris have grappled with the challenges of protecting population health and providing their populations with access to health care services. In some respects, there are some important lessons from comparative experience for PRD, notably the importance of covering the entire population for health care services and targeting special programs for those at highest risk for disease. In other respects, PRD's growth rate and sheer scale make it a unique megacity region that already faces new challenges and will require new solutions.

  4. Effects of recent volcanic eruptions on aquatic habitat in the Drift River, Alaska, USA: Implications at other Cook Inlet region volcanoes

    USGS Publications Warehouse

    Dorava, J.M.; Milner, A.M.

    1999-01-01

    Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano: During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano.

  5. The Morphodynamic Signature of Rivers in the Ucamara Depression: A Habitat for Formative Rivers and the Scavenger Meandering Channels they Feed

    NASA Astrophysics Data System (ADS)

    Abad, J. D.; Escobar, C.; Shan, J.

    2017-12-01

    The Pacaya Samiria National Reserve, located in Loreto, Peru, is a region of incomparable biodiversity resulting from the consistent annual climate patterns (little seasonal variability), and more importantly, the dynamics of the freshwater rivers that surround and traverse it. The Ucamara Depression, where the Pacaya Samiria National Reserve is located, presently has a myriad of active and abandoned fluvial landforms. The exploration of the geologic and tectonic history that fabricated this exceptional fluvial system is the foundation for researching and understanding further phenomena of the region. The interpretation of the history of the geologic events that occurred to form this region and the inspection of the river belts, or areas of active river migration, of these fluvial landforms, facilitate the understanding of 1) how the Ucayali and Maranon rivers interact with one another and with the streams and bodies of water in the Ucamara Depression, 2) the role of wetlands, hydrodynamics, and sediment transport mechanisms in the movement of rivers and the extent of mixing before the rivers reach their confluence, and 3) how the water chemistry, flooding, and sediment transport processes of rivers create an environment capable of fostering an unimaginable array of life and how changes in these processes affect the flora and fauna that inhabit the region. This study will discuss field measurements (hydrodynamic and bed morphodynamic) and remote sensing analysis of scavenger meandering channels (Pacaya and Samiria) and discuss confluence dynamics of the two tributaries that form the Amazon River. Morphometric parameters show that these meandering rivers do not achieve typical planform-based conditions.

  6. Sediment budget analysis from Landslide debris and river channel change during the extreme event - example of Typhoon Morakot at Laonong river, Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Kuo-Jen; Huang, Yu-Ting; Huang, Mei-Jen; Chiang, Yi-Lin; Yeh, En-Chao; Chao, Yu-Jui

    2014-05-01

    Taiwan, due to the high seismicity and high annual rainfall, numerous landslides triggered every year and severe impacts affect the island. Typhoon Morakot brought extreme and long-time rainfall for Taiwan in August 2009. It further caused huge loss of life and property in central and southern Taiwan. Laonong River is the largest tributary of Gaoping River. It's length is 137 km, and the basin area is 1373 km2. More than 2000mm rainfall brought and maximum rainfall exceeded 100mm/hr in the region by Typhoon Morakot in Aug, 2009. Its heavy rains made many landslides and debris flew into the river and further brought out accumulation and erosion on river banks of different areas. It caused severe disasters within the Laonong River drainage. In the past, the study of sediment blockage of river channel usually relies on field investigation, but due to inconvenient transportation, topographical barriers, or located in remote areas, etc. the survey is hardly to be completed sometimes. In recent years, the rapid development of remote sensing technology improves image resolution and quality significantly. Remote sensing technology can provide a wide range of image data, and provide essential and precious information. Furthermore, although the amount of sediment transportation can be estimated by using data such as rainfall, river flux, and suspended loads, the situation of large debris migration cannot be studied via those data. However, landslides, debris flow and river sediment transportation model in catchment area can be evaluated easily through analyzing the digital terrain model (DTM) . The purpose of this study is to investigate the phenomenon of river migration and to evaluate the amount of migration along Laonong River by analyzing the DEM before and after the typhoon Morakot. The DEMs are built by using the aerial images taken by digital mapping camera (DMC) and by airborne digital scanner 40 (ADS 40) before and after typhoon event. The results show that lateral

  7. Human-induced hydrologic and geomorphic changes in the crisscross river network of the Pearl River Delta, South China

    NASA Astrophysics Data System (ADS)

    Chen, Y. D.; Chen, X. H.

    2003-04-01

    The West River, the North River and the East River, collectively called the Pearl River, have a total drainage area of 453,690 km2 in southern and southwestern China and flow into the South China Sea. The three rivers join together and form the Pearl River Delta (PRD) with an area of 26,820 km2. The crisscross river network (density: 0.68-1.07 km/km2) in the PRD is one of the most complicated deltaic drainage systems in the world. As the region experiencing the most rapid economic growth in China over the past two decades, the PRD has witnessed massive changes in both the social and the natural environment, leading to an urgent need of studying regional environmental changes caused by intensive human activities. This paper aims to summarize and illustrate a variety of human-induced hydrologic and geomorphic changes in the PRD river network and to present an analysis of the causes and effects of these changes. Findings of this study will help decision-makers to formulate river management and mitigation strategies and policies in the region. The hydrologic characteristics of the PRD river network have been altered to varying degrees in the following three main aspects. First and most importantly, stage has become higher or lower over the past several decades in an uneven manner in different parts of the delta. From the early 1950s to the 1980s, scattered and small embankments were enlarged and combined to expand land mass and reduce flood hazards in the PRD. However, reduction of water surface area and concentration of flow into major channels generally caused stage to go up slightly. Since the early 1990s, stage in the upper part of the PRD has significantly dropped down while the opposite situation has become more and more common in the central PRD where enormous flood damages have occurred. Secondly, corresponding to the stage changes, the stage-discharge relationship has been substantially modified, as evidenced by over 2 m drop of stage for the same amount of

  8. Characterization of the regional variability of flood regimes within the Omo-Gibe River Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Yared, Adanech; Demissie, Solomon S.; Sivapalan, Murugesu; Viglione, Alberto; MacAlister, Charlotte

    2014-05-01

    Hydrological variability and seasonality is one of the Ethiopia's primary water resource management challenges. Variability is most obviously manifest in endemic, devastating droughts and floods. While the level of flooding is quite often extremely high and destroys human beings and property, in many cases flooding is of vital importance because the community benefits from flood recession agriculture. This is the case of the lower Omo plain whose agriculture is based on the regularity of the inundations due to flooding of the Omo Gibe River. The big flood in 2006, which caused death for more than 300 people and 2000 cattle, poses a dilemma. Flooding must be controlled and regulated in a way that the damages are reduced as much as possible but the flooding-related benefits are not lost. To this aim, characterization and understanding of hydrological variability of the Omo Gibe River basin is fundamental. The goal of this work is to extract the maximal amount of information on the hydrological variability and specially on the flooding regime from the few data available in the region. Because most of the basin is ungauged, hydrological information is reconstructed using the data from 9 gauged catchments. A daily water balance model has been developed, calibrated and validated for 9 gauged catchments and, subsequently, the parameters have been correlated to catchment characteristics in order to establish a functional relationship that allows to apply the model to ungauged catchments. Daily streamflow has been predicted for 15 ungauged catchments, which are assumed to comprehensively represent the hydrological variability of the Omo-Gibe River Basin. Even though both northern and southern catchments are affected by a strong seasonality of precipitation, with most of the rain falling in less than 3 months, most of the northern catchments are humid, while in the southern part of the Omo-Gibe River basin, the catchments are either humid, dry sub humid, semiarid or arid. As

  9. Regional Sediment Budget of the Columbia River Littoral Cell, USA

    USGS Publications Warehouse

    Buijsman, Maarten C.; Sherwood, C.R.; Gibbs, A.E.; Gelfenbaum, G.; Kaminsky, G.M.; Ruggiero, P.; Franklin, J.

    2002-01-01

    Summary -- In this Open-File Report we present calculations of changes in bathymetric and topographic volumes for the Grays Harbor, Willapa Bay, and Columbia River entrances and the adjacent coasts of North Beach, Grayland Plains, Long Beach, and Clatsop Plains for four intervals: pre-jetty - 1920s (Interval 1), 1920s - 1950s (Interval 2), 1950s - 1990s (Interval 3), and 1920s 1990s (Interval 4). This analysis is part of the Southwest Washington Coastal Erosion Study (SWCES), the goals of which are to understand and predict the morphologic behavior of the Columbia River littoral cell on a management scale of tens of kilometers and decades. We obtain topographic Light Detection and Ranging (LIDAR) data from a joint project by the U.S. Geological Survey (USGS), National Oceanic and Atmospheric Administration (NOAA), National Aeronautic and Space Administration (NASA), and the Washington State Department of Ecology (DOE) and bathymetric data from the U.S. Coast and Geodetic Survey (USC&GS), U.S. Army Corps of Engineers (USACE), USGS, and the DOE. Shoreline data are digitized from T-Sheets and aerial photographs from the USC&GS and National Ocean Service (NOS). Instead of uncritically adjusting each survey to NAVD88, a common vertical land-based datum, we adjust some surveys to produce optimal results according to the following criteria. First, we minimize offsets in overlapping surveys within the same era, and second, we minimize bathymetric changes (relative to the 1990s) in deep water, where we assume minimal change has taken place. We grid bathymetric and topographic datasets using kriging and triangulation algorithms, calculate bathymetric-change surfaces for each interval, and calculate volume changes within polygons that are overlaid on the bathymetric-change surfaces. We find similar morphologic changes near the entrances to Grays Harbor and the Columbia River following jetty construction between 1898 and 1916 at the Grays Harbor entrance and between 1885 and

  10. Visualizing ecological sensitivity assessment of Huangnan, in the Three-river Region, China, based on GIS

    NASA Astrophysics Data System (ADS)

    Meng, Xia; Guo, Luo

    2017-07-01

    Huangnan Tibetan Autonomous Prefecture is located in the three-river source region (the TRSR) in the Qinghai-Tibetan Plateau, China, which is characterized with ecological sensitivity and vulnerability. In the paper, we integrated remote sensing images, field investigation and social-economic data , and with the help of analytic hierarchy process (AHP) and comprehensive index methods, a sensitivity assessment system was built to calculate ecological sensitivity scores and assign levels for the study area. Results show that: areas which are moderately or even highly ecologically sensitive account for 54.02%, distributed in south, north and northeast of study area and those that have most apparent ecological sensitivity are mainly located in Zeekog, northwest of Huangnan while other counties enjoy relatively lower sensitivity. The results will facilitate future region management and planning for decision-makers.

  11. Development and application of a novel method for regional assessment of groundwater contamination risk in the Songhua River Basin.

    PubMed

    Nixdorf, Erik; Sun, Yuanyuan; Lin, Mao; Kolditz, Olaf

    2017-12-15

    The main objective of this study is to quantify the groundwater contamination risk of Songhua River Basin by applying a novel approach of integrating public datasets, web services and numerical modelling techniques. To our knowledge, this study is the first to establish groundwater risk maps for the entire Songhua River Basin, one of the largest and most contamination-endangered river basins in China. Index-based groundwater risk maps were created with GIS tools at a spatial resolution of 30arc sec by combining the results of groundwater vulnerability and hazard assessment. Groundwater vulnerability was evaluated using the DRASTIC index method based on public datasets at the highest available resolution in combination with numerical groundwater modelling. As a novel approach to overcome data scarcity at large scales, a web mapping service based data query was applied to obtain an inventory for potential hazardous sites within the basin. The groundwater risk assessment demonstrated that <1% of Songhua River Basin is at high or very high contamination risk. These areas were mainly located in the vast plain areas with hotspots particularly in the Changchun metropolitan area. Moreover, groundwater levels and pollution point sources were found to play a significantly larger impact in assessing these areas than originally assumed by the index scheme. Moderate contamination risk was assigned to 27% of the aquifers, predominantly associated with less densely populated agricultural areas. However, the majority of aquifer area in the sparsely populated mountain ranges displayed low groundwater contamination risk. Sensitivity analysis demonstrated that this novel method is valid for regional assessments of groundwater contamination risk. Despite limitations in resolution and input data consistency, the obtained groundwater contamination risk maps will be beneficial for regional and local decision-making processes with regard to groundwater protection measures, particularly if

  12. Water resource management in river oases along the Tarim River in North-West of China

    NASA Astrophysics Data System (ADS)

    Kliucininkaite, Lina; Disse, Markus

    2013-04-01

    Tarim River is one of the longest inland rivers in the world. It flows its water in the northern part of the Taklamakan desert in Xinjiang, North-west of China, which is a very hostile region due its climatic conditions and particularly due to low precipitation and very high evaporation rates. During the past five decades intensive exploitation of water resources, mainly by agricultural activities, has changed the temporal and spatial distribution of them and caused serious environmental problems in the Tarim River Basin. The support measures for oasis management along the Tarim River under climatic and societal changes became the overarching goal of this research. The temperature has risen by nearly 1° C over the past 50 years in the Tarim River Basin so more water was available in the mountainous areas of Xinjiang, leading to an increasing trend of the headstream discharges of the Tarim Basin. Aksu, Hotan and Yarkant Rivers are three tributaries of the Tarim River, as well as its main water suppliers. However, under the condition of water increase with the volume of 25×108 m3 in headstreams in recent 10 years, the water to the mainstream has increased less than 108 m3 (in Alar hydrological station), which is less than 3% of the increased water volume of runoff. Moreover, the region is one of the biggest cotton and other cash crops producers in China. In addition, expansion of urban and, in particular, of irrigation areas have caused higher water consumption at different parts of the river, leading to severe ecological effects on rural areas, especially in the lower reaches. Moreover, it also highly affects groundwater level and quality. The aim of this research is to support decision makers, planners and engineers to find right measures in the area for the further development of the region, as well as adaptation to changing climate. Different scenarios for water resource management, as well as water distribution and allocation in a more efficient and water

  13. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Hydrologic Landscape Regions

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the area of Hydrologic Landscape Regions (HLR) compiled for every MRB_E2RF1 catchment of the Major River Basins (MRBs, Crawford and others, 2006). The source data set is a 100-meter version of Hydrologic Landscape Regions of the United States (Wolock, 2003). HLR groups watersheds on the basis of similarities in land-surface form, geologic texture, and climate characteristics. The MRB_E2RF1 catchments are based on a modified version of the U.S. Environmental Protection Agency's (USEPA) ERF1_2 and include enhancements to support national and regional-scale surface-water quality modeling (Nolan and others, 2002; Brakebill and others, 2011). Data were compiled for every MRB_E2RF1 catchment for the conterminous United States covering New England and Mid-Atlantic (MRB1), South Atlantic-Gulf and Tennessee (MRB2), the Great Lakes, Ohio, Upper Mississippi, and Souris-Red-Rainy (MRB3), the Missouri (MRB4), the Lower Mississippi, Arkansas-White-Red, and Texas-Gulf (MRB5), the Rio Grande, Colorado, and the Great basin (MRB6), the Pacific Northwest (MRB7) river basins, and California (MRB8).

  14. Regional and Household Adaptation Strategies to Climate Extremes: the Case Study of the Beava River Basin, the Czech Republic

    NASA Astrophysics Data System (ADS)

    Duží, Barbora; Stojanov, Robert; Vikhrov, Dmytro

    2013-04-01

    We investigate regional and household adaptation strategies in the region affected by climate extremes, focusing on floods occurrence during past 15 years period. The main research question is: What is the overall state of adaptation measurements to climate extremes on the Bečva river basin? Target area is located along upper and middle part of the Bečva river basin in the east of the Czech Republic. The main theoretical concepts draw from differentiations between coping/adaptation strategies to climate extremes and theory of focusing event as a starter of changes in attention and agenda of problem solution. We apply mixed empirical research and case study approach. First we use qualitative research to serve as an initial entrance to the issue, to find out the perception of adaptation progress and preparedness to climate extremes on regional level. We conducted deep interviews (N=20) with relevant stakeholders. We proceed with quantitative research through the conducting face-to face questionnaires with household residents (N=305) in no, low and no risk area in relation to flood occurrence. We designed set of questions to find out relation among experiences with flood, the level of damages and applied emergency and adaptation measurements.

  15. Denitrification in the Mississippi River network controlled by flow through river bedforms

    USGS Publications Warehouse

    Gomez-Velez, Jesus D.; Harvey, Judson W.; Cardenas, M. Bayani; Kiel, Brian

    2015-01-01

    Increasing nitrogen concentrations in the world’s major rivers have led to over-fertilization of sensitive downstream waters. Flow through channel bed and bank sediments acts to remove riverine nitrogen through microbe-mediated denitrification reactions. However, little is understood about where in the channel network this biophysical process is most efficient, why certain channels are more effective nitrogen reactors, and how management practices can enhance the removal of nitrogen in regions where water circulates through sediment and mixes with groundwater - hyporheic zones. Here we present numerical simulations of hyporheic flow and denitrification throughout the Mississippi River network using a hydrogeomorphic model. We find that vertical exchange with sediments beneath the riverbed in hyporheic zones, driven by submerged bedforms, has denitrification potential that far exceeds lateral hyporheic exchange with sediments alongside river channels, driven by river bars and meandering banks. We propose that geomorphic differences along river corridors can explain why denitrification efficiency varies between basins in the Mississippi River network. Our findings suggest that promoting the development of permeable bedforms at the streambed - and thus vertical hyporheic exchange - would be more effective at enhancing river denitrification in large river basins than promoting lateral exchange through induced channel meandering.

  16. The complete coding region sequence of river buffalo (Bubalus bubalis) SRY gene.

    PubMed

    Parma, Pietro; Feligini, Maria; Greppi, Gianfranco; Enne, Giuseppe

    2004-02-01

    The Y-linked SRY gene is responsible for testis determination in mammals. Mutations in this gene can lead to XY Gonadal Dysgenesis, an abnormal sexual phenotype described in humans, cattle, horses and river buffalo. We report here the complete river buffalo SRY sequence in order to enable the genetic diagnosis of this disease. The SRY sequence was also used to confirm the evolutionary divergence time between cattle and river buffalo 10 million years ago.

  17. The Wind River Arboretum 1912-1956.

    Treesearch

    Roy R. Silen; Leonard R. Woike

    1959-01-01

    Wind River Arboretum, located in the Wind River valley near Carson, Wash., was established in 1912 with the planting of a few species of introduced trees on stump land adjacent to the Wind River Nursery. It is the oldest arboretum in the Northwest and ranks among the earliest forestry projects of an experimental nature still in existence in the region. The initial...

  18. Space-Time Variability in River Flow Regimes of Northeast Turkey

    NASA Astrophysics Data System (ADS)

    Saris, F.; Hannah, D. M.; Eastwood, W. J.

    2011-12-01

    The northeast region of Turkey is characterised by relatively high annual precipitation totals and river flow. It is a mountainous region with high ecological status and also it is of prime interest to the energy sector. These characteristics make this region an important area for a hydroclimatology research in terms of future availability and management of water resources. However, there is not any previous research identifying hydroclimatological variability across the region. This study provides first comprehensive and detailed information on river flow regimes of northeast Turkey which is delimited by two major river basins namely East Black Sea (EBS) and Çoruh River (ÇRB) basins. A novel river flow classification is used that yields a large-scale perspective on hydroclimatology patterns of the region and allows interpretations regarding the controlling factors on river flow variability. River flow regimes are classified (with respect to timing and magnitude of flow) to examine spatial variability based on long-term average regimes, and also by grouping annual regimes for each station-year to identify temporal (between-year) variability. Results indicate that rivers in northeast Turkey are characterised by marked seasonal flow variation with an April-May-June maximum flow period. Spatial variability in flow regime seasonality is dependent largely on the topography of the study area. The EBS Basin, for which the North Anatolian Mountains cover the eastern part, is characterised by a May-June peak; whereas the ÇRB is defined by an April-May flow peak. The timing of river flows indicates that snowmelt is an important process and contributor of river flow maxima for both basins. The low flow season is January and February. Intermediate and low regime magnitude classes dominate in ÇRB and EBS basins, respectively, while high flow magnitude class is observed for one station only across the region. Result of regime stability analysis (year-to-year variation) shows

  19. The rivers of civilization

    NASA Astrophysics Data System (ADS)

    Macklin, Mark G.; Lewin, John

    2015-04-01

    The hydromorphic regimes that underpinned Old World river-based civilizations are reviewed in light of recent research. Notable Holocene climatic changes varied from region to region, whilst the dynamics of floodplain environments were equally diverse, with river channel changes significantly affecting human settlement. There were longer-term trends in Holocene hydroclimate and multi-centennial length 'flood-rich' and 'flood-poor' episodes. These impacted on five identified flooding and settlement scenarios: (i) alluvial fans and aprons; (ii) laterally mobile rivers; (iii) rivers with well-developed levees and flood basins; (iv) river systems characterised by avulsions and floodouts; and (v) large river-fed wetlands. This gave a range of changes that were either more or less regular or incremental from year-to-year (and thus potentially manageable) or catastrophic. The latter might be sudden during a flood event or a few seasons (acute), or over longer periods extending over many decades or even centuries (chronic). The geomorphic and environmental impacts of these events on riparian societies were very often irreversible. Contrasts are made between allogenic and autogenic mechanism for imposing environmental stress on riverine communities and a distinction is made between channel avulsion and contraction responses. Floods, droughts and river channel changes can precondition as well as trigger environmental crises and societal collapse. The Nile system currently offers the best set of independently dated Holocene fluvial and archaeological records, and the contrasted effects of changing hydromorphological regimes on floodwater farming are examined. The persistence of civilizations depended essentially on the societies that maintained them, but they were also understandably resilient in some environments (Pharaonic Egypt in the Egyptian Nile), appear to have had more limited windows of opportunity in others (the Kerma Kingdom in the Nubian Nile), or required

  20. Assessing Ecological Health of Large Tropical Rivers in Developing Regions: a Case Study from the Mekong.

    NASA Astrophysics Data System (ADS)

    Campbell, I. C.; Resh, V. H.; Chessman, B.

    2005-05-01

    Bioassessment tools are being developed to assess the Ecological health of the Lower Mekong River. A multinational team of local specialists has been established working with two international mentors. This approach allows geographical homogeneity of methods, assurance of quality and capacity building. A range of potential indicators were tested in the first year of the program, with benthic and littoral invertebrates, zooplankton and benthic diatoms finally being selected for further development. The first two year's assessments indicate that the health of the Mekong is generally good, with the exception of the Mekong delta, where population density is high and agriculture is most intensive. There is little industry in the Mekong Basin, and as yet no large dams have been constructed. Surveys will be conducted on a three to five year cycle, with different regions in the basin being targeted each year. Development of appropriate metrics to quantify river health is now a priority.

  1. Using NASA's Giovanni System to Simulate Time-Series Stations in the Outflow Region of California's Eel River

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Shen, Suhung; Leptoukh, Gregory G.; Lee, Zhongping

    2012-01-01

    Oceanographic time-series stations provide vital data for the monitoring of oceanic processes, particularly those associated with trends over time and interannual variability. There are likely numerous locations where the establishment of a time-series station would be desirable, but for reasons of funding or logistics, such establishment may not be feasible. An alternative to an operational time-series station is monitoring of sites via remote sensing. In this study, the NASA Giovanni data system is employed to simulate the establishment of two time-series stations near the outflow region of California s Eel River, which carries a high sediment load. Previous time-series analysis of this location (Acker et al. 2009) indicated that remotely-sensed chl a exhibits a statistically significant increasing trend during summer (low flow) months, but no apparent trend during winter (high flow) months. Examination of several newly-available ocean data parameters in Giovanni, including 8-day resolution data, demonstrates the differences in ocean parameter trends at the two locations compared to regionally-averaged time-series. The hypothesis that the increased summer chl a values are related to increasing SST is evaluated, and the signature of the Eel River plume is defined with ocean optical parameters.

  2. South Asia river-flow projections and their implications for water resources

    NASA Astrophysics Data System (ADS)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-12-01

    South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow

  3. The Contribution of Oil Sands Industry Related Atmospheric THg and MeHg Deposition to Rivers of the Athabasca Oil Sands Region of Canada

    NASA Astrophysics Data System (ADS)

    Wasiuta, V. L.; Cooke, C. A.; Kirk, J.; Chambers, P. A.; Alexander, A. C.; Rooney, R. C.

    2017-12-01

    Rapid development of Oil Sands deposits in northern Alberta (Canada) raises concerns about human health and environmental impacts. We present results from a three-year study of winter-time atmospheric deposition of total mercury (THg) and methylmercury (MeHg) in six tributary watersheds of the Athabasca River. Seasonal snowpack THg and MeHg concentrations were obtained from spring-time sampling throughout the oil sands region. Winter-time Hg loads were then modeled at watershed and sub-basin scales using ArcGIS geostatistical kriging. To determine the potential impacts of snowmelt on aquatic ecosystems, six rivers were sampled at high frequency over 2012 to 2014 ice-free seasons. Hydrologic year (HY) and first discharge peak loads were then calculated from linear extrapolation of measured concentrations and mean daily discharge. Results showed high THg and MeHg loads from atmospheric deposition around regional upgrading facilities with loads diminishing outwards. This reflects the large proportion of particle bound Hg with a short atmospheric residence time, and deposition close to emission sources. Snowpacks within the six watersheds contained substantial proportions of tributary river THg and MeHg loads. For example, HY2014 snowpacks contained 24 to 46 % of river MeHg loads. All rivers showed a large proportion of HY loads discharged, within a few weeks, in the spring first discharge peak. HY2014 snowpack MeHg loads were greater than river loads in the first discharge peak for all watersheds except the High Hills. This first discharge peak is important as it occurs during critical growth periods for aquatic life. Large differences in tributary river THg and MeHg loads suggest factors other than atmospheric deposition and watershed scale contributed to the load. Considerably higher THg and MeHg snowpack loads in the Muskeg Watershed relative to river export suggest substantial losses to catchment soils or wetlands during snowmelt. Evaluation of factors that could

  4. An integrated environmental improvement of marshlands: impact on control and elimination of schistosomiasis in marshland regions along the Yangtze River, China.

    PubMed

    Sun, Le-Ping; Wang, Wei; Zuo, Yin-Ping; Zhang, Zheng-Qiu; Hong, Qing-Biao; Yang, Guo-Jing; Zhu, Hong-Ru; Liang, You-Sheng; Yang, Hai-Tao

    2017-03-22

    Schistosomiasis is a global snail-transmitted infectious disease of poverty. Transmission control had been achieved in China in 2015 after the control efforts for over 60 years. Currently, the remaining core regions endemic for Schistosoma japonicum are mainly located in the marshland and lake regions along the Yangtze River basin. During the period from 2001 through 2015, an integrated environmental improvement of the marshlands was carried out through the implementation of industrial, agricultural and resources development projects in Yizheng County along the Yangtze River. S. japonicum infection in humans, livestock and snails was estimated by serology, stool examination, hatching technique and microscopy during the 15-year study period to evaluate the effect of the integrated environmental improvement on control and elimination of schistosomiasis. A 0.05% overall rate of S. japonicum infection was observed in snails during the 15-year study period, and no infected snails were detected since 2012. The overall prevalence of S. japonicum infection was 0.09% in humans during the study period, and no human infection was found since 2012. In addition, only 13 bovines were identified with S. japonicum infection in 2003 during the 15-year study period, and since 2004, no infection was found in livestock. The results of the present study demonstrate that the implementation of industrial, agricultural and water resources development projects, not only alters snail habitats in marshland regions, and promotes local economic development, which appears a win-to-win strategy to block the transmission of S. japonicum and accelerate socio-economic development along the Yangtze River.

  5. South Asia river flow projections and their implications for water resources

    NASA Astrophysics Data System (ADS)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-06-01

    South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a

  6. Aged dissolved organic carbon exported from rivers of the Tibetan Plateau

    PubMed Central

    Qu, Bin; Sillanpää, Mika; Kang, Shichang; Stubbins, Aron; Yan, Fangping; Aho, Kelly Sue; Zhou, Feng; Raymond, Peter A.

    2017-01-01

    The role played by river networks in regional and global carbon cycle is receiving increasing attention. Despite the potential of radiocarbon measurements (14C) to elucidate sources and cycling of different riverine carbon pools, there remain large regions such as the climate-sensitive Tibetan Plateau for which no data are available. Here we provide new 14C data on dissolved organic carbon (DOC) from three large Asian rivers (the Yellow, Yangtze and Yarlung Tsangpo Rivers) running on the Tibetan Plateau and present the carbon transportation pattern in rivers of the plateau versus other river system in the world. Despite higher discharge rates during the high flow season, the DOC yield of Tibetan Plateau rivers (0.41 gC m-2 yr-1) was lower than most other rivers due to lower concentrations. Radiocarbon ages of the DOC were older/more depleted (511±294 years before present, yr BP) in the Tibetan rivers than those in Arctic and tropical rivers. A positive correlation between radiocarbon age and permafrost watershed coverage was observed, indicating that 14C-deplted/old carbon is exported from permafrost regions of the Tibetan Plateau during periods of high flow. This is in sharp contrast to permafrost regions of the Arctic which export 14C-enriched carbon during high discharge periods. PMID:28552976

  7. Geologic map of the upper Arkansas River valley region, north-central Colorado

    USGS Publications Warehouse

    Kellogg, Karl S.; Shroba, Ralph R.; Ruleman, Chester A.; Bohannon, Robert G.; McIntosh, William C.; Premo, Wayne R.; Cosca, Michael A.; Moscati, Richard J.; Brandt, Theodore R.

    2017-11-17

    This 1:50,000-scale U.S. Geological Survey geologic map represents a compilation of the most recent geologic studies of the upper Arkansas River valley between Leadville and Salida, Colorado. The valley is structurally controlled by an extensional fault system that forms part of the prominent northern Rio Grande rift, an intra-continental region of crustal extension. This report also incorporates new detailed geologic mapping of previously poorly understood areas within the map area and reinterprets previously studied areas. The mapped region extends into the Proterozoic metamorphic and intrusive rocks in the Sawatch Range west of the valley and the Mosquito Range to the east. Paleozoic rocks are preserved along the crest of the Mosquito Range, but most of them have been eroded from the Sawatch Range. Numerous new isotopic ages better constrain the timing of both Proterozoic intrusive events, Late Cretaceous to early Tertiary intrusive events, and Eocene and Miocene volcanic episodes, including widespread ignimbrite eruptions. The uranium-lead ages document extensive about 1,440-million years (Ma) granitic plutonism mostly north of Buena Vista that produced batholiths that intruded an older suite of about 1,760-Ma metamorphic rocks and about 1,700-Ma plutonic rocks. As a result of extension during the Neogene and possibly latest Paleogene, the graben underlying the valley is filled with thick basin-fill deposits (Dry Union Formation and older sediments), which occupy two sub-basins separated by a bedrock high near the town of Granite. The Dry Union Formation has undergone deep erosion since the late Miocene or early Pliocene. During the Pleistocene, ongoing steam incision by the Arkansas River and its major tributaries has been interrupted by periodic aggradation. From Leadville south to Salida as many as seven mapped alluvial depositional units, which range in age from early to late Pleistocene, record periodic aggradational events along these streams that are

  8. Regional distribution of mercury in sediments of the main rivers of French Guiana (Amazonian basin).

    PubMed

    Laperche, Valérie; Hellal, Jennifer; Maury-Brachet, Régine; Joseph, Bernard; Laporte, Pierre; Breeze, Dominique; Blanchard, François

    2014-01-01

    Use of mercury (Hg) for gold-mining in French Guiana (up until 2006) as well as the presence of naturally high background levels in soils, has led to locally high concentrations in soils and sediments. The present study maps the levels of Hg concentrations in river sediments from five main rivers of French Guiana (Approuague River, Comté River, Mana River, Maroni River and Oyapock River) and their tributaries, covering more than 5 450 km of river with 1 211 sampling points. The maximum geological background Hg concentration, estimated from 241 non-gold-mined streams across French Guiana was 150 ng g(-1). Significant differences were measured between the five main rivers as well as between all gold-mining and pristine areas, giving representative data of the Hg increase due to past gold-mining activities. These results give a unique large scale vision of Hg contamination in river sediments of French Guiana and provide fundamental data on Hg distribution in pristine and gold-mined areas.

  9. Denitrification in the Mississippi River network controlled by flow through river bedforms

    USGS Publications Warehouse

    Gomez-Velez, Jesus D.; Harvey, Judson W.; Cardenas, M. Bayani; Kiel, Brian

    2015-01-01

    Increasing nitrogen concentrations in the world’s major rivers have led to over-fertilization of sensitive downstream waters1, 2, 3, 4. Flow through channel bed and bank sediments acts to remove riverine nitrogen through microbe-mediated denitrification reactions5, 6, 7, 8, 9, 10. However, little is understood about where in the channel network this biophysical process is most efficient, why certain channels are more effective nitrogen reactors, and how management practices can enhance the removal of nitrogen in regions where water circulates through sediment and mixes with groundwater - hyporheic zones8, 11, 12. Here we present numerical simulations of hyporheic flow and denitrification throughout the Mississippi River network using a hydrogeomorphic model. We find that vertical exchange with sediments beneath the riverbed in hyporheic zones, driven by submerged bedforms, has denitrification potential that far exceeds lateral hyporheic exchange with sediments alongside river channels, driven by river bars and meandering banks. We propose that geomorphic differences along river corridors can explain why denitrification efficiency varies between basins in the Mississippi River network. Our findings suggest that promoting the development of permeable bedforms at the streambed - and thus vertical hyporheic exchange - would be more effective at enhancing river denitrification in large river basins than promoting lateral exchange through induced channel meandering. 

  10. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    DOE PAGES

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt; ...

    2018-01-26

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash–Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that futuremore » disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate–disturbance scenarios is at least 6–11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15–21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. Furthermore, these findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.« less

  11. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    NASA Astrophysics Data System (ADS)

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt; McDowell, Nathan G.; Xu, Chonggang; Vivoni, Enrique; Middleton, Richard S.

    2018-01-01

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash-Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that future disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate-disturbance scenarios is at least 6-11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15-21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. These findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.

  12. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Katrina E.; Bohn, Theodore J.; Solander, Kurt

    Accelerated climate change and associated forest disturbances in the southwestern USA are anticipated to have substantial impacts on regional water resources. Few studies have quantified the impact of both climate change and land cover disturbances on water balances on the basin scale, and none on the regional scale. In this work, we evaluate the impacts of forest disturbances and climate change on a headwater basin to the Colorado River, the San Juan River watershed, using a robustly calibrated (Nash–Sutcliffe efficiency 0.76) hydrologic model run with updated formulations that improve estimates of evapotranspiration for semi-arid regions. Our results show that futuremore » disturbances will have a substantial impact on streamflow with implications for water resource management. Our findings are in contradiction with conventional thinking that forest disturbances reduce evapotranspiration and increase streamflow. In this study, annual average regional streamflow under the coupled climate–disturbance scenarios is at least 6–11 % lower than those scenarios accounting for climate change alone; for forested zones of the San Juan River basin, streamflow is 15–21 % lower. The monthly signals of altered streamflow point to an emergent streamflow pattern related to changes in forests of the disturbed systems. Exacerbated reductions of mean and low flows under disturbance scenarios indicate a high risk of low water availability for forested headwater systems of the Colorado River basin. Furthermore, these findings also indicate that explicit representation of land cover disturbances is required in modeling efforts that consider the impact of climate change on water resources.« less

  13. Ranching and conservation in the Santa Cruz River Region, Sonora: Milpillas Case Study (Ganaderia y Conservacion en la Region del Rio Santa Cruz, Sonora: El Caso del Grupo Milpillas)

    Treesearch

    Joaquin Murrieta-Saldivar

    2006-01-01

    The Sonoran Institute (SI) is a non-profit organization working with people toward common conservation goals. Two objectives guide the work of the Sonoran Institute in the Santa Cruz River Region in Sonora, Mexico: to establish projects with community participation that can result in tangible and long-lasting benefits to the environment, and to ensure success by...

  14. Seasonally and regionally determined indication potential of bioassays in contaminated river sediments.

    PubMed

    Hilscherová, Klára; Dusek, Ladislav; Sídlová, Tereza; Jálová, Veronika; Cupr, Pavel; Giesy, John P; Nehyba, Slavomír; Jarkovský, Jirí; Klánová, Jana; Holoubek, Ivan

    2010-03-01

    River sediments are a dynamic system, especially in areas where floods occur frequently. In the present study, an integrative approach is used to investigate the seasonal and spatial dynamics of contamination of sediments from a regularly flooded industrial area in the Czech Republic, which presents a suitable model ecosystem for pollutant distribution research at a regional level. Surface sediments were sampled repeatedly to represent two different hydrological situations: spring (after the peak of high flow) and autumn (after longer period of low flow). Samples were characterized for abiotic parameters and concentrations of priority organic pollutants. Toxicity was assessed by Microtox test; genotoxicity by SOS-chromotest and green fluorescent protein (GFP)-yeast test; and the presence of compounds with specific mode of action by in vitro bioassays for dioxin-like activity, anti-/androgenicity, and anti-/estrogenicity. Distribution of organic contaminants varied among regions and seasonally. Although the results of Microtox and genotoxicity tests were relatively inconclusive, all other specific bioassays led to statistically significant regional and seasonal differences in profiles and allowed clear separation of upstream and downstream regions. The outcomes of these bioassays indicated an association with concentrations of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) as master variables. There were significant interrelations among dioxin-like activity, antiandrogenicity and content of organic carbon, clay, and concentration of PAHs and PCBs, which documents the significance of abiotic factors in accumulation of pollutants. The study demonstrates the strength of the specific bioassays in indicating the changes in contamination and emphasizes the crucial role of a well-designed sampling plan, in which both spatial and temporal dynamics should be taken into account, for the correct interpretations of information in risk assessments.

  15. Hydrochemistry of inland rivers in the north Tibetan Plateau: Constraints and weathering rate estimation.

    PubMed

    Wu, Weihua

    2016-01-15

    The geographic region around the northern and northeastern Tibetan Plateau is the source of several inland rivers (e.g. Tarim River) of worldwide importance that are generated in the surrounding mountains systems of Tianshan, Pamir, Karakorum, and Qilian. To characterize chemical weathering and atmospheric CO2 consumption in these regions, water samples from the Tarim, Yili, Heihe, Shule, and Shiyang Rivers were collected and analyzed for major ion concentrations. The hydrochemical characteristics of these inland rivers pronouncedly distinguish them from large exorheic rivers (e.g., the Yangtze River and the Yellow River), as reflected in very high total dissolution solids (TDS) values. TDS was 115-4345 mg l(-1) with an average of 732 mg l(-1), which is an order of magnitude higher than the mean value for world rivers (65 mg l(-1)). The Cheerchen River, Niya River, Keliya River and the terminal lakes of the Tarim River and the Heihe River have TDS values higher than 1 gl(-1), indicating saline water that cannot be directly consumed. Therefore, the problem of sufficient and safe drinking water has become increasingly prominent in the northwestern China arid zone. According to an inversion model, the contribution from evaporite dissolution to the dissolved loads in these rivers is 12.5%-99% with an average of 54%. The calculated silicate and carbonate weathering rates are 0.02-4.62 t km(-2)y(-1) and 0.01-11.7 t km(-2)y(-1) for these rivers. To reduce the influence of lithology, only the silicate weathering rates in different parts of the Tibetan Plateau are compared. A rough variation tendency can be seen in the rates: northern regional (0.15-1.73 t km(-2)y(-1))regional (0.74-4.62) ≈ western regional (1.75)regional (0.18-16.4) ≈ southeastern regional (3.5-10.6)regional (13.5-38.0). The weathering rates did not show a noticeable correlation with a single influencing factor, such as temperature, elevation, vegetation, and physical

  16. Polycyclic aromatic hydrocarbons in bottom sediment and bioavailability in streams in the New River Gorge National River and Gauley River National Recreation Area, West Virginia, 2002

    USGS Publications Warehouse

    Messinger, Terrence

    2004-01-01

    Polycyclic aromatic hydrocarbons (PAHs), including some on the U.S. Environmental Protection Agency's priority pollutant list, were found in bottom sediment in streams in the coal-producing region of the Kanawha River Basin in 1996-1998, and in and near the New River Gorge National River in 2002, in concentrations exceeding those thought likely to cause adverse effects to wildlife. Very low concentrations of bioavailable PAHs were measured in streams in and near the New River Gorge National River by the use of semipermeable membrane devices. The apparent contradiction between the high concentrations of total PAHs and the low concentrations of bioavailable PAHs may result from the presence of a substantial amount of particulate coal in bottom sediment.

  17. Impact of climate change on river discharge in the Teteriv River basin (Ukraine)

    NASA Astrophysics Data System (ADS)

    Didovets, Iulii; Lobanova, Anastasia; Krysanova, Valentina; Snizhko, Sergiy; Bronstert, Axel

    2016-04-01

    The problem of water resources availability in the climate change context arises now in many countries. Ukraine is characterized by a relatively low availability of water resources compared to other countries. It is the 111th among 152 countries by the amount of domestic water resources available per capita. To ensure socio-economic development of the region and to adapt to climate change, a comprehensive assessment of potential changes in qualitative and quantitative characteristics of water resources in the region is needed. The focus of our study is the Teteriv River basin located in northern Ukraine within three administrative districts covering the area of 15,300 km2. The Teteriv is the right largest tributary of the Dnipro River, which is the fourth longest river in Europe. The water resources in the region are intensively used in industry, communal infrastructure, and agriculture. This is evidenced by a large number of dams and industrial objects which have been constructed from the early 20th century. For success of the study, it was necessary to apply a comprehensive hydrological model, tested in similar natural conditions. Therefore, an eco-hydrological model SWIM with the daily time step was applied, as this model was used previously for climate impact assessment in many similar river basins on the European territory. The model was set up, calibrated and validated for the gauge Ivankiv located close to the outlet of the Teteriv River. The Nash-Sutcliffe efficiency coefficient for the calibration period is 0.79 (0.86), and percent bias is 4,9% (-3.6%) with the daily (monthly) time step. The future climate scenarios were selected from the IMPRESSIONS (Impacts and Risks from High-End Scenarios: Strategies for Innovative Solutions, www.impressions-project.eu) project, which developed 7 climate scenarios under RCP4.5 and RCP8.5 based on GCMs and downscaled using RCMs. The results of climate impact assessment for the Teteriv River basin will be presented.

  18. Processes affecting suspended sediment transport in the mid-field plume region of the Rhine River, Netherlands.

    NASA Astrophysics Data System (ADS)

    Flores, R. P.; Rijnsburger, S.; Horner-Devine, A.; Souza, A. J.; Pietrzak, J.

    2016-02-01

    This work will describe dominant processes affecting suspended sediment transport along the Dutch coast, in the mid-field plume region of the Rhine River. We will present field observations from two long-term deployments conducted in the vicinity of the Sand Engine, a mega-nourishment experiment located 10 km north of the Rhine river mouth. To investigate the role of density stratification, winds, tides, waves and river plume processes on sediment transport, frames and moorings were deployed within the excursion of the tidal plume front generated by the freshwater outflow from the Rhine River for 4 and 6 weeks during years 2013 and 2014, respectively. The moorings were designed to measure vertical profiles of suspended sediment concentration (SSC) and salinity, using arrays of CTDs and OBS sensors. Mean tidal velocities were measured using bottom-mounted ADCPs. The near-bed dynamics and the near-bottom sediment concentrations were measured as well using a set of synchronized ADVs and OBSs. By combining the two deployments we observe hydrodynamics and suspended sediment dynamics under a wide range of forcing conditions. Preliminary observations indicate that stratification is highly dependent on wind magnitude and direction, and its role is primarily identified as to induce significant cross-shore sediment transport product of the generation of cross-shore velocities due to the modification of the tidal ellipses and the passage of the surface plume front. The passage of the surface plume front generates strong offshore currents near the bottom, producing transport events that can be similar in magnitude to the dominant alongshore transport. Preliminary results also indicate that storms play an important role in alongshore transport primarily by wave-induced sediment resuspension, but as stratification is suppressed due to the enhancement of mixing processes, no significant cross-shore transport is observed during very energetic conditions.

  19. Regional hydrology of the Green River-Moab area, northwestern Paradox Basin, Utah

    USGS Publications Warehouse

    Rush, F.E.; Whitfield, M.S.; Hart, I.M.

    1984-01-01

    The Green River-Moab area encompasses about 7,800 square kilometers or about 25 percent of the Paradox basin. The entire Paradox basin is a part of the Colorado Plateaus that is underlain by a thick sequence of evaporite (salt) beds of Pennsylvanian age. The rock units that underlie the area have been grouped into hydrogeologic units based on their water-transmitting ability. Confining beds consist of evaporite beds of mostly salt, and over- lying and underlying thick sequences of rocks with minimal permeability; above and below these confining beds are aquifers. The upper Mesozoic sand- stone aquifer, probably is the most permeable hydrogeologic unit of the area and is the subject of this investigation. The principal component of ground- water outflow from this aquifer probably is subsurface flow to regional streams (the Green and Colorado Rivers) and is about 100 million cubic meters per year. All other components of outflow are relatively small. The average annual recharge to the aquifer is about 130 million cubic meters, of which about 20 million cubic meters is from local precipitation. For the lower aquifer, all recharge and discharge probably is by subsurface flow and was not estimated.The aquifers are generally isolated from the evaporite beds by the bounding confining beds; as a result, most ground water has little if any contact with the evaporites. Brines are present in the confining beds, but solution of beds o£ salt probably is very slow in most parts of the area. No brine discharges' have been identified.

  20. RESEARCH: Effects of Recent Volcanic Eruptions on Aquatic Habitat in the Drift River, Alaska, USA: Implications at Other Cook Inlet Region Volcanoes.

    PubMed

    DORAVA; MILNER

    1999-02-01

    / Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano. During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano. KEY WORDS: Aquatic habitat; Volcanoes; Lahars; Lahar-runout flows; Macroinvertebrates; Community structure; Community composition

  1. Cross - Scale Intercomparison of Climate Change Impacts Simulated by Regional and Global Hydrological Models in Eleven Large River Basins

    NASA Technical Reports Server (NTRS)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Florke, M.; Huang, S.; Motovilov, Y.; Buda, S.; hide

    2017-01-01

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity to climate variability and climate change is comparable for impact models designed for either scale. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a better reproduction of reference conditions. However, the sensitivity of the two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases, but have distinct differences in other cases, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability. Whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models calibrated and validated against observed discharge should be used.

  2. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climatemore » change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.« less

  3. Atmospheric Rivers Induced Heavy Precipitation and Flooding in the Western U.S. Simulated by the WRF Regional Climate Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leung, Lai R.; Qian, Yun

    2009-02-12

    Twenty years of regional climate simulated by the Weather Research and Forecasting model for North America has been analyzed to study the influence of the atmospheric rivers and the role of the land surface on heavy precipitation and flooding in the western U.S. Compared to observations, the simulation realistically captured the 95th percentile extreme precipitation, mean precipitation intensity, as well as the mean precipitation and temperature anomalies of all the atmospheric river events between 1980-1999. Contrasting the 1986 President Day and 1997 New Year Day atmospheric river events, differences in atmospheric stability are found to have an influence on themore » spatial distribution of precipitation in the Coastal Range of northern California. Although both cases yield similar amounts of heavy precipitation, the 1997 case was found to produce more runoff compared to the 1986 case. Antecedent soil moisture, the ratio of snowfall to total precipitation (which depends on temperature), and existing snowpack all seem to play a role, leading to a higher runoff to precipitation ratio simulated for the 1997 case. This study underscores the importance of characterizing or simulating atmospheric rivers and the land surface conditions for predicting floods, and for assessing the potential impacts of climate change on heavy precipitation and flooding in the western U.S.« less

  4. Historical levels of heavy metals reconstructed from sedimentary record in the Hejiang River, located in a typical mining region of Southern China.

    PubMed

    Wang, Shaopeng; Wang, Yinghui; Zhang, Ruijie; Wang, Weitao; Xu, Daoquan; Guo, Jing; Li, Pingyang; Yu, Kefu

    2015-11-01

    Historical levels of Pb, Zn, Cd, Cr, Cu, Ni, As, Fe, Al and Mn were found in C1 and C2 sediment cores from the Hejiang River, which is located in a typical mining region of Southern China, the levels date back approximately 57 and 83 years. Temporal variations in the core C1 around the mining peaked in the 1960s, after which they exhibited a decreasing trend, which reflects successful government management. Historical events such as the Pacific War and China's first 5-year economic plan were recorded in core C2, which was collected from the downstream portion of the Hejiang River. Enrichment factors (EF), geo-accumulation (Igeo), and excess flux indicate that severe contamination occurred during the period between 1956 and 1985 due to the release of high amounts of mining waste from human activities around the core C1 region. The highest EF value was displayed by As (67); this was followed by Pb (64), Cd (39), and Zn (35). In contrast, the core C2 sediments exhibited minor pollution because of dilution from tributaries (the Fu River and the Daning River) that do not flow through the mined area and because C2 was farther from the source of the metals. The results of the risk assessment codes (RAC) for both cores indicate that Cd posed a high risk to the local environment. Principal component analysis (PCA) and correlation analysis (CA) revealed that accumulation of heavy metals was mainly due to mining pollution. Copyright © 2015. Published by Elsevier B.V.

  5. Trends and variations of pH and hardness in a typical semi-arid river in a monsoon climate region during 1985-2009.

    PubMed

    Hao, Shaonan; Li, Xuyong; Jiang, Yan; Zhao, Hongtao; Yang, Lei

    2016-09-01

    The rapid growth of urbanization and industrialization, along with dramatic climate change, has strongly influenced hydrochemical characteristics in recent decades in China and thus could cause the variation of pH and general total hardness of a river. To explore such variations and their potential influencing factors in a river of the monsoon climate region, we analyzed a long-term monitoring dataset of pH, SO4 (2-), NOx, general total hardness (GH), Mg(2+), Ca(2+), and Cl(-) in surface water and groundwater in the Luan River basin from 1985 to 2009. The nonparametric Seasonal Kendall trend test was used to test the long-term trends of pH and GH. Relationship between the affecting factors, pH and GH were discussed. Results showed that pH showed a decreasing trend and that GH had an increasing trend in the long-term. Seasonal variation of pH and GH was mainly due to the typical monsoon climate. Results of correlation analysis showed that the unit area usage amounts of chemical fertilizer, NO3 (-), and SO4 (2-) were negatively correlated with pH in groundwater. In addition, mining activity affected GH spatial variation. Acid deposition, drought, and increasing the use of chemical fertilizers would contribute to the acidification trend, and mining activities would affect the spatial variation of GH. Variations of precipitation and runoff in semi-arid monsoon climate areas had significant influences on the pH and GH. Our findings implied that human activities played a critical role in river acidification in the semi-arid monsoon climate region of northern China.

  6. River Incision and Knickpoints on the Flank of the Yellowstone Hotspot — Alpine Canyon of the Snake River, Wyoming

    NASA Astrophysics Data System (ADS)

    Tuzlak, D.; Pederson, J. L.

    2015-12-01

    Understanding patterns of deformation and testing geophysical models in the dynamic region of the Yellowstone Hotspot requires Quaternary-scale records of incision and uplift, which are currently absent. This study examines fluvial terraces and longitudinal-profile metrics along Alpine Canyon of the Snake River, WY. Because the Snake is the only regional river crossing from the uplifting Yellowstone Plateau and flowing into the subsiding Eastern Snake River Plain, it provides an opportunity to investigate both ends of the phenomenon. Field observations through Alpine Canyon indicate that Pleistocene incision rates in this region are relatively high for the interior western U.S., that the river switches between bedrock and alluvial forms, and that incision/uplift is not uniform. Two endmembers of regional deformation may be tested: 1) the arch of high topography surrounding Yellowstone is uplifting and terraces converge downstream as incision rates decrease towards the Snake River Plain, or 2) baselevel fall originates at the subsiding Snake River Plain and terraces diverge as incision rates increase downstream. Datasets include surficial mapping, rock strength measurements, surveying of the longitudinal profile and terraces using RTK-GPS, optically stimulated luminescence dating of fluvial-terrace deposits, and investigation of drainages through ksn and χ analyses. Initial results indicate that there are four primary terrace deposits along the canyon, three of which are timed with glacial epochs. Considering the relative heights of terrace straths and preliminary ages, incision rates are indeed relatively high. There is a major knickzone covering the last 15 km of the canyon that is also reflected in tributary profiles and is consistent with a wave of incision propagating upstream, favoring the second endmember of active baselevel fall downstream.

  7. Benchmarking wide swath altimetry-based river discharge estimation algorithms for the Ganges river system

    NASA Astrophysics Data System (ADS)

    Bonnema, Matthew G.; Sikder, Safat; Hossain, Faisal; Durand, Michael; Gleason, Colin J.; Bjerklie, David M.

    2016-04-01

    The objective of this study is to compare the effectiveness of three algorithms that estimate discharge from remotely sensed observables (river width, water surface height, and water surface slope) in anticipation of the forthcoming NASA/CNES Surface Water and Ocean Topography (SWOT) mission. SWOT promises to provide these measurements simultaneously, and the river discharge algorithms included here are designed to work with these data. Two algorithms were built around Manning's equation, the Metropolis Manning (MetroMan) method, and the Mean Flow and Geomorphology (MFG) method, and one approach uses hydraulic geometry to estimate discharge, the at-many-stations hydraulic geometry (AMHG) method. A well-calibrated and ground-truthed hydrodynamic model of the Ganges river system (HEC-RAS) was used as reference for three rivers from the Ganges River Delta: the main stem of Ganges, the Arial-Khan, and the Mohananda Rivers. The high seasonal variability of these rivers due to the Monsoon presented a unique opportunity to thoroughly assess the discharge algorithms in light of typical monsoon regime rivers. It was found that the MFG method provides the most accurate discharge estimations in most cases, with an average relative root-mean-squared error (RRMSE) across all three reaches of 35.5%. It is followed closely by the Metropolis Manning algorithm, with an average RRMSE of 51.5%. However, the MFG method's reliance on knowledge of prior river discharge limits its application on ungauged rivers. In terms of input data requirement at ungauged regions with no prior records, the Metropolis Manning algorithm provides a more practical alternative over a region that is lacking in historical observations as the algorithm requires less ancillary data. The AMHG algorithm, while requiring the least prior river data, provided the least accurate discharge measurements with an average wet and dry season RRMSE of 79.8% and 119.1%, respectively, across all rivers studied. This poor

  8. Preliminary report on geophysics of the Verde River headwaters region, Arizona

    USGS Publications Warehouse

    Langenheim, V.E.; Duval, J.S.; Wirt, Laurie; DeWitt, Ed

    2000-01-01

    This report summarizes the acquisition, data processing, and preliminary interpretation of a high-resolution aeromagnetic and radiometric survey near the confluence of the Big and Little Chino basins in the headwaters of the Verde River, Arizona. The goal of the aeromagnetic study is to improve understanding of the geologic framework as it affects groundwater flow, particularly in relation to the occurrence of springs in the upper Verde River headwaters region. Radiometric data were also collected to map surficial rocks and soils, thus aiding geologic mapping of the basin fill. Additional gravity data were collected to enhance existing coverage. Both aeromagnetic and gravity data indicate a large gradient along the Big Chino fault, a fault with Quaternary movement. Filtered aeromagnetic data show other possible faults within the basin fill and areas where volcanic rocks are shallowly buried. Gravity lows associated with Big Chino and Williamson Valleys indicate potentially significant accumulations of low-density basin fill. The absence of a gravity low associated with Little Chino Valley indicates that high-density rocks are shallow. The radiometric maps show higher radioactivity associated with the Tertiary latites and with the sediments derived from them. The surficial materials on the eastern side of the Big Chino Valley are significantly lower in radioactivity and reflect the materials derived from the limestone and basalt east of the valley. The dividing line between the low radioactivity materials to the east and the higher radioactiviy materials to the west coincides approximately with the major drainage system of the valley, locally known as Big Chino Wash. This feature is remarkably straight and is approximately parallel to the Big Chino Fault. The uranium map shows large areas with concentrations greater than 5 ppm eU, and we expect that these areas will have a significantly higher risk potential for indoor radon.

  9. Exploring Controls on Sinuousity, Terraces and River Capture in the Upper Dajia River, Taiwan

    NASA Astrophysics Data System (ADS)

    Belliveau, L. C.; Ouimet, W. B.; Chan, Y. C.; Byrne, T. B.

    2015-12-01

    Taiwan is one of the most tectonically active regions in the world and is prone to landslides due to steep topography, large earthquakes and frequent typhoons. Landslides often affect and alter the river valleys beneath them, producing knickpoints on longitudinal river profiles, segmenting valleys into mixed bedrock-alluvial rivers and affecting river incision for tens to thousands of years. This study investigates the origin and evolution of complex channel morphologies, terraces and river capture along a 20km stretch of the Upper Da-Jia River in the Heping area of Taiwan. Through GIS analysis and field studies, we explore controls on river channel sinuousity, terrace development and river capture in relation to tectonic and climatic forcing, rock erodibility and landslides. High channel sinuousity is proposed as the result of a coupling between bank erosion and landslides. We discuss three types of landslide-induced meanders and increased sinuousity: (a) depositional-push meanders, (b) failure-zone erosional meanders, and (c) complex-erosional meanders. We also investigate spatial variation in channel morphology (slope, width) and the distribution and heights of river terraces within the Upper Da-Jia watershed associated with periods of widespread valley filling from landslide activity. Examples of river capture provide further evidence of the dynamic interactions between river incision, landslides and associated changes in channel morphology and terrace development within steep rapidly uplift, eroding and evolving mountain belts.

  10. Impact of the Fraser River Geometry on Tides and the River Plumes in a Model of the Fraser River Plume

    NASA Astrophysics Data System (ADS)

    Liu, J.; Allen, S. E.; Soontiens, N. K.

    2016-02-01

    Fraser River is the largest river on the west coast of Canada. It empties into the Strait of Georgia, which is a large, semi-enclosed body of water between Vancouver Island and the mainland of British Columbia. We have developed a three-dimensional model of the Strait of Georgia, including the Fraser River plume, using the NEMO model in its regional configuration. This operational model produces daily nowcasts and forecasts for salinity, temperature, currents and sea surface heights. Observational data available for evaluation of the model includes daily British Columbia ferry salinity data, profile data and surface drifter data. The salinity of the modelled Fraser River plume agrees well with ferry based measurements of salinity. However, large discrepencies exist between the modelled and observed position of the plume. Modelled surface currents compared to drifter observations show that the model has too strong along-strait velocities and too weak cross-strait velocities. We investigated the impact of river geometry. A sensitivity experiment was performed comparing the original, short, shallow river channel to an extended and deepened river channel. With the latter bathymetry, tidal amplitudes within Fraser River correspond well with observations. Comparisons to drifter tracks show that the surface currents have been improved with the new bathymetry. However, substantial discrepencies remain. We will discuss how reducing vertical eddy viscosity and other changes further improve the modelled position of the plume.

  11. Greenhouse gas emissions of different land uses in the delta region of Red River, Vietnam

    NASA Astrophysics Data System (ADS)

    Zhou, Minghua; Ha, Thu; An, Ngo The; Brüggemann, Nicolas

    2017-04-01

    Agricultural activities are responsible for up to a third of total anthropogenic GHG emissions. The subtropical/tropical delta areas of the large rivers in Southeast Asia are long-term history agricultural regions in the world. However, due to lack of field measurements, the estimation of the contribution of agro-ecosystems in the subtropical/tropical delta areas to global greenhouse gas emissions remains largely uncertain. Here, we conducted field experiments since January 2016 to quantify greenhouse gases (CO2, CH4 and N2O) emissions from four agricultural land uses of annual rice-rice, rice-vegetable, continuous vegetable system and fish pond in Red River delta region of Vietnam by using the transparent static chamber-gas chromatography technique. Higher N2O emissions were observed in the rice-vegetable and continuous vegetable systems, while lower N2O emissions were observed in the rice-rice and find pond systems. Compared to rice-rice system the cumulative N2O fluxes were on average twenty-fold higher in the rice-vegetable and continuous vegetable systems but significantly lower (75%) in the fish pond. Overall the net CO2 sinks were observed in the rice-rice system while other three land uses of rice-vegetable, continuous vegetable and fish pond acted as the net CO2 sources. The rice-rice and fish pond showed net CH4 emissions while variations of CH4 emissions (i.e. shifting between sources and sinks) along variations of soil moisture and temperature were observed in rice-vegetable and continuous vegetable systems. Compared to rice-rice system, the cumulative CH4 fluxes were significantly decreased by 100% for continuous vegetable system, 94% for rice-vegetable system and 89% for fish pond. Overall, the data suggest that conversion of traditional rice-rice paddy system to rice-vegetable, continuous vegetable system and find pond, which are currently undergoing driven by the economical requests and environmental changes (e.g., salinity intrusion) in this delta

  12. Developing a Science-based River Basin Management Plan for the Kharaa River Basin, Mongolia

    NASA Astrophysics Data System (ADS)

    Karthe, Daniel

    2013-04-01

    The Kharaa River Basin (KRB), which is located north of Mongolia's capital Ulaanbaatar and south of Lake Baikal, was chosen as a model region for the development and implementation of an integrated water resources management consisting of a monitoring concept, technical measures and a capacity development program (Karthe et al. 2012a). The basin of the Kharaa River covers an area of 14534 km² that is partly mountaineous and largely covered by taiga and steppe. At its outlet, the 362 km Kharaa River has a mean long-term annual discharge of 12.1 m³/s (MoMo Consortium 2009). A highly continental climate results in limited water resources, and rising water consumption coupled with the effects of climate and land use change may in the future exacerbate this water scarcity (Malsy et al. 2012; Karthe et al. 2013). Whereas the environment in the upper part of the catchment is in a relatively pristine state, the mid- and downstream sections of the river are characterized by nearby industry, mining activities and intensive agriculture (Menzel et al. 2011), resulting in declining water quality and ultimately a degradation of aquatic ecosystems (Hofmann et al. 2010; Hartwig et al. 2012). Moreover, it is a problem for the supply of major cities like Darkhan which largely rely on alluvial aquifers containing shallow-depth groundwater (Mun et al. 2008). Currently, there are alarming signs of water quality deterioration. With regard to water provision, a major problem is the poor state of distribution infrastructures which were often built in the 1960s and 70s (Scharaw & Westerhoff 2011). Rather little is currently known about the water quality supplied to end users; the latter is even more dubious in the city's informal ger districts (Karthe et al. 2012b). One important goal of the research and development project "Integrated Water Resources Management in Central Asia: Model Region Mongolia" lies in the implementation of a holistic concept for water resources monitoring and

  13. An AIS-based high-resolution ship emission inventory and its uncertainty in Pearl River Delta region, China.

    PubMed

    Li, Cheng; Yuan, Zibing; Ou, Jiamin; Fan, Xiaoli; Ye, Siqi; Xiao, Teng; Shi, Yuqi; Huang, Zhijiong; Ng, Simon K W; Zhong, Zhuangmin; Zheng, Junyu

    2016-12-15

    Ship emissions contribute significantly to air pollution and impose health risks to residents along the coastal area. By using the refined data from the Automatic Identification System (AIS), this study developed a highly resolved ship emission inventory for the Pearl River Delta (PRD) region, China, home to three of ten busiest ports in the world. The region-wide SO 2 , NO X , CO, PM 10 , PM 2.5 , and VOC emissions in 2013 were estimated to be 61,484, 103,717, 10,599, 7155, 6605, and 4195t, respectively. Ocean going vessels were the largest contributors of the total emissions, followed by coastal vessels and river vessels. In terms of ship type, container ship was the leading contributor, followed by conventional cargo ship, dry bulk carrier, fishing ship, and oil tanker. These five ship types accounted for >90% of total emissions. The spatial distributions of emissions revealed that the key emission hot spots all concentrated within the newly proposed emission control area (ECA) and ship emissions within ECA covered >80% of total ship emissions in the PRD, highlighting the importance of ECA in emissions reduction in the PRD. The uncertainties of emission estimates of pollutants were quantified, with lower bounds of -24.5% to -21.2% and upper bounds of 28.6% to 33.3% at 95% confidence intervals. The lower uncertainties in this study highlighted the powerfulness of AIS data in improving ship emission estimates. The AIS-based bottom-up methodology can be used for developing and upgrading ship emission inventory and formulating effective control measures on ship emissions in other port regions wherever possible. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Characterization of CDOM of river waters in China using fluorescence excitation-emission matrix and regional integration techniques

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Song, Kaishan; Shang, Yingxin; Shao, Tiantian; Wen, Zhidan; Lv, Lili

    2017-08-01

    The spatial characteristics of fluorescent dissolved organic matter (FDOM) components in river waters in China were first examined by excitation-emission matrix spectra and fluorescence regional integration (FRI) with the data collected during September to November between 2013 and 2015. One tyrosine-like (R1), one tryptophan-like (R2), one fulvic-like (R3), one microbial protein-like (R4), and one humic-like (R5) components have been identified by FRI method. Principal component analysis (PCA) was conducted to assess variations in the five FDOM components (FRί (ί = 1, 2, 3, 4, and 5)) and the humification index for all 194 river water samples. The average fluorescence intensities of the five fluorescent components and the total fluorescence intensities FSUM differed under spatial variation among the seven major river basins (Songhua, Liao, Hai, Yellow and Huai, Yangtze, Pearl, and Inflow Rivers) in China. When all the river water samples were pooled together, the fulvic-like FR3 and the humic-like FR5 showed a strong positive linear relationship (R2 = 0.90, n = 194), indicating that the two allochthonous FDOM components R3 and R5 may originate from similar sources. There is a moderate strong positive correlation between the tryptophan-like FR2 and the microbial protein-like FR4 (R2 = 0.71, n = 194), suggesting that parts of two autochthonous FDOM components R2 and R4 are likely from some common sources. However, the total allochthonous substance FR(3+5) and the total autochthonous substances FR(1+2+4) exhibited a weak correlation (R2 = 0.40, n = 194). Significant positive linear relationships between FR3 (R2 = 0.69, n = 194), FR5 (R2 = 0.79, n = 194), and chromophoric DOM (CDOM) absorption coefficient a(254) were observed, which demonstrated that the CDOM absorption was dominated by the allochthonous FDOM components R3 and R5.

  15. Contrastive Analysis of Meteorological Element Effect Simulated by parameterization schemes Land Surface Process of Noah and CLM4 over the Yellow River Source Region

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Wen, X.

    2017-12-01

    The Yellow River source region is situated in the northeast Tibetan Plateau, which is considered as a global climate change hot-spot and one of the most sensitive areas in terms of response to global warming in view of its fragile ecosystem. This region plays an irreplaceable role for downstream water supply of The Yellow River because of its unique topography and variable climate. The water energy cycle processes of the Yellow River source Region from July to September in 2015 were simulated by using the WRF mesoscale numerical model. The two groups respectively used Noah and CLM4 parameterization schemes of land surface process. Based on the observation data of GLDAS data set, ground automatic weather station and Zoige plateau wetland ecosystem research station, the simulated values of near surface meteorological elements and surface energy parameters of two different schemes were compared. The results showed that the daily variations about meteorological factors in Zoige station in September were simulated quite well by the model. The correlation coefficient between the simulated temperature and humidity of the CLM scheme were 0.88 and 0.83, the RMSE were 1.94 ° and 9.97%, and the deviation Bias were 0.04 ° and 3.30%, which was closer to the observation data than the Noah scheme. The correlation coefficients of net radiation, surface heat flux, upward short wave and upward longwave radiation were respectively 0.86, 0.81, 0.84 and 0.88, which corresponded better than the observation data. The sensible heat flux and latent heat flux distribution of the Noah scheme corresponded quite well to GLDAS. the distribution and magnitude of 2m relative humidity and soil moisture were closer to surface observation data because the CLM scheme described the photosynthesis and evapotranspiration of land surface vegetation more rationally. The simulating abilities of precipitation and downward longwave radiation need to be improved. This study provides a theoretical basis for

  16. Lake Murray, Fly and Strickland River Basins, Papua, New Guinea

    NASA Image and Video Library

    1991-12-01

    Lake Murray, a manmade reservoir, lies between the Fly and Strickland River Basins, Papua, New Guinea (7.0S, 141.5E). The region, photographed in sunglint, shows the water level in the reservoir and the full extent of the drainage basins of both river systems as the rivers meander through wide alluvial floodplains. Some forest clearing can be seen in places throughout the region, but most of the area remains in closed canopy forest.

  17. Bacterial Biogeography across the Amazon River-Ocean Continuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ~675 km of the lower Amazon River mainstem, in the Tapajos River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitionalmore » assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity nearshore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers

  18. Bacterial Biogeography across the Amazon River-Ocean Continuum.

    PubMed

    Doherty, Mary; Yager, Patricia L; Moran, Mary Ann; Coles, Victoria J; Fortunato, Caroline S; Krusche, Alex V; Medeiros, Patricia M; Payet, Jérôme P; Richey, Jeffrey E; Satinsky, Brandon M; Sawakuchi, Henrique O; Ward, Nicholas D; Crump, Byron C

    2017-01-01

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and

  19. Bacterial Biogeography across the Amazon River-Ocean Continuum

    DOE PAGES

    Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann; ...

    2017-05-23

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ~675 km of the lower Amazon River mainstem, in the Tapajos River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2-2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitionalmore » assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity nearshore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers

  20. Bacterial Biogeography across the Amazon River-Ocean Continuum

    PubMed Central

    Doherty, Mary; Yager, Patricia L.; Moran, Mary Ann; Coles, Victoria J.; Fortunato, Caroline S.; Krusche, Alex V.; Medeiros, Patricia M.; Payet, Jérôme P.; Richey, Jeffrey E.; Satinsky, Brandon M.; Sawakuchi, Henrique O.; Ward, Nicholas D.; Crump, Byron C.

    2017-01-01

    Spatial and temporal patterns in microbial biodiversity across the Amazon river-ocean continuum were investigated along ∼675 km of the lower Amazon River mainstem, in the Tapajós River tributary, and in the plume and coastal ocean during low and high river discharge using amplicon sequencing of 16S rRNA genes in whole water and size-fractionated samples (0.2–2.0 μm and >2.0 μm). River communities varied among tributaries, but mainstem communities were spatially homogeneous and tracked seasonal changes in river discharge and co-varying factors. Co-occurrence network analysis identified strongly interconnected river assemblages during high (May) and low (December) discharge periods, and weakly interconnected transitional assemblages in September, suggesting that this system supports two seasonal microbial communities linked to river discharge. In contrast, plume communities showed little seasonal differences and instead varied spatially tracking salinity. However, salinity explained only a small fraction of community variability, and plume communities in blooms of diatom-diazotroph assemblages were strikingly different than those in other high salinity plume samples. This suggests that while salinity physically structures plumes through buoyancy and mixing, the composition of plume-specific communities is controlled by other factors including nutrients, phytoplankton community composition, and dissolved organic matter chemistry. Co-occurrence networks identified interconnected assemblages associated with the highly productive low salinity near-shore region, diatom-diazotroph blooms, and the plume edge region, and weakly interconnected assemblages in high salinity regions. This suggests that the plume supports a transitional community influenced by immigration of ocean bacteria from the plume edge, and by species sorting as these communities adapt to local environmental conditions. Few studies have explored patterns of microbial diversity in tropical rivers and

  1. Two-dimensional surface river flow patterns measured with paired RiverSondes

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.

    2007-01-01

    Two RiverSondes were operated simultaneously in close proximity in order to provide a two-dimensional map of river surface velocity. The initial test was carried out at Threemile Slough in central California. The two radars were installed about 135 m apart on the same bank of the channel. Each radar used a 3-yagi antenna array and determined signal directions using direction finding. The slough is approximately 200 m wide, and each radar processed data out to about 300 m, with a range resolution of 15 m and an angular resolution of 1 degree. Overlapping radial vector data from the two radars were combined to produce total current vectors at a grid spacing of 10 m, with updates every 5 minutes. The river flow in the region, which has a maximum velocity of about 0.8 m/s, is tidally driven with flow reversals every 6 hours, and complex flow patterns were seen during flow reversal. The system performed well with minimal mutual interference. The ability to provide continuous, non-contact two-dimensional river surface flow measurements will be useful in several unique settings, such as studies of flow at river junctions where impacts to juvenile fish migration are significant. Additional field experiments are planned this year on the Sacramento River. ?? 2007 IEEE.

  2. Two-dimensional surface river flow patterns measured with paired RiverSondes

    USGS Publications Warehouse

    Teague, C.C.; Barrick, D.E.; Lilleboe, P.M.; Cheng, R.T.

    2008-01-01

    Two RiverSondes were operated simultaneously in close proximity in order to provide a two-dimensional map of river surface velocity. The initial test was carried out at Threemile Slough in central California. The two radars were installed about 135 m apart on the same bank of the channel. Each radar used a 3-yagi antenna array and determined signal directions using direction finding. The slough is approximately 200 m wide, and each radar processed data out to about 300 m, with a range resolution of 15 m and an angular resolution of 1 degree. Overlapping radial vector data from the two radars were combined to produce total current vectors at a grid spacing of 10 m, with updates every 5 minutes. The river flow in the region, which has a maximum velocity of about 0.8 m/s, is tidally driven with flow reversals every 6 hours, and complex flow patterns were seen during flow reversal. The system performed well with minimal mutual interference. The ability to provide continuous, non-contact two-dimensional river surface flow measurements will be useful in several unique settings, such as studies of flow at river junctions where impacts to juvenile fish migration are significant. Additional field experiments are planned this year on the Sacramento River. ?? 2007 IEEE.

  3. Impacts of urban and industrial development on Arctic land surface temperature in Lower Yenisei River Region.

    NASA Astrophysics Data System (ADS)

    Li, Z.; Shiklomanov, N. I.

    2015-12-01

    Urbanization and industrial development have significant impacts on arctic climate that in turn controls settlement patterns and socio-economic processes. In this study we have analyzed the anthropogenic influences on regional land surface temperature of Lower Yenisei River Region of the Russia Arctic. The study area covers two consecutive Landsat scenes and includes three major cities: Norilsk, Igarka and Dudingka. Norilsk industrial region is the largest producer of nickel and palladium in the world, and Igarka and Dudingka are important ports for shipping. We constructed a spatio-temporal interpolated temperature model by including 1km MODIS LST, field-measured climate, Modern Era Retrospective-analysis for Research and Applications (MERRA), DEM, Landsat NDVI and Landsat Land Cover. Those fore-mentioned spatial data have various resolution and coverage in both time and space. We analyzed their relationships and created a monthly spatio-temporal interpolated surface temperature model at 1km resolution from 1980 to 2010. The temperature model then was used to examine the characteristic seasonal LST signatures, related to several representative assemblages of Arctic urban and industrial infrastructure in order to quantify anthropogenic influence on regional surface temperature.

  4. Can global hydrological models reproduce large scale river flood regimes?

    NASA Astrophysics Data System (ADS)

    Eisner, Stephanie; Flörke, Martina

    2013-04-01

    River flooding remains one of the most severe natural hazards. On the one hand, major flood events pose a serious threat to human well-being, causing deaths and considerable economic damage. On the other hand, the periodic occurrence of flood pulses is crucial to maintain the functioning of riverine floodplains and wetlands, and to preserve the ecosystem services the latter provide. In many regions, river floods reveal a distinct seasonality, i.e. they occur at a particular time during the year. This seasonality is related to regionally dominant flood generating processes which can be expressed in river flood types. While in data-rich regions (esp. Europe and North America) the analysis of flood regimes can be based on observed river discharge time series, this data is sparse or lacking in many other regions of the world. This gap of knowledge can be filled by global modeling approaches. However, to date most global modeling studies have focused on mean annual or monthly water availability and their change over time while simulating discharge extremes, both floods and droughts, still remains a challenge for large scale hydrological models. This study will explore the ability of the global hydrological model WaterGAP3 to simulate the large scale patterns of river flood regimes, represented by seasonal pattern and the dominant flood type. WaterGAP3 simulates the global terrestrial water balance on a 5 arc minute spatial grid (excluding Greenland and Antarctica) at a daily time step. The model accounts for human interference on river flow, i.e. water abstraction for various purposes, e.g. irrigation, and flow regulation by large dams and reservoirs. Our analysis will provide insight in the general ability of global hydrological models to reproduce river flood regimes and thus will promote the creation of a global map of river flood regimes to provide a spatially inclusive and comprehensive picture. Understanding present-day flood regimes can support both flood risk

  5. Energy balance-based distributed modeling of snow and glacier melt runoff for the Hunza river basin in the Pakistan Karakoram Himalayan region

    NASA Astrophysics Data System (ADS)

    Shrestha, M.; Wang, L.; Koike, T.; Xue, Y.; Hirabayashi, Y.; Ahmad, S.

    2012-12-01

    A spatially distributed biosphere hydrological model with energy balance-based multilayer snow physics and multilayer glacier model, including debris free and debris covered surface (enhanced WEB-DHM-S) has been developed and applied to the Hunza river basin in the Pakistan Karakoram Himalayan region, where about 34% of the basin area is covered by glaciers. The spatial distribution of seasonal snow and glacier cover, snow and glacier melt runoff along with rainfall-contributed runoff, and glacier mass balances are simulated. The simulations are carried out at hourly time steps and at 1-km spatial resolution for the two hydrological years (2002-2003) with the use of APHRODITE precipitation dataset, observed temperature, and other atmospheric forcing variables from the Global Land Data Assimilation System (GLDAS). The pixel-to-pixel comparisons for the snow-free and snow-covered grids over the region reveal that the simulation agrees well with the Moderate Resolution Imaging Spectroradiometer (MODIS) eight-day maximum snow-cover extent data (MOD10A2) with an accuracy of 83% and a positive bias of 2.8 %. The quantitative evaluation also shows that the model is able to reproduce the river discharge satisfactorily with Nash efficiency of 0.92. It is found that the contribution of rainfall to total streamflow is small (about 10-12%) while the contribution of snow and glacier is considerably large (35-40% for snowmelt and 50-53% for glaciermelt, respectively). The model simulates the state of snow and glaciers at each model grid prognostically and thus can estimate the net annual mass balance. The net mass balance varies from -2 m to +2 m water equivalent. Additionally, the hypsography analysis for the equilibrium line altitude (ELA) suggests that the average ELA in this region is about 5700 m with substantial variation from glacier to glacier and region to region. This study is the first to adopt a distributed biosphere hydrological model with the energy balance- based

  6. Simulation of ground-water flow in the Mojave River basin, California

    USGS Publications Warehouse

    Stamos, Christina L.; Martin, Peter; Nishikawa, Tracy; Cox, Brett F.

    2001-01-01

    The proximity of the Mojave River ground-water basin to the highly urbanized Los Angeles region has led to rapid growth in population and, consequently, to an increase in the demand for water. The Mojave River, the primary source of surface water for the region, normally is dry-except for a small stretch of perennial flow and periods of flow after intense storms. Thus, the region relies almost entirely on ground water to meet its agricultural and municipal needs. Ground-water withdrawal since the late 1800's has resulted in discharge, primarily from pumping wells, that exceeds natural recharge. To better understand the relation between the regional and the floodplain aquifer systems and to develop a management tool that could be used to estimate the effects that future stresses may have on the ground-water system, a numerical ground-water flow model of the Mojave River ground-water basin was developed, in part, on the basis of a previously developed analog model. The ground-water flow model has two horizontal layers; the top layer (layer 1) corresponds to the floodplain aquifer and the bottom layer (layer 2) corresponds to the regional aquifer. There are 161 rows and 200 columns with a horizontal grid spacing of 2,000 by 2,000 feet. Two stress periods (wet and dry) per year are used where the duration of each stress period is a function of the occurrence, quantity of discharge, and length of stormflow from the headwaters each year. A steady-state model provided initial conditions for the transient-state simulation. The model was calibrated to transient-state conditions (1931-94) using a trial-and-error approach. The transient-state simulation results are in good agreement with measured data. Under transient-state conditions, the simulated floodplain aquifer and regional aquifer hydrographs matched the general trends observed for the measured water levels. The simulated streamflow hydrographs matched wet stress period average flow rates and times of no flow at the

  7. Orange River, Africa

    NASA Image and Video Library

    1996-01-20

    STS072-738-036 (11-20 Jan. 1996) --- The astronauts used a 70mm handheld camera to expose this frame of the west-flowing Orange River, which constitutes the international boundary between Namibia and the Republic of South Africa. The railroad and highway connecting the two countries is seen as a ribbon crossing the corner of the view. The broad color difference between strong browns/reds in the northern half of the view and lighter yellows in the southern corresponds to two land surfaces. The darker is a higher, flat land surface developed on horizontal Nama Sandstone’s, with rock surfaces widely coated with a dark manganese stain, typical of desert regions. This region is known as Namaqualand and borders the Namib Desert. Where rivers have cut down into this surface, the lighter underlying rock and soil colors show up.

  8. Coastal river plumes: Collisions and coalescence

    USGS Publications Warehouse

    Warrick, Jonathan; Farnsworth, Katherine L

    2017-01-01

    Plumes of buoyant river water spread in the ocean from river mouths, and these plumes influence water quality, sediment dispersal, primary productivity, and circulation along the world’s coasts. Most investigations of river plumes have focused on large rivers in a coastal region, for which the physical spreading of the plume is assumed to be independent from the influence of other buoyant plumes. Here we provide new understanding of the spreading patterns of multiple plumes interacting along simplified coastal settings by investigating: (i) the relative likelihood of plume-to-plume interactions at different settings using geophysical scaling, (ii) the diversity of plume frontal collision types and the effects of these collisions on spreading patterns of plume waters using a two-dimensional hydrodynamic model, and (iii) the fundamental differences in plume spreading patterns between coasts with single and multiple rivers using a three-dimensional hydrodynamic model. Geophysical scaling suggests that coastal margins with numerous small rivers (watershed areas < 10,000 km2), such as found along most active geologic coastal margins, were much more likely to have river plumes that collide and interact than coastal settings with large rivers (watershed areas > 100,000 km2). When two plume fronts meet, several types of collision attributes were found, including refection, subduction and occlusion. We found that the relative differences in pre-collision plume densities and thicknesses strongly influenced the resulting collision types. The three-dimensional spreading of buoyant plumes was found to be influenced by the presence of additional rivers for all modeled scenarios, including those with and without Coriolis and wind. Combined, these results suggest that plume-to-plume interactions are common phenomena for coastal regions offshore of the world’s smaller rivers and for coastal settings with multiple river mouths in close proximity, and that the spreading and

  9. Bedrock Geologic Map of the Headwaters Region of the Cullasaja River, Macon and Jackson Counties, North Carolina

    USGS Publications Warehouse

    Burton, William C.

    2007-01-01

    The headwaters region of the Cullasaja River is underlain by metasedimentary and meta-igneous rocks of the Neoproterozoic Ashe Metamorphic Suite, including gneiss, schist, and amphibolite, that were intruded during Ordovician time by elongate bodies of trondhjemite, a felsic plutonic rock. Deformation, metamorphism, and intrusion occurred roughly simultaneously during the Taconic orogeny, about 470 million years ago, under upper-amphibolite-facies metamorphic conditions. Two generations of foliation and three major phases of folds are recognized. The second- and third-generation folds trend northeast and exert the most control on regional foliation trends. Since the orogeny, the region has undergone uplift, fracturing, and erosion. Resistance to erosion by the plutonic rock may be the primary reason for the relatively gentle relief of the high-elevation basin, compared to surrounding areas. Amphibolite is the most highly fractured lithology, followed by trondhjemite; the latter may have the best ground-water potential of the mapped lithologies by virtue of its high fracture density and high proportion of subhorizontal fractures.

  10. Spatial variation in total element concentration in soil within the Northern Great Plains coal region, and regional soil chemistry in Bighorn and Wind River basins, Wyoming and Montana

    USGS Publications Warehouse

    Severson, R.C.; Tidball, R.R.

    1979-01-01

    PART A: To objectively determine the changes in chemical character of an area subjected to mining and reclamation, prior information is needed. This study represents a broadscale inventory of total chemical composition of the surficial materials of the Northern Great Plains coal region (western North and South Dakota, eastern Montana, and northeastern Wyoming); data are given for 41 elements in A and C soil horizons. An unbalanced, nested, analysis-of-variance design was used to quantify variation in total content of elements between glaciated and unglaciated terrains, for four increasingly smaller geographic scales, and to quantify variation due to sample preparation and analysis. From this statistical study, reliable maps on a regional basis (>100 km) were prepared for C, K, and Rb in A and C soil horizons; for N a, Si, Th, D, and Zn in A-horizon soil; and for As, Ca, Ge, and Mg in C-horizon soil. The distribution of variance components for the remaining 29 elements did not permit the construction of reliable maps. Therefore, a baseline value for each of these elements is given as a measure of the total element concentration in the soils of the Northern Great Plains coal region. The baseline is expressed as the 95-percent range in concentration to be expected in samples of natural soils. PART B: A reconnaissance study of total concentrations of 38 elements in samples of soils (0-40 cm deep, composite) from the Bighorn and Wind River Basins of Montana and Wyoming indicates that the geographic variation for most elements occurs locally (5 km or less). However, in the Bighorn Basin, Zn exhibits significant regional variation (between geologic units); and in the Wind River Basin, AI, Cr, K, Mn, Mo, Ni, U, and V exhibit similar variation. For the remaining elements, the lack of regional variation suggests that a single summary statistic can be used to estimate a baseline value that reflects the range in concentration to be expected in samples of soils in each basin

  11. A comparison of river discharge calculated by using a regional climate model output with different reanalysis datasets in 1980s and 1990s

    NASA Astrophysics Data System (ADS)

    Ma, X.; Yoshikane, T.; Hara, M.; Adachi, S. A.; Wakazuki, Y.; Kawase, H.; Kimura, F.

    2014-12-01

    To check the influence of boundary input data on a modeling result, we had a numerical investigation of river discharge by using runoff data derived by a regional climate model with a 4.5-km resolution as input data to a hydrological model. A hindcast experiment, which to reproduce the current climate was carried out for the two decades, 1980s and 1990s. We used the Advanced Research WRF (ARW) (ver. 3.2.1) with a two-way nesting technique and the WRF single-moment 6-class microphysics scheme. Noah-LSM is adopted to simulate the land surface process. The NCEP/NCAR and ERA-Interim 6-hourly reanalysis datasets were used as the lateral boundary condition for the runs, respectively. The output variables used for river discharge simulation from the WRF model were underground runoff and surface runoff. Four rivers (Mogami, Agano, Jinzu and Tone) were selected in this study. The results showed that the characteristic of river discharge in seasonal variation could be represented and there were overestimated compared with measured one.

  12. Charles River Residual Designation: Executive Summary

    EPA Pesticide Factsheets

    Read an executive summary of the Record of Decision's preliminary decision by the Regional Administrator of EPA Region 1 that storm water permits are needed to address serious water quality problems in the Charles River.

  13. Assessment of River Habitat Quality in the Hai River Basin, Northern China.

    PubMed

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-09-17

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 10⁴ km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 10⁴ km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m³); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08-16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated.

  14. Assessment of River Habitat Quality in the Hai River Basin, Northern China

    PubMed Central

    Ding, Yuekui; Shan, Baoqing; Zhao, Yu

    2015-01-01

    We applied a river habitat quality (RHQ) assessment method to the Hai River Basin (HRB); an important economic centre in China; to obtain baseline information for water quality improvement; river rehabilitation; and watershed management. The results of the assessment showed that the river habitat in the HRB is seriously degraded. Specifically; 42.41% of the sites; accounting for a river length of 3.31 × 104 km; were designated poor and bad. Habitat in the plain areas is seriously deteriorated; and nearly 50% of the sites; accounting for a river length of 1.65 × 104 km; had either poor or bad habitats. River habitat degradation was attributable to the limited width of the riparian zone (≤5 m); lower coverage of riparian vegetation (≤40%); artificial land use patterns (public and industrial land); frequent occurrence of farming on the river banks and high volumes of solid waste (nearly 10 m3); single flow channels; and rare aquatic plants (≤1 category). At the regional scale; intensive artificial land use types caused by urbanization had a significant impact on the RHQ in the HRB. RHQ was significantly and negatively correlated with farmland (r = 1.000; p < 0.01) and urban land (r = 0.998; p < 0.05); and was significantly and positively correlated with grassland and woodland (r = 1.000; p < 0.01). Intensive artificial land use; created through urbanization processes; has led to a loss of the riparian zone and its native vegetation; and has disrupted the lateral connectivity of the rivers. The degradation of the already essentially black rivers is exacerbated by poor longitudinal connectivity (index of connectivity is 2.08–16.56); caused by reservoirs and sluices. For river habitat rehabilitation to be successful; land use patterns need to be changed and reservoirs and sluices will have to be regulated. PMID:26393628

  15. Summary of biological investigations relating to surface-water quality in the Kentucky River basin, Kentucky

    USGS Publications Warehouse

    Bradfield, A.D.; Porter, S.D.

    1990-01-01

    The Kentucky River basin, an area of approximately 7,000 sq mi, is divided into five hydrologic units that drain parts of three physiographic regions. Data on aquatic biological resources were collected and reviewed to assess conditions in the major streams for which data were available. The North, Middle, and South Forks of the Kentucky River are in the Eastern Coal Field physiographic region. Streams in this region are affected by drainage from coal mines and oil and gas operations, and many support only tolerant biotic stream forms. The Kentucky River from the confluence of the three forks to the Red River, is in the Knobs physiographic region. Oil and gas production operations and point discharges from municipalities have affected many streams in this region. The Red River, a Kentucky Wild River, supported a unique flora and fauna but accelerated sedimentation has eliminated many species of mussels. The Millers Creek drainage is affected by brines discharged from oil and gas operations, and some reaches support only halophilic algae and a few fish. The Kentucky River from the Red River to the Ohio River is in the Bluegrass physiographic region. Heavy sediment loads and sewage effluent from urban centers have limited the aquatic biota in this region. Silver Creek and South Elkhorn Creek have been particularly affected and aquatic communities in these streams are dominated by organisms tolerant of low dissolved oxygen concentrations. Biological data for other streams indicate that habitat and water quality conditions are favorable for most commonly occurring aquatic organisms. (USGS)

  16. Impact of variable river water stage on the simulation of groundwater-river interactions over the Upper Rhine Graben hydrosystem

    NASA Astrophysics Data System (ADS)

    Habets, F.; Vergnes, J.

    2013-12-01

    The Upper Rhine alluvial aquifer is an important transboundary water resource which is particularly vulnerable to pollution from the rivers due to anthropogenic activities. A realistic simulation of the groundwater-river exchanges is therefore of crucial importance for effective management of water resources, and hence is the main topic of the NAPROM project financed by the French Ministry of Ecology. Characterization of these fluxes in term of quantity and spatio-temporal variability depends on the choice made to represent the river water stage in the model. Recently, a couple surface-subsurface model has been applied to the whole aquifer basin. The river stage was first chosen to be constant over the major part of the basin for the computation of the groundwater-river interactions. The present study aims to introduce a variable river water stage to better simulate these interactions and to quantify the impact of this process over the simulated hydrological variables. The general modeling strategy is based on the Eau-Dyssée modeling platform which couples existing specialized models to address water resources and quality in regional scale river basins. In this study, Eau-Dyssée includes the RAPID river routing model and the SAM hydrogeological model. The input data consist in runoff and infiltration coming from a simulation of the ISBA land surface scheme covering the 1986-2003 period. The QtoZ module allows to calculate river stage from simulated river discharges, which is then used to calculate the exchanges between aquifer units and river. Two approaches are compared. The first one uses rating curves derived from observed river discharges and river stages. The second one is based on the Manning's formula. Manning's parameters are defined with geomorphological parametrizations and topographic data based on Digital Elevation Model (DEM). First results show a relatively good agreement between observed and simulated river water height. Taking into account a

  17. Amu Darya River

    Atmospheric Science Data Center

    2013-04-16

    ... and the river waters are used intensively to irrigate cotton and other crops. During the Soviet era, large irrigation systems were developed and the region became specialized in cotton growing. Independence from the Soviet Union occurred in 1991 and is ...

  18. Little genetic differentiation as assessed by uniparental markers in the presence of substantial language variation in peoples of the Cross River region of Nigeria

    PubMed Central

    2010-01-01

    Background The Cross River region in Nigeria is an extremely diverse area linguistically with over 60 distinct languages still spoken today. It is also a region of great historical importance, being a) adjacent to the likely homeland from which Bantu-speaking people migrated across most of sub-Saharan Africa 3000-5000 years ago and b) the location of Calabar, one of the largest centres during the Atlantic slave trade. Over 1000 DNA samples from 24 clans representing speakers of the six most prominent languages in the region were collected and typed for Y-chromosome (SNPs and microsatellites) and mtDNA markers (Hypervariable Segment 1) in order to examine whether there has been substantial gene flow between groups speaking different languages in the region. In addition the Cross River region was analysed in the context of a larger geographical scale by comparison to bordering Igbo speaking groups as well as neighbouring Cameroon populations and more distant Ghanaian communities. Results The Cross River region was shown to be extremely homogenous for both Y-chromosome and mtDNA markers with language spoken having no noticeable effect on the genetic structure of the region, consistent with estimates of inter-language gene flow of 10% per generation based on sociological data. However the groups in the region could clearly be differentiated from others in Cameroon and Ghana (and to a lesser extent Igbo populations). Significant correlations between genetic distance and both geographic and linguistic distance were observed at this larger scale. Conclusions Previous studies have found significant correlations between genetic variation and language in Africa over large geographic distances, often across language families. However the broad sampling strategies of these datasets have limited their utility for understanding the relationship within language families. This is the first study to show that at very fine geographic/linguistic scales language differences can be

  19. A Synoptic Survey of Nitrogen and Phosphorus in Tributary Streams and Great Rivers of the Upper Mississippi River Basin

    EPA Science Inventory

    We combined stream chemistry and hydrology data from surveys of 467 tributary stream sites and 447 great river sites in the Upper Mississippi River basin to provide a regional snapshot of baseflow total nitrogen (TN) and total phosphorus (TP) concentrations, and to investigate th...

  20. Atmospheric rivers and past hydrometeorological extremes: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Sodemann, Harald

    2017-04-01

    Atmospheric rivers are a key term for describing water vapour transport in extratropical regions. The concept has become particularly valuable for linking meteorological process understanding with research focused on the impacts of heavy precipitation. Atmospheric rivers are narrow, elongated features of high integrated water vapour and water vapour flux can lead to severe precipitation and flooding if moisture is extracted efficiently. The orographic rises at the West Coast of the United States and Western Norway are regions where Atmospheric Rivers are one of the prime mechanisms for moisture delivery and precipitation extremes in the present climate. Due to the small horizontal scales of some of the processes climate models are challenged to represent this important transport process between mid-latitudes and the subtropics faithfully. Recent aircraft data and regional tracer model studies provide new insight into the formation and moisture transport mechanisms. In this study I review the concept and pertinent processes of Atmospheric Rivers, thereby focusing on caveats, challenges and opportunities for understanding past hydrometeorological extremes.

  1. Effects of dams in river networks on fish assemblages in non-impoundment sections of rivers in Michigan and Wisconsin, USA

    USGS Publications Warehouse

    Stewart, Jana S.; Lizhu Wang,; Infante, Dana M.; Lyons, John D.; Arthur Cooper,

    2011-01-01

    Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries.

  2. Improving regional climate and hydrological forecasting following the record setting flooding across the Lake Ontario - St. Lawrence River system

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Seglenieks, F.; Bruxer, J.; Fortin, V.; Noel, J.

    2017-12-01

    In the spring of 2017, water levels across Lake Ontario and the upper St. Lawrence River exceeded record high levels, leading to widespread flooding, damage to property, and controversy over regional dam operating protocols. Only a few years earlier, water levels on Lakes Superior, Michigan, and Huron (upstream of Lake Ontario) had dropped to record low levels leading to speculation that either anthropogenic controls or climate change were leading to chronic water loss from the Great Lakes. The contrast between low water level conditions across Earth's largest lake system from the late 1990s through 2013, and the rapid rise prior to the flooding in early 2017, underscores the challenges of quantifying and forecasting hydrologic impacts of rising regional air and water temperatures (and associated changes in lake evaporation) and persistent increases in long-term precipitation. Here, we assess the hydrologic conditions leading to the recent record flooding across the Lake Ontario - St. Lawrence River system, with a particular emphasis on understanding the extent to which those conditions were consistent with observed and anticipated changes in historical and future climate, and the extent to which those conditions could have been anticipated through improvements in seasonal climate outlooks and hydrological forecasts.

  3. A refined 2010-based VOC emission inventory and its improvement on modeling regional ozone in the Pearl River Delta Region, China.

    PubMed

    Yin, Shasha; Zheng, Junyu; Lu, Qing; Yuan, Zibing; Huang, Zhijiong; Zhong, Liuju; Lin, Hui

    2015-05-01

    Accurate and gridded VOC emission inventories are important for improving regional air quality model performance. In this study, a four-level VOC emission source categorization system was proposed. A 2010-based gridded Pearl River Delta (PRD) regional VOC emission inventory was developed with more comprehensive source coverage, latest emission factors, and updated activity data. The total anthropogenic VOC emission was estimated to be about 117.4 × 10(4)t, in which on-road mobile source shared the largest contribution, followed by industrial solvent use and industrial processes sources. Among the industrial solvent use source, furniture manufacturing and shoemaking were major VOC emission contributors. The spatial surrogates of VOC emission were updated for major VOC sources such as industrial sectors and gas stations. Subsector-based temporal characteristics were investigated and their temporal variations were characterized. The impacts of updated VOC emission estimates and spatial surrogates were evaluated by modeling O₃ concentration in the PRD region in the July and October of 2010, respectively. The results indicated that both updated emission estimates and spatial allocations can effectively reduce model bias on O₃ simulation. Further efforts should be made on the refinement of source classification, comprehensive collection of activity data, and spatial-temporal surrogates in order to reduce uncertainty in emission inventory and improve model performance. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Reconstructing the Historical Series of Plant Functional Types in the Three-River Headwaters Region in China

    NASA Astrophysics Data System (ADS)

    Mao, X.; Li, T.

    2016-12-01

    This study uses a physiological biome model to reconstruct the 5910 years historical plant functional type series based on the mechanisms about how environmental constraints affect plant growths. The study area is the Three-Rivers Source Headwaters Region (TRHR) in the south of Qinghai Province of China, which is the source area of the Yangtse River, Yellow River, and Lantsang River, with mean altitude above 4000 meters. The environmental constraints we use are temperature and precipitation. Our results demonstrate that there are only three kinds of biomes existing in this area in the history: the Cool Grass/Shrub, Tundra, and Semidesert. The evolutions of biomes are ruled by two basic patterns. The first is the precipitation driving interconversion of the Semidesert and Tundra and the conversion from the Cool Grass/Shrub to the Semidesert. The second is the temperature driving interconversion of the Tundra and Cool Grass/Shrub. The conversion from the Semidesert to the Cool Grass/Shrub can be generated by the permutations of the first process and the second process. The frequency of the first mode is far higher than the second one, which means that precipitation plays a more active role in the biome evolutions while the temperature makes a long and stable influence on these processes. In the spatial and temporal plant type series generated above, we find that the proportion of the area covered by high quality plants (the Cool Grass/Shrub and Tundra) in around 600 AD is higher than most of other periods in the history, which may led to the rise of the Tibetan Empire. The proportion above, however, decreased sharply in around 1600 AD, which was caused by the Little Ice Age. From this research, we can find the influences of major climatic events on the plant distribution, and understand the interaction or co-evolution of climates and plants more clearly. This study will help us protect our environment more scientifically and with a clearer direction.

  5. Impacts of seasonal and regional variability in biogenic VOC emissions on surface ozone in the Pearl River Delta region, China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Situ, S.; Guenther, Alex B.; Wang, X. J.

    In this study, the BVOC emissions in November 2010 over the Pearl River Delta (PRD) region in southern China have been estimated by the latest version of a Biogenic Volatile Organic Compound (BVOC) emission model (MEGAN v2.1). The evaluation of MEGAN performance at a representative forest site within this region indicates MEGAN can estimate BVOC emissions reasonably well in this region except overestimating isoprene emission in autumn for reasons that are discussed in this manuscript. Along with the output from MEGAN, the Weather Research and Forecasting model with chemistry (WRF-Chem) is used to estimate the impacts of BVOC emissions onmore » surface ozone in the PRD region. The results show BVOC emissions increase the daytime ozone peak by *3 ppb on average, and the max hourly impacts of BVOC emissions on the daytime ozone peak is 24.8 ppb. Surface ozone mixing ratios in the central area of Guangzhou- Foshan and the western Jiangmen are most sensitive to BVOC emissions BVOCs from outside and central PRD influence the central area of Guangzhou-Foshan and the western Jiangmen significantly while BVOCs from rural PRD mainly influence the western Jiangmen. The impacts of BVOC emissions on surface ozone differ in different PRD cities, and the impact varies in different seasons. Foshan and Jiangmen being most affected in autumn, result in 6.0 ppb and 5.5 ppb increases in surface ozone concentrations, while Guangzhou and Huizhou become more affected in summer. Three additional experiments concerning the sensitivity of surface ozone to MEGAN input variables show that surface ozone is more sensitive to landcover change, followed by emission factors and meteorology.« less

  6. River of Sand

    NASA Image and Video Library

    2016-09-21

    A dominant driver of surface processes on Mars today is aeolian (wind) activity. In many cases, sediment from this activity is trapped in low-lying areas, such as craters. Aeolian features in the form of dunes and ripples can occur in many places on Mars depending upon regional wind regimes. The Cerberus Fossae are a series of discontinuous fissures along dusty plains in the southeastern region of Elysium Planitia. This rift zone is thought to be the result of combined volcano-tectonic processes. Dark sediment has accumulated in areas along the floor of these fissures as well as inactive ripple-like aeolian bedforms known as "transverse aeolian ridges" (TAR). Viewed through HiRISE infrared color, the basaltic sand lining the fissures' floor stands out as deep blue against the light-toned dust covering the region. This, along with the linearity of the fissures and the wave-like appearance of the TAR, give the viewer an impression of a river cutting through the Martian plains. However, this river of sand does not appear to be flowing. Analyses of annual monitoring images of this region have not detected aeolian activity in the form of ripple migration thus far. http://photojournal.jpl.nasa.gov/catalog/PIA21063

  7. Yellow River, China

    NASA Image and Video Library

    1994-09-30

    STS068-220-033 (30 September-11 October 1994) --- Photographed through the Space Shuttle Endeavour's flight deck windows, this 70mm frame shows a small section of China's Yellow River (Huang Ho) highlighted by sunglint reflection off the surface of the water. The river flows northeastward toward the village of Tung-lin-tzu. The low dissected mountains that cover more than half of this scene rise some 2,000 feet (on the average) above the valley floor. A major east-west transportation corridor (both railway and automobile) is observed traversing the landscape north of the river. This entire region is considered to be part of the Ordos Desert, actually part of the greater Gobi located just north of this area. Approximate center coordinates of this scene are 37.5 degrees north latitude and 105.0 degrees east longitude.

  8. The Yampa River basin, Colorado and Wyoming : a preview to expanded coal-resource development and its impacts on regional water resources

    USGS Publications Warehouse

    Steele, Timothy Doak; Bauer, D.P.; Wentz, D.A.; Warner, J.W.

    1979-01-01

    Expanded coal production and conversion in the Yampa River basin , Colorado and Wyoming, may have substantial impacts on water resources, environmental amenities, and socioeconomic conditions. Preliminary results of a 3-year basin assessment by the U.S. Geological Survey are given for evaluation of surface- and ground-water resources using available data, modeling analysis of waste-load capacity of a Yampa River reach affected by municipal wastewater-treatment plant effluents, and semiquantitative descriptions of ambient air- and water-quality conditions. Aspects discussed are possible constraints on proposed development due to basin compacts and laws regulating water resources, possible changes in environmental-control regulations, and policies on energy-resource leasing and land use that will influence regional economic development. (Woodard-USGS)

  9. SENSITIVITY OF THE REGIONAL WATER BALANCE IN THE COLUMBIA RIVER BASIN TO CLIMATE VARIABILITY: APPLICATION OF A SPATIALLY DISTRIBUTED WATER BALANCE MODEL

    EPA Science Inventory

    A one-dimensional water balance model was developed and used to simulate water balance for the Columbia River Basin. he model was run over a 10 km X 10 km grid for the United State's portion of the basin. he regional water balance was calculated using a monthly time-step for a re...

  10. Improving Shade Modelling in a Regional River Temperature Model Using Fine-Scale LIDAR Data

    NASA Astrophysics Data System (ADS)

    Hannah, D. M.; Loicq, P.; Moatar, F.; Beaufort, A.; Melin, E.; Jullian, Y.

    2015-12-01

    Air temperature is often considered as a proxy of the stream temperature to model the distribution areas of aquatic species water temperature is not available at a regional scale. To simulate the water temperature at a regional scale (105 km²), a physically-based model using the equilibrium temperature concept and including upstream-downstream propagation of the thermal signal was developed and applied to the entire Loire basin (Beaufort et al., submitted). This model, called T-NET (Temperature-NETwork) is based on a hydrographical network topology. Computations are made hourly on 52,000 reaches which average 1.7 km long in the Loire drainage basin. The model gives a median Root Mean Square Error of 1.8°C at hourly time step on the basis of 128 water temperature stations (2008-2012). In that version of the model, tree shadings is modelled by a constant factor proportional to the vegetation cover on 10 meters sides the river reaches. According to sensitivity analysis, improving the shade representation would enhance T-NET accuracy, especially for the maximum daily temperatures, which are currently not very well modelized. This study evaluates the most efficient way (accuracy/computing time) to improve the shade model thanks to 1-m resolution LIDAR data available on tributary of the LoireRiver (317 km long and an area of 8280 km²). Two methods are tested and compared: the first one is a spatially explicit computation of the cast shadow for every LIDAR pixel. The second is based on averaged vegetation cover characteristics of buffers and reaches of variable size. Validation of the water temperature model is made against 4 temperature sensors well spread along the stream, as well as two airborne thermal infrared imageries acquired in summer 2014 and winter 2015 over a 80 km reach. The poster will present the optimal length- and crosswise scale to characterize the vegetation from LIDAR data.

  11. Impacts of climate and land use changes on regional nutrient export in the South Saskatchewan River catchment

    NASA Astrophysics Data System (ADS)

    Morales-Marin, L. A.; Wheater, H. S.; Lindenschmidt, K. E.

    2016-12-01

    Climate and land use changes modify the physical functioning of river catchments and, in particular, influence the transport of nutrients from land to water. In large-scale catchments, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms the largest river system in western Canada. In the past years changes in the land use and new industrial developments in the SSR area have heightened serious concerns about the future of water quality in the catchment and downstream waters. Agricultural activities have increased the supply of manure and fertilizer for cropping. Oil and gas exploitation has also increased the risk of surface water and groundwater contamination. The rapid population growth not only leads to increments in water consumption and wastewater, but in the construction of roads, railways and the expansion of new urban developments that impose hydraulic controls on the catchment hydrology and therefore the sediment and nutrient transport. Consequences of the actual anthropogenic changes have been notorious in reservoirs where algal blooms and signs of eutrophication have become common during certain times of the year. Although environmental agencies are constantly improving the mechanisms to reduce nutrient export into the river and ensure safe water quality standards, further research is needed in order to identify major nutrient sources and quantify nutrient export and also, to assess how nutrients are going to vary as a result of future climate and land use change scenarios. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality regionally, in order to describe spatial and temporal patterns to identify those factors and processes that affect water

  12. Impacts of climate and land use changes on regional nutrient export in the South Saskatchewan River catchment

    NASA Astrophysics Data System (ADS)

    Morales-Marin, L. A.; Wheater, H. S.; Lindenschmidt, K. E.

    2015-12-01

    Climate and land use changes modify the physical functioning of river catchments and, in particular, influence the transport of nutrients from land to water. In large-scale catchments, where a variety of climates, topographies, soil types and land uses co-exist to form a highly heterogeneous environment, a more complex nutrient dynamic is imposed by climate and land use changes. This is the case of the South Saskatchewan River (SSR) that, along with the North Saskatchewan River, forms the largest river system in western Canada. In the past years changes in the land use and new industrial developments in the SSR area have heightened serious concerns about the future of water quality in the catchment and downstream waters. Agricultural activities have increased the supply of manure and fertilizer for cropping. Oil and gas exploitation has also increased the risk of surface water and groundwater contamination. The rapid population growth not only leads to increments in water consumption and wastewater, but in the construction of roads, railways and the expansion of new urban developments that impose hydraulic controls on the catchment hydrology and therefore the sediment and nutrient transport. Consequences of the actual anthropogenic changes have been notorious in reservoirs where algal blooms and signs of eutrophication have become common during certain times of the year. Although environmental agencies are constantly improving the mechanisms to reduce nutrient export into the river and ensure safe water quality standards, further research is needed in order to identify major nutrient sources and quantify nutrient export and also, to assess how nutrients are going to vary as a result of future climate and land use change scenarios. The SPAtially Referenced Regression On Watershed (SPARROW) model is therefore implemented to assess water quality regionally, in order to describe spatial and temporal patterns to identify those factors and processes that affect water

  13. Floodplain soil organic carbon storage in the central Yukon River Basin

    NASA Astrophysics Data System (ADS)

    Lininger, K.; Wohl, E.

    2017-12-01

    As rivers transport sediment, organic matter, and large wood, they can deposit those materials in their floodplains, storing carbon. One aspect of the carbon cycle that isn't well understood is how much carbon is stored in rivers and floodplains. There may be more carbon in rivers and floodplains than previously thought. This is important for accounting for all aspects of the carbon cycle, which is the movement of carbon among the land, ocean, and atmosphere. We are quantifying that storage in high latitude floodplains through fieldwork along five rivers in the central Yukon River Basin within the Yukon Flats National Wildlife Refuge in interior Alaska. We find that the geomorphic environment and geomorphic characteristics of rivers influence the spatial distribution of carbon on the landscape, and that floodplains may be disproportionally important for carbon storage compared to other areas. Our study area contains discontinuous permafrost, which is soil that is perennially frozen, and is warming quickly due to climate change, as in other high latitude regions. The large amount of carbon stored in the subsurface and in permafrost in the high latitudes highlights the importance of understanding where carbon is stored within rivers and floodplains in these regions and how long that carbon remains in storage. Our research helps inform how river systems influence the carbon cycle in a region undergoing rapid change.

  14. Climatic variability of river outflow in the Pantanal region and the influence of sea surface temperature

    NASA Astrophysics Data System (ADS)

    Silva, Carlos Batista; Silva, Maria Elisa Siqueira; Ambrizzi, Tércio

    2017-07-01

    This paper investigates possible linear relationships between climate, hydrology, and oceanic surface variability in the Pantanal region (in South America's central area), over interannual and interdecadal time ranges. In order to verify the mentioned relations, lagged correlation analysis and linear adjustment between river discharge at the Pantanal region and sea surface temperature were used. Composite analysis for atmospheric fields, air humidity flux divergence, and atmospheric circulation at low and high levels, for the period between 1970 and 2003, was analyzed. Results suggest that the river discharge in the Pantanal region is linearly associated with interdecadal and interannual oscillations in the Pacific and Atlantic oceans, making them good predictors to continental hydrological variables. Considering oceanic areas, 51 % of the annual discharge in the Pantanal region can be linearly explained by mean sea surface temperature (SST) in the Subtropical North Pacific, Tropical North Pacific, Extratropical South Pacific, and Extratropical North Atlantic over the period. Considering a forecast approach in seasonal scale, 66 % of the monthly discharge variance in Pantanal, 3 months ahead of SST, is explained by the oceanic variables, providing accuracy around 65 %. Annual discharge values in the Pantanal region are strongly related to the Pacific Decadal Oscillation (PDO) variability (with 52 % of linear correlation), making it possible to consider an interdecadal variability and a consequent subdivision of the whole period in three parts: 1st (1970-1977), 2nd (1978-1996), and 3rd (1997-2003) subperiods. The three subperiods coincide with distinct PDO phases: negative, positive, and negative, respectively. Convergence of humidity flux at low levels and the circulation pattern at high levels help to explain the drier and wetter subperiods. During the wetter 2nd subperiod, the air humidity convergence at low levels is much more evident than during the other two

  15. Concordance between macrophytes and macroinvertebrates in a Mediterranean river of central Apennine region.

    PubMed

    Traversetti, Lorenzo; Scalici, Massimiliano; Ginepri, Valeria; Manfrin, Alessandro; Ceschin, Simona

    2014-05-01

    The main aim of this study was to improve the knowledge about the concordance among macrophytes and macroinvertebrates to provide complementary information and facilitate the procedures for quality assessment of river ecosystems. Macrophytes and macroinvertebrates were collected in 11 sampling sites along a central Apennine calcareous river in October 2008 and June 2009. The concordance between the two biomonitoring groups was tested according to several environmental parameters. The comparison of data matrix similarities by Mantel test showed differences in the assemblage of macrophytes and macroinvertebrates along the river since correlation values were 0.04, p > 0.05 in October 2008 and 0.39, p > 0.05 in June 2009. The study revealed lack of concordance between the two groups, emphasizing that the information provided by macrophytes and macroinvertebrates does not overlap in terms of response to environmental parameters. Indeed, the two different biological groups resulted useful descriptors of different parameters. Together, they could represent a complementary tool to reflect the river environmental quality.

  16. Flood of August 24–25, 2016, Upper Iowa River and Turkey River, northeastern Iowa

    USGS Publications Warehouse

    Linhart, S. Mike; O'Shea, Padraic S.

    2018-02-05

    Major flooding occurred August 24–25, 2016, in the Upper Iowa River Basin and Turkey River Basin in northeastern Iowa following severe thunderstorm activity over the region. About 8 inches of rain were recorded for the 24-hour period ending at 4 p.m., August 24, at Decorah, Iowa, and about 6 inches of rain were recorded for the 24-hour period ending at 7 a.m., August 24, at Cresco, Iowa, about 14 miles northwest of Spillville, Iowa. A maximum peak-of-record discharge of 38,000 cubic feet per second in the Upper Iowa River at streamgage 05388250 Upper Iowa River near Dorchester, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at six locations along the Upper Iowa River between State Highway 26 near the mouth at the Mississippi River and State Highway 76 about 3.5 miles south of Dorchester, Iowa, a distance of 15 river miles. Along the profiled reach of the Turkey River, a maximum peak-of-record discharge of 15,300 cubic feet per second at streamgage 05411600 Turkey River at Spillville, Iowa, occurred on August 24, 2016, with an annual exceedance-probability range of 1–2 percent. A maximum peak discharge of 35,700 cubic feet per second occurred on August 25, 2016, along the profiled reach of the Turkey River at streamgage 05411850 Turkey River near Eldorado, Iowa, with an annual exceedance-probability range of 0.2–1 percent. High-water marks were measured at 11 locations along the Turkey River between County Road B64 in Elgin and 220th Street, located about 4.5 miles northwest of Spillville, Iowa, a distance of 58 river miles. The high-water marks were used to develop flood profiles for the Upper Iowa River and Turkey River.

  17. Nomenclature of regional hydrogeologic units of the Southeastern Coastal Plain aquifer system

    USGS Publications Warehouse

    Miller, J.A.; Renken, R.A.

    1988-01-01

    Clastic sediments of the Southeastern Coastal Plain aquifer system can be divided into four regional aquifers separated by three regional confining units. The four regional aquifers have been named for major rivers that cut across their outcrop areas and expose the aquifer materials. From youngest to oldest, the aquifers are called the Chickasawhay River, Pearl River, Chattahoochee River, and Black Warrior River aquifers, and the regional confining units separating them are given the same name as the aquifer they overlie. Most of the regional hydrogeologic units are subdivided within each of the four States that comprise the study area. Correlation of regional units is good with hydrogeologic units delineated by a similar regional study to the west and southwest. Because of complexity created by a major geologic structure to the northeast of the study area and dramatic facies change from clastic to carbonate strata to the southeast, correlation of regional hydrogeologic units is poor in these directions. (Author 's abstract)

  18. Snow mass and river flows modelled using GRACE total water storage observations

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2017-12-01

    Snow mass and river flow measurements are difficult and less accurate in cold regions due to the hash environment. Floods in cold regions are commonly a result of snowmelt during the spring break-up. Flooding is projected to increase with climate change in many parts of the world. Forecasting floods from snowmelt remains a challenge due to scarce and quality issues in basin-scale snow observations and lack of knowledge for cold region hydrological processes. This study developed a model for estimating basin-level snow mass (snow water equivalent SWE) and river flows using the total water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The SWE estimation is based on mass balance approach which is independent of in situ snow gauge observations, thus largely eliminates the limitations and uncertainties with traditional in situ or remote sensing snow estimates. The model forecasts river flows by simulating surface runoff from snowmelt and the corresponding baseflow from groundwater discharge. Snowmelt is predicted using a temperature index model. Baseflow is predicted using a modified linear reservoir model. The model also quantifies the hysteresis between the snowmelt and the streamflow rates, or the lump time for water travel in the basin. The model was applied to the Red River Basin, the Mackenzie River Basin, and the Hudson Bay Lowland Basins in Canada. The predicted river flows were compared with the observed values at downstream hydrometric stations. The results were also compared to that for the Lower Fraser River obtained in a separate study to help better understand the roles of environmental factors in determining flood and their variations with different hydroclimatic conditions. This study advances the applications of space-based time-variable gravity measurements in cold region snow mass estimation, river flow and flood forecasting. It demonstrates a relatively simple method that only needs GRACE TWS

  19. Rivers influence the population genetic structure of bonobos (Pan paniscus).

    PubMed

    Eriksson, J; Hohmann, G; Boesch, C; Vigilant, L

    2004-11-01

    Bonobos are large, highly mobile primates living in the relatively undisturbed, contiguous forest south of the Congo River. Accordingly, gene flow among populations is assumed to be extensive, but may be impeded by large, impassable rivers. We examined mitochondrial DNA control region sequence variation in individuals from five distinct localities separated by rivers in order to estimate relative levels of genetic diversity and assess the extent and pattern of population genetic structure in the bonobo. Diversity estimates for the bonobo exceed those for humans, but are less than those found for the chimpanzee. All regions sampled are significantly differentiated from one another, according to genetic distances estimated as pairwise FSTs, with the greatest differentiation existing between region East and each of the two Northern populations (N and NE) and the least differentiation between regions Central and South. The distribution of nucleotide diversity shows a clear signal of population structure, with some 30% of the variance occurring among geographical regions. However, a geographical patterning of the population structure is not obvious. Namely, mitochondrial haplotypes were shared among all regions excepting the most eastern locality and the phylogenetic analysis revealed a tree in which haplotypes were intermixed with little regard to geographical origin, with the notable exception of the close relationships among the haplotypes found in the east. Nonetheless, genetic distances correlated with geographical distances when the intervening distances were measured around rivers presenting effective current-day barriers, but not when straight-line distances were used, suggesting that rivers are indeed a hindrance to gene flow in this species.

  20. Effects of dams in river networks on fish assemblages in non-impoundment sections of rivers in Michigan and Wisconsin, USA

    USGS Publications Warehouse

    Wang, L.; Infante, D.; Lyons, J.; Stewart, J.; Cooper, A.

    2011-01-01

    Regional assessment of cumulative impacts of dams on riverine fish assemblages provides resource managers essential information for dam operation, potential dam removal, river health assessment and overall ecosystem management. Such an assessment is challenging because characteristics of fish assemblages are not only affected by dams, but also influenced by natural variation and human-induced modification (in addition to dams) in thermal and flow regimes, physicochemical habitats and biological assemblages. This study evaluated the impacts of dams on river fish assemblages in the non-impoundment sections of rivers in the states of Michigan and Wisconsin using multiple fish assemblage indicators and multiple approaches to distinguish the influences of dams from those of other natural and human-induced factors. We found that environmental factors that influence fish assemblages in addition to dams should be incorporated when evaluating regional effects of dams on fish assemblages. Without considering such co-influential factors, the evaluation is inadequate and potentially misleading. The role of dams alone in determining fish assemblages at a regional spatial scale is relatively small (explained less than 20% of variance) compared with the other environmental factors, such as river size, flow and thermal regimes and land uses jointly. However, our results do demonstrate that downstream and upstream dams can substantially modify fish assemblages in the non-impoundment sections of rivers. After excluding river size and land-use influences, our results clearly demonstrate that dams have significant impacts on fish biotic-integrity and habitat-and-social-preference indicators. The influences of the upstream dams, downstream dams, distance to dams, and dam density differ among the fish indicators, which have different implications for maintaining river biotic integrity, protecting biodiversity and managing fisheries. ?? 2010 John Wiley & Sons, Ltd.

  1. THE ABSOLUTE AGE OF THE UPPER PALEOLITHIC PERIOD (SOLUTREAN, GRAVETTIAN TYPE) IN THE REGION ADJOINING THE DNESTER RIVER, DETERMINED BY RADIOCARBON DATING (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanova, I.K.; Chernysh, A.P.

    1963-01-11

    Determination of the age of the dwellings of primitive man is of interest both from the point of view of the stratigraphy of quaternary deposits and for solving anthropogenetic problems. For this reason, radiocarbon dating techniques were used for layers containing paleolithic residue of Molodova V, located in a 200-m deep canyon at the right bank of the Dnester River in the Chernowith region. The measurements were carried out at a depth of 3.1 to 3.25 m from the surface. The age of layer VI was calculated at 23,000 plus or minus 800 years which is close to the agemore » reported for the Czechoslovak gravette and from samples from the French Abri plateau. Thus, radiocarbon dating results confirmed earlier findings obtained by topological means concerning the age of the region near the Dnester River. (TTT)« less

  2. Influences of Relative Sea-Level Rise and Mississippi River Delta Plain Evolution on the Holocene Middle Amite River, Southeastern Louisiana

    USGS Publications Warehouse

    Autin, W.J.

    1993-01-01

    The Holocene geomorphic history of southeastern Louisiana's middle Amite River is recorded in the stratigraphy of three alloformations, identified in decreasing age as the Watson (WAT), Denham Springs (DS), and Magnolia Bridge (MAG). The WAT meander belt formed by at least 9000 yr B.P., when sea level was lower and the Amite River was tributary to a larger ancestral drainage basin. The DS became an active meander belt by at least 3000 yr B.P., in response to relative sea-level rise and eastward progradation of the Mississippi River delta plain. The MAG developed its meander belt, in part, during the European settlement of the drainage basin, and is now attempting to adjust to modern anthropogenic influences. Geomorphic influences on the middle Amite River floodplain have temporal and spatial components that induce regional- and local-scale effects. Regional extrinsic influences caused meander belt avulsion that produced alloformations. However, local influences produced intrinsic geomorphic thresholds that modified channel morphology within a meander belt but did not induce alloformation development. Base-level influences of the relative sea-level rise and the Mississippi River delta plain were so dominant that the effects of possible climate change were not recognized in the Holocene Amite River system.

  3. Impact of city effluents on water quality of Indus River: assessment of temporal and spatial variations in the southern region of Khyber Pakhtunkhwa, Pakistan.

    PubMed

    Khan, Ilham; Khan, Azim; Khan, Muhammad Sohail; Zafar, Shabnam; Hameed, Asma; Badshah, Shakeel; Rehman, Shafiq Ur; Ullah, Hidayat; Yasmeen, Ghazala

    2018-04-04

    The impact of city effluents on water quality of Indus River was assessed in the southern region of Khyber Pakhtunkhwa, Pakistan. Water samples were collected in dry (DS) and wet (WS) seasons from seven sampling zones along Indus River and the physical, bacteriological, and chemical parameters determining water quality were quantified. There were marked temporal and spatial variations in the water quality of Indus River. The magnitude of pollution was high in WS compared with DS. The quality of water varied across the sampling zones, and it greatly depended upon the nature of effluents entering the river. Water samples exceeded the WHO permissible limits for pH, EC, TDS, TS, TSS, TH, DO, BOD, COD, total coliforms, Escherichia coli, Ca 2+ , Mg 2+ , NO 3 - , and PO 4 2- . Piper analysis indicated that water across the seven sampling zones along Indus River was alkaline in nature. Correlation analyses indicated that EC, TDS, TS, TH, DO, BOD, and COD may be considered as key physical parameters, while Na + , K + , Ca 2+ , Mg 2+ , Cl - , F - , NO 3 - , PO 4 2- , and SO 4 2- as key chemical parameters determining water quality, because they were strongly correlated (r > 0.70) with most of the parameters studied. Cluster analysis indicated that discharge point at Shami Road is the major source of pollution impairing water quality of Indus River. Wastewater treatment plants must be installed at all discharge points along Indus River for protecting the quality of water of this rich freshwater resource in Pakistan.

  4. Nutrient loads within the Sava River Catchment and comparison with load relations in the Baltic region

    NASA Astrophysics Data System (ADS)

    Levi, Lea; Cvetkovic, Vladimir; Destouni, Georgia

    2015-04-01

    This study compiles estimates of total nitrogen and phosphorus loads in the Sava River Catchment (SRC), investigates the load relations to human drivers of excess nutrient loading, and compares them with corresponding relations implied by data reported for the Baltic region. Nutrient load data, associated average discharge concentrations (ratio of load to water discharge) and their relations to human drivers are investigated across subcatchments of the SRC with different agricultural and population conditions. The Zagreb subcatchment, which has the smallest area but the highest population density and runoff among the investigated SRC subcatchments, exhibits the highest loads of both nitrogen and phosphorus. Overall for the SRC, results show high correlation (R2=0.93-0.95) of nutrient loads with population density and of concentrations with farmland share. A further question investigated here is then to what degree these relations are comparable with such relations found also for the Baltic region. The two regions are otherwise quite different in their climatic, agricultural and wastewater treatment conditions, so relation consistency, even if surprising, would be important in indicating some degree of relation transferability worthy of further investigation also in other regions. For the Baltic region corresponding correlations to those found in the SRC are in the range R2=0.79-0.88. In particular nitrogen and phosphorus concentration correlations with farmland share are qualitatively consistent between the regions. At the same time, phosphorus concentration correlation with population density shows quite different results between regions. Obtained results indicate a certain level of transferability of dependencies between the two regions and call for further detailed investigations on finer spatial-temporal scales.

  5. Increasing trends in rainfall-runoff erosivity in the Source Region of the Three Rivers, 1961-2012.

    PubMed

    Wang, Yousheng; Cheng, Congcong; Xie, Yun; Liu, Baoyuan; Yin, Shuiqing; Liu, Yingna; Hao, Yanfang

    2017-08-15

    As the head source of the two longest rivers in China and the longest river in Southeast Asia, the East Qinghai-Tibetan Plateau (QTP) is experiencing increasing thaw snowmelt and more heavy precipitation events under global warming, which might lead to soil erosion risk. To understand the potential driving force of soil erosion and its relationship with precipitation in the context of climate change, this study analyzed long-term variations in annual rainfall-runoff erosivity, a climatic index of soil erosion, by using the Mann-Kendall statistical test and Theil and Sen's approach in the Source Region of the Three Rivers during 1961-2012. The results showed the followings: (i) increasing annual rainfall-runoff erosivity was observed over the past 52years, with a mean relative trend index (RT 1 ) value of 12.1%. The increasing trend was more obvious for the latest two decades: RT 1 was nearly three times larger than that over the entire period; (ii) more precipitation events and a higher precipitation amount were the major forces for the increasing rainfall-runoff erosivity; (iii) similar rising trends in sediment yields, which corresponded to rainfall-runoff erosivity under slightly increasing vegetation coverage in the study area, implied a large contribution of rainfall-runoff erosivity to the increasing sediment yields; and (iv) high warming rates increased the risk of soil destruction, soil erosion and sediment yields. Conservation measures, such as enclosing grassland, returning grazing land to grassland and rotation grazing since the 1980s, have maintained vegetation coverage and should be continued and strengthened. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Improved Seismic Images of the Pacific Northwest Interior, With a Focus on the Region of the Columbia River Flood Basalts and Central Idaho

    NASA Astrophysics Data System (ADS)

    Stanciu, A. C.; Humphreys, E.; Clayton, R. W.

    2017-12-01

    We construct a P-wave model of the upper mantle based on new and previously acquired data from the USArray-TA stations and regional deployments, including the HLP, ID-OR, and the currently recording Wallowa stations. Our teleseismic arrival times are corrected for crustal structure (based on surface wave, receiver function, and controlled-source models from the region). Our modeling incorporates 3-D ray tracing and several simple considerations of radial anisotropy on travel time. As imaged previously, we find high P-wave velocity anomalies located beneath the Wallowa Mountains and beneath the Idaho Batholith in central west Idaho. Our improved imaging finds that these two anomalies are located down to 350 km depth, and are clearly separated from one another and from a shallower fast anomaly in the uppermost mantle beneath the westernmost Snake River Plain. Our preferred interpretation includes a combination of delamination and slab fragments in this region. As fast (and presumably cool) structures, these upper-mantle anomalies are thought to have a lithospheric origin. The anomaly beneath central Idaho is interpreted as the leading edge of the Farallon slab associated with the accretion of Siletzia terrane to North America. This anomaly may include some North American lithosphere that delaminated from the Laramide-thickened lithospheric mantle, perhaps related to Challis magmatism. The Wallowa anomaly is likely to represent Farallon lithosphere that delaminated during the Columbia River flood basalt event. The small anomaly between the two deeper fast anomalies, occurring at depths above 150km, could represent an isolated lithospheric fragment or a structure created by the Columbia River flood basalt event.

  7. Passive optical remote sensing of Congo River bathymetry using Landsat

    NASA Astrophysics Data System (ADS)

    Ache Rocha Lopes, V.; Trigg, M. A.; O'Loughlin, F.; Laraque, A.

    2014-12-01

    While there have been notable advances in deriving river characteristics such as width, using satellite remote sensing datasets, deriving river bathymetry remains a significant challenge. Bathymetry is fundamental to hydrodynamic modelling of river systems and being able to estimate this parameter remotely would be of great benefit, especially when attempting to model hard to access areas where the collection of field data is difficult. One such region is the Congo Basin, where due to past political instability and large scale there are few studies that characterise river bathymetry. In this study we test whether it is possible to use passive optical remote sensing to estimate the depth of the Congo River using Landsat 8 imagery in the region around Malebo Pool, located just upstream of the Kinshasa gauging station. Methods of estimating bathymetry using remotely sensed datasets have been used extensively for coastal regions and now more recently have been demonstrated as feasible for optically shallow rivers. Previous river bathymetry studies have focused on shallow rivers and have generally used aerial imagery with a finer spatial resolution than Landsat. While the Congo River has relatively low suspended sediment concentration values the application of passive bathymetry estimation to a river of this scale has not been attempted before. Three different analysis methods are tested in this study: 1) a single band algorithm; 2) a log ratio method; and 3) a linear transform method. All three methods require depth data for calibration and in this study area bathymetry measurements are available for three cross-sections resulting in approximately 300 in-situ measurements of depth, which are used in the calibration and validation. The performance of each method is assessed, allowing the feasibility of passive depth measurement in the Congo River to be determined. Considering the scarcity of in-situ bathymetry measurements on the Congo River, even an approximate

  8. Storm-rhine -simulation Tool For River Management

    NASA Astrophysics Data System (ADS)

    Heun, J. C.; Schotanus, T. D.; de Groen, M. M.; Werner, M.

    The Simulation Tool for River Management (STORM), based on the River Rhine case, aims to provide insight into river and floodplain management, by (1) raising aware- ness of river functions, (2) exploring alternative strategies, (3) showing the links be- tween natural processes, spatial planning, engineering interventions, river functions and stakeholder interests, (4) facilitating the debate between different policy makers and stakeholders from across the basin and (5) enhancing co-operation and mutual un- derstanding. The simulation game is built around the new concepts of SRoom for the & cedil;RiverT, Flood Retention Areas, Resurrection of former River Channels and SLiving & cedil;with the FloodsT. The Game focuses on the Lower and Middle Rhine from the Dutch Delta to Maxau in Germany. Influences from outside the area are included as scenarios for boundary conditions. The heart of the tool is the hydraulic module, which calcu- lates representative high- and low water-levels for different hydrological scenarios and influenced by river engineering measures and physical planning in the floodplains. The water levels are translated in flood risks, navigation potential, nature development and land use opportunities in the floodplain. Players of the Game represent the institutions: National, Regional, Municipal Government and Interest Organisations, with interests in flood protection, navigation, agriculture, urban expansion, mining and nature. Play- ers take typical river and floodplain engineering, physical planning and administrative measures to pursue their interests in specific river functions. The players are linked by institutional arrangements and budgetary constraints. The game particularly aims at middle and higher level staff of local and regional government, water boards and members of interest groups from across the basin, who deal with particular stretches or functions of the river but who need (1) to be better aware of the integrated whole, (2) to

  9. Fractionation and ecological risk of metals in urban river sediments in Zhongshan City, Pearl River Delta.

    PubMed

    Cai, Jiannan; Cao, Yingzi; Tan, Haijian; Wang, Yanman; Luo, Jiaqi

    2011-09-01

    Surface sediments collected from nine urban rivers located in Zhongshan City, Pearl River Delta, were analyzed for total concentration of metals with digestion and chemical fractionation adopting the modified European Community Bureau of Reference (BCR) sequential extraction procedure. The results showed that concentration and fractionation of metals varied significantly among the rivers. The total concentration of eight metals in most rivers did not exceed the China Environmental Quality Standard for Soil, Grade III. The potential ecological risk of metals to rivers were related to the land use patterns, in the order of manufacturing areas > residential areas > agriculture areas. The concentration of Pb in the reducible fraction was relatively high (60.0-84.3%). The dominant proportions of Cd, Zn and Cu were primary in the non-residual fraction (67.0%, 71.8% and 81.4% on average respectively), while the percentages of the residual fractions of Cr and Ni varied over a wide range (43-85% and 24-71% respectively). The approaches of the Håkanson ecological risk index and Secondary Phase Enrichment Factor were applied for ecological risk assessment and metal enrichment calculation. The results indicated Hg and Cd had posed high potential ecological risk to urban rivers in this region. Meanwhile, there was widespread pollution and high enrichment of Cu in river sediments in this region. Multiple regression analysis showed that five water quality parameters (pH, DO, COD(Mn), NH(4)(+)-N, TP) had little influence on the distribution of metal fractionation. This result revealed that the ecological risk of metals was not eliminated along with the improvement in water quality. Correlation studies showed that among the metals, Group A (Cd, As, Pb, Zn Hg, r = 0.730-0.924) and Group B (Cr, Cu, Ni, r = 0.815-0.948) were obtained, and the metal contaminations were from industrial activities rather than residential.

  10. Coherence between coastal and river flooding along the California coast

    USGS Publications Warehouse

    Odigie, Kingsley O.; Warrick, Jonathan

    2018-01-01

    Water levels around river mouths are intrinsically determined by sea level and river discharge. If storm-associated coastal water-level anomalies coincide with extreme river discharge, landscapes near river mouths will be flooded by the hydrodynamic interactions of these two water masses. Unfortunately, the temporal relationships between ocean and river water masses are not well understood. The coherence between extreme river discharge and coastal water levels at six California river mouths across different climatic and geographic regions was examined. Data from river gauges, wave buoys, and tide gauges from 2007 to 2014 were integrated to investigate the relationships between extreme river discharge and coastal water levels near the mouths of the Eel, Russian, San Lorenzo, Ventura, Arroyo Trabuco, and San Diego rivers. Results indicate that mean and extreme coastal water levels during extreme river discharge are significantly higher compared with background conditions. Elevated coastal water levels result from the combination of nontidal residuals (NTRs) and wave setups. Mean and extreme (>99th percentile of observations) NTRs are 3–20 cm and ∼30 cm higher during extreme river discharge conditions, respectively. Mean and extreme wave setups are up to 40 cm and ∼20–90 cm higher during extreme river discharge than typical conditions, respectively. These water-level anomalies were generally greatest for the northern rivers and least for the southern rivers. Time-series comparisons suggest that increases in NTRs are largely coherent with extreme river discharge, owing to the low atmospheric pressure systems associated with storms. The potential flooding risks of the concurrent timing of these water masses are tempered by the mixed, semidiurnal tides of the region that have amplitudes of 2–2.5 m. In summary, flooding hazard assessments for floodplains near California river mouths for current or future conditions with sea-level rise should include the temporal

  11. Distribution, status, and likely future trends of bull trout within the interior Columbia River and Klamath River basins

    Treesearch

    Bruce E. Rieman; Danny C. Lee; Russell F. Thurow

    1997-01-01

    We summarized existing knowledge regarding the distribution and status of bull trout Salvelinus confluentus across 4,462 subwatersheds of the interior Columbia River basin in Oregon, Washington. Idaho, Montana, and Nevada and of the Klamath River basin in Oregon, a region that represents about 20% of the species' global range. We used classification trees and the...

  12. The legacy of organochlorine pesticide usage in a tropical semi-arid region (Jaguaribe River, Ceará, Brazil): Implications of the influence of sediment parameters on occurrence, distribution and fate.

    PubMed

    Oliveira, André H B; Cavalcante, Rivelino M; Duaví, Wersângela C; Fernandes, Gabrielle M; Nascimento, Ronaldo F; Queiroz, Maria E L R; Mendonça, Kamila V

    2016-01-15

    Between the 1940s and 1990s, immeasurable amounts of organochlorine pesticides (OCPs) were used in endemic disease control campaigns and agriculture in the tropical semi-arid regions of Brazil. The present study evaluated the legacy of banned OCP usage, considering the levels, ecological risk and dependence on sediment physicochemical properties for the fate and distribution in the Jaguaribe River. The sum concentration of OCPs (ΣOCPs) ranged from 5.09 to 154.43 ng·g(-1), comparable to the levels found in other tropical and subtropical regions that have traditionally used OCPs. The environmental and geographical distribution pattern of p,p-DDT, p,p-DDD and p,p-DDE shows that the estuarine zone contained more than 3.5 times the levels observed in the fluvial region, indicating that the estuary of the Jaguaribe River is a sink. The temporal pattern indicates application of dichloro-diphenyl-trichloroethanes (DDTs) in the past; however, there is evidence of recent input of these pesticides. High ecological risk was observed for levels of γ-hexachlorocyclohexanes (γ-HCH) and heptachlor, and moderate ecological risk was observed for levels of DDTs in sediments from the Jaguaribe River. The heptachlor, γ-HCH and hexachlorobenzene (HCB) concentrations depend on the organic and inorganic fractions of sediment from the Jaguaribe River, whereas the p,p-DDE, p,p-DDD, p,p-DDT and α-endosulfan concentrations depend solely on the organic fraction of the sediment.

  13. The nitrogen cycle in highly urbanized tropical regions and the effect of river-aquifer interactions: The case of Jakarta and the Ciliwung River

    NASA Astrophysics Data System (ADS)

    Costa, Diogo; Burlando, Paolo; Priadi, Cindy; Shie-Yui, Liong

    2016-09-01

    Groundwater is extensively used in Jakarta to compensate for the limited public water supply network. Recent observations show a rise in nitrate (NO3-) levels in the shallow aquifer, thus pointing at a potential risk for public health. The detected levels are still below national and international regulatory limits for drinking water but a strategy is necessary to contain the growing problem. We combine 3 years of available data in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterise the impact of urbanisation on the N-cycle of both surface and groundwater systems. Results show that the N-cycle in the river-aquifer system is heterogeneous in space, seasonal dependent (i.e. flow regime) and strongly affected by urban pollution. Results suggest also that although the main sources of N related groundwater pollution are leaking septic tanks, the aquifer interaction with the Ciliwung River may locally have a strong effect on the concentrations. In the general context of pollution control in urban areas, this study demonstrates how advanced process-based models can be efficiently used in combination with field measurements to bring new insights into complex contamination problems. These are essential for more effective and integrated management of water quality in river-aquifer systems.

  14. Riverine based eco-tourism: Trinity River non-market benefits estimates

    USGS Publications Warehouse

    Douglas, A.J.; Taylor, J.G.

    1998-01-01

    California's Central Valley Project (CVP) was approved by voters in a statewide referendum in 1933. CVP referendum approval initiated funding for construction of important water development projects that had far reaching effects on regional water supplies. The construction of Trinity Dam in 1963 and the subsequent transbasin diversion of Trinity River flow was one of several CVP projects that had noteworthy adverse environmental and regional economic impacts. The Trinity River is the largest tributary of the Klamath River, and has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel. Before 1963, the Trinity River was a major recreation resource of Northern California. The loss of streamflow has had a marked adverse impact on Trinity River-related recreation activities and the size and robustness of Trinity River salmon, steelhead, shad, and sturgeon runs. Trinity River water produces hydropower during its transit via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The benefits provided by Trinity River instream flow-related environmental amenities were estimated with the travel cost method (TCM). Trinity River non-market benefits are about $406 million per annum, while the social cost of sending water down the Trinity River ranges from $17 to $42 million per annum, depending on the exact flow. We also discuss the relative magnitude of Trinity River survey data contingent value method (CVM) benefits estimates.

  15. Impacts of climate warming on the frozen ground and eco-hydrology in the Yellow River source region, China.

    PubMed

    Qin, Yue; Yang, Dawen; Gao, Bing; Wang, Taihua; Chen, Jinsong; Chen, Yun; Wang, Yuhan; Zheng, Guanheng

    2017-12-15

    The Yellow River source region is located in the transition region between permafrost and seasonally frozen ground on the northeastern Qinghai-Tibet Plateau. The region has experienced severe climate change, especially air temperature increases, in past decades. In this study, we employed a geomorphology-based eco-hydrological model (GBEHM) to assess the impacts of climate change on the frozen ground and eco-hydrological processes in the region. Based on a long-term simulation from 1981 to 2015, we found that the areal mean maximum thickness of seasonally frozen ground ranged from 1.1-1.8m and decreased by 1.2cm per year. Additionally, the ratio of the permafrost area to the total area decreased by 1.1% per year. These decreasing trends are faster than the average in China because the study area is on the sensitive margin of the Qinghai-Tibet Plateau. The annual runoff exhibited variations similar to those of the annual precipitation (R 2 =0.85), although the annual evapotranspiration (ET) exhibited an increasing trend (14.3mm/10a) similar to that of the annual mean air temperature (0.66°C/10a). The runoff coefficient (annual runoff divided by annual precipitation) displayed a decreasing trend because of the increasing ET, and the vegetation responses to climate warming and permafrost degradation were manifested as increases in the leaf area index (LAI) and ET at the start of the growing season. Furthermore, the results showed that changes to the frozen ground depth affected vegetation growth. Notably, a rapid decrease in the frozen ground depth (< -3.0cm/a) decreased the topsoil moisture and then decreased the LAI. This study showed that the eco-hydrological processes in the headwater area of the Yellow River have changed because of permafrost degradation, and these changes could further influence the water resources availability in the middle and lower reaches of the basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Geostatistical analysis of regional hydraulic conductivity variations in the Snake River Plain aquifer, eastern Idaho

    USGS Publications Warehouse

    Welhan, J.A.; Reed, M.F.

    1997-01-01

    The regional spatial correlation structure of bulk horizontal hydraulic conductivity (Kb) estimated from published transmissivity data from 79 open boreholes in the fractured basalt aquifer of the eastern Snake River Plain was analyzed with geostatistical methods. The two-dimensional spatial correlation structure of In Kb shows a pronounced 4:1 range anisotropy, with a maximum correlation range in the north-northwest- south-southeast direction of about 6 km. The maximum variogram range of In Kb is similar to the mean length of flow groups exposed at the surface. The In Kb range anisotropy is similar to the mean width/length ratio of late Quaternary and Holocene basalt lava flows and the orientations of the major volcanic structural features on the eastern Snake River Plain. The similarity between In Kb correlation scales and basalt flow dimensions and between basalt flow orientations and correlation range anisotropy suggests that the spatial distribution of zones of high hydraulic conductivity may be controlled by the lateral dimensions, spatial distribution, and interconnection between highly permeable zones which are known to occur between lava flows within flow groups. If hydraulic conductivity and lithology are eventually shown to be cross correlative in this geologic setting, it may be possible to stochastically simulate hydraulic conductivity distributions, which are conditional on a knowledge of volcanic stratigraphy.

  17. Measuring direct and indirect costs of land retirement in an irrigated river basin: A budgeting regional multiplier approach

    NASA Astrophysics Data System (ADS)

    Hamilton, Joel; Whittlesey, Norman K.; Robison, M. Henry; Willis, David

    2002-08-01

    This analysis addresses three important conceptual problems in the measurement of direct and indirect costs and benefits: (1) the distribution of impacts between a regional economy and the encompassing state economy; (2) the distinction between indirect impacts and indirect costs (IC), focusing on the dynamic time path unemployed resources follow to find alternative employment; and (3) the distinction among the affected firms' microeconomic categories of fixed and variable costs as they are used to compute regional direct and indirect costs. It uses empirical procedures that reconcile the usual measures of economic impact provided by input/output models with the estimates of economic costs and benefits required for analysis of welfare changes. The paper illustrates the relationships and magnitudes involved in the context of water policy issues facing the Pecos River Basin of New Mexico.

  18. Water resources of the Yellow Medicine River Watershed, Southwestern Minnesota

    USGS Publications Warehouse

    Novitzki, R.P.; Van Voast, Wayne A.; Jerabek, L.A.

    1969-01-01

    The Yellow Medicine and Minnesota Rivers are the major sources of surface water. For physiographic regions – Upland Plain, Slope, Lowland Plain, and Minnesota River Flood Plain – influence surface drainage, and the flow of ground water through the aquifers. The watershed comprises 1070 square miles, including the drainage basin of the Yellow Medicine River (665 square miles) and 405 square miles drained by small streams tributary to the Minnesota River.

  19. An Assessment of Regional Water Resources and Agricultural Sustainability in the Mississippi River Alluvial Aquifer System of Mississippi and Arkansas Under Current and Future Climate

    NASA Astrophysics Data System (ADS)

    Rigby, J.; Reba, M.

    2011-12-01

    The Lower Mississippi River Alluvial Plain is a highly productive agricultural region for rice, soy beans, and cotton that depends heavily on irrigation. Development of the Mississippi River Alluvial Aquifer (MRAA), one of the more prolific agricultural aquifers in the country, has traditionally been the primary source for irrigation in the region yielding over 1,100 Mgal/day to irrigation wells. Increasingly, the realities of changing climate and rapidly declining water tables have highlighted the necessity for new water management practices. Tail-water recovery and reuse is a rapidly expanding practice due in part to the efforts and cost-sharing of the NRCS, but regional studies of the potential for such practices to alleviate groundwater mining under current and future climate are lacking. While regional studies of aquifer geology have long been available, including assessments of regional groundwater flow, much about the aquifer is still not well understood including controls on recharge rates, a crucial component of water management design. We review the trends in regional availability of surface and groundwater resources, their current status, and the effects of recent changes in management practices on groundwater decline in Mississippi and Arkansas. Global and regional climate projections are used to assess scenarios of sustainable aquifer use under current land use and management along with the potential for more widely practiced surface water capture and reuse to alleviate groundwater decline. Finally, we highlight crucial knowledge gaps and challenges associated with the development of water management practices for sustainable agricultural use in the region.

  20. Disentangling multiple pressures on fish assemblages in large rivers.

    PubMed

    Zajicek, Petr; Radinger, Johannes; Wolter, Christian

    2018-06-15

    European large rivers are exposed to multiple human pressures and maintained as waterways for inland navigation. However, little is known on the dominance and interactions of multiple pressures in large rivers and in particular inland navigation has been ignored in multi-pressure analyzes so far. We determined the response of ten fish population metrics (FPM, related to densities of diagnostic guilds and biodiversity) to 11 prevailing pressures including navigation intensity at 76 sites in eight European large rivers. Thereby, we aimed to derive indicative FPM for the most influential pressures that can serve for fish-based assessments. Pressures' influences, impacts and interactions were determined for each FPM using bootstrapped regression tree models. Increased flow velocity, navigation intensity and the loss of floodplains had the highest influences on guild densities and biodiversity. Interactions between navigation intensity and loss of floodplains and between navigation intensity and increased flow velocity were most frequent, each affecting 80% of the FPM. Further, increased sedimentation, channelization, organic siltation, the presence of artificial embankments and the presence of barriers had strong influences on at least one FPM. Thereby, each FPM was influenced by up to five pressures. However, some diagnostic FPM could be derived: Species richness, Shannon and Simpson Indices, the Fish Region Index and lithophilic and psammophilic guilds specifically indicate rhithralisation of the potamal region of large rivers. Lithophilic, phytophilic and psammophilic guilds indicate disturbance of shoreline habitats through both (i) wave action induced by passing vessels and (ii) hydromorphological degradation of the river channel that comes along with inland navigation. In European large rivers, inland navigation constitutes a highly influential pressure that adds on top of the prevailing hydromorphological degradation. Therefore, river management has to consider

  1. Ecosystem Services and Related Sustainable Management of River Oases along the Tarim River in Northwest China

    NASA Astrophysics Data System (ADS)

    Disse, M.; Keilholz, P.; Rumbaur, C.; Thevs, N.

    2011-12-01

    Within the Taklimakan Desert of Northwestern China, an area renowned for its extreme climate and vulnerable ecosystems, lies one of the largest inland rivers in the world, the Tarim River. Because the Tarim River is located in a remote area from the oceans, rainfall is extremely rare (less than 50 mm per year) but potential evaporation is high (3000 mm). Thus, the major source of water discharge comes from snowmelt and glacier-melt in the mountains. Though the water discharge into the Tarim River has experienced an increase over the past ten years, global climate change forecasts predict this water supply to decline within the century. The Tarim River is the major source of water in Northwestern China, and has become the hub of many economic activities related to agriculture and urban life. Over the past 50 years increased activity in the area has led to a severe decline in river flow. Both human and natural ecosystems have been impacted by water diversions. Since rainfall is rare, the majority of vegetation in this area depends solely on groundwater for survival, and plants are experiencing stress caused by decreasing groundwater levels. Recently nearby cities have experienced severe dust storms caused by the shrinking of the vegetative region along the river. SuMaRiO (Sustainable Management of River Oases) is a bundle project between Germany and China working to contribute to a sustainable land management which explicitly takes into account ecosystem functions (ESF) and ecosystem services (ESS). In a transdisciplinary research process, SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. SuMaRiO is developing tools to work with Chinese decision makers to implement sustainable land management strategies. In addition, research is being conducted to estimate climate change impacts, floodplain biodiversity, and water runoff characteristics. The overarching goal of SuMaRiO is to support oasis management along

  2. Regional-scale controls on dissolved nitrous oxide in the Upper Mississippi River

    USGS Publications Warehouse

    Turner, P.A.; Griffis, T.J.; Baker, J.M.; Lee, X.; Crawford, John T.; Loken, Luke C.; Venterea, R.T.

    2016-01-01

    The U.S. Corn Belt is one of the most intensive agricultural regions of the world and is drained by the Upper Mississippi River (UMR), which forms one of the largest drainage basins in the U.S. While the effects of agricultural nitrate (NO3-) on water quality in the UMR have been well documented, its impact on the production of nitrous oxide (N2O) has not been reported. Using a novel equilibration technique, we present the largest data set of freshwater dissolved N2O concentrations (0.7 to 6 times saturation) and examine the controls on its variability over a 350 km reach of the UMR. Driven by a supersaturated water column, the UMR was an important atmospheric N2O source (+68 mg N2ONm-2 yr-1) that varies nonlinearly with the NO3-concentration. Our analyses indicated that a projected doubling of the NO3-concentration by 2050 would cause dissolved N2O concentrations and emissions to increase by about 40%.

  3. Global relationships in river hydromorphology

    NASA Astrophysics Data System (ADS)

    Pavelsky, T.; Lion, C.; Allen, G. H.; Durand, M. T.; Schumann, G.; Beighley, E.; Yang, X.

    2017-12-01

    Since the widespread adoption of digital elevation models (DEMs) in the 1980s, most global and continental-scale analysis of river flow characteristics has been focused on measurements derived from DEMs such as drainage area, elevation, and slope. These variables (especially drainage area) have been related to other quantities of interest such as river width, depth, and velocity via empirical relationships that often take the form of power laws. More recently, a number of groups have developed more direct measurements of river location and some aspects of planform geometry from optical satellite imagery on regional, continental, and global scales. However, these satellite-derived datasets often lack many of the qualities that make DEM=derived datasets attractive, including robust network topology. Here, we present analysis of a dataset that combines the Global River Widths from Landsat (GRWL) database of river location, width, and braiding index with a river database extracted from the Shuttle Radar Topography Mission DEM and the HydroSHEDS dataset. Using these combined tools, we present a dataset that includes measurements of river width, slope, braiding index, upstream drainage area, and other variables. The dataset is available everywhere that both datasets are available, which includes all continental areas south of 60N with rivers sufficiently large to be observed with Landsat imagery. We use the dataset to examine patterns and frequencies of river form across continental and global scales as well as global relationships among variables including width, slope, and drainage area. The results demonstrate the complex relationships among different dimensions of river hydromorphology at the global scale.

  4. Establishment of a non-governmental regional approach to La Plata River Basin integrated watershed management promoted throughout three international workshops supported by UN and Japanese agencies, led by ILEC

    NASA Astrophysics Data System (ADS)

    Calcagno, Alberto; Yamashiki, Yosuke; Mugetti, Ana

    2002-08-01

    The La Plata River Basin is one of the largest international river basins in the world, with an area of about 3 million km2. It spreads across five countries (Argentina, Bolivia, Brazil, Paraguay and Uruguay), and its water resources are essential for their economic development. Together with reservoir development, extensive deforestation, intensive agriculture practices and large urban developments took place in the Paraná, Paraguay and Uruguay basins, affecting environmental conditions and raising important issues concerning water resources use and conservation. Therefore, the need to promote participatory and cooperative efforts among water resources stakeholders, as well as the systematic exchange of information and experiences on common regional problems among organizations and experts from throughout the basin who are devoted to water resources use and management, was reported by researchers and managers gathered at the First and Second International Workshops on Regional Approaches for Reservoir Development and Management in the La Plata River Basin (held in 1991 and 1994). As a concrete response to this need, the efforts of a number of organizations from various countries within the basin, with the support of international and national governmental organizations, resulted in the foundation of La Plata River Basin Environmental Research and Management Network (RIGA) in March 2001. This was within the framework of the Third International Workshop, which was precisely one of the short-term activities included in the RIGA Action Plan. During the preparatory processes for the RIGA Network, the presence of Japanese cooperation supporting the La Plata River Basin Workshops through a non-governmental international organization (ILEC) played an important role in stimulating such an organization-based joint approach in the basin. This outcome, although not originally planned, constituted a welcomed byproduct of its main specific interest in the region, which was the

  5. Effects of Techa River Radiation Contamination on the Reproductive Function of Residents

    DTIC Science & Technology

    2006-06-01

    The newborn 16 development histories contained information on hereditary factors both on the maternal and paternal side, labor traumas...of exposed parents , and 0.72 for controls. Thus, according to informa- tion provided by maternity homes which analyzed labor histories and neonatal...physical parameters (length, weight, head circumference) were not changed if the parents were irradiated, but deviations in both directions from the mean

  6. Effects of Techa River Radiation Contamination on the Reproductive Function of Residents

    DTIC Science & Technology

    2006-11-01

    general somatic diseases such as diseases of the respiratory organs (bronchiectasis), diabetes , hepatic, and renal insufficiency. The method of choice...the diagnosis of CRS in some of the patients was infantilism , i.e., retard- ed and insufficient sexual development. As is indicated in a previous...legs and left forearm after a railway disaster. The two remaining women, twins born in 1944, were diagnosed with infantilism , which is evidently the

  7. Parasitism of the isopod Artystone trysibia in the fish Chaetostoma dermorhynchum from the Tena River (Amazonian region, Ecuador).

    PubMed

    Junoy, Juan

    2016-01-01

    The isopod Artystone trysibia Schioedte, 1866 is described by using a collection of specimens that were found parasitizing loricariid fish Chaetostoma dermorhynchum Boulenger, 1887 in the Tena River (Napo province, Ecuador, Amazonian region). Additionally to freshly collected specimens, complementary data of the parasite was obtained from preserved fishes at Ecuadorian museums. This is the first record of A. trysibia in Ecuador, and the most upstream location for the species. The new host fish, Chaetostoma dermorhynchum, is used locally as food. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Calcium and magnesium isotope systematics in rivers draining the Himalaya-Tibetan-Plateau region: Lithological or fractionation control?

    NASA Astrophysics Data System (ADS)

    Tipper, Edward T.; Galy, Albert; Bickle, Mike J.

    2008-02-01

    In rivers draining the Himalaya-Tibetan-Plateau region, the 26Mg/ 24Mg ratio has a range of 2‰ and the 44Ca/ 42Ca ratio has a range of 0.6‰. The average δ26Mg values of tributaries from each of the main lithotectonic units (Tethyan Sedimentary Series (TSS), High Himalayan Crystalline Series (HHCS) and Lesser Himalayan Series (LHS)) are within 2 standard deviation analytical uncertainty (0.14‰). The consistency of average riverine δ26Mg values is in contrast to the main rock types (limestone, dolostone and silicate) which range in their average δ26Mg values by more than 2‰. Tributaries draining the dolostones of the LHS differ in their δ44Ca values compared to tributaries from the TSS and HHCS. The chemistry of these river waters is strongly influenced by dolostone (solute Mg/Ca close to unity) and both δ26Mg (-1.31‰) and δ44Ca (0.64‰) values are within analytical uncertainty of the LHS dolostone. These are the most elevated δ44Ca values in rivers and rock reported so far demonstrating that both riverine and bedrock δ44Ca values may show greater variability than previously thought. Although rivers draining TSS limestone have the lowest δ26Mgandδ44Ca values at -1.41 and 0.42‰, respectively, both are offset to higher values compared to bedrock TSS limestone. The average δ26Mg value of rivers draining mainly silicate rock of the HHCS is -1.25‰, lower by 0.63‰ than the average silicate rock. These differences are consistent with a fractionation of δ26Mg values during silicate weathering. Given that the proportion of Mg exported from the Himalaya as solute Mg is small, the difference in 26Mg/ 24Mg ratios between silicate rock and solute Mg reflects the 26Mg/ 24Mg isotopic fractionation factor ( αsilicate-dissolvedMg) between silicate and dissolved Mg during incongruent silicate weathering. The value of αsilicate-dissolvedMg of 0.99937 implies that in the TSS, solute Mg is primarily derived from silicate weathering, whereas the source of Ca

  9. Characterization of transboundary POP contamination in aquatic ecosystems of Pearl River delta.

    PubMed

    Chau, K W

    2005-01-01

    During the past two decades, the rapid development of the Pearl River delta leads to substantial accumulation of various toxic organic compounds. This study aims to give a preliminary characterization of the existing state of contamination in this region and to provide insight into the possible fate of persistent organic pollutants (POPs) in this estuary. The available data on POPs in water, river, estuarine sediments, soil, and marine organisms within the Pearl River delta are compiled. It is shown that it may lead to transboundary POP pollution problems at both Hong Kong and Macau Special Administration Regions located at the downstream end of the region. It is noted that the levels of DDTs and HCHs in various environmental media are at alerting levels and that fresh DDT might still be applied illegally within the region. A systematic research is required to determine both the temporal and spatial variations of all POPs in various carrying media of the Pearl River delta as a whole.

  10. The nitrogen cycle in highly urbanized tropical regions and the effect of river-aquifer interactions: The case of Jakarta and the Ciliwung River.

    PubMed

    Costa, Diogo; Burlando, Paolo; Priadi, Cindy; Shie-Yui, Liong

    2016-09-01

    Groundwater is extensively used in Jakarta to compensate for the limited public water supply network. Recent observations show a rise in nitrate (NO3(-)) levels in the shallow aquifer, thus pointing at a potential risk for public health. The detected levels are still below national and international regulatory limits for drinking water but a strategy is necessary to contain the growing problem. We combine 3years of available data in the Ciliwung River, the major river flowing through Jakarta, with a distributed river-aquifer interaction model to characterise the impact of urbanisation on the N-cycle of both surface and groundwater systems. Results show that the N-cycle in the river-aquifer system is heterogeneous in space, seasonal dependent (i.e. flow regime) and strongly affected by urban pollution. Results suggest also that although the main sources of N related groundwater pollution are leaking septic tanks, the aquifer interaction with the Ciliwung River may locally have a strong effect on the concentrations. In the general context of pollution control in urban areas, this study demonstrates how advanced process-based models can be efficiently used in combination with field measurements to bring new insights into complex contamination problems. These are essential for more effective and integrated management of water quality in river-aquifer systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. VOCs and OVOCs distribution and control policy implications in Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Louie, Peter K. K.; Ho, Josephine W. K.; Tsang, Roy C. W.; Blake, Donald R.; Lau, Alexis K. H.; Yu, Jian Zhen; Yuan, Zibing; Wang, Xinming; Shao, Min; Zhong, Liuju

    2013-09-01

    Ambient air measurements of volatile organic compounds (VOCs) and oxygenated volatile organic compounds (OVOCs) were conducted and characterised during a two-year grid study in the Pearl River Delta (PRD) region of southern China. The present grid study pioneered the systematic investigation of the nature and characteristics of complex VOC and OVOC sources at a regional scale. The largest contributing VOCs, accounting over 80% of the total VOCs mixing ratio, were toluene, ethane, ethyne, propane, ethene, butane, benzene, pentane, ethylbenzene, and xylenes. Sub-regional VOC spatial characteristics were identified, namely: i) relatively fresh pollutants, consistent with elevated vehicular and industrial activities, around the PRD estuary; and ii) a concentration gradient with higher mixing ratios of VOCs in the west as compared with the eastern part of PRD. Based on alkyl nitrate aging determination, a high hydroxyl radical (OH) concentration favoured fast hydrocarbon reactions and formation of locally produced ozone. The photochemical reactivity analysis showed aromatic hydrocarbons and alkenes together consisted of around 80% of the ozone formation potential (OFP) among the key VOCs. We also found that the OFP from OVOCs should not be neglected since their OFP contribution was more than one-third of that from VOCs alone. These findings support the choice of current air pollution control policy which focuses on vehicular sources but warrants further controls. Industrial emissions and VOCs emitted by solvents should be the next targets for ground-level ozone abatement.

  12. Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceuticals in river- and drinking-water of the Madrid Region in Spain.

    PubMed

    Valcárcel, Y; Alonso, S González; Rodríguez-Gil, J L; Maroto, R Romo; Gil, A; Catalá, M

    2011-02-01

    Interest in the presence of pharmaceuticals in wastewater, in the water of our rivers and, to a lesser extent, in our drinking water, has been growing in recent decades. Many of these substances, currently classified as "emerging pollutants", are biologically active compounds and continuously released in effluents. As sewage treatment plants (STPs) are not adequately equipped to eliminate all of these substances completely, some are discharged directly into rivers. In Spain, as in most of its neighbouring countries, there is an elevated use of pharmaceuticals for the treatment of cardiovascular diseases (which are extremely prevalent among the older adult population) and anti-inflammatory medications, which are obtainable over the counter without a medical prescription. This study therefore sought to determine to what degree pharmaceuticals with the highest regional prescription and/or use rates, such as cardiovascular and analgesic/anti-inflammatory/antipyretic medications, were present in the principal rivers (Jarama, Manzanares, Guadarrama, Henares and Tagus) and tap-water samples of the Madrid Region (MR). Samples were taken downstream the discharge of 10 of the most important region's STPs and the most frequently used drugs in the region were analysed for. Of the 24 drugs analysed, 21 were detected at concentrations ranging from 2 ng L⁻¹ to 18 μg L⁻¹. The highest drug concentrations corresponded to ibuprofen, diclofenac, naproxen, atenolol, frusemide (furosemide), gemfibrozil and hydrochlorthiazide, and in most cases exceeded the amounts reported in the scientific literature. No traces of these groups of pharmaceuticals were detected in the drinking water analysed. On the basis of the high concentrations detected, we believe that an environmental surveillance system should be implemented to assess the continuous discharge of these pharmaceuticals and their possible ecotoxicological effects. At the same time, efforts to raise the awareness of the public

  13. Effects of river regulation on aeolian landscapes, Colorado River, southwestern USA

    USGS Publications Warehouse

    Draut, Amy E.

    2012-01-01

    Connectivity between fluvial and aeolian sedimentary systems plays an important role in the physical and biological environment of dryland regions. This study examines the coupling between fluvial sand deposits and aeolian dune fields in bedrock canyons of the arid to semiarid Colorado River corridor, southwestern USA. By quantifying significant differences between aeolian landscapes with and without modern fluvial sediment sources, this work demonstrates for the first time that the flow- and sediment-limiting effects of dam operations affect sedimentary processes and ecosystems in aeolian landscapes above the fluvial high water line. Dune fields decoupled from fluvial sand supply have more ground cover (biologic crust and vegetation) and less aeolian sand transport than do dune fields that remain coupled to modern fluvial sand supply. The proportion of active aeolian sand area also is substantially lower in a heavily regulated river reach (Marble–Grand Canyon, Arizona) than in a much less regulated reach with otherwise similar environmental conditions (Cataract Canyon, Utah). The interconnections shown here among river flow and sediment, aeolian sand transport, and biologic communities in aeolian dunes demonstrate a newly recognized means by which anthropogenic influence alters dryland environments. Because fluvial–aeolian coupling is common globally, it is likely that similar sediment-transport connectivity and interaction with upland ecosystems are important in other dryland regions to a greater degree than has been recognized previously.

  14. Mississippi National River and Recreation Area Water Trail Plan.

    DOT National Transportation Integrated Search

    2017-05-05

    The Water Trail Plan describes the current conditions of and future plans for the Mississippi National River and Recreation Area (NRRA), a 72-mile stretch of the Mississippi River running through the Twin Cities region of Minnesota. In 2012, the NRRA...

  15. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    NASA Astrophysics Data System (ADS)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly

  16. Suitability Evaluation on River Bank Filtration of the Second Songhua River, China

    NASA Astrophysics Data System (ADS)

    Wang, Lixue; Ye, Xueyan; Du, Xinqiang

    2016-04-01

    The Second Songhua River is the biggest river with the most economic value in Jilin Province, China. In recent years, with the rapid development of economy, water resources and water environment problem is getting prominent, including surface water pollution and over exploitation of groundwater resources, etc. By means of bank filtration, the Second Songhua River basin might realize the combined utilization of regional groundwater and surface water, and thus has important significance for the guarantee of water demand for industrial and agricultural production planning in the basin. The following steps were adopted to evaluate the suitability of bank filtration nearby the Scond Songhua River : Firstly, in order to focus on the most possible area, the evaluation area was divided based on the aspects of natural geographical conditions and hydraulic connection extent between river water and groundwater. Second, the main suitability indexes including water quantity, water quality, interaction intensity between surface water and groundwater, and the exploitation condition of groundwater resource, and nine sub-indexes including hydraulic conductivity, aquifer thickness, river runoff, the status of groundwater quality, the status of surface water quality, groundwater hydraulic gradient, possible influence zone width of surface water under the condition of groundwater exploitation, permeability of riverbed layer and groundwater depth were proposed to establish an evaluation index system for the suitability of river bank filtration. Thirdly, Combined with the natural geography, geology and hydrogeology conditions of the Second Songhua River basin, the ArcGIS technology is used to complete the evaluation of the various indicators. According to the weighted sum of each index, the suitability of river bank filtration in the study area is divided into five grades. The evaluation index system and evaluation method established in this article are applicable to the Second Songhua

  17. Changing spring phenology dates in the Three-Rivers Headwater Region of the Tibetan Plateau during 1960-2013

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Xia, Jiangjiang; Yan, Zhongwei; Yang, Kun

    2018-01-01

    The variation of the vegetation growing season in the Three-Rivers Headwater Region of the Tibetan Plateau has recently become a controversial topic. One issue is that the estimated local trend in the start of the vegetation growing season (SOS) based on remote sensing data is easily affected by outliers because this data series is short. In this study, we determine that the spring minimum temperature is the most influential factor for SOS. The significant negative linear relationship between the two variables in the region is evaluated using Moderate Resolution Imaging Spectroradiometer-Normalized Difference Vegetation Index data for 2000-13. We then reconstruct the SOS time series based on the temperature data for 1960-2013. The regional mean SOS shows an advancing trend of 1.42 d (10 yr)-1 during 1960-2013, with the SOS occurring on the 160th and 151st days in 1960 and 2013, respectively. The advancing trend enhances to 6.04 d (10 yr)-1 during the past 14 years. The spatiotemporal variations of the reconstructed SOS data are similar to those deduced from remote sensing data during the past 14 years. The latter exhibit an even larger regional mean trend of SOS [7.98 d (10 yr-1)] during 2000-13. The Arctic Oscillation is found to have significantly influenced the changing SOS, especially for the eastern part of the region, during 2000-13.

  18. Late Quaternary river channel migrations of the Kura River in Transcaucasia - tectonic versus climatic causes

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Gärtner, Andreas; Hoth, Silvan; Umlauft, Josefine; Godoladze, Tea; Faust, Dominik

    2015-04-01

    Large-scale river channel migrations either in the form of avulsions or combing, i.e. progressive lateral migrations, are global phenomena during the Late Quaternary. Such channel migrations were triggered by tectonics, climate change, human activity or a combination of those factors. River channel migrations have the potential to cause significant human and economic losses. Thus, a more thorough knowledge about underlying causes and process rates is essential. Furthermore, such studies will elucidate the sensitivity or robustness of rivers to different external and internal forcing-agents, i.e. they help to identify the dominant drivers of regional landscape evolution. The Caucasus region is part of the active collision zone between the Africa-Arabian and the Eurasian plates, and is characterized by high current tectonic activity. Furthermore, significant environmental changes took place during the Late Quaternary, i.e. the shrinking or even disappearance of glaciers in the Greater and Lesser Caucasus or fundamental changes of the vegetation cover varying between woodland and grassland-dominated vegetation. The Kura River is the main gaining stream of the Transcaucasian Depression located between the Greater Caucasus Mountains in the north and the Lesser Caucasus Mountains in the south, and receives several tributaries from both mountain ranges. This study focusses on the middle course of the Kura River in eastern Georgia, SE of the city of Tbilisi. Integration of fluvial geomorphology, geochronology, heavy mineral analyses and seismo-tectonic analyses demonstrates that this part of the Kura River underwent large-scale channel migrations up to >10 km during Late Pleistocene and Holocene. It is interpreted that these movements followed both tectonic and climatic triggers: Whereas SW-ward migrations were caused by tectonic uplift in and SW-directed advance of the Kura fold and thrust belt as part of the Greater Caucasus, NE-ward migrations occurred during cold

  19. Stock assessment of fish species Labeo rohita, Tor tor and Labeo calbasu in the rivers of Vindhyan region, India.

    PubMed

    Dwivedi, Amitabh Chandra; Nautiyal, Prakash

    2012-03-01

    A study was conducted on the economically important fishes Labeo rohita (Hamilton 1822), Tortor (Hamilton 1822) and Labeo calbasu (Hamilton 1822) stocks from the Ken, the Paisuni and the Tons rivers in the Vindhyan region. Asymptotic length was maximum in L. rohita (946, 833 and 962 mm) as compared with T. tor (822, 787 and 946 mm) and minimum in L. calbasu (567, 612 and 692 mm) in the Ken, the Paisuni and the Tons rivers, respectively. The growth coefficient and total mortality was maximum in T. torcompared to L. rohita and minimum in L. calbasu. Fishing mortality was maximum in T. tor (2.9, 4.57 and 3.44) and minimum in L. calbasu (0.51, 1.21 and 1.18) while natural mortality was maximum in L. rohita (0.74, 0.94 and 1.86) and minimum in L. calbasu (0.47, 0.65 and 0.68). Natural mortality indicated that the habitat was more suitable for L. calbasu. Comparatively, fishing pressure was very high in T. tor than L. rohita and L. calbasu. Exploitation rate was maximum in T. tor (0.71, 0.82 and 0.84) compared to L. rohita (0.77, 0.74 and 0.56) and minimum in L. calbasu (0.52, 0.65 and 0.63) in the Ken, Paisuni and Tons rivers, respectively.

  20. Floodplain inundation response to climate, valley form, and flow regulation on a gravel-bed river in a Mediterranean-climate region

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Pasternack, G. B.

    2017-04-01

    Floodplain inundation regime defines hydrological connectivity between river channel and floodplain and thus strongly controls structure and function of these highly diverse and productive ecosystems. We combined an extensive LiDAR data set on topography and vegetation, long-term hydrological records, as well as the outputs of hydrological and two-dimensional hydraulic models to examine how floodplain inundation regimes in a dynamic, regulated, gravel-cobble river in a Mediterranean-climate region are controlled by reach-scale valley morphology, hydroclimatic conditions, and flow regulation. Estimated relative differences in the extent, duration, and cumulative duration of inundation events were often as large as an order of magnitude and generally greatest for large and long duration events. The relative impact of flow regulation was greatest under dry hydroclimatic conditions. Although the effects of hydroclimate and flow impairment are larger than that of valley floor topography, the latter controls sensitivity of floodplain hydroperiod to flow regime changes and should not be ignored. These quantitative estimates of the relative importance of factors that control floodplain processes in Mediterranean, semiarid rivers contributes to better understanding of hydrology and geomorphology of this important class of channels. We also discuss implications of our findings for processes that shape floodplain habitat for riparian vegetation and salmonid fish, especially in the context of ecological restoration.

  1. A River Discharge Model for Coastal Taiwan during Typhoon Morakot

    DTIC Science & Technology

    2012-08-01

    Multidisciplinary Simulation, Estimation, and Assimilation Systems Reports in Ocean Science and Engineering MSEAS-13 A River Discharge...in this region. The island’s major rivers have correspondingly large drainage basins, and outflow from these river mouths can substantially reduce the...Multidisciplinary Simulation, Estimation, and Assimilation System (MSEAS) has been used to simulate the ocean dynamics and forecast the uncertainty

  2. The Colorado River region and John Wesley Powell

    USGS Publications Warehouse

    Rabbitt, Mary C.; McKee, Edwin D.; Hunt, Charles B.; Leopold, Luna Bergere

    1969-01-01

    A century ago John Wesley Powell-teacher, scientist, and veteran of the Civil War-set out to explore the unknown reaches of the Colorado River. He emerged from the forbidding canyons with a compelling interest in the nature of the western lands and how they could be developed for the greatest benefit to the Nation. A man gifted with imagination, yet always tempered by the scientist's appreciation for facts, Powell became one of the country's most vigorous proponents for the orderly development of the public domain and the wise use of its natural resources. Throughout his lifetime, Powell stood firm in his belief that science, as a sound basis for human progress, should serve all the people, and he played an important role in organizing and directing scientific activities of the U.S. Government. His zeal led to the establishment of the Geological Survey in the U.S. Department of the Interior and the Bureau of Ethnology in the Smithsonian Institution. On this 100th Anniversary of the Powell Colorado River Expedition, the U.S. Department of the Interior, Smithsonian Institution, and National Geographic Society (which Powell helped to found) have joined many organizations and individuals to recall the works of this man ;and to examine anew the imprints of his mind. His prescient concepts for the Nation's programs concerning people and their environment have been enhanced through a century of national development.

  3. Fractionation of rare earth elements in the Mississippi River estuary and river sediments

    NASA Astrophysics Data System (ADS)

    Adebayo, S. B.; Johannesson, K. H.

    2017-12-01

    This study presents the first set of data on the fractionation of rare earth elements (REE) in the mixing zone between the Mississippi River and the Gulf of Mexico, as well as the fractionation of REE in the operationally defined fractions of Mississippi River sediments. This subject is particularly important because the Mississippi river is one of the world's major rivers, and contributes a substantial amount of water and sediment to the ocean. Hence, it is a major source of trace elements to the oceans. The geochemistry of the REE in natural systems is principally important because of their unique chemical properties, which prompt their application as tracers of mass transportation in modern and paleo-ocean environments. Another important consideration is the growth in the demand and utilization of REE in the green energy and technology industries, which has the potential to bring about a change in the background levels of these trace elements in the environment. The results of this study show a heavy REE enrichment of both the Mississippi River water and the more saline waters of the mixing zone. Our data demonstrate that coagulation and removal of REE in the low salinity region of the estuary is more pronounced among the Light REE ( 35% for Nd) compared to the Heavy REE. Remarkably, our data also indicate that REE removal in the Mississippi River estuary is significantly less than that observed in other estuaries, including the Amazon River system. We propose that the high pH/alkalinity of the Mississippi River is responsible for the greater stability of REE in the Mississippi River estuary. The results of sequential extraction of river sediments reveal different Sm/Nd ratios for the various fractions, which we submit implies different 143Nd/144Nd ratios of the labile fractions of the sediments. The possible impact of such hypothesized different Nd isotope signatures of labile fractions of the river sediments on Gulf of Mexico seawater is under investigation.

  4. The inhabited environment, infrastructure development and advanced urbanization in China’s Yangtze River Delta Region

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoqing; Gao, Weijun; Zhou, Nan; Kammen, Daniel M.; Wu, Yiqun; Zhang, Yao; Chen, Wei

    2016-12-01

    This paper analyzes the relationship among the inhabited environment, infrastructure development and environmental impacts in China’s heavily urbanized Yangtze River Delta region. Using primary human environment data for the period 2006-2014, we examine factors affecting the inhabited environment and infrastructure development: urban population, GDP, built-up area, energy consumption, waste emission, transportation, real estate and urban greenery. Then we empirically investigate the impact of advanced urbanization with consideration of cities’ differences. Results from this study show that the growth rate of the inhabited environment and infrastructure development is strongly influenced by regional development structure, functional orientations, traffic network and urban size and form. The effect of advanced urbanization is more significant in large and mid-size cities than huge and mega cities. Energy consumption, waste emission and real estate in large and mid-size cities developed at an unprecedented rate with the rapid increase of economy. However, urban development of huge and mega cities gradually tended to be saturated. The transition development in these cities improved the inhabited environment and ecological protection instead of the urban construction simply. To maintain a sustainable advanced urbanization process, policy implications included urban sprawl control polices, ecological development mechanisms and reforming the economic structure for huge and mega cities, and construct major cross-regional infrastructure, enhance the carrying capacity and improvement of energy efficiency and structure for large and mid-size cities.

  5. Numerical Modeling of River Ice Processes on the Lower Nelson River

    NASA Astrophysics Data System (ADS)

    Malenchak, Jarrod Joseph

    Water resource infrastructure in cold regions of the world can be significantly impacted by the existence of river ice. Major engineering concerns related to river ice include ice jam flooding, the design and operation of hydropower facilities and other hydraulic structures, water supplies, as well as ecological, environmental, and morphological effects. The use of numerical simulation models has been identified as one of the most efficient means by which river ice processes can be studied and the effects of river ice be evaluated. The continued advancement of these simulation models will help to develop new theories and evaluate potential mitigation alternatives for these ice issues. In this thesis, a literature review of existing river ice numerical models, of anchor ice formation and modeling studies, and of aufeis formation and modeling studies is conducted. A high level summary of the two-dimensional CRISSP numerical model is presented as well as the developed freeze-up model with a focus specifically on the anchor ice and aufeis growth processes. This model includes development in the detailed heat transfer calculations, an improved surface ice mass exchange model which includes the rapids entrainment process, and an improved dry bed treatment model along with the expanded anchor ice and aufeis growth model. The developed sub-models are tested in an ideal channel setting as somewhat of a model confirmation. A case study of significant anchor ice and aufeis growth on the Nelson River in northern Manitoba, Canada, will be the primary field test case for the anchor ice and aufeis model. A second case study on the same river will be used to evaluate the surface ice components of the model in a field setting. The results from these cases studies will be used to highlight the capabilities and deficiencies in the numerical model and to identify areas of further research and model development.

  6. Ice Atlas 1985 - 1986. Monongahela River, Allegheny River, Ohio River, Illinois River and Kankakee River.

    DTIC Science & Technology

    1987-11-01

    Des P/o,,nes River Grant Cut -off V 1Kankrokee Cut- off Drsdn slndCountyI Line Bordwell Isi. V _ KankakeKRiver 2 */0 7r Prairle Cr 6 0 1 M1 Survey date...2 x 10 6t 81 279 River 279 13 February 1986 275 Kankak Des P/amnes RIver Gran7 Cree Cut-off DrsenIladCount y Line Bordwell Isr. 0 1 M1 ’kornkokee A...Gat Cut - off KankakeeFiver ’e Drsdn slndCounty Line Bordwell s 1 mi 2urve date FerarM1,i Kankakee River :2.4 oCr. 󈧢 X9Kankakcee River :14 ML 0- 5𔃿

  7. Hydrological Cycle in the Heihe River Basin and Its Implication for Water Resource Management in Inland River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Li, X.; Cheng, G.; Tian, W.; Zhang, Y.; Zhou, J.; Pan, X.; Ge, Y.; Hu, X.

    2013-12-01

    Inland river basins take about 11.4% of the land area of the world and most of them are distributed over arid regions. Understanding the hydrological cycle of inland river basin is important for water resource management in water scarcity regions. This paper illustrated hydrological cycle of a typical inland river basin in China, the Heihe River Basin (HRB). First, water balance in upper, middle and lower reaches of the HRB was conceptualized by analyzing dominant hydrological processes in different parts of the river basin. Then, we used a modeling approach to study the water cycle in the HRB. In the upper reaches, we used the GBHM-SHAW, a distributed hydrological model with a new frozen soil parameterization. In the middle and lower reaches, we used the GWSiB, a three-dimensionally coupled land surface-groundwater model. Modeling results were compared with water balance observations in different landscapes and cross-validated with other results to ensure the reliability. The results show that the hydrological cycle in HRB has some distinctive characteristics. Mountainous area generates almost all of the runoff for the whole river basin. High-elevation zones have much larger runoff/precipitation ratio. Cryospheric hydrology plays an important role. Although snow melting and glacier runoff take less than 25% of total runoff, these processes regulate inter-annual variation of runoff and thus provide stable water resource for oases downstream. Forest area contributes almost no runoff but it smoothes runoff and reduces floods by storing water in soil and releasing it out slowly. In the middle reaches, artificial hydrological cycle is much more dominated than natural one. River water and groundwater, recharged by runoff from mountainous area, is the water resource to support the agriculture and nurture the riparian ecosystem. Precipitation, approximately 150 mm in average, is only a supplement to agriculture use but sufficient to sustain desert vegetation. Water

  8. Public support for river restoration funding in relation to local river ecomorphology, population density, and mean income

    NASA Astrophysics Data System (ADS)

    SchläPfer, Felix; Witzig, Pieter-Jan

    2006-12-01

    In 1997, about 140,000 citizens in 388 voting districts in the Swiss canton of Bern passed a ballot initiative to allocate about 3 million Swiss Francs annually to a canton-wide river restoration program. Using the municipal voting returns and a detailed georeferenced data set on the ecomorphological status of the rivers, we estimate models of voter support in relation to local river ecomorphology, population density, mean income, cultural background, and recent flood damage. Support of the initiative increased with increasing population density and tended to increase with increasing mean income, in spite of progressive taxation. Furthermore, we found evidence that public support increased with decreasing "naturalness" of local rivers. The model estimates may be cautiously used to predict the public acceptance of similar restoration programs in comparable regions. Moreover, the voting-based insights into the distribution of river restoration benefits provide a useful starting point for debates about appropriate financing schemes.

  9. Plastic litter in aquatic environments of Maremma Regional Park (Tyrrhenian Sea, Italy): Contribution by the Ombrone river and levels in marine sediments.

    PubMed

    Guerranti, Cristiana; Cannas, Susanna; Scopetani, Costanza; Fastelli, Paolo; Cincinelli, Alessandra; Renzi, Monia

    2017-04-15

    During two surveys in 2015 and 2016, sediments samples were collected along the Ombrone river (Maremma Regional Park, province of Grosseto, Italy), in particular at its mouth and in the marine area in front of it, in order to quantify, identify and categorize plastic items (macro, meso and micro-plastics and colour, material etc.) and evaluate their potential sources. The Albegna and Osa rivers were identified as external areas of comparison. The results of the analysis showed different situations, especially as regards fluvial inputs, in addition to evidencing local provisions of plastic material derived from agricultural activities. The microplastics values per kg of sediment and the prevailing type of items found largely varied between the investigated sites (45-1069items/kg dry sample). Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. DDT concentration in fish from the Tapajós River in the Amazon region, Brazil.

    PubMed

    Mendes, Rosivaldo de Alcântara; Lopes, Anna Sylmara da Costa; de Souza, Larissa Costa; Lima, Marcelo de Oliveira; Santos, Lourivaldo da Silva

    2016-06-01

    DDT and metabolites were measured in six species of fish collected from the Tapajós River in the village of Barreiras, near the town of Itaituba in the Brazilian Amazon region. The selected fish were the most consumed and economically important to the local people. DDT was used frequently in this region for malaria control. Fish samples were analyzed after extraction by microwave-assisted extraction in hexane/acetone (8:2, v/v) by gas chromatography with electron capture detector. Residues of op'-DDT and pp'-DDT and metabolites were detected, including pp'-DDE, pp'-DDD, op'-DDT, and op'-DDE, in 98% of the samples, with a greater abundance of pp'-DDT. Total DDT levels were 7.1-249.5 ng g(-1) wet weight (w.w). The DDE/DDT ratio was low, indicating recent exposure to DDT. The study area that may be related to generated waste used in public health campaigns to combat mosquitos (Anopheles spp.), still present in the Amazon environment, that transmit malaria. DDT levels and metabolites found in fish species do not present risks to human health because they are below acceptable limits for consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Regional water quality patterns in an alluvial aquifer: direct and indirect influences of rivers.

    PubMed

    Baillieux, A; Campisi, D; Jammet, N; Bucher, S; Hunkeler, D

    2014-11-15

    The influence of rivers on the groundwater quality in alluvial aquifers can be twofold: direct and indirect. Rivers can have a direct influence via recharge and an indirect one by controlling the distribution of fine-grained, organic-carbon rich flood deposits that induce reducing conditions. These direct and indirect influences were quantified for a large alluvial aquifer on the Swiss Plateau (50km(2)) in interaction with an Alpine river using nitrate as an example. The hydrochemistry and stable isotope composition of water were characterized using a network of 115 piezometers and pumping stations covering the entire aquifer. Aquifer properties, land use and recharge zones were evaluated as well. This information provided detailed insight into the factors that control the spatial variability of groundwater quality. Three main factors were identified: (1) diffuse agricultural pollution sources; (2) dilution processes resulting from river water infiltrations, revealed by the δ(18)OH2O and δ(2)HH2O contents of groundwater; and (3) denitrification processes, controlled by the spatial variability of flood deposits governed by fluvial depositional processes. It was possible to quantify the dependence of the nitrate concentration on these three factors at any sampling point of the aquifer using an end-member mixing model, where the average nitrate concentration in recharge from the agricultural area was evaluated at 52mg/L, and the nitrate concentration of infiltrating river at approximately 6mg/L. The study shows the importance of considering the indirect and direct impacts of rivers on alluvial aquifers and provides a methodological framework to evaluate aquifer scale water quality patterns. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effect of ecological restoration and climate change on ecosystems: a case study in the Three-Rivers Headwater Region, China.

    PubMed

    Jiang, Chong; Zhang, Linbo

    2016-06-01

    The Three-Rivers Headwater Region (TRHR) is the headwater of the Yangtze River Basin (YARB), Yellow River Basin (YRB), and Lancang River Basin (LRB); it is known as China's 'Water Tower' owing to its important supply of freshwater. In order to assess ecosystem changes in the TRHR during 2000-2012, we systematically and comprehensively evaluated a combination of model simulation results and actual observational data. The results showed the following: (1) Ecosystem pattern was relatively stable during 2000-2010, with a slight decrease in farmland and desert areas, and a slight increase in grassland and wetland/water-body areas. (2) A warmer and wetter climate, and ecological engineering, caused the vegetation cover and productivity to significantly improve. (3) Precipitation was the main controlling factor for streamflow. A significant increase in precipitation during 2000-2012 resulted in an obvious increase in annual and seasonal streamflow. Glacier melting also contributed to the streamflow increase. (4) The total amount of soil conservation increased slightly from 2000 to 2012. The increase in precipitation caused rainfall erosivity to increase, which enhanced the intensity of soil erosion. The decrease in wind speed decreased wind erosion and the frequency of sandstorms. (5) The overall habitat quality in the TRHR was stable between 2000 and 2010, and the spatial pattern exhibited obvious heterogeneity. In some counties that included nature reserves, habitat quality was slightly higher in 2010 than in 2000, which reflected the effectiveness of the ecological restoration. Overall, the aforementioned ecosystem changes are the combined results of ecological restoration and climate change, and they are likely a local and temporary improvement, rather than a comprehensive and fundamental change. Therefore, more investments and efforts are needed to preserve natural ecosystems.

  13. Assessing river-groundwater exchange fluxes of the Wairau River, New Zealand

    NASA Astrophysics Data System (ADS)

    Wilson, Scott; Woehling, Thomas; Davidson, Peter

    2014-05-01

    Allocation limits in river-recharged aquifers have traditionally been based on static observations of river gains and losses undertaken when river flow is low. This approach to setting allocation limits does not consider the dynamic relationship between river flows and groundwater levels. Predicting groundwater availability based on a better understanding of coupled river - aquifer systems opens the possibility for dynamic groundwater allocation approaches. Numerical groundwater models are most commonly used for regional scale allocation assessments. Using these models for predicting future system states is challenging, particularly under changing management and climate scenarios. The large degree of uncertainty associated with these predictions is caused by insufficient knowledge about the heterogeneity of subsurface flow characteristics, ineffective monitoring designs, and the inability to confidently predict the spatially and temporally varying river - groundwater exchange fluxes. These uncertainties are characteristic to many coupled surface water - groundwater systems worldwide. Braided river systems, however, create additional challenges due to their highly dynamic morphological character and mobile beds which also make river flow measurements extremely difficult. This study focuses on the characterization of river - groundwater exchange fluxes along a section of the Wairau River in the Northwest of the South Island of New Zealand. The braided river recharges the Wairau Aquifer which is an important source for irrigation and municipal water requirements of the city of Blenheim. The Wairau Aquifer is hosted by the highly permeable Rapaura Formation gravels that extend to a depth of about 20 to 30 m. However, the overall thickness of the alluvial sequence forming the Wairau Plain may be up to 500 m. The landuse in the area is mainly grapes but landsurface recharge to the aquifer is considered to be considerably smaller than the recharge from the Wairau river

  14. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  15. Genetic stability of Ross River virus during epidemic spread in nonimmune humans.

    PubMed

    Burness, A T; Pardoe, I; Faragher, S G; Vrati, S; Dalgarno, L

    1988-12-01

    We have examined the rate of evolution of Ross River virus, a mosquito-borne RNA virus, during epidemic spread through tens of thousands of nonimmune humans over a period of 10 months. Two regions of the Ross River virus genome were sequenced: the E2 gene (1.2 kb in length), which encodes the major neutralization determinant of the virus, and 0.4 kb of the 3'-untranslated region. In the E2 gene, a single nucleotide change was selected which led to a predicted amino acid change at residue 219. No changes were selected in the 3'-untranslated region. By comparison with rates of evolution reported for non-arthropod-borne RNA viruses, the rate for Ross River virus is surprisingly low. We identify three features of the Ross River virus replication and transmission cycle which may limit the rate of evolution of arthropod-borne viruses in the field.

  16. Bed Degradation and Sediment Export from the Missouri River after Dam Construction and River Training: Significance to Lower Mississippi River Sediment Loads

    NASA Astrophysics Data System (ADS)

    Blum, M. D.; Viparelli, E.; Sulaiman, Z. A.; Pettit, B. S.

    2016-12-01

    More than 40,000 dams have been constructed in the Mississippi River drainage basin, which has had a dramatic impact on suspended sediment load for the Mississippi delta. The most significant dams were constructed in the 1950s on the Missouri River in South Dakota, after which total suspended loads for the lower Mississippi River, some 2500 km downstream, were cut in half: gauging station data from the Missouri-Mississippi system show significant load reductions immediately after dam closure, followed by a continued downward trend since that time. The delta region is experiencing tremendous land loss in response to acceleration of global sea-level rise, and load reductions of this magnitude may place severe limits on mitigation efforts. Here we examine sediment export from the Missouri system due to bed scour. The US Army Corps of Engineers has compiled changes in river stage at constant discharge for 8 stations between the lowermost dam at Yankton, South Dakota and the Missouri-Mississippi confluence at St. Louis (a distance of 1250 river km), for the period 1930-2010, which we have updated to 2015. These data show two general reaches of significant bed degradation. The first extends from the last major dam at Yankton, South Dakota downstream 300 km to Omaha, Nebraska, where degradation in response to the dam exceeds 3 m. The second reach, with >2.5 m of degradation, occurs in and around Kansas City, Missouri, and has been attributed to river training activities. The reach between Omaha and Kansas City, as well as the lower Missouri below Kansas City, show <1 m of net bed elevation change over the entire 75-year period of record. Integrating bed elevation changes over the period of record, we estimate a total of 1.1-1.2 billion tons of sediment have been exported from the Missouri River due to bed scour following dam construction and river training. This number equates to 20-25 million tons per year, which is sufficient to account for 30% of the total Missouri

  17. Where Does the River Run? Lessons from a Semi-Arid River

    NASA Astrophysics Data System (ADS)

    Meixner, T.; Soto, C. D.; Richter, H.; Uhlman, K.

    2009-12-01

    Spatial data sets to assess the nature of stream groundwater interactions and the resulting power law/fractal structure of travel time distributions are rare. Spatial data sets can be collected using high technology or by use of a large number of field assistants. The labor intensive way is expensive unless the public can be enlisted as citizen scientists to gather large, robust, spatial data sets robustly and cheaply. Such an effort requires public interest and the ability of a few to organize such an effort at a basin if not regional scale. The San Pedro basin offers such an opportunity for citizen science due to the water resource restrictions of the basins semi-arid climate. Since 1999 The Nature Conservancy, in cooperation with the Upper San Pedro Partnership, the public at large and various university and federal science agency participants, has been mapping where the San Pedro River has water present versus where it is dry. This mapping has used an army of volunteers armed with GPS units, clipboards and their eyes to make the determination if a given 10m reach of the river is wet or dry. These wet/dry mapping data now exist for 11 different annual surveys. These data are unique and enable an investigation of the hydrologic connectedness of flowing waters within this system. Analysis of these data reveals several important findings. The total river area that is wet is strongly correlated with stream flow as observed at three USGS gauges. The correlation is strongest however for 90 day and 1 year average flows rather than more local in time observations such as the daily, 7 day or monthly mean flow at the gauges. This result indicates that where the river is flowing depends on long term hydrologic conditions. The length of river reach that is mapped as wet or dry is indicative of the travel distance and thus time that water travels in the surface (wet) and subsurface (dry) of the river system. The reach length that is mapped as wet follows a power law function

  18. River Intrusion in Karst Springs in Eogenetic Aquifers: Implications for Speleogenesis

    NASA Astrophysics Data System (ADS)

    Martin, J. B.; Gulley, J.; Screaton, E. J.

    2008-12-01

    Conceptual models of speleogenesis generally assume uni-directional transport in integrated conduit systems from discrete recharge points to discharge at karst springs. Estavelles, however, are karst springs that function intermittently as discrete recharge points when river stage rises more rapidly than local aquifer heads. As river water chemistry changes between baseflow and floods, estavelles should influence mass transport through (e.g. organic carbon, nutrients, and oxygen) and speleogenesis within karst systems. Estavelles are common in our study area in north-central Florida, particularly along the lower reaches of the Santa Fe River, where it flows across the unconfined karstic Floridan aquifer. River stage in this unconfined region can rise much faster than aquifer heads when large amounts of rain fall on the confined regions in its upper reaches. Backflooding into the estavelles during elevated river stage drives river water into the ground, causing some springs to reverse and other springs to recirculate large volumes of river water. Floodwaters originating in the confined region are highly undersaturated with respect to calcite, and thus river water transitions from slightly supersaturated to highly undersaturated with respect to calcite during flood events. As a result, conduits connected to estavelles are continuously enlarged as springs reverse or recirculate calcite-undersaturated river water. It has been suggested that currently flooded caves (i.e. karst conduits) associated with springs in Florida formed entirely underwater because speleothems, which are prevalent in flooded caves in the Yucatan and Bahamas, have not been observed by cave divers. Results of this study indicate that the absence of speleothems does not necessarily provide evidence of a continuous phreatic history for underwater caves. Instead speleothems that formed in caves while dry could have been dissolved by backflooding of estavelles with undersaturated water

  19. [Distribution of Regional Pollution and the Characteristics of Vertical Wind Field in the Pearl River Delta].

    PubMed

    Liu, Jian; Wu, Dui; Fan, Shao-jia

    2015-11-01

    Based on the data of hourly PM2.5 concentration of 56 environmental monitoring stations and 9 cities over the Pearl River Delta (PRD) region, the distributions of PM2.5 pollution in PRD region were analyzed by systematic cluster analysis and correlational analysis. It was found that the regional pollution could be divided into 3 types. The first type was the pollution occurred in Dongguan, Guangzhou, Foshan and Jiangmen (I type), and the second type was the pollution occurred in Zhongshan, Zhuhai, Shenzhen and Huizhou (II type), while the last type was the pollution only occurred in Zhaoqing (III type). During the study period, they occurred 47, 7 and 128 days, respectively. During events of pollution type I, except Zhuhai, Shenzhen and Huizhou, the PM2.5 concentrations of other cities were generally high, while the PM2.5 concentration in whole PRD region was over 50.0 μg x m(-3) during events of pollution type II. The regions with higher PM2.5 concentration was mainly concentrated in Zhaoqing, Guangzhou and Foshan during events of pollution type III. The wind data from 4 wind profile radars located in PRD region was used to study the characteristics of vertical wind field of these 3 pollution types. It was found that the wind profiles of type I and III were similar that low layer and high layer were controlled by the southeast wind and the southwest wind, respectively. For type II, the low layer and high layer were influenced by northerly wind and westerly wind, respectively. Compared with other types, the wind speed and ventilation index of type II. were much higher, and the variation of wind direction at lower-middle-layer was much smaller. When PRD region was influenced by northerly winds, the PM2.5 concentration in the entire PRD region was higher. When PRD region was controlled by southeast wind, the PM2.5 concentrations of I and II areas were relatively lower, while the pollution in III area was relatively heavier.

  20. Links between global meat trade and organic river pollution

    NASA Astrophysics Data System (ADS)

    Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick

    2017-04-01

    Rising demand of meat boosts livestock farming intensification. Due to international meat trade, the environmental costs of production are becoming increasingly separated from where the meat is consumed. However, little is known about the impact of trade on the environment for both importers and exporters. Combining multi-scale (national, regional and gridded) data, we present a new method to quantify the impacts of international meat trade on global river organic pollution. We computed spatially distributed organic pollution in global river networks with and without meat trade, where the without-trade scenario assumes that meat imports are replaced by local production. Our analysis indicates high potential savings of livestock population and pollutants production at the global scale due to the international meat trade. The spatially detailed analysis shows that current trade contributes to organic pollution reductions in meat importing regions, especially in rich nations. The deterioration of river water quality, especially in developing regions, points to an urgent need for affordable infrastructure and technology development and wastewater solutions.

  1. Regional water table (2000) and ground-water-level changes in the Mojave River and the Morongo ground-water basins, southwestern Mojave Desert, California

    USGS Publications Warehouse

    Smith, Gregory A.

    2003-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems, and consequently, water availability. During 2000, the U. S. Geological Survey and other agencies made approximately 2,500 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and, when compared with previous data, changes in ground-water levels. A water-level contour map was drawn using data from about 500 wells, providing coverage for most of the basins. Twenty-nine hydrographs show long-term (up to 70 years) water-level conditions throughout the basins, and 13 short-term (1996 to 2000) hydrographs show the effects of recharge and discharge along the Mojave River. In addition, a water-level-change map was compiled to compare 1998 and 2000 water-levels throughout the basins. In the Mojave River ground-water basins, water-level data showed little change from 1998 to 2000, with the exception of areas along the Mojave River. Water levels along the Mojave River were typically in decline or unchanged, with exceptions near the Hodge and the Lenwood outlet, where water levels rose in response to artificial recharge. The Morongo ground-water basin had virtually no change in water levels from 1998 to 2000, with the exception of Yucca Valley, where artificial recharge and ground-water withdrawal continues.

  2. The Detroit River, Michigan: an ecological profile

    USGS Publications Warehouse

    Manny, Bruce A.; Edsall, Thomas A.; Jaworski, Eugene

    1988-01-01

    A part of the connecting channel system between Lake Huron and Lake Erie, the Detroit River forms an integral link between the two lakes for both humans and biological resources such as fish, nutrients, and plant detritus. This profile summarizes existing scientific information on the ecological structure and functioning of this ecosystem. Topics include the geological history of the region, climatic influences, river hydrology, lower trophic-level biotic components, native and introduced fishes, waterfowl use, ecological interrelationships, commercial and recreational uses of the river, and current management issues. Despite urbanization, the river still supports diverse fish, waterfowl, and benthic populations. Management issues include sewer overflows; maintenance dredging for navigation and port activities; industrial discharges of potentially hazardous materials; and wetland, fishery, and waterfowl protection and enhancement.

  3. Differentiation in the fertility of Inceptisols as related to land use in the upper Solimões river region, western Amazon.

    PubMed

    Moreira, Fatima Maria de Souza; Nóbrega, Rafaela Simão Abrahão; Jesus, Ederson da Conceição; Ferreira, Daniel Furtado; Pérez, Daniel Vidal

    2009-12-20

    The Upper Solimões river region, western Amazon, is the homeland of indigenous populations and contains small-scale agricultural systems that are important for biodiversity conservation. Although traditional slash-and-burn agriculture is being practiced over many years, deforestation there is relatively small compared to other Amazon regions. Pastures are restricted to the vicinity of cities and do not spread to the small communities along the river. Inceptisols are the main soil order (>90%) in the area and have unique attributes including high Al content and high cation exchange capacity (CEC) due to the enrichment of the clay fraction with 2:1 secondary aluminosilicates. Despite its importance, few studies have focussed on this soil order when considering land use effects on the fertility of Amazon soils. Thus, the objective of this study was to evaluate changes in soil fertility of representative land use systems (LUSs) in the Upper Solimões region, namely: primary rainforest, old secondary forest, young secondary forest, agroforestry, pasture and agriculture. LUSs were significantly differentiated by the chemical attributes of their topsoil (0-20 cm). Secondary forests presented soil chemical attributes more similar to primary rainforest areas, while pastures exhibited the highest dissimilarity from all the other LUSs. As a whole, soil chemical changes among Inceptisols dominated LUSs showed patterns that were distinct from those reported from other Amazon soils like Oxisols and Ultisols. This is probably related to the presence of high-activity clays enriched in exchangeable aluminum that heavily influenced the soil chemical reactions over the expected importance of organic matter found in most studies conducted over Oxisol and Ultisol.

  4. Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework

    NASA Astrophysics Data System (ADS)

    Wang, Taihua; Yang, Hanbo; Yang, Dawen; Qin, Yue; Wang, Yuhan

    2018-03-01

    The source region of the Yellow River (SRYR) is greatly important for water resources throughout the entire Yellow River Basin. Streamflow in the SRYR has experienced great changes over the past few decades, which is closely related to the frozen ground degradation; however, the extent of this influence is still unclear. In this study, the air freezing index (DDFa) is selected as an indicator for the degree of frozen ground degradation. A water-energy balance equation within the Budyko framework is employed to quantify the streamflow response to the direct impact of climate change, which manifests as changes in the precipitation and potential evapotranspiration, as well as the impact of frozen ground degradation, which can be regarded as part of the indirect impact of climate change. The results show that the direct impact of climate change and the impact of frozen ground degradation can explain 55% and 33%, respectively, of the streamflow decrease for the entire SRYR from Period 1 (1965-1989) to Period 2 (1990-2003). In the permafrost-dominated region upstream of the Jimai hydrological station, the impact of frozen ground degradation can explain 71% of the streamflow decrease. From Period 2 (1990-2003) to Period 3 (2004-2015), the observed streamflow did not increase as much as the precipitation; this could be attributed to the combined effects of increasing potential evapotranspiration and more importantly, frozen ground degradation. Frozen ground degradation could influence streamflow by increasing the groundwater storage when the active layer thickness increases in permafrost-dominated regions. These findings will help develop a better understanding of the impact of frozen ground degradation on water resources in the Tibetan Plateau.

  5. Floods of 1952 in California. Flood of January 1952 in the south San Francisco Bay region; Snowmelt flood of 1952 in Kern River, Tulare Lake, and San Joaquin River basins

    USGS Publications Warehouse

    Rantz, S.E.; Stafford, H.M.

    1956-01-01

    Two major floods occurred in California in 1952. The first was the flood of January 11-13 in the south San Francisco Bay region that resulted from heavy rains which began on the morning of January 11 and ended about noon January 13. This flood was notable for the magnitude of the peak discharges, although these discharges were reduced by the controlling effect of reservoirs for conservation and flood-control purposes. The flood damage was thereby reduced, and no lives were lost; damage, nevertheless, amounted to about $1.400.000. The second flood was due, not to the immediate runoff of heavy rain, but to the melting of one of the largest snow packs ever recorded in the Sierra Nevada range. In the spring and summer of 1952, flood runoff occurred on all the major streams draining the Sierra Nevada. In the northern half of the Central Valley basin?the Sacramento River basin?flood volumes and maximum daily discharges were not exceptional. and flood damage was not appreciable. However, in the southern half, which is formed by the Kern River, Tulare Lake, and San Joaquin River basins, new records for snowmelt runoff were established for some streams; but for below-normal temperatures and shorter, less warm hot spells, record flood discharges would have occurred on many others. In the three basins an area of 200,000 acres. largely cropland. was inundated, and damage was estimated at $11,800,000.

  6. Tracking groundwater discharge to a large river using tracers and geophysics.

    PubMed

    Harrington, Glenn A; Gardner, W Payton; Munday, Tim J

    2014-01-01

    Few studies have investigated large reaches of rivers in which multiple sources of groundwater are responsible for maintaining baseflow. This paper builds upon previous work undertaken along the Fitzroy River, one of the largest perennial river systems in north-western Australia. Synoptic regional-scale sampling of both river water and groundwater for a suite of environmental tracers ((4) He, (87) Sr/(86) Sr, (222) Rn and major ions), and subsequent modeling of tracer behavior in the river, has enabled definition and quantification of groundwater input from at least three different sources. We show unambiguous evidence of both shallow "local" groundwater, possibly recharged to alluvial aquifers beneath the adjacent floodplain during recent high-flow events, and old "regional" groundwater introduced via artesian flow from deep confined aquifers. We also invoke hyporheic exchange and either bank return flow or parafluvial flow to account for background (222) Rn activities and anomalous chloride trends along river reaches where there is no evidence of the local or regional groundwater inputs. Vertical conductivity sections acquired through an airborne electromagnetic (AEM) survey provide insights to the architecture of the aquifers associated with these sources and general groundwater quality characteristics. These data indicate fresh groundwater from about 300 m below ground preferentially discharging to the river, at locations consistent with those inferred from tracer data. The results demonstrate how sampling rivers for multiple environmental tracers of different types-including stable and radioactive isotopes, dissolved gases and major ions-can significantly improve conceptualization of groundwater-surface water interaction processes, particularly when coupled with geophysical techniques in complex hydrogeological settings. © 2013, National Ground Water Association.

  7. Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Wright, S.A.; Schoellhamer, D.H.

    2005-01-01

    [1] Where rivers encounter estuaries, a transition zone develops where riverine and tidal processes both affect sediment transport processes. One such transition zone is the Sacramento-San Joaquin River Delta, a large, complex system where several rivers meet to form an estuary (San Francisco Bay). Herein we present the results of a detailed sediment budget for this river/estuary transitional system. The primary regional goal of the study was to measure sediment transport rates and pathways in the delta in support of ecosystem restoration efforts. In addition to achieving this regional goal, the study has produced general methods to collect, edit, and analyze (including error analysis) sediment transport data at the interface of rivers and estuaries. Estimating sediment budgets for these systems is difficult because of the mixed nature of riverine versus tidal transport processes, the different timescales of transport in fluvial and tidal environments, and the sheer complexity and size of systems such as the Sacramento-San Joaquin River Delta. Sediment budgets also require error estimates in order to assess whether differences in inflows and outflows, which could be small compared to overall fluxes, are indeed distinguishable from zero. Over the 4 year period of this study, water years 1999-2002, 6.6 ?? 0.9 Mt of sediment entered the delta and 2.2 ?? 0.7 Mt exited, resulting in 4.4 ?? 1.1 Mt (67 ?? 17%) of deposition. The estimated deposition rate corresponding to this mass of sediment compares favorably with measured inorganic sediment accumulation on vegetated wetlands in the delta.

  8. A millennium-length reconstruction of Bear River stream flow, Utah

    Treesearch

    R. J. DeRose; M. F. Bekker; S.-Y. Wang; B. M. Buckley; R. K. Kjelgren; T. Bardsley; T. M. Rittenour; E. B. Allen

    2015-01-01

    The Bear River contributes more water to the eastern Great Basin than any other river system. It is also the most significant source of water for the burgeoning Wasatch Front metropolitan area in northern Utah. Despite its importance for water resources for the region’s agricultural, urban, and wildlife needs, our understanding of the variability of Bear River’s stream...

  9. Remote Sensing and River Discharge Forecasting for Major Rivers in South Asia (Invited)

    NASA Astrophysics Data System (ADS)

    Webster, P. J.; Hopson, T. M.; Hirpa, F. A.; Brakenridge, G. R.; De-Groeve, T.; Shrestha, K.; Gebremichael, M.; Restrepo, P. J.

    2013-12-01

    The South Asia is a flashpoint for natural disasters particularly flooding of the Indus, Ganges, and Brahmaputra has profound societal impacts for the region and globally. The 2007 Brahmaputra floods affecting India and Bangladesh, the 2008 avulsion of the Kosi River in India, the 2010 flooding of the Indus River in Pakistan and the 2013 Uttarakhand exemplify disasters on scales almost inconceivable elsewhere. Their frequent occurrence of floods combined with large and rapidly growing populations, high levels of poverty and low resilience, exacerbate the impact of the hazards. Mitigation of these devastating hazards are compounded by limited flood forecast capability, lack of rain/gauge measuring stations and forecast use within and outside the country, and transboundary data sharing on natural hazards. Here, we demonstrate the utility of remotely-derived hydrologic and weather products in producing skillful flood forecasting information without reliance on vulnerable in situ data sources. Over the last decade a forecast system has been providing operational probabilistic forecasts of severe flooding of the Brahmaputra and Ganges Rivers in Bangldesh was developed (Hopson and Webster 2010). The system utilizes ECMWF weather forecast uncertainty information and ensemble weather forecasts, rain gauge and satellite-derived precipitation estimates, together with the limited near-real-time river stage observations from Bangladesh. This system has been expanded to Pakistan and has successfully forecast the 2010-2012 flooding (Shrestha and Webster 2013). To overcome the in situ hydrological data problem, recent efforts in parallel with the numerical modeling have utilized microwave satellite remote sensing of river widths to generate operational discharge advective-based forecasts for the Ganges and Brahmaputra. More than twenty remotely locations upstream of Bangldesh were used to produce stand-alone river flow nowcasts and forecasts at 1-15 days lead time. showing that

  10. Hydraulic-Geometry Relations for Rivers in Coastal and Central Maine

    USGS Publications Warehouse

    Dudley, Robert W.

    2004-01-01

    Hydraulic-geometry relations (curves) were derived for 15 sites on 12 rivers in coastal and central Maine on the basis of site-specific (at-a-station) hydraulic-geometry relations and hydraulic models. At-a-station hydraulic-geometry curves, expressed as well-established power functions, describe the relations between channel geometry, velocity, and flow at a given point on a river. The derived at-a-station hydraulic-geometry curves indicate that, on average, a given increase in flow at a given river cross section in the study area will be nearly equally conveyed by increases in velocity and channel cross-sectional area. Regional curves describing the bankfull streamflow and associated channel geometry as functions of drainage area were derived for use in stream-channel assessment and restoration projects specific to coastal and central Maine. Regional hydraulic-geometry curves were derived by combining hydraulic-geometry information for 15 river cross sections using bankfull flow as the common reference streamflow. The exponents of the derived regional hydraulic-geometry relations indicate that, in the downstream direction, most of the conveyance of increasing contribution of flow is accommodated by an increase in cross-sectional area?with about 50 percent of the increase in flow accommodated by an increase in channel width, and 32 percent by an increase in depth. The remaining 18 percent is accommodated by an increase in streamflow velocity. On an annual-peak-series basis, results of this study indicate that the occurrence of bankfull streamflow for rivers in Maine is more frequent than the 1.5-year streamflow. On a flow-duration basis, bankfull streamflow for rivers in coastal and central Maine is equaled or exceeded approximately 8.1 percent of the time on mean?or about 30 days a year. Bankfull streamflow is roughly three times that of the mean annual streamflow for the sites investigated in this study. Regional climate, snowmelt hydrology, and glacial geology

  11. Chromophoric dissolved organic matter export from U.S. rivers

    NASA Astrophysics Data System (ADS)

    Spencer, Robert G. M.; Aiken, George R.; Dornblaser, Mark M.; Butler, Kenna D.; Holmes, R. Max; Fiske, Greg; Mann, Paul J.; Stubbins, Aron

    2013-04-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. A robust relationship between CDOM and dissolved organic carbon (DOC) loads is established (e.g., a350 versus DOC; r2 = 0.96, p < 0.001). Calculated CDOM yields are also correlated to watershed percent wetland (e.g. a350; r2 = 0.81, p < 0.001) providing a method for the estimation of CDOM export from ungauged watersheds. A large variation in CDOM yields was found across the rivers. The two rivers in the north-eastern U.S. (Androscoggin and Penobscot), the Edisto draining into the South Atlantic Bight, and some rivers draining into the Gulf of Mexico (Atchafalaya and Mobile) exhibit the highest CDOM yields, linked to extensive wetlands in these watersheds. If the Edisto CDOM yield is representative of other rivers draining into the South Atlantic Bight, this would result in a CDOM load equivalent to that of the Mississippi from a region of approximately 10% of the Mississippi watershed, indicating the importance of certain regions with respect to the role of terrigenous CDOM in ocean color budgets.

  12. Chromophoric dissolved organic matter export from U.S. rivers

    USGS Publications Warehouse

    Spencer, Robert G. M.; Aiken, George R.; Dornblaser, Mark M.; Butler, Kenna D.; Holmes, R. Max; Fiske, Greg; Mann, Paul J.; Stubbins, Aron

    2013-01-01

    Chromophoric dissolved organic matter (CDOM) fluxes and yields from 15 major U.S. rivers draining an assortment of terrestrial biomes are presented. A robust relationship between CDOM and dissolved organic carbon (DOC) loads is established (e.g., a350 versus DOC; r2 = 0.96, p < 0.001). Calculated CDOM yields are also correlated to watershed percent wetland (e.g. a350; r2 = 0.81, p < 0.001) providing a method for the estimation of CDOM export from ungauged watersheds. A large variation in CDOM yields was found across the rivers. The two rivers in the north-eastern U.S. (Androscoggin and Penobscot), the Edisto draining into the South Atlantic Bight, and some rivers draining into the Gulf of Mexico (Atchafalaya and Mobile) exhibit the highest CDOM yields, linked to extensive wetlands in these watersheds. If the Edisto CDOM yield is representative of other rivers draining into the South Atlantic Bight, this would result in a CDOM load equivalent to that of the Mississippi from a region of approximately 10% of the Mississippi watershed, indicating the importance of certain regions with respect to the role of terrigenous CDOM in ocean color budgets.

  13. Rapid Global River Flood Risk Assessment under Climate and Socioeconomic Scenarios: An Extreme Case of Eurasian region

    NASA Astrophysics Data System (ADS)

    Kwak, Young-joo; Magome, Jun; Hasegawa, Akira; Iwami, Yoichi

    2017-04-01

    Causing widespread devastation with massive economic damage and loss of human lives, flood disasters hamper economic growth and accelerate poverty particularly in developing countries. Globally, this trend will likely continue due to increase in flood magnitude and lack of preparedness for extreme events. In line with risk reduction efforts since the early 21st century, the monitors and governors of global river floods should pay attention to international scientific and policy communities for support to facilitate evidence-based policy making with a special interest in long-term changes due to climate change and socio-economic effects. Although advanced hydrological inundation models and risk models have been developed to reveal flood risk, hazard, exposure, and vulnerability at a river basin, it is obviously hard to identify the distribution and locations of continent-level flood risk based on national-level data. Therefore, we propose a methodological possibility for rapid global flood risk assessment with the results from its application to the two periods, i.e., Present (from 1980 to 2004) and Future (from 2075 to 2099). The method is particularly designed to effectively simplify complexities of a hazard area by calculating the differential inundation depth using GFID2M (global flood inundation depth 2-dimension model), despite low data availability. In this research, we addressed the question of which parts in the Eurasian region (8E to 180E, 0N to 60N) can be found as high-risk areas in terms of exposed population and economy in case of a 50-year return period flood. Economic losses were estimated according to the Shared Socioeconomic Pathways (SSP) scenario, and the flood scale was defined using the annual maximum daily river discharge under the extreme conditions of climate change simulated with MRI-AGCM3.2S based on the Representative Concentration Pathways (RCP8.5) emissions scenario. As a preliminary result, the total potential economic loss in the

  14. Dynamics of Bottomland Geomorphology and Vegetation Along a Dammed, Arid Region River: Implications for Streamflow Management

    NASA Astrophysics Data System (ADS)

    Shafroth, P. B.; House, P. K.

    2007-05-01

    In arid and semiarid western North America, floodplain forests dominated by native cottonwood and willow trees are highly valued as wildlife habitat and preferred recreation sites and are thus the focus of conservation efforts. The Bill Williams River harbors some of the most extensive native floodplain forests in the lower Colorado River region. Our work is aimed at understanding the dynamics of the Bill Williams River floodplain forests, in the context of pre- and post-dam hydrology and geomorphology. We have mapped bottomland geomorphology and vegetation using seven sets of orthorectified aerial photographs spanning more than 50 years. Two sets of photos (1953 and 1964) pre-date the completion of Alamo Dam, a large flood control structure; and three sets of photos (1996, 2002, and 2005) are from an era during which streamflow downstream of the dam has been managed to promote the establishment and survival of native floodplain forest. Comparison of the aerial photographs to LiDAR data collected in 2005 is providing a framework for quantifying changes in valley bottom morphology and estimating reach-scale changes in volumes of stored and evacuated sediment between 1953 and 2005. Furthermore, comparison of the extent of pre-dam active channel in 1953 with the extent of floodwaters from a regulated moderate flood in 2005 provides an approximation of the predominant patterns of aggradation and degradation in the system over this interval of time. Flood magnitude on the Bill Williams has been dramatically reduced since the closure of Alamo Dam in 1968, and low flows have increased considerably since 1979. Channels along the Bill Williams R. narrowed an average of 111 m (71 %) between 1953 and 1987, with most narrowing occurring after dam closure. Multiple regression analysis revealed significant relationships among flood power, summer flows, intermittency (independent variables) and channel width (dependent variable). Concurrent with channel narrowing was an expansion

  15. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  16. Temporal variation and regional transfer of heavy metals in the Pearl (Zhujiang) River, China.

    PubMed

    Zhen, Gengchong; Li, Ying; Tong, Yindong; Yang, Lei; Zhu, Yan; Zhang, Wei

    2016-05-01

    Heavy metals are highly persistent in water and have a particular significance in ecotoxicology. Heavy metals loading from the Pearl River are likely to cause significant impacts on the environment in the South China Sea and the West Pacific. In this study, using monthly monitoring data from a water quality monitoring campaign during 2006-2012, the temporal variation and spatial transfer of six heavy metals (lead (Pb), copper (Cu), cadmium (Cd), zinc (Zn), arsenic (As), and mercury (Hg)) in the Pearl River were analyzed, and the heavy metal fluxes into the sea were calculated. During this period, the annual heavy metal loads discharged from the Pearl River into the South China Sea were 5.8 (Hg), 471.7 (Pb), 1524.6 (Cu), 3819.6 (Zn), 43.9 (Cd), and 621.9 (As) tons, respectively. The metal fluxes showed a seasonal variation with the maximum fluxes occurring from June to July. There is a close association between metal fluxes and runoff. The analysis of the heavy metal transfer from the upstream to the downstream revealed that the transfer from the upstream accounted for a major portion of the heavy metals in the Pearl River Delta. Therefore, earlier industry relocation efforts in the Pearl River watershed may have limited effect on the water quality improvement in surrounding areas. It is suggested that watershed-based pollution control measures focusing on wastewater discharge in both upstream and downstream areas should be developed and implemented in the future.

  17. Regional water table (2004) and water-level changes in the Mojave River and Morongo ground-water basins, Southwestern Mojave Desert, California

    USGS Publications Warehouse

    Stamos, Christina L.; Huff, Julia A.; Predmore, Steven K.; Clark, Dennis A.

    2004-01-01

    The Mojave River and Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water flow systems, and consequently, water availability. During March and April 2004, the U.S. Geological Survey and other agencies made almost 900 water-level measurements in about 740 wells in the Mojave River and Morongo ground-water basins. These data document recent conditions and, when compared with historical data, changes in ground-water levels. A water-level contour map was drawn using data from 500 wells, providing coverage for most of the basins. In addition, 26 long-term (as much as 74 years) hydrographs were constructed which show water-level conditions throughout the basins, 9 short-term (1992 to 2004) hydrographs were constructed which show the effects of recharge and discharge along the Mojave River, and a water-level-change map was compiled to compare 2002 and 2004 water levels throughout the basins. The water-level change data show that in the Mojave River ground-water basin, more than one half (102) of the wells had water-level declines of 0.5 ft or more and almost one fifth (32) of the wells had declines greater than 5 ft. between 2002 and 2004. The water-level change data also show that about one tenth (17) of the wells compared in the Mojave River ground-water basin had water level increases of 0.5 ft or more. Most of the water-level increases were the result of stormflow in the Mojave River during March 2004, which resulted in recharge to wells in the floodplain aquifer mainly along the river in the Alto subarea and the Transition zone, and along the

  18. City-specific vehicle emission control strategies to achieve stringent emission reduction targets in China's Yangtze River Delta region.

    PubMed

    Zhang, Shaojun; Wu, Ye; Zhao, Bin; Wu, Xiaomeng; Shu, Jiawei; Hao, Jiming

    2017-01-01

    The Yangtze River Delta (YRD) region is one of the most prosperous and densely populated regions in China and is facing tremendous pressure to mitigate vehicle emissions and improve air quality. Our assessment has revealed that mitigating vehicle emissions of NOx would be more difficult than reducing the emissions of other major vehicular pollutants (e.g., CO, HC and PM 2.5 ) in the YRD region. Even in Shanghai, where the emission control implemented are more stringent than in Jiangsu and Zhejiang, we observed little to no reduction in NOx emissions from 2000 to 2010. Emission-reduction targets for HC, NOx and PM 2.5 are determined using a response surface modeling tool for better air quality. We design city-specific emission control strategies for three vehicle-populated cities in the YRD region: Shanghai and Nanjing and Wuxi in Jiangsu. Our results indicate that even if stringent emission control consisting of the Euro 6/VI standards, the limitation of vehicle population and usage, and the scrappage of older vehicles is applied, Nanjing and Wuxi will not be able to meet the NOx emissions target by 2020. Therefore, additional control measures are proposed for Nanjing and Wuxi to further mitigate NOx emissions from heavy-duty diesel vehicles. Copyright © 2016. Published by Elsevier B.V.

  19. [Work-related accidents in traditional fishermen from the Medium Araguaia River region, Tocantins, Brazil].

    PubMed

    Garrone Neto, Domingos; Cordeiro, Ricardo Carlos; Haddad, Vidal

    2005-01-01

    This is a cross-sectional study of work-related accidents among traditional fishermen in the Medium Araguaia River region of Tocantins, Brazil. From June to August 2002, fishermen from the Municipality of Araguacema were interviewed about the organization of their work activities and work-related accidents during the previous six months. Of the 92 participating fishermen, 56 reported having suffered a work-related accident (annual incidence was 82.6%). Some 95.7% of those interviewed did not regularly pay social security insurance as self-employed workers and were not aware of their social rights and duties. For fishermen reporting accidents, this proportion was 98.2%. Approximately 23.0% had another work activity, mainly as construction workers (47.6%) or sport-fishing guides (23.9%). Injuries inflicted by aquatic animals were the main form of accidents (about 86.0%). From these results, it is apparent that accidents from aquatic animals are an important health hazard, in some cases causing temporary work incapacity.

  20. DEVELOPMENT OF LARGE RIVER BIOASSESSMENT PROTOCOLS (LR-BPS) FOR BENTHIC MACROINVERTEBRATES IN EPA REGION 5

    EPA Science Inventory

    Non-wadeable rivers have been largely overlooked by bioassessment programs because of sampling difficulties and a lack of appropriate methods and biological indicators. We are in the process of developing a Large River Bioassessment Protocol (LR-BP) for sampling macroinvertebrat...

  1. New incision rates along the Colorado River system based on cosmogenic burial dating of terraces: implications for regional controls on differential incision

    NASA Astrophysics Data System (ADS)

    Darling, A. L.; Karlstrom, K. E.; Granger, D. E.; Aslan, A.; Kirby, E.; Ouimet, W. B.; Coblentz, D. D.; Crest Working Group

    2010-12-01

    The Green and Colorado Rivers comprise the main drainage system of the western slope of the Colorado Rockies and Colorado Plateau. In this region we compare river profiles and incision rates between these rivers to resolve controls on river evolution. Disequilibrium profiles in both rivers are evident by numerous knickpoints and convexities which we analyze in the context of a new compilation of incision rate data, including new isochron cosmogenic burial dates on early Quaternary terraces. The Lees Ferry knickpoint is interpreted to be an upstream-migrating knickpoint initiated by integration of the Colorado system through Grand Canyon about 6 Ma. An isochron cosmogenic burial date of 1.5 +/-0.13 Ma, on a 190-m-high strath terrace at Bullfrog Marina 169 km northeast of the knickpoint indicates an incision rate of 126 m/Ma. This date is 3x older than a cosmogenic surface date from the same terrace suggesting that high terraces dated by surface cosmogenic techniques are minimum dates. Available incision rates across the Lee’s Ferry knickpoint show rates of 150- 175 m/Ma below Lees Ferry and ca. 100- 130 m/Ma above the knickpoint (over 0.5 to 1 Ma) above. A burial date of 2.9 +0.7/-0.5 on a 110 m terrace that is 70 km farther upstream at Hite Crossing is problematic because the strath is lower, the date older, and the rate slower than nearby Bullfrog. The Hite data show significantly more scatter, and additional samples have been collected to clarify the age. Ca. 300-500 m/Ma rates within and above the knickpoint based on cosmogenic surface dates (with the caution these are maximum rates), suggest acceleration of incision rates in the late Quaternary due to a pulse of diffuse knickpoint propagation extending to several hundred km above Lees Ferry in the last few hundred-thousand years, as suggested by Cook et al. (2009). On the Green River, a new isochron cosmogenic burial date of 1.48 +/-0.12 Ma on an abandoned meander 60 m above the river in upper Desolation

  2. Determinants of community structure of zooplankton in heavily polluted river ecosystems

    NASA Astrophysics Data System (ADS)

    Xiong, Wei; Li, Jie; Chen, Yiyong; Shan, Baoqing; Wang, Weimin; Zhan, Aibin

    2016-02-01

    River ecosystems are among the most affected habitats globally by human activities, such as the release of chemical pollutants. However, it remains largely unknown how and to what extent many communities such as zooplankton are affected by these environmental stressors in river ecosystems. Here, we aim to determine major factors responsible for shaping community structure of zooplankton in heavily polluted river ecosystems. Specially, we use rotifers in the Haihe River Basin (HRB) in North China as a case study to test the hypothesis that species sorting (i.e. species are “filtered” by environmental factors and occur at environmental suitable sites) plays a key role in determining community structure at the basin level. Based on an analysis of 94 sites across the plain region of HRB, we found evidence that both local and regional factors could affect rotifer community structure. Interestingly, further analyses indicated that local factors played a more important role in determining community structure. Thus, our results support the species sorting hypothesis in highly polluted rivers, suggesting that local environmental constraints, such as environmental pollution caused by human activities, can be stronger than dispersal limitation caused by regional factors to shape local community structure of zooplankton at the basin level.

  3. Basin-scale characterization of river hydromorphology by map derived information: A case study on the Red River (Sông Hông), Vietnam

    NASA Astrophysics Data System (ADS)

    Schmitt, R. J.; Bizzi, S.; Castelletti, A.

    2012-12-01

    The understanding of river hydromorphological processes has been recognized in the last decades as a priority of modern catchment management, since fluvial geomorphic processes shape physical habitat, affect river infrastructures and influence freshwater ecological processes. Characterization of river hydromorphological features is commonly location specific and highly demanding in terms of field-works, resource and expertise required. Therefore, its routine application at regional or national scales, although an urgent need of catchment management, is infeasible at present. Recently available high-resolution data, such as DEM or LIDAR, opens up novel potential for basin-wide analysis of fluvial processes at limited effort and cost. Specifically, in this study we assess the feasibility of characterizing river hydromorphology from specific map derived geomorphic controls namely: channel gradient, bankfull flow, specific stream power, and degree of channel confinement. The river network, extracted from a digital elevation model and validated with available network shape-files and optical satellite imagery, available flow gauging stations and GIS processing allow producing continuous values of geomorphic drivers defined over given length segments at catchment or regional scales. This generic framework was applied to the Red River (Sông Hông) basin, the second largest basin (87,800 km2) in Vietnam. Besides its economic importance, the river since few years is experiencing severe river bed incisions due to the building of new dams in the upstream part of the catchment and sand mining in the surrounding of the capital city Hanoi. In this context, characterized by an high developing rate, current efforts to increase water productivity by infrastructure and management measures require a thorough understanding of fluvial system and, in particular, of the basin-wide river hydromorphology. The framework proposed has allowed producing high-dimensional samples of spatially

  4. Integrated Studies of a Regional Ozone Pollution Synthetically Affected by Subtropical High and Typhoon System in the Yangtze River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Xie, M.; Shu, L.

    2017-12-01

    Severe high ozone (O3) episodes usually have close relations to synoptic systems. A regional continuous O3 pollution episode was detected over the Yangtze River Delta (YRD) region in China during August 7-12, 2013, in which the O3 concentrations in more than half of the cities exceeded the national air quality standard. By means of the observational analysis and the WRF/CMAQ numerical simulation, the characteristics and the essential impact factors of the typical regional O3 pollution are investigated. The observational analysis shows that the atmospheric subsidence dominated by Western Pacific subtropical high plays a crucial role in the formation of high-level O3. In addition, when the YRD cities at the front of Typhoon Utor, the periphery circulation of typhoon system can enhance the downward airflows and cause more serious air pollution. But when the typhoon system weakens the subtropical high, the prevailing southeasterly surface wind leads to the mitigation of the O3 pollution. The Integrated Process Rate (IPR) analysis incorporated in CMAQ is applied to further illustrate the combined influence of subtropical high and typhoon system in this O3 episode. The results show that the vertical diffusion (VDIF) and the gas-phase chemistry (CHEM) are two major contributors to O3 formation. On August 10-11, the cities close to the sea are apparently affected by the typhoon system, with the contribution of VDIF increasing to 28.45 ppb/h in Shanghai and 19.76 ppb/h in Hangzhou. When the YRD region is under the control of the typhoon system, the contribution values of all individual processes decrease to a low level in all cities. These results provide an insight for the O3 pollution synthetically impacted by the Western Pacific subtropical high and the tropical cyclone system.

  5. 33 CFR 165.510 - Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area. 165.510 Section 165.510... Limited Access Areas Fifth Coast Guard District § 165.510 Delaware Bay and River, Salem River, Christina...

  6. 33 CFR 165.510 - Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Delaware Bay and River, Salem River, Christina River and Schuylkill River-Regulated Navigation Area. 165.510 Section 165.510... Limited Access Areas Fifth Coast Guard District § 165.510 Delaware Bay and River, Salem River, Christina...

  7. Regional scale groundwater modelling study for Ganga River basin

    NASA Astrophysics Data System (ADS)

    Maheswaran, R.; Khosa, R.; Gosain, A. K.; Lahari, S.; Sinha, S. K.; Chahar, B. R.; Dhanya, C. T.

    2016-10-01

    Subsurface movement of water within the alluvial formations of Ganga Basin System of North and East India, extending over an area of 1 million km2, was simulated using Visual MODFLOW based transient numerical model. The study incorporates historical groundwater developments as recorded by various concerned agencies and also accommodates the role of some of the major tributaries of River Ganga as geo-hydrological boundaries. Geo-stratigraphic structures, along with corresponding hydrological parameters,were obtained from Central Groundwater Board, India,and used in the study which was carried out over a time horizon of 4.5 years. The model parameters were fine tuned for calibration using Parameter Estimation (PEST) simulations. Analyses of the stream aquifer interaction using Zone Budget has allowed demarcation of the losing and gaining stretches along the main stem of River Ganga as well as some of its principal tributaries. From a management perspective,and entirely consistent with general understanding, it is seen that unabated long term groundwater extraction within the study basin has induced a sharp decrease in critical dry weather base flow contributions. In view of a surge in demand for dry season irrigation water for agriculture in the area, numerical models can be a useful tool to generate not only an understanding of the underlying groundwater system but also facilitate development of basin-wide detailed impact scenarios as inputs for management and policy action.

  8. A New Hydrogeological Research Site in the Willamette River Floodplain

    EPA Science Inventory

    The Willamette River is a ninth-order tributary of the Columbia which passes through a productive and populous region in northwest Oregon. Where unconstrained by shoreline revetments, the floodplain of this river is a high-energy, dynamic system which supports a variety of ripari...

  9. The Colorado River and its deposits downstream from Grand Canyon in Arizona, California, and Nevada

    USGS Publications Warehouse

    Crow, Ryan S.; Block, Debra L.; Felger, Tracey J.; House, P. Kyle; Pearthree, Philip A.; Gootee, Brian F.; Youberg, Ann M.; Howard, Keith A.; Beard, L. Sue

    2018-02-05

    Understanding the evolution of the Colorado River system has direct implications for (1) the processes and timing of continental-scale river system integration, (2) the formation of iconic landscapes like those in and around Grand Canyon, and (3) the availability of groundwater resources. Spatial patterns in the position and type of Colorado River deposits, only discernible through geologic mapping, can be used to test models related to Colorado River evolution. This is particularly true downstream from Grand Canyon where ancestral Colorado River deposits are well-exposed. We are principally interested in (1) regional patterns in the minimum and maximum elevation of each depositional unit, which are affected by depositional mechanism and postdepositional deformation; and (2) the volume of each unit, which reflects regional changes in erosion, transport efficiency, and accommodation space. The volume of Colorado River deposits below Grand Canyon has implications for groundwater resources, as the primary regional aquifer there is composed of those deposits. To this end, we are presently mapping Colorado River deposits and compiling and updating older mapping. This preliminary data release shows the current status of our mapping and compilation efforts. We plan to update it at regular intervals in conjunction with ongoing mapping.

  10. Fishes of the Cusiana River (Meta River basin, Colombia), with an identification key to its species

    PubMed Central

    Urbano-Bonilla, Alexander; Ballen, Gustavo A.; Herrera-R, Guido A.; Jhon Zamudio; Herrera-Collazos, Edgar E.; DoNascimiento, Carlos; Saúl Prada-Pedreros; Maldonado-Ocampo, Javier A.

    2018-01-01

    Abstract The Cusiana River sub-basin has been identified as a priority conservation area in the Orinoco region in Colombia due to its high species diversity. This study presents an updated checklist and identification key for fishes of the Cusiana River sub-basin. The checklist was assembled through direct examination of specimens deposited in the main Colombian ichthyological collections. A total of 2020 lots from 167 different localities from the Cusiana River sub-basin were examined and ranged from 153 to 2970 m in elevation. The highest number of records were from the piedmont region (1091, 54.0 %), followed by the Llanos (878, 43.5 %) and Andean (51, 2.5 %). 241 species distributed in 9 orders, 40 families, and 158 genera were found. The fish species richness observed (241), represents 77.7 % of the 314 estimated species (95 % CI=276.1–394.8). The use of databases to develop lists of fish species is not entirely reliable; therefore taxonomic verification of specimens in collections is essential. The results will facilitate comparisons with other sub-basins of the Orinoquia, which are not categorized as areas of importance for conservation in Colombia. PMID:29416408

  11. The Impact of the Aerosol Direct Radiative Forcing on Deep Convection and Air Quality in the Pearl River Delta Region

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Yim, Steve H. L.; Wang, C.; Lau, N. C.

    2018-05-01

    Literature has reported the remarkable aerosol impact on low-level cloud by direct radiative forcing (DRF). Impacts on middle-upper troposphere cloud are not yet fully understood, even though this knowledge is important for regions with a large spatial heterogeneity of emissions and aerosol concentration. We assess the aerosol DRF and its cloud response in June (with strong convection) in Pearl River Delta region for 2008-2012 at cloud-resolving scale using an air quality-climate coupled model. Aerosols suppress deep convection by increasing atmospheric stability leading to less evaporation from the ground. The relative humidity is reduced in middle-upper troposphere due to induced reduction in both evaporation from the ground and upward motion. The cloud reduction offsets 20% of the aerosol DRF. The weaker vertical mixing further increases surface aerosol concentration by up to 2.90 μg/m3. These findings indicate the aerosol DRF impact on deep convection and in turn regional air quality.

  12. The Minor Rivers of Black Sea North-Western Coast

    NASA Astrophysics Data System (ADS)

    Alyukaeva, Alevtina

    2017-04-01

    The generalisations and conclusions have been done based on the expeditional monitoring of minor rivers of the Russian Federation Black Sea Coast for summer-autumn mean water in 2011-2015. The length of coastal line under monitoring was 300 km with 78 rivers with length no longer, then 50 km. The monitoring task was to establish the natural background of river effluent for the region under study. The observation parameters are physical measures (temperature, pH, Eh), solution (salts) and suspension forms of effluent (feculence, suspension chemical composition). 1. The tendency to decrease minor river water temperature at isthmus correspondent to movement from north-west to south-east along the coastal line. The causes are the growing length of the rivers and steepness of the relief along the Black Sea Caucasus. 2. The dependence between the size of coagulated suspension and water temperature is established. Moreover the intensive mix is not able to compensate the negative influence of the low temperature. 3. The value of hydrogen index, mineralization and specific electric conductivity for minor river are growing from north-west to south-east along the coastal line. 4. By the main ionic composition of the minor rivers of Black Sea north-eastern coast can be classified as hydrocarbonate. The main characteristic (marker) of colt composition for the region is the sensible concentrations of potassium and sodium. 5. The amount of suspension substance in the river water and its feculence changes between 50 mg/dm3 дo 280 mg/dm3. In particle size distribution composition of river suspensions the politic fractions (up to 70%) are prevailed, sand and silt fractions are presented less (25%). 6. Suspension form content of microelements depends on general amount of suspension in river water. The suspension form migration is significant for lead, cobalt, tin and silver. Other metals "prefer" the solution forms and can be arranged approximately in the following: vanadium

  13. Water consumption and allocation strategies along the river oases of Tarim River based on large-scale hydrological modelling

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Disse, Markus; Yu, Ruide

    2016-04-01

    With the mainstream of 1,321km and located in an arid area in northwest China, the Tarim River is China's longest inland river. The Tarim basin on the northern edge of the Taklamakan desert is an extremely arid region. In this region, agricultural water consumption and allocation management are crucial to address the conflicts among irrigation water users from upstream to downstream. Since 2011, the German Ministry of Science and Education BMBF established the Sino-German SuMaRiO project, for the sustainable management of river oases along the Tarim River. The project aims to contribute to a sustainable land management which explicitly takes into account ecosystem functions and ecosystem services. SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. This will have positive effects for nearly 10 million inhabitants of different ethnic groups. The modelling of water consumption and allocation strategies is a core block in the SuMaRiO cluster. A large-scale hydrological model (MIKE HYDRO Basin) was established for the purpose of sustainable agricultural water management in the main stem Tarim River. MIKE HYDRO Basin is an integrated, multipurpose, map-based decision support tool for river basin analysis, planning and management. It provides detailed simulation results concerning water resources and land use in the catchment areas of the river. Calibration data and future predictions based on large amount of data was acquired. The results of model calibration indicated a close correlation between simulated and observed values. Scenarios with the change on irrigation strategies and land use distributions were investigated. Irrigation scenarios revealed that the available irrigation water has significant and varying effects on the yields of different crops. Irrigation water saving could reach up to 40% in the water-saving irrigation scenario. Land use scenarios illustrated that an increase of farmland area in the

  14. Complete velocity distribution in river cross-sections measured by acoustic instruments

    USGS Publications Warehouse

    Cheng, R.T.; Gartner, J.W.; ,

    2003-01-01

    To fully understand the hydraulic properties of natural rivers, velocity distribution in the river cross-section should be studied in detail. The measurement task is not straightforward because there is not an instrument that can measure the velocity distribution covering the entire cross-section. Particularly, the velocities in regions near the free surface and in the bottom boundary layer are difficult to measure, and yet the velocity properties in these regions play the most significant role in characterizing the hydraulic properties. To further characterize river hydraulics, two acoustic instruments, namely, an acoustic Doppler current profiler (ADCP), and a "BoogieDopp" (BD) were used on fixed platforms to measure the detailed velocity profiles across the river. Typically, 20 to 25 stations were used to represent a river cross-section. At each station, water velocity profiles were measured independently and/or concurrently by an ADCP and a BD. The measured velocity properties were compared and used in computation of river discharge. In a tow-tank evaluation of a BD, it has been confirmed that BD is capable of measuring water velocity at about 11 cm below the free-surface. Therefore, the surface velocity distribution across the river was extracted from the BD velocity measurements and used to compute the river discharge. These detailed velocity profiles and the composite velocity distribution were used to assess the validity of the classic theories of velocity distributions, conventional river discharge measurement methods, and for estimates of channel bottom roughness.

  15. Ecological River Basin Management.

    ERIC Educational Resources Information Center

    Smith, Anthony Wayne

    Addressing the Seventh American Water Resources Conference, Washington, D. C., October, 1971, Anthony Wayne Smith, President, National Parks and Conservation Association, presents an expose on how rivers should be managed by methods which restores and preserve the natural life balances of the localities and regions through which they flow. The…

  16. Potential predictability of a Colombian river flow

    NASA Astrophysics Data System (ADS)

    Córdoba-Machado, Samir; Palomino-Lemus, Reiner; Quishpe-Vásquez, César; García-Valdecasas-Ojeda, Matilde; Raquel Gámiz-Fortis, Sonia; Castro-Díez, Yolanda; Jesús Esteban-Parra, María

    2017-04-01

    In this study the predictability of an important Colombian river (Cauca) has been analysed based on the use of climatic variables as potential predictors. Cauca River is considered one of the most important rivers of Colombia because its basin supports important productive activities related with the agriculture, such as the production of coffee or sugar. Potential relationships between the Cauca River seasonal streamflow anomalies and different climatic variables such as sea surface temperature (SST), precipitation (Pt), temperature over land (Tm) and soil water (Sw) have been analysed for the period 1949-2009. For this end, moving correlation analysis of 30 years have been carried out for lags from one to four seasons for the global SST, and from one to two seasons for South America Pt, Tm and Sw. Also, the stability of the significant correlations have been also studied, identifying the regions used as potential predictors of streamflow. Finally, in order to establish a prediction scheme based on the previous stable correlations, a Principal Component Analysis (PCA) applied on the potential predictor regions has been carried out in order to obtain a representative time series for each predictor field. Significant and stable correlations between the seasonal streamflow and the tropical Pacific SST (El Niño region) are found for lags from one to four (one-year) season. Additionally, some regions in the Indian and Atlantic Oceans also show significant and stable correlations at different lags, highlighting the importance that exerts the Atlantic SST on the hydrology of Colombia. Also significant and stable correlations are found with the Pt, Tm and Sw for some regions over South America, at lags of one and two seasons. The prediction of Cauca seasonal streamflow based on this scheme shows an acceptable skill and represents a relative improvement compared with the predictability obtained using the teleconnection indices associated with El Niño. Keywords

  17. Development and application of a screening model for simulating regional ground-water flow in the St. Croix River basin, Minnesota and Wisconsin

    USGS Publications Warehouse

    Feinstein, Daniel T.; Buchwald, Cheryl A.; Dunning, Charles P.; Hunt, Randall J.

    2006-01-01

    A series of databases and an accompanying screening model were constructed by the U.S. Geological Survey, in cooperation with the National Park Service, to better understand the regional ground-water-flow system and its relation to stream drainage in the St. Croix River Basin. The St. Croix River and its tributaries drain about 8,000 square miles in northeastern Minnesota and northwestern Wisconsin. The databases contain information for the entire St. Croix River Basin pertaining to well logs, lithology, thickness of lithologic groups, ground-water levels, streamflow, and well pumpage. Maps and generalized cross sections created from the compiled data show the lithologic groups, extending from the water table to the crystalline bedrock, through which ground water flows. These lithologic groups are: fine-grained unconsolidated deposits; coarse-grained unconsolidated deposits; sandstone bedrock; carbonate bedrock; and other bedrock lithologies including shale, siltstone, conglomerate, and igneous intrusions. The steady-state screening model treats the ground-water-flow system as a single layer with transmissivity zones that reflect the distribution of lithologic groups, and with recharge zones that correspond to general areas of high or low evapotranspiration. The model includes representation of second- and higher-order streams and municipal and other high-capacity production wells. The analytic-element model code GFLOW was used to simulate the regional ground-water flow, the water-table surface across the St. Croix River Basin, and base-flow contributions from ground water to streams. In addition, the model routes tributary base flow through the stream network to the St. Croix River. The parameter-estimation inverse model UCODE was linked to the GFLOW model to select the combination of parameter values best able to match over 5,000 water-level measurements and base-flow estimates at 22 streamflow-gaging stations. Results from the calibrated screening model show

  18. Temporal Fluctuation of Multidrug Resistant Salmonella Typhi Haplotypes in the Mekong River Delta Region of Vietnam

    PubMed Central

    Chau, Tran Thuy; Duy, Pham Thanh; La, Tran Thi Phi; Hoang, Nguyen Van Minh; Nga, Tran Vu Thieu; Campbell, James I.; Manh, Bui Huu; Vinh Chau, Nguyen Van; Hien, Tran Tinh; Farrar, Jeremy; Dougan, Gordon; Baker, Stephen

    2011-01-01

    Background Typhoid fever remains a public health problem in Vietnam, with a significant burden in the Mekong River delta region. Typhoid fever is caused by the bacterial pathogen Salmonella enterica serovar Typhi (S. Typhi), which is frequently multidrug resistant with reduced susceptibility to fluoroquinolone-based drugs, the first choice for the treatment of typhoid fever. We used a GoldenGate (Illumina) assay to type 1,500 single nucleotide polymorphisms (SNPs) and analyse the genetic variation of S. Typhi isolated from 267 typhoid fever patients in the Mekong delta region participating in a randomized trial conducted between 2004 and 2005. Principal Findings The population of S. Typhi circulating during the study was highly clonal, with 91% of isolates belonging to a single clonal complex of the S. Typhi H58 haplogroup. The patterns of disease were consistent with the presence of an endemic haplotype H58-C and a localised outbreak of S. Typhi haplotype H58-E2 in 2004. H58-E2-associated typhoid fever cases exhibited evidence of significant geo-spatial clustering along the Sông H u branch of the Mekong River. Multidrug resistance was common in the established clone H58-C but not in the outbreak clone H58-E2, however all H58 S. Typhi were nalidixic acid resistant and carried a Ser83Phe amino acid substitution in the gyrA gene. Significance The H58 haplogroup dominates S. Typhi populations in other endemic areas, but the population described here was more homogeneous than previously examined populations, and the dominant clonal complex (H58-C, -E1, -E2) observed in this study has not been detected outside Vietnam. IncHI1 plasmid-bearing S. Typhi H58-C was endemic during the study period whilst H58-E2, which rarely carried the plasmid, was only transient, suggesting a selective advantage for the plasmid. These data add insight into the outbreak dynamics and local molecular epidemiology of S. Typhi in southern Vietnam. PMID:21245916

  19. HPV genotypes and associated cervical cytological abnormalities in women from the Pearl River Delta region of Guangdong province, China: a cross-sectional study

    PubMed Central

    2014-01-01

    Background It is important to understand the specific HPV genotype distribution in screen-detected lesions. HPV Genotype is helpful for separating HPV-positive women at greater risk of cancer from those who can regress spontaneously and for preventing cervical cancer at early stage. The aim of this study was to investigate the high-risk HPV genotype distribution among cervical cytology abnormality in Pearl River Delta Region, Southern China Methods 5585 HPV-infected women were screened from 77069 women in Pearl River Delta Region. Information was obtained from 3226 screened subjects through questionnaires and personal interviews. Exfoliated cervical cells were collected by doctors for HPV test with MassARRAY (Sequenom, Sandiego, CA) technique based on the matrix-assisted laser desorption/ionization time-of flight (MALDI-TOF) mass spectrometry (MS). The ThinPrep cytology test was performed to screen for cervical cancer. Unconditional logistic was used to determine the most common HPV carcinogenic types. Results Of the 3226 HPV-positive samples tested, 1744 (54.1%) with normal cervical cytology, 1482 (45.9%) with abnormal cytology. The five most common HPV types in this study were HPV16 (20.2%), HPV52 (17.1%), HPV58 (13.2%), HPV18 (9.5%), HPV6 (7.6%). Overall, HPV16 (OR = 10.5, 95% CI: 3.7 ~ 29.6), HPV33 (OR = 9.1, 95% CI: 2.8 ~ 29.2), HPV58 (OR = 6.3, 95% CI: 2.1 ~ 18.6), HPV31 (OR = 4.5, 95% CI: 1.3 ~ 15.5), multiple genotype infection (OR = 3.0, 95% CI: 1.7 ~ 14.7), especially HPV16 and HPV33, increased the risk of cytology abnormalities. Conclusions HPV16, HPV31, HPV33, HPV58, and multiple HPV genotype infection increased the risk of cytology abnormalities in Pearl River Delta Region and might be useful for the screening, preventing, treating, and monitoring of pre-cancer lesions in southern China. PMID:25016305

  20. Linking Backbarrier Lacustrine Stratigraphy with Spatial Dynamics of Shoreline Retreat in a Rapidly Subsiding Region of the Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Dietz, M.; Liu, K. B.; Bianchette, T. A.; Yao, Q.

    2017-12-01

    The shoreline along the northern Gulf of Mexico is rapidly retreating as coastal features of abandoned Mississippi River delta complexes erode and subside. Bay Champagne is located in the Caminada-Moreau headland, a region of shoreline west of the currently active delta that has one of the highest rates of retreat and land loss. As a result, this site has transitioned from a stable, circular inland lake several kilometers from the shore to a frequently perturbed, semi-circular backbarrier lagoon, making it ideal to study the environmental effects of progressive land loss. Analyses of clastic layers in a series of sediment cores collected at this site over the past decade indicate the lake was less perturbed in the past and has become increasingly more sensitive to marine incursion events caused by tropical cyclones. Geochemical and pollen analyses of these cores also reveal profound changes in environmental and chemical conditions in Bay Champagne over the past century as the shoreline has retreated. Through relating stratigraphy to spatial changes observed from satellite imagery, this study attempts to identify the tipping point at which Bay Champagne began the transition from an inland lake to a backbarrier environment, and to determine the rate at which this transition occurred. Results will be used to develop a model of the environmental transition experienced by a rapidly retreating coastline and to predict how other regions of the Mississippi River deltaic system could respond to future shoreline retreat.

  1. High resolution of black carbon and organic carbon emissions in the Pearl River Delta region, China.

    PubMed

    Zheng, Junyu; He, Min; Shen, Xingling; Yin, Shasha; Yuan, Zibing

    2012-11-01

    A high-resolution regional black carbon (BC) and organic carbon (OC) emission inventory for the year 2009 was developed for the Pearl River Delta (PRD) region, China, based on the collected activity data and the latest emission factors. PM(2.5), BC and OC emissions were estimated to be 303 kt, 39 kt and 31 kt, respectively. Industrial processes were major contributing sources to PM(2.5) emissions. BC emissions were mainly from mobile sources, accounting for 65.0%, while 34.1% of OC emissions were from residential combustion. The primary OC/BC ratios for individual cities in the PRD region were dependent on the levels of economic development due to differences in source characteristics, with high ratios in the less developed cities and low ratios in the central and southern developed areas. The preliminary temporal profiles were established, showing the highest OC emissions in winter and relatively constant BC emissions throughout the year. The emissions were spatially allocated into grid cells with a resolution of 3 km × 3 km. Large amounts of BC emissions were distributed over the central-southern PRD city clusters, while OC emissions exhibited a relatively even spatial distribution due to the significant biomass burning emissions from the outlying area of the PRD region. Uncertainties in carbonaceous aerosol emissions were usually higher than in other primary pollutants like SO(2), NO(x), and PM(10). One of the key uncertainty sources was the emission factor, due to the absence of direct measurements of BC and OC emission rates. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Changes in sinuosities of the rivers at geological structural lines in the Pannonian Basin - Mosaics to the neotectonic image of the region

    NASA Astrophysics Data System (ADS)

    Petrovszki, Judit

    2010-05-01

    . However, there are more case studies, concerning the rivers of the Pannonian Basin, such as the Tisza River (Timár, 2003), the Körös system (Petrovszki and Timár, 2010), the creeks of the Little Hungarian Plain (Zámolyi et al., 2010) and the downstream part of the Danube (Petrovszki, 2010), providing a broader overview of the river-confirmed neotectonic activity of the region. Horváth, F., Bada, G., Windhoffer, G., Csontos, L., Dombrádi, E., Dövényi, P., Fodor, L., Grenerczy, Gy., Síkhegyi, F., Szafián, P., Székely, B., Timár, G., Tóth, L., Tóth, T. (2006): A Pannon-medence jelenkori geodinamikájának atlasza: Euro-konform térképsorozat és magyarázó. Magyar Geofizika 47(4), 133-137. Ouchi, S. (1985): Response of alluvial rivers to slow active tectonic movement. Geol. Soc. Am. Bull. 96, 504-515. Petrovszki, J. (2010): Sinuosity calculations of the Danube River between Paks (Hungary) and Beograd (Serbia). Geophysical Research Abstracts. Vol. 12, EGU2010-4571 Petrovszki, J., Timár, G. (2010): Channel sinuosity of the Körös River system, Hungary/Romania, as possible indicator of the neotectonic activity. Geomorphology, in press, DOI: 10.1016/j.geomorph.2009.11.009. Timár, G. (2003): Controls on channel sinuosity changes: a case study of the Tisza River, the Great Hungarian Plain. Quaternary Sci. Rev. 22, 2199-2207. Timár, G., Molnár, G., Székely, B., Biszak, S., Varga, J., Jankó, A. (2006): Digitized maps of the Habsburg Empire - The map sheets of the second military survey and their georeferenced version. Arcanum, Budapest, 59 p. van Balen, R. T., Kasse, C., Moor, J. (2008): Impact of groundwater flow on meandering; example from the Geul river, the Netherlands. Earth Surf. Process. and Landf. 33(13), 2010-2028. Zámolyi, A., Székely, B., Draganits, E., Timár, G. (2010): Neotectonic control on river sinuosity at the western margin of the Little Hungarian Plain. Geomorph., in press, DOI: 10.1016/j.geomorph.2009.06.028

  3. Blood lead level is associated with non-alcoholic fatty liver disease in the Yangtze River Delta region of China in the context of rapid urbanization.

    PubMed

    Zhai, Hualing; Chen, Chi; Wang, Ningjian; Chen, Yi; Nie, Xiaomin; Han, Bing; Li, Qin; Xia, Fangzhen; Lu, Yingli

    2017-08-31

    China has undergone rapid urbanization in the past three decades. We aimed to report blood lead level (B-Pb) in the most rapidly urbanized Yangtze River Delta Region of China, and explore the association B-Pb and non-alcoholic fatty liver disease (NAFLD). Our data source was the SPECT-China study. We enrolled 2011 subjects from 6 villages in the Yangtze River Delta Region. Lead was measured by atomic absorption spectrometry. According to abdominal ultrasound, residents were divided into normal and NAFLD groups. In total, 824 (41.0%) were diagnosed with NAFLD. Medians (interquartile range) of B-Pb were 5.29 μg/dL (3.60-7.28) [0.25 μmol/L (0.17-0.35)] for men and 4.49 μg/dL (2.97-6.59) [0.22 μmol/L (0.14-0.32)] for women. In both genders, the NAFLD group had significantly greater B-Pb than normal group (both P < 0.001). The prevalence of NAFLD significantly increased with increasing B-Pb quartiles in men (P for trend = 0.032) and women (P for trend = 0.001). Residents in Shanghai had significantly greater B-Pb (P < 0.001) and a higher prevalence of NAFLD (P < 0.001). Compared with women in the lowest quartile of BLL, OR of NAFLD in women in the highest quartile was 1.613 (95%CI 1.082-2.405) (P for trend = 0.019) after multivariable adjustment. In men, this association showed marginal significance (OR 2.168, 95%CI 0.989-4.750, P for trend = 0.063). B-Pb in Chinese residents in the Yangtze River Delta Region were much higher than in developed countries. Elevated B-Pb was associated with an increased risk of NAFLD, especially in women.

  4. Application of the high resolution regional climate change modelling for local impact study upon the hydrological regime in the Buzau and Ialomita river basins

    NASA Astrophysics Data System (ADS)

    Mic, R.; Corbus, C.; Caian, M.; Neculau, G.

    2009-09-01

    This paper is a subject of a stage within the scope of European Project 037005 STREP FP6 - CECILIA ("The assessment of impact and vulnerability of climate changes in the Centre and Eastern Europe"). The aim of this project is to assess the impact of climate changes from the regional scale to local scale of Centre and Eastern Europe area, pointing up very high climate resolution usefulness for catching the effects due to the field complexity of study area. The analysed Buzau and Ialomita river basins from Romania covering an area of 14392 km² are situated outside the Curvature Carpathian Mountains, into a zone where the altitude varies from 2500 m to 50 m. In conformity of altitude, the annual precipitation varied from 1400 mm/year, in the mountainous area to 400 mm/year in the plane area and the evapotranspiration between 500 mm/year in the high area to 850 mm/year in the plane area. However, due to a very high variability of weather conditions, droughts as well as excessive humidity periods occur in the course of a year. For the impact study of the possibly climate changes on the runoff in the Buzau and Ialomita river basins, the WatBal model was used, which have been calibrated through the runoff simulation in 17 cross-sections for the reference period 1971 - 2000. WatBal model has two main components. The first is the water balance component that uses continuous functions to describe water movement into a conceptualised basin and the second is the component that allows the calculation of potential evapotranspiration using the Priestly-Taylor equation. For the calculation of changes in the main climatic parameters (atmospheric precipitation, air temperature, relative humidity, solar radiation and wind speed), used in the analysis of the climate change impact on the hydrological regime, there were used the simulations accomplished with a regional climatic model (regCM3), elaborated by ICTP (Trieste), implemented in Romania and used for monthly, seasonal and

  5. Impact of climate change on the streamflow hydrology of the Yangtze River in China

    USDA-ARS?s Scientific Manuscript database

    Tuotuo River basin, the source region of the Yangtze River, is the key area, where the impact of climate change has been observed on many of the hydrological processes of this central region of the Tibetan Plateau. In this study, we examined six global climate models (GCMs) under three Respectively ...

  6. Sustainable Land Management in the Lim River Basin

    NASA Astrophysics Data System (ADS)

    Grujic, Gordana; Petkovic, Sava; Tatomir, Uros

    2017-04-01

    In the cross-border belt between Serbia and Montenegro are located more than one hundred torrential water flows that belong to the Lim River Basin. Under extreme climate events they turned into floods of destructive power and great energy causing enormous damage on the environment and socio-economic development in the wider region of the Western Balkans. In addition, anthropogenic factors influence the land instability, erosion of river beds and loss of topsoil. Consequently, this whole area is affected by pluvial and fluvial erosion of various types and intensity. Terrain on the slopes over 5% is affected by intensive degree of erosion, while strong to medium degree covers 70% of the area. Moreover, in the Lim River Basin were built several hydro-energetic systems and accumulations which may to a certain extent successfully regulate the water regime downstream and to reduce the negative impact on the processes of water erosion. However, siltation of accumulation reduces their useful volume and threatens the basic functions (water reservoirs), especially those ones for water supply, irrigation and energy production that have lost a significant part of the usable volume due to accumulated sediments. Facing the negative impacts of climate change and human activities on the process of land degradation in the Lim River basin imposes urgent need of adequate preventive and protective measures at the local and regional level, which can be effectively applied only through enhanced cross-border cooperation among affected communities in the region. The following set of activities were analyzed to improve the actual management of river catchment: Identifying priorities in the spatial planning, land use and water resources management while respecting the needs of local people and the communities in the cross border region; development of cooperation and partnership between the local population, owners and users of real estate (pastures, agricultural land, forests, fisheries

  7. Variation of Probable Maximum Precipitation in Brazos River Basin, TX

    NASA Astrophysics Data System (ADS)

    Bhatia, N.; Singh, V. P.

    2017-12-01

    The Brazos River basin, the second-largest river basin by area in Texas, generates the highest amount of flow volume of any river in a given year in Texas. With its headwaters located at the confluence of Double Mountain and Salt forks in Stonewall County, the third-longest flowline of the Brazos River traverses within narrow valleys in the area of rolling topography of west Texas, and flows through rugged terrains in mainly featureless plains of central Texas, before its confluence with Gulf of Mexico. Along its major flow network, the river basin covers six different climate regions characterized on the basis of similar attributes of vegetation, temperature, humidity, rainfall, and seasonal weather changes, by National Oceanic and Atmospheric Administration (NOAA). Our previous research on Texas climatology illustrated intensified precipitation regimes, which tend to result in extreme flood events. Such events have caused huge losses of lives and infrastructure in the Brazos River basin. Therefore, a region-specific investigation is required for analyzing precipitation regimes along the geographically-diverse river network. Owing to the topographical and hydroclimatological variations along the flow network, 24-hour Probable Maximum Precipitation (PMP) was estimated for different hydrologic units along the river network, using the revised Hershfield's method devised by Lan et al. (2017). The method incorporates the use of a standardized variable describing the maximum deviation from the average of a sample scaled by the standard deviation of the sample. The hydrometeorological literature identifies this method as more reasonable and consistent with the frequency equation. With respect to the calculation of stable data size required for statistically reliable results, this study also quantified the respective uncertainty associated with PMP values in different hydrologic units. The corresponding range of return periods of PMPs in different hydrologic units was

  8. Space Radar Image of Rhine River, France and Germany

    NASA Image and Video Library

    1999-04-15

    This spaceborne radar image shows a segment of the Rhine River where it forms the border between the Alsace region of northeastern France on the left and the Black Forest region of Germany on the right.

  9. Chemistry of groundwater discharge inferred from longitudinal river sampling

    NASA Astrophysics Data System (ADS)

    Batlle-Aguilar, J.; Harrington, G. A.; Leblanc, M.; Welch, C.; Cook, P. G.

    2014-02-01

    We present an approach for identifying groundwater discharge chemistry and quantifying spatially distributed groundwater discharge into rivers based on longitudinal synoptic sampling and flow gauging of a river. The method is demonstrated using a 450 km reach of a tropical river in Australia. Results obtained from sampling for environmental tracers, major ions, and selected trace element chemistry were used to calibrate a steady state one-dimensional advective transport model of tracer distribution along the river. The model closely reproduced river discharge and environmental tracer and chemistry composition along the study length. It provided a detailed longitudinal profile of groundwater inflow chemistry and discharge rates, revealing that regional fractured mudstones in the central part of the catchment contributed up to 40% of all groundwater discharge. Detailed analysis of model calibration errors and modeled/measured groundwater ion ratios elucidated that groundwater discharging in the top of the catchment is a mixture of local groundwater and bank storage return flow, making the method potentially useful to differentiate between local and regional sourced groundwater discharge. As the error in tracer concentration induced by a flow event applies equally to any conservative tracer, we show that major ion ratios can still be resolved with minimal error when river samples are collected during transient flow conditions. The ability of the method to infer groundwater inflow chemistry from longitudinal river sampling is particularly attractive in remote areas where access to groundwater is limited or not possible, and for identification of actual fluxes of salts and/or specific contaminant sources.

  10. Sustainable management of river oases along the Tarim River in North-Western China under conditions of climate change

    NASA Astrophysics Data System (ADS)

    Rumbaur, C.; Thevs, N.; Disse, M.; Ahlheim, M.; Brieden, A.; Cyffka, B.; Doluschitz, R.; Duethmann, D.; Feike, T.; Frör, O.; Gärtner, P.; Halik, Ü.; Hill, J.; Hinnenthal, M.; Keilholz, P.; Kleinschmit, B.; Krysanova, V.; Kuba, M.; Mader, S.; Menz, C.; Othmanli, H.; Pelz, S.; Schroeder, M.; Siew, T. F.; Stender, V.; Stahr, K.; Thomas, F. M.; Welp, M.; Wortmann, M.; Zhao, X.; Chen, X.; Jiang, T.; Zhao, C.; Zhang, X.; Luo, J.; Yimit, H.; Yu, R.

    2014-10-01

    The Tarim River Basin, located in Xinjiang, NW China, is the largest endorheic river basin of China and one of the largest in whole Central Asia. Due to the extremely arid climate with an annual precipitation of less than 100 mm, the water supply along the Aksu and Tarim River solely depends on river water. This applies for anthropogenic activities (e.g. agriculture) as well as for the natural ecosystems so that both compete for water. The on-going increase of water consumption by agriculture and other human activities in this region has been enhancing the competition for water between human needs and nature. Against this background, 11 German and 6 Chinese universities and research institutes formed the consortium SuMaRiO (www.sumario.de), which aims at gaining a holistic picture of the availability of water resources in the Tarim River Basin and the impacts on anthropogenic activities and natural ecosystems caused by the water distribution within the Tarim River Basin. The discharge of the Aksu River, which is the major tributary to the Tarim, has been increasing over the past 6 decades due to enhanced glacier melt. Alone from 1989 to 2011, the area under agriculture more than doubled. Thereby, cotton became the major crop and there was a shift from small-scale farming to large-scale intensive farming. The major natural ecosystems along the Aksu and Tarim River are riparian ecosystems: Riparian (Tugai) forests, shrub vegetation, reed beds, and other grassland. Within the SuMaRiO Cluster the focus was laid on the Tugai forests, with Populus euphratica as dominant tree, because the most productive and species-rich natural ecosystems can be found among those forests. On sites with groundwater distance of less than 7.5 m the annual increments correlated with river runoffs of the previous year. But, the further downstream along the Tarim River, the more the natural river dynamics ceased, which impacts on the recruitment of

  11. Coal-bed gas resources of the Rocky Mountain region

    USGS Publications Warehouse

    Schenk, C.J.; Nuccio, V.F.; Flores, R.M.; Johnson, R.C.; Roberts, S.B.; Collett, T.S.

    2001-01-01

    The Rocky Mountain region contains several sedimentary provinces with extensive coal deposits and significant accumulations of coal-bed gas. This summary includes coal-bed gas resources in the Powder River Basin (Wyoming and Montana), Wind River Basin (Wyoming), Southwest Wyoming (Greater Green River Basin of Wyoming, Colorado, and Utah), Uinta-Piceance Basin (Colorado and Utah), Raton Basin (Colorado and New Mexico), and San Juan Basin (Colorado and New Mexico). Other provinces in the Rocky Mountain region may contain significant coal-bed gas resources, but these resource estimates are not available at this time.

  12. Hydrochemistry, water quality and land use signatures in an ephemeral tidal river: implications in water management in the southwestern coastal region of Bangladesh

    NASA Astrophysics Data System (ADS)

    Roy, Kushal; Karim, Md. Rezaul; Akter, Farjana; Islam, Md. Safiqul; Ahmed, Kousik; Rahman, Masudur; Datta, Dilip Kumar; Khan, M. Shah Alam

    2018-05-01

    Despite its complexity and importance in managing water resources in populous deltas, especially in tidal areas, literatures on tidal rivers and their land use linkage in connection to water quality and pollution are rare. Such information is of prior need for Integrated Water Resource Management in water scarce and climate change vulnerable regions, such as the southwestern coast of Bangladesh. Using water quality indices and multivariate analysis, we present here the land use signatures of a dying tidal river due to anthropogenic perturbation. Correlation matrix, hierarchical cluster analysis, factor analysis, and bio-geo-chemical fingerprints were used to quantify the hydro-chemical and anthropogenic processes and identify factors influencing the ionic concentrations. The results show remarkable spatial and temporal variations ( p < 0.05) in water quality parameters. The lowest solute concentrations are observed at the mid reach of the stream where the agricultural and urban wastewater mix. Agricultural sites show higher concentration of DO, Na+ and K+ reflecting the effects of tidal spill-over and shrimp wastewater effluents nearby. Higher level of Salinity, EC, Cl-, HCO3 -, NO3 -, PO4 3- and TSS characterize the urban sites indicating a signature of land use dominated by direct discharge of household organic waste into the waters. The spatial variation in overall water quality suggests a periodic enhancement of quality especially for irrigation and non-drinking purposes during monsoon and post-monsoon, indicating significant influence of amount of rainfall in the basin. We recommend that, given the recent trend of increasing precipitation and ground water table decrease, such dying tidal river basins may serve as excellent surface water reservoir to supplement quality water supply to the region.

  13. Analysis of Biomass Feedstock Availability and Variability for the Peace River Region of Alberta, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephen, Jamie; Sokhansanj, Shahabaddine; Bi, X.T.

    2009-11-01

    Biorefineries or other biomass-dependent facilities require a predictable, dependable feedstock supplied over many years to justify capital investments. Determining inter-year variability in biomass availability is essential to quantifying the feedstock supply risk. Using a geographic information system (GIS) and historic crop yield data, average production was estimated for 10 sites in the Peace River region of Alberta, Canada. Four high-yielding potential sites were investigated for variability over a 20 year time-frame (1980 2000). The range of availability was large, from double the average in maximum years to nothing in minimum years. Biomass availability is a function of grain yield, themore » biomass to grain ratio, the cropping frequency, and residue retention rate to ensure future crop productivity. Storage strategies must be implemented and alternate feedstock sources identified to supply biomass processing facilities in low-yield years.« less

  14. Regional water-quality analysis of 2,4-D and dicamba in river water using gas chromatography-isotope dilution mass spectrometry

    USGS Publications Warehouse

    Thurman, E.M.; Zimmerman, L.R.; Aga, D.S.; Gilliom, R.J.

    2001-01-01

    Gas chromatography with isotope dilution mass spectrometry (GC-MS) and enzyme-linked immunosorbent assay (ELISA) were used in regional National Water Quality Assessment studies of the herbicides, 2,4-D and dicamba, in river water across the United States. The GC-MS method involved solid-phase extraction, derivatized with deutemted 2,4-D, and analysis by selected ion monitoring. The ELISA method was applied after preconcentration with solid-phase extraction. The ELISA method was unreliable because of interference from humic substances that were also isolated by solid-phase extraction. Therefore, GC-MS was used to analyzed 80 samples from river water from 14 basins. The frequency of detection of dicamba (28%) was higher than that for 2,4-D (16%). Concentrations were higher for dicamba than for 2,4-D, ranging from less than the detection limit (<0.05 ??g/L) to 3.77 ??g/L, in spite of 5 times more annual use of 2,4-D as compared to dicamba. These results suggest that 2,4-D degrades more rapidly in the environment than dicamba.

  15. Impacts of urbanization on nitrogen deposition in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Fan, Q.

    2015-12-01

    The Pearl River Delta (PRD) region is one of the most advanced economic districts in China, which has experienced remarkable economic development and urbanization in the past two decades. Accompanied with the rapid economy development and urbanization, the PRD region encountered both severe nitrogen pollution and deposition. In this study, the characteristics of nitrogen deposition and impacts of urbanization on nitrogen deposition in the PRD region were investigated by combining the methods of field study and numerical model. According to the field measurements, the total dry and wet atmospheric deposition of reactive N at a urban site (SYSU) was up to 55.0 kg ha-1 yr-1 in 2010, slightly lower than the results at a rural forest site (DHS) (57.6 kg ha-1 yr-1). Wet deposition was the main form of the total deposition (64-76%). Organic nitrogen (ON) was found to be dominant in the total N deposition, with a contribution of 53% at DHS and 42% at SYSU. NH4+-N and NO3--N accounted for a similar portion of the total N deposition (23-29%). Atmospheric nitrogen deposition was further simulated by using the improved WRF-Chem model. The simulated N deposition flux was high in the north of PRD (i.e., Guangzhou, Foshan, Zhaoqing) and relative low in the east (Huizhou) and south (Zhuhai), with an average N deposition flux of about 24 kg ha-1 yr-1 for the whole PRD. The distribution of N dry deposition was mainly controlled by the concentration of reactive N compounds and precipitation governed the wet deposition distribution. The modeling results also indicate that the PRD area is the source region in which the emissions exceed the deposition while the outside area of the PRD is the receptor region in which the deposition exceeds emissions. The impact of emission change and land use change due to urbanization was also investigated using the WRF-Chem model. The results showed that atmospheric N deposition exhibits a direct response to emission change while the land use change

  16. Attribution of nitrogen deposition driven by urbanization over Pearl River Delta region China

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wu, Z.

    2016-12-01

    The Pearl River Delta (PRD) region is one of the most advanced economic districts in China, which has experienced remarkable economic development and urbanization in the past two decades. Accompanied with the rapid economy development and urbanization, the PRD region encountered both severe nitrogen pollution and deposition. In this study, the characteristics of nitrogen deposition and impacts of urbanization on nitrogen deposition in the PRD region were investigated by combining the methods of field study and numerical model. According to the field measurements, the total dry and wet atmospheric deposition of reactive N at a urban site (SYSU) was up to 55.0 kg ha-1 yr-1 in 2010, slightly lower than the results at a rural forest site (DHS) (57.6 kg ha-1 yr-1). Wet deposition was the main form of the total deposition (64-76%). Organic nitrogen (ON) was found to be dominant in the total N deposition, with a contribution of 53% at DHS and 42% at SYSU. NH4+-N and NO3-N accounted for a similar portion of the total N deposition (23-29%). Atmospheric nitrogen deposition was further simulated by using the improved WRF-Chem model. The simulated N deposition flux was high in the north of PRD (i.e.,Guangzhou, Foshan, Zhaoqing) and relative low in the east (Huizhou) and south (Zhuhai), with an average N deposition flux of about 24 kg ha-1 yr-1 for the whole PRD. The distribution of N dry deposition was mainly controlled by the concentration of reactive N compounds and precipitation governed the wet deposition distribution. The modeling results also indicate that the PRD area is the source region in which the emissions exceed the deposition while the outside area of the PRD is the receptor region in which the deposition exceeds emissions. The impact of emission change and land use change due to urbanization was also investigated using the WRF-Chem model. The results showed that atmospheric N deposition exhibits a direct response to emission change while the land use change

  17. Relating river geomorphology to the abundance of periphyton in New Zealand rivers

    NASA Astrophysics Data System (ADS)

    Hoyle, Jo; Hicks, Murray; Kilroy, Cathy

    2013-04-01

    Aquatic plants (including both periphyton and macrophytes) are a natural component of stream and river systems. However, abundant growth of instream plants can have detrimental impacts on the values of rivers. For example, periphyton in rivers provides basal resources for food webs and provides an important ecological service by removing dissolved nutrients and contaminants from the water column. However, high abundance of periphyton can have negative effects on habitat quality, water chemistry and biodiversity, and can reduce recreation and aesthetic values. The abundance of periphyton in rivers is influenced by a number of factors, but two key factors can be directly influenced by human activities: flow regimes and nutrient concentrations. Establishing quantitative relationships between periphyton abundance and these factors has proven to be difficult but remains an urgent priority due to the need to manage the ecological impacts of water abstraction and eutrophication of rivers worldwide. This need is particularly strong in New Zealand, where there is increasing demand for water for industry, power generation and agriculture. However, we currently have limited ability to predict the effects of changes in the mid-range flow regime on the presence/absence, abundance and composition of aquatic plants. Current water allocation limits are based on simple flow statistics, such as multiples of the median flow, but these are regional averages and can be quite unreliable on a site-specific basis. This stems largely from our limited ability to transform flow data into ecologically meaningful physical processes that directly affect plants (e.g., drag, abrasion, bed movement). The research we will present examines whether geomorphic variables, such as frequency of bed movement, are useful co-predictors in periphyton abundance-flow relationships. We collected topographic survey data and bed sediment data for 20 study reaches in the Manawatu-Wanganui region of New Zealand

  18. Water Quality Assessment and Determining the Carrying Capacity of Pollution Load Batang Kuranji River

    NASA Astrophysics Data System (ADS)

    Dewata, I.; Adri, Z.

    2018-04-01

    This study aims to determine the water quality and carrying capacity of pollution load Batang Kuranji River in the headwaters, middle, and downstream. This research is descriptive quantitative parameters of pH, BOD, COD, TSS, and DOES Depictions of river water quality refer to RegulationNo.82/2001, while determination of carrying capacity of pollution load river refers to the Kep Men LHNo.10/2003.The result is Kuranji Batang River water quality upstream region included in either category who meet the quality standard first class ofPP82/2001. TSS concentrations at head waters of 21 mg/L, BOD1,6 mg/L, COD7,99mg/L and DO 7,845 mg/L. While the carrying capacity of pollution load river in upstream region included in both categories namely BOD of 4,4 kg/sec, COD 273,60 kg/sec, TSS906,00kg/sec, and DO parameters of 49.20 kg/sec. Middle region (point 2, 3, and 4) water quality Batang Kuranji River has exceeded the quality standard of 82/2001 for class II and class III. Meanwhile, carrying capacity of pollution load river in area included in ugly category. The calculation is done with application Qual2Kw show that carrying capacity of pollution load river of BOD -857.3 kg/sec, COD -777.40 kg/sec, TSS +9511.5 kg/sec, and DO +69.30 kg/sec.

  19. Simulation of irrigation effect on water cycle in Yellow River catchment, China

    NASA Astrophysics Data System (ADS)

    Nakayama, T.; Watanabe, M.

    2006-12-01

    The Yellow River is 5,464 km long with a catchment area of 794,712 km2 if the Erdos inner flow area is included. This river catchment is divided between the upper region (length: 3472 km, area: 428,235 km2) from the headwater to Lanzhou in Gansu province, the middle region (length: 1,206 km, area: 343,751 km2) from Lanzhou to Huayuankou in Henan province, and the lower region (length: 786 km, area: 22,726 km2) from Huayuankou to the estuary. This river is well known for high sand content, frequent floods, unique channel characteristics in the lower reach (the river bed is higher than the land outside the banks), and the limited water resources. Since the competition of a large-scale irrigation project in 1969, noticeable river drying has been observed in the Yellow River. This flow dry-up phenomena, i.e., zero-flow in sections of the river channel, resulting from the intense competition between water supply and water demand, has occurred more and more often during the last 30 years. It is very important for decision making to ensure sustainable water resource utilization whether human activities were the only cause of the water shortage, the climate has changed during the last several decades in this catchment, and the water shortage has anything to do with climatic warming. The present research focuses on simulating the groundwater/river irrigation-effects on the water/heat dynamics in the Yellow River catchment. We combined the NIES Integrated Catchment-based Eco-hydrology (NICE) model (Nakayama and Watanabe, 2004, 2006; Nakayama et al., 2006) with the agricultural model in order to evaluate river drying in the Yellow River (NICE-DRY). We simulated the water/heat dynamics in the entire catchment with a resolution of 10 km mesh by using the NICE-DRY. The model reproduced excellently the river discharge, soil moisture, evapotranspiration, groundwater level, crop water use, crop productivity, et al. Furthermore, we evaluated the role of irrigation on the water

  20. A floodplain continuum for Atlantic coast rivers of the Southeastern US: Predictable changes in floodplain biota along a river's length

    USGS Publications Warehouse

    Batzer, Darold P.; Noe, Gregory; Lee, Linda; Galatowitsch, Mark

    2018-01-01

    Floodplains are among the world’s economically-most-valuable, environmentally-most-threatened, and yet conceptually-least-understood ecosystems. Drawing on concepts from existing riverine and wetland models, and empirical data from floodplains of Atlantic Coast rivers in the Southeastern US (and elsewhere when possible), we introduce a conceptual model to explain a continuum of longitudinal variation in floodplain ecosystem functions with a particular focus on biotic change. Our hypothesis maintains that major controls on floodplain ecology are either external (ecotonal interactions with uplands or stream/river channels) or internal (wetland-specific functions), and the relative importance of these controls changes progressively from headwater to mid-river to lower-river floodplains. Inputs of water, sediments, nutrients, flora, and fauna from uplands-to-floodplains decrease, while the impacts of wetland biogeochemistry and obligate wetland plants and animals within-floodplains increase, along the length of a river floodplain. Inputs of water, sediment, nutrients, and fauna from river/stream channels to floodplains are greatest mid-river, and lower either up- or down-stream. While the floodplain continuum we develop is regional in scope, we review how aspects may apply more broadly. Management of coupled floodplain-river ecosystems would be improved by accounting for how factors controlling the floodplain ecosystem progressively change along longitudinal riverine gradients.

  1. Aquifer depletion in the Lower Mississippi River Basin: challenges and solutions

    USDA-ARS?s Scientific Manuscript database

    The Lower Mississippi River Basin (LMRB) is an internationally-important region of intensive agricultural crop production that relies heavily on the underlying Mississippi River Valley Alluvial Aquifer (MRVAA) for irrigation. Extensive irrigation coupled with the region’s geology have led to signifi...

  2. Assessment of river quality in a subtropical Austral river system: a combined approach using benthic diatoms and macroinvertebrates

    NASA Astrophysics Data System (ADS)

    Nhiwatiwa, Tamuka; Dalu, Tatenda; Sithole, Tatenda

    2017-12-01

    River systems constitute areas of high human population densities owing to their favourable conditions for agriculture, water supply and transportation network. Despite human dependence on river systems, anthropogenic activities severely degrade water quality. The main aim of this study was to assess the river health of Ngamo River using diatom and macroinvertebrate community structure based on multivariate analyses and community metrics. Ammonia, pH, salinity, total phosphorus and temperature were found to be significantly different among the study seasons. The diatom and macroinvertebrate taxa richness increased downstream suggesting an improvement in water as we moved away from the pollution point sources. Canonical correspondence analyses identified nutrients (total nitrogen and reactive phosphorus) as important variables structuring diatom and macroinvertebrate community. The community metrics and diversity indices for both bioindicators highlighted that the water quality of the river system was very poor. These findings indicate that both methods can be used for water quality assessments, e.g. sewage and agricultural pollution, and they show high potential for use during water quality monitoring programmes in other regions.

  3. Simulation of regional temperature change effect of land cover change in agroforestry ecotone of Nenjiang River Basin in China

    NASA Astrophysics Data System (ADS)

    Liu, Tingxiang; Zhang, Shuwen; Yu, Lingxue; Bu, Kun; Yang, Jiuchun; Chang, Liping

    2017-05-01

    The Northeast China is one of typical regions experiencing intensive human activities within short time worldwide. Particularly, as the significant changes of agriculture land and forest, typical characteristics of pattern and process of agroforestry ecotone change formed in recent decades. The intensive land use change of agroforestry ecotone has made significant change for regional land cover, which had significant impact on the regional climate system elements and the interactions among them. This paper took agroforestry ecotone of Nenjiang River Basin in China as study region and simulated temperature change based on land cover change from 1950s to 1978 and from 1978 to 2010. The analysis of temperature difference sensitivity to land cover change based on Weather Research and Forecasting (WRF) model showed that the land cover change from 1950s to 1978 induced warming effect over all the study area, including the change of grassland to agriculture land, grassland to deciduous broad-leaved forest, and deciduous broad-leaved forest to shrub land. The land cover change from 1978 to 2010 induced cooling effect over all the study area, including the change of deciduous broad-leaved forest to agriculture land, grassland to agriculture land, shrub land to agriculture land, and deciduous broad-leaved forest to grassland. In addition, the warming and cooling effect of land cover change was more significant in the region scale than specific land cover change area.

  4. What are the contemporary sources of sediment in the Mississippi River?

    NASA Astrophysics Data System (ADS)

    Hassan, M. A.; Roberge, L.; Church, M.; More, M.; Donner, S. D.; Leach, J.; Ali, K. F.

    2017-09-01

    Within the last two centuries, the Mississippi River basin has been transformed by changes in land use practices, dam construction, and training of the rivers for navigation. Here we analyze the contemporary patterns of fluvial sediment yield in the Mississippi River basin using all available data in order to assess the influence of regional land condition on the variation of sediment yield within the basin. We develop regional-scale relations between specific sediment yield (yield per unit area) and drainage area to reveal contemporary regional sediment yield patterns and source areas of riverine sediments. Extensive upland erosion before the development of soil conservation practices exported large amounts of sediment to the valleys and floodplains. We show that sediment today is sourced primarily along the river valleys from arable land, and from stream bank and channel erosion, with sediment yields from areas dominated by arable land 2 orders of magnitude greater than that of grassland dominated areas. Comparison with the "T factor," a commonly quoted measure of agricultural soil resilience suggests that the latter may not reflect contemporary soil loss from the landscape.

  5. Variation of runoff and precipitation in the Hekou-Longmen region of the Yellow River based on elasticity analysis.

    PubMed

    Li, Erhui; Mu, Xingmin; Zhao, Guangju; Gao, Peng; Shao, Hongbo

    2014-01-01

    Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan watershed (from 1954 to 2010), and Yanhe watershed (from 1952 to 2010) in the middle reaches of the Yellow River. The results showed that runoff appeared a significant decreasing trend (P = 0.01) while it was not significant in precipitation in all study areas. In particular, the reductions of average annual runoff in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed were 72.7%, 87.5%, and 32.2%, respectively, during 2000-2010 compared to the 1950s. There existed two abrupt change points of the runoff in the Hekou-Longmen region and Huangfuchuan watershed, which were detected in 1979 and 1998. But in the Yanhe watershed only one abrupt change point was found in 1996. The precipitation elasticities of runoff were 1.11, 1.09, and 1.26, respectively, and the contributions of precipitation on runoff reduction were 26.4%, 17.9%, and 31.6%, respectively, in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed.

  6. Hydrological Signature From River-Floodplain Interactions

    NASA Astrophysics Data System (ADS)

    Paiva, R. C. D.; Fleischmann, A. S.; Collischonn, W.; Sorribas, M.; Pontes, P. R.

    2015-12-01

    Understanding river-floodplain hydraulic processes is fundamental to promote comprehension of related water paths, biogeochemicalcyclesand ecosystems. Large river basins around the globe present enormous developed floodplains, which strongly affect flood waves and water dynamics. Since most of these river-floodplain interactions are not monitored, it is interesting to develop strategies to understand such processes through characteristic hydrological signatures, e.g. hydrographs. We studied observed hydrographs from large South American rivers and found that in several cases rivers with extensive wetlands present a particular hydrograph shape, with slower rising limb in relation to the receding one, due to storage effects and the associated decrease of wave celerity with stage. A negative asymmetry in the hydrograph is generated, which is higher when more water flows through floodplains upstream of the observed point. Finally, we studied the Amazon basin using gauged information and simulation results from the MGB-IPH regional hydrological model. Major rivers with larger wetland areas (e.g. Purus, Madeira and Juruá) were identified with higher negative asymmetry in their hydrographs. The hydrodynamic model was run in scenarios with and without floodplains, and results supported that floodplain storage affects hydrographs in creating a negative asymmetry, besides attenuating peaks, increasing hydrograph smoothness and increasing minimum flows. Finally, different wetland types could be distinguished with hydrograph shape, e.g. differing wetlands fed by local rainfall from wetlands due to overbank flow (floodplains). These metrics and concepts on hydrograph features have great potential to infer about river-floodplain processes from large rivers and wetland systems.

  7. Mississippi River, Yazoo Basin, Memphis, TN

    NASA Image and Video Library

    1973-06-22

    SL2-05-422 (22 June 1973) --- This section of the lower Mississippi River (34.0N, 90.0W) known as the Yazoo Basin, is characterized by a wide expanse of rich river bottomland with many oxbow lakes, the remains of the many changes in the riverbed over the course of many thousands of years. This soil is very fertile and productive but the region is prone to flooding. In this view, some of the back areas around the Delta National Forest show the effects of heavy spring rains. Photo credit: NASA

  8. The social connectivity of urban rivers

    NASA Astrophysics Data System (ADS)

    Kondolf, G. Mathias; Pinto, Pedro J.

    2017-01-01

    By social connectivity we refer to the communication and movement of people, goods, ideas, and culture along and across rivers, recognizing longitudinal, lateral, and vertical connectivity, much as has been described for other rivers for hydrology and ecology. We focus on rivers as they pass through cities, and the relationships between these rivers and city dwellers. Historically, the most important longitudinal connectivity function of rivers was their role as major transport routes and the simplification of formerly complex, irregular banks and beds, into straight, uniform shipping channels has resulted in a loss of lateral and vertical connectivity, notably the quotidian uses such as fishing, washing clothes, water supply, swimming and other recreation. The scale of the river itself, and its scale in comparison to the scale of the city, largely determine the river's social function and the degree to which it influences city form. River width affects the perception of 'closeness' of the other bank, ease of bridging the river, influence of the river on the city's street pattern, and type of waterfront uses that occur. Up to 15 m wide, people can converse, whereas across rivers 50 to 200 m wide, people are not recognizable but still clearly visible, instilling the banks with a 'lively' atmosphere. At widths over 200 m, people blur, yet moving vehicles and trees branches shaking in wind may still provide some dynamic elements to an otherwise static landscape composed of building facades. In exceptionally wide rivers, the city on the opposite bank is little more than a skyline, which often becomes a signature and symbol of regional identity. In contemplating how people use rivers, we can define a range of human activities in relation to height above the water (i.e., instream to banktop), a vertical dimension of human connectivity with rivers. Many uses occur on the top of the bank, such as quiet contemplation, walking, or cycling along a riverside trail, while

  9. Striped Bass Spawning in Non-Estuarine Portions of the Savannah River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, D.; Paller, M.

    2007-04-17

    Historically, the estuarine portions of the Savannah River have been considered to be the only portion of the river in which significant amounts of striped bass (Morone saxatilis) spawning normally occur. A reexamination of data from 1983 through 1985 shows a region between River Kilometers 144 and 253 where significant numbers of striped bass eggs and larvae occur with estimated total egg production near that currently produced in the estuarine reaches. It appears possible that there are two separate spawning populations of striped bass in the Savannah River.

  10. Economic Analysis of the Impacts of Climate-Induced Changes in River Flow on Hydropower and Fisheries in Himalayan region.

    NASA Astrophysics Data System (ADS)

    Khadka Mishra, S.; Hayse, J.; Veselka, T.; Yan, E.; Kayastha, R. B.; McDonald, K.; Steiner, N.; Lagory, K.

    2017-12-01

    Climate-mediated changes in melting of snow and glaciers and in precipitation patterns are expected to significantly alter the water flow of rivers at various spatial and temporal scales. Hydropower generation and fisheries are likely to be impacted annually and over the century by the seasonal as well as long-term changes in hydrological conditions. In order to quantify the interactions between the drivers of climate change, the hydropower sector and the ecosystem we developed an integrated assessment framework that links climate models with process-based bio-physical and economic models. This framework was applied to estimate the impacts of changes in snow and glacier melt on the stream flow of the Trishuli River of the High Mountain Asia Region. Remotely-sensed data and derived products, as well as in-situ data, were used to quantify the changes in snow and glacier melt. The hydrological model was calibrated and validated for stream flows at various points in the Trishuli river in order to forecast conditions at the location of a stream gauge station upstream of the Trishuli hydropower plant. The flow of Trishuli River was projected to increase in spring and decrease in summer over the period of 2020-2100 under RCP 8.5 and RCP 4.5 scenarios as compared to respective mean seasonal discharge observed over 1981-2014. The simulated future annual mean stream flow would increase by 0.6 m3/s under RCP 8.5 scenario but slightly decrease under RCP 4.5. The Argonne Hydropower Energy and Economic toolkit was used to estimate and forecast electricity generation at the Trishuli power plant under various flow conditions and upgraded infrastructure. The increased spring flow is expected to increase dry-season electricity generation by 18% under RCP 8.5 in comparison to RCP 4.5. A fishery suitability model developed for the basin indicated that fishery suitability in the Trishuli River would be greater than 70% of optimal, even during dry months under both RCP 4.5 and RCP 8

  11. Development of a preliminary relative risk model for evaluating regional ecological conditions in the Delaware River Estuary, USA.

    PubMed

    Iannuzzi, Timothy J; Durda, Judi L; Preziosi, Damian V; Ludwig, David F; Stahl, Ralph G; DeSantis, Amanda A; Hoke, Robert A

    2010-01-01

    Effective environmental management and restoration of urbanized systems such as the Delaware River Estuary requires a holistic understanding of the relative importance of various stressor-related impacts throughout the watershed, both historical and ongoing. To that end, it is important to involve as many stakeholders as possible in the management process and to develop a system for sharing of scientific data and information, as well as effective technical tools for evaluating and disseminating the data needed to make management decisions. In this study, we describe a preliminary assessment that was undertaken to evaluate the relative risks for the variety of stressors currently operating within the Delaware Estuary using a relative risk model (RRM) framework. This model was constructed using existing data and information on the ecological conditions and stressors in the main-stem Delaware River below the head of tide at Trenton, New Jersey, USA. A large database was developed with pertinent data from a variety of library, scientific, and regulatory sources. Data were compiled, reviewed, and characterized before development of the Estuary-specific RRM. Our primary goals and objectives in developing this preliminary RRM for the Estuary were to 1) determine if the RRM framework can be adapted to a large complex estuarine system such as the Delaware River, 2) identify the issues associated with adapting the model framework to the various management issues and regional areas/habitats of the River, 3) help identify data needs and potential refinements that might be needed to more specifically quantify relative stressor risks in various areas and habitats of the Estuary to better inform future management goals/actions by Stakeholders. The key conclusions of our preliminary assessment are 1) a diverse suite of stressors is likely affecting the ecological conditions of the Delaware Estuary, 2) chemical (toxicants/contaminants) and physical (sedimentation, habitat loss

  12. River bulge evolution and dynamics in a non-tidal sea - Daugava River plume in the Gulf of Riga, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Soosaar, E.; Maljutenko, I.; Uiboupin, R.; Skudra, M.; Raudsepp, U.

    2015-10-01

    Satellite remote sensing imagery and numerical modelling were used for the study of river bulge evolution and dynamics in a non-tidal sea, the Gulf of Riga (GoR) in the Baltic Sea. Total suspended matter (TSM) images showed a clearly formed anti-cyclonically rotating river bulge from Daugava River discharge during the studied low wind period. In about 7-8 days the bulge grew up to 20 km in diameter, before being diluted. Bulge growth rate was estimated as rb ~ t 0.31± 0.23 (R2 = 0.87). A high resolution (horizontal grid step of 125 m) General Estuarine Transport Model (GETM) was used for detailed description of the development of the river plume in the southern GoR over the period when satellite images were acquired. In the model simulation, the rb ~ t 0.5± 0.04 (R2 = 0.90). Both the model simulation and the satellite images showed that river water was mainly contained in the bulge and there were numerous intrusions at the outer perimeter of the bulge. We made numerical sensitivity tests with actual bathymetry and measured river runoff without wind forcing: (1) having initial 3-dimensional density distribution, (2) using initially a homogeneous ambient density field. In the first case, the anti-cyclonic bulge did not develop within the course of the model simulation and coastal current was kept offshore due to ambient density-driven circulation. In the second case, the river plume developed steadily into an anti-cyclonically recirculating bulge and a coastal current. This showed a significant effect of the wind in the evolution of the river bulge, even if the wind speed was moderate (3-4 m s-1). In the second case, rb ~ t 0.28± 0.01 (R2 = 0.98). While previous studies conclude that mid-field bulge region is governed by balance between centrifugal, Coriolis and pressure gradient terms, our study showed that geostrophic balance is valid for the entire mid-field of the bulge. In addition, while there is discharge into the homogenous GoR in case of high inflow

  13. Plans, Trains, and Automobiles: Big River Crossing Issues in a Small Community

    DOT National Transportation Integrated Search

    1999-01-01

    This paper addresses cross-cutting topics associated with the replacement of a : regional Mississippi River crossing along the Great River Road. The breadth and : depth of issues define the ease with which transportation problems can be solved. : In ...

  14. Introduction to the Delaware River Port Authority's Smart Bridges initiative

    NASA Astrophysics Data System (ADS)

    Box, Robert A.; McCullough, Patrick J.; Bistline, Robert S.

    2000-06-01

    The Delaware River Port Authority, whose mission is to manage, plan and construct transportation facilities and provide transportation services to maximize the safe and efficient movement of people and freight within the Delaware River Valley, located in southwestern Pennsylvania and southern New Jersey, is a self-financing, bi-state Authority, formed by a compact between the Commonwealth of Pennsylvania and the State of New Jersey and approved by the Congress of the United States. The Delaware River Port Authority is firmly committed to the strategic and integrated use of advanced transportation technology to improve traffic flow, operational efficiency and safety on DRPA's four bridges. To this end, the Delaware River Port Authority has initiated a program, appropriately named 'Smart Bridges.' The Delaware River Port Authority has recognized that this type of program is essential to the advancement of the DRPA's mission as an efficient, customer- friendly transportation and regional development agency. Under the Smart Bridges program the Delaware River Port Authority is introducing new technology into its aging infrastructure and transportation systems to ensure that the facilities continue to serve the region into the 21st century and beyond. Initiatives introduced under this program include EZ Pass, video surveillance systems, computerized traffic control systems and partnering with local universities to investigate the application of various innovative technologies to assist in the maintenance of the bridge facilities.

  15. Fluvial bar dynamics in large meandering rivers with different sediment supply in the Amazon River basin

    NASA Astrophysics Data System (ADS)

    Monegaglia, Federico; Zolezzi, Guido; Tubino, Marco; Henshaw, Alex

    2017-04-01

    Sediments in the large meandering rivers of the Amazon basin are known to be supplied by sources providing highly different magnitudes of sediment input and storage, ranging from the sediment-rich Andean region to the sediment-poor Central Trough. Recent observations have highlighted how such differences in sediment supply have an important, net effect on the rates of planform activity of meandering rivers in the basin, in terms of meander migration and frequency of cutoffs. In this work we quantify and discuss the effect of sediment supply on the organization of macroscale sediment bedforms on several large meandering rivers in the Amazon basin, and we link our findings with those regarding the rates of planform activity. Our analysis is conducted through the newly developed software PyRIS, which enables us to perform extensive multitemporal analysis of river morphodynamics from multispectral remotely sensed Landsat imagery in a fully automated fashion. We show that large rivers with low sediment supply tend to develop alternate bars that consistently migrate through long reaches, characterized at the same time by limited planform development. On the contrary, high sediment supply is associated with the development of point bars that are well-attached to the evolving meander bends and that follow temporal oscillations around the bend apexes, which in turn show rapid evlution towards complex meander shapes. Finally, rivers with intermediate rates of sediment supply develop rather steady point bars associated with slowly migrating, regular meanders. We finally discuss the results of the image analysis in the light of the properties of river planform metrics (like channel curvature and width) for the examined classes of river reaches with different sediment supply rates.

  16. Quantifying Late Quaternary Deformation along the Santa Ynez River, Santa Maria Basin, California

    NASA Astrophysics Data System (ADS)

    Slatten, C. L.; Onderdonk, N.

    2017-12-01

    The fault bounded Santa Maria Basin, located on the Central Coast of California, is positioned in an area of convergence between the rotating Western Transverse Ranges and the non-rotated Southern Coast Ranges. The Santa Ynez River Fault (SYRF) is an east-west trending fault that parallels the Santa Ynez River west of Lake Cachuma, California and defines the southern structural boundary of the Santa Maria Basin. However, the rate and style of Late Quaternary deformation and uplift in this region and the potential for seismic hazard along the fault is lacking. Fluvial terraces are key geomorphological components of fluvial systems that can be used to provide insights into regional and local uplift and deformation. The Santa Ynez River delineates the northern edge of the Santa Ynez Mountains and flows west through the Santa Ynez Valley to its mouth at the Pacific Ocean. The Santa Ynez River Field Area is a 10 km stretch of the Santa Ynez River just west of Lake Cachuma where terraces are well developed and the SYRF cuts through terraces and the active river (Figure 1). If there has been Quaternary movement of the SYRF we expect to find deformation in these areas. An initial survey of the area identified five terrace levels ranging from 8 m to 135 m above modern river level. The fluvial terraces are being mapped as separate units, surveyed for deformation with GPS based transects, and sampled for optically stimulated luminescence (OSL) dating. These combined methods will allow us to document the geomorphic characteristics and landform evolution of the lower Santa Ynez River, evaluate the possibility of Late Quaternary activity of the SYRF, and determine the rate of Late Quaternary regional uplift along the western Santa Ynez River in the Santa Maria Basin providing a possible basis for augmentation of the seismic hazards for Santa Barbara County.

  17. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, William; Kucera, Paul

    2003-07-01

    In spite of an intensive management effort, chinook salmon (Oncorhynchus tshawytscha) and steelhead (Oncorhynchus mykiss) populations in the Northwest have not recovered and are currently listed as threatened species under the Endangered Species Act. In addition to the loss of diversity from stocks that have already gone extinct, decreased genetic diversity resulting from genetic drift and inbreeding is a major concern. Reduced population and genetic variability diminishes the environmental adaptability of individual species and entire ecological communities. The Nez Perce Tribe (NPT), in cooperation with Washington State University and the University of Idaho, established a germplasm repository in 1992 inmore » order to preserve the remaining salmonid diversity in the region. The germplasm repository provides long-term storage for cryopreserved gametes. Although only male gametes can be cryopreserved, conserving the male component of genetic diversity will maintain future management options for species recovery. NPT efforts have focused on preserving salmon and steelhead gametes from the major river subbasins in the Snake River basin. However, the repository is available for all management agencies to contribute gamete samples from other regions and species. In 2002 a total of 570 viable semen samples were added to the germplasm repository. This included the gametes of 287 chinook salmon from the Lostine River, Catherine Creek, upper Grande Ronde River, Imnaha River (Lookingglass Hatchery), Lake Creek, South Fork Salmon River, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi River (Pahsimeroi Hatchery), and upper Salmon River (Sawtooth Hatchery) and the gametes of 280 steelhead from the North Fork Clearwater River (Dworshak Hatchery), Fish Creek, Little Sheep Creek, Pahsimeroi River (Pahsimeroi Hatchery) and Snake River (Oxbow Hatchery). In addition, gametes from 60 Yakima River spring chinook and 34 Wenatchee River coho salmon were added to the

  18. Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change

    NASA Astrophysics Data System (ADS)

    Rumbaur, C.; Thevs, N.; Disse, M.; Ahlheim, M.; Brieden, A.; Cyffka, B.; Duethmann, D.; Feike, T.; Frör, O.; Gärtner, P.; Halik, Ü.; Hill, J.; Hinnenthal, M.; Keilholz, P.; Kleinschmit, B.; Krysanova, V.; Kuba, M.; Mader, S.; Menz, C.; Othmanli, H.; Pelz, S.; Schroeder, M.; Siew, T. F.; Stender, V.; Stahr, K.; Thomas, F. M.; Welp, M.; Wortmann, M.; Zhao, X.; Chen, X.; Jiang, T.; Luo, J.; Yimit, H.; Yu, R.; Zhang, X.; Zhao, C.

    2015-03-01

    The Tarim River basin, located in Xinjiang, NW China, is the largest endorheic river basin in China and one of the largest in all of Central Asia. Due to the extremely arid climate, with an annual precipitation of less than 100 mm, the water supply along the Aksu and Tarim rivers solely depends on river water. This is linked to anthropogenic activities (e.g., agriculture) and natural and semi-natural ecosystems as both compete for water. The ongoing increase in water consumption by agriculture and other human activities in this region has been enhancing the competition for water between human needs and nature. Against this background, 11 German and 6 Chinese universities and research institutes have formed the consortium SuMaRiO (Sustainable Management of River Oases along the Tarim River; http://www.sumario.de), which aims to create a holistic picture of the availability of water resources in the Tarim River basin and the impacts on anthropogenic activities and natural ecosystems caused by the water distribution within the Tarim River basin. On the basis of the results from field studies and modeling approaches as well as from suggestions by the relevant regional stakeholders, a decision support tool (DST) will be implemented that will then assist stakeholders in balancing the competition for water, acknowledging the major external effects of water allocation to agriculture and to natural ecosystems. This consortium was formed in 2011 and is funded by the German Federal Ministry of Education and Research. As the data collection phase was finished this year, the paper presented here brings together the results from the fields from the disciplines of climate modeling, cryology, hydrology, agricultural sciences, ecology, geoinformatics, and social sciences in order to present a comprehensive picture of the effects of different water availability schemes on anthropogenic activities and natural ecosystems along the

  19. The story of the creation and monitoring of the Russian Desman (Desmana moschata L.) population reintroduced of in the Kerzhenets river floodplain in the Nizhny Novgorod region

    NASA Astrophysics Data System (ADS)

    Bakka, S. V.; Kiseleva, N. Yu; Pankratov, I. I.; Tarasov, I. A.; Shukov, P. M.

    2018-01-01

    The article summarizes the results of creating the reintroduced population of the Russian desman (Desmana moschata L.) in the Nizhny Novgorod region in the floodplain of the Kerzhenets river (the left tributary of the Volga) and monitoring of its status in 2005-2017. In 2001-2002, a total of 51 individuals were released in the Kerzhenskiy State Nature Reserve. In subsequent years, the desman iinhabited the floodplain of the Kerzhenets river 20 km upstream and 60 km downstream of the river. The number of reintroduced population was 35-40 individuals in 2012, 17 individuals - in 2013. Probably from 30 to 50% of the reintroduced population of desmans inhabit the territory of the Kerzhenskiy State Nature Reserve. Population numbers of desmans in the Reserve varied from 25 individuals in 2005 to 3 in 2015. The positive population trend was recored in 2016-17. Also the paper discusses the limiting factors, the relationship between desmans and muskrats. Now the number of reintroduced population is at a critically low level. However, it is essential for conservation of this endangered species. Recommendations for continued monitoring of the desman status in the valley of the Kerzhenets river are presented.

  20. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins.

    PubMed

    Gampe, David; Nikulin, Grigory; Ludwig, Ralf

    2016-12-15

    Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precipitation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff, surface evaporation, precipitation and air temperature are taken from climate model simulations. The ensemble applied in this study consists of 22 simulations, derived from different combinations of four General Circulation Models (GCMs) forcing different Regional Climate Models (RCMs) and two Representative Concentration Pathways (RCPs) at ~12km horizontal resolution provided through the EURO-CORDEX initiative. Four river basins (Adige, Ebro, Evrotas and Sava) are selected and climate change signals for the future period 2035-2065 as compared to the reference period 1981-2010 are investigated. Decreased runoff and evaporation indicate increased water scarcity over the Ebro and the Evrotas, as well as the southern parts of the Adige and the Sava, resulting from a temperature increase of 1-3° and precipitation decrease of up to 30%. Most severe changes are projected for the summer months indicating further pressure on the river basins already at least partly characterized by flow intermittency. The widely used Falkenmark indicator is presented and confirms this tendency and shows the necessity for spatially distributed analysis and high resolution projections. Related uncertainties are addressed by the means of a variance decomposition and model agreement to determine the robustness of the projections. The study highlights the importance of high resolution climate projections and represents a feasible approach to assess climate impacts on water scarcity also in regions that suffer from data scarcity. Copyright © 2016. Published by Elsevier B.V.

  1. Risk Assessment on Dietary Exposure to Aflatoxin B1 in Post-Harvest Peanuts in the Yangtze River Ecological Region

    PubMed Central

    Ding, Xiaoxia; Wu, Linxia; Li, Peiwu; Zhang, Zhaowei; Zhou, Haiyan; Bai, Yizhen; Chen, Xiaomei; Jiang, Jun

    2015-01-01

    Based on the 2983 peanut samples from 122 counties in six provinces of China’s Yangtze River ecological region collected between 2009–2014, along with the dietary consumption data in Chinese resident nutrition and health survey reports from 2002 and 2004, dietary aflatoxin exposure and percentiles in the corresponding statistics were calculated by non-parametric probability assessment, Monte Carlo simulation and bootstrap sampling methods. Average climatic conditions in the Yangtze River ecological region were calculated based on the data from 118 weather stations via the Thiessen polygon method. The survey results found that the aflatoxin contamination of peanuts was significantly high in 2013. The determination coefficient (R2) of multiple regression reflected by the aflatoxin B1 content with average precipitation and mean temperature in different periods showed that climatic conditions one month before harvest had the strongest impact on aflatoxin B1 contamination, and that Hunan and Jiangxi provinces were greatly influenced. The simulated mean aflatoxin B1 intake from peanuts at the mean peanut consumption level was 0.777–0.790 and 0.343–0.349 ng/(kg·d) for children aged 2–6 and standard adults respectively. Moreover, the evaluated cancer risks were 0.024 and 0.011/(100,000 persons·year) respectively, generally less than China’s current liver cancer incidence of 24.6 cases/(100,000 persons·year). In general, the dietary risk caused by peanut production and harvest was low. Further studies would focus on the impacts of peanut circulation and storage on aflatoxin B1 contamination risk assessment in order to protect peanut consumers’ safety and boost international trade. PMID:26501322

  2. Human activities and its Responses to Glacier Melt Water Over Tarim River Basin

    NASA Astrophysics Data System (ADS)

    He, Hai; Zhou, Shenbei; Bai, Minghao

    2017-04-01

    Tarim River Basin lies in the south area of Xinjiang Uygur Autonomous Region, the north-west area of China. It is the longest inland river of China. Being far away from ocean and embraced by high mountains, Tarim River Basin is the typical arid region in the world. The intensity of human activities increased rapidly in Tarim River Basin since 1980's and water resources lacking is the major issue restricting the development of social economy. The glacier melt water plays an important role for the regional social and economic development, and it accounts for 40% of mountain-pass runoff. It is a fragile mutual-dependent relationship between local sustainable development and runoff. Under the background of global change glacier melt water process has also changed especially in the arid and semi-arid region. Due to climate change, glacier in Tarim River Basin has melted in an observed way since 1980s, together with increasing trend of annual rainfall and virgin flow in mountain basins. Correspondingly, human activity gets more frequent since 1970s, resulting into the obvious fragile mutual-dependent relationship between basin runoff and water use amount. Through an analysis of meteorological, hydrological and geographical observation data from 1985 to 2015, this thesis make a multi-factor variance analysis of population, cultivation area, industrial development and runoff in upstream and mid-stream of Tarim River under changing conditions. Furthermore, the regulation function of natural factors and water demand management factors on relationship between runoff and water using amount are discussed, including temperature, rainfall, and evaporation, water conservation technology and soil-water exploitation administrative institutions. It concludes that: first, increase in glacier runoff, rainfall amount, and virgin flow haven't notably relieved ecological issue in Tarim River Basin, and even has promoted water use behaviour in different flowing areas and noticeably reduced

  3. A preliminary evaluation of regional ground-water flow in south-central Washington

    USGS Publications Warehouse

    La Sala, A. M.; Doty, G.C.; Pearson, F.J.

    1973-01-01

    The characteristics of regional ground-water flow were investigated in a 4,500-square-mile region of south-central Washington, centered on the U.S. Atomic Energy Commission Hanford Reservation. The investigation is part of the Commission's feasibility study on storing high-level radioactive waste in chambers mined in basaltic rocks at a. depth of about 3,000 feet or more below the surface. Ground-water flow., on a regional scale, occurs principally in the basalt and-in interbedded sediments of the Columbia River Group, and is controlled by topography, the structure of the basalt, and the large streams--the Columbia, Snake, and Yakima Rivers. The ground water beneath the main part of the Hanford Reservation, south and west of the Columbia River, inures southeastward from recharge areas in the uplands, including Cold Creek and Dry Creek valleys, and ultimately discharges to the Columbia River south of the reservation: East and southeast of the Columbia River, ground water flows generally southwestward and discharges to the River. The Yakima River valley contains a distinct flow system in which movement is toward the Yakima River from the topographic divides. A large southward-flowing ground-water system beneath the southern flank of the Horse Heaven Hills discharges to the Columbia River in the westward-trending reach downstream from Wallula Gap.

  4. Simulating Water Resource Disputes of Transboundary River: A Case Study of the Zhanghe River Basin, China

    NASA Astrophysics Data System (ADS)

    Yuan, Liang; He, Weijun; Liao, Zaiyi; Mulugeta Degefu, Dagmawi; An, Min; Zhang, Zhaofang

    2018-01-01

    Water resource disputes within transboundary river basin has been hindering the sustainable use of water resources and efficient management of environment. The problem is characterized by a complex information feedback loop that involves socio-economic and environmental systems. This paper presents a system dynamics based model that can simulate the dynamics of water demand, water supply, water adequacy and water allocation instability within a river basin. It was used for a case study in the Zhanghe River basin of China. The base scenario has been investigated for the time period between 2000 and 2050. The result shows that the Chinese national government should change the water allocation scheme of downstream Zhanghe River established in 1989, more water need to be allocated to the downstream cities and the actual allocation should be adjusted to reflect the need associated with the socio-economic and environmental changes within the region, and system dynamics improves the understanding of concepts and system interactions by offering a comprehensive and integrated view of the physical, social, economic, environmental, and political systems.

  5. OHIO RIVER BASIN - FORMULATING CLIMATE CHANGE MITIGATION/ADAPTATION STRATEGIES THROUGH REGIONAL COLLABORATION WITH THE ORB ALLIANCE

    EPA Science Inventory

    The Huntington District of the U.S. Army Corps of Engineers, in collaboration with the Ohio River Basin Alliance, the Institute for Water Resources, the Great Lakes and Ohio River Division, and numerous other Federal agencies, non-governmental organizations, research institutions...

  6. Numerical representation of rainfall field in the Yarmouk River Basin

    NASA Astrophysics Data System (ADS)

    Shentsis, Isabella; Inbar, Nimrod; Magri, Fabien; Rosenthal, Eliyahu

    2017-04-01

    Rainfall is the decisive factors in evaluating the water balance of river basins and aquifers. Accepted methods rely on interpolation and extrapolation of gauged rain to regular grid with high dependence on the density and regularity of network, considering the relief complexity. We propose an alternative method that makes up to those restrictions by taking into account additional physical features of the rain field. The method applies to areas with (i) complex plain- and mountainous topography, which means inhomogeneity of the rainfall field and (ii) non-uniform distribution of a rain gauge network with partial lack of observations. The rain model is implemented in two steps: 1. Study of the rainfall field, based on the climatic data (mean annual precipitation), its description by the function of elevation and other factors, and estimation of model parameters (normalized coefficients of the Taylor series); 2. Estimation of rainfall in each historical year using the available data (less complete and irregular versus climatic data) as well as the a-priori known parameters (by the basic hypothesis on inter-annual stability of the model parameters). The proposed method was developed by Shentsis (1990) for hydrological forecasting in Central Asia and was later adapted to the Lake Kinneret Basin. Here this model (the first step) is applied to the Yarmouk River Basin. The Yarmouk River is the largest tributary of the Jordan River. Its transboundary basin (6,833 sq. km) extends over Syria (5,257 sq.km), Jordan (1,379 sq. km) and Israel (197 sq. km). Altitude varies from 1800 m (and more) to -235 m asl. The total number of rain stations in use is 36 (17 in Syria, 19 in Jordan). There is evidently lack and non-uniform distribution of a rain gauge network in Syria. The Yarmouk Basin was divided into five regions considering typical relationship between mean annual rain and elevation for each region. Generally, the borders of regions correspond to the common topographic

  7. Dispersal of river sediment in the Southern California Bight

    USGS Publications Warehouse

    Warrick, J.A.; Farnsworth, K.L.

    2009-01-01

    The rivers of Southern California deliver episodic pulses of water, sediment, nutrients, and pollutants to the region's coastal waters. Although river-sediment dispersal is observed in positively buoyant (hypopycnal) turbid plumes extending tens of kilometers from river mouths, very little of the river sediment is found in these plumes. Rather, river sediment settles quickly from hypopycnal plumes to the seabed, where transport is controlled by bottom-boundary layer processes, presumably including fluid-mud (hyperpycnal) gravity currents. Here we investigate the geographical patterns of river-sediment dispersal processes by examining suspended-sediment concentrations and loads and the continental shelf morphology offshore river mouths. Throughout Southern California, river sediment is discharged at concentrations adequately high to induce enhanced sediment settling, including negative buoyancy. The rivers draining the Western Transverse Range produce suspended-sediment concentrations that are orders of magnitude greater than those in the urbanized region and Peninsular Range to the south, largely due to differences in sediment yield. The majority of sediment discharge from the Santa Clara River and Calleguas Creek occurs above the theoretical negative buoyancy concentration (>40 g/l). These rivers also produce event sediment loading as great as the Eel River, where fluid-mud gravity currents are observed. The continental shelf of Southern California has variable morphology, which influences the ability to transport via gravity currents. Over half of the rivers examined are adjacent to shelf slopes greater than 0.01, which are adequately steep to sustain auto-suspending gravity currents across the shelf, and have little (<10 m) Holocene sediment accumulation. Shelf settings of the Ventura, Santa Clara, and Tijuana Rivers are very broad and low sloped (less than 0.004), which suggests that fluid-mud gravity currents could transport across these shelves, albeit slowly

  8. Environmental lead pollution threatens the children living in the Pearl River Delta region, China.

    PubMed

    Chen, Jianmin; Tong, Yongpeng; Xu, Jiazhang; Liu, Xiaoli; Li, Yulan; Tan, Mingguang; Li, Yan

    2012-09-01

    The objective of this study is to determine children's blood lead levels and identify sources of lead exposure. Childhood lead exposure constitutes a major pediatric health problem today in China. A blood lead screening survey program for children in the age group of 2-12 years residing in Pearl River Delta region, south of China, was carried out from Dec 2007 to Jan 2008. Blood lead levels and lead isotope ratios of a total of 761 participants were assessed by inductively coupled plasma mass spectroscopy. Measurements of urban environmental samples for source identification of children lead exposure were also performed. The geometric mean value of the children's blood lead levels was 57.05 μg/L, and 9.6% of them were higher than 100 μg/L. The blood lead levels were still much higher than those in developed countries. Based on the data of environmental lead source inventories, lead isotopic tracing revealed that there is about 6.7% past used gasoline Pb embedded in Shenzhen residential dust and about 15.6% in Guangzhou dust, respectively.

  9. Location and timing of river-aquifer exchanges in six tributaries to the Columbia River in the Pacific Northwest of the United States

    USGS Publications Warehouse

    Konrad, C.P.

    2006-01-01

    The flow of water between rivers and contiguous aquifers influences the quantity and quality of water resources, particularly in regions where precipitation and runoff are unevenly distributed through the year, such as the Columbia Basin (CB) in northwestern United States. Investigations of basin hydrogeology and gains and losses of streamflow for six rivers in the CB were reviewed to characterize general patterns in the timing and location of river-aquifer exchanges at a reach-scale (0.5-150 km) and to identify geologic and geomorphic features associated with the largest exchanges. Ground-water discharge to each river, or the gain in streamflow, was concentrated spatially: more than one-half of the total gains along each river segment were contributed from reaches that represented no more than 30% of the total segment length with the largest and most concentrated gains in rivers in volcanic terrains. Fluvial recharge of aquifers, or losses of streamflow, was largest in rivers in sedimentary basins where unconsolidated sediments form shallow aquifers. Three types of geologic or geomorphic features were associated with the largest exchanges: (1) changes in the thickness of unconsolidated aquifers; (2) contacts between lithologic units that represent contrasts in permeability; and (3) channel forms that increase the hydraulic gradient or cross-sectional area of flow paths between a river and shallow ground-water. The down-valley component of ground-water flow and its vertical convergence on or divergence from a riverbed account for large streamflow gains in some reaches and contrast with the common assumption of lateral ground-water discharge to a river that penetrates completely through the aquifer. Increased ground-water discharge was observed during high-flow periods in reaches of four rivers indicating that changes in ground-water levels can be more important than stage fluctuations in regulating the direction and magnitude of river-aquifer exchanges and that

  10. Assessment of water quality and identification of polluted risky regions based on field observations & GIS in the Honghe River watershed, China.

    PubMed

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie; Liu, Yuanmin; Deng, Cai; Nie, Ning

    2015-01-01

    Water quality assessment at the watershed scale requires not only an investigation of water pollution and the recognition of main pollution factors, but also the identification of polluted risky regions resulted in polluted surrounding river sections. To realize this objective, we collected water samplings from 67 sampling sites in the Honghe River watershed of China with Grid GIS method to analyze six parameters including dissolved oxygen (DO), ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), total nitrogen (TN) and total phosphorus (TP). Single factor pollution index and comprehensive pollution index were adopted to explore main water pollutants and evaluate water quality pollution level. Based on two evaluate methods, Geo-statistical analysis and Geographical Information System (GIS) were used to visualize the spatial pollution characteristics and identifying potential polluted risky regions. The results indicated that the general water quality in the watershed has been exposed to various pollutants, in which TP, NO2-N and TN were the main pollutants and seriously exceeded the standard of Category III. The zones of TP, TN, DO, NO2-N and NH3-N pollution covered 99.07%, 62.22%, 59.72%, 37.34% and 13.82% of the watershed respectively, and they were from medium to serious polluted. 83.27% of the watershed in total was polluted by comprehensive pollutants. These conclusions may provide useful and effective information for watershed water pollution control and management.

  11. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China

    NASA Astrophysics Data System (ADS)

    Chen, Zhongsheng; Chen, Yaning; Li, Baofu

    2013-02-01

    Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Kaidu River Basin in the arid region of northwest China were analyzed to investigate changes in annual runoff during the period of 1960-2009. The nonparametric Mann-Kendall test and the Mann-Kendall-Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. Step change point in annual runoff was identified in the basin, which occurred in the year around 1993 dividing the long-term runoff series into a natural period (1960-1993) and a human-induced period (1994-2009). Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In 1994-2009, climate variability was the main factor that increased runoff with contribution of 90.5 %, while the increasing percentage due to human activities only accounted for 9.5 %, showing that runoff in the Kaidu River Basin is more sensitive to climate variability than human activities. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.

  12. Assessment of Water Quality and Identification of Polluted Risky Regions Based on Field Observations & GIS in the Honghe River Watershed, China

    PubMed Central

    Yan, Chang-An; Zhang, Wanchang; Zhang, Zhijie; Liu, Yuanmin; Deng, Cai; Nie, Ning

    2015-01-01

    Water quality assessment at the watershed scale requires not only an investigation of water pollution and the recognition of main pollution factors, but also the identification of polluted risky regions resulted in polluted surrounding river sections. To realize this objective, we collected water samplings from 67 sampling sites in the Honghe River watershed of China with Grid GIS method to analyze six parameters including dissolved oxygen (DO), ammonia nitrogen (NH3-N), nitrate nitrogen (NO3-N), nitrite nitrogen (NO2-N), total nitrogen (TN) and total phosphorus (TP). Single factor pollution index and comprehensive pollution index were adopted to explore main water pollutants and evaluate water quality pollution level. Based on two evaluate methods, Geo-statistical analysis and Geographical Information System (GIS) were used to visualize the spatial pollution characteristics and identifying potential polluted risky regions. The results indicated that the general water quality in the watershed has been exposed to various pollutants, in which TP, NO2-N and TN were the main pollutants and seriously exceeded the standard of Category III. The zones of TP, TN, DO, NO2-N and NH3-N pollution covered 99.07%, 62.22%, 59.72%, 37.34% and 13.82% of the watershed respectively, and they were from medium to serious polluted. 83.27% of the watershed in total was polluted by comprehensive pollutants. These conclusions may provide useful and effective information for watershed water pollution control and management. PMID:25768942

  13. A database of radionuclide activity and metal concentrations for the Alligator Rivers Region uranium province.

    PubMed

    Doering, Che; Bollhöfer, Andreas

    2016-10-01

    This paper presents a database of radionuclide activity and metal concentrations for the Alligator Rivers Region (ARR) uranium province in the Australian wet-dry tropics. The database contains 5060 sample records and 57,473 concentration values. The data are for animal, plant, soil, sediment and water samples collected by the Environmental Research Institute of the Supervising Scientist (ERISS) as part of its statutory role to undertake research and monitoring into the impacts of uranium mining on the environment of the ARR. Concentration values are provided in the database for 11 radionuclides ( 227 Ac, 40 K, 210 Pb, 210 Po, 226 Ra, 228 Ra, 228 Th, 230 Th, 232 Th, 234 U, 238 U) and 26 metals (Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, Rb, S, Sb, Se, Sr, Th, U, V, Zn). Potential uses of the database are discussed. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  14. River water pollution condition in upper part of Brantas River and Bengawan Solo River

    NASA Astrophysics Data System (ADS)

    Roosmini, D.; Septiono, M. A.; Putri, N. E.; Shabrina, H. M.; Salami, I. R. S.; Ariesyady, H. D.

    2018-01-01

    Wastewater and solid waste from both domestic and industry have been known to give burden on river water quality. Most of river water quality problem in Indonesia has start in the upper part of river due to anthropogenic activities, due to inappropriate land use management including the poor wastewater infrastructure. Base on Upper Citarum River Water pollution problem, it is interesting to study the other main river in Java Island. Bengawan Solo River and Brantas River were chosen as the sample in this study. Parameters assessed in this study are as follows: TSS, TDS, pH, DO, and hexavalent chromium. The status of river water quality are assess using STORET method. Based on (five) parameters, STORET value showed that in Brantas River, Pagerluyung monitoring point had the worst quality relatively compared to other monitoring point in Brantas River with exceeding copper, lead and tin compared to the stream standard in East Java Provincial Regulation No. 2 in 2008. Brantas River was categorized as lightly polluted river based on monitoring period 2011-2015 in 5 monitoring points, namely Pendem, Sengguruh, Kademangan, Meritjan and Kertosono.

  15. Floods of July 23-26, 2010, in the Little Maquoketa River and Maquoketa River Basins, Northeast Iowa

    USGS Publications Warehouse

    Eash, David A.

    2012-01-01

    Minor flooding occurred July 23, 2010, in the Little Maquoketa River Basin and major flooding occurred July 23–26, 2010, in the Maquoketa River Basin in northeast Iowa following severe thunderstorm activity over the region during July 22–24. A breach of the Lake Delhi Dam on July 24 aggravated flooding on the Maquoketa River. Rain gages at Manchester and Strawberry Point, Iowa, recorded 72-hour-rainfall amounts of 7.33 and 12.23 inches, respectively, on July 24. The majority of the rainfall occurred during a 48-hour period. Within the Little Maquoketa River Basin, a peak-discharge estimate of 19,000 cubic feet per second (annual flood-probability estimate of 4 to 10 percent) at the discontinued 05414500 Little Maquoketa River near Durango, Iowa streamgage on July 23 is the sixth largest flood on record. Within the Maquoketa River Basin, peak discharges of 26,600 cubic feet per second (annual flood-probability estimate of 0.2 to 1 percent) at the 05416900 Maquoketa River at Manchester, Iowa streamgage on July 24, and of 25,000 cubic feet per second (annual flood-probability estimate of 1 to 2 percent) at the 05418400 North Fork Maquoketa River near Fulton, Iowa streamgage on July 24 are the largest floods on record for these sites. A peak discharge affected by the Lake Delhi Dam breach on July 24 at the 05418500 Maquoketa River near Maquoketa, Iowa streamgage, located downstream of Lake Delhi, of 46,000 cubic feet per second on July 26 is the third highest on record. High-water marks were measured at five locations along the Little Maquoketa and North Fork Little Maquoketa Rivers between U.S. Highway 52 near Dubuque and County Road Y21 near Rickardsville, a distance of 19 river miles. Highwater marks were measured at 28 locations along the Maquoketa River between U.S. Highway 52 near Green Island and State Highway 187 near Arlington, a distance of 142 river miles. High-water marks were measured at 13 locations along the North Fork Maquoketa River between

  16. Pertinent spatio-temporal scale of observation to understand suspended sediment yield control factors in the Andean region: the case of the Santa River (Peru)

    NASA Astrophysics Data System (ADS)

    Morera, S. B.; Condom, T.; Vauchel, P.; Guyot, J.-L.; Galvez, C.; Crave, A.

    2013-11-01

    Hydro-sedimentology development is a great challenge in Peru due to limited data as well as sparse and confidential information. This study aimed to quantify and to understand the suspended sediment yield from the west-central Andes Mountains and to identify the main erosion-control factors and their relevance. The Tablachaca River (3132 km2) and the Santa River (6815 km2), located in two adjacent Andes catchments, showed similar statistical daily rainfall and discharge variability but large differences in specific suspended-sediment yield (SSY). In order to investigate the main erosion factors, daily water discharge and suspended sediment concentration (SSC) datasets of the Santa and Tablachaca rivers were analysed. Mining activity in specific lithologies was identified as the major factor that controls the high SSY of the Tablachaca (2204 t km2 yr-1), which is four times greater than the Santa's SSY. These results show that the analysis of control factors of regional SSY at the Andes scale should be done carefully. Indeed, spatial data at kilometric scale and also daily water discharge and SSC time series are needed to define the main erosion factors along the entire Andean range.

  17. Factors influencing bank geomorphology and erosion of the Haw River, a high order river in North Carolina, since European settlement.

    PubMed

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2-3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows.

  18. Factors Influencing Bank Geomorphology and Erosion of the Haw River, a High Order River in North Carolina, since European Settlement

    PubMed Central

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2–3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows. PMID:25302956

  19. Monitoring industrial contaminants release to Russian Arctic rivers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    Reports suggest that over 100 billion metric tons of mixed industrial wastes have been dumped or disposed of in the Northern and Arctic regions of the former Soviet Union in crude landfill facilities or directly into rivers. GERG has undertaken studies in two of the principal river systems transporting contaminants from large watersheds to the Arctic Ocean and Kara Seas, and has obtained samples of sediment and biota for analysis. In the current phase of the study, 20 surficial sediments down each of the axis of the Ob and Yenisey Rivers into the Kara Sea were analyzed for industrially derivedmore » trace organic compounds (hydrocarbons, pesticides, PCBs) and trace metals. Twenty sediments from the two rivers were subjected to high resolution OCIMS analysis for dioxins, furans, and coplanar PCBs to determine the concentrations of these industrial pollutants. In addition, similar analyses were conducted on 10 tissue samples (fish and other invertebrate animals) down the axis of each river.« less

  20. Bridging the gaps: An overview of wood across time and space in diverse rivers

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2017-02-01

    Nearly 50 years of research focused on large wood (LW) in rivers provide a basis for understanding how wood enters rivers; how wood decays, breaks, and is transported downstream; and how at least temporarily stable wood influences channel geometry, fluxes of water, sediment, and organic matter, and the abundance and diversity of aquatic and riparian organisms. Field-based studies have led to qualitative conceptual models and to numerical stimulations of river processes involving wood. Numerous important gaps remain, however, in our understanding of wood dynamics. The majority of research on wood in rivers focuses on small- to medium-sized rivers, defined using the ratio of wood piece size to channel width as channels narrower than the locally typical wood-piece length (small) and slightly narrower than the longer wood pieces present (medium). Although diverse geographic regions and biomes are represented by one or a few studies in each region, the majority of research comes from perennial rivers draining temperate conifer forests. Regional syntheses most commonly focus on the Pacific Northwest region of North America where most of these studies originate. Consequently, significant gaps in our understanding include lack of knowledge of wood-related processes in large rivers, dryland rivers, and rivers of the high and low latitudes. Using a wood budget as an organizing framework, this paper identifies other gaps related to wood recruitment, transport, storage, and how beavers influence LW dynamics. With respect to wood recruitment, we lack information on the relative importance of mass tree mortality and transport of buried or surficial downed wood from the floodplain into the channel in diverse settings. Knowledge gaps related to wood transport include transport distances of LW and thresholds for LW mobility in small to medium rivers. With respect to wood storage, we have limited data on longitudinal trends in LW loads within unaltered large and great rivers and on

  1. Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region).

    PubMed

    Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Ashraf, Muhammad; Bhatti, Muhammad Tousif

    2015-02-01

    A large proportion of Pakistan's irrigation water supply is taken from the Upper Indus River Basin (UIB) in the Himalaya-Karakoram-Hindukush range. More than half of the annual flow in the UIB is contributed by five of its snow and glacier-fed sub-basins including the Astore (Western Himalaya - south latitude of the UIB) and Hunza (Central Karakoram - north latitude of the UIB) River basins. Studying the snow cover, its spatio-temporal change and the hydrological response of these sub-basins is important so as to better manage water resources. This paper compares new data from the Astore River basin (mean catchment elevation, 4100 m above sea level; m asl afterwards), obtained using MODIS satellite snow cover images, with data from a previously-studied high-altitude basin, the Hunza (mean catchment elevation, 4650 m asl). The hydrological regime of this sub-catchment was analyzed using the hydrological and climate data available at different altitudes from the basin area. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff at southern part, but snow and glacier melt are dominant at the northern part of the catchment. Similar snow cover trends (stable or slightly increasing) but different river flow trends (increasing in Astore and decreasing in Hunza) suggest a sub-catchment level study of the UIB to understand thoroughly its hydrological behavior for better flood forecasting and water resources management. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Flooding along Danube River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Heavy rains in Central and Eastern Europe over the past few weeks have led to some of the worst flooding the region has witnessed in over a century. The floods have killed more than 100 people in Germany, Russia, Austria, Hungary and the Czech Republic and have led to as much as $20 billion in damage. This false-color image of the Danube River and its tributaries was taken on August 19, 2002, by the Moderate Resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra satellite. Budapest, the capital of Hungary, sits just south of the large bend in the river at the top of the image. Here the water reached levels not seen since 1965. Fortunately, the riverbanks are lined with 33-foot retainer walls throughout the city, so it did not face the same fate as Dresden or Prague along the Elbe River. But as one can see, the floodwaters hit many rural areas farther south. As last reported, the water was receding along the Danube. Credit: Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC.

  3. Characteristics of Atmospheric River Families in California's Russian River Basin

    NASA Astrophysics Data System (ADS)

    Fish, M. A.; Wilson, A. M.; Ralph, F. M.

    2017-12-01

    Previous studies have shown the importance of antecedent conditions and storm duration on atmospheric river (AR) impacts in California's Russian River basin. This study concludes that successive ARs, or families of ARs, produce an enhanced streamflow response compared to individual storms. This amplifies the impacts of these storms, which contribute to 50% of the annual precipitation in the Russian River basin. Using the Modern Era Retrospective - analysis for Research and Applications 2 dataset and 228 AR events from November 2004 - April 2017 affecting Bodega Bay, CA (BBY), this study identified favorable characteristics for families vs single ARs and their associated impacts. It was found that 111 AR events ( 50%) occurred within 5 days of one another with 44 events ( 40%) occurring within 24 hours. Using the winter of 2017, which had a multitude of successive ARs in Northern California, this study evaluates the applicability of family composites using case study comparisons. The results of this study show large divergences of family composites from the overall AR pattern, depending on the time interval between events. A composite of all AR events show Bodega Bay generally south of the jet exit region, SW-NE tilt of 500mb heights and a more northerly subtropical high. ARs occurring on the same day have faster southerly winds, a weaker low off the coast and a southerly moisture plume extending along the CA coast. Comparatively ARs that occur the following day, feature a more zonal pattern with faster winds north of BBY, a deeper low off the coast and a moisture plume southwest of the Russian River watershed.

  4. Mesoscale variability of the Upper Colorado River snowpack

    USGS Publications Warehouse

    Ling, C.-H.; Josberger, E.G.; Thorndike, A.S.

    1996-01-01

    In the mountainous regions of the Upper Colorado River Basin, snow course observations give local measurements of snow water equivalent, which can be used to estimate regional averages of snow conditions. We develop a statistical technique to estimate the mesoscale average snow accumulation, using 8 years of snow course observations. For each of three major snow accumulation regions in the Upper Colorado River Basin - the Colorado Rocky Mountains, Colorado, the Uinta Mountains, Utah, and the Wind River Range, Wyoming - the snow course observations yield a correlation length scale of 38 km, 46 km, and 116 km respectively. This is the scale for which the snow course data at different sites are correlated with 70 per cent correlation. This correlation of snow accumulation over large distances allows for the estimation of the snow water equivalent on a mesoscale basis. With the snow course data binned into 1/4?? latitude by 1/4?? longitude pixels, an error analysis shows the following: for no snow course data in a given pixel, the uncertainty in the water equivalent estimate reaches 50 cm; that is, the climatological variability. However, as the number of snow courses in a pixel increases the uncertainty decreases, and approaches 5-10 cm when there are five snow courses in a pixel.

  5. Delineation of ground water potential zones using GIS and remote sensing - A case study from midland region of Vamanapuram river basin, Kerala, India

    NASA Astrophysics Data System (ADS)

    Prasad, Geena; Vinod P., G.; John, Shaleena Elizabeth

    2018-04-01

    In a highly rugged terrain, shielded by hard crystalline rocks like that of Kerala, locating potential zones of groundwater is found to be an unenviable task. Remote sensing and Geographical information system technologies have been attempted widely to delineate the potential regions in such terrain. Geographical information system tool has been used for delineation of groundwater prospect zones in midland physiographic zone (30-200m) of Vamanapuram river basin. The terrain variables are generated using satellite imageries, SRTM DEM data of 30m resolution and SOI toposheets. The groundwater prospect zones were delineated through the integration of the reclassified raster map layers of geomorphology, slope percent, geology, land use / land cover and soil texture using the weighted overlay analysis in the GIS platform. The groundwater prospects in the study area were grouped into five classes and their distribution are; `very high/high' (8.79%), `moderate' (39.08%), and `very low / low' (52.01%). The study result of the area has been validated with water level data of dug wells and bore wells of the area. The spatial distribution map of the water level of the region is overlaid on groundwater prospect map and shows a positive correlation i.e., the water level at shallow depth in higher prospect zones and at deeper depth in poor to very poor zones. The Groundwater prospect map of midland region of Vamanapuram river basin can be used as base level information which can be further investigated with geophysical methods to locate potential well sites for the execution of water supply schemes.

  6. Lack of healthy food options on children's menus of restaurants in the health-disparate Dan River region of Virginia and North Carolina, 2013.

    PubMed

    Hill, Jennie L; Olive, Nicole C; Waters, Clarice N; Estabrooks, Paul A; You, Wen; Zoellner, Jamie M

    2015-03-26

    Interest has increased in understanding the types and healthfulness of restaurant foods for children, particularly in disadvantaged areas. The purpose of this community-based participatory research study was to describe the quality of restaurant food offered to children in a health-disparate region in Virginia and North Carolina and to determine if the availability of healthy foods differed by location (rural, urban) or by the predominant race (black, white, mixed race) of an area's population. Restaurants offering a children's menu in the 3 counties in Virginia and North Carolina that make up the Dan River Region were identified by using state health department records. Research assistants reviewed menus using the Children's Menu Assessment (CMA), a tool consisting of 29 scored items (possible score range, -4 to 21). Scores were calculated for each restaurant. We obtained information on the predominant race of the population at the block group level for all counties from 2010 US Census data. For the 137 restaurants studied, mean CMA scores were low (mean, 1.6; standard deviation [SD], 2.7), ranging from -4 to 9 of 21 possible points. Scores were lowest for restaurants in the predominantly black block groups (mean, 0.2; SD, 0.4) and significantly different from the scores for restaurants in the predominantly white (mean, 1.4; SD, 1.6) and mixed-race block groups (mean, 2.6; SD, 2.4) (F = 4.3; P < .05). Children's menus available in the Dan River Region lack healthy food options, particularly in predominantly black block groups. These study findings can contribute to regional efforts in policy development or environmental interventions for children's food quality by the community-based participatory research partnership and help local stakeholders to determine possible strategies and solutions for improving local food options for children.

  7. Analysis of River Profiles in northwestern Bhutan

    NASA Astrophysics Data System (ADS)

    de Palézieux, Larissa; Leith, Kerry; Loew, Simon

    2017-04-01

    With large alluvial plains, narrow gorges, prominent knick points, and chains of terraces or cut-off ridges, the deeply-incised valleys in Bhutan reflect an environment of diverse erosional activity. Topography ranges from 97 m to 7570 m, with characteristic postglacial landscapes typically located above ca 4200 m. The lower latitudes below ca 3000 m show high relief and terraced or linear hillslopes indicative of a fluvial origin. Although full channel analyses in the region suggest significant local tectonic contributions to longitudinal river profiles (Adams et al., 2016), we develop a method to isolate rivers in an apparently homogeneous tectonic block in the mid- to upper- elevations. Profiles of rivers in this region show a consistent pattern with a marked topographic step covering 2000 m of elevation change within 10 km. Field observations of knick points, terraces and cut-off ridges associated with the step suggest a regionally consistent signal resulting from changes in relative uplift or erosion rate. Chi plots correlate well for all channels when the base level is chosen to isolate rivers below the main alluvial plain, suggesting similar fluvial erosion histories in upstream regions. Employing third order topographic derivatives (Minár et al., 2013), we identify low angle slope sections/plateaus corresponding to terraces and/or extrapolated ridges that project onto former valley floor levels. Employing similar methods as those used to correlate fluvial knickpoints, these will be used to test for regionally consistent changes in fluvial and hillslope activity that may be tied to major tectonic or climatic changes. REFERENCES Adams, B., Whipple, K. X., Hodges, K. V. & Heimsath, A. M. 2016: In situ development of high-elevation, low-relief landscapes via duplex deformation in the Eastern Himalayan hinterland, Bhutan, in Journal of Geophysical Research: Earth Surface, 925-938. Minár, J., Jenčo, M., Evans, I. S., Minár, J., Kadlec, M., Krcho, J., Pacina

  8. Regional Water Table (1998) and Ground-Water-Level Changes in the Mojave River, and the Morongo Ground-Water Basins, San Bernardino County, California

    USGS Publications Warehouse

    Smith, Gregory A.; Pimentel, M. Isabel

    2000-01-01

    The Mojave River and the Morongo ground-water basins are in the southwestern part of the Mojave Desert in southern California. Ground water from these basins supplies a major part of the water requirements for the region. The rapid and continuous population growth in this area has resulted in ever-increasing demands on local ground-water resources. The continuing collection and interpretation of ground-water data helps local water districts, military bases, and private citizens gain a better understanding of the ground-water systems and, consequently, water availability. During 1998 the U.S. Geological Survey and other agencies made approximately 2,370 water-level measurements in the Mojave River and the Morongo ground-water basins. These data document recent conditions and changes in ground-water levels. A water-level contour map was drawn using data from 450 wells, providing coverage for most of both basins. Twenty-three hydrographs show long-term (as much as 70 years) water-level trends throughout the basins. To help show effects of late seasonal recharge along the Mojave River, 14 short-term (13 years) hydrographs were created. A water-level change map was compiled to enable comparison of 1996 and 1998 water levels. The Mojave River and the Morongo ground-water basins had little change in water levels between 1996 and 1998 - with the exception of the areas of the Yucca Valley affected by artificial recharge. Other water-level changes were localized and reflected pumping or measurements made before seasonal recharge. Three areas of perched ground water were identified: El Mirage Lake (dry), Adelanto, and Lucerne Valley.

  9. Syntectonic Mississippi River Channel Response: Integrating River Morphology and Seismic Imaging to Detect Active Faults

    NASA Astrophysics Data System (ADS)

    Magnani, M. B.

    2017-12-01

    Alluvial rivers, even great rivers such as the Mississippi, respond to hydrologic and geologic controls. Temporal variations of valley gradient can significantly alter channel morphology, as the river responds syntectonically to attain equilibrium. The river will alter its sinuosity, in an attempt to maintain a constant gradient on a surface that changes slope through time. Therefore, changes of river pattern can be the first clue that active tectonics is affecting an area of pattern change. Here I present geomorphological and seismic imaging evidence of a previously unknown fault crossing the Mississippi river south of the New Madrid seismic zone, between Caruthersville, Missouri and Osceola, Arkansas, and show that both datasets support Holocene fault movement, with the latest slip occurring in the last 200 years. High resolution marine seismic reflection data acquired along the Mississippi river imaged a NW-SE striking north-dipping fault displacing the base of the Quaternary alluvium by 15 m with reverse sense of movement. The fault consistently deforms the Tertiary, Cretaceous and Paleozoic formations. Historical river channel planforms dating back to 1765 reveal that the section of the river channel across the fault has been characterized by high sinuosity and steep projected-channel slope compared to adjacent river reaches. In particular, the reach across the fault experienced a cutoff in 1821, resulting in a temporary lowering of sinuosity followed by an increase between the survey of 1880 and 1915. Under the assumption that the change in sinuosity reflects river response to a valley slope change to maintain constant gradient, I use sinuosity through time to calculate the change in valley slope since 1880 and therefore to estimate the vertical displacement of the imaged fault in the past 200 years. Based on calculations so performed, the vertical offset of the fault is estimated to be 0.4 m, accrued since at least 1880. If the base of the river alluvium

  10. Retrieval of river discharge solely from satellite imagery and at-many-stations hydraulic geometry: Sensitivity to river form and optimization parameters

    NASA Astrophysics Data System (ADS)

    Gleason, Colin J.; Smith, Laurence C.; Lee, Jinny

    2014-12-01

    Knowledge of river discharge is critically important for water resource management, climate modeling, and improved understanding of the global water cycle, yet discharge is poorly known in much of the world. Remote sensing holds promise to mitigate this gap, yet current approaches for quantitative retrievals of river discharge require in situ calibration or a priori knowledge of river hydraulics, limiting their utility in unmonitored regions. Recently, Gleason and Smith (2014) demonstrated discharge retrievals within 20-30% of in situ observations solely from Landsat TM satellite images through discovery of a river-specific geomorphic scaling phenomenon termed at-many-stations hydraulic geometry (AMHG). This paper advances the AMHG discharge retrieval approach via additional parameter optimizations and validation on 34 gauged rivers spanning a diverse range of geomorphic and climatic settings. Sensitivity experiments reveal that discharge retrieval accuracy varies with river morphology, reach averaging procedure, and optimization parameters. Quality of remotely sensed river flow widths is also important. Recommended best practices include a proposed global parameter set for use when a priori information is unavailable. Using this global parameterization, AMHG discharge retrievals are successful for most investigated river morphologies (median RRMSE 33% of in situ gauge observations), except braided rivers (median RRMSE 74%), rivers having low at-a-station hydraulic geometry b exponents (reach-averaged b < 0.1, median RRMSE 86%), and arid rivers having extreme discharge variability (median RRMSE > 1000%). Excluding such environments, 26-41% RRMSE agreement between AMHG discharge retrievals and in situ gauge observations suggests AMHG can meaningfully address global discharge knowledge gaps solely from repeat satellite imagery.

  11. Regional tree growth and inferred summer climate in the Winnipeg River basin, Canada, since AD 1783

    NASA Astrophysics Data System (ADS)

    St. George, Scott; Meko, David M.; Evans, Michael N.

    2008-09-01

    A network of 54 ring-width chronologies is used to estimate changes in summer climate within the Winnipeg River basin, Canada, since AD 1783. The basin drains parts of northwestern Ontario, northern Minnesota and southeastern Manitoba, and is a key area for hydroelectric power production. Most chronologies were developed from Pinus resinosa and P. strobus, with a limited number of Thuja occidentalis, Picea glauca and Pinus banksiana. The dominant pattern of regional tree growth can be recovered using only the nine longest chronologies, and is not affected by the method used to remove variability related to age or stand dynamics from individual trees. Tree growth is significantly, but weakly, correlated with both temperature (negatively) and precipitation (positively) during summer. Simulated ring-width chronologies produced by a process model of tree-ring growth exhibit similar relationships with summer climate. High and low growth across the region is associated with cool/wet and warm/dry summers, respectively; this relationship is supported by comparisons with archival records from early 19th century fur-trading posts. The tree-ring record indicates that summer droughts were more persistent in the 19th and late 18th century, but there is no evidence that drought was more extreme prior to the onset of direct monitoring.

  12. Hydrologic data for the Obed River watershed, Tennessee

    USGS Publications Warehouse

    Knight, Rodney R.; Wolfe, William J.; Law, George S.

    2014-01-01

    The Obed River watershed drains a 520-square-mile area of the Cumberland Plateau physiographic region in the Tennessee River basin. The watershed is underlain by conglomerate, sandstone, and shale of Pennsylvanian age, which overlie Mississippian-age limestone. The larger creeks and rivers of the Obed River system have eroded gorges through the conglomerate and sandstone into the deeper shale. The largest gorges are up to 400 feet deep and are protected by the Wild and Scenic Rivers Act as part of the Obed Wild and Scenic River, which is managed by the National Park Service. The growing communities of Crossville and Crab Orchard, Tennessee, are located upstream of the gorge areas of the Obed River watershed. The cities used about 5.8 million gallons of water per day for drinking water in 2010 from Lake Holiday and Stone Lake in the Obed River watershed and Meadow Park Lake in the Caney Fork River watershed. The city of Crossville operates a wastewater treatment plant that releases an annual average of about 2.2 million gallons per day of treated effluent to the Obed River, representing as much as 10 to 40 percent of the monthly average streamflow of the Obed River near Lancing about 35 miles downstream, during summer and fall. During the past 50 years (1960–2010), several dozen tributary impoundments and more than 2,000 small farm ponds have been constructed in the Obed River watershed. Synoptic streamflow measurements indicate a tendency towards dampened high flows and slightly increased low flows as the percentage of basin area controlled by impoundments increases.

  13. Shortnose sturgeon use small coastal rivers: The importance of habitat connectivity

    USGS Publications Warehouse

    Zydlewski, Gayle B.; Kinnison, M.T.; Dionne, P.E.; Zydlewski, Joseph D.; Wippelhauser, Gail S.

    2011-01-01

    Contrary to conventional wisdom for shortnose sturgeon (Acipenser brevirostrum), we document shortnose sturgeon use of habitats beyond large rivers. Telemetry data from 2008 to 2010 in the Gulf of Maine demonstrates that adult shortnose sturgeon (up to 70%) frequently move between Maine’s two largest rivers, the Kennebec and Penobscot Rivers. Even more interesting, small rivers located between these watersheds were used by 52% of the coastal migrants. Small river use was not trivial, 80% of observed movements extended more than 10 km upstream. However, visits were short in duration. This pattern indicates one of several possibilities: directed use of resources, searching behaviors related to reproduction (i.e. straying) or undirected wandering. Data suggest a relationship between residence time in small rivers and distance to the lowermost barrier. Restoring connectivity to upstream habitats in these rivers could allow opportunities for metapopulation expansion. Regional management of shortnose sturgeon in the Gulf of Maine should incorporate a habitat framework that considers small coastal rivers.

  14. Regional severe particle pollution and its association with synoptic weather patterns in the Yangtze River Delta region, China

    NASA Astrophysics Data System (ADS)

    Shu, Lei; Xie, Min; Gao, Da; Wang, Tijian; Fang, Dexian; Liu, Qian; Huang, Anning; Peng, Liwen

    2017-11-01

    Regional air pollution is significantly associated with dominant weather systems. In this study, the relationship between the particle pollution over the Yangtze River Delta (YRD) region and weather patterns is investigated. First, the pollution characteristics of particles in the YRD are studied using in situ monitoring data (PM2.5 and PM10) in 16 cities and Terra/MODIS AOD (aerosol optical depth) products collected from December 2013 to November 2014. The results show that the regional mean value of AOD is high in the YRD, with an annual mean value of 0.71±0.57. The annual mean particle concentrations in the cities of Jiangsu Province all exceed the national air quality standard. The pollution level is higher in inland areas, and the highest concentrations of PM2.5 and PM10 are 79 and 130 µg m-3, respectively, in Nanjing. The PM2.5 : PM10 ratios are typically high, thus indicating that PM2.5 is the overwhelmingly dominant particle pollutant in the YRD. The wintertime peak of particle concentrations is tightly linked to the increased emissions during the heating season as well as adverse meteorological conditions. Second, based on NCEP (National Center for Environmental Prediction) reanalysis data, synoptic weather classification is conducted and five typical synoptic patterns are objectively identified. Finally, the synthetic analysis of meteorological fields and backward trajectories are applied to further clarify how these patterns impact particle concentrations. It is demonstrated that air pollution is more or less influenced by high-pressure systems. The relative position of the YRD to the anti-cyclonic circulation exerts significant effects on the air quality of the YRD. The YRD is largely influenced by polluted air masses from the northern and the southern inland areas when it is located at the rear of the East Asian major trough. The significant downward motion of air masses results in stable weather conditions, thereby hindering the diffusion of air

  15. Integrative taxonomy supports new candidate fish species in a poorly studied neotropical region: the Jequitinhonha River Basin.

    PubMed

    Pugedo, Marina Lages; de Andrade Neto, Francisco Ricardo; Pessali, Tiago Casarim; Birindelli, José Luís Olivan; Carvalho, Daniel Cardoso

    2016-06-01

    Molecular identification through DNA barcoding has been proposed as a way to standardize a global biodiversity identification system using a partial sequence of the mitochondrial COI gene. We applied an integrative approach using DNA barcoding and traditional morphology-based bioassessment to identify fish from a neotropical region possessing low taxonomic knowledge: the Jequitinhonha River Basin (Southeastern Brazil). The Jequitinhonha River Basin (JRB) has a high rate of endemism and is considered an area of high priority for fish conservation, with estimates indicating the presence of around 110 native and non-indigenous species. DNA barcodes were obtained from 260 individuals belonging to 52 species distributed among 35 genera, 21 families and 6 orders, including threatened and rare species such as Rhamdia jequitinhonha and Steindachneridion amblyurum. The mean Kimura two-parameter genetic distances within species, genera and families were: 0.44, 12.16 and 20.58 %, respectively. Mean intraspecific genetic variation ranged from 0 to 11.43 %, and high values (>2 %) were recovered for five species. Species with a deep intraspecific distance, possibly flagging overlooked taxa, were detected within the genus Pimelodella. Fifteen species, only identified to the genus level, had unique BINs, with a nearest neighbor distance over 2 % and therefore, potential new candidate species supported by DNA barcoding. The integrative taxonomy approach using DNA barcoding and traditional taxonomy may be a remedy to taxonomy impediment, accelerating species identification by flagging potential new candidate species and to adequately conserve the megadiverse neotropical ichthyofauna.

  16. Living Rivers: Importance of Andes-Amazon Connectivity and Consequences of Hydropower Development

    NASA Astrophysics Data System (ADS)

    Anderson, E.

    2016-12-01

    The inherent dynamism of rivers along elevational and longitudinal gradients underpins freshwater biodiversity, ecosystem function, and ecosystem services in the Andean-Amazon. While this region covers only a small part of the entire Amazon Basin, its influences on downstream ecology, biogeochemistry, and human wellbeing are disproportionate with its relative small size. Seasonal flow pulses from Andean rivers maintain habitat, signal migratory fishes, and export sediment, nutrients, and organic matter to distant ecosystems—like lowland Amazonia and the Atlantic coast of Brazil. Rivers are key transportation routes, and freshwater fisheries are a primary protein source for the >30 million people that inhabit the Amazon Basin. Numerous cultural traditions depend on free-flowing Andean rivers; examples include Kukama beliefs in the underwater cities of the Marañon River, where people who have drowned in rivers whose bodies are not recovered go to live, or the pre-dawn bathing rituals of the Peruvian Shawi, who gain energy and connect with ancestors in cold, fast-flowing Andean waters. Transformations in the Andean-Amazon landscape—in particular from dams—threaten to compromise flows critical for human and ecosystem wellbeing. Presently, at least 250 hydropower dams are in operation, under construction, or proposed for Andean-Amazon rivers. This presentation will discuss regional trends in hydropower development, quantify effects of existing and proposed dams on Andean-Amazon connectivity, and examine the social and cultural importance of free-flowing Andean-Amazon rivers.

  17. River-aquifer interactions, geologic heterogeneity, and low-flow management

    USGS Publications Warehouse

    Fleckenstein, J.H.; Niswonger, R.G.; Fogg, G.E.

    2006-01-01

    Low river flows are commonly controlled by river-aquifer exchange, the magnitude of which is governed by hydraulic properties of both aquifer and aquitard materials beneath the river. Low flows are often important ecologically. Numerical simulations were used to assess how textural heterogeneity of an alluvial system influences river seepage and low flows. The Cosumnes River in California was used as a test case. Declining fall flows in the Cosumnes River have threatened Chinook salmon runs. A ground water-surface water model for the lower river basin was developed, which incorporates detailed geostatistical simulations of aquifer heterogeneity. Six different realizations of heterogeneity and a homogenous model were run for a 3-year period. Net annual seepage from the river was found to be similar among the models. However, spatial distribution of seepage along the channel, water table configuration and the level of local connection, and disconnection between the river and aquifer showed strong variations among the different heterogeneous models. Most importantly, the heterogeneous models suggest that river seepage losses can be reduced by local reconnections, even when the regional water table remains well below the riverbed. The percentage of river channel responsible for 50% of total river seepage ranged from 10% to 26% in the heterogeneous models as opposed to 23% in the homogeneous model. Differences in seepage between the models resulted in up to 13 d difference in the number of days the river was open for salmon migration during the critical fall months in one given year. Copyright ?? 2006 The Author(s).

  18. [Nitrogen flow in Huizhou region].

    PubMed

    Ma, Xiaobo; Wang, Zhaoyin; Koenig, Albert; Deng, Jiaquan

    2006-06-01

    Eutrophication is a serious problem of water body pollution. By the method of material flow accounting, this paper studied the human activities- related nitrogen flow in the system of environment and anthroposphere in Huizhou region. The non-point source pollution was quantified by export coefficient method, and the domestic discharge was estimated by demand-supply method. The statistic and dynamic analyses based on the investigation data of 1998 showed that the major nitrogen flows in this region were river loads, fertilizer and feedstuff imports, atmospheric deposition, animal excretes' degradation and volatilization, and the processes relating to burning and other emissions. In 1998, about 40% of nitrogen was detained in the system, which could be accumulated and yield potential environmental problems. The nitrogen export in this region was mainly by rivers, accounted for about 57%. A comparison of Huizhou region with the Danube and Changjiang basins showed that the unit area nitrogen exports in these three regions were of the same magnitude, and the per capita nitrogen exports were comparable.

  19. [Measurement and estimation of grassland evapotranspiration in a mountainous region at the upper reach of Heihe River basin, China].

    PubMed

    Yang, Yong; Chen, Ren-sheng; Song, Yao-xuan; Liu, Jun-feng; Han, Chun-tan; Liu, Zhang-wen

    2013-04-01

    Evapotranspiration (ET) is an important component of water cycle, but its measurement in high altitude mountainous region is quite difficult, inducing the insufficient understanding on the actual ET in high altitude mountainous region and the effects of ET on this region' s water cycle. In this paper, two small type weighing mini-lysimeters were applied to measure the daily ET in a piece of grassland in a high altitude mountainous region of the Heihe River basin from July 1st, 2009 to June 30th, 2010. Based on the measured data, the methods of FAO-56 Penman-Monteith (F-P-M), Priestley-Taylor (P-T), and Hargreaves-Samani (H-S) were employed to estimate the ET to analyze the applicability of the three methods for the mountainous region, and the pan coefficient at the measurement spots was discussed. During the measurement period, the total annual ET at the measurement spots was 439.9 mm, accounting for 96.5% of the precipitation in the same period, and the ET showed an obvious seasonal distribution, being 389. 3 mm in May-October, accounting for 88. 5% of the annual value. All the three methods could be well applied to estimate the summer ET but not the winter ET, and their applicability followed the sequence of P-T > F-P-M > H-S. At the measurement spots, the daily pan coefficient in summer was 0.7-0. 8, while that in winter was quite variable.

  20. Seasonal variation in pans in relation to limno-chemistry, size, hydroperiod, and river connectivity in a semi-arid subtropical region

    NASA Astrophysics Data System (ADS)

    Nhiwatiwa, Tamuka; Dalu, Tatenda

    2017-02-01

    Seasonal pans are hydrologically dynamic, with significant changes in water volume and depth in response to high evaporation, infiltration rates and inundation events. Intra-seasonal and inter-seasonal changes in endorheic and floodplain pans in relation to limnology, size, hydroperiod, and river connectivity were studied over two rainfall seasons across 36 pans at the Save Valley Conservancy. In the study region, floodplain pans were identified as pans that had connectivity with the Save River, while the endorheic pans (large and small) were hydrologically isolated basins. Seasonal trends for physico-chemical variables were initial low and gradual increased for both rainfall seasons. Significant inter-seasonal differences for several physico-chemical variables were observed. No significant differences in physico-chemical variables were observed between large and small endorheic pans, with the except for vegetation cover, which was higher in large pans. Floodplain pans differed from the endorheic systems in pH, conductivity, nutrients and suspended solids. Connectivity was found to be insignificant, as connections between these systems were probably too infrequent. Seasonal pans were uniquely distinguished by their morphometric, physico-chemical and hydrological characteristics. Inevitably, they are vulnerable to climate change with the extent of their resilience currently unknown.

  1. Variation of Runoff and Precipitation in the Hekou-Longmen Region of the Yellow River Based on Elasticity Analysis

    PubMed Central

    Li, Erhui; Mu, Xingmin; Zhao, Guangju; Gao, Peng; Shao, Hongbo

    2014-01-01

    Precipitation is very important to the formation of runoff, and studying of runoff variation and its response to precipitation has practical significance to sustainable utilization of water resources. The study used Mann-Kendall test, anomaly accumulation method, and precipitation elasticity of runoff method to analyze the changes in the relation of precipitation and runoff and the contribution of precipitation to runoff change in the Hekou-Longmen region (from 1957 to 2010), Huangfuchuan watershed (from 1954 to 2010), and Yanhe watershed (from 1952 to 2010) in the middle reaches of the Yellow River. The results showed that runoff appeared a significant decreasing trend (P = 0.01) while it was not significant in precipitation in all study areas. In particular, the reductions of average annual runoff in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed were 72.7%, 87.5%, and 32.2%, respectively, during 2000–2010 compared to the 1950s. There existed two abrupt change points of the runoff in the Hekou-Longmen region and Huangfuchuan watershed, which were detected in 1979 and 1998. But in the Yanhe watershed only one abrupt change point was found in 1996. The precipitation elasticities of runoff were 1.11, 1.09, and 1.26, respectively, and the contributions of precipitation on runoff reduction were 26.4%, 17.9%, and 31.6%, respectively, in the Hekou-Longmen region, Huangfuchuan watershed, and Yanhe watershed. PMID:24955424

  2. A snapshot on prokaryotic diversity of the Solimões River basin (Amazon, Brazil).

    PubMed

    Toyama, D; Santos-Júnior, C D; Kishi, L T; Oliveira, T C S; Garcia, J W; Sarmento, H; Miranda, F P; Henrique-Silva, F

    2017-05-18

    The Amazon region has the largest hydrographic basin on the planet and 
is well known for its huge biodiversity of plants and animals. However, 
there is a lack of studies on aquatic microbial biodiversity in the 
Solimões River, one of its main water courses. To investigate the 
microbial biodiversity of this region, we performed 16S rRNA gene clone 
libraries from Solimões River and adjacent rivers and lakes. Our question was which microorganisms inhabit the different types of aquatic 
environments in this part of the basin, and how diversity varies among 
these environments (rivers and lakes). The microbial 
diversity generating 13 clone libraries of the bacterial 16S rRNA gene 
and 5 libraries of the archaeal 16S rRNA gene was assessed. Diversity measured by several alpha diversity indices (ACE, Chao, Shannon and Simpson) revealed significant differences in diversity indices between lake and river samples. The site with higher microbial diversity was in the Solimões River (4S), downstream the confluence with Purus River. The most common bacterial taxon was the cosmopolitan Polynucleobacter genus, widely observed in all samples. The phylum Thaumarchaeota was the prevailing archaeal taxon. Our results provide the first insight into the microbial diversity of the world's largest river basin.

  3. Tidal controls on river delta morphology

    NASA Astrophysics Data System (ADS)

    Hoitink, A. J. F.; Wang, Z. B.; Vermeulen, B.; Huismans, Y.; Kästner, K.

    2017-09-01

    River delta degradation has been caused by extraction of natural resources, sediment retention by reservoirs, and sea-level rise. Despite global concerns about these issues, human activity in the world’s largest deltas intensifies. Harbour development, construction of flood defences, sand mining and land reclamation emerge as key contemporary factors that exert an impact on delta morphology. Tides interacting with river discharge can play a crucial role in the morphodynamic development of deltas under pressure. Emerging insights into tidal controls on river delta morphology suggest that--despite the active morphodynamics in tidal channels and mouth bar regions--tidal motion acts to stabilize delta morphology at the landscape scale under the condition that sediment import during low flows largely balances sediment export during high flows. Distributary channels subject to tides show lower migration rates and are less easily flooded by the river because of opposing non-linear interactions between river discharge and the tide. These interactions lead to flow changes within channels, and a more uniform distribution of discharge across channels. Sediment depletion and rigorous human interventions in deltas, including storm surge defence works, disrupt the dynamic morphological equilibrium and can lead to erosion and severe scour at the channel bed, even decades after an intervention.

  4. Dramatic undercutting of piedmont rivers after the 2008 Wenchuan Ms 8.0 Earthquake

    PubMed Central

    Fan, Niannian; Nie, Ruihua; Wang, Qiang; Liu, Xingnian

    2016-01-01

    Changes in river channel erosion or deposition affect the geomorphic evolution, aquatic ecosystems, and river regulation strategies. Fluvial processes are determined by the flow, sediment and boundary conditions, and it has long been expected that increasing sediment supply will induce aggradation. Here, based on thorough field surveys, we show the unexpected undercutting of the piedmont rivers influenced by the 2008 Wenchuan (Ms 8.0) Earthquake. The rivers flow from the Longmen Mountain with significant topographic relief to the flat Chengdu plain. In the upstreams, sediment supply increased because of the landslides triggered by the earthquake, causing deposition in the upstream mountain reaches. However, the downstream plain reaches suffered undercutting instead of deposition, and among those rivers, Shiting River was the most seriously affected, with the largest undercutting depth exceeding 20 m. The reasons for this unexpected undercutting are proposed herein and relate to both natural and anthropogenic causes. In addition, we also demonstrate, at least for certain conditions, such as rivers flowing from large-gradient mountain regions to low-gradient plain regions, that upstream sediment pulses may induce aggradation in upstream and degradation in downstream, causing the longitudinal profile to steepen to accommodate the increasing sediment flux. PMID:27857220

  5. MERCURY RISK MANAGEMENT IN LIVESTOCK PONDS ON THE CHEYENNE RIVER SIOUX RESERVATION

    EPA Science Inventory

    In a prior collaborative 3 year study with the Cheyenne River Sioux Tribe Department of Environmental Protection (CRST DEP), and the Agencies' Environmental Response Team, RegionVIII investigated Hg levels in fish tissues from the Cheyenne River and Lake Oahe in South Dakota. In...

  6. River-corridor habitat dynamics, Lower Missouri River

    USGS Publications Warehouse

    Jacobson, Robert B.

    2010-01-01

    Intensive management of the Missouri River for navigation, flood control, and power generation has resulted in substantial physical changes to the river corridor. Historically, the Missouri River was characterized by a shifting, multithread channel and abundant unvegetated sandbars. The shifting channel provided a wide variety of hydraulic environments and large areas of connected and unconnected off-channel water bodies.Beginning in the early 1800s and continuing to the present, the channel of the Lower Missouri River (downstream from Sioux City, Iowa) has been trained into a fast, deep, single-thread channel to stabilize banks and maintain commercial navigation. Wing dikes now concentrate the flow, and revetments and levees keep the channel in place and disconnect it from the flood plain. In addition, reservoir regulation of the Missouri River upstream of Yankton, South Dakota, has substantially changed the annual hydrograph, sediment loads, temperature regime, and nutrient budgets.While changes to the Missouri River have resulted in broad social and economic benefits, they have also been associated with loss of river-corridor habitats and diminished populations of native fish and wildlife species. Today, Missouri River stakeholders are seeking ways to restore some natural ecosystem benefits of the Lower Missouri River without compromising traditional economic uses of the river and flood plain.

  7. Analysis of river planforms in the New Madrid region and possible relations to tectonic warping across the loess bluffs and within the meander belt of the Mississippi River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, K.A.; Mayer, L.

    1993-03-01

    Stream channel planforms measured from such streams as the Hatchie (H), L'Anguille (LA), St. Francis, White (W) and Little Red (LR) rivers provide a way to study influences of topographic warping between the loess bluffs that bound the Mississippi river valley. Planforms are analyzed using sinuosity, Richardson analysis, and pattern. Pattern changes include transitions from braided to meandering and meandering to straight. Sinuosities of the W and LR rivers show a transition from low sinuosity, [1.3, 1.4] to higher sinuosity [2.6, 2.8], over a short distance, as they cross the bluffs from the uplands to the Western Lowlands. On themore » east, the Hatchie changes from a braided to meandering pattern upon crossing the bluffs. Its sinuosity varies from a low of about 1.4 to a high of 2.2, coincident with a marsh area. The LA river flows on the west side of Crowley's Ridge and is paralleled by the St. Francis river on the east. These rivers, with very different drainage areas and sinuosities, show matching meander bends at similar wavelengths along Crowley's Ridge. The bends are about 10 km in 1/2 wavelength suggesting some extraordinary influence on pattern perpendicular to the ridge. Richardson analysis indicates that features with a 1/2 wavelength of 2 km may control several rivers' bending patterns. These features are analyzed to determine their spatial relations with one another.« less

  8. Parameter uncertainty and nonstationarity in regional extreme rainfall frequency analysis in Qu River Basin, East China

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Xu, Y. P.; Gu, H.

    2014-12-01

    Traditionally, regional frequency analysis methods were developed for stationary environmental conditions. Nevertheless, recent studies have identified significant changes in hydrological records, leading to the 'death' of stationarity. Besides, uncertainty in hydrological frequency analysis is persistent. This study aims to investigate the impact of one of the most important uncertainty sources, parameter uncertainty, together with nonstationarity, on design rainfall depth in Qu River Basin, East China. A spatial bootstrap is first proposed to analyze the uncertainty of design rainfall depth estimated by regional frequency analysis based on L-moments and estimated on at-site scale. Meanwhile, a method combining the generalized additive models with 30-year moving window is employed to analyze non-stationarity existed in the extreme rainfall regime. The results show that the uncertainties of design rainfall depth with 100-year return period under stationary conditions estimated by regional spatial bootstrap can reach 15.07% and 12.22% with GEV and PE3 respectively. On at-site scale, the uncertainties can reach 17.18% and 15.44% with GEV and PE3 respectively. In non-stationary conditions, the uncertainties of maximum rainfall depth (corresponding to design rainfall depth) with 0.01 annual exceedance probability (corresponding to 100-year return period) are 23.09% and 13.83% with GEV and PE3 respectively. Comparing the 90% confidence interval, the uncertainty of design rainfall depth resulted from parameter uncertainty is less than that from non-stationarity frequency analysis with GEV, however, slightly larger with PE3. This study indicates that the spatial bootstrap can be successfully applied to analyze the uncertainty of design rainfall depth on both regional and at-site scales. And the non-stationary analysis shows that the differences between non-stationary quantiles and their stationary equivalents are important for decision makes of water resources management

  9. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China.

    PubMed

    Cheung, K C; Poon, B H T; Lan, C Y; Wong, M H

    2003-09-01

    The effects of anthropogenic activities, industrialization and urbanization on the accumulation of heavy metals and nutrients in sediments and water of rivers in the Pearl River Delta region were examined. Most sediments were seriously contaminated with Cd, Pb, and Zn in accordance with the classification by Hong Kong Environmental Protection Department. Total phosphorus (P) and nitrogen (N) concentrations in sediments ranged from 0.02% to 0.12% and 0.06% to 0.64%, respectively. High carbon (C), N, P and sulphur (S) levels at Yuen Long Creek were related to the discharge of industrial effluents along the river. The enrichment of P and ammoniacal-nitrogen (NH4+-N) in water were obvious. For most sites, the P concentration exceeded 0.1 mg/l, which is the recommended concentration in flowing water to encourage excessive growth of aquatic plants. Nine out of the 16 sites studied had NH4+-N concentration over 2 mg/l. The rivers in the south of Deep Bay (Hong Kong) had high nutrient exports compared with the rivers in the east region and western oceanic water. The concentrations of nitrate-nitrogen NO3--N in surface water were under the maximum contaminant level in public drinking water supplies (10 mg/l) except for one site. Although the concentrations of heavy metals in overlying water were low, their accumulations were significant. High contents of nickel (Ni) and zinc (Zn) in water were found at certain locations, suggesting the occurrence of some local contamination. These preliminary results indicated that river and sediment transported pollutants is likely one of the factors for the water quality degradation of Deep Bay water.

  10. Land-use change and its ecological responses: a pilot study of typical agro-pastoral region in the Heihe River, northwest China

    NASA Astrophysics Data System (ADS)

    Du, Ziqiang; Shen, Yudan; Wang, Jian; Cheng, Wenshi

    2009-10-01

    Although rapid land-use change has taken place in many arid and semi-arid regions of northwestern China, relatively less attention has been paid to studying the characteristics of land use change, as well as the ecological responses of land use change in these regions, especially in fragile agro-pastoral regions. This paper analyzes the land use change and its ecological responses during 1985-2005 based on the landscape metrics change and transition matrix of land use types by the combined use of satellite remote sensing and geographical information systems in Shandan County, a typical agro-pastoral region in the middle and upper reaches of Heihe River, northwest China. The results indicate significant changes in land use have occurred and the landscape has become more continuous, clumped and more homogeneous within the examined area. Land use change was mainly characterized by remarkable expansion of barred land and water area, slight increase of cropland and urbanized land, and evident shrinkage of grassland and woodland. The study also demonstrates that the land cover suffered severe degeneration and the ecological environment tended to deteriorate over the study period, mainly as follows: grassland degradation, land desertification and ecosystem services decline.

  11. Natural and anthropogenic land cover change and its impact on the regional climate and hydrological extremes over Sanjiangyuan region

    NASA Astrophysics Data System (ADS)

    Ji, P.; Yuan, X.

    2017-12-01

    Located in the northern Tibetan Plateau, Sanjiangyuan is the headwater region of the Yellow River, Yangtze River and Mekong River. Besides climate change, natural and human-induced land cover change (e.g., Graze for Grass Project) is also influencing the regional hydro-climate and hydrological extremes significantly. To quantify their impacts, a land surface model (LSM) with consideration of soil moisture-lateral surface flow interaction and quasi-three-dimensional subsurface flow, is used to conduct long-term high resolution simulations driven by China Meteorological Administration Land Data Assimilation System forcing data and different land cover scenarios. In particular, the role of surface and subsurface lateral flows is also analyzed by comparing with typical one-dimensional models. Lateral flows help to simulate soil moisture variability caused by topography at hyper-resolution (e.g., 100m), which is also essential for simulating hydrological extremes including soil moisture dryness/wetness and high/low flows. The LSM will also be coupled with a regional climate model to simulate the effect of natural and anthropogenic land cover change on regional climate, with particular focus on the land-atmosphere coupling at different resolutions with different configurations in modeling land surface hydrology.

  12. A tree-ring based reconstruction of Logan River streamflow, northern Utah

    Treesearch

    Eric B. Allen; Tammy M. Rittenour; R. Justin DeRose; Matthew F. Bekker; Roger Kjelgren; Brendan M. Buckley

    2013-01-01

    We created six new tree-ring chronologies in northern Utah, which were used with preexisting chronologies from Utah and western Wyoming to reconstruct mean annual flow for the Logan River, the largest tributary of the regionally important Bear River. Two reconstruction models were developed, a ''Local'' model that incorporated two Rocky Mountain...

  13. North Atlantic Oscillation influence on the stramflows of the Iberian Rivers

    NASA Astrophysics Data System (ADS)

    Lorenzo-Lacruz, J.; González-Hidalgo, J. C.; Vicente-Serrano, S. M.; López-Moreno, J. I.

    2010-09-01

    "NORTH ATLANTIC OSCILLATION INFLUENCE ON THE STREAMFLOWS OF THE IBERIAN RIVERS" LORENZO-LACRUZ, J. ¹, GONZÁLEZ-HIDALGO, J.C.², VICENTE-SERRANO, S.M. ¹, LÓPEZ-MORENO, J.I.¹ ¹Instituto Pirenaico de Ecología, CSIC (Spanish Research Council), Campus de Aula Dei, P.O. Box 202, Zaragoza 50080, Spain ²Departamento de Geografía, Universidad de Zaragoza, Zaragoza, Spain. We analyzed the North Atlantic Oscillation (NAO) influence on the monthly river discharges of Iberian rivers from 1945 to 2005. The study covers most of the Iberian river basins, using 187 monthly discharge series. The aim of this study is to determine the role of the variability of the NAO on the Iberian river discharges. Using the winter NAO we calculated correlations with the monthly river discharge series. We identified the positive and negative phases of the winter NAO for the period 1945-2006, and related to river discharge anomalies. Significant differences in river discharge were found between the positive and negative NAO phases with negative anomalies (dry conditions) during positive NAO periods, and positive anomalies (wet conditions) during negative NAO periods The results show a consistent and strong control of the river discharges by the winter NAO, but some spatial differences are shown, as three different domains were defined: a region under the direct influence of the NAO (central and western part of the Iberian Peninsula), a transition zone (Ebro Valley) and region free from that influence (Eastern part of the Iberian Peninsula). The spatial differences are also identified in the annual pattern of discharge anomalies. The basin characteristics, the location of the gauging stations and the human management are the possible drivers of these differences.

  14. River bulge evolution and dynamics in a non-tidal sea - Daugava River plume in the Gulf of Riga, Baltic Sea

    NASA Astrophysics Data System (ADS)

    Soosaar, Edith; Maljutenko, Ilja; Uiboupin, Rivo; Skudra, Maris; Raudsepp, Urmas

    2016-03-01

    Satellite remote sensing imagery and numerical modelling were used for the study of river bulge evolution and dynamics in a non-tidal sea, the Gulf of Riga (GoR) in the Baltic Sea. Total suspended matter (TSM) images showed a clearly formed anti-cyclonically rotating river bulge from Daugava River discharge during the studied low wind period. In about 7-8 days the bulge grew up to 20 km in diameter, before being diluted. A high-resolution (horizontal grid step of 125 m) General Estuarine Transport Model (GETM) was used for detailed description of the development of the river plume in the southern GoR over the period when satellite images were acquired. In the model simulation, the bulge growth rate was estimated as rb ˜ t0.5 ± 0.04 (R2 = 0.90). Both the model simulation and the satellite images showed that river water was mainly contained in the bulge and there were numerous intrusions at the outer perimeter of the bulge. We performed numerical sensitivity tests with actual bathymetry and measured river runoff without wind forcing (1) having an initial three-dimensional density distribution, and (2) using initially a homogeneous ambient density field. In the first case, the anti-cyclonic bulge did not develop within the course of the model simulation and the coastal current was kept offshore due to ambient density-driven circulation. In the second case, the river plume developed steadily into an anti-cyclonically recirculating bulge, with rb ˜ t0.28 ± 0.01 (R2 = 0.98), and a coastal current. Additional simulations with constant cross-shore and alongshore winds showed a significant effect of the wind in the evolution of the river bulge, even if the wind speed was moderate (3-4 m s-1). While previous studies conclude that the mid-field bulge region is governed by a balance between centrifugal, Coriolis and pressure gradient terms, our study showed that geostrophic balance is valid for the entire mid-field of the bulge, except during the 1-1.5 rotation period at

  15. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures

    USGS Publications Warehouse

    Fullerton, Aimee H.; Torgersen, Christian E.; Lawler, Joshua J.; Faux, Russell N.; Steel, E. Ashley; Beechie, Timothy J.; Ebersole, Joseph L.; Leibowitz, Scott J.

    2015-01-01

    Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and leveling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature versus distance) for 53 rivers in the Pacific Northwest (USA) using an extensive dataset of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically, and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient, and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform, or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling

  16. [A process of aquatic ecological function regionalization: The dual tree framework and conceptual model].

    PubMed

    Guo, Shu Hai; Wu, Bo

    2017-12-01

    Aquatic ecological regionalization and aquatic ecological function regionalization are the basis of water environmental management of a river basin and rational utilization of an aquatic ecosystem, and have been studied in China for more than ten years. Regarding the common problems in this field, the relationship between aquatic ecological regionalization and aquatic ecological function regionalization was discussed in this study by systematic analysis of the aquatic ecological zoning and the types of aquatic ecological function. Based on the dual tree structure, we put forward the RFCH process and the diamond conceptual model. Taking Liaohe River basin as an example and referring to the results of existing regionalization studies, we classified the aquatic ecological function regions based on three-class aquatic ecological regionalization. This study provided a process framework for aquatic ecological function regionalization of a river basin.

  17. Progress in understanding the formation of fine particulate matter and ground-level ozone in Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Wang, Xuemei; Wang, Tao; Zheng, Junyu; Shao, Min; Wang, Xinming

    2015-12-01

    In the past three decades, the Pearl River Delta of China has been suffered from severe air pollution due to the rapid increase in energy consumption associated with industrialization and urbanization of the region. The number of hazy days, increased from below 20 days in a year before 1970, to more than 150 days a year during 1980 and 2000. The ground-level ozone levels have also on the rise, with hourly concentration of 160 ppbv being observed in Guangzhou and 201 ppbv in nearby Hong Kong (Zhang et al., 2008). The ozone pollution has been difficult to reduce even in air quality improvement program for the Guangzhou Asian Games (Liu et al., 2013).

  18. Tidal river dynamics: Implications for deltas

    NASA Astrophysics Data System (ADS)

    Hoitink, A. J. F.; Jay, D. A.

    2016-03-01

    Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity intrusion, a realm that can extend inland hundreds of kilometers. One key phenomenon resulting from this interaction is the emergence of large fortnightly tides, which are forced long waves with amplitudes that may increase beyond the point where astronomical tides have become extinct. These can be larger than the linear tide itself at more landward locations, and they greatly influence tidal river water levels and wetland inundation. Exploration of the spectral redistribution and attenuation of tidal energy in rivers has led to new appreciation of a wide range of consequences for fluvial and coastal sedimentology, delta evolution, wetland conservation, and salinity intrusion under the influence of sea level rise and delta subsidence. Modern research aims at unifying traditional harmonic tidal analysis, nonparametric regression techniques, and the existing understanding of tidal hydrodynamics to better predict and model tidal river dynamics both in single-thread channels and in branching channel networks. In this context, this review summarizes results from field observations and modeling studies set in tidal river environments as diverse as the Amazon in Brazil, the Columbia, Fraser and Saint Lawrence in North America, the Yangtze and Pearl in China, and the Berau and Mahakam in Indonesia. A description of state-of-the-art methods for a comprehensive analysis of water levels, wave propagation, discharges, and inundation extent in tidal rivers is provided. Implications for lowland river deltas are also discussed in terms of sedimentary deposits, channel bifurcation, avulsion, and salinity intrusion, addressing contemporary research challenges.

  19. River-damming, late-Quaternary rockslides in the Ötz Valley region (Tyrol, Austria)

    NASA Astrophysics Data System (ADS)

    Dufresne, A.; Ostermann, M.; Preusser, F.

    2018-06-01

    The Ötz Valley and adjacent regions in Tyrol (Austria) have been repeatedly affected by large rockslope failures following deglaciation. Six rockslides, each over 107 m3 in volume, were emplaced into the Ötz and Inn valleys, five of which formed persistent rockslide dams. Even though catastrophic rockslope failures are short-lived events (commonly minutes) they can have long-lasting impacts on the landscape. For example, large fans have built in the Ötz Valley and knickpoints persist at the former dam sites even though the Ötz River has eroded through the deposits during the past thousands of years; exact age-constraints of rockslide dam failure, however, are still scarce. Empirical, geomorphic stability indices from the literature successfully identified the least and the most stable dams of this group, whereas the rest remain inconclusive with some indices variably placing the dams in the stable, unstable, and uncertain categories. This shows (a) that further index calibrations and (b) better age constraints on dam formation and failure are needed, and (c) that the exact processes of dam failure are not always trivial to pinpoint for ancient (partially) breached dams. This study is a contribution towards better constraining the nature and landscape impact of dam formation following large rockslope failures.

  20. Food poisoning associated with ingestion of wild wasp broods in the upstream region of the Lancang river valley, Yunnan province, China.

    PubMed

    Jiang, Li; Huang, Tian

    2018-04-01

    Food poisoning due to wild wasp broods ingestion has long been noted in the upstream region of the Lancang river valley, Yunnan province, China. This study describes the epidemiological and clinical features of the poisoning and possible causes. Surveillance data collected between 2008 and 2016 were analyzed to produce demographic data on patients, information on clinical presentations, wasp species identification, and estimations of possible risk factors for symptomatic cases. Eleven poisoning events were associated with the ingestion of wild wasp broods, including 46 exposed persons with 31 symptomatic living cases and 8 deceased cases that were reported in the Yunnan province between 2008 and 2016. Poisoning cases were only detected in the upstream region of the Lancang river valley in the autumn. The severity of the symptoms was correlated with an evident dose-effect relationship regarding the quantity ingested. The mean latent period from wild wasp broods ingestion to the onset of the symptoms was 10 h for symptomatic living cases and 7 h for deceased cases, respectively. Both gastrointestinal and neurological symptoms were commonly observed in the poisoning cases. The toxin source may be indirectly caused by the wasp broods due to the prevalence of local poisonous plants, such as Tripterygium wilfordii Hook F, Tripterygium hypoglaucum Hutch and Vaccinium bracteatum Thunb. Educational programs at the start of wasp harvest season in September in the high-risk area should be carried out to reduce the incidence of poisonings. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. River-ice break-up/freeze-up: a review of climatic drivers, historical trends and future predictions

    NASA Astrophysics Data System (ADS)

    Prowse, T. D.; Bonsal, B. R.; Duguay, C. R.; Lacroix, M. P.

    2007-10-01

    River ice plays a fundamental role in biological, chemical and physical processes that control freshwater regimes of the cold regions. Moreover, it can have enormous economic implications for river-based developments. All such activities and processes can be modified significantly by any changes to river-ice thickness, composition or event timing and severity. This paper briefly reviews some of the major hydraulic, mechanical and thermodynamic processes controlling river-ice events and how these are influenced by variations in climate. A regional and temporal synthesis is also made of the observed historical trends in river-ice break-up/freeze-up occurrence from the Eurasian and North American cold regions. This involves assessment of several hydroclimatic variables that have influenced past trends and variability in river-ice break-up/freeze-up dates including air-temperature indicators (e.g. seasonal temperature, 0°C isotherm dates and various degree-days) and large-scale atmospheric circulation patterns or teleconnections. Implications of future climate change on the timing and severity of river-ice events are presented and discussed in relation to the historical trends. Attention is drawn to the increasing trends towards the occurrence of mid-winter break-up events that can produce especially severe flood conditions but prove to be the most difficult type of event to model and predict.

  2. Flood-plain areas of the Mississippi River, mile 866.8 to mile 888.0, Minnesota

    USGS Publications Warehouse

    Carlson, George H.; Gue, Lowell C.

    1980-01-01

    Profiles of the regional flood, 500-year flood, and flood-protection elevation have been developed for a 21-mile reach of the Mississippi River. Areas flooded by the regional flood and by the 500-year flood were delineated by photogrammetric mapping techniques and are shown on seven large-scale map sheets. Over 1,300 acres of flood plain are included in the cities of Anoka, Champlin, Coon Rapids, Dayton, Ramsey and Elk River, and in unincorporated areas of Wright County. The flood-outline maps and flood profiles comprise data needed by local units of government to adopt, enforce, and administer flood-plain management regulations along the Mississippi River throughout the study reach. Streamflow data from two gaging stations provided the basis for definition of the regional and 500-year floods. Cross-section data obtained at 83 locations were used to develop a digital computer model of the river. Flood elevation and discharge data from the 1965 flood provided a basis for adjusting the computer model. Information relating the history of floods, formation of ice jams, and duration of flood elevations at Anoka and at Elk River are included.

  3. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red river drainage, USA

    DOE PAGES

    Jager, Henriette I.; Baskaran, Latha M.; Schweizer, Peter E.; ...

    2014-05-15

    We study that the mid-section of the Arkansas-White-Red (AWR) river basin near the 100 th parallel is particularly promising for sustainable biomass production using cellulosic perennial crops and residues. Along this longitudinal band, precipitation becomes limiting to competing crops that require irrigation from an increasingly depleted groundwater aquifer. In addition, the deep-rooted perennial, switchgrass, produces modest-to-high yields in this region with minimal inputs and could compete against alternative crops and land uses at relatively low cost. Previous studies have also suggested that switchgrass and other perennial feedstocks offer environmentally benign alternatives to corn and corn stover. However, water quality implicationsmore » remain a significant concern for conversion of marginal lands to bioenergy production because excess nutrients produced by agriculture for food or for energy contribute to eutrophication in the dead-zone in the Gulf of Mexico. This study addresses water quality implications for the AWR river basin. We used the SWAT model to compare water quality in rivers draining a baseline, pre-cellulosic-bioenergy and post-cellulosic-bioenergy landscapes for 2022 and 2030. Simulated water quality responses varied across the region, but with a net tendency toward decreased amounts of nutrient and sediment, particularly in subbasins with large areas of bioenergy crops in 2030 future scenarios. We conclude that water quality is one aspect of sustainability for which cellulosic bioenergy production in this region holds promise.« less

  4. Lack of Healthy Food Options on Children’s Menus of Restaurants in the Health-Disparate Dan River Region of Virginia and North Carolina, 2013

    PubMed Central

    Olive, Nicole C.; Waters, Clarice N.; Estabrooks, Paul A.; You, Wen; Zoellner, Jamie M.

    2015-01-01

    Introduction Interest has increased in understanding the types and healthfulness of restaurant foods for children, particularly in disadvantaged areas. The purpose of this community-based participatory research study was to describe the quality of restaurant food offered to children in a health-disparate region in Virginia and North Carolina and to determine if the availability of healthy foods differed by location (rural, urban) or by the predominant race (black, white, mixed race) of an area’s population. Methods Restaurants offering a children’s menu in the 3 counties in Virginia and North Carolina that make up the Dan River Region were identified by using state health department records. Research assistants reviewed menus using the Children’s Menu Assessment (CMA), a tool consisting of 29 scored items (possible score range, −4 to 21). Scores were calculated for each restaurant. We obtained information on the predominant race of the population at the block group level for all counties from 2010 US Census data. Results For the 137 restaurants studied, mean CMA scores were low (mean, 1.6; standard deviation [SD], 2.7), ranging from −4 to 9 of 21 possible points. Scores were lowest for restaurants in the predominantly black block groups (mean, 0.2; SD, 0.4) and significantly different from the scores for restaurants in the predominantly white (mean, 1.4; SD, 1.6) and mixed-race block groups (mean, 2.6; SD, 2.4) (F = 4.3; P < .05). Conclusion Children’s menus available in the Dan River Region lack healthy food options, particularly in predominantly black block groups. These study findings can contribute to regional efforts in policy development or environmental interventions for children’s food quality by the community-based participatory research partnership and help local stakeholders to determine possible strategies and solutions for improving local food options for children. PMID:25811495

  5. Assessing the evolution of oases in arid regions by reconstructing their historic spatio-temporal distribution: a case study of the Heihe River Basin, China

    NASA Astrophysics Data System (ADS)

    Xie, Yaowen; Wang, Guisheng; Wang, Xueqiang; Fan, Peilei

    2017-12-01

    Oasis evolution, one of the most obvious surface processes in arid regions, affects various aspects of the regional environment, such as hydrological processes, ecological conditions, and microclimates. In this paper, the historical spatio-temporal evolution of the cultivated oases in the Heihe River Basin, the second largest inland watershed in the northwest of China, was assessed using multidisciplinary methods and data from multiple sources, including historical literature, ancient sites, maps and remotely sensed images. The findings show that cultivated oases were first developed on a large scale during the Han Dynasty (121 BC-220) and then gradually decreased in extent from the Six Dynasties period (220-581) to the Sui-Tang period (581-907), reaching a minimum in the Song-Yuan period (960-1368). An abrupt revival occurred during the Ming Dynasty (1368-1644) and continued through the Qing Dynasty (1644-1911), and during the period of the Republic of China (1912-1949), oasis development reached its greatest peak of the entire historical period. The oasis areas during seven major historical periods, i.e., Han, Six Dynasties, Sui-Tang, Song-Yuan, Ming, Qing, and Republic of China, are estimated to have been 1703 km2, 1115 km2, 629 km2, 614 km2, 964 km2, 1205 km2, and 1917 km2, respectively. The spatial distribution generally exhibited a continuous sprawl process, with the center of the oases moving gradually from the downstream region to the middle and even upstream regions. The oases along the main river remained stable during most periods, whereas those close to the terminal reaches were subject to frequent variations and even abandonment. Socio-economic factors were the main forces driving the evolution of cultivated oases in the area; among them, political and societal stability, national defense, agricultural policy, population, and technological progress were the most important.

  6. Regional groundwater characteristics and hydraulic conductivity based on geological units in Korean peninsula

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Suk, H.

    2011-12-01

    In this study, about 2,000 deep observation wells, stream and/or river distribution, and river's density were analyzed to identify regional groundwater flow trend, based on the regional groundwater survey of four major river watersheds including Geum river, Han river, Youngsan-Seomjin river, and Nakdong river in Korea. Hydrogeologial data were collected to analyze regional groundwater flow characteristics according to geological units. Additionally, hydrological soil type data were collected to estimate direct runoff through SCS-CN method. Temperature and precipitation data were used to quantify infiltration rate. The temperature and precipitation data were also used to quantify evaporation by Thornthwaite method and to evaluate groundwater recharge, respectively. Understanding the regional groundwater characteristics requires the database of groundwater flow parameters, but most hydrogeological data include limited information such as groundwater level and well configuration. In this study, therefore, groundwater flow parameters such as hydraulic conductivities or transmissivities were estimated using observed groundwater level by inverse model, namely PEST (Non-linear Parameter ESTimation). Since groundwater modeling studies have some uncertainties in data collection, conceptualization, and model results, model calibration should be performed. The calibration may be manually performed by changing parameters step by step, or various parameters are simultaneously changed by automatic procedure using PEST program. In this study, both manual and automatic procedures were employed to calibrate and estimate hydraulic parameter distributions. In summary, regional groundwater survey data obtained from four major river watersheds and various data of hydrology, meteorology, geology, soil, and topography in Korea were used to estimate hydraulic conductivities using PEST program. Especially, in order to estimate hydraulic conductivity effectively, it is important to perform

  7. Klamath River Basin water-quality data

    USGS Publications Warehouse

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  8. Stream fish colonization but not persistence varies regionally across a large North American river basin

    USGS Publications Warehouse

    Wheeler, Kit; Wengerd, Seth J.; Walsh, Stephen J.; Martin, Zachary P.; Jelks, Howard L.; Freeman, Mary C.

    2018-01-01

    Many species have distributions that span distinctly different physiographic regions, and effective conservation of such taxa will require a full accounting of all factors that potentially influence populations. Ecologists recognize effects of physiographic differences in topography, geology and climate on local habitat configurations, and thus the relevance of landscape heterogeneity to species distributions and abundances. However, research is lacking that examines how physiography affects the processes underlying metapopulation dynamics. We used data describing occupancy dynamics of stream fishes to evaluate evidence that physiography influences rates at which individual taxa persist in or colonize stream reaches under different flow conditions. Using periodic survey data from a stream fish assemblage in a large river basin that encompasses multiple physiographic regions, we fit multi-species dynamic occupancy models. Our modeling results suggested that stream fish colonization but not persistence was strongly governed by physiography, with estimated colonization rates considerably higher in Coastal Plain streams than in Piedmont and Blue Ridge systems. Like colonization, persistence was positively related to an index of stream flow magnitude, but the relationship between flow and persistence did not depend on physiography. Understanding the relative importance of colonization and persistence, and how one or both processes may change across the landscape, is critical information for the conservation of broadly distributed taxa, and conservation strategies explicitly accounting for spatial variation in these processes are likely to be more successful for such taxa.

  9. Where does the water come from? Examining water stable isotopes across river basins

    EPA Science Inventory

    Global warming is expected to dramatically alter the timing and quantity of water within the nation’s river systems; however, these impacts will be heterogeneous both within river basins and across regions. A detailed understanding of the spatial and temporal dynamics of wa...

  10. Source, movement and age of groundwater in the upper part of the Mojave River Basin, California, USA

    USGS Publications Warehouse

    Izbicki, J.A.; Martin, P.; Michel, R.L.

    1995-01-01

    Water samples from wells were collected and analysed for oxygen-18, deuterium, tritium, carbon-14, and carbon-13 to determine the source, movement and age of groundwater in the upper part of the Mojave River basin. Water in the alluvial aquifer has a median deuterium composition of -66??? and contains tritium, and was recently recharged by water from the Mojave River. Water in the regional aquifer near the Mojave River, near Summit Valley, and underlying several small washes has deuterium compositions heavier than -60???. Although some water in the regional aquifer near the Mojave River contains tritium, most of this water does not contain tritium. Carbon-14 data indicate that this water was recharged less than 2400 years ago. Water in the remainder of the regional aquifer has a median deuterium composition of -84???, which is as much as 20??? lighter than the volume-weighted deuterium composition of present-day precipitation. These data show that this water was recharged under climatic conditions different from average conditions today. Carbon-14 data indicate that some water in the regional aquifer was recharged more than 20 000 years ago.Water samples from wells were collected and analyzed for oxygen-18, deuterium, tritium, carbon-14, and carbon-13 to determine the source, movement and age of groundwater in the upper part of the Mojave River basin. Water in the alluvial aquifer has a median deuterium composition of -66qq and contains tritium, and was recently recharged by water from the Mojave River. Water in the regional aquifer near the Mojave River, near Summit Valley, and underlying several small washes has deuterium compositions heavier than -60qq. Although some water in the regional aquifer near the Mojave River contains tritium, most of this water does not contain tritium. Carbon-14 data indicate that this water was recharged less than 2400 years ago. Water in the remainder of the regional aquifer has a median deuterium composition of -84qq, which is as

  11. CRevolution 2—Origin and evolution of the Colorado River system, workshop abstracts

    USGS Publications Warehouse

    Beard, L. Sue; Karlstrom, Karl E.; Young, Richard A.; Billingsley, George H.

    2011-01-01

    A 2010 Colorado River symposium, held in Flagstaff, Arizona, involved 70 participants who engaged in intense debate about the origin and evolution of the Colorado River system. This symposium, built upon two previous decadal scientific meetings, focused on forging scientific consensus, where possible, while articulating continued controversies regarding the Cenozoic evolution of the Colorado River System and the landscapes of the Colorado Plateau-Rocky Mountain region that it drains. New developments involved hypotheses that Neogene mantle flow is driving plateau tilting and differential uplift and new and controversial hypotheses for the pre-6 Ma presence and evolution of ancestral rivers that may be important in the history and birth of the present Colorado River. There is a consensus that plateau tilt and uplift models must be tested with multidisciplinary studies involving differential incision studies and additional geochronology and thermochronology to determine the relative importance of tectonic and geomorphic forces that shape the spectacular landscapes of the Colorado Plateau, Arizona and region. In addition to the scientific goals, the meeting participants emphasized the iconic status of Grand Canyon for geosciences and the importance of good communication between the research community, the geoscience education/interpretation community, the public, and the media. Building on a century-long tradition, this region still provides a globally important natural laboratory for studies of the interactions of erosion and tectonism in shaping the landscape of elevated plateaus.

  12. Volcanism of the Eastern Snake River Plain, Idaho: A comparative planetary geology-guidebook

    NASA Technical Reports Server (NTRS)

    Greeley, R.; King, J. S.

    1977-01-01

    The Planetary Geology Field Conference on the central Snake River Plain was conceived and developed to accomplish several objectives. Primarily, field conferences are sponsored by the National Aeronautics and Space Administration to draw attention to aspects of terrestrial geology that appear to be important in interpreting the origin and evolution of extraterrestrial planetary surfaces. Another aspect is to present results of recent research in a region. A final objective of this conference is to bring together investigators of diverse backgrounds who share a common interest in the Snake River Plain. The Snake River Plain appears to be similar in surface morphology to many volcanic regions on the Moon, Mars, and possibly Mercury. Therefore, the Snake River Plain, in combination with the relatively good state of preservation, the lack of forests or other heavy vegetation, and the good network of jeep trails, is an area nearly ideal for analog studies.

  13. A Bayesian Approach to Integrated Ecological and Human Health Risk Assessment for the South River, Virginia Mercury-Contaminated Site.

    PubMed

    Harris, Meagan J; Stinson, Jonah; Landis, Wayne G

    2017-07-01

    We conducted a regional-scale integrated ecological and human health risk assessment by applying the relative risk model with Bayesian networks (BN-RRM) to a case study of the South River, Virginia mercury-contaminated site. Risk to four ecological services of the South River (human health, water quality, recreation, and the recreational fishery) was evaluated using a multiple stressor-multiple endpoint approach. These four ecological services were selected as endpoints based on stakeholder feedback and prioritized management goals for the river. The BN-RRM approach allowed for the calculation of relative risk to 14 biotic, human health, recreation, and water quality endpoints from chemical and ecological stressors in five risk regions of the South River. Results indicated that water quality and the recreational fishery were the ecological services at highest risk in the South River. Human health risk for users of the South River was low relative to the risk to other endpoints. Risk to recreation in the South River was moderate with little spatial variability among the five risk regions. Sensitivity and uncertainty analysis identified stressors and other parameters that influence risk for each endpoint in each risk region. This research demonstrates a probabilistic approach to integrated ecological and human health risk assessment that considers the effects of chemical and ecological stressors across the landscape. © 2017 Society for Risk Analysis.

  14. Uncertainties in simulating river/groundwater exchanges over the Upper Rhine Graben hydrosystem

    NASA Astrophysics Data System (ADS)

    Vergnes, Jean-Pierre; Habets, Florence

    2014-05-01

    The Upper Rhine alluvial aquifer is an important transboundary water resource which is particularly vulnerable to pollution from the rivers due to anthropogenic activities. A realistic simulation of the groundwater-river exchanges is therefore of crucial importance for an effective management of water resources. Characterization of these fluxes in term of quantity and spatio-temporal variability depends on choices made to represent the river water stage in the model as well as on the hydrogeological parameters. Recently, a coupled surface-subsurface model has been applied to the whole aquifer basin (Thierion et al., 2012). The present study aims at improving the estimation of the river/groundwater exchange, and thus, of the hydrodynamic of the alluvial aquifer, and at getting an idea of the associated uncertainty by performing a set of simulations that best take advantage of the different kinds of observed data. The general modeling strategy is based on the Eau-Dyssée modeling platform which couples existing specialized models to address water resources quantity and quality in small to regional scale river basins. In this study, Eau-Dyssée includes the ISBA surface scheme that estimates the water balance, the RAPID river routing model and the SAM hydrogeological model. In addition, the QtoZ module (Saleh et al., 2011) is used to calculate the river stage from simulated river discharges, which is then used to calculate the exchanges between aquifer units and river, according to three different approaches that are compared: a control experiment with constant river water stage, a rating curves approach derived from observed river discharges and river stages, and the Manning's formula, for which Manning's parameters are defined according to geomorphological parameterizations and topographic data based on Digital Elevation Model (DEM). Supplementary sensitivity tests are also performed by using different hydrogeological parameter datasets (porosity and transmissivity

  15. Long-term changes in the hydroclimatic characteristics in the Baikal region

    NASA Astrophysics Data System (ADS)

    Voropay, N. N.; Kichigina, N. V.

    2018-01-01

    Since the end of the 19th century, global air temperature has been increasing. The period after 1976 is called the period of the most intensive warming. In Russia, the average annual air temperature rises at a rate of + 0.43 ° C / 10 years. The change of precipitation over the last 50-60 years on average in Russia is not significant. In the Baikal region, precipitation increase during the warm period (10-11%) and decrease during the cold period (4%). It is reflected on hydrological regime and the factors of river flow formation. The regional features of the hydrological regime dynamics of the Baikal region against the background of climate change are considered. Groups of the rivers with similar alternations of low water and high-water periods are allocated. Trends in runoff are analyzed. The increase in air temperature leads to intra annual redistribution of river flow. The majority of statistically significant trends of river run off are observed during the cold period of year.

  16. Modelling Atmospheric Rivers and the Potential for Southeast Texas Flooding: A Case Study of the Maya Express and the March 2016 Sabine River Flood

    NASA Astrophysics Data System (ADS)

    McIntosh, J.; Lander, K.

    2016-12-01

    For three days in March of 2016, southeast Texas was inundated with up to 19 inches of rainfall, swelling the Sabine River to record flood stages. This event was attributed to an atmospheric river (AR), regionally known as the "Maya Express," which carried moisture from the Gulf of Mexico into the Sabine River Basin. Studies by the NOAA/NWS Climate Prediction Center have shown that ARs are occurring more frequently due to the intensification of El Niño that increases the available moisture in the atmosphere. In this study, we analyzed the hydrological and meteorological setup of the event on the Sabine River to characterize the flood threat associated with AR rainfall and simulated how an equivalent AR event would impact an urban basin in Houston, Texas. Our primary data sources included WSR-88D radar-based rainfall estimates and observed data at USGS river gauges. Furthermore, the land surface parameters evaluated included land cover, soil types, basin topology, model-derived soil moisture states, and topography. The spatial distribution of precipitation from the storm was then translated west over the Houston and used to force a hydrologic model to assess the impact of an event comparable to the March 2016 event on Houston's San Jacinto River Basin. The results indicate that AR precipitation poses a flood risk to urbanized areas in southeast Texas because of the low lying topography, impervious pavement, and limited flood control. Due to this hydrologic setup, intense AR rainfall can yield a rapid urban runoff response that overwhelms the river system, potentially endangering the lives and property of millions of people in the Houston area. Ultimately, if the frequency of AR development increases, regional flood potential may increase. Given the consequences established in this study, more research should be conducted in order to better predict the rate of recurrence and effects of Maya Express generated precipitation.

  17. Heterogeneous detection probabilities for imperiled Missouri River fishes: implications for large-river monitoring programs

    USGS Publications Warehouse

    Schloesser, J.T.; Paukert, Craig P.; Doyle, W.J.; Hill, Tracy D.; Steffensen, K.D.; Travnichek, Vincent H.

    2012-01-01

    Occupancy modeling was used to determine (1) if detection probabilities (p) for 7 regionally imperiled Missouri River fishes (Scaphirhynchus albus, Scaphirhynchus platorynchus, Cycleptus elongatus, Sander canadensis, Macrhybopsis aestivalis, Macrhybopsis gelida, and Macrhybopsis meeki) differed among gear types (i.e. stationary gill nets, drifted trammel nets, and otter trawls), and (2) how detection probabilities were affected by habitat (i.e. pool, bar, and open water), longitudinal position (five 189 to 367 rkm long segments), sampling year (2003 to 2006), and season (July 1 to October 30 and October 31 to June 30). Adult, large-bodied fishes were best detected with gill nets (p: 0.02–0.74), but most juvenile large-bodied and all small-bodied species were best detected with otter trawls (p: 0.02–0.58). Trammel nets may be a redundant sampling gear for imperiled fishes in the lower Missouri River because most species had greater detection probabilities with gill nets or otter trawls. Detection probabilities varied with river segment for S. platorynchus, C. elongatus, and all small-bodied fishes, suggesting that changes in habitat influenced gear efficiency or abundance changes among river segments. Detection probabilities varied by habitat for adult S. albus and S. canadensis, year for juvenile S. albus, C. elongatus, and S. canadensis, and season for adult S. albus. Concentrating sampling effort on gears with the greatest detection probabilities may increase species detections to better monitor a population's response to environmental change and the effects of management actions on large-river fishes.

  18. Limits of pastoral adaptation to permafrost regions caused by climate change among the Sakha people in the middle basin of Lena River

    NASA Astrophysics Data System (ADS)

    Takakura, Hiroki

    2016-09-01

    This article focuses on the pastoral practices of the Sakha people in eastern Siberia to explore the impact of climate change on human livelihood in permafrost regions. Sakha use grassland resources in river terraces and the alaas thermokarst landscape for cattle-horse husbandry. Although they practice a different form of subsistence than other indigenous arctic peoples, such as hunter - gatherers or reindeer herders, the adaptation of Sakha has been relatively resilient in the past 600-800 years. Recent climate change, however, could change this situation. According to hydrologists, increased precipitation is now observed in eastern Siberia, which has resulted in the increase of permafrost thawing, causing forests to die. Moreover, local meteorologists report an increase of flooding in local rivers. How do these changes affect the local pastoral adaptation? While describing recent uses of grassland resource by local people, and their perception of climate change through anthropological field research, I investigated the subtle characteristics of human-environment interactions in pastoral adaptation, in order to identify the limits of adaptation in the face of climate change.

  19. Sediment discharge into a subsiding Louisiana deltaic estuary through a Mississippi River diversion

    USGS Publications Warehouse

    Snedden, G.A.; Cable, J.E.; Swarzenski, C.; Swenson, E.

    2007-01-01

    Wetlands of the Mississippi River deltaic plain in southeast Louisiana have been hydrologically isolated from the Mississippi River by containment levees for nearly a century. The ensuing lack of fluvial sediment inputs, combined with natural submergence processes, has contributed to high coastal land loss rates. Controlled river diversions have since been constructed to reconnect the marshes of the deltaic plain with the river. This study examines the impact of a pulsed diversion management plan on sediment discharge into the Breton Sound estuary, in which duplicate 185 m3 s-1-diversions lasting two weeks each were conducted in the spring of 2002 and 2003. Sediment delivery during each pulse was highly variable (11,300-43,800 metric tons), and was greatest during rising limbs of Mississippi River flood events. Overland flow, a necessary transport mechanism for river sediments to reach the subsiding backmarsh regions, was induced only when diversion discharge exceeded 100 m3 s-1. These results indicate that timing and magnitude of diversion events are both important factors governing marsh sediment deposition in the receiving basins of river diversions. Though the diversion serves as the primary source of river sediments to the estuary, the inputs observed here were several orders of magnitude less than historical sediment discharge through crevasses and uncontrolled diversions in the region, and are insufficient to offset present rates of relative sea level rise. ?? 2006 Elsevier Ltd. All rights reserved.

  20. The agricultural water footprint of EU river basins

    NASA Astrophysics Data System (ADS)

    Vanham, Davy

    2014-05-01

    This work analyses the agricultural water footprint (WF) of production (WFprod,agr) and consumption (WFcons,agr) as well as the resulting net virtual water import (netVWi,agr) for 365 EU river basins with an area larger than 1000 km2. Apart from total amounts, also a differentiation between the green, blue and grey components is made. River basins where the WFcons,agr,tot exceeds WFprod,agr,tot values substantially (resulting in positive netVWi,agr,tot values), are found along the London-Milan axis. River basins where the WFprod,agr,totexceeds WFcons,agr,totare found in Western France, the Iberian Peninsula and the Baltic region. The effect of a healthy (HEALTHY) and vegetarian (VEG) diet on the WFcons,agr is assessed, as well as resulting changes in netVWi,agr. For HEALTHY, the WFcons,agr,tot of most river basins decreases (max 32%), although in the east some basins show an increase. For VEG, in all but one river basins a reduction (max 46%) in WFcons,agr,tot is observed. The effect of diets on the WFcons,agrof a river basin has not been carried out so far. River basins and not administrative borders are the key geographical entity for water management. Such a comprehensive analysis on the river basin scale is the first in its kind. Reduced river basin WFcons,agrcan contribute to sustainable water management both within the EU and outside its borders. They could help to reduce the dependency of EU consumption on domestic and foreign water resources.