Sample records for technical support facility

  1. Urban Rail Supporting Technology Program Fiscal Year 1974 Year End Summary

    DOT National Transportation Integrated Search

    1975-03-01

    Major areas include program management, technical support and application engineering, facilities development, test and evaluation, and technology development. Specific technical discussion includes track measurement systems; UMTA facilities developm...

  2. Waste Receiving and Processing (WRAP) Module 1 Hazards Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CAMPBELL, L.R.

    1999-09-29

    This document establishes the technical basis in support of Emergency Planning activities for the WRAP Module 1 Facility on the Hanford Site. Through this document, the technical basis for the development of facility specific Emergency Action Levels and Emergency Planning Zone is demonstrated.

  3. UNAVCO facility support of NASA Dynamics of the Solid Earth (DOSE) GPS investigation for years 1995-1996

    NASA Technical Reports Server (NTRS)

    Ware, Randolph (Principal Investigator)

    1996-01-01

    This report consists of the following sections: a list of the NASA DOSE (Dynamics of the Solid Earth) Program Global Positioning System (GPS)-based campaigns supported by the UNAVCO (University Navstar Consortium) Boulder Facility; a list of NASA DOSE GPS permanent site installations supported by the UNAVCO Boulder Facility; and example science snapshots indicating the research projects supported with equipment and technical support available to DOSE Principal Investigators via the UNAVCO Boulder Facility.

  4. Technical Support Document for Title V Permitting of Printing Facilities

    EPA Pesticide Factsheets

    Stationary source emissions monitoring is required to demonstrate that a source is meeting the requirements in Federal or state rules, including Title V. This document provides the technical support for compliance in the printing and publishing industry.

  5. Landlord project multi-year program plan, fiscal year 1999, WBS 1.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallas, M.D.

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The mission of Landlord Project is to provide more maintenance replacement of general infrastructure facilities and systems to facilitate the Hanford Site cleanup mission. Also, once an infrastructure facility or system is no longer needed the Landlord Project transitions the facility to final closure/removal through excess, salvage or demolition. Landlord Project activities will be performed in an environmentally sound, safe, economical, prudent, and reliable manner. The Landlord Project consists of the following facilities systems: steam, water, liquid sanitary waste,more » electrical distribution, telecommunication, sanitary landfill, emergency services, general purpose offices, general purpose shops, general purpose warehouses, environmental supports facilities, roads, railroad, and the site land. The objectives for general infrastructure support are reflected in two specific areas, (1) Core Infrastructure Maintenance, and (2) Infrastructure Risk Mitigation.« less

  6. Urban Rail Supporting Technology Program Fiscal Year 1975 - Year End Summary

    DOT National Transportation Integrated Search

    1975-12-01

    The Urban Rail Supporting Technology Program is described for the 1975 fiscal year period. Important areas include program management, technical support and applications engineering, facilities development, test and evaluation, and technology develop...

  7. NIST Document Sharing Test Facility

    Science.gov Websites

    NIST Document Sharing Test Facility This site supports the IHE effort in Document Sharing as part . This test facility is based on the IHE IT Infrastructure Technical Framework. All testing done against that Patient IDs be pre-registered before submitting metadata about them. To allocate new patient IDs

  8. The aerospace technology laboratory (a perspective, then and now)

    NASA Technical Reports Server (NTRS)

    Connors, J. F.; Hoffman, R. G.

    1982-01-01

    The physical changes that have taken place in aerospace facilities since the Wright brothers' accomplishment 78 years ago are highlighted. For illustrative purposes some of the technical facilities and operations of the NASA Lewis Research Center are described. These simulation facilities were designed to support research and technology studies in aerospace propulsion.

  9. Astronomic Telescope Facility: Preliminary systems definition study report. Volume 2: Technical description

    NASA Technical Reports Server (NTRS)

    Sobeck, Charlie (Editor)

    1987-01-01

    The Astrometric Telescope Facility (AFT) is to be an earth-orbiting facility designed specifically to measure the change in relative position of stars. The primary science investigation for the facility will be the search for planets and planetary systems outside the solar system. In addition the facility will support astrophysics investigations dealing with the location or motions of stars. The science objective and facility capabilities for astrophysics investigations are discussed.

  10. Hydrogen and Storage Initiatives at the NASA JSC White Sands Test Facility

    NASA Technical Reports Server (NTRS)

    Maes, Miguel; Woods, Stephen S.

    2006-01-01

    NASA WSTF Hydrogen Activities: a) Aerospace Test; b) System Certification & Verification; c) Component, System, & Facility Hazard Assessment; d) Safety Training Technical Transfer: a) Development of Voluntary Consensus Standards and Practices; b) Support of National Hydrogen Infrastructure Development.

  11. Overview of Energy Systems` safety analysis report programs. Safety Analysis Report Update Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility`s safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information thatmore » may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This ``Overview of Energy Systems Safety Analysis Report Programs`` Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.« less

  12. Effects of health and safety problem recognition on small business facility investment

    PubMed Central

    2013-01-01

    Objectives This study involved a survey of the facility investment experiences, which was designed to recognize the importance of health and safety problems, and industrial accident prevention. Ultimately, we hope that small scale industries will create effective industrial accident prevention programs and facility investments. Methods An individual survey of businesses’ present physical conditions, recognition of the importance of the health and safety problems, and facility investment experiences for preventing industrial accidents was conducted. The survey involved 1,145 business operators or management workers in small business places with fewer than 50 workers in six industrial complexes. Results Regarding the importance of occupational health and safety problems (OHS), 54.1% said it was “very important”. Received technical and financial support, and industrial accidents that occurred during the past three years were recognized as highly important for OHS. In an investigation regarding facility investment experiences for industrial accident prevention, the largest factors were business size, greater numbers of industrial accidents, greater technical and financial support received, and greater recognition of the importance of the OHS. The related variables that decided facility investment for industry accident prevention in a logistic regression analysis were the experiences of business facilities where industrial accidents occurred during the past three years, received technical and financial support, and recognition of the OHS. Those considered very important were shown to be highly significant. Conclusions Recognition of health and safety issues was higher when small businesses had experienced industrial accidents or received financial support. The investment in industrial accidents was greater when health and safety issues were recognized as important. Therefore, the goal of small business health and safety projects is to prioritize health and safety issues in terms of business management and recognition of importance. Therefore, currently various support projects are being conducted. However, there are issues regarding the limitations of the target businesses and inadequacies in maintenance and follow-up. Overall, it is necessary to provide various incentives for onsite participation that can lead to increased recognition of health and safety issues and practical investments, while perfecting maintenance and follow up measures by thoroughly revising existing operating systems. PMID:24472180

  13. Effects of health and safety problem recognition on small business facility investment.

    PubMed

    Park, Jisu; Jeong, Harin; Hong, Sujin; Park, Jong-Tae; Kim, Dae-Sung; Kim, Jongseo; Kim, Hae-Joon

    2013-10-23

    This study involved a survey of the facility investment experiences, which was designed to recognize the importance of health and safety problems, and industrial accident prevention. Ultimately, we hope that small scale industries will create effective industrial accident prevention programs and facility investments. An individual survey of businesses' present physical conditions, recognition of the importance of the health and safety problems, and facility investment experiences for preventing industrial accidents was conducted. The survey involved 1,145 business operators or management workers in small business places with fewer than 50 workers in six industrial complexes. Regarding the importance of occupational health and safety problems (OHS), 54.1% said it was "very important". Received technical and financial support, and industrial accidents that occurred during the past three years were recognized as highly important for OHS. In an investigation regarding facility investment experiences for industrial accident prevention, the largest factors were business size, greater numbers of industrial accidents, greater technical and financial support received, and greater recognition of the importance of the OHS. The related variables that decided facility investment for industry accident prevention in a logistic regression analysis were the experiences of business facilities where industrial accidents occurred during the past three years, received technical and financial support, and recognition of the OHS. Those considered very important were shown to be highly significant. Recognition of health and safety issues was higher when small businesses had experienced industrial accidents or received financial support. The investment in industrial accidents was greater when health and safety issues were recognized as important. Therefore, the goal of small business health and safety projects is to prioritize health and safety issues in terms of business management and recognition of importance. Therefore, currently various support projects are being conducted. However, there are issues regarding the limitations of the target businesses and inadequacies in maintenance and follow-up. Overall, it is necessary to provide various incentives for onsite participation that can lead to increased recognition of health and safety issues and practical investments, while perfecting maintenance and follow up measures by thoroughly revising existing operating systems.

  14. Construction continues on the RLV complex at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  15. Construction continues on the RLV complex at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  16. Construction continues on the RLV complex at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Construction is under way for the X-33/X-34 hangar complex near the Shuttle Landing Facility at KSC. The Reusable Launch Vehicle (RLV) complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  17. Acquisition plan for Digital Document Storage (DDS) prototype system

    NASA Technical Reports Server (NTRS)

    1990-01-01

    NASA Headquarters maintains a continuing interest in and commitment to exploring the use of new technology to support productivity improvements in meeting service requirements tasked to the NASA Scientific and Technical Information (STI) Facility, and to support cost effective approaches to the development and delivery of enhanced levels of service provided by the STI Facility. The DDS project has been pursued with this interest and commitment in mind. It is believed that DDS will provide improved archival blowback quality and service for ad hoc requests for paper copies of documents archived and serviced centrally at the STI Facility. It will also develop an operating capability to scan, digitize, store, and reproduce paper copies of 5000 NASA technical reports archived annually at the STI Facility and serviced to the user community. Additionally, it will provide NASA Headquarters and field installations with on-demand, remote, electronic retrieval of digitized, bilevel, bit mapped report images along with branched, nonsequential retrieval of report subparts.

  18. Supporting calculations and assumptions for use in WESF safetyanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hey, B.E.

    This document provides a single location for calculations and assumptions used in support of Waste Encapsulation and Storage Facility (WESF) safety analyses. It also provides the technical details and bases necessary to justify the contained results.

  19. Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, R.S.; Diamante, J.M.; Duffey, R.B.

    1996-07-01

    The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility`s capacity from 1,200 m{sup 3} per year to 5,000 m{sup 3} per year, will permit the facility to processmore » high-salt wastes from the Russian Navy`s Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted.« less

  20. KSC00pp0435

    NASA Image and Video Library

    2000-03-30

    This broad aerial view shows the runway at KSC (top), the parking facility with the mate/demate device (center), and the remote launch vehicle (RLV) hangar, at right, still under construction at the south end of the Shuttle Landing Facility. Next to the multi-purpose RLV hangar are facilities for related ground support equipment and administrative/technical support. The tow-way stretches from the runway past the hangar to lower right in the photo. Stretching toward the horizon are the grounds of the Merritt island National Wildlife Refuge, which shares a boundary with KSC

  1. KSC-00pp0435

    NASA Image and Video Library

    2000-03-30

    This broad aerial view shows the runway at KSC (top), the parking facility with the mate/demate device (center), and the remote launch vehicle (RLV) hangar, at right, still under construction at the south end of the Shuttle Landing Facility. Next to the multi-purpose RLV hangar are facilities for related ground support equipment and administrative/technical support. The tow-way stretches from the runway past the hangar to lower right in the photo. Stretching toward the horizon are the grounds of the Merritt island National Wildlife Refuge, which shares a boundary with KSC

  2. KSC-99pp1061

    NASA Image and Video Library

    1999-08-23

    A worker takes a measurement for construction of the Reusable Launch Vehicle (RLV) complex at KSC. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  3. KSC-99pp1063

    NASA Image and Video Library

    1999-08-23

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, workers take measurements for one of the buildings. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  4. KSC-99pp1062

    NASA Image and Video Library

    1999-08-23

    At the construction site of the Reusable Launch Vehicle (RLV) complex at KSC, a worker takes a measurement. Located near the Shuttle Landing Facility, the complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  5. KSC-99pp1060

    NASA Image and Video Library

    1999-08-23

    Construction is under way for the X-33/X-34 hangar complex near the Shuttle Landing Facility at KSC. The Reusable Launch Vehicle (RLV) complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  6. Life Sciences Centrifuge Facility review

    NASA Technical Reports Server (NTRS)

    Young, Laurence R.

    1994-01-01

    The Centrifuge Facility Project at ARC was reviewed by a code U team to determine appropriateness adequacy for the ISSA. This report represents the findings of one consultant to this team and concentrates on scientific and technical risks. This report supports continuation of the project to the next phase of development.

  7. Overview of Energy Systems' safety analysis report programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-03-01

    The primary purpose of an Safety Analysis Report (SAR) is to provide a basis for judging the adequacy of a facility's safety. The SAR documents the safety analyses that systematically identify the hazards posed by the facility, analyze the consequences and risk of potential accidents, and describe hazard control measures that protect the health and safety of the public and employees. In addition, some SARs document, as Technical Safety Requirements (TSRs, which include Technical Specifications and Operational Safety Requirements), technical and administrative requirements that ensure the facility is operated within prescribed safety limits. SARs also provide conveniently summarized information thatmore » may be used to support procedure development, training, inspections, and other activities necessary to facility operation. This Overview of Energy Systems Safety Analysis Report Programs'' Provides an introduction to the programs and processes used in the development and maintenance of the SARs. It also summarizes some of the uses of the SARs within Energy Systems and DOE.« less

  8. Aerial views of construction on the RLV hangar at the Shuttle Landing Facility

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Looking southwest, this view shows ongoing construction of a multi-purpose hangar, which is part of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. Edging the construction is Sharkey Road, which parallels the landing strip of the Shuttle Landing Facility nearby. The RLV complex will include facilities for related ground support equipment and administrative/ technical support. It will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  9. Process Evaluation of a Quality Improvement Project to Decrease Hospital Readmissions From Skilled Nursing Facilities.

    PubMed

    Meehan, Thomas P; Qazi, Daniel J; Van Hoof, Thomas J; Ho, Shih-Yieh; Eckenrode, Sheila; Spenard, Ann; Pandolfi, Michelle; Johnson, Florence; Quetti, Deborah

    2015-08-01

    To describe and evaluate the impact of quality improvement (QI) support provided to skilled nursing facilities (SNFs) by a Quality Improvement Organization (QIO). Retrospective, mixed-method, process evaluation of a QI project intended to decrease preventable hospital readmissions from SNFs. Five SNFs in Connecticut. SNF Administrators, Directors of Nursing, Assistant Directors of Nursing, Admissions Coordinators, Registered Nurses, Certified Nursing Assistants, Receptionists, QIO Quality Improvement Consultant. QIO staff provided training and technical assistance to SNF administrative and clinical staff to establish or enhance QI infrastructure and implement an established set of QI tools [Interventions to Reduce Acute Care Transfers (INTERACT) tools]. Baseline SNF demographic, staffing, and hospital readmission data; baseline and follow-up SNF QI structure (QI Committee), processes (general and use of INTERACT tools), and outcome (30-day all-cause hospital readmission rates); details of QIO-provided training and technical assistance; QIO-perceived barriers to quality improvement; SNF leadership-perceived barriers, accomplishments, and suggestions for improvement of QIO support. Success occurred in establishing QI Committees and targeting preventable hospital readmissions, as well as implementing INTERACT tools in all SNFs; however, hospital readmission rates decreased in only 2 facilities. QIO staff and SNF leaders noted the ongoing challenge of engaging already busy SNF staff and leadership in QI activities. SNF leaders reported that they appreciated the training and technical assistance that their institutions received, although most noted that additional support was needed to bring about improvement in readmission rates. This process evaluation documented mixed clinical results but successfully identified opportunities to improve recruitment of and provision of technical support to participating SNFs. Recommendations are offered for others who wish to conduct similar projects. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. All rights reserved.

  10. Space station attached payload program support

    NASA Technical Reports Server (NTRS)

    Estes, Maurice G., Jr.; Brown, Bardle D.

    1989-01-01

    The USRA is providing management and technical support for the peer review of the Space Station Freedom Attached Payload proposals. USRA is arranging for consultants to evaluate proposals, arranging meeting facilities for the reviewers to meet in Huntsville, Alabama and management of the actual review meetings. Assistance in developing an Experiment Requirements Data Base and Engineering/Technical Assessment support for the MSFC Technical Evaluation Team is also being provided. The results of the project will be coordinated into a consistent set of reviews and reports by USRA. The strengths and weaknesses analysis provided by the peer panel reviewers will by used NASA personnel in the selection of experiments for implementation on the Space Station Freedom.

  11. The role of NASA for aerospace information

    NASA Technical Reports Server (NTRS)

    Chandler, G. P., Jr.

    1980-01-01

    The NASA Scientific and Technical Information Program operations are performed by two contractor operated facilities. The NASA STI Facility, located near Baltimore, Maryland, employs about 210 people who process report literature, operate the computer complex, and provide support for software maintenance and developments. A second contractor, the Technical Information Services of the American Institute of Aeronautics and Astronautics, employs approximately 80 people in New York City and processes the open literature such as journals, magazines, and books. Features of these programs include online access via RECON, announcement services, and international document exchange.

  12. Nonregenerative life-support systems for flights of short and moderate duration

    NASA Technical Reports Server (NTRS)

    Adamovich, B. A.

    1975-01-01

    The basic requirements for crew life support systems of flights of up to 30 days are described. Food products, drinking water, oxygen for breathing, and sanitary-technical facilities are among the factors considered. Life support systems utilized on Vostok, Voskhod, Soyuz, Gemini, Mercury, and Apollo are discussed.

  13. USDI DCS technical support: Mississippi Test Facility

    NASA Technical Reports Server (NTRS)

    Preble, D. M.

    1975-01-01

    The objective of the technical support effort is to provide hardware and data processing support to DCS users so that application of the system may be simply and effectively implemented. Technical support at Mississippi Test Facility (MTF) is concerned primarily with on-site hardware. The first objective of the DCP hardware support was to assure that standard measuring apparatus and techniques used by the USGS could be adapted to the DCS. The second objective was to try to standardize the miscellaneous variety of parameters into a standard instrument set. The third objective was to provide the necessary accessories to simplify the use and complement the capabilities of the DCP. The standard USGS sites have been interfaced and are presently operating. These sites are stream gauge, ground water level and line operated quality of water. Evapotranspiration, meteorological and battery operated quality of water sites are planned for near future DCP operation. Three accessories which are under test or development are the Chu antenna, solar power supply and add-on memory. The DCP has proven to be relatively easy to interface with many monitors. The large antenna is awkward to install and transport. The DCS has met the original requirements well; it has and is proving that an operation, satellite-based data collection system is feasible.

  14. Why do women choose private over public facilities for family planning services? A qualitative study of post-partum women in an informal urban settlement in Kenya.

    PubMed

    Keesara, Sirina R; Juma, Pamela A; Harper, Cynthia C

    2015-08-20

    Nearly 40% of women in developing countries seek contraceptives services from the private sector. However, the reasons that contraceptive clients choose private or public providers are not well studied. We conducted six focus groups discussions and 51 in-depth interviews with postpartum women (n = 61) to explore decision-making about contraceptive use after delivery, including facility choice. When seeking contraceptive services, women in this study preferred private over public facilities due to convenience and timeliness of services. Women avoided public facilities due to long waits and disrespectful providers. Study participants reported, however, that they felt more confident about the technical medical quality in public facilities than in private, and believed that private providers prioritized profit over safe medical practice. Women reported that public facilities offered comprehensive counseling and chose these facilities when they needed contraceptive decision-support. Provision of comprehensive counseling and screening, including side effects counseling and management, determined perception of quality. Women believed private providers offered the advantages of convenience, efficiency and privacy, though they did not consistently offer high-quality care. Quality-improvement of contraceptive care at private facilities could include technical standardization and accreditation. Development of support and training for side effect management may be an important intervention to improve perceived quality of care.

  15. Evaluating technology service options.

    PubMed

    Blumberg, D F

    1997-05-01

    Four service and support options are available to healthcare organizations for maintaining their growth arsenals of medical and information technology. These options include maintaining and servicing all equipment using a facility-based biomedical engineering and MIS service department; using a combination of facility-based service and subcontracted service; expanding facility-based biomedical and MIS service departments to provide service to other healthcare organizations to achieve economies of scale; and outsourcing all maintenance, repair, and technical support services. Independent service companies and original equipment manufacturers (OEMs) are offering healthcare organizations a wider array of service and support capabilities than ever before. However, some health systems have successfully developed their own independent service organizations to take care of their own--and other healthcare organizations'--service and support needs.

  16. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraqmore » Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.« less

  17. 77 FR 60146 - Biweekly Notice: Applications and Amendments to Facility Operating Licenses and Combined Licenses...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... support unlisted software, and the NRC Meta System Help Desk will not be able to offer assistance in using... supported Technical Specification (TS) systems inoperable when the associated snubber(s) cannot perform its... allowed before declaring a TS supported system inoperable and taking its Conditions and Required Actions...

  18. Space shuttle program: Shuttle Avionics Integration Laboratory. Volume 7: Logistics management plan

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The logistics management plan for the shuttle avionics integration laboratory defines the organization, disciplines, and methodology for managing and controlling logistics support. Those elements requiring management include maintainability and reliability, maintenance planning, support and test equipment, supply support, transportation and handling, technical data, facilities, personnel and training, funding, and management data.

  19. Aerial photos of KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Looking northeast, several elements of the Shuttle Landing Facility (SLF) can be seen. The road on the bottom left corner is the tow-way road, connecting the Orbiter Processing Facility with the landing strip, seen at upper left. The building in the center is the remote launch vehicle (RLV) hangar, still under construction, at the south end of the SLF. Next to the multi- purpose RLV hangar are facilities for related ground support equipment and administrative/technical support. Beyond them is the parking tarmac with its mate-demate device. The lush grounds of the Merritt Island National Wildlife Refuge, which shares a boundary with KSC, extend beyond.

  20. Definition of avionics concepts for a heavy lift cargo vehicle, volume 2

    NASA Technical Reports Server (NTRS)

    1989-01-01

    A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is defined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility although the lab is not limited in use to support of HLCVs. Volume 2 is the technical volume and provides the results of the vehicle avionics trade studies, the avionics lab objectives, the lab's functional requirements and design, physical facility considerations, and a summary cost estimate.

  1. KSC-98dc1879

    NASA Image and Video Library

    1998-12-18

    An artist's rendering shows the $8-million Reusable Launch Vehicle (RLV) Support Complex planned for the Shuttle Landing Facility (SLF) at Kennedy Space Center. The ground breaking took place today. To be located at the tow-way adjacent to the SLF, the complex will include a multi-purpose RLV hangar and adjacent facilities for related ground support equipment and administrative/technical support. It will be available to accommodate the Space Shuttle, the X-34 RLV technology demonstrator, the L-1011 carrier aircraft for Pegasus and X-34, and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  2. OBSIP: An Evolving Facility for the Future of Geoscience

    NASA Astrophysics Data System (ADS)

    Evers, B.; Aderhold, K.

    2015-12-01

    The Ocean Bottom Seismograph Instrument Pool "OBSIP" is a National Science Foundation (NSF) sponsored instrument facility that provides ocean bottom seismometers and technical support for research in the areas of marine geology, seismology, and geodynamics. OBSIP provides both short period instruments (for active source seismic refraction studies) and long period instruments (for long term passive experiments). OBSIP is comprised of three Institutional Instrument Contributors each of whom contribute instruments and technical support to the pool and an OBSIP Management Office. In 2015, OBSIP will provide instruments for six experiments and support nine research cruises recovering and/or deploying instruments. This includes the final recoveries for the Cascadia Initiative experiment and the Eastern North American Margin experiment, both multi-year community seismic experiments integrating large onshore and offshore deployments of instruments from multiple IICs. OBSIp supported additional experiments in New Zealand and Malawi, Africa. An active source experiment to image the magma plumbing of Santorini employs OBSIP's entire short period sensor pool. OBSIP is also incorporating new technical developments in the OBSIP fleet including long duration OBS technology, new shielding designs, and sensor upgrades. OBSIP continues to enable innovation in experiment design, instrument capabilities, and data return/QAQC tracking and adapts to the needs of a rapidly increasing and diversifying pool of users.

  3. In Situ Resource Utilization (ISRU 3) Technical Interchange Meeting: Abstracts

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This volume contains abstracts that have been accepted for presentation at the In Situ Resource Utilization (ISRU III) Technical Interchange Meeting, February 11-12, 1999, hosted by the Lockheed Martin Astronautics Waterton Facility, Denver, Colorado. Administration and publication support for this meeting were provided by the staff of the Publications and Program Services Department at the Lunar and Planetary Institute.

  4. Space Station Furnace Facility Core. Requirements definition and conceptual design study. Volume 2: Technical report. Appendix 6: Technical summary reports

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.

  5. The Establishment of a New Friction Stir Welding Process Development Facility at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Carter, Robert W.

    2009-01-01

    Full-scale weld process development is being performed at MSFC to develop the tools, fixtures, and facilities necessary for Ares I production. Full scale development in-house at MSFC fosters technical acuity within the NASA engineering community, and allows engineers to identify and correct tooling and equipment shortcomings before they become problems on the production floor. Finally, while the new weld process development facility is currently being outfitted in support of Ares I development, it has been established to support all future Constellation Program needs. In particular, both the RWT and VWT were sized with the larger Ares V hardware in mind.

  6. Health Facility Graduation from Donor-Supported Intensive Technical Assistance and Associated Factors in Zambia.

    PubMed

    Koni, Phillip; Chishinga, Nathaniel; Nyirenda, Lameck; Kasonde, Prisca; Nsakanya, Richard; Welsh, Michael

    2015-01-01

    The FHI360-led Zambia Prevention Care and Treatment partnership II (ZPCT II) with funding from United States Agency for International Development, supports the Zambian Ministry of Health in scaling up HIV/AIDS services. To improve the quality of HIV/AIDS services, ZPCT II provides technical assistance until desired standards are met and districts are weaned-off intensive technical support, a process referred to as district graduation. This study describes the graduation process and determines performance domains associated with district graduation. Data were collected from 275 health facilities in 39 districts in 5 provinces of Zambia between 2008 and 2012. Performance in technical capacity, commodity management, data management and human resources domains were assessed in the following services areas: HIV counselling and testing and prevention of mother to child transmission, antiretroviral therapy/clinical care, pharmacy and laboratory. The overall mean percentage score was calculated by obtaining the mean of mean percentage scores for the four domains. Logistic regression models were used to obtain odds ratios (OR) and 95% confidence intervals (CI) for the domain mean percentage scores in graduated versus non-graduated districts; according to rural-urban, and province strata. 24 districts out of 39 graduated from intensive donor supported technical assistance while 15 districts did not graduate. The overall mean percentage score for all four domains was statistically significantly higher in graduated than non-graduated districts (93.2% versus 91.2%, OR = 1.34, 95%CI:1.20-1.49); including rural settings (92.4% versus 89.4%, OR = 1.43,95%CI:1.24-1.65). The mean percentage score in human resource domain was statistically significantly higher in graduated than non-graduated districts (93.6% versus 71.6%, OR = 5.81, 95%CI: 4.29-7.86) and in both rural and urban settings. QA/QI tools can be used to assess performance at health facilities and determine readiness for district graduation. Human resources management domain was found to be an important factor associated with district graduation.

  7. Health Facility Graduation from Donor-Supported Intensive Technical Assistance and Associated Factors in Zambia

    PubMed Central

    Koni, Phillip; Chishinga, Nathaniel; Nyirenda, Lameck; Kasonde, Prisca; Nsakanya, Richard; Welsh, Michael

    2015-01-01

    Introduction The FHI360-led Zambia Prevention Care and Treatment partnership II (ZPCT II) with funding from United States Agency for International Development, supports the Zambian Ministry of Health in scaling up HIV/AIDS services. To improve the quality of HIV/AIDS services, ZPCT II provides technical assistance until desired standards are met and districts are weaned-off intensive technical support, a process referred to as district graduation. This study describes the graduation process and determines performance domains associated with district graduation. Methods Data were collected from 275 health facilities in 39 districts in 5 provinces of Zambia between 2008 and 2012. Performance in technical capacity, commodity management, data management and human resources domains were assessed in the following services areas: HIV counselling and testing and prevention of mother to child transmission, antiretroviral therapy/clinical care, pharmacy and laboratory. The overall mean percentage score was calculated by obtaining the mean of mean percentage scores for the four domains. Logistic regression models were used to obtain odds ratios (OR) and 95% confidence intervals (CI) for the domain mean percentage scores in graduated versus non-graduated districts; according to rural-urban, and province strata. Results 24 districts out of 39 graduated from intensive donor supported technical assistance while 15 districts did not graduate. The overall mean percentage score for all four domains was statistically significantly higher in graduated than non-graduated districts (93.2% versus 91.2%, OR = 1.34, 95%CI:1.20–1.49); including rural settings (92.4% versus 89.4%, OR = 1.43,95%CI:1.24–1.65). The mean percentage score in human resource domain was statistically significantly higher in graduated than non-graduated districts (93.6% versus 71.6%, OR = 5.81, 95%CI: 4.29–7.86) and in both rural and urban settings. Conclusions QA/QI tools can be used to assess performance at health facilities and determine readiness for district graduation. Human resources management domain was found to be an important factor associated with district graduation. PMID:26098555

  8. [Platforms are needed for innovative basic research in ophthalmology].

    PubMed

    Wang, Yi-qiang

    2012-07-01

    Basic research poses the cornerstone of technical innovation in all lines including medical sciences. Currently, there are shortages of professional scientists as well as technical supporting teams and facilities in the field of basic research of ophthalmology and visual science in China. Evaluation system and personnel policies are not supportive for innovative but high-risk-of-failure research projects. Discussion of reasons and possible solutions are given here to address these problems, aiming at promoting buildup of platforms hosting novel and important basic research in eye science in this country.

  9. ASC FY17 Implementation Plan, Rev. 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, P. G.

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resources, including technical staff, hardware, simulation software, and computer science solutions.« less

  10. Impact of performance-based financing on primary health care services in Haiti.

    PubMed

    Zeng, Wu; Cros, Marion; Wright, Katherine D; Shepard, Donald S

    2013-09-01

    To strengthen Haiti's primary health care (PHC) system, the country first piloted performance-based financing (PBF) in 1999 and subsequently expanded the approach to most internationally funded non-government organizations. PBF complements support (training and technical assistance). This study evaluates (a) the separate impact of PBF and international support on PHC's service delivery; (b) the combined impact of PBF and technical assistance on PHC's service delivery; and (c) the costs of PBF implementation in Haiti. To minimize the risk of facilities neglecting potential non-incentivized services, the incentivized indicators were randomly chosen at the end of each year. We obtained quantities of key services from four departments for 217 health centres (15 with PBF and 202 without) from 2008 through 2010, computed quarterly growth rates and analysed the results using a difference-in-differences approach by comparing the growth of incentivized and non-incentivized services between PBF and non-PBF facilities. To interpret the statistical analyses, we also interviewed staff in four facilities. Whereas international support added 39% to base costs of PHC, incentive payments added only 6%. Support alone increased the quantities of PHC services over 3 years by 35% (2.7%/quarter). However, support plus incentives increased these amounts by 87% over 3 years (5.7%/quarter) compared with facilities with neither input. Incentives alone was associated with a net 39% increase over this period, and more than doubled the growth of services (P < 0.05). Interview findings found no adverse impacts and, in fact, indicated beneficial impacts on quality. Incentives proved to be a relatively inexpensive, well accepted and very effective complement to support, suggesting that a small amount of money, strategically used, can substantially improve PHC. Haiti's experience, after more than a decade of use, indicates that incentives are an effective tool to strengthen PHC.

  11. Computer Center: Setting Up a Microcomputer Center--1 Person's Perspective.

    ERIC Educational Resources Information Center

    Duhrkopf, Richard, Ed.; Collins, Michael, A. J., Ed.

    1988-01-01

    Considers eight components to be considered in setting up a microcomputer center for use with college classes. Discussions include hardware, software, physical facility, furniture, technical support, personnel, continuing financial expenditures, and security. (CW)

  12. Connecting 24/5 to Millennials: Providing Academic Support Services from a Learning Commons

    ERIC Educational Resources Information Center

    Moore, Anne Cooper; Wells, Kimberly A.

    2009-01-01

    This study investigates user preferences for reference and technical support, services, and facilities featured in an academic library and Learning Commons through a 23-item questionnaire distributed to building entrants during one 24-hour period on March 14, 2006. Results revealed a strong preference for face-to-face assistance (including…

  13. Fusion Safety Program annual report, fiscal year 1994

    NASA Astrophysics Data System (ADS)

    Longhurst, Glen R.; Cadwallader, Lee C.; Dolan, Thomas J.; Herring, J. Stephen; McCarthy, Kathryn A.; Merrill, Brad J.; Motloch, Chester C.; Petti, David A.

    1995-03-01

    This report summarizes the major activities of the Fusion Safety Program in fiscal year 1994. The Idaho National Engineering Laboratory (INEL) is the designated lead laboratory and Lockheed Idaho Technologies Company is the prime contractor for this program. The Fusion Safety Program was initiated in 1979. Activities are conducted at the INEL, at other DOE laboratories, and at other institutions, including the University of Wisconsin. The technical areas covered in this report include tritium safety, beryllium safety, chemical reactions and activation product release, safety aspects of fusion magnet systems, plasma disruptions, risk assessment failure rate data base development, and thermalhydraulics code development and their application to fusion safety issues. Much of this work has been done in support of the International Thermonuclear Experimental Reactor (ITER). Also included in the report are summaries of the safety and environmental studies performed by the Fusion Safety Program for the Tokamak Physics Experiment and the Tokamak Fusion Test Reactor and of the technical support for commercial fusion facility conceptual design studies. A major activity this year has been work to develop a DOE Technical Standard for the safety of fusion test facilities.

  14. On the viability of supporting institutional sharing of remote laboratory facilities

    NASA Astrophysics Data System (ADS)

    Lowe, David; Dang, Bridgette; Daniel, Keith; Murray, Stephen; Lindsay, Euan

    2015-11-01

    Laboratories are generally regarded as critical to engineering education, and yet educational institutions face significant challenges in developing and maintaining high-quality laboratory facilities. Remote laboratories are increasingly being explored as a partial solution to this challenge, with research showing that - for the right learning outcomes - they can be viable adjuncts or alternatives to conventional hands-on laboratories. One consequential opportunity arising from the inherent support for distributed access is the possibility of cross-institutional shared facilities. While both technical feasibility and pedagogic implications of remote laboratories have been well studied within the literature, the organisational and logistical issues associated with shared facilities have received limited consideration. This paper uses an existing national-scale laboratory sharing initiative, along with a related survey and laboratory sharing data, to analyse a range of factors that can affect engagement in laboratory sharing. The paper also discusses the implications for supporting ongoing laboratory sharing.

  15. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KOZLOWSKI, S.D.

    2007-05-30

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditionsmore » for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.« less

  16. Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, M.E.

    2006-02-27

    The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclearmore » applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program-specific measurements. As a result, ORELA has not received base funding to support major upgrades and significant maintenance operations that are essential to keep the facility in a state of readiness over the long term. As a result, ORELA has operated on a ''sub-bare-minimum'' budget for the past 10 to 15 years, and the facility has not been maintained at a level for continued reliable operation for the long term. During the Workshop, Jerry McKamy (NNSA/NA-117) used a hospital patient metaphor that accurately depicts the facility status. ORELA is currently in the intensive care unit (ICU) on life support, and refurbishment efforts are needed to get the ''patient'' off life support and out to an ordinary hospital room. McKamy further noted that the DOE NCSP is planning to fund immediate refurbishment tasks ($1.5 M over three years) to help reestablish reliable ORELA operation (i.e., move ORELA from ICU to an ordinary hospital room). Furthermore, the NCSP will work to identify and carry out the actions needed to discharge ORELA from the ''hospital'' over the next five to seven years. In accordance with the Workshop objectives, the technical community publicly endorsed the need for a reliable ORELA facility that can meet current and future nuclear data needs. These Workshop proceedings provide the formal documentation of the technical community endorsement for ORELA. Furthermore, the proceedings highlight the past and current contributions that ORELA has made to the nuclear industry. The Workshop further emphasized the operational and funding problems that currently plague the facility, thereby limiting ORELA's operational reliability. Despite the recent operational problems, ORELA is a uniquely capable measurement facility that must be part of the overall U.S. nuclear data measurement portfolio in order to support current and emerging nuclear applications. The Workshop proceedings further emphasize that ORNL, the technical community, and programmatic sponsors are eager to see ORELA reestablish reliable measurement operation and be readily available to address nuclear data challenges in the United States.« less

  17. Aeronautical Engineering: A continuing bibliography with indexes (supplement 175)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    This bibliography lists 467 reports, articles and other documents introduced into the NASA scientific and technical information system in May 1984. Topics cover varied aspects of aeronautical engineering, geoscience, physics, astronomy, computer science, and support facilities.

  18. ACHP | Historic Preservation in Technical or Scientific Facilities

    Science.gov Websites

    with the Operation of Highly Technical or Scientific Facilities Balancing Historic Preservation Needs with the Operation of Highly Technical or Scientific Facilities 1991; 79 pages; excerpt available Needs with the Operation of Highly Technical or Scientific Facilities considers the appropriate role of

  19. For support of USAMRMC Biological Weapons Convention, treaty and statement implementation activities. Final report, 1 March 1996-28 February 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, J.

    Program of work to provide support to the Biological Arms Control Treaty Office (BACTO) of the U.S. Army Medical Research and Material Command (USAMRMC), in the development of Army and U.S. Government negotiation, implementation and compliance policies and preparations regarding potential verification and confidence measures for the 1975 Biological Weapons Convention (BWC) and related biological weapons agreements. Support services provided included the preparation of Army installations and commands for implementation of visits pursuant to the U.S./UK/Russian Trilateral Statement on BW. Support included site assistance visit, development of required facility documentation and briefings, identification of additional facilities potentially subject to access,more » and support to DOD development of guidelines, procedures, documentation, and other materials for the conduct of visits. Specific tasks under this contract included: identification and delineation of `Military Biological Facilities` and related activities at Army installations; development of visit implementation documentation for the Army; assessment of potentially at-risk equities and sensitivities at relevant facilities; facility staff training and preparation; and review and modification of facility inputs to annual BWC Confidence Building Measure Declarations. Also supported the provision of timely and critical technical support to the Joint Staff and OSD in the development of DoD negotiation biological arms control positions.« less

  20. The NASA/JPL 64-meter-diameter antenna at Goldstone, California: Project report, technical staff, tracking and data acquisition organization

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The significant management and technical aspects of the JPL Project to develop and implement a 64-meter-diameter antenna at the Goldstone Deep Space Communications Complex in California, which was the first of the Advanced Antenna Systems of the National Aeronautics and Space Administration/Jet Propulsion Laboratory Deep Space Network are described. The original need foreseen for a large-diameter antenna to accomplish communication and tracking support of NASA's solar system exploration program is reviewed, and the translation of those needs into the technical specification of an appropriate ground station antenna is described. The antenna project is delineated by phases to show the key technical and managerial skills and the technical facility resources involved. There is a brief engineering description of the antenna and its closely related facilities. Some difficult and interesting engineering problems, then at the state-of-the-art level, which were met in the accomplishment of the Project, are described. The key performance characteristics of the antenna, in relation to the original specifications and the methods of their determination, are stated.

  1. Space station systems analysis study. Part 3: Documentation. Volume 4: Supporting research and technology report

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A brief description of recommended supporting research and technology items resulting from the space station analysis study is provided. Descriptions include the title; the status with respect to the state of the art; the justification; the technical plan including objectives and technical approach; resource requirements categorized by manpower, specialized facilities, and funding in 1977 dollars; and also the target schedule. The goal is to provide high confidence in the solutions for the various functional system development problems, and to do so within a time period compatible with the overall evolutionary space construction base schedule.

  2. Integrated Noise Model (INM) version 6.0 technical manual

    DOT National Transportation Integrated Search

    2002-01-31

    The Federal Aviation Administration, Office of Environment and Energy (FAA, AEE-100) has : developed Version 6.0 of the Integrated Noise Model (INM) with support from the John A. Volpe : National Transportation Systems Center, Acoustics Facility (Vol...

  3. Integrated noise model (INM) version 7.0 technical manual

    DOT National Transportation Integrated Search

    2008-01-31

    The Federal Aviation Administration, Office of Environment and Energy (FAA, AEE-100) has developed Version 7.0 of the Integrated Noise Model (INM) with support from the John A. Volpe National Transportation Systems Center, Acoustics Facility (Volpe C...

  4. Integrated Noise Model (INM), version 5.1 : technical manual

    DOT National Transportation Integrated Search

    1997-12-01

    The Federal Aviation Administration, Office of Environment and Energy (FAA, AEE-120) : has developed Version 5.1 of the Integrated Noise Model (INM) with support from the : John A. Volpe National Transportation Systems Center, Acoustics Facility (Vol...

  5. Logistics Operations Management Center: Maintenance Support Baseline (LOMC-MSB)

    NASA Technical Reports Server (NTRS)

    Kurrus, R.; Stump, F.

    1995-01-01

    The Logistics Operations Management Center Maintenance Support Baseline is defined. A historical record of systems, applied to and deleted from, designs in support of future management and/or technical analysis is provided. All Flight elements, Ground Support Equipment, Facility Systems and Equipment and Test Support Equipment for which LOMC has responsibilities at Kennedy Space Center and other locations are listed. International Space Station Alpha Program documentation is supplemented. The responsibility of the Space Station Launch Site Support Office is established.

  6. Integrated Procedures for Flight and Ground Operations Using International Standards

    NASA Technical Reports Server (NTRS)

    Ingalls, John

    2011-01-01

    Imagine astronauts using the same Interactive Electronic Technical Manuals (IETM's) as the ground personnel who assemble or maintain their flight hardware, and having all of that data interoperable with design, logistics, reliability analysis, and training. Modern international standards and their corresponding COTS tools already used in other industries provide a good foundation for streamlined technical publications in the space industry. These standards cover everything from data exchange to product breakdown structure to business rules flexibility. Full Product Lifecycle Support (PLCS) is supported. The concept is to organize, build once, reuse many ways, and integrate. This should apply to all future and some current launch vehicles, payloads, space stations/habitats, spacecraft, facilities, support equipment, and retrieval ships.

  7. Engineering directorate technical facilities catalog

    NASA Technical Reports Server (NTRS)

    Maloy, Joseph E.

    1993-01-01

    The Engineering Directorate Technical Facilities Catalog is designed to provide an overview of the technical facilities available within the Engineering Directorate at the National Aeronautics and Space Administration (NASA), Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The combined capabilities of these engineering facilities are essential elements of overall JSC capabilities required to manage and perform major NASA engineering programs. The facilities are grouped in the text by chapter according to the JSC division responsible for operation of the facility. This catalog updates the facility descriptions for the JSC Engineering Directorate Technical Facilities Catalog, JSC 19295 (August 1989), and supersedes the Engineering Directorate, Principle test and Development Facilities, JSC, 19962 (November 1984).

  8. Summary of Current and Future MSFC International Space Station Environmental Control and Life Support System Activities

    NASA Technical Reports Server (NTRS)

    Ray, Charles D.; Carrasquillo, Robyn L.; Minton-Summers, Silvia

    1997-01-01

    This paper provides a summary of current work accomplished under technical task agreement (TTA) by the Marshall Space Flight Center (MSFC) regarding the Environmental Control and Life Support System (ECLSS) as well as future planning activities in support of the International Space Station (ISS). Current activities include ECLSS computer model development, component design and development, subsystem integrated system testing, life testing, and government furnished equipment delivered to the ISS program. A long range plan for the MSFC ECLSS test facility is described whereby the current facility would be upgraded to support integrated station ECLSS operations. ECLSS technology development efforts proposed to be performed under the Advanced Engineering Technology Development (AETD) program are also discussed.

  9. Analytical Chemistry Laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2013-01-01

    The Analytical Chemistry and Material Development Group maintains a capability in chemical analysis, materials R&D failure analysis and contamination control. The uniquely qualified staff and facility support the needs of flight projects, science instrument development and various technical tasks, as well as Cal Tech.

  10. SSPF Operational Upgrades

    NASA Image and Video Library

    2016-11-15

    During a ribbon cutting ceremony in the high bay of the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, center director Bob Cabana, far left, is joined by Bill Dowdell, Kennedy's International Space Station technical director, Josephine Burnett, director of Exploration Research and Technology, Andy Allen, Jacobs vice president and general manager and Test and Operations Support Contract program manager, and Jeff McAlear, Jacobs director of Processing Services. The event celebrated completion of facility modifications to improve processing and free up zones tailored to a variety of needs supporting a robust assortment of space-bound hardware including NASA programs and commercial space companies.

  11. SNL Five-Year Facilities & Infrastructure Plan FY2015-2019

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipriani, Ralph J.

    2014-12-01

    Sandia’s development vision is to provide an agile, flexible, safer, more secure, and efficient enterprise that leverages the scientific and technical capabilities of the workforce and supports national security requirements in multiple areas. Sandia’s Five-Year Facilities & Infrastructure Planning program represents a tool to budget and prioritize immediate and short-term actions from indirect funding sources in light of the bigger picture of proposed investments from direct-funded, Work for Others and other funding sources. As a complementary F&I investment program, Sandia’s indirect investment program supports incremental achievement of the development vision within a constrained resource environment.

  12. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation, and...

  13. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation, and...

  14. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation, and...

  15. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be... maintain the identity of certified technical animal fats and materials used in their preparation, and...

  16. Shuttle Laser Technology Experiment Facility (LTEF)-to-airplane lasercom experiment: Airplane considerations

    NASA Technical Reports Server (NTRS)

    Kalil, Ford

    1990-01-01

    NASA is considering the use of various airplanes for a Shuttle Laser Technology Experiment Facility (LTEF)-to-Airplane laser communications experiment. As supporting documentation, pertinent technical details are included about the potential use of airplanes located at Ames Research Center and Wallops Flight Facility. The effects and application of orbital mechanics considerations are also presented, including slant range, azimuth, elevation, and time. The pros and cons of an airplane equipped with a side port with a bubble window versus a top port with a dome are discussed.

  17. Mission Simulation Facility: Simulation Support for Autonomy Development

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Plice, Laura; Neukom, Christian; Flueckiger, Lorenzo; Wagner, Michael

    2003-01-01

    The Mission Simulation Facility (MSF) supports research in autonomy technology for planetary exploration vehicles. Using HLA (High Level Architecture) across distributed computers, the MSF connects users autonomy algorithms with provided or third-party simulations of robotic vehicles and planetary surface environments, including onboard components and scientific instruments. Simulation fidelity is variable to meet changing needs as autonomy technology advances in Technical Readiness Level (TRL). A virtual robot operating in a virtual environment offers numerous advantages over actual hardware, including availability, simplicity, and risk mitigation. The MSF is in use by researchers at NASA Ames Research Center (ARC) and has demonstrated basic functionality. Continuing work will support the needs of a broader user base.

  18. KSC-99pp1209

    NASA Image and Video Library

    1999-10-14

    Construction continues on an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (upper right). Near the top of the photo is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  19. KSC-99pp1210

    NASA Image and Video Library

    1999-10-14

    An aerial closeup view reveals the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and at left a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. Near the top of the photo can be seen the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  20. Independent technical support for the frozen soil barrier installation and operation at the Fukushima Daiichi Nuclear Power Station (F1 Site)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B.; Jackson, Dennis G.; Truex, Michael J.

    TEPCO is implementing a number of water countermeasures to limit the releases and impacts of contaminated water to the surrounding environment. The diverse countermeasures work together in an integrated manner to provide different types, and several levels, of protection. In general, the strategy represents a comprehensive example of a “defense in depth” concept that is used for nuclear facilities around the world. One of the key countermeasures is a frozen soil barrier encircling the damaged reactor facilities. The frozen barrier is intended to limit the flow of water into the area and provide TEPCO the ability to reduce the amountmore » of contaminated water that requires treatment and storage. The National Laboratory team supports the selection of artificial ground freezing and the incorporation of the frozen soil barrier in the contaminated water countermeasures -- the technical characteristics of a frozen barrier are relatively well suited to the Fukushima-specific conditions and the need for inflow reduction. Further, our independent review generally supports the TEPCO/Kajima design, installation strategy and operation plan.« less

  1. 77 FR 8288 - Applications and Amendments to Facility Operating Licenses Involving Proposed No Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... not listed on the Web site, but should note that the NRC's E-Filing system does not support unlisted... (COLR), to update the methodology reference list to support the core design with the new AREVA fuel... methodologies listed in Technical Specification 5.7.1.5 has no impact on any plant configuration or system...

  2. 44 CFR 206.62 - Available assistance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Available assistance. 206.62 Section 206.62 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF..., facilities, and managerial, technical and advisory services) in support of State and local emergency...

  3. Corrosion Control of Central Vehicle Wash Facility Pump Components Using Alternative Alloy Coatings

    DTIC Science & Technology

    2016-07-01

    military installations are es- sential for supporting the readiness of tactical vehicles. Steel wash-rack pumps are vulnerable to accelerated...Management Command (IMCOM). The technical monitors were Daniel J. Dunmire (OUSD(AT&L)), Bernie Rodriguez (IMPW-FM), and Valerie D. Hines (DAIM-ODF...statement Large steel water pumps are used to pump water into the Central Vehicle Wash Facility (CVWF) for vehicle washing at Fort Polk, LA. The interior

  4. Wisconsin Test Facility Ground Terminal Corrosion Study.

    DTIC Science & Technology

    1978-04-01

    The technical effort reported herein is intended to support development of the Navy’s ELF Submarine Command and Control Communications System. The... ELF Extremely Low Frequency Ground System Corros ion Investigations of ELF ground system corrosion at the Navy’s Wisconsin Te’st Facility were...the Special Communications Project Office of the U. S. Naval Electronic Systems Command by lIT Research Institute, as part of Contract N00039-76-C-0141

  5. Identification of User Facility Related Publications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patton, Robert M; Stahl, Christopher G; Wells, Jack C

    2012-01-01

    Scientific user facilities provide physical resources and technical support that enable scientists to conduct experiments or simulations pertinent to their respective research. One metric for evaluating the scientific value or impact of a facility is the number of publications by users as a direct result of using that facility. Unfortunately, for a variety of reasons, capturing accurate values for this metric proves time consuming and error-prone. This work describes a new approach that leverages automated browser technology combined with text analytics to reduce the time and error involved in identifying publications related to user facilities. With this approach, scientific usermore » facilities gain more accurate measures of their impact as well as insight into policy revisions for user access.« less

  6. High-speed civil transport issues and technology program

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.

    1992-01-01

    A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.

  7. Alaska road weather project : technical performance assessment report Fairbanks field demonstration 2013-2014.

    DOT National Transportation Integrated Search

    2014-02-01

    The Alaska Department of Transportation and Public Facilities began implementation of a Maintenance Decision Support System in an : effort to improve snow and ice control in the Fairbanks area. As part of the project the reliability of the weather fo...

  8. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, Paul

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  9. Improving Quality of Care in Primary Health-Care Facilities in Rural Nigeria

    PubMed Central

    Ugo, Okoli; Ezinne, Eze-Ajoku; Modupe, Oludipe; Nicole, Spieker; Kelechi, Ohiri

    2016-01-01

    Background: Nigeria has a high population density but a weak health-care system. To improve the quality of care, 3 organizations carried out a quality improvement pilot intervention at the primary health-care level in selected rural areas. Objective: To assess the change in quality of care in primary health-care facilities in rural Nigeria following the provision of technical governance support and to document the successes and challenges encountered. Method: A total of 6 states were selected across the 6 geopolitical zones of the country. However, assessments were carried out in 40 facilities in only 5 states. Selection was based on location, coverage, and minimum services offered. The facilities were divided randomly into 2 groups. The treatment group received quality-of-care assessment, continuous feedback, and improvement support, whereas the control group received quality assessment and no other support. Data were collected using the SafeCare Healthcare Standards and managed on the SafeCare Data Management System—AfriDB. Eight core areas were assessed at baseline and end line, and compliance to quality health-care standards was compared. Result: Outcomes from 40 facilities were accepted and analyzed. Overall scores increased in the treatment facilities compared to the control facilities, with strong evidence of improvement (t = 5.28, P = .0004) and 11% average improvement, but no clear pattern of improvement emerged in the control group. Conclusion: The study demonstrated governance support and active community involvement offered potential for quality improvement in primary health-care facilities. PMID:28462280

  10. Improving Quality of Care in Primary Health-Care Facilities in Rural Nigeria: Successes and Challenges.

    PubMed

    Ugo, Okoli; Ezinne, Eze-Ajoku; Modupe, Oludipe; Nicole, Spieker; Winifred, Ekezie; Kelechi, Ohiri

    2016-01-01

    Nigeria has a high population density but a weak health-care system. To improve the quality of care, 3 organizations carried out a quality improvement pilot intervention at the primary health-care level in selected rural areas. To assess the change in quality of care in primary health-care facilities in rural Nigeria following the provision of technical governance support and to document the successes and challenges encountered. A total of 6 states were selected across the 6 geopolitical zones of the country. However, assessments were carried out in 40 facilities in only 5 states. Selection was based on location, coverage, and minimum services offered. The facilities were divided randomly into 2 groups. The treatment group received quality-of-care assessment, continuous feedback, and improvement support, whereas the control group received quality assessment and no other support. Data were collected using the SafeCare Healthcare Standards and managed on the SafeCare Data Management System-AfriDB. Eight core areas were assessed at baseline and end line, and compliance to quality health-care standards was compared. Outcomes from 40 facilities were accepted and analyzed. Overall scores increased in the treatment facilities compared to the control facilities, with strong evidence of improvement ( t = 5.28, P = .0004) and 11% average improvement, but no clear pattern of improvement emerged in the control group. The study demonstrated governance support and active community involvement offered potential for quality improvement in primary health-care facilities.

  11. Implementing OpenMRS for patient monitoring in an HIV/AIDS care and treatment program in rural Mozambique.

    PubMed

    Manders, Eric-Jan; José, Eurico; Solis, Manuel; Burlison, Janeen; Nhampossa, José Leopoldo; Moon, Troy

    2010-01-01

    We have adopted the Open Medical Record System (OpenMRS) framework to implement an electronic patient monitoring system for an HIV care and treatment program in Mozambique. The program provides technical assistance to the Ministry of Health supporting the scale up of integrated HIV care and support services in health facilities in rural resource limited settings. The implementation is in use for adult and pediatric programs, with ongoing roll-out to cover all supported sites. We describe early experiences in adapting the system to the program needs, addressing infrastructure challenges, creating a regional support team, training data entry staff, migrating a legacy database, deployment, and current use. We find that OpenMRS offers excellent prospects for in-country development of health information systems, even in severely resource limited settings. However, it also requires considerable organizational infrastructure investment and technical capacity building to ensure continued local support.

  12. The Volpe Center Role in the Development of Transportation-Related Noise Policy and Regulations: A Presentation of Two Case Studies.

    DOT National Transportation Integrated Search

    2001-10-29

    For the past three decades, the U.S. Department of Transportations John A. Volpe National : Transportation Systems Center Acoustics Facility (Volpe Center) has been providing noise-related technical support to various government organizations at t...

  13. Atmospheric science facility pallet-only mode space transportation system payload (feasibility study), Volume 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The economic and technical feasibility is assessed of employing a pallet-only mode for conducting Atmospheric Magnetospheric Plasmas-in-Space experiments. A baseline design incorporating the experiment and instrument descriptions is developed. The prime instruments are packaged into four pallets in a physical and functional manner compatible with the Space Transportation System capabilities and/or constraints and an orbiter seven-day mission timeline. Operational compatibility is verified between the orbiter/payload and supporting facilities. The development status and the schedule requirements applicable to the Atmospheric Science Facility mission are identified. Conclusions and recommendations are presented and discussed.

  14. The design and implementation of the Technical Facilities Controller (TFC) for the Goldstone deep space communications complex

    NASA Technical Reports Server (NTRS)

    Killian, D. A.; Menninger, F. J.; Gorman, T.; Glenn, P.

    1988-01-01

    The Technical Facilities Controller is a microprocessor-based energy management system that is to be implemented in the Deep Space Network facilities. This system is used in conjunction with facilities equipment at each of the complexes in the operation and maintenance of air-conditioning equipment, power generation equipment, power distribution equipment, and other primary facilities equipment. The implementation of the Technical Facilities Controller was completed at the Goldstone Deep Space Communications Complex and is now operational. The installation completed at the Goldstone Complex is described and the utilization of the Technical Facilities Controller is evaluated. The findings will be used in the decision to implement a similar system at the overseas complexes at Canberra, Australia, and Madrid, Spain.

  15. Performance Assessment Assistance Activities in the DOE Complex - 12325

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seitz, Roger R.; Phifer, Mark A.; Letourneau, Martin J.

    The United States Department of Energy Office of Environmental Management (DOE-EM) has established a Performance Assessment Community of Practice (PA CoP) to foster the sharing of information among performance assessment (PA) and risk assessment practitioners, regulators and oversight personnel. The general intent is to contribute to continuous improvement in the consistency, technical adequacy and quality of implementation of PAs and risk assessments around the DOE Complex. The PA CoP activities have involved commercial disposal facilities and international participants to provide a global perspective. The PA CoP has also sponsored annual technical exchanges as a means to foster improved communication andmore » to share lessons learned from on-going modelling activities. The PA CoP encourages activities to provide programmatic and technical assistance in the form of sharing experience and lessons learned with practitioners during the development of PAs and risk assessments. This assistance complements DOE-EM reviews through the Low-Level Waste Disposal Facility Federal Review Group (LFRG) that are conducted after modelling efforts are completed. Such up-front assistance is providing additional value in terms of improving consistency and sharing of information. There has been a substantial increase in the amount of assistance being provided. The assistance has been well received by practitioners and regulators that have been involved. The paper highlights assistance and sharing of information that has been conducted in the last two years to support activities underway in support of proposed disposal facilities at Paducah, Portsmouth, and the Idaho National Laboratory and tank closure at Hanford. DOE-EM established the PA CoP to help improve the consistency and quality of implementation of modelling activities around the DOE Complex. The PA CoP has sponsored annual technical exchanges as a means to foster improved communication and to share lessons learned from ongoing modelling activities. Practitioners; project managers; oversight personnel; and regulators from United States and international facilities have participated in the three technical exchanges that have been held to date. At the working level, the PA CoP has sponsored technical assistance in support of modelling activities that are currently underway. The assistance concept provides a means to share specific experience, good practices, and lessons learned on topics of interest at a given site while the modelling is being conducted. Such up-front assistance complements the sharing of information that occurs via regular LFRG meetings and independent LFRG reviews that are conducted when the modelling effort is completed. Examples from assistance activities that have been conducted at Idaho, Paducah, Portsmouth and Hanford were highlighted in this paper. There were differences in the types of assistance provided at each site. In some cases the assistance was focused on technical support for the practitioners and management responsible for the development of the PAs. At other sites, the assistance included working with the developers and regulators/stakeholders involved in the process to help with reaching consensus on critical assumptions. Such interactions have proven to be very effective to help all parties get a chance to discuss their perspectives and better understand the different points of view. In all cases, the assistance was used as a means to share broader perspectives, experiences and lessons learned with personnel engaged in a modelling activities at a given site. The combination of technical exchanges and targeted technical assistance has provided additional means to encourage the sharing of information around the DOE Complex and globally. Feedback from practitioners, oversight personnel, regulators and stakeholders that have been involved has been overwhelmingly positive. It is believed that such sharing of information and experiences is contributing to continuous improvement in the consistency, technical adequacy, and quality of modelling activities. Although different approaches are still being used, there is an improvement in the awareness of lessons learned and implementation of practices that have proven to be effective. (authors)« less

  16. Underground Test Area Activity Preemptive Review Guidance Nevada National Security Site, Nevada, Revision 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farnham, Irene; Rehfeldt, Kenneth

    Preemptive reviews (PERs) of Underground Test Area (UGTA) Activity corrective action unit (CAU) studies are an important and long-maintained quality improvement process. The CAU-specific PER committees provide internal technical review of ongoing work throughout the CAU lifecycle. The reviews, identified in the UGTA Quality Assurance Plan (QAP) (Sections 1.3.5.1 and 3.2), assure work is comprehensive, accurate, in keeping with the state of the art, and consistent with CAU goals. PER committees review various products, including data, documents, software/codes, analyses, and models. PER committees may also review technical briefings including Federal Facility Agreement and Consent Order (FFACO)-required presentations to the Nevadamore » Division of Environmental Protection (NDEP) and presentations supporting key technical decisions (e.g., investigation plans and approaches). PER committees provide technical recommendations to support regulatory decisions that are the responsibility of the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) and NDEP.« less

  17. Hydrologic Instrumentation Facility of the U.S. Geological Survey, annual report for fiscal year 1993

    USGS Publications Warehouse

    Latkovich, V.J.; Tracey, Debra C.

    1994-01-01

    The Hydrologic lnstrumentation Facility (HIF) of the U.S. Geological Survey (USGS) has nationwide responsibility for all aspects of hydrologic field instrumentation in support of Survey data-collection programs. Each year the HIF publishes a report to inform Water Resources Division (WRD) personnel of progress made by the HIF in fulfilling its mission to improve instrumentation services to the Division. The report for fiscal year 1993 (FY93) describes the activities of the HIF, including major accomplish- ments for the year; personnel actions; active projects (reported by section--Technical Services Section, Administrative Services Section, Field Coordination, Applications and Development Section, Test and Evaluation Section, Field Service and Supply Section); and planned activities for the coming year. Also presented in the appendixes are detailed listings of the memberships of the Instrumentation Committee and the Instrumentation Technical Advisory Subcommittee; district, sub- district, and field office visits by HIF personnel; professional and technical meetings attended by HIF personnel; vendor visits; and reports prepared by HIF personnel.

  18. 76 FR 24831 - Site-Specific Analyses for Demonstrating Compliance With Subpart C Performance Objectives

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... available under ADAMS accession number ML111040419, and the ``Technical Analysis Supporting Definition of... NUCLEAR REGULATORY COMMISSION 10 CFR Part 61 RIN 3150-AI92 [NRC-2011-0012] Site-Specific Analyses...-level radioactive waste disposal facilities to conduct site-specific analyses to demonstrate compliance...

  19. NREL Advances Wells Fargo Innovation Incubator Projects | Energy Systems

    Science.gov Websites

    Integration Facility | NREL NREL Advances Wells Fargo Innovation Incubator Projects NREL Advances Wells Fargo Innovation Incubator Projects NREL has provided technical support and validation testing at the ESIF to help advance Wells Fargo Innovation Incubator (IN2) projects. The IN2 program helps

  20. Enough to Go 'Round? Thinking Smart about Total Cost of Ownership

    ERIC Educational Resources Information Center

    McIntire, Todd

    2006-01-01

    Total cost of ownership or TCO refers to the life cycle of costs for technology, including both direct and indirect expenses. TCO includes costs incurred by capital (hardware, software, and facilities); administration and operation (planning, upgrade, replacement, and technical support); and end-user operation (staff development and user…

  1. INEL BNCT Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, A.L.

    1991-08-01

    This Bulletin presents a summary of accomplishments and highlights in the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for August 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  2. Technical Assistance for Arts Facilities: A Sourcebook. A Report.

    ERIC Educational Resources Information Center

    Educational Facilities Labs., Inc., New York, NY.

    This booklet is a directory of sources of technical assistance on problems relating to physical facilities for arts organizations. Wherever possible, agencies and organizations are described in their own words. Technical assistance in the area of physical facilities encompasses planning, financing, acquiring, renovating, designing, and maintaining…

  3. Survey of solar thermal test facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masterson, K.

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilitiesmore » is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.« less

  4. U.S. National Institutes of Health core consolidation-investing in greater efficiency.

    PubMed

    Chang, Michael C; Birken, Steven; Grieder, Franziska; Anderson, James

    2015-04-01

    The U.S. National Institutes of Health (NIH) invests substantial resources in core research facilities (cores) that support research by providing advanced technologies and scientific and technical expertise as a shared resource. In 2010, the NIH issued an initiative to consolidate multiple core facilities into a single, more efficient core. Twenty-six institutions were awarded supplements to consolidate a number of similar core facilities. Although this approach may not work for all core settings, this effort resulted in consolidated cores that were more efficient and of greater benefit to investigators. The improvements in core operations resulted in both increased services and more core users through installation of advanced instrumentation, access to higher levels of management expertise; integration of information management and data systems; and consolidation of billing; purchasing, scheduling, and tracking services. Cost recovery to support core operations also benefitted from the consolidation effort, in some cases severalfold. In conclusion, this program of core consolidation resulted in improvements in the effective operation of core facilities, benefiting both investigators and their supporting institutions.

  5. Cost effective nuclear commercial grade dedication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maletz, J.J.; Marston, M.J.

    1991-01-01

    This paper describes a new computerized database method to create/edit/view specification technical data sheets (mini-specifications) for procurement of spare parts for nuclear facility maintenance and to develop information that could support possible future facility life extension efforts. This method may reduce cost when compared with current manual methods. The use of standardized technical data sheets (mini-specifications) for items of the same category improves efficiency. This method can be used for a variety of tasks, including: Nuclear safety-related procurement; Non-safety related procurement; Commercial grade item procurement/dedication; Evaluation of replacement items. This program will assist the nuclear facility in upgrading its procurementmore » activities consistent with the recent NUMARC Procurement Initiative. Proper utilization of the program will assist the user in assuring that the procured items are correct for the applications, provide data to assist in detecting fraudulent materials, minimize human error in withdrawing database information, improve data retrievability, improve traceability, and reduce long-term procurement costs.« less

  6. PERFORMANCE ASSESSMENT ASSISTANCE ACTIVITIES IN THE DOE COMPLEX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seitz, R.

    2012-01-23

    The United States Department of Energy Office of Environmental Management (DOE-EM) has established a Performance Assessment Community of Practice (PA CoP) to foster the sharing of information among performance assessment (PA) and risk assessment practitioners, regulators and oversight personnel. The general intent is to contribute to continuous improvement in the consistency, technical adequacy and quality of implementation of PAs and risk assessments around the DOE Complex. The PA CoP activities have involved commercial disposal facilities and international participants to provide a global perspective. The PA CoP has also sponsored annual technical exchanges as a means to foster improved communication andmore » to share lessons learned from on-going modelling activities. The PA CoP encourages activities to provide programmatic and technical assistance in the form of sharing experience and lessons learned with practitioners during the development of PAs and risk assessments. This assistance complements DOE-EM reviews through the Low-Level Waste Disposal Facility Federal Review Group (LFRG) that are conducted after modelling efforts are completed. Such up-front assistance is providing additional value in terms of improving consistency and sharing of information. There has been a substantial increase in the amount of assistance being provided. The assistance has been well received by practitioners and regulators that have been involved. The paper highlights assistance and sharing of information that has been conducted in the last two years to support activities underway in support of proposed disposal facilities at Paducah, Portsmouth, and the Idaho National Laboratory and tank closure at Hanford.« less

  7. KSC-99pp1261

    NASA Image and Video Library

    1999-10-29

    The support building at the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center takes form. It will house related ground support equipment and administrative/technical support. The RLV complex includes a multi-purpose hangar that will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  8. The Innovation Hyperlab - Linking Student Innovation at University and Pre-College Levels

    NASA Astrophysics Data System (ADS)

    Tagg, Randall

    2012-02-01

    We have created a laboratory environment to support collaboration between university and pre-college students on innovation and entrepreneurship projects. Called the ``Innovation Hyperlab,'' this facility is located in a K-12 complex called VistaPEAK schools in Aurora, Colorado. The lab is supported by four elements: a research-grade technical infrastructure of supplies and equipment for technical prototyping, a developing curriculum of ``learning modules on demand'' for rapid assimilation of technical skills, mentors from universities / medical schools / industry, and innovation projects stimulated by connections with the regional community. A current focus of projects is on medical technology development, linking tenth graders with university undergraduate research students and coordinated with the University of Colorado Denver's medical school. The Innovation Hyperlab is a work in progress and we will describe challenges that arise in connecting such a collaboration with traditional curriculum at both the university and pre-college levels.

  9. Independent technical review, handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Purpose Provide an independent engineering review of the major projects being funded by the Department of Energy, Office of Environmental Restoration and Waste Management. The independent engineering review will address questions of whether the engineering practice is sufficiently developed to a point where a major project can be executed without significant technical problems. The independent review will focus on questions related to: (1) Adequacy of development of the technical base of understanding; (2) Status of development and availability of technology among the various alternatives; (3) Status and availability of the industrial infrastructure to support project design, equipment fabrication, facility construction,more » and process and program/project operation; (4) Adequacy of the design effort to provide a sound foundation to support execution of project; (5) Ability of the organization to fully integrate the system, and direct, manage, and control the execution of a complex major project.« less

  10. Descriptive analysis of context evaluation instrument for technical oral presentation skills evaluation: A case study in English technical communication course

    NASA Astrophysics Data System (ADS)

    Mohamed, Abdullah-Adnan; Asmawi, Adelina; Hamid, Mohd Rashid Ab; Mustafa, Zainol bin

    2015-02-01

    This paper reports a pilot study of Context Evaluation using a self-developed questionnaire distributed among engineering undergraduates at a university under study. The study aims to validate the self-developed questionnaires used in the Context evaluation, a component in the CIPP Model. The Context evaluation assesses background information for needs, assets, problems and opportunities relevant to beneficiaries of the study in a defined environment. Through the questionnaire, background information for the assessment of needs, assets and problems related to the engineering undergraduates' perceptions on the teaching and learning of technical oral presentation skills was collected and analysed. The questionnaire was developed using 5-points Likert scale to measure the constructs under study. They were distributed to 100 respondents with 79 returned. The respondents consisted of engineering undergraduates studied at various faculties at one technical university in Malaysia. The descriptive analysis of data for each item which makes up the construct for Context evaluation is found to be high. This implied that engineering undergraduates showed high interest in teaching and learning of technical oral presentation skills, thus their needs are met. Also, they agreed that assets and facilities are conducive to their learning. In conclusion, the context evaluation involving needs and assets factors are both considerably important; their needs are met and the assets and facilities do support their technical oral presentation skills learning experience.

  11. 9 CFR 351.10 - Facilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Facilities. 351.10 Section 351.10... CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.10 Facilities. (a) Facilities for the preparation, identification, and storage of the technical animal fat to be...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.

    The Hanford Waste Treatment and Immobilization Plant (WTP) is currently being designed and constructed to pretreat and vitrify a large portion of the waste in the 177 underground waste storage tanks at the Hanford Site. A number of technical issues related to the design of the pretreatment facility (PTF) of the WTP have been identified. These issues must be resolved prior to the U.S. Department of Energy (DOE) Office of River Protection (ORP) reaching a decision to proceed with engineering, procurement, and construction activities for the PTF. One of the issues is Technical Issue T1 - Hydrogen Gas Release frommore » Vessels (hereafter referred to as T1). The focus of T1 is identifying controls for hydrogen release and completing any testing required to close the technical issue. In advance of selecting specific controls for hydrogen gas safety, a number of preliminary technical studies were initiated to support anticipated future testing and to improve the understanding of hydrogen gas generation, retention, and release within PTF vessels. These activities supported the development of a plan defining an overall strategy and approach for addressing T1 and achieving technical endpoints identified for T1. Preliminary studies also supported the development of a test plan for conducting testing and analysis to support closing T1. Both of these plans were developed in advance of selecting specific controls, and in the course of working on T1 it was decided that the testing and analysis identified in the test plan were not immediately needed. However, planning activities and preliminary studies led to significant technical progress in a number of areas. This report summarizes the progress to date from the preliminary technical studies. The technical results in this report should not be used for WTP design or safety and hazards analyses and technical results are marked with the following statement: “Preliminary Technical Results for Planning – Not to be used for WTP Design or Safety Analyses.”« less

  13. The contractor`s role in low-level waste disposal facility application review and licensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serie, P.J.; Dressen, A.L.

    1991-12-31

    The California Department of Health Services will soon reach a licensing decision on the proposed Ward Valley low-level radioactive waste disposal facility. As the first regulatory agency in the country to address the 10 CFR Part 61 requirements for a new disposal facility, California`s program has broken new ground in its approach. Throughout the review process, the Department has relied on contractor support to augment its technical and administrative staff. A team consisting of Roy F. Weston, Inc., supported by ERM-Program Management Corp., Environmental Issues Management, Inc., and Rogers and Associates Engineering Corporation, has worked closely with the Department inmore » a staff extension role. The authors have been involved with the project in contractor project management roles since 1987, and continue to support the Department`s program as it proceeds to finalize its licensing process. This paper describes the selection process used to identify a contractor team with the needed skills and experience, and the makeup of team capabilities. It outlines the management, communication, and technical approaches used to assure a smooth agency-contractor function and relationship. It describes the techniques used to ensure that decisions and documents represented the Department credibly in its role as the regulatory and licensing agency under the Nuclear Regulatory Commission (NRC) Agreement State program. The paper outlines the license application review process and activities, through preparation of licensing documentation and responses to public comments. Lessons learned in coordination of an agency-contractor team effort to review and license a low-level waste disposal facility are reviewed and suggestions made for approaching a similar license application review and licensing situation.« less

  14. Distributed architecture and distributed processing mode in urban sewage treatment

    NASA Astrophysics Data System (ADS)

    Zhou, Ruipeng; Yang, Yuanming

    2017-05-01

    Decentralized rural sewage treatment facility over the broad area, a larger operation and management difficult, based on the analysis of rural sewage treatment model based on the response to these challenges, we describe the principle, structure and function in networking technology and network communications technology as the core of distributed remote monitoring system, through the application of case analysis to explore remote monitoring system features in a decentralized rural sewage treatment facilities in the daily operation and management. Practice shows that the remote monitoring system to provide technical support for the long-term operation and effective supervision of the facilities, and reduced operating, maintenance and supervision costs for development.

  15. Evaluation of the Hanford 200 West Groundwater Treatment System: Fluidized Bed Bioreactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B.; Jackson, Dennis G.; Dickson, John O.

    A fluidized bed reactor (FBR) in the 200W water treatment facility at Hanford is removing nitrate from groundwater as part of the overall pump-treat-reinject process. Control of the FBR bed solids has proven challenging, impacting equipment, increasing operations and maintenance (O&M), and limiting the throughput of the facility. In response to the operational challenges, the Department of Energy Richland Office (DOE-RL) commissioned a technical assistance team to facilitate a system engineering evaluation and provide focused support recommendations to the Hanford Team. The DOE Environmental Management (EM) technical assistance process is structured to identify and triage technologies and strategies that addressmore » the target problem(s). The process encourages brainstorming and dialog and allows rapid identification and prioritization of possible options. Recognizing that continuous operation of a large-scale FBR is complex, requiring careful attention to system monitoring data and changing conditions, the technical assistance process focused on explicit identification of the available control parameters (“knobs”), how these parameters interact and impact the FBR system, and how these can be adjusted under different scenarios to achieve operational goals. The technical assistance triage process was performed in collaboration with the Hanford team.« less

  16. Tiger Team Assessment of the Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-11-01

    The purpose of the safety and health assessment was to determine the effectiveness of representative safety and health programs at the Los Alamos National Laboratory (LANL). Within the safety and health programs at LANL, performance was assessed in the following technical areas: Organization and Administration, Quality Verification, Operations, Maintenance, Training and Certification, Auxiliary Systems, Emergency Preparedness, Technical Support, Packaging and Transportation, Nuclear Criticality Safety, Security/Safety Interface, Experimental Activities, Site/Facility Safety Review, Radiological Protection, Personnel Protection, Worker Safety and Health (OSHA) Compliance, Fire Protection, Aviation Safety, Explosives Safety, Natural Phenomena, and Medical Services.

  17. Study of the Physics of Insulating Films as Related to the Reliability of Metal-Oxide Semiconductor Devices

    DTIC Science & Technology

    1980-05-01

    York 10598 Technical assistance of F.L. Pesavento and J.A. Calse Typed by Steila B. Havreluk (3277) Abstract: Chemically vapor deposited (CVD) Si rich...wish to acknowledge the critical reading of this manuscript by D.R. Young and M.I. Nathan; the technical assistance of F.L. Pesavento and L.A. Calise...rendered by J.A. Calise and F.L. Pesavento . Samples have been prepared by the I.B.M. Yorktown Si Process Facility and the work has been supported in part

  18. Research and Technology 2003

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The NASA Glenn Research Center at Lewis Field, in partnership with U.S. industries, universities, and other Government institutions, is responsible for developing critical technologies that address national priorities in aeropropulsion and space applications. Our work is focused on research for new aeropropulsion technologies, aerospace power, microgravity science (fluids and combustion), electric propulsion, and communications technologies for aeronautics, space, and aerospace applications. As NASA s premier center for aeropropulsion, aerospace power, and turbomachinery, our role is to conduct world-class research and to develop key technologies. We contribute to economic growth and national security through safe, superior, and environmentally compatible U.S. civil and military aircraft propulsion systems. Our Aerospace Power Program supports all NASA Enterprises and major programs, including the International Space Station, Advanced Space Transportation, and new initiatives in human and robotic exploration. Glenn Research Center leads NASA s research in the microgravity science disciplines of fluid physics, combustion science, and acceleration measurement. Almost every space shuttle science mission has had an experiment managed by NASA Glenn, and we have conducted a wide array of similar experiments on the International Space Station. The Glenn staff consists of over 3200 civil service employees and support service contractor personnel. Scientists and engineers comprise more than half of our workforce, with technical specialists, skilled workers, and an administrative staff supporting them. We aggressively strive for technical excellence through continuing education, increased diversity in our workforce, and continuous improvement in our management and business practices so that we can expand the boundaries of aeronautics, space, and aerospace technology. Glenn Research Center is a unique facility located in northeast Ohio. Situated on 350 acres of land adjacent to the Cleveland Hopkins International Airport, Glenn comprises more than 140 buildings, including 24 major facilities and over 500 specialized research and test facilities. Additional facilities are located at Plum Brook Station, which is about 50 miles west of Cleveland. Plum Brook Station has four large, major, world-class facilities for space research available for Government and industry programs. Knowledge is the end product of our activities. The R&T reports help make this knowledge fully available to potential users the aircraft engine industry, the space industry, the energy industry, the automotive industry, the aerospace industry, and others. It is organized so that a broad cross section of the community can readily use it. Each article begins with a short introductory paragraph that should prove valuable for the layperson. These articles summarize the progress made during the year in various technical areas and portray the technical and administrative support associated with Glenn s technology programs. We hope that this information is useful to all. If additional information is desired, readers are encouraged to contact the researchers identified at the end of each article and to visit Glenn on the World Wide Web at http://www.grc.nasa.gov.

  19. Effects of cosmic rays on single event upsets

    NASA Technical Reports Server (NTRS)

    Lowe, Calvin W.; Oladipupo, Adebisi O.; Venable, Demetrius D.

    1988-01-01

    The efforts at establishing a research program in space radiation effects are discussed. The research program has served as the basis for training several graduate students in an area of research that is of importance to NASA. In addition, technical support was provided for the Single Event Facility Group at Brookhaven National Laboratory.

  20. A Laser Technology Program Does Not Start with the Speed of Light.

    ERIC Educational Resources Information Center

    Gebert, John H.

    1982-01-01

    Describes the personnel, equipment, and facilities problems encountered by North Central Technical Institute in the development of a laser technician program, and the program's enrollment and job placement rates. Advocates financial support for such programs to meet the national demand for laser and other high technology personnel. (WL)

  1. Flammability, Offgassing, and Compatibility Requirements and Test Procedures. Interim NASA Technical Standard

    NASA Technical Reports Server (NTRS)

    2009-01-01

    This Interim Standard establishes requirements for evaluation, testing, and selection of materials that are intended for use in space vehicles, associated Ground Support Equipment (GSE), and facilities used during assembly, test, and flight operations. Included are requirements, criteria, and test methods for evaluating the flammability, offgassing, and compatibility of materials.

  2. Green Technology to Support Education of Students with Moderate Intellectual Disability

    ERIC Educational Resources Information Center

    Mata, Liliana; Diaconescu, Alina; Lazar, Gabriel; Lazar, Iuliana

    2015-01-01

    The purpose of this study is to investigate the aspects that green technology offers in the education of students with moderate intellectual disability. The theoretical part highlights the technical facilities that green technology offers to education. An analysis of the most recent studies focuses on the use of interactive whiteboard to improve…

  3. INEL BNCT Program: Volume 5, No. 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, A.L.

    1991-01-01

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory's (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  4. 44 CFR 352.24 - Provision of technical assistance and Federal facilities and resources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... response plan is completed. FEMA and other Federal agencies will participate in training, exercises, and drills, in support of the licensee offsite emergency response plan. (e) In carrying out paragraphs (a.... This information will identify Federal agencies which are to be included in the plan, the extent and...

  5. JPL Innovation Foundry

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent; McCleese, Daniel J.

    2012-01-01

    NASA supports the community of mission principal investigators by helping them ideate, mature, and propose concepts for new missions. As NASA's Federally Funded Research and Development Center (FFRDC), JPL is a primary resource for providing this service. The environmental context for the formulation lifecycle evolves continuously. Contemporary trends include: more competitors; more-complex mission ideas; scarcer formulation resources; and higher standards for technical evaluation. Derived requirements for formulation support include: stable, clear, reliable methods tailored for each stage of the formulation lifecycle; on-demand access to standout technical and programmatic subject-matter experts; optimized, outfitted facilities; smart access to learning embodied in a vast oeuvre of prior formulation work; hands-on method coaching. JPL has retooled its provision of integrated formulation lifecycle support to PIs, teams, and program offices in response to this need. This mission formulation enterprise is the JPL Innovation Foundry.

  6. A Unified Approach for Reporting ARM Measurement Uncertainties Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campos, E; Sisterson, DL

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility is observationally based, and quantifying the uncertainty of its measurements is critically important. With over 300 widely differing instruments providing over 2,500 datastreams, concise expression of measurement uncertainty is quite challenging. The ARM Facility currently provides data and supporting metadata (information about the data or data quality) to its users through a number of sources. Because the continued success of the ARM Facility depends on the known quality of its measurements, the Facility relies on instrument mentors and the ARM Data Quality Office (DQO) to ensure, assess, and report measurement quality. Therefore,more » an easily-accessible, well-articulated estimate of ARM measurement uncertainty is needed.« less

  7. A case report in health information exchange for inter-organizational patient transfers.

    PubMed

    Richardson, J E; Malhotra, S; Kaushal, R

    2014-01-01

    To provide a case report of barriers and promoters to implementing a health information exchange (HIE) tool that supports patient transfers between hospitals and skilled nursing facilities. A multi-disciplinary team conducted semi-structured telephone and in-person interviews in a purposive sample of HIE organizational informants and providers in New York City who implemented HIE to share patient transfer information. The researchers conducted grounded theory analysis to identify themes of barriers and promoters and took steps to improve the trustworthiness of the results including vetting from a knowledgeable study participant. Between May and October 2011, researchers recruited 18 participants: informaticians, healthcare administrators, software engineers, and providers from a skilled nursing facility. Subjects perceived the HIE tool's development a success in that it brought together stakeholders who had traditionally not partnered for informatics work, and that they could successfully share patient transfer information between a hospital and a skilled nursing facility. Perceived barriers included lack of hospital stakeholder buy-in and misalignment with clinical workflows that inhibited use of HIE-based patient transfer data. Participants described barriers and promoters in themes related to organizational, technical, and user-oriented issues. The investigation revealed that stakeholders could develop and implement health information technology that technically enables clinicians in both hospitals and skilled nursing facilities to exchange real-time information in support of patient transfers. User level barriers, particularly in the emergency department, should give pause to developers and implementers who plan to use HIE in support of patient transfers. Participants' experiences demonstrate how stakeholders may succeed in developing and piloting an electronic transfer form that relies on HIE to aggregate, communicate, and display relevant patient transfer data across health care organizations. Their experiences also provide insights for others seeking to develop HIE applications to improve patient transfers between emergency departments and skilled nursing facilities.

  8. Closed-ecology life support systems /CELSS/ for long-duration, manned missions

    NASA Technical Reports Server (NTRS)

    Modell, M.; Spurlock, J. M.

    1979-01-01

    Studies were conducted to scope the principal areas of technology that can contribute to the development of closed-ecology life support systems (CELSS). Such systems may be required for future space activities, such as space stations, manufacturing facilities, or colonies. A major feature of CELSS is the regeneration of food from carbon in waste materials. Several processes, using biological and/or physico-chemical components, have been postulated for closing the recycle loop. At the present time, limits of available technical information preclude the specification of an optimum scheme. Nevertheless, the most significant technical requirements can be determined by way of an iterative procedure of formulating, evaluating and comparing various closed-system scenario. The functions features and applications of this systems engineering procedure are discussed.

  9. Advanced Simulation and Computing Fiscal Year 14 Implementation Plan, Rev. 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Robert; McCoy, Michel; Archer, Bill

    2013-09-11

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Moreover, ASC’s business model is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive capability in the simulation tools.« less

  10. Floating the Ball: Advances in the Technology of Electrostatic Levitation

    NASA Technical Reports Server (NTRS)

    Rogers, Jan R.

    2006-01-01

    Electrostatic Levitation (ESL) is an emerging technology. The MSFC ESL is a NASA facility that supports investigations of refractory solids and melts. The facility can be used to process a wide variety of materials including metals, alloys, ceramics, glasses and semiconductors. Containerless processing via ESL provides a high-purity environment for the study of high temperature materials and access to metastable states. Scientific topics investigated in the facility include nucleation, undercooling, metastable state formation and metallic glass formation. Additionally, the MSFC ESL provides data for the determination of phase diagrams, time-temperature-transition diagrams, viscosity, surface tension, density, heat capacity and creep resistance. In order to support a diverse research community, the MSFC ESL facility has developed a number of technical capabilities, including a portable system for in situ studies of structural tran$hrmations during processing at the high-energy X-ray beamline at the Advanced Photon Source of Argonne National Laboratory. The capabilities of the MSFC ESL facilities will be discussed and selected results of materials processing and characterization studies will be presented.

  11. Remote observing with the Keck Telescopes from the U.S. mainland

    NASA Astrophysics Data System (ADS)

    Kibrick, Robert I.; Allen, Steve L.; Conrad, Albert

    2000-06-01

    We describe the current status of efforts to establish a high-bandwidth network from the U.S. mainland to Mauna Kea and a facility in California to support Keck remote observing and engineering via the Internet. The California facility will be an extension of the existing Keck remote operations facility located in Waimea, Hawaii. It will be targeted towards short-duration observing runs which now comprise roughly half of all scheduled science runs on the Keck Telescope. Keck technical staff in Hawaii will support remote observers on the mainland via video conferencing and collaborative software tools. Advantages and disadvantages of remote operation from California versus Hawaii are explored, and costs of alternative communication paths examined. We describe a plan for a backup communications path to protect against failure of the primary network. Alternative software models for remote operation are explored, and recent operational results described.

  12. The Birth of a New Vocational-Technical Center. National Vocational-Technical Facility Planning Conference (Las Vegas, Nevada, May, 1967).

    ERIC Educational Resources Information Center

    Farnsworth, Clayton

    The principal of the Southern Nevada Vocational-Technical Center at Las Vegas, Nevada, briefly outlines its development and function. The facility cost approximately 3 million dollars and was built on 390 acres of land purchased from the Federal government. The PERT method was used in planning. Instructional facilities, including those for auto…

  13. KSC-00pp0725

    NASA Image and Video Library

    2000-06-02

    This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA’s Space Shuttle Program and KSC

  14. KSC00pp0725

    NASA Image and Video Library

    2000-06-02

    This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA’s Space Shuttle Program and KSC

  15. LHCNet: Wide Area Networking and Collaborative Systems for HEP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, H.B,

    2007-08-20

    This proposal presents the status and progress in 2006-7, and the technical and financial plans for 2008-2010 for the US LHCNet transatlantic network supporting U.S. participation in the LHC physics program. US LHCNet provides transatlantic connections of the Tier1 computing facilities at Fermilab and Brookhaven with the Tier0 and Tier1 facilities at CERN as well as Tier1s elsewhere in Europe and Asia. Together with ESnet, Internet2, the GEANT pan-European network, and NSF’s UltraLight project, US LHCNet also supports connections between the Tier2 centers (where most of the analysis of the data will take place, starting this year) and the Tier1smore » as needed.See report« less

  16. INEL BNCT Program: Volume 5, No. 9. Bulletin, September 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, A.L.

    1991-12-31

    This Bulletin presents a summary of accomplishments and highlights of the Idaho National Engineering Laboratory`s (INEL) Boron Neutron Capture Therapy (BNCT) Program for September 1991. This bulletin includes information on the brain tumor and melanoma research programs, Power Burst Facility (PBF) technical support and modifications, PBF operations, and updates to the animal data charts.

  17. Gemini Observatory base facility operations: systems engineering process and lessons learned

    NASA Astrophysics Data System (ADS)

    Serio, Andrew; Cordova, Martin; Arriagada, Gustavo; Adamson, Andy; Close, Madeline; Coulson, Dolores; Nitta, Atsuko; Nunez, Arturo

    2016-08-01

    Gemini North Observatory successfully began nighttime remote operations from the Hilo Base Facility control room in November 2015. The implementation of the Gemini North Base Facility Operations (BFO) products was a great learning experience for many of our employees, including the author of this paper, the BFO Systems Engineer. In this paper we focus on the tailored Systems Engineering processes used for the project, the various software tools used in project support, and finally discuss the lessons learned from the Gemini North implementation. This experience and the lessons learned will be used both to aid our implementation of the Gemini South BFO in 2016, and in future technical projects at Gemini Observatory.

  18. NASA Lighting Research, Test, & Analysis

    NASA Technical Reports Server (NTRS)

    Clark, Toni

    2015-01-01

    The Habitability and Human Factors Branch, at Johnson Space Center, in Houston, TX, provides technical guidance for the development of spaceflight lighting requirements, verification of light system performance, analysis of integrated environmental lighting systems, and research of lighting-related human performance issues. The Habitability & Human Factors Lighting Team maintains two physical facilities that are integrated to provide support. The Lighting Environment Test Facility (LETF) provides a controlled darkroom environment for physical verification of lighting systems with photometric and spetrographic measurement systems. The Graphics Research & Analysis Facility (GRAF) maintains the capability for computer-based analysis of operational lighting environments. The combined capabilities of the Lighting Team at Johnson Space Center have been used for a wide range of lighting-related issues.

  19. DOE standard: The Department of Energy Laboratory Accreditation Program for radiobioassay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP) for Radiobioassay, for use by the US Department of Energy (DOE) and DOE Contractor radiobioassay programs. This standard is intended to be used in conjunction with the general administrative technical standard that describes the overall DOELAP accreditation process--DOE-STD-1111-98, Department of Energy Laboratory Accreditation Program Administration. This technical standard pertains to radiobioassay service laboratories that provide either direct or indirect (in vivo or in vitro) radiobioassay measurements in support of internal dosimetry programs at DOE facilities or for DOE and DOE contractors. Similar technical standards have been developedmore » for other DOELAP dosimetry programs. This program consists of providing an accreditation to DOE radiobioassay programs based on successful completion of a performance-testing process and an on-site evaluation by technical experts. This standard describes the technical requirements and processes specific to the DOELAP Radiobioassay Accreditation Program as required by 10 CFR 835 and as specified generically in DOE-STD-1111-98.« less

  20. PRODUCTION OF HEAVY WATER SAVANNAH RIVER AND DANA PLANTS. Technical Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bebbington, W.P.; Thayer, V.R. eds.; Proctor, J.F. comp.

    1959-07-01

    A summary is presented of the basic technical iniormation that pertains to processes that are used at the Dana and Savannah River Plants for the production of heavy water. The manual is intended primarily for plant operating and technical personnel and was prepared to supplement and provide technical support for detailed operating procedures. Introductory sections contain some background information on the history, uses, available processes, and analytical procedures for heavy water. They also include a general comparison of the design and laserformance of the two plants and an analysis of their differences. The technology of the heavy water separation processesmore » used, namely hydrogen sulfide exchange, distillation of water, and electrolysis is discussed in detail. The manufacture and storage of hydrogen sulfide gas and the process water treatment facilities are also discussed. (auth)« less

  1. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious wastemore » form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.« less

  2. Atomic research

    NASA Technical Reports Server (NTRS)

    Hadaway, James B.; Connatser, Robert; Cothren, Bobby; Johnson, R. B.

    1993-01-01

    Work performed by the University of Alabama in Huntsville's (UAH) Center for Applied Optics (CAO) entitled Atomic Research is documented. Atomic oxygen (AO) effects on materials have long been a critical concern in designing spacecraft to withstand exposure to the Low Earth Orbit (LEO) environment. The objective of this research effort was to provide technical expertise in the design of instrumentation and experimental techniques for analyzing materials exposed to atomic oxygen in accelerated testing at NASA/MSFC. Such testing was required to answer fundamental questions concerning Space Station Freedom (SSF) candidate materials and materials exposed to atomic oxygen aboard the Long-Duration Exposure Facility (LDEF). The primary UAH task was to provide technical design, review, and analysis to MSFC in the development of a state-of-the-art 5eV atomic oxygen beam facility required to simulate the RAM-induced low earth orbit (LEO) AO environment. This development was to be accomplished primarily at NASA/MSFC. In support of this task, contamination effects and ultraviolet (UV) simulation testing was also to be carried out using NASA/MSFC facilities. Any materials analysis of LDEF samples was to be accomplished at UAH.

  3. Outsourcing strategy and tendering methodology for the operation and maintenance of CERN’s cryogenic facilities

    NASA Astrophysics Data System (ADS)

    Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Ferrand, F.; Pezzetti, M.; Pirotte, O.

    2017-12-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing but well maintained installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. A study was conducted and a methodology proposed to outsource to industry the operation and maintenance of the whole cryogenic infrastructure. The cryogenic installations coupled to non LHC-detectors, test facilities and general services infrastructure have been fully outsourced for operation and maintenance on the basis of performance obligations. The contractor is responsible for the operational performance of the installations based on a yearly operation schedule provided by CERN. The maintenance of the cryogenic system serving the LHC machine and its detectors has been outsourced on the basis of tasks oriented obligations, monitored by key performance indicators. CERN operation team, with the support of the contractor operation team, remains responsible for the operational strategy and performances. We report the analysis, strategy, definition of the requirements and technical specifications as well as the achieved technical and economic performances after one year of operation.

  4. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities

    PubMed Central

    2010-01-01

    Background Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. Results We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. Conclusions The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities. PMID:20482787

  5. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities.

    PubMed

    Tolopko, Andrew N; Sullivan, John P; Erickson, Sean D; Wrobel, David; Chiang, Su L; Rudnicki, Katrina; Rudnicki, Stewart; Nale, Jennifer; Selfors, Laura M; Greenhouse, Dara; Muhlich, Jeremy L; Shamu, Caroline E

    2010-05-18

    Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts run by multiple independent research groups. We have developed Screensaver, a free, open source, web-based lab information management system (LIMS), to address the informatics needs of our small molecule and RNAi screening facility. Screensaver supports the storage and comparison of screening data sets, as well as the management of information about screens, screeners, libraries, and laboratory work requests. To our knowledge, Screensaver is one of the first applications to support the storage and analysis of data from both genome-scale RNAi screening projects and small molecule screening projects. The informatics and administrative needs of an HTS facility may be best managed by a single, integrated, web-accessible application such as Screensaver. Screensaver has proven useful in meeting the requirements of the ICCB-Longwood/NSRB Screening Facility at Harvard Medical School, and has provided similar benefits to other HTS facilities.

  6. 48 CFR 801.602-80 - Legal and technical review-Office of Construction and Facilities Management and National Cemetery...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-Office of Construction and Facilities Management and National Cemetery Administration. 801.602-80 Section... Responsibilities 801.602-80 Legal and technical review-Office of Construction and Facilities Management and National Cemetery Administration. An Office of Construction and Facilities Management or National Cemetery...

  7. 48 CFR 801.602-80 - Legal and technical review-Office of Construction and Facilities Management and National Cemetery...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-Office of Construction and Facilities Management and National Cemetery Administration. 801.602-80 Section... Responsibilities 801.602-80 Legal and technical review-Office of Construction and Facilities Management and National Cemetery Administration. An Office of Construction and Facilities Management or National Cemetery...

  8. 48 CFR 801.602-80 - Legal and technical review-Office of Construction and Facilities Management and National Cemetery...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-Office of Construction and Facilities Management and National Cemetery Administration. 801.602-80 Section... Responsibilities 801.602-80 Legal and technical review-Office of Construction and Facilities Management and National Cemetery Administration. An Office of Construction and Facilities Management or National Cemetery...

  9. 48 CFR 801.602-80 - Legal and technical review-Office of Construction and Facilities Management and National Cemetery...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-Office of Construction and Facilities Management and National Cemetery Administration. 801.602-80 Section... Responsibilities 801.602-80 Legal and technical review-Office of Construction and Facilities Management and National Cemetery Administration. An Office of Construction and Facilities Management or National Cemetery...

  10. A business man views commercial ventures in space.

    NASA Technical Reports Server (NTRS)

    Scarff, D. D.; Bloom, H. L.

    1973-01-01

    Paper reviews technical, resource planning and marketing steps an industrial organization must perform in arriving at a decision to undertake space development and production of commercial products or services for Users on the ground. Technical elements are supported by particular examples. Analysis of required resources emphasizes facility and financial inter-relationships between commercial organizations and NASA. Marketing planning covers elements of profitability. Paper addresses questions related to protection of corporate stockholders and public interest, investment decision timing, budget variations. Paper concludes with observations on timeliness of planning shuttle-based commercial ventures and on key industry/NASA problems and decisions.

  11. NASA Technical Standards Program and Implications for Lessons Learned and Technical Standard Integration

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.; Parker, Nelson C. (Technical Monitor)

    2002-01-01

    The National Aeronautics and Space Agency consists of fourteen Facilities throughout the United States. They are organized to support the Agency's principal Enterprises: (1) Space Science, (2) Earth Science, (3) Aerospace Technology, (4) Human Exploration and Development of Space, and (5) Biological and Physical Research. Technical Standards are important to the activities of each Enterprise and have been an integral part in the development and operation of NASA Programs and Projects since the Agency was established in 1959. However, for years each Center was responsible for its own standards development and selection of non-NASA technical standards that met the needs of Programs and Projects for which they were responsible. There were few Agencywide applicable Technical Standards, mainly those in area of safety. Department of Defense Standards and Specifications were the foundation and main source for Technical Standards used by the Agency. This process existed until about 1997 when NASA embarked on a Program to convert NASA's Center-developed Technical Standards into Agencywide endorsed NASA Preferred Technical Standards. In addition, action was taken regarding the formal adoption of non-NASA Technical Standards (DOD, SAE, ASTM, ASME, IEEE, etc.) as NASA Preferred Technical Standards.

  12. Technical and economic evaluation of controlled disposal options for very low level radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, P.J.; Vance, J.N.

    1990-08-01

    Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Researchmore » Institute (EPRI), drafted a petition titled: Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs.« less

  13. Methods and Models of the Hanford Internal Dosimetry Program, PNNL-MA-860

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbaugh, Eugene H.; Bihl, Donald E.; Maclellan, Jay A.

    2009-09-30

    The Hanford Internal Dosimetry Program (HIDP) provides internal dosimetry support services for operations at the Hanford Site. The HIDP is staffed and managed by the Radiation and Health Technology group, within the Pacific Northwest National Laboratory (PNNL). Operations supported by the HIDP include research and development, the decontamination and decommissioning of facilities formerly used to produce and purify plutonium, and waste management activities. Radioelements of particular interest are plutonium, uranium, americium, tritium, and the fission and activation product radionuclides 137Cs, 90Sr, and 60Co. This manual describes the technical basis for the design of the routine bioassay monitoring program and formore » assessment of internal dose. The purposes of the manual are as follows: • Provide assurance that the HIDP derives from a sound technical base. • Promote the consistency and continuity of routine program activities. • Provide a historical record. • Serve as a technical reference for radiation protection personnel. • Aid in identifying and planning for future needs.« less

  14. Organizational factors influencing health information technology adoption in long-term-care facilities.

    PubMed

    Wang, Tiankai; Wang, Yangmei; Moczygemba, Jackie

    2014-01-01

    Long-term care (LTC) is an important sector of the health care industry. However, the adoption of health information technology (HIT) systems in LTC facilities lags behind that in other sectors of health care. Previous literature has focused on the financial and technical barriers. This study examined the organizational factors associated with HIT adoption in LTC facilities. A survey of 500 LTC facilities in Texas enabled researchers to compile HIT indexes for further statistical analyses. A general linear model was used to study the associations between the clinical/administrative HIT indexes and organizational factors. The empirical outcomes show that the size of an LTC facility has a significant association with HIT adoption. Rural LTC facilities, especially freestanding ones, adopt less HIT than their urban counterparts, whereas freestanding LTC facilities have the lowest HIT adoption overall. There is not enough evidence to support ownership status as a significant factor in HIT adoption. Some implications are proposed, but further research is necessary.

  15. Pedestrian and bicycle facilities in California : a technical reference and technology transfer synthesis for Caltrans planners and engineers.

    DOT National Transportation Integrated Search

    2005-07-01

    The primary purpose of Pedestrian and Bicycle Facilities in CaliforniaA : Technical Reference and Technology Transfer Synthesis for Caltrans Planners : and Engineers (Technical Reference) is to provide Caltrans staff : with a synthesis of in...

  16. Containerless Processing on ISS: Ground Support Program for EML

    NASA Technical Reports Server (NTRS)

    Diefenbach, Angelika; Schneider, Stephan; Willnecker, Rainer

    2012-01-01

    EML is an electromagnetic levitation facility planned for the ISS aiming at processing and investigating liquid metals or semiconductors by using electromagnetic levitation technique under microgravity with reduced electromagnetic fields and convection conditions. Its diagnostics and processing methods allow to measure thermophysical properties in the liquid state over an extended temperature range and to investigate solidification phenomena in undercooled melts. The EML project is a common effort of The European Space Agency (ESA) and the German Space Agency DLR. The Microgravity User Support Centre MUSC at Cologne, Germany, has been assigned the responsibility for EML operations. For the EML experiment preparation an extensive scientific ground support program is established at MUSC, providing scientific and technical services in the preparation, performance and evaluation of the experiments. Its final output is the transcription of the scientific goals and requirements into validated facility control parameters for the experiment execution onboard the ISS.

  17. NFL Films music scoring stage and control room space

    NASA Astrophysics Data System (ADS)

    Berger, Russ; Schrag, Richard C.; Ridings, Jason J.

    2003-04-01

    NFL Films' new 200,000 sq. ft. corporate headquarters is home to an orchestral scoring stage used to record custom music scores to support and enhance their video productions. Part of the 90,000 sq. ft. of sound critical technical space, the music scoring stage and its associated control room are at the heart of the audio facilities. Driving the design were the owner's mandate for natural light, wood textures, and an acoustical environment that would support small rhythm sections, soloists, and a full orchestra. Being an industry leader in cutting-edge video and audio formats, the NFLF required that the technical spaces allow the latest in technology to be continually integrated into the infrastructure. Never was it more important for a project to hold true to the adage of ``designing from the inside out.'' Each audio and video space within the facility had to stand on its own with regard to user functionality, acoustical accuracy, sound isolation, noise control, and monitor presentation. A detailed look at the architectural and acoustical design challenges encountered and the solutions developed for the performance studio and the associated control room space will be discussed.

  18. The Cline Observatory at Guilford Technical Community College

    NASA Astrophysics Data System (ADS)

    English, T.; Martin, A.; Herrick, D.; Cline, D.

    2003-12-01

    The Cline Observatory at the Jamestown, NC campus of Guilford Technical Community College (GTCC) was dedicated in 1997. It is the only such facility in the community college systems of the Carolinas. GTCC employs two astronomy faculty and offers multiple sections of introductory courses. The facility utilizes a 16-inch Meade LX-200 under a 6-meter dome, along with accessories for digital imaging and basic spectroscopic studies. An outside observing pad with permanent piers allows smaller instruments to be set up for sessions. In addition to supporting introductory and basic observational astronomy classes, the observatory provides regular outreach programs to serve a variety of constituencies. Public viewings are held once a week; school and community groups schedule visits throughout the year; special lectures bring the latest astronomical topics to the public; and annual conferences are hosted for regional amateur astronomers and for faculty/students from NC academic/research institutions. Volunteer support staff for such programs has been developed through partnership with the local astronomy club and through training via the observational astronomy course. Our courses and outreach programs have been very popular and successful, and the observatory now serves as a focal point of GTCC's public image.

  19. TAC Proton Accelerator Facility: The Status and Road Map

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algin, E.; Akkus, B.; Caliskan, A.

    2011-06-28

    Proton Accelerator (PA) Project is at a stage of development, working towards a Technical Design Report under the roof of a larger-scale Turkish Accelerator Center (TAC) Project. The project is supported by the Turkish State Planning Organization. The PA facility will be constructed in a series of stages including a 3 MeV test stand, a 55 MeV linac which can be extended to 100+ MeV, and then a full 1-3 GeV proton synchrotron or superconducting linac. In this article, science applications, overview, and current status of the PA Project will be given.

  20. Astronomy and astrophysics for the 1980's, volume 1

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  1. Linking and Combining Distributed Operations Facilities using NASA's "GMSEC" Systems Architectures

    NASA Technical Reports Server (NTRS)

    Smith, Danford; Grubb, Thomas; Esper, Jaime

    2008-01-01

    NASA's Goddard Mission Services Evolution Center (GMSEC) ground system architecture has been in development since late 2001, has successfully supported eight orbiting satellites and is being applied to many of NASA's future missions. GMSEC can be considered an event-driven service-oriented architecture built around a publish/subscribe message bus middleware. This paper briefly discusses the GMSEC technical approaches which have led to significant cost savings and risk reduction for NASA missions operated at the Goddard Space Flight Center (GSFC). The paper then focuses on the development and operational impacts of extending the architecture across multiple mission operations facilities.

  2. Astronomy and astrophysics for the 1980's, volume 1

    NASA Astrophysics Data System (ADS)

    The programs recommended address the most significant questions that confront contemporary astronomy and fall into three general categories: prerequisites for research initiatives, including instrumentation and detectors, theory and data analysis, computational facilities, laboratory astrophysics, and technical support at ground-based observatories; programs including an Advanced X-ray Astrophysics Facility, a Very-Long Baseline Array, a Technology Telescope and a Large Deployable Reflector; and programs for study and development, including X-ray observatories in space, instruments for the detection of gravitational waves from astronomical objects, and long duration spaceflights of infrared telescopes. Estimated costs of these programs are provided.

  3. KSC-99pp1263

    NASA Image and Video Library

    1999-10-29

    A steam roller packs down the ground next to construction of a support building, part of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes a multi-purpose hangar and the building to be used for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  4. KSC-99pp1265

    NASA Image and Video Library

    1999-10-29

    Construction workers are silhouetted against the sky as they work on the girders of a support building, part of the new $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The building is to be used for related ground support equipment and administrative/technical support. The RLV complex also includes a multi-purpose hangar. The complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The facility, jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC, will be operational in early 2000

  5. SME Acceptability Determination For DWPF Process Control (U)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, T.

    2017-06-12

    The statistical system described in this document is called the Product Composition Control System (PCCS). K. G. Brown and R. L. Postles were the originators and developers of this system as well as the authors of the first three versions of this technical basis document for PCCS. PCCS has guided acceptability decisions for the processing at the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) since the start of radioactive operations in 1996. The author of this revision to the document gratefully acknowledges the firm technical foundation that Brown and Postles established to support the ongoing successfulmore » operation at the DWPF. Their integration of the glass propertycomposition models, developed under the direction of C. M. Jantzen, into a coherent and robust control system, has served the DWPF well over the last 20+ years, even as new challenges, such as the introduction into the DWPF flowsheet of auxiliary streams from the Actinide Removal Process (ARP) and other processes, were met. The purpose of this revision is to provide a technical basis for modifications to PCCS required to support the introduction of waste streams from the Salt Waste Processing Facility (SWPF) into the DWPF flowsheet. An expanded glass composition region is anticipated by the introduction of waste streams from SWPF, and property-composition studies of that glass region have been conducted. Jantzen, once again, directed the development of glass property-composition models applicable for this expanded composition region. The author gratefully acknowledges the technical contributions of C.M. Jantzen leading to the development of these glass property-composition models. The integration of these models into the PCCS constraints necessary to administer future acceptability decisions for the processing at DWPF is provided by this sixth revision of this document.« less

  6. Mechanisms test bed math model modification and simulation support

    NASA Technical Reports Server (NTRS)

    Gilchrist, Andrea C.; Tobbe, Patrick A.

    1995-01-01

    This report summarizes the work performed under contract NAS8-38771 in support of the Marshall Space Flight Center Six Degree of Freedom Motion Facility and Flight Robotics Laboratory. The contract activities included the development of the two flexible body and Remote Manipulator System simulations, Dynamic Overhead Target Simulator control system and operating software, Global Positioning System simulation, and Manipulator Coupled Spacecraft Controls Testbed. Technical support was also provided for the Lightning Imaging Sensor and Solar X-Ray Imaging programs. The cover sheets and introductory sections for the documentation written under this contract are provided as an appendix.

  7. Aerial photo shows RLV complex at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This closeup photo shows the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi- purpose hangar and to the left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.

  8. KSC-99pp1257

    NASA Image and Video Library

    1999-10-29

    The first roof panels are placed on the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes the hangar and a building for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  9. KSC-99pp1259

    NASA Image and Video Library

    1999-10-29

    Work continues on construction of the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. In the background can be seen the new construction for the building that will house related ground support equipment and administrative/technical support. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  10. KSC-99pp1262

    NASA Image and Video Library

    1999-10-29

    Workers place the first roof panels on the multi-purpose hangar at the site of the $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. The RLV complex, which includes the hangar and a building for related ground support equipment and administrative/technical support, will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000

  11. Data development technical support document for the aircraft crash risk analysis methodology (ACRAM) standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, C.Y.; Glaser, R.E.; Mensing, R.W.

    1996-08-01

    The Aircraft Crash Risk Analysis Methodology (ACRAM) Panel has been formed by the US Department of Energy Office of Defense Programs (DOE/DP) for the purpose of developing a standard methodology for determining the risk from aircraft crashes onto DOE ground facilities. In order to accomplish this goal, the ACRAM panel has been divided into four teams, the data development team, the model evaluation team, the structural analysis team, and the consequence team. Each team, consisting of at least one member of the ACRAM plus additional DOE and DOE contractor personnel, specializes in the development of the methodology assigned to thatmore » team. This report documents the work performed by the data development team and provides the technical basis for the data used by the ACRAM Standard for determining the aircraft crash frequency. This report should be used to provide the generic data needed to calculate the aircraft crash frequency into the facility under consideration as part of the process for determining the aircraft crash risk to ground facilities as given by the DOE Standard Aircraft Crash Risk Assessment Methodology (ACRAM). Some broad guidance is presented on how to obtain the needed site-specific and facility specific data but this data is not provided by this document.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John Russell

    The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has beenmore » initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.« less

  13. Advanced Simulation and Computing Fiscal Year 2016 Implementation Plan, Version 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, M.; Archer, B.; Hendrickson, B.

    2015-08-27

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The purpose of this IP is to outline key work requirements to be performed and to control individualmore » work activities within the scope of work. Contractors may not deviate from this plan without a revised WA or subsequent IP.« less

  14. Fostering good governance at peripheral public health facilities: an experience from Nepal.

    PubMed

    Gurung, G; Tuladhar, S

    2013-01-01

    The Nepalese primary healthcare system at sub-district level consists of three different levels of health facility to serve the mostly rural population. The Ministry of Health and Population decentralised health services by handing over 1433 health facilities in 28 districts to Health Facility Operation and Management Committees (HFOMCs), which were formed following a public meeting, and consist of 9 to 13 members, representing the health facility in-charge, elected members of the village development committee, dalit (disadvantaged caste) and women members. The purpose was to make this local committee responsible for managing all affairs of the health facility. However, the handing over of the health facilities to HFOMCs was not matched by an equivalent increase in the managerial capacity of the members, which potentially makes this initiative ineffective. The Health Facility Management Strengthening Program was implemented in 13 districts to foster good governance in the health facilities by increasing the capacity of HFOMCs. This effort focuses on capacity building of HFOMCs as a continuous process rather than a one-off event. Training, follow-up and promotional activities were conducted. This article focuses on how good governance at the peripheral public health facilities in Nepal can be fostered through the active engagement and capacity building of HFOMCs. This article used baseline and monitoring data collected during technical support visits to HFOMCs and their members between July 2008 and October 2011. The results show that the Health Facility Management Strengthening Program was quite successful in strengthening local health governance in the health facilities. The level of community engagement in governance improved, that is, the number of effective HFOMC meetings increased, the inclusion of dalit/women members in the decision-making process expanded, resource mobilization was facilitated, and community accountability, as measured by health facility opening days, increased. Furthermore, availability of technical staff, supervision and monitoring, and display of the citizen charter increased, and health services became more inclusive. Several lessons emerged. Functioning of HFOMCs is largely dependent on the process of selecting members, the staff and community's support of the HFOMC, and a sense of volunteerism and team spirit among the members. Similarly, to ensure the effective participation of dalit/woman members, the educational and livelihood empowerment of the members is deemed necessary. Furthermore, capacity building of and giving authority to HFOMCs should go hand-in-hand. Local governance of health facilities was fostered through the local people's active engagement in HFOMCs and capacity building of the HFOMC members.

  15. Vulnerability Assessments and Resilience Planning at Federal Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moss, Richard H.; Blohm, Andrew; Delgado, Alison

    2016-02-01

    U.S. government agencies are now directed to assess the vulnerability of their operations and facilities to climate change and to develop adaptation plans to increase their resilience. Specific guidance on methods is still evolving based on the many different available frameworks. This technical paper synthesizes lessons and insights from a series of research case studies conducted by the investigators at facilities of the U.S. Departments of Energy and Defense. The paper provides a framework of steps for climate vulnerability assessments at Federal facilities and elaborates on three sets of methods required for assessments, regardless of the detailed framework used. Inmore » a concluding section, the paper suggests a roadmap to further develop methods to support agencies in preparing for climate change.« less

  16. Survey of aircraft icing simulation test facilities in North America

    NASA Technical Reports Server (NTRS)

    Olsen, W.

    1981-01-01

    A survey was made of the aircraft icing simulation facilities in North America: there are 12 wind tunnels, 28 engine test facilities, 6 aircraft tankers and 14 low velocity facilities, that perform aircraft icing tests full or part time. The location and size of the facility, its speed and temperature range, icing cloud parameters, and the technical person to contact are surveyed. Results are presented in tabular form. The capabilities of each facility were estimated by its technical contact person. The adequacy of these facilities for various types of icing tests is discussed.

  17. [Home hemodialysis: the technical overview. A 2010 survey].

    PubMed

    Ponson, Laurent; Arkouche, Walid; Laville, Maurice

    2012-04-01

    Compared to the daily work in dialysis units, home haemodialysis represents a particular task for the technical services of healthcare facilities. This survey concerns this modality of treatment of end-stage chronic renal failure, and was led to three objectives: to make a snapshot of the practices done by the technical staff, to point out significant differences, and to identify common issues. This is also an opportunity to discuss about the future of this treatment. Numbers of registries show a continuous decline of home haemodialysis during past decades. This could be explained by many factors, but on the other hand several points tend to forecast a renewed interest for this method of treatment. A questionnaire was sent to every technical service of health organizations dispensing dialysis in France. Seventeen health facilities providing home haemodialysis have sent back their information, representing 238 patients, that to say almost the totality of the patients of the country. These data were analysed, relevant indicators were sorted out, so that initial objectives could be completed. The results are explained as follows: site activities, procedures before and during patient installation, equipment, preventive visits, and corrective maintenance. In lack of a precise regulation on the technical support of these patients, significant differences of operations were noted and are detailed, as well as several common difficulties. All these elements can be used as a basis for the development of a practical guide intended to technical services. This work is voluntarily centered on the technical aspects, but other levers exist to revitalize this method. Copyright © 2012 Association Société de néphrologie. Published by Elsevier SAS. All rights reserved.

  18. 48 CFR 811.107 - Contract clauses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... facility unless the facility Chief, Engineering Service, indicates that the service data manuals are not... mechanical equipment (other than technical medical and other technical equipment and devices) issued by a...

  19. 48 CFR 811.107 - Contract clauses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... facility unless the facility Chief, Engineering Service, indicates that the service data manuals are not... mechanical equipment (other than technical medical and other technical equipment and devices) issued by a...

  20. 48 CFR 811.107 - Contract clauses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... facility unless the facility Chief, Engineering Service, indicates that the service data manuals are not... mechanical equipment (other than technical medical and other technical equipment and devices) issued by a...

  1. 48 CFR 811.107 - Contract clauses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... facility unless the facility Chief, Engineering Service, indicates that the service data manuals are not... mechanical equipment (other than technical medical and other technical equipment and devices) issued by a...

  2. 44 CFR 352.24 - Provision of technical assistance and Federal facilities and resources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... assistance and Federal facilities and resources. 352.24 Section 352.24 Emergency Management and Assistance... PLANTS: EMERGENCY PREPAREDNESS PLANNING Federal Participation § 352.24 Provision of technical assistance and Federal facilities and resources. (a) Under a determination under subpart A (44 CFR 352.5(f) and...

  3. People, Process and Technology: Strategies for Assuring Sustainable Implementation of EMRs at Public-Sector Health Facilities in Kenya

    PubMed Central

    Kang’a, Samuel G.; Muthee, Veronica M.; Liku, Nzisa; Too, Diana; Puttkammer, Nancy

    2016-01-01

    The Ministry of Health (MoH) rollout of electronic medical record systems (EMRs) has continuously been embraced across health facilities in Kenya since 2012. This has been driven by a government led process supported by PEPFAR that recommended standardized systems for facilities. Various strategies were deployed to assure meaningful and sustainable EMRs implementation: sensitization of leadership; user training, formation of health facility-level multi-disciplinary teams; formation of county-level Technical Working Groups; data migration; routine data quality assessments; point of care adoption; successive release of software upgrades; and power provision. Successes recorded include goodwill and leadership from the county management (22 counties), growth in the number of EMR trained users (2561 health care workers), collaboration in among other things, data migration(90 health facilities completed) and establishment of county TWGs (13 TWGs). Sustenance of EMRs demand across facilities is possible through; county TWGs oversight, timely resolution of users’ issues and provision of reliable power. PMID:28269864

  4. Publically funded recreation facilities: obesogenic environments for children and families?

    PubMed

    Naylor, Patti-Jean; Bridgewater, Laura; Purcell, Megan; Ostry, Aleck; Wekken, Suzanne Vander

    2010-05-01

    Increasing healthy food options in public venues, including recreational facilities, is a health priority. The purpose of this study was to describe the public recreation food environment in British Columbia, Canada using a sequential explanatory mixed methods design. Facility audits assessed policy, programs, vending, concessions, fundraising, staff meetings and events. Focus groups addressed context and issues related to action. Eighty-eighty percent of facilities had no policy governing food sold or provided for children/youth programs. Sixty-eight percent of vending snacks were chocolate bars and chips while 57% of beverages were sugar sweetened. User group fundraisers held at the recreation facilities also sold 'unhealthy' foods. Forty-two percent of recreation facilities reported providing user-pay programs that educated the public about healthy eating. Contracts, economics, lack of resources and knowledge and motivation of staff and patrons were barriers to change. Recreation food environments were obesogenic but stakeholders were interested in change. Technical support, resources and education are needed.

  5. Publically Funded Recreation Facilities: Obesogenic Environments for Children and Families?

    PubMed Central

    Naylor, Patti-Jean; Bridgewater, Laura; Purcell, Megan; Ostry, Aleck; Wekken, Suzanne Vander

    2010-01-01

    Increasing healthy food options in public venues, including recreational facilities, is a health priority. The purpose of this study was to describe the public recreation food environment in British Columbia, Canada using a sequential explanatory mixed methods design. Facility audits assessed policy, programs, vending, concessions, fundraising, staff meetings and events. Focus groups addressed context and issues related to action. Eighty-eighty percent of facilities had no policy governing food sold or provided for children/youth programs. Sixty-eight percent of vending snacks were chocolate bars and chips while 57% of beverages were sugar sweetened. User group fundraisers held at the recreation facilities also sold ‘unhealthy’ foods. Forty-two percent of recreation facilities reported providing user-pay programs that educated the public about healthy eating. Contracts, economics, lack of resources and knowledge and motivation of staff and patrons were barriers to change. Recreation food environments were obesogenic but stakeholders were interested in change. Technical support, resources and education are needed. PMID:20623020

  6. People, Process and Technology: Strategies for Assuring Sustainable Implementation of EMRs at Public-Sector Health Facilities in Kenya.

    PubMed

    Kang'a, Samuel G; Muthee, Veronica M; Liku, Nzisa; Too, Diana; Puttkammer, Nancy

    2016-01-01

    The Ministry of Health (MoH) rollout of electronic medical record systems (EMRs) has continuously been embraced across health facilities in Kenya since 2012. This has been driven by a government led process supported by PEPFAR that recommended standardized systems for facilities. Various strategies were deployed to assure meaningful and sustainable EMRs implementation: sensitization of leadership; user training, formation of health facility-level multi-disciplinary teams; formation of county-level Technical Working Groups; data migration; routine data quality assessments; point of care adoption; successive release of software upgrades; and power provision. Successes recorded include goodwill and leadership from the county management (22 counties), growth in the number of EMR trained users (2561 health care workers), collaboration in among other things, data migration(90 health facilities completed) and establishment of county TWGs (13 TWGs). Sustenance of EMRs demand across facilities is possible through; county TWGs oversight, timely resolution of users' issues and provision of reliable power.

  7. Does integration of HIV and sexual and reproductive health services improve technical efficiency in Kenya and Swaziland? An application of a two-stage semi parametric approach incorporating quality measures

    PubMed Central

    Obure, Carol Dayo; Jacobs, Rowena; Guinness, Lorna; Mayhew, Susannah; Vassall, Anna

    2016-01-01

    Theoretically, integration of vertically organized services is seen as an important approach to improving the efficiency of health service delivery. However, there is a dearth of evidence on the effect of integration on the technical efficiency of health service delivery. Furthermore, where technical efficiency has been assessed, there have been few attempts to incorporate quality measures within efficiency measurement models particularly in sub-Saharan African settings. This paper investigates the technical efficiency and the determinants of technical efficiency of integrated HIV and sexual and reproductive health (SRH) services using data collected from 40 health facilities in Kenya and Swaziland for 2008/2009 and 2010/2011. Incorporating a measure of quality, we estimate the technical efficiency of health facilities and explore the effect of integration and other environmental factors on technical efficiency using a two-stage semi-parametric double bootstrap approach. The empirical results reveal a high degree of inefficiency in the health facilities studied. The mean bias corrected technical efficiency scores taking quality into consideration varied between 22% and 65% depending on the data envelopment analysis (DEA) model specification. The number of additional HIV services in the maternal and child health unit, public ownership and facility type, have a positive and significant effect on technical efficiency. However, number of additional HIV and STI services provided in the same clinical room, proportion of clinical staff to overall staff, proportion of HIV services provided, and rural location had a negative and significant effect on technical efficiency. The low estimates of technical efficiency and mixed effects of the measures of integration on efficiency challenge the notion that integration of HIV and SRH services may substantially improve the technical efficiency of health facilities. The analysis of quality and efficiency as separate dimensions of performance suggest that efficiency may be achieved without sacrificing quality. PMID:26803655

  8. Does integration of HIV and sexual and reproductive health services improve technical efficiency in Kenya and Swaziland? An application of a two-stage semi parametric approach incorporating quality measures.

    PubMed

    Obure, Carol Dayo; Jacobs, Rowena; Guinness, Lorna; Mayhew, Susannah; Vassall, Anna

    2016-02-01

    Theoretically, integration of vertically organized services is seen as an important approach to improving the efficiency of health service delivery. However, there is a dearth of evidence on the effect of integration on the technical efficiency of health service delivery. Furthermore, where technical efficiency has been assessed, there have been few attempts to incorporate quality measures within efficiency measurement models particularly in sub-Saharan African settings. This paper investigates the technical efficiency and the determinants of technical efficiency of integrated HIV and sexual and reproductive health (SRH) services using data collected from 40 health facilities in Kenya and Swaziland for 2008/2009 and 2010/2011. Incorporating a measure of quality, we estimate the technical efficiency of health facilities and explore the effect of integration and other environmental factors on technical efficiency using a two-stage semi-parametric double bootstrap approach. The empirical results reveal a high degree of inefficiency in the health facilities studied. The mean bias corrected technical efficiency scores taking quality into consideration varied between 22% and 65% depending on the data envelopment analysis (DEA) model specification. The number of additional HIV services in the maternal and child health unit, public ownership and facility type, have a positive and significant effect on technical efficiency. However, number of additional HIV and STI services provided in the same clinical room, proportion of clinical staff to overall staff, proportion of HIV services provided, and rural location had a negative and significant effect on technical efficiency. The low estimates of technical efficiency and mixed effects of the measures of integration on efficiency challenge the notion that integration of HIV and SRH services may substantially improve the technical efficiency of health facilities. The analysis of quality and efficiency as separate dimensions of performance suggest that efficiency may be achieved without sacrificing quality. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. OBSIP: An Evolving Facility for the Future of Geoscience

    NASA Astrophysics Data System (ADS)

    Evers, B.; Lodewyk, J. A.

    2013-12-01

    The Ocean Bottom Seismograph Instrument Pool 'OBSIP' was founded in 1999 as a National Science Foundation (NSF) sponsored instrument facility that provides ocean bottom seismometers and technical support for research in the areas of marine geology, seismology, and geodynamics. OBSIP provides both short period instruments (for active source seismic refraction studies) and long period instruments (for long term passive experiments). OBSIP is comprised of three Institutional Instrument Contributors - Lamont Doherty Earth Observatory (LDEO), Scripps Institution of Oceanography (SIO), and Woods Hole Oceanographic Institution (WHOI), each of whom contribute instruments and technical support to the pool. In 2012, NSF funded the Incorporated Research Institutions of Seismology (IRIS) to develop an OBSIP Management Office. Through the management office, IRIS will bring is extensive experience in managing facilities (PASSCAL instrument center), supporting large research experiments (Earthscope), and providing high quality data through the DMC to OBSIP. In the past year, OBSIP has provided instruments for eight experiments and supported over 20 research cruises recovering and/or deploying instruments. The most extensive OBSIP experiment in the past few years has been the Cascadia Initiative. The Cascadia Initiative is an onshore/offshore seismic and geodetic experiment deployed in the Pacific Northwest to study questions surrounding the evolution of the Juan de Fuca plate and the Gorda plate. As part of the American Recovery and Reinvestment Act, OBSIP IIC's built 60 new ocean bottom seismometers. Both LDEO and SIO designed new seismometer packages to withstand trawling by local fisherman for deployment in shallow areas. The Cascadia Initiative has required close cooperation between the OBSIP, the Deep Submergence Facility, the University National Oceanographic Laboratory System (who coordinates ship schedules for the cruises), and the Cascadia Initiative Expedition Team. At the recent OBSIP Workshop, members from the scientific community met to share scientific results and determine how OBS instrumentation can better serve the scientific community. The OBSIP Management Office is developing a comprehensive Data Quality Plan that includes all steps of the data collection process, from instrument design to quality controlling data after it is uploaded to the Data Management Center. OBSIP continues to evolve as it works to better serve the scientific community and the public.

  10. Integration of the White Sands Complex into a Wide Area Network

    NASA Technical Reports Server (NTRS)

    Boucher, Phillip Larry; Horan, Sheila, B.

    1996-01-01

    The NASA White Sands Complex (WSC) satellite communications facility consists of two main ground stations, an auxiliary ground station, a technical support facility, and a power plant building located on White Sands Missile Range. When constructed, terrestrial communication access to these facilities was limited to copper telephone circuits. There was no local or wide area communications network capability. This project incorporated a baseband local area network (LAN) topology at WSC and connected it to NASA's wide area network using the Program Support Communications Network-Internet (PSCN-I). A campus-style LAN is configured in conformance with the International Standards Organization (ISO) Open Systems Interconnect (ISO) model. Ethernet provides the physical and data link layers. Transmission Control Protocol and Internet Protocol (TCP/IP) are used for the network and transport layers. The session, presentation, and application layers employ commercial software packages. Copper-based Ethernet collision domains are constructed in each of the primary facilities and these are interconnected by routers over optical fiber links. The network and each of its collision domains are shown to meet IEEE technical configuration guidelines. The optical fiber links are analyzed for the optical power budget and bandwidth allocation and are found to provide sufficient margin for this application. Personal computers and work stations attached to the LAN communicate with and apply a wide variety of local and remote administrative software tools. The Internet connection provides wide area network (WAN) electronic access to other NASA centers and the world wide web (WWW). The WSC network reduces and simplifies the administrative workload while providing enhanced and advanced inter-communications capabilities among White Sands Complex departments and with other NASA centers.

  11. Report on International Spaceborne Imaging Spectroscopy Technical Committee Calibration and Validation Workshop, National Environment Research Council Field Spectroscopy Facility, University of Edinburgh

    NASA Technical Reports Server (NTRS)

    Ong, C,; Mueller, A.; Thome, K.; Bachmann, M.; Czapla-Myers, J.; Holzwarth, S.; Khalsa, S. J.; Maclellan, C.; Malthus, T.; Nightingale, J.; hide

    2016-01-01

    Calibration and validation are fundamental for obtaining quantitative information from Earth Observation (EO) sensor data. Recognising this and the impending launch of at least five sensors in the next five years, the International Spaceborne Imaging Spectroscopy Technical Committee instigated a calibration and validation initiative. A workshop was conducted recently as part of this initiative with the objective of establishing a good practice framework for radiometric and spectral calibration and validation in support of spaceborne imaging spectroscopy missions. This paper presents the outcomes and recommendations for future work arising from the workshop.

  12. Technical information report: Plasma melter operation, reliability, and maintenance analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, D.W.

    1995-03-14

    This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.

  13. SLAC Phone Directory: Search Form

    Science.gov Websites

    Facilities LCLS Hard X-Ray LCLS IT & Networking LCLS IT Photon Systems LCLS Instrumentation Dev LCLS Delivery Dept LCLS Science Research & DevDiv LCLS Soft X-Ray LCLS Technical Support LCLS User Beam Line Ops Sup SSRL MSD Hard X-rays SSRL MSD Soft X-rays SSRL MSDBeam Line Elec SSRL MSDBeam Line

  14. Low Activity Waste Pretreatment System Bench-Scale Testing: Supporting Integrated Testing and Facility Safety Analyses - 17171

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schonewill, Philip P.; Russell, Renee L.; Daniel, Richard C.

    The Low Activity Waste Pretreatment System (LAWPS) is being designed to enable the direct feed of waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) facility to be immobilized. Prior to construction of the LAWPS, pilot-scale integrated testing of the key unit operations (crossflow filtration, ion exchange using spherical resorcinol-formaldehyde (sRF) resin) will be conducted by a team led by Washington River Protection Solutions (WRPS) to increase the technology maturation level of the facility’s critical technology elements. As a part of this effort, Pacific Northwest National Laboratory (PNNL) has conducted a series of bench-scalemore » (or engineering-scale) tests to perform two major objectives: (1) support pilot-scale integrated testing of the LAWPS by supplying information or performance data in advance of operating the pilot-scale facility; and (2) collect data needed to establish or confirm assumptions/approaches planned for implementation in the LAWPS safety basis. The first objective was focused in two technical areas: developing simulants that are representative of expected waste feed and can be produced at larger scales, and using these simulants in a bench-scale crossflow filter to establish expected solid-liquid separation performance. The crossflow filter was also used to observe the efficacy (with respect to filter production rate) of selected operational strategies. The second objective also included two technical areas: measuring the effect of sRF resin on hydrogen generation rate under irradiation, and demonstrating that the planned hydrogen management approach is effective and robust. The hydrogen management strategy involves fluidization of the sRF resin bed in the ion exchange columns and recirculating the liquid, a scenario that is planned for testing at full column height. The full height tests at PNNL also supported full-scale IX column testing conducted as part of the technology maturation plan. The experimental approaches used at PNNL in these four technical areas are summarized and selected key preliminary results are provided.« less

  15. EOS Laser Atmosphere Wind Sounder (LAWS) investigation

    NASA Technical Reports Server (NTRS)

    Emmitt, George D.

    1991-01-01

    The related activities of the contract are outlined for the first year. These include: (1) attend team member meetings; (2) support EOS Project with science related activities; (3) prepare and Execution Phase plan; and (4) support LAWS and EOSDIS related work. Attached to the report is an appendix, 'LAWS Algorithm Development and Evaluation Laboratory (LADEL)'. Also attached is a copy of a proposal to the NASA EOS for 'LAWS Sampling Strategies and Wind Computation Algorithms -- Storm-Top Divergence Studies. Volume I: Investigation and Technical Plan, Data Plan, Computer Facilities Plan, Management Plan.'

  16. A National Study of Efficiency for Dialysis Centers: An Examination of Market Competition and Facility Characteristics for Production of Multiple Dialysis Outputs

    PubMed Central

    Ozgen, Hacer; A. Ozcan, Yasar

    2002-01-01

    Objective To examine market competition and facility characteristics that can be related to technical efficiency in the production of multiple dialysis outputs from the perspective of the industrial organization model. Study Setting Freestanding dialysis facilities that operated in 1997 submitted cost report forms to the Health Care Financing Administration (HCFA), and offered all three outputs—outpatient dialysis, dialysis training, and home program dialysis. Data Sources The Independent Renal Facility Cost Report Data file (IRFCRD) from HCFA was utilized to obtain information on output and input variables and market and facility features for 791 multiple-output facilities. Information regarding population characteristics was obtained from the Area Resources File. Study Design Cross-sectional data for the year 1997 were utilized to obtain facility-specific technical efficiency scores estimated through Data Envelopment Analysis (DEA). A binary variable of efficiency status was then regressed against its market and facility characteristics and control factors in a multivariate logistic regression analysis. Principal Findings The majority of the facilities in the sample are functioning technically inefficiently. Neither the intensity of market competition nor a policy of dialyzer reuse has a significant effect on the facilities' efficiency. Technical efficiency is significantly associated, however, with type of ownership, with the interaction between the market concentration of for-profits and ownership type, and with affiliations with chains of different sizes. Nonprofit and government-owned facilities are more likely than their for-profit counterparts to become inefficient producers of renal dialysis outputs. On the other hand, that relationship between ownership form and efficiency is reversed as the market concentration of for-profits in a given market increases. Facilities that are members of large chains are more likely to be technically inefficient. Conclusions Facilities do not appear to benefit from joint production of a variety of dialysis outputs, which may explain the ongoing tendency toward single-output production. Ownership form does make a positive difference in production efficiency, but only in local markets where competition exists between nonprofit and for-profit facilities. The increasing inefficiency associated with membership in large chains suggests that the growing consolidation in the dialysis industry may not, in fact, be the strategy for attaining more technical efficiency in the production of multiple dialysis outputs. PMID:12132602

  17. A national study of efficiency for dialysis centers: an examination of market competition and facility characteristics for production of multiple dialysis outputs.

    PubMed

    Ozgen, Hacer; Ozcan, Yasar A

    2002-06-01

    To examine market competition and facility characteristics that can be related to technical efficiency in the production of multiple dialysis outputs from the perspective of the industrial organization model. Freestanding dialysis facilities that operated in 1997 submitted cost report fonns to the Health Care Financing Administration (HCFA), and offered all three outputs--outpatient dialysis, dialysis training, and home program dialysis. The Independent Renal Facility Cost Report Data file (IRFCRD) from HCFA was utilized to obtain information on output and input variables and market and facility features for 791 multiple-output facilities. Information regarding population characteristics was obtained from the Area Resources File. Cross-sectional data for the year 1997 were utilized to obtain facility-specific technical efficiency scores estimated through Data Envelopment Analysis (DEA). A binary variable of efficiency status was then regressed against its market and facility characteristics and control factors in a multivariate logistic regression analysis. The majority of the facilities in the sample are functioning technically inefficiently. Neither the intensity of market competition nor a policy of dialyzer reuse has a significant effect on the facilities' efficiency. Technical efficiency is significantly associated, however, with type of ownership, with the interaction between the market concentration of for-profits and ownership type, and with affiliations with chains of different sizes. Nonprofit and government-owned Facilities are more likely than their for-profit counterparts to become inefficient producers of renal dialysis outputs. On the other hand, that relationship between ownership form and efficiency is reversed as the market concentration of for-profits in a given market increases. Facilities that are members of large chains are more likely to be technically inefficient. Facilities do not appear to benefit from joint production of a variety of dialysis outputs, which may explain the ongoing tendency toward single-output production. Ownership form does make a positive difference in production efficiency, but only in local markets where competition exists between nonprofit and for-profit facilities. The increasing inefficiency associated with membership in large chains suggests that the growing consolidation in the dialysis industry may not, in fact, be the strategy for attaining more technical efficiency in the production of multiple dialysis outputs.

  18. Ethiopia's assessment of emergency obstetric and newborn care: setting the gold standard for national facility-based assessments.

    PubMed

    Keyes, Emily B; Haile-Mariam, Abonesh; Belayneh, Neghist T; Gobezie, Wasihun A; Pearson, Luwei; Abdullah, Muna; Kebede, Henok

    2011-10-01

    To describe the methods used to implement Ethiopia's 2008 emergency obstetric and newborn care services (EmONC) assessment; highlight how the collaborative process contributed to immediate integration of results into national and subnational planning; and explain how the experience informed the development of a set of tools providing best practices and guidelines for other countries conducting similar assessments. A team of maternal and newborn health experts from the Federal Ministry of Health (FMOH), the United Nations Children's Fund (UNICEF), the World Health Organization (WHO), and the United Nations Population Fund (UNFPA), together with representatives from the Ethiopian Society of Obstetricians and Gynecologists, provided technical guidance for the 18-month process and facilitated demand for and use of the assessment results. Eighty-four trained data collectors administered 9 data collection modules in 806 public and private facilities. Field work and data were managed by a private firm who, together with the core team, implemented a multi-layered plan for data quality. Columbia University's Averting Maternal Death and Disability Program provided technical assistance. Results were published in national and regional reports and in 1-page facility factsheets informing subnational planning activities. Assessment results-which have been published in journal articles-informed water infrastructure improvements, efforts to expand access to magnesium sulfate, and FMOH and UN planning documents. The assessment also established a permanent database for future monitoring of the health system, including geographic locations of surveyed facilities. Ethiopia's assessment was successful largely because of active local leadership, a collaborative process, ample financial and technical support, and rapid integration of results into health system planning. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. MHD program plan, FY 1991

    NASA Astrophysics Data System (ADS)

    1990-10-01

    The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.

  20. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), plannedmore » for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.« less

  1. Experiments and Modeling to Support Field Test Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Peter Jacob; Bourret, Suzanne Michelle; Zyvoloski, George Anthony

    Disposition of heat-generating nuclear waste (HGNW) remains a continuing technical and sociopolitical challenge. We define HGNW as the combination of both heat generating defense high level waste (DHLW) and civilian spent nuclear fuel (SNF). Numerous concepts for HGNW management have been proposed and examined internationally, including an extensive focus on geologic disposal (c.f. Brunnengräber et al., 2013). One type of proposed geologic material is salt, so chosen because of its viscoplastic deformation that causes self-repair of damage or deformation induced in the salt by waste emplacement activities (Hansen and Leigh, 2011). Salt as a repository material has been tested atmore » several sites around the world, notably the Morsleben facility in Germany (c.f. Fahland and Heusermann, 2013; Wollrath et al., 2014; Fahland et al., 2015) and at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, NM. Evaluating the technical feasibility of a HGNW repository in salt is an ongoing process involving experiments and numerical modeling of many processes at many facilities.« less

  2. Construction continues on RLV Support Complex at SLF

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An aerial view reveals (foreground) the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. In the background is the Vehicle Assembly Building. The road at right is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  3. Multi-Purpose Thermal Hydraulic Loop: Advanced Reactor Technology Integral System Test (ARTIST) Facility for Support of Advanced Reactor Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. O'Brien; Piyush Sabharwall; SuJong Yoon

    2001-11-01

    Effective and robust high temperature heat transfer systems are fundamental to the successful deployment of advanced reactors for both power generation and non-electric applications. Plant designs often include an intermediate heat transfer loop (IHTL) with heat exchangers at either end to deliver thermal energy to the application while providing isolation of the primary reactor system. In order to address technical feasibility concerns and challenges a new high-temperature multi-fluid, multi-loop test facility “Advanced Reactor Technology Integral System Test facility” (ARTIST) is under development at the Idaho National Laboratory. The facility will include three flow loops: high-temperature helium, molten salt, and steam/water.more » Details of some of the design aspects and challenges of this facility, which is currently in the conceptual design phase, are discussed« less

  4. Aerial photo shows RLV complex at KSC

    NASA Technical Reports Server (NTRS)

    2000-01-01

    In the foreground of this aerial photo is the Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At right is a multi-purpose hangar and to its left is a building for related ground support equipment and administrative/ technical support. The complex is situated at the Shuttle Landing Facility (center). At the upper left is the runway. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC.

  5. Lessons Learned in Over a Decade of Technical Support for U.S. Nuclear Cyber Security Programmes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glantz, Clifford S.; Landine, Guy P.; Craig, Philip A.

    Pacific Northwest National Laboratory’s (PNNL) nuclear cyber security team has been providing technical support to the U.S. Nuclear Regulatory Commission (NRC) since 2002. This team has provided cyber security technical experties in conducting cyber security inspections, developing of regulatory rules and guidance, reviewing facility cyber security plans, developing inspection guidance, and developing and teaching NRC inspectors how to conduct cyber security assessments. The extensive experience the PNNL team has gathered has allowed them to compile a lenghty list of recommendations on how to improve cyber security programs and conduct assessments. A selected set of recommendations are presented, including the needmore » to: integrate an array of defenisve strategies into a facility’s cyber security program, coordinate physical and cyber security activities, train phycial security forces to resist a cyber-enabled physical attack, improve estimates of the consequences of a cyber attack, properly resource cyber security assessments, appropropriately account for insider threats, routinely monitor security devices for potential attacks, supplement compliance-based requirements with risk-based decision making, and introduce the concept of resilience into cyber security programs.« less

  6. Technology evaluation, assessment, modeling, and simulation: the TEAMS capability

    NASA Astrophysics Data System (ADS)

    Holland, Orgal T.; Stiegler, Robert L.

    1998-08-01

    The United States Marine Corps' Technology Evaluation, Assessment, Modeling and Simulation (TEAMS) capability, located at the Naval Surface Warfare Center in Dahlgren Virginia, provides an environment for detailed test, evaluation, and assessment of live and simulated sensor and sensor-to-shooter systems for the joint warfare community. Frequent use of modeling and simulation allows for cost effective testing, bench-marking, and evaluation of various levels of sensors and sensor-to-shooter engagements. Interconnectivity to live, instrumented equipment operating in real battle space environments and to remote modeling and simulation facilities participating in advanced distributed simulations (ADS) exercises is available to support a wide- range of situational assessment requirements. TEAMS provides a valuable resource for a variety of users. Engineers, analysts, and other technology developers can use TEAMS to evaluate, assess and analyze tactical relevant phenomenological data on tactical situations. Expeditionary warfare and USMC concept developers can use the facility to support and execute advanced warfighting experiments (AWE) to better assess operational maneuver from the sea (OMFTS) concepts, doctrines, and technology developments. Developers can use the facility to support sensor system hardware, software and algorithm development as well as combat development, acquisition, and engineering processes. Test and evaluation specialists can use the facility to plan, assess, and augment their processes. This paper presents an overview of the TEAMS capability and focuses specifically on the technical challenges associated with the integration of live sensor hardware into a synthetic environment and how those challenges are being met. Existing sensors, recent experiments and facility specifications are featured.

  7. 59. Photocopy of Architectural Layout drawing, dated 25 June, 1993 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Photocopy of Architectural Layout drawing, dated 25 June, 1993 by US Air Force Space Command. Original drawing property of United States Air Force, 21" Space Command. AL-6 PAVE PAWS SUPPORT SYSTEMS - CAPE COD AFB, MASSACHUSETTS - LAYOUT 4-A, 5TH & 5-A. DRAWING NO. AL-6 - SHEET 7 OF 21. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  8. Quarterly Performance/Technical Report of the National Marrow Donor Program

    DTIC Science & Technology

    2010-03-31

    Implemented the Business to Business ( B2B ) Gateway and Business Services to support : • Incoming HLA typing results incorporating HLA Nomenclature changes...maintenance was performed. IIA.3.2 Task 2: Critical Facility and Staff Related Functions Period 6 Activity: • Business Continuity Planning: o Continued...department development of appropriate detailed tasks to be tested at a remote (non-NMDP controlled) location for the 2010 Business Continuity

  9. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers check over the Italian-built Node 2, a future element of the International Space Station. The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  10. Integrated Disposal Facility FY 2012 Glass Testing Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.

    2013-03-29

    PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Keymore » activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.« less

  11. Repositioning the Facilities in Technical College Workshops for Efficiency: A Case Study of North Central Nigeria

    ERIC Educational Resources Information Center

    Umar, Ibrahim Y.; Ma'aji, Abdullahi S.

    2010-01-01

    This article focuses on assessing the facilities in Government Technical College workshops in the context of a developing country. A descriptive survey design was adopted. Two research questions and a hypothesis were formulated to guide the study. A 35-item questionnaire was developed based on the National Board for Technical Education (NBTE)…

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Michel; Archer, Bill; Hendrickson, Bruce

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities and computationalmore » resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), and quantifying critical margins and uncertainties. Resolving each issue requires increasingly difficult analyses because the aging process has progressively moved the stockpile further away from the original test base. Where possible, the program also enables the use of high performance computing (HPC) and simulation tools to address broader national security needs, such as foreign nuclear weapon assessments and counter nuclear terrorism.« less

  13. Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Michel; Archer, Bill; Matzen, M. Keith

    2014-09-16

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.« less

  14. Technical Support Document: Development of the Advanced Energy Design Guide for Large Hospitals - 50% Energy Savings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonnema, E.; Leach, M.; Pless, S.

    2013-06-01

    This Technical Support Document describes the process and methodology for the development of the Advanced Energy Design Guide for Large Hospitals: Achieving 50% Energy Savings Toward a Net Zero Energy Building (AEDG-LH) ASHRAE et al. (2011b). The AEDG-LH is intended to provide recommendations for achieving 50% whole-building energy savings in large hospitals over levels achieved by following Standard 90.1-2004. The AEDG-LH was created for a 'standard' mid- to large-size hospital, typically at least 100,000 ft2, but the strategies apply to all sizes and classifications of new construction hospital buildings. Its primary focus is new construction, but recommendations may be applicablemore » to facilities undergoing total renovation, and in part to many other hospital renovation, addition, remodeling, and modernization projects (including changes to one or more systems in existing buildings).« less

  15. Establishment of a National Wind Energy Center at University of Houston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Su Su

    The DOE-supported project objectives are to: establish a national wind energy center (NWEC) at University of Houston and conduct research to address critical science and engineering issues for the development of future large MW-scale wind energy production systems, especially offshore wind turbines. The goals of the project are to: (1) establish a sound scientific/technical knowledge base of solutions to critical science and engineering issues for developing future MW-scale large wind energy production systems, (2) develop a state-of-the-art wind rotor blade research facility at the University of Houston, and (3) through multi-disciplinary research, introducing technology innovations on advanced wind-turbine materials, processing/manufacturingmore » technology, design and simulation, testing and reliability assessment methods related to future wind turbine systems for cost-effective production of offshore wind energy. To achieve the goals of the project, the following technical tasks were planned and executed during the period from April 15, 2010 to October 31, 2014 at the University of Houston: (1) Basic research on large offshore wind turbine systems (2) Applied research on innovative wind turbine rotors for large offshore wind energy systems (3) Integration of offshore wind-turbine design, advanced materials and manufacturing technologies (4) Integrity and reliability of large offshore wind turbine blades and scaled model testing (5) Education and training of graduate and undergraduate students and post- doctoral researchers (6) Development of a national offshore wind turbine blade research facility The research program addresses both basic science and engineering of current and future large wind turbine systems, especially offshore wind turbines, for MW-scale power generation. The results of the research advance current understanding of many important scientific issues and provide technical information for solving future large wind turbines with advanced design, composite materials, integrated manufacturing, and structural reliability and integrity. The educational program have trained many graduate and undergraduate students and post-doctoral level researchers to learn critical science and engineering of wind energy production systems through graduate-level courses and research, and participating in various projects in center’s large multi-disciplinary research. These students and researchers are now employed by the wind industry, national labs and universities to support the US and international wind energy industry. The national offshore wind turbine blade research facility developed in the project has been used to support the technical and training tasks planned in the program to accomplish their goals, and it is a national asset which is available for used by domestic and international researchers in the wind energy arena.« less

  16. System Control Facilities: Head-Ends and Central Processors. A Survey of Technical Requirements for Broadband Cable Teleservices; Volume Four.

    ERIC Educational Resources Information Center

    Smith, Ernest K.; And Others

    The system control facilities in broadband communication systems are discussed in this report. These facilities consist of head-ends and central processors. The first section summarizes technical problems and needs, and the second offers a cursory overview of systems, along with an incidental mention of processors. Section 3 looks at the question…

  17. Application and Removal of Strippable Coatings via Remote Platform - 13133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoffner, P.; Lagos, L.; Maggio, S.

    2013-07-01

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and technology demonstrations of selected technologies and working with technology vendors to optimize the design of their current technologies to accomplish dangerous and demanding tasks during D and D operations.more » To meet one identified technology gap challenge for a technology to remotely apply strippable coatings, fixatives and decontamination gels, FIU identified and performed an initial demonstration of an innovative remote fixative sprayer platform from International Climbing Machines (ICM). The selected technology was demonstrated spraying fixative products at the hot cell mockup facility at the Applied Research Center at FIU in November 2008 under cold (non-radioactive) conditions. The remotely controlled platform was remotely operated and entered the facility and sprayed a fixative onto horizontal and vertical surfaces. Based on the initial FIU demonstration and the specific technical requirements identified at the DOE facilities, a follow-up demonstration was expanded to include strippable coatings and a decontamination gel, which was demonstrated in June 2010 at the ICM facility in Ithaca, NY. This second technology evaluation documented the ability of the remote system to spray the selected products on vertical stainless steel and concrete surfaces to a height of 3 meters (10 feet) and to achieve sufficient coverage and product thickness to promote the ability to peel/remove the strippable coatings and decontamination gel. The next challenge was to determine if a remote platform could be used to remove the strippable coatings and decontamination gels. In 2012, FIU worked with the technology provider, ICM, to conduct feasibility and trade studies to identify the requirements for the remote removal of strippable coatings or decontamination gels using the existing remote controlled platform. (authors)« less

  18. Education, Technology, and Media: A Peak into My Summer Internship at NASA Glenn Research Center in Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Moon, James

    2004-01-01

    My name is James Moon and I am a senor at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time sohare applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community.

  19. Long-term storage facility for reactor compartments in Sayda Bay - German support for utilization of nuclear submarines in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff, Dietmar; Voelzke, Holger; Weber, Wolfgang

    2007-07-01

    The German-Russian project that is part of the G8 initiative on Global Partnership Against the Spread of Weapons and Materials of Mass Destruction focuses on the speedy construction of a land-based interim storage facility for nuclear submarine reactor compartments at Sayda Bay near Murmansk. This project includes the required infrastructure facilities for long-term storage of about 150 reactor compartments for a period of about 70 years. The interim storage facility is a precondition for effective activities of decommissioning and dismantlement of almost all nuclear-powered submarines of the Russian Northern Fleet. The project also includes the establishment of a computer-assisted wastemore » monitoring system. In addition, the project involves clearing Sayda Bay of other shipwrecks of the Russian navy. On the German side the project is carried out by the Energiewerke Nord GmbH (EWN) on behalf of the Federal Ministry of Economics and Labour (BMWi). On the Russian side the Kurchatov Institute holds the project management of the long-term interim storage facility in Sayda Bay, whilst the Nerpa Shipyard, which is about 25 km away from the storage facility, is dismantling the submarines and preparing the reactor compartments for long-term interim storage. The technical monitoring of the German part of this project, being implemented by BMWi, is the responsibility of the Federal Institute for Materials Research and Testing (BAM). This paper gives an overview of the German-Russian project and a brief description of solutions for nuclear submarine disposal in other countries. At Nerpa shipyard, being refurbished with logistic and technical support from Germany, the reactor compartments are sealed by welding, provided with biological shielding, subjected to surface treatment and conservation measures. Using floating docks, a tugboat tows the reactor compartments from Nerpa shipyard to the interim storage facility at Sayda Bay where they will be left on the on-shore concrete storage space to allow the radioactivity to decay. For transport of reactor compartments at the shipyard, at the dock and at the storage facility, hydraulic keel blocks, developed and supplied by German subcontractors, are used. In July 2006 the first stage of the reactor compartment storage facility was commissioned and the first seven reactor compartments have been delivered from Nerpa shipyard. Following transports of reactor compartments to the storage facility are expected in 2007. (authors)« less

  20. TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES

    EPA Science Inventory

    This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. he document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic drai...

  1. TECHNICAL GUIDANCE DOCUMENT: QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES

    EPA Science Inventory

    This Technical Guidance Document provides comprehensive guidance on procedures for quality assurance and quality control for waste containment facilities. The document includes a discussion of principles and concepts, compacted soil liners, soil drainage systems, geosynthetic dr...

  2. The status and road map of Turkish Accelerator Center (TAC)

    NASA Astrophysics Data System (ADS)

    Yavaş, Ö.

    2012-02-01

    Turkish Accelerator Center (TAC) project is supported by the State Planning Organization (SPO) of Turkey and coordinated by Ankara University. After having completed the Feasibility Report (FR) in 2000 and the Conceptual Design Report (CDR) in 2005, third phase of the project started in 2006 as an inter-universities project including ten Turkish Universities with the support of SPO. Third phase of the project has two main scientific goals: to prepare the Technical Design Report (TDR) of TAC and to establish an Infrared Free Electron Laser (IR FEL) facility, named as Turkish Accelerator and Radiation Laboratory at Ankara (TARLA) as a first step. The facility is planned to be completed in 2015 and will be based on 15-40 MeV superconducting linac. In this paper, main aims, national and regional importance, main parts main parameters, status and road map of Turkish Accelerator Center will be presented.

  3. Department of Energy Actions Necessary to Improve DOE’s Training Program

    DTIC Science & Technology

    1999-02-01

    assessments, the Department has completed analyses and implemented training programs for the defense nuclear facilities technical workforce and...certification standards, such as those examined by the Defense Nuclear Facilities Safety Board in its reviews of Department operations, impose... nuclear facilities will have their technical skills assessed and will receive continuing training to maintain certain necessary skills. Page 17 GAO/RCED

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarrack, A.G.

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses tomore » calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).« less

  5. Logical design of a decision support system to forecast technology, prices and costs for the national communications system

    NASA Astrophysics Data System (ADS)

    Williams, K. A.; Partridge, E. C., III

    1984-09-01

    Originally envisioned as a means to integrate the many systems found throughout the government, the general mission of the NCS continues to be to ensure the survivability of communications during and subsequent to any national emergency. In order to accomplish this mission the NCS is an arrangement of heterogeneous telecommunications systems which are provided by their sponsor Federal agencies. The physical components of Federal telecommunications systems and networks include telephone and digital data switching facilities and primary common user communications centers; Special purpose local delivery message switching and exchange facilities; Government owned or leased radio systems; Technical control facilities which are under exclusive control of a government agency. This thesis describes the logical design of a proposed decision support system for use by the National Communications System in forecasting technology, prices, and costs. It is general in nature and only includes those forecasting models which are suitable for computer implementation. Because it is a logical design it can be coded and applied in many different hardware and/or software configurations.

  6. 48 CFR 811.107 - Contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 811.107 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS COMPETITION AND... requests for proposals for technical medical and other technical equipment and devices issued by a field facility unless the facility Chief, Engineering Service, indicates that the service data manuals are not...

  7. 57. Photocopy of Architectural Layout drawing, dated 25 June, 1993 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    57. Photocopy of Architectural Layout drawing, dated 25 June, 1993 by US Air Force Space Command. Original drawing property of United States Air Force, 21" Space Command. AL-3 PAVE PAWS SUPPORT SYSTEMS - CAPE COD AFB, MASSACHUSETTS - LAYOUT 1 FLOOR AND 1sr FLOOR ROOF. DRAWING NO. AL-3 - SHEET 4 OF 21. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  8. 58. Photocopy of Architectural Layout drawing, dated 25 June, 1993 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. Photocopy of Architectural Layout drawing, dated 25 June, 1993 by US Air Force Space Command. Original drawing property of United States Air Force, 21" Space Command. AL-5 PAVE PAWS SUPPORT SYSTEMS - CAPE COD AFB, MASSACHUSETTS - LAYOUT 3RD, 3A, 4TH LEVELS. DRAWING NO. AL-5 - SHEET 6 OF 21 - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. Seismic assessment of Technical Area V (TA-V).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medrano, Carlos S.

    The Technical Area V (TA-V) Seismic Assessment Report was commissioned as part of Sandia National Laboratories (SNL) Self Assessment Requirement per DOE O 414.1, Quality Assurance, for seismic impact on existing facilities at Technical Area-V (TA-V). SNL TA-V facilities are located on an existing Uniform Building Code (UBC) Seismic Zone IIB Site within the physical boundary of the Kirtland Air Force Base (KAFB). The document delineates a summary of the existing facilities with their safety-significant structure, system and components, identifies DOE Guidance, conceptual framework, past assessments and the present Geological and Seismic conditions. Building upon the past information and themore » evolution of the new seismic design criteria, the document discusses the potential impact of the new standards and provides recommendations based upon the current International Building Code (IBC) per DOE O 420.1B, Facility Safety and DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and Non-Nuclear Facilities.« less

  10. PROJECT W-551 INTERIM PRETREATMENT SYSTEM PRECONCEPTUAL CANDIDATE TECHNOLOGY DESCRIPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAY TH

    The Office of River Protection (ORP) has authorized a study to recommend and select options for interim pretreatment of tank waste and support Waste Treatment Plant (WTP) low activity waste (LAW) operations prior to startup of all the WTP facilities. The Interim Pretreatment System (IPS) is to be a moderately sized system which separates entrained solids and 137Cs from tank waste for an interim time period while WTP high level waste vitrification and pretreatment facilities are completed. This study's objective is to prepare pre-conceptual technology descriptions that expand the technical detail for selected solid and cesium separation technologies. This revisionmore » includes information on additional feed tanks.« less

  11. Progress in Norwegian-Russian Regulatory Cooperation in Management of the Nuclear Legacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneve, M.K.; Shandala, N.K.; Smith, G.M.

    2008-07-01

    The Norwegian Radiation Protection Authority (NRPA) and the Federal Medical-Biological Agency (FMBA) of the Russian Federation have a collaboration programme which forms part of the Norwegian government's Plan of Action to improve radiation and nuclear safety in northwest Russia. The background to the NRPA-FMBA collaboration programme has been described in previous WM presentations. This paper presents the substantial progress made within that programme, describes ongoing progress within specific projects and sets out the value arising from wider involvement in the programme of other organisations such as NATO and the technical support derived from other national agencies such as the IAEA,more » and regulatory authorities from the USA, the UK and France. The main activities of the cooperation projects are concerned with the management of the nuclear legacy in northwest Russia, in particular the remediation of facilities, and related spent fuel and radioactive waste management, at the former Shore Technical Bases at Andreeva Bay and Gremikha Village. New regulatory guidance documents have been developed, necessary because of the special abnormal situation at these sites, now designated as Sites of Temporary Storage (STS), but also because of the transition from military to civilian regulatory supervision and the evolving regulatory system in the Russian Federation. The work has involved major technical inputs from the Russian Federation Institute of Biophysics, as well as review and advice on international recommendations and good practice in other countries provided by other technical support organisations. Projects on-going in 2007 are described which involve regulatory guidance on very Low-Level Waste management, specifically for the licensing and operation of new VLLW disposal facilities; optimisation of operational radiation protection, particularly in areas of high ambient radiation dose rate as are found in some parts of the STSs; determination of factors which can be used to identify when to apply emergency procedures before the full emergency is obvious; and development of the radio-ecological basis for identifying radiation supervision area boundaries. (authors)« less

  12. KSC-99PP-1212

    NASA Image and Video Library

    1999-10-14

    An aerial view reveals (foreground) the ongoing construction of an $8 million Reusable Launch Vehicle (RLV) Support Complex at Kennedy Space Center. At left is a multi-purpose hangar and at right a building for related ground support equipment and administrative/ technical support. In the background is the Vehicle Assembly Building. The road at right is the tow-way. The RLV complex will be available to accommodate the Space Shuttle; the X-34 RLV technology demonstrator; the L-1011 carrier aircraft for Pegasus and X-34; and other RLV and X-vehicle programs. The complex is jointly funded by the Spaceport Florida Authority, NASA's Space Shuttle Program and KSC. The facility will be operational in early 2000.

  13. Voluntary medical male circumcision scale-up in Nyanza, Kenya: evaluating technical efficiency and productivity of service delivery.

    PubMed

    Omondi Aduda, Dickens S; Ouma, Collins; Onyango, Rosebella; Onyango, Mathews; Bertrand, Jane

    2015-01-01

    Voluntary medical male circumcision (VMMC) service delivery is complex and resource-intensive. In Kenya's context there is still paucity of information on resource use vis-à-vis outputs as programs scale up. Knowledge of technical efficiency, productivity and potential sources of constraints is desirable to improve decision-making. To evaluate technical efficiency and productivity of VMMC service delivery in Nyanza in 2011/2012 using data envelopment analysis. Comparative process evaluation of facilities providing VMMC in Nyanza in 2011/2012 using output orientated data envelopment analysis. Twenty one facilities were evaluated. Only 1 of 7 variables considered (total elapsed operation time) significantly improved from 32.8 minutes (SD 8.8) in 2011 to 30 minutes (SD 6.6) in 2012 (95%CI = 0.0350-5.2488; p = 0.047). Mean scale technical efficiency significantly improved from 91% (SD 19.8) in 2011 to 99% (SD 4.0) in 2012 particularly among outreach compared to fixed service delivery facilities (CI -31.47959-4.698508; p = 0.005). Increase in mean VRS technical efficiency from 84% (SD 25.3) in 2011 and 89% (SD 25.1) in 2012 was not statistically significant. Benchmark facilities were #119 and #125 in 2011 and #103 in 2012. Malmquist Productivity Index (MPI) at fixed facilities declined by 2.5% but gained by 4.9% at outreach ones by 2012. Total factor productivity improved by 83% (p = 0.032) in 2012, largely due to progress in technological efficiency by 79% (p = 0.008). Significant improvement in scale technical efficiency among outreach facilities in 2012 was attributable to accelerated activities. However, ongoing pure technical inefficiency requires concerted attention. Technological progress was the key driver of service productivity growth in Nyanza. Incorporating service-quality dimensions and using stepwise-multiple criteria in performance evaluation enhances comprehensiveness and validity. These findings highlight site-level resource use and sources of variations in VMMC service productivity, which are important for program planning.

  14. Technical and Occupational Shops.

    ERIC Educational Resources Information Center

    Ontario Dept. of Education, Toronto. School Planning and Building Research Section.

    This booklet presents suggested plans and specifications for and discusses facilities common to technical and occupational shops. Drawings, room plans, and text illustrate specifications for drafting rooms, a welding shop, an automechanics shop, an auto body shop, and a high school greenhouse. Also included are facility designs for agricultural…

  15. Savannah River Plant engineering and design history. Volume 4: 300/700 Areas & general services and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1957-01-01

    The primary function of the 300 Area is the production and preparation of the fuel and target elements required for the 100 Area production reactors. Uranium slugs and lithium-aluminium alloy control and blanket rods are prepared in separate structures. Other facilities include a test pile, a physics assembly laboratory, an office and change house, an electrical substation, and various service facilities such as rail lines, roads, sewers, steam and water distribution lines, etc. The 700 Area contains housing and facilities for plant management, general plant services, and certain technical activities. The technical buildings include the Main Technical Laboratory, the Wastemore » Concentration Building, the Health Physics Headquarters, and the Health Physics Calibration building. Sections of this report describe the following: development of the 300-M Area; selection and description of process; design of main facilities of the 300 Area; development of the 700-A Area; design of the main facilities of the 700 Area; and general services and facilities, including transportation, plant protection, waste disposal and drainage, site work, pilot plants, storage, and furniture and fixtures.« less

  16. Geoscience Digital Data Resource and Repository Service

    NASA Astrophysics Data System (ADS)

    Mayernik, M. S.; Schuster, D.; Hou, C. Y.

    2017-12-01

    The open availability and wide accessibility of digital data sets is becoming the norm for geoscience research. The National Science Foundation (NSF) instituted a data management planning requirement in 2011, and many scientific publishers, including the American Geophysical Union and the American Meteorological Society, have recently implemented data archiving and citation policies. Many disciplinary data facilities exist around the community to provide a high level of technical support and expertise for archiving data of particular kinds, or for particular projects. However, a significant number of geoscience research projects do not have the same level of data facility support due to a combination of several factors, including the research project's size, funding limitations, or topic scope that does not have a clear facility match. These projects typically manage data on an ad hoc basis without limited long-term management and preservation procedures. The NSF is supporting a workshop to be held in Summer of 2018 to develop requirements and expectations for a Geoscience Digital Data Resource and Repository Service (GeoDaRRS). The vision for the prospective GeoDaRRS is to complement existing NSF-funded data facilities by providing: 1) data management planning support resources for the general community, and 2) repository services for researchers who have data that do not fit in any existing repository. Functionally, the GeoDaRRS would support NSF-funded researchers in meeting data archiving requirements set by the NSF and publishers for geosciences, thereby ensuring the availability of digital data for use and reuse in scientific research going forward. This presentation will engage the AGU community in discussion about the needs for a new digital data repository service, specifically to inform the forthcoming GeoDaRRS workshop.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yavas, Oe.

    The Turkish Accelerator Center (TAC) Project was started in 1997 with support of the State Planning Organization (SPO) of Turkey under Ankara University's coordination. After completing Feasibility Report (FR, 2000) and Conceptual Design Repot (CDR, 2005), third phase of the project was started in 2006 as an inter-university project with support of SPO. Third phase of the project has two main scientific goals: to write Technical Design Report (TDR) of TAC and to establish an Infrared Free Electron Laser (IR FEL) facility as a first step. The first facility and TDR studies are planned to be completed in 2012. Constructionmore » phase of TAC will cover 2013-2023. TAC collaboration include ten Turkish Universities: Ankara, Gazi, Istanbul, Bogazici, Dogus, Uludag, Dumlupmar, Nigde, Erciyes and S. Demirel Universities. It was planned that the first facility will be an IR FEL and Bremsstrahlung laboratory based on 15-40 MeV electron linac and two optical cavities with 2.5 and 9 cm undulators to scan 2-250 microns wavelength range. Main purpose of the facility is to use IR FEL for research in material science, nonlinear optics, semiconductors, biotechnology, medicine and photochemical processes. In this study; aims, regional importance, main parts and main parameters of TAC and TAC IR FEL and Bremsstrahlung facility are explained. Road map of the TAC project is given. National and international collaborations are explained.« less

  18. Tank characterization report for single-shell tank 241-S-111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, J.M.

    1997-04-28

    One of the major functions of the Tank Waste Remediation System (TWRS) is to characterize wastes in support of waste management and disposal activities at the Hanford Site. Analytical data from sampling and analysis, along with other available information about a tank, are compiled and maintained in a tank characterization report (TCR). This report and its appendices serve as the TCR for single-shell tank 241-S-111. The objectives of this report are: (1) to use characterization data to address technical issues associated with tank 241-S-111 waste; and (2) to provide a standard characterization of this waste in terms of a best-basismore » inventory estimate. The response to technical issues is summarized in Section 2.0, and the best-basis inventory estimate is presented in Section 3.0. Recommendations regarding safety status and additional sampling needs are provided in Section 4.0. Supporting data and information are contained in the appendices. This report also supports the requirements of Hanford Federal Facility Agreement and Consent Order (Ecology et al. 1996) milestone M-44-10.« less

  19. Laboratory Directed Research and Development Program FY98

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program providesmore » the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.« less

  20. Basic energy sciences: Summary of accomplishments

    NASA Astrophysics Data System (ADS)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  1. Basic Energy Sciences: Summary of Accomplishments

    DOE R&D Accomplishments Database

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  2. The TRIGA Reactor Facility at the Armed Forces Radiobiology Research Institute: A Simplified Technical Description.

    DTIC Science & Technology

    1986-05-01

    COUNT Technical FROM_ TO May 1986 20 16. SUPPLEMENTARY NOTATION 17. COSATI CODES 18. SUBJECT TERMS iConitinue on reverse if neceasary and identify by...Reactor, Modes of Operation, The AFRRI Reactor, Exposure Facilities, and Cerenkov Radiation. I- 20 DISTRISUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT...6 Exposure Facilities 12 Cerenkov Radiation 17 Acoessiofl For NTIS GRA&I DT.C TABUnamnnounced [] UusnriOfltond -. By IZ Distribution/ Availability

  3. 10 CFR 52.17 - Contents of applications; technical information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...

  4. 10 CFR 52.17 - Contents of applications; technical information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...

  5. 10 CFR 52.17 - Contents of applications; technical information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...

  6. 10 CFR 52.17 - Contents of applications; technical information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NUCLEAR POWER PLANTS Early Site Permits § 52.17 Contents of applications; technical information. (a) For..., and thermal power level of the facilities, or range of possible facilities, for which the site may be... forth the requirements for quality assurance programs for nuclear power plants. The description of the...

  7. Total Quality Management in Space Shuttle Main Engine manufacturing

    NASA Technical Reports Server (NTRS)

    Ding, J.

    1992-01-01

    The Total Quality Management (TQM) philosophy developed in the Marshall Space Flight Center (MSFC) is briefly reviewed and the ongoing TQM implementation effort which is being pursued through the continuous improvement (CI) process is discussed. TQM is based on organizational excellence which integrates the new supportive culture with the technical tools necessary to identify, assess, and correct manufacturing processes. Particular attention is given to the prime contractor's change to the organizational excellence management philosophy in SSME manufacturing facilities.

  8. Technical Facilities and Capabilities Assessment Report

    DTIC Science & Technology

    1990-06-01

    ARMAMENT LABORATORY Air Force Systems Command I United States Air Force I Eglin Air Force Base , Florida Best Available Copy 90 0 8 20 026 NOTICE When...The Air Force Armament Laboratory (AFATL) provides the technology base for future armament systems and supports the other elements of the deputy...color and filter digital images once an image is on the system . The IPL and the RSPL are accessible over the base Ethernet. This allows users to logon to

  9. Final Environmental Planning Technical Report. Public Services and Facilities

    DTIC Science & Technology

    1984-06-01

    The marked patrol units have a life expectancy of 2 years (90,000 to 100,000 miles) and about one-half of the 15 units are replaced each year...much more visible police force, longer car life , and lower maintenance costs. The proposal has received support from within the City government, but...Burns, Albin, and Carpenter; the Air Force Military Assistance to Safety and Traffic (MAST) helicopter service; Flight for Life ; and several other suppor

  10. Recovering from Katrina. Air Force Civil Engineer, Volume 13, Number 3, 2005

    DTIC Science & Technology

    2005-01-01

    Texas, Col Patrick is responsible for providing functional leadership and technical guidance to civil engineer units supporting the more than...delivery of facilities prior to the Wing’s initial operational capability date. Attitude was affected by strong leadership from a senior executive...Warfare Ramping Up for AM-2’s Replacement Mr. Joe D. Fisher ACC/A7XX History of AM-2 AM-2 aluminum matting, an evolution of the pierced steel plank

  11. NASA thesaurus aeronautics vocabulary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The controlled vocabulary used by the NASA Scientific and Technical Information effort to index documents in the area of aeronautics is presented. The terms comprise a subset of the 1988 edition of the NASA Thesaurus and its supplements issued through the end of 1990. The Aeronautics Vocabulary contains over 4700 terms presented in a hierarchical display format. In addition to aeronautics per se, the vocabulary covers supporting terminology from areas such as fluid dynamics, propulsion engineering, and test facilities and instrumentation.

  12. Long-Term Effects of Dredging Operations Program. Collation and Interpretation of Data for Times Beach Confined Disposal Facility, Buffalo, New York

    DTIC Science & Technology

    1991-06-01

    commercial products . The D-series of reports includes publications of the Environmental Effects of Dredging Programs: Dredging Operations Technical Support...insufficient data are available, areas for future productive research are recommended. The major amount of information available is for the upland area, where...Conse- quently, the upland, wetland, and aquatic areas that appear either as an end product or transiently at all CDFs are permanently established

  13. Internships and UNAVCO: Training the Future Geoscience Workforce Through the NSF GAGE Facility

    NASA Astrophysics Data System (ADS)

    Morris, A. R.; MacPherson-Krutsky, C. C.; Charlevoix, D. J.; Bartel, B. A.

    2015-12-01

    Facilities are uniquely positioned to both serve a broad, national audience and provide unique workforce experience to students and recent graduates. Intentional efforts dedicated to broadening participation in the future geoscience workforce at the NSF GAGE (Geodesy Advancing Geosciences and EarthScope) Facility operated by UNAVCO, are designed to meet the needs of the next generation of students and professionals. As a university-governed consortium facilitating research and education in the geosciences, UNAVCO is well-situated to both prepare students for geoscience technical careers and advanced research positions. Since 1998, UNAVCO has offered over 165 student assistant or intern positions including engineering, data services, education and outreach, and business support. UNAVCO offers three formal programs: the UNAVCO Student Internship Program (USIP), Research Experiences in Solid Earth Science for Students (RESESS), and the Geo-Launchpad (GLP) internship program. Interns range from community college students up through graduate students and recent Masters graduates. USIP interns gain real-world work experience in a professional setting, collaborate with teams toward a common mission, and contribute their knowledge, skills, and abilities to the UNAVCO community. RESESS interns conduct authentic research with a scientist in the Front Range area as well as participate in a structured professional development series. GLP students are in their first 2 years of higher education and work alongside UNAVCO technical staff gaining valuable work experience and insight into the logistics of supporting scientific research. UNAVCO's efforts in preparing the next generation of scientists largely focuses on increasing diversity in the geosciences, whether continuing academic studies or moving into the workforce. To date, well over half of our interns and student assistants come from backgrounds historically underrepresented in the geosciences. Over 80% of former interns continue to pursue careers or education in the geosciences. This presentation will highlight elements of the programs that can be easily replicated in other facilities as well as activities that may be incorporated into university-based experiences.

  14. What is the cost of providing outpatient HIV counseling and testing and antiretroviral therapy services in selected public health facilities in Nigeria?

    PubMed

    Aliyu, Husaina Bello; Chuku, Nkata Nwani; Kola-Jebutu, Abimbola; Abubakar, Zubaida; Torpey, Kwasi; Chabikuli, Otto Nzapfurundi

    2012-10-01

    Limited data on actual cost of providing HIV/AIDS services in Nigeria makes planning difficult. A study was conducted in 9 public health facilities supported by the Global HIV/AIDS Initiative Nigeria. The objective was to determine the cost of outpatient HIV Testing and Counseling (HTC) and antiretroviral therapy (ART) services per patient. Two tertiary and 7 secondary facilities were purposively selected across the six geopolitical regions. Facilities were distributed in urban and rural settings. Utilization and cost data for a 12-month period (January to December 2010) were analyzed. Cost elements included consumables, human resources, infrastructure, trainings, facility management, and Global HIV/AIDS Initiative Nigeria technical support. Total costs were apportioned based on percentage utilization by services, and unit costs were derived by dividing resource inputs by service outputs. Data were analyzed using Microsoft Excel 2003. A sensitivity analysis was also conducted for key assumptions. Mean costs for HTC and ART were US $7.4 and US $209.0, respectively. Costs were higher in Northern facilities (US $6.9, US $250.8), compared with Southern ones (US $6.7, US $194.7); and in tertiary facilities ($18.5, $338.4), compared with secondary ones ($6.3, $204.9). Major cost drivers for HTC and ART were human resources--ranging from 62% to 50%, and ARV drugs--ranging from 54% to 31%, respectively. Governments' ability to negotiate lower priced antiretroviral drugs will be central to reducing the cost of ART. Additionally, use of lower cadre staff to provide HTC will reduce costs and improves efficiency.

  15. KSC-2011-1154

    NASA Image and Video Library

    2011-01-20

    CAPE CANAVERAL, Fla. -- A traditional ribbon-cutting ceremony takes place outside the Propellants North Administration and Maintenance Facility at NASA's Kennedy Space Center in Florida. From left, are Thomas Wilczek, contracting officer technical representative/project manager for NASA Construction of Facilities; Bradley O’Toole, NASA contracting officer; James Wright, deputy assistant administrator for the Office of Strategic Infrastructure at NASA Headquarters; Frank Kline, NASA Construction of Facility project manager; Bob Cabana, Kennedy's center director; Mike Benik, director of Kennedy's Center Operations; Ward Davis, president of HW Davis Construction Inc.; and Rick Ferreira, chief operating officer of Jones Edmunds and Associates Inc. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett

  16. KSC-2011-1155

    NASA Image and Video Library

    2011-01-20

    CAPE CANAVERAL, Fla. -- A traditional ribbon-cutting ceremony takes place outside the Propellants North Administration and Maintenance Facility at NASA's Kennedy Space Center in Florida. From left, are Thomas Wilczek, contracting officer technical representative/project manager for NASA Construction of Facilities; Bradley O’Toole, NASA contracting officer; James Wright, deputy assistant administrator for the Office of Strategic Infrastructure at NASA Headquarters; Frank Kline, NASA Construction of Facility project manager; Bob Cabana, Kennedy's center director; Mike Benik, director of Kennedy's Center Operations; Ward Davis, president of HW Davis Construction Inc.; and Rick Ferreira, chief operating officer of Jones Edmunds and Associates Inc. Propellants North consists of two buildings, one to store cryogenic fuel transfer equipment and one to house personnel who support fueling spacecraft. The recently rebuilt buildings will be NASA's first carbon neutral facility, which means it will produce enough energy on site from renewable sources to offset what it requires to operate. The facility also will reach for the U.S. Green Building Council's Leadership in Environmental and Energy Design (LEED) Platinum status, which is the highest LEED rating. Photo credit: NASA/Kim Shiflett

  17. TECHNICAL REPORTS DATABASE

    EPA Science Inventory

    The Defense Technical Information Center (DTIC?) is the central facility for the collection and dissemination of scientific and technical information for the Department of Defense (DoD). Much of this information is made available by DTIC in the form of technical reports about com...

  18. 7 CFR 1775.36 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (CONTINUED) TECHNICAL ASSISTANCE GRANTS Technical Assistance and Training Grants § 1775.36 Purpose. Grants... water and/or waste disposal loan/grant applications. (d) Provide technical assistance/training to... facilities. (e) Pay the expenses associated with providing the technical assistance and/or training...

  19. Preparation for the Recovery of Spent Nuclear Fuel (SNF) at Andreeva Bay, North West Russia - 13309

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, D.; McAtamney, N.

    Andreeva Bay is located near Murmansk in the Russian Federation close to the Norwegian border. The ex-naval site was used to de-fuel nuclear-powered submarines and icebreakers during the Cold War. Approximately 22,000 fuel assemblies remain in three Dry Storage Units (DSUs) which means that Andreeva Bay has one of the largest stockpiles of highly enriched spent nuclear fuel (SNF) in the world. The high contamination and deteriorating condition of the SNF canisters has made improvements to the management of the SNF a high priority for the international community for safety, security and environmental reasons. International Donors have, since 2002, providedmore » support to projects at Andreeva concerned with improving the management of the SNF. This long-term programme of work has been coordinated between the International Donors and responsible bodies within the Russian Federation. Options for the safe and secure management of SNF at Andreeva Bay were considered in 2004 and developed by a number of Russian Institutes with international participation. This consisted of site investigations, surveys and studies to understand the technical challenges. A principal agreement was reached that the SNF would be removed from the site altogether and transported to Russia's reprocessing facility at Mayak in the Urals. The analytical studies provided the information necessary to develop the construction plan for the site. Following design and regulatory processes, stakeholders endorsed the technical solution in April 2007. This detailed the processes, facilities and equipment required to safely remove the SNF and identified other site services and support facilities required on the site. Implementation of this strategy is now well underway with the facilities in various states of construction. Physical works have been performed to address the most urgent tasks including weather protection over one of the DSUs, installation of shielding over the cells, provision of radiation protection infrastructure and general preparation of the site for construction of the facilities for the removal of the SNF. This paper describes the development and implementation of the strategy and work to improve the safe and secure management of SNF, preparing it for retrieval and removal from Andreeva Bay. (authors)« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Monsanto Research Corporation operates Mound Laboratory, a government-owned facility of the U.S. Energy Research and Development Administration, at Miamisburg, Ohio. Mound Laboratory is an integrated research, development, and production facility performing work in support of ERDA weapon and non-weapon programs with emphasis on explosive and nuclear technology. Mound Laboratory originated as a technical organization in 1943 when Monsanto Chemical Company was requested to accept responsibility for determining the chemical and metallurgical properties of polonium as a project of the Manhattan Engineering District. Work was carried on at Monsanto`s Central Research Department and several satellite units in the Dayton, Ohio area.more » Late in 1945, the Manhattan Engineering District determined that the research, development and production organization established by Monsanto at Dayton should become a permanent facility. A search for a suitable location in early 1946 led to the selection of a 180-acre tract adjacent to Miamisburg, about ten miles (16 km) south of Dayton.« less

  1. Potential utilization of the NASA/George C. Marshall Space Flight Center in earthquake engineering research

    NASA Technical Reports Server (NTRS)

    Scholl, R. E. (Editor)

    1979-01-01

    Earthquake engineering research capabilities of the National Aeronautics and Space Administration (NASA) facilities at George C. Marshall Space Flight Center (MSFC), Alabama, were evaluated. The results indicate that the NASA/MSFC facilities and supporting capabilities offer unique opportunities for conducting earthquake engineering research. Specific features that are particularly attractive for large scale static and dynamic testing of natural and man-made structures include the following: large physical dimensions of buildings and test bays; high loading capacity; wide range and large number of test equipment and instrumentation devices; multichannel data acquisition and processing systems; technical expertise for conducting large-scale static and dynamic testing; sophisticated techniques for systems dynamics analysis, simulation, and control; and capability for managing large-size and technologically complex programs. Potential uses of the facilities for near and long term test programs to supplement current earthquake research activities are suggested.

  2. Facilitate, Collaborate, Educate: the Role of the IRIS Consortium in Supporting National and International Research in Seismology (Invited)

    NASA Astrophysics Data System (ADS)

    Simpson, D. W.; Beck, S. L.

    2009-12-01

    Over the twenty-five years since its founding in 1984, the IRIS Consortium has contributed in fundamental ways to change the practice and culture of research in seismology in the US and worldwide. From an original founding group of twenty-two U.S. academic institutions, IRIS membership has now grown to 114 U.S. Member Institutions, 20 Educational Affiliates and 103 Foreign Affiliates. With strong support from the National Science Foundation, additional resources provided by other federal agencies, close collaboration with the U.S. Geological Survey and many international partners, the technical resources of the core IRIS programs - the Global Seismographic Network (GSN), the Program for Array Seismic Studies of the Continental Lithosphere (PASSCAL), the Data Management System (DMS) and Education and Outreach - have grown to become a major national and international source of experimental data for research on earthquakes and Earth structure, and a resource to support education and outreach to the public. While the primary operational focus of the Consortium is to develop and maintain facilities for the collection of seismological data for basic research, IRIS has become much more than an instrument facility. It has become a stimulus for collaboration between academic seismological programs and a focus for their interactions with national and international partners. It has helped establish the academic community as a significant contributor to the collection of data and an active participant in global research and monitoring. As a consortium of virtually all of the Earth science research institutions in the US, IRIS has helped coordinate the academic community in the development of new initiatives, such as EarthScope, to strengthen the support for science and argue for the relevance of seismology and its use in hazard mitigation. The early IRIS pioneers had the foresight to carefully define program goals and technical standards for the IRIS facilities that have stood the test of time. Many of these technical standards for equipment and data exchange have extended to become de-facto global standards and influenced instrument development and network practices throughout the world. A governance structure for the Consortium was created that continues to encourage strong community guidance in the operation and evolution of IRIS programs. From the outset, there was a commitment to maintaining a complete archive of all IRIS data, with significant emphasis on metadata and quality control. Building on long-standing traditions of collaboration in seismological research, an explicit IRIS policy of free and open data exchange has expanded the culture of data sharing among it members, which, through example, encouragement and support, has extended to influence the data policies of numerous other organizations in seismology and the Earth sciences. The technical revolution in sensors, communications and data collection that accompanied the early development of IRIS is now available to the entire world. The challenge for IRIS and the seismology community in the decades ahead will be to encourage the implementation of these technologies, along with appropriate training and resources, to further the research community’s endeavors to understand the structure and evolution of our planet and apply that knowledge to the mitigation of earthquake hazards.

  3. Controlled ecological life support systems: Development of a plant growth module

    NASA Technical Reports Server (NTRS)

    Averner, Mel M.; Macelroy, Robert D.; Smernoff, David T.

    1987-01-01

    An effort was made to begin defining the scientific and technical requirements for the design and construction of a ground-based plant growth facility. In particular, science design criteria for the Plant Growth Module (PGM) of the Controlled Ecological Life Support System (CELSS) were determined in the following areas: (1) irradiation parameters and associated equipment affecting plant growth; (2) air flow; (3) planting, culture, and harvest techniques; (4) carbon dioxide; (5) temperature and relative humidity; (6) oxygen; (7) construction materials and access; (8) volatile compounds; (9) bacteria, sterilization, and filtration; (10) nutrient application systems; (11) nutrient monitoring; and (12) nutrient pH and conductivity.

  4. Range Flight Safety Requirements

    NASA Technical Reports Server (NTRS)

    Loftin, Charles E.; Hudson, Sandra M.

    2018-01-01

    The purpose of this NASA Technical Standard is to provide the technical requirements for the NPR 8715.5, Range Flight Safety Program, in regards to protection of the public, the NASA workforce, and property as it pertains to risk analysis, Flight Safety Systems (FSS), and range flight operations. This standard is approved for use by NASA Headquarters and NASA Centers, including Component Facilities and Technical and Service Support Centers, and may be cited in contract, program, and other Agency documents as a technical requirement. This standard may also apply to the Jet Propulsion Laboratory or to other contractors, grant recipients, or parties to agreements to the extent specified or referenced in their contracts, grants, or agreements, when these organizations conduct or participate in missions that involve range flight operations as defined by NPR 8715.5.1.2.2 In this standard, all mandatory actions (i.e., requirements) are denoted by statements containing the term “shall.”1.3 TailoringTailoring of this standard for application to a specific program or project shall be formally documented as part of program or project requirements and approved by the responsible Technical Authority in accordance with NPR 8715.3, NASA General Safety Program Requirements.

  5. Evolution of the Lunar Receiving Laboratory to the Astromaterial Sample Curation Facility: Technical Tensions Between Containment and Cleanliness, Between Particulate and Organic Cleanliness

    NASA Technical Reports Server (NTRS)

    Allton, J. H.; Zeigler, R. A.; Calaway, M. J.

    2016-01-01

    The Lunar Receiving Laboratory (LRL) was planned and constructed in the 1960s to support the Apollo program in the context of landing on the Moon and safely returning humans. The enduring science return from that effort is a result of careful curation of planetary materials. Technical decisions for the first facility included sample handling environment (vacuum vs inert gas), and instruments for making basic sample assessment, but the most difficult decision, and most visible, was stringent biosafety vs ultra-clean sample handling. Biosafety required handling of samples in negative pressure gloveboxes and rooms for containment and use of sterilizing protocols and animal/plant models for hazard assessment. Ultra-clean sample handling worked best in positive pressure nitrogen environment gloveboxes in positive pressure rooms, using cleanable tools of tightly controlled composition. The requirements for these two objectives were so different, that the solution was to design and build a new facility for specific purpose of preserving the scientific integrity of the samples. The resulting Lunar Curatorial Facility was designed and constructed, from 1972-1979, with advice and oversight by a very active committee comprised of lunar sample scientists. The high precision analyses required for planetary science are enabled by stringent contamination control of trace elements in the materials and protocols of construction (e.g., trace element screening for paint and flooring materials) and the equipment used in sample handling and storage. As other astromaterials, especially small particles and atoms, were added to the collections curated, the technical tension between particulate cleanliness and organic cleanliness was addressed in more detail. Techniques for minimizing particulate contamination in sample handling environments use high efficiency air filtering techniques typically requiring organic sealants which offgas. Protocols for reducing adventitious carbon on sample handling surfaces often generate particles. Further work is needed to achieve both minimal particulate and adventitious carbon contamination. This paper will discuss these facility topics and others in the historical context of nearly 50 years' curation experience for lunar rocks and regolith, meteorites, cosmic dust, comet particles, solar wind atoms, and asteroid particles at Johnson Space Center.

  6. Initial experiences and innovations in supervising community health workers for maternal, newborn, and child health in Morogoro region, Tanzania.

    PubMed

    Roberton, Timothy; Applegate, Jennifer; Lefevre, Amnesty E; Mosha, Idda; Cooper, Chelsea M; Silverman, Marissa; Feldhaus, Isabelle; Chebet, Joy J; Mpembeni, Rose; Semu, Helen; Killewo, Japhet; Winch, Peter; Baqui, Abdullah H; George, Asha S

    2015-04-09

    Supervision is meant to improve the performance and motivation of community health workers (CHWs). However, most evidence on supervision relates to facility health workers. The Integrated Maternal, Newborn, and Child Health (MNCH) Program in Morogoro region, Tanzania, implemented a CHW pilot with a cascade supervision model where facility health workers were trained in supportive supervision for volunteer CHWs, supported by regional and district staff, and with village leaders to further support CHWs. We examine the initial experiences of CHWs, their supervisors, and village leaders to understand the strengths and challenges of such a supervision model for CHWs. Quantitative and qualitative data were collected concurrently from CHWs, supervisors, and village leaders. A survey was administered to 228 (96%) of the CHWs in the Integrated MNCH Program and semi-structured interviews were conducted with 15 CHWs, 8 supervisors, and 15 village leaders purposefully sampled to represent different actor perspectives from health centre catchment villages in Morogoro region. Descriptive statistics analysed the frequency and content of CHW supervision, while thematic content analysis explored CHW, supervisor, and village leader experiences with CHW supervision. CHWs meet with their facility-based supervisors an average of 1.2 times per month. CHWs value supervision and appreciate the sense of legitimacy that arises when supervisors visit them in their village. Village leaders and district staff are engaged and committed to supporting CHWs. Despite these successes, facility-based supervisors visit CHWs in their village an average of only once every 2.8 months, CHWs and supervisors still see supervision primarily as an opportunity to check reports, and meetings with district staff are infrequent and not well scheduled. Supervision of CHWs could be strengthened by streamlining supervision protocols to focus less on report checking and more on problem solving and skills development. Facility health workers, while important for technical oversight, may not be the best mentors for certain tasks such as community relationship-building. We suggest further exploring CHW supervision innovations, such as an enhanced role for community actors, who may be more suitable to support CHWs engaged primarily in health promotion than scarce and over-worked facility health workers.

  7. Value Engineering. Technical Manual. School Facilities Development Procedures Manual.

    ERIC Educational Resources Information Center

    Washington Office of the State Superintendent of Public Instruction, Olympia.

    Value Engineering (VE) is a cost-optimizing technique used to analyze design quality and cost-effectiveness. The application of VE procedures to the design and construction of school facilities has been adopted by the state of Washington. This technical manual provides guidance in developing the scope and applicability of VE to school projects; in…

  8. Technical basis for implementation of remote reading capabilities for radiological control instruments at tank farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PIERSON, R.M.

    1999-10-27

    This document provides the technical basis for use of remote reading capabilities with radiological control instruments at River Protection Project facilities. The purpose of this document is to evaluate applications of remote reading capabilities with Radiological Control instrumentation to allow continuous monitoring of radiation dose rates at River Protection Project (RPP) facilities. In addition this document provides a technical basis and implementing guidelines for remote monitoring of dose rates and their potential contribution to maintaining radiation exposures ALARA.

  9. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: Defense waste processing facility

    NASA Astrophysics Data System (ADS)

    Huang, J. C.; Wright, W. V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.

  10. Medicaid program; home and community-based services. Health Care Financing Administration (HCFA), HHS. Final rule with comment period.

    PubMed

    2000-10-10

    This final rule with comment period expands State flexibility in providing prevocational, educational, and supported employment services under the Medicaid home and community-based services waiver provisions currently found in section 1915(c) of the Social Security Act (the Act); and incorporates the self-implementing provisions of section 4743 of the Balanced Budget Act of 1997 that amends section 1915(c)(5) of the Act to delete the requirements that an individual have prior institutionalization in a nursing facility or intermediate care facility for the mentally retarded before becoming eligible for the expanded habilitation services. In addition, we are making a number of technical changes to update or correct the regulations.

  11. Exploring Operational Safeguards, Safety, and Security by Design to Address Real Time Threats in Nuclear Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schanfein, Mark J.; Mladineo, Stephen V.

    2015-07-07

    Over the last few years, significant attention has been paid to both encourage application and provide domestic and international guidance for designing in safeguards and security in new facilities.1,2,3 However, once a facility is operational, safeguards, security, and safety often operate as separate entities that support facility operations. This separation is potentially a serious weakness should insider or outsider threats become a reality.Situations may arise where safeguards detects a possible loss of material in a facility. Will they notify security so they can, for example, check perimeter doors for tampering? Not doing so might give the advantage to an insidermore » who has already, or is about to, move nuclear material outside the facility building. If outsiders break into a facility, the availability of any information to coordinate the facility’s response through segregated alarm stations or a failure to include all available radiation sensors, such as safety’s criticality monitors can give the advantage to the adversary who might know to disable camera systems, but would most likely be unaware of other highly relevant sensors in a nuclear facility.This paper will briefly explore operational safeguards, safety, and security by design (3S) at a high level for domestic and State facilities, identify possible weaknesses, and propose future administrative and technical methods, to strengthen the facility system’s response to threats.« less

  12. Voluntary Medical Male Circumcision Scale-Up in Nyanza, Kenya: Evaluating Technical Efficiency and Productivity of Service Delivery

    PubMed Central

    Omondi Aduda, Dickens S.; Ouma, Collins; Onyango, Rosebella; Onyango, Mathews; Bertrand, Jane

    2015-01-01

    Background Voluntary medical male circumcision (VMMC) service delivery is complex and resource-intensive. In Kenya’s context there is still paucity of information on resource use vis-à-vis outputs as programs scale up. Knowledge of technical efficiency, productivity and potential sources of constraints is desirable to improve decision-making. Objective To evaluate technical efficiency and productivity of VMMC service delivery in Nyanza in 2011/2012 using data envelopment analysis. Design Comparative process evaluation of facilities providing VMMC in Nyanza in 2011/2012 using output orientated data envelopment analysis. Results Twenty one facilities were evaluated. Only 1 of 7 variables considered (total elapsed operation time) significantly improved from 32.8 minutes (SD 8.8) in 2011 to 30 minutes (SD 6.6) in 2012 (95%CI = 0.0350–5.2488; p = 0.047). Mean scale technical efficiency significantly improved from 91% (SD 19.8) in 2011 to 99% (SD 4.0) in 2012 particularly among outreach compared to fixed service delivery facilities (CI -31.47959–4.698508; p = 0.005). Increase in mean VRS technical efficiency from 84% (SD 25.3) in 2011 and 89% (SD 25.1) in 2012 was not statistically significant. Benchmark facilities were #119 and #125 in 2011 and #103 in 2012. Malmquist Productivity Index (MPI) at fixed facilities declined by 2.5% but gained by 4.9% at outreach ones by 2012. Total factor productivity improved by 83% (p = 0.032) in 2012, largely due to progress in technological efficiency by 79% (p = 0.008). Conclusions Significant improvement in scale technical efficiency among outreach facilities in 2012 was attributable to accelerated activities. However, ongoing pure technical inefficiency requires concerted attention. Technological progress was the key driver of service productivity growth in Nyanza. Incorporating service-quality dimensions and using stepwise-multiple criteria in performance evaluation enhances comprehensiveness and validity. These findings highlight site-level resource use and sources of variations in VMMC service productivity, which are important for program planning. PMID:25706119

  13. Metals and Ceramics Division progress report for period ending December 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  14. Contracts for field projects and supporting research on enhanced oil recovery. Progress review number 83, quarter ending June 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Summaries of 41 research projects on enhanced recovery are presented under the following sections: (1) chemical flooding; (2) gas displacement; (3) thermal recovery; (4) geoscience technology; (5) resource assessment technology; and (6) reservoir classes. Each presentation gives the title of the project, contract number, research facility, contract date, expected completion data, amount of the award, principal investigator, and DOE program manager, and describes the objectives of the project and a summary of the technical progress.

  15. Low cost solar array project. Experimental process system development unit for producing semiconductor-grade silicon using the silane-to-silicon process

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Technical activities are reported in the design of process, facilities, and equipment for producing silicon at a rate and price comensurate with production goals for low cost solar cell modules. The silane-silicone process has potential for providing high purity poly-silicon on a commercial scale at a price of fourteen dollars per kilogram by 1986, (1980 dollars). Commercial process, economic analysis, process support research and development, and quality control are discussed.

  16. Outdoor Recreation. Community Action Guide for Public Officials: (1) Planning, (2) Legal Aspects, (3) Organization, (4) Staffing and Consultants, (5) Areawide and Multigovernmental Opportunities, (6) Financing, (7) Technical and Financial Assistance, (8) Land Acquisition, (9) Water Based Recreation, (10) Citizen Support

    ERIC Educational Resources Information Center

    Bureau of Outdoor Recreation (Dept. of Interior), Washington, DC.

    A series of 10 Community Action Guides was developed to assist public officials and community leaders in establishing comprehensive outdoor recreation programs. The importance of providing parks and recreation facilities in metropolitan areas and the importance of protecting the natural environment are emphasized. Methods of organization,…

  17. 48 CFR 242.7400 - General.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Contractor Facilities 242.7400 General. (a) Program managers may conclude that they need technical... manager may assign technical representatives under the procedures in 242.7401. (b) A technical representative is a representative of a DoD program, project, or system office performing non-CAS technical...

  18. 48 CFR 242.7400 - General.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Contractor Facilities 242.7400 General. (a) Program managers may conclude that they need technical... manager may assign technical representatives under the procedures in 242.7401. (b) A technical representative is a representative of a DoD program, project, or system office performing non-CAS technical...

  19. Ice-On-Coil Diurnal Ice Storage Cooling System for a Barracks/Office/ Dining Hall Facility at Yuma Proving Ground, AZ

    DTIC Science & Technology

    1990-09-01

    Kedl is associated with the Oak Ridge National Laboratory ( ORNL ). The technical editor was Gloria J. Wienke, Information Management Office, USACERL. COL...of a DIS cooling system for Building 506, a barracks/ office/dining facility. Oak Ridge National Laboratory ( ORNL ) designed the system in cooperation... ORNL with assistance from YPG and analyzed by USACERL. R.J. Kedl and C.W. Sohn, As.vsment of Energy Storage Technologies for Army Facilities, Technical

  20. 56. Photocopy of Mechanical drawing, dated August 6, 1976 by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    56. Photocopy of Mechanical drawing, dated August 6, 1976 by Raytheon Company. Original drawing property of United States Air Force, 21" Space Command. H-12 - PAVE PAWS TECHNICAL FACILITY - OTIS AFB - EQUIPMENT ROOM PLANS. DRAWING NO. AW35-46-06 - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  1. 53. Photocopy of Structural drawing, dated August 6, 1976 by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Photocopy of Structural drawing, dated August 6, 1976 by Raytheon Company. Original drawing property of United States Air Force, 21" Space Command. S-4 - PAVE PAWS TECHNICAL FACILITY - OTIS AFB - FIRST FLOOR PLAN. DRAWING NO. AW35-46-06 - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  2. 55. Photocopy of Structural drawing, dated August 6, 1976 by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    55. Photocopy of Structural drawing, dated August 6, 1976 by Raytheon Company. Original drawing property of United States Air Force, 21" Space Command. S-15 - PAVE PAWS TECHNICAL FACILITY - OTIS AFB - UTILITY BUILDING. DRAWING NO. AW35-46-06 - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. 54. Photocopy of Structural drawing, dated August 6, 1976 by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. Photocopy of Structural drawing, dated August 6, 1976 by Raytheon Company. Original drawing property of United States Air Force, 21" Space Command. S-14 - PAVE PAWS TECHNICAL FACILITY - OTIS AFB - ARRAY DETAILS. DRAWING NO. AW35-46-06 - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  4. Boiling eXperiment Facility (BXF) Fluid Toxicity Technical Interchange Meeting (TIM) with the Payload Safety Review Panel (PSRP)

    NASA Technical Reports Server (NTRS)

    Sheredy, William A.

    2012-01-01

    A Technical Interchange meeting was held between the payload developers for the Boiling eXperiment Facility (BXF) and the NASA Safety Review Panel concerning operational anomaly that resulted in overheating one of the fluid heaters, shorted a 24VDC power supply and generated Perfluoroisobutylene (PFiB) from Perfluorohexane.

  5. MECHANIZATION STUDY OF THE TECHNICAL LIBRARY U.S. NAVAL AVIONICS FACILITY, INDIANAPOLIS, INDIANA.

    ERIC Educational Resources Information Center

    KERSHAW, G.A.; AND OTHERS

    THE NAVAL AVIONICS FACILITY, INDIANAPOLIS (NAFI) TECHNICAL LIBRARY IS PLANNING A MECHANIZED SYSTEM TO PRODUCE A PERMUTED INDEX OF PERTINENT PERIODICAL REFERENCES AND PROCEEDINGS, WITH BOOKS AND DOCUMENTS TO BE ADDED LATER. INPUT TO THE SYSTEM IS PUNCHED PAPER TAPE PREPARED FROM THE SOURCE MATERIAL, AND THE PRIMARY PROGRAM IS A "CANNED"…

  6. Technical viability and development needs for waste forms and facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegg, I.; Gould, T.

    1996-05-01

    The objective of this breakout session was to provide a forum to discuss technical issues relating to plutonium-bearing waste forms and their disposal facilities. Specific topics for discussion included the technical viability and development needs associated with the waste forms and/or disposal facilities. The expected end result of the session was an in-depth (so far as the limited time would allow) discussion of key issues by the session participants. The session chairs expressed allowance for, and encouragement of, alternative points of view, as well as encouragement for discussion of any relevant topics not addressed in the paper presentations. It wasmore » not the intent of this session to recommend or advocate any one technology over another.« less

  7. Brownfield to Brightfield Initiative in Oak Ridge, TN - 12346

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hough, Gil; Fairless, Chad

    Experience characterizing, permitting, and restoring 'Brownfield' sites-government or industrial sites with restricted future use due to the presence or potential presence of hazardous substances, pollutants, or contaminants-is being leveraged to identify opportunities for redevelopment into solar power generating facilities which, in this context, are called 'Brightfields'. Brownfield sites offer the expansive land necessary for large photovoltaic (PV) solar farms, but require an in-depth working knowledge of complicated regulatory restrictions and environmental constraints to develop them. As a part of the effort to identify opportunities for redevelopment of Brownfield sites for solar applications, a technical guide, was composed specifically for themore » development of solar generation on restricted use sites. The basis of the technical guide gives specific consideration to environmental requirements and installation methods breaking that into three areas for assessing: 1) levels of contamination, 2) ground penetration requirements, and 3) the requirements for aesthetics and maintenance. Brightfield projects are underway to support the technical guide and expand re-industrialization efforts for the former DOE Gaseous Diffusion Plant in Oak Ridge, TN. There are exciting opportunities to turn Brownfields into Brightfield solar energy solutions for meeting the future renewable energy needs of our country. Brownfields that offer the large surface area required for solar PV farms coupled with the technical guide for the installation of solar farms on restricted use sites supports efforts to develop the solar capacities and expertise to tap this future market. The initial projects designed following the technical guide will provide verification of the installation requirements and beneficial reuse of restricted use sites. (authors)« less

  8. Career-Technical Education--The Immediate Need for Work-Based Curriculum.

    ERIC Educational Resources Information Center

    Nee, John G.

    1994-01-01

    Career-technical education may be informal on-the-job training, organized workplace education, community college or technical institute programs, or apprenticeships, internships, and cooperative agreements. Another alternative is polytechnical education: providing technical and general studies for adults in existing school facilities after school…

  9. NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community

    NASA Astrophysics Data System (ADS)

    Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.

    2017-12-01

    The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.

  10. Using the Global Environment Facility for developing Integrated Conservation and Development (ICAD) models -- Papua New Guinea`s Biodiversity Conservation Management Programme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kula, G.; Jefferies, B.

    1995-03-01

    The unprecedented level of support that has been pledged to strengthen Government of Papua New Guinea (GoPNG) biodiversity conservation initiatives has re-identified an important fact that technical and infrastructure support must be complemented by programs that provide realistic opportunities for developing national capacity. Indications are that the next five years will present a range of challenging opportunities for the department to move from the intensive period of planning, which has been the focus of attention during the first phase of the National Forestry and Conservation Action Programme (NFCAP), into a sustained period of policy and project application. This paper examinesmore » processes under which strengthening programs contribute to national development objectives and complement accomplishment of the Department of Environment and Conservation Strategic Plan. An overview of the Global Environment Facility-Integrated Conservation and Development (ICAD) Project and coordination effort that are being made for biodiversity conservation projects in Papua New Guinea, are addressed.« less

  11. 10 day flight performance of the plant generic bioprocessing apparatus (PGBA) plant growth facility aboard STS-77

    NASA Astrophysics Data System (ADS)

    Hoehn, Alex; Chamberlain, Dale J.; Forsyth, Sasha W.; Hanna, David S.; Scovazzo, Paul; Horner, Michael B.; Stodieck, Louis S.; Todd, Paul; Heyenga, A. Gerard; Kliss, Mark H.; Bula, Raymond; Yetka, Robert

    1997-01-01

    PGBA, a plant growth facility developed for space flight biotechnology research, successfully grew a total of 30 plants in a closed, multi-crop chamber for 10 days aboard the Space Shuttle Endeavor (STS-77). Artemisia annua, Catharanthus roseus, Pinus taeda, Spinacia oleracea and Trifolium repens were the five species studied during this mission. The primary mission objectives were to study the effects of microgravity for commercial and pharmaceutical production purposes. PGBA is a payload that represents a consortium of interests including BioServe Space Technologies (payload sponsor), NASA Ames Research Center (Controlled Ecological Life Support System, CELSS, Flight Program), Wisconsin Center for Space Automation and Robotics (WCSAR), and industrial affiliates (spaceflight effects on plants and formation of plant products such as pharmaceuticals). Although BioServe is responsible for the flight hardware development and integration of PGBA, NASA Ames, WSCAR and industrial affiliates provide significant hardware subsystems and technical biological expertise support.

  12. Gas-Grain Simulation Facility (GGSF). Volume 1: Stage 1 facility definition studies

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    1993-01-01

    The Gas-Grain Simulation Facility (GGSF) is a facility-type payload to be included in the Space Station Freedom (SSF). The GGSF is a multidisciplinary facility that will accommodate several classes of experiments, including exobiology, planetary science, atmospheric science, and astrophysics. The physical mechanisms envisioned to be investigated include crystal growth, aggregation, nucleation, coagulation, condensation, collisions, fractal growth, cycles of freezing and evaporation, scavenging, longevity of bacteria, and more. TRW performed a Phase A study that included analyses of the science and technical (S&T) requirements, the development of facility functional requirements, and a conceptual design of the facility. The work that was performed under Stage 1 of the Phase A study and the results to date are summarized. In this stage, facility definition studies were conducted in sufficient detail to establish the technical feasibility of the candidate strawman experiments. The studies identified technical difficulties, identified required facility subsystems, surveyed existing technology studies and established preliminary facility weight, volume, power consumption, data systems, interface definition, and crew time requirements. The results of this study served as the basis for Stage 2 of the Phase A study in which a conceptual design and a reference design were performed. The results also served as a basis for a related study for a Gas-Grain Simulation Experiment Module (GGSEM), which is an apparatus intended to perform a subset of the GGSF experiments on board a low-Earth-orbiting platform.

  13. Turnaround operations analysis for OTV. Volume 2: Detailed technical report

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The objectives and accomplishments were to adapt and apply the newly created database of Shuttle/Centaur ground operations. Previously defined turnaround operations analyses were to be updated for ground-based OTVs (GBOTVs) and space-based OTVs (SBOTVs), design requirements identified for both OTV and Space Station accommodations hardware, turnaround operations costs estimated, and a technology development plan generated to develop the required capabilities. Technical and programmatic data were provided for NASA pertinent to OTV round and space operations requirements, turnaround operations, task descriptions, timelines and manpower requirements, OTV modular design and booster and Space Station interface requirements. SBOTV accommodations development schedule, cost and turnaround operations requirements, and a technology development plan for ground and space operations and space-based accommodations facilities and support equipment. Significant conclusion are discussed.

  14. 6 CFR 27.120 - Designation of a coordinating official; Consultations and technical assistance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... covered facility shall submit a written request for consultation or technical assistance to the...; Consultations and technical assistance. 27.120 Section 27.120 Domestic Security DEPARTMENT OF HOMELAND SECURITY... coordinating official; Consultations and technical assistance. (a) The Assistant Secretary will designate a...

  15. ASEAN GMP and pharmaceutical industries in Indonesia.

    PubMed

    Soesilo, S; Sitorus, U

    1995-01-01

    Indonesia was appointed by the ASEAN Technical Cooperation in Pharmaceutical as a focal point and to coordinate the development of practical guidelines for the implementation of GMP. The ASEAN GMP Guidelines were endorsed by the ASEAN Technical Cooperation in Pharmaceutical in 1988, which among others required separation of Beta-Lactam dedicated facilities and three degrees of cleanliness for production areas. As it was realised that drug manufacturers in developing countries need more detailed guidelines to be able to implement the GMP, an Operational Manual for GMP was also prepared for providing examples of SOPs lay-outs, documentation etc. It was agreed by the technical cooperation group to leave the implementation of GMP to each member country. However, the ASEAN Manual for Inspection of GMP was drafted and endorsed by the group and training of ASEAN Drug Inspectors was organized to support the implementation. The ASEAN GMP is being implemented in Indonesia through a five-year, stepwise implementation plan, starting in 1989.

  16. Evaluation of the utility and energy monitoring and control system installed at the US Army, Europe, 409th Base Support Battalion, Military Community at Grafenwoehr, Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broders, M.A.; Ruppel, F.R.

    1993-05-01

    Under the provisions of Interagency Agreement DOE 1938-B090-A1 between the US Department of Energy (DOE) and the US Army Europe (USAREUR), Martin Marietta Energy Systems, Inc., is providing technical assistance to USAREUR in the areas of computer science, information engineering, energy studies, and engineering and systems development. One of the initial projects authorized under this interagency agreement is the evaluation of utility and energy monitoring and control systems (UEMCSs) installed at selected US Army installations in Europe. This report is an evaluation of the overall energy-conservation effectiveness and use of the UEMCS at the 409th Base Support Battalion located inmore » Grafenwoehr, Germany. The 409th Base Support Battalion is a large USAREUR military training facility that comprises a large training area, leased housing, the main post area, and the camp areas that include Camps Aachen, Algier, Normandy, Cheb, and Kasserine. All of these facilities are consumers of electrical and thermal energy. However, only buildings and facilities in the main post area and Camps Aachen, Algier, and Normandy are under the control of the UEMCS. The focus of this evaluation report is on these specific areas. Recommendations to further increase energy and cost savings and to improve operation of the UEMCS are proposed.« less

  17. Advanced High-Level Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations formore » both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying advanced glass formulations will reduce the cost of Hanford tank waste management by reducing the schedule for tank waste treatment and reducing the amount of HLW glass for storage, transportation, and disposal. Additional benefits will be realized if advanced glasses are developed that demonstrate more tolerance for key components in the waste (such as Al 2O 3, Cr 2O 3, SO 3 and Na 2O) above the currently defined WTP constraints. Tolerating these higher concentrations of key waste loading limiters may reduce the burden on (or even eliminate the need for) leaching to remove Cr and Al and washing to remove excess S and Na from the HLW fraction. Advanced glass formulations may also make direct vitrification of the HLW fraction without significant pretreatment more cost effective. Finally, the advanced glass formulation efforts seek not only to increase waste loading in glass, but also to increase glass production rate. When coupled with higher waste loading, ensuring that all of the advanced glass formulations are processable at or above the current contract processing rate leads to significant improvements in waste throughput (the amount of waste being processed per unit time),which could significantly reduce the overall WTP mission life. The integration of increased waste loading, reduced leaching/washing requirements, and improved melting rates provides a system-wide approach to improve the effectiveness of the WTP process.« less

  18. Control technology appendices for pollution control technical manuals. Final report, June 1982-February 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-04-01

    The document is one of six technical handbooks prepared by EPA to help government officials granting permits to build synfuels facilities, synfuels process developers, and other interested parties. They provide technical data on waste streams from synfuels facilities and technologies capable of controlling them. Process technologies covered in the manuals include coal gasification, coal liquefaction by direct and idirect processing, and the extraction of oil from shale. The manuals offer no regulatory guidance, allowing the industry flexibility in deciding how best to comply with environmental regulations.

  19. Environmental Radiation Monitoring at the Areas of the Former Military Technical Bases at the Russian Far East - 12445

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiselev, Sergey M.; Shandala, Nataliya K.; Titov, Alexey V.

    After termination of operation at the serviced facilities of the nuclear fleet of the former Soviet Union, the Military Technical Base in Sysoeva Bay has been reorganized to the site for SNF and RW temporary storage (STS). The main activities of STS are receipt, storage and transmission to radioactive waste reprocessing. Establishment of the RW management regional centre in the Far-Eastern region at the STS in Sysoeva Bay implies intensification of SNF and RW management in this region that can result in increasing ecological load to the adjacent areas and settlements. Regulatory supervision of the radiation safety at the areasmore » of the Former Military Technical Bases at the Russian Far East is one of the regulatory functions of the Federal Medical Biological Agency (FMBA of Russia). To regulate SNF an RW management and provide the effective response to changing radiation situation, the environmental radiation monitoring system is arranged. For this purpose, wide range of environmental media examinations at the Sysoeva Bay STS was performed by Burnasyan Federal Medical Biophysical Centre - a technical support organization of FMBA of Russia in collaboration with the Federal State Geological Enterprise 'Hydrospecgeology' (Federal Agency for Entrails). Regulation during the RW and SNF management is continuous process, which the FMBA of Russia implements in close cooperation with other Russian responsible authorities - the State Atomic Energy Corporation 'Rosatom' and Federal Agency for Entrails. The Environmental radiation monitoring findings served as a basis for the associated databank arrangement. The radio ecological monitoring system was arranged at the facilities under inspection for the purpose of the dynamic control of the radiation situation. It presupposes regular radiometry inspections in-situ, their analysis and assessment of the radiation situation forecast in the course of the STS remediation main stages. Some new data on the radiation situation at the facilities will appear in future and the prognostic assessment will become more precise. The mentioned natural, practical and theoretical works is a base for the development of the set of regulatory documents to assure radiation protection and safety of workers, public and environment, as well as development of documents to regulate SNF and RW management at the STS facilities. (authors)« less

  20. Supporting the learner and teacher online.

    PubMed

    Reynolds, P A; Eaton, K A; Mason, R

    2008-06-14

    Whether on or off campus, all students need support if they are to successfully complete their studies. Although 'good teachers' should be 'good teachers' in any medium, their support is especially important when technology is involved. Previous articles in the series have shown that the advent of ICT has added to the complexity of the type and provision of this help and advice, not least because it now involves technical as well as pedagogical and pastoral elements. However, rather than being a problem, ICT, particularly through its online facilities, can provide levels of support over and above those required by traditional face-to-face teaching. This has implications for tutors as well as students as it places greater pressure on their time and requires them to have a new skills-set, a situation that needs to be resolved if the full benefits of online support are to be realised.

  1. 32 CFR 203.10 - Eligible activities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) MISCELLANEOUS TECHNICAL ASSISTANCE FOR PUBLIC PARTICIPATION (TAPP) IN DEFENSE ENVIRONMENTAL RESTORATION... at the facility do not have the necessary technical expertise for the proposed project, or the proposed technical assistance will contribute to the efficiency, effectiveness, or timeliness of...

  2. 50. Photocopy of Architectural drawing, dated August 6, 1976 by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Photocopy of Architectural drawing, dated August 6, 1976 by Raytheon Company. Original drawing property of United States Air Force, 21" Space Command. A-5 - PAVE PAWS TECHNICAL FACILITY - OTIS AFB - FOURTH FLOOR AND PLATFORM 4A. DRAWING NO. AW35-46-06 - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. 52. Photocopy of Architectural drawing, dated August 6, 1976 by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Photocopy of Architectural drawing, dated August 6, 1976 by Raytheon Company. Original drawing property of United States Air Force, 21' Space Command. A-10 - PAVE PAWS TECHNICAL FACILITY - OTIS AFB - ELEVATION A, B AND C. DRAWING NO. AW35-46-06 - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  4. 51. Photocopy of Architectural drawing, dated August 6, 1976 by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Photocopy of Architectural drawing, dated August 6, 1976 by Raytheon Company. Original drawing property of United States Air Force, 21" Space Command. A-6 - PAVE PAWS TECHNICAL FACILITY - OTIS AFB - FIFTH FLOOR AND PLATFORM 5A. DRAWING NO. AW35-46-06 - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  5. 49. Photocopy of Architectural drawing, dated August 6, 1976 by ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Photocopy of Architectural drawing, dated August 6, 1976 by Raytheon Company. Original drawing property of United States Air Force, 21" Space Command. A-4 - PAVE PAWS TECHNICAL FACILITY - OTIS AFB - THIRD FLOOR AND PLATFORM 3A. DRAWING NO. AW35-46-06 - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  6. Energy Systems Integration News | Energy Systems Integration Facility |

    Science.gov Websites

    facility. "We try to scope out some technical work that is based on the fundamental problem that technical or market problem that they're trying to solve, and then we'll scope out work with them based on that visit. "The second step is to begin to break that scope of work into what I call three

  7. 117. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    117. Back side technical facilities S.R. radar transmitter & computer building no. 102, "building sections - sheet I" - architectural, AS-BLT AW 35-46-04, sheet 12, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  8. 122. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    122. Back side technical facilities S.R. radar transmitter & computer building no. 102, section II "elevations & details" - structural, AS-BLT AW 35-46-04, sheet 73, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  9. 118. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    118. Back side technical facilities S.R. radar transmitter & computer building no. 102, "building sections - sheet I" - architectural, AS-BLT AW 35-46-04, sheet 13, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. 121. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    121. Back side technical facilities S.R. radar transmitter & computer building no. 102, section II "sections & elevations" - structural, AS-BLT AW 35-46-04, sheet 72, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  11. KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

    NASA Image and Video Library

    2004-02-03

    KENNEDY SPACE CENTER, FLA. - Astronaut Tim Kopra (second from right) talks with workers in the Space Station Processing Facility about the Intravehicular Activity (IVA) constraints testing on the Italian-built Node 2, a future element of the International Space Station. . The second of three Station connecting modules, the Node 2 attaches to the end of the U.S. Lab and provides attach locations for several other elements. Kopra is currently assigned technical duties in the Space Station Branch of the Astronaut Office, where his primary focus involves the testing of crew interfaces for two future ISS modules as well as the implementation of support computers and operational Local Area Network on ISS. Node 2 is scheduled to launch on mission STS-120, Station assembly flight 10A.

  12. NREL Partners with Technical University of Denmark on Renewable Energy

    Science.gov Websites

    System | Energy Systems Integration Facility | NREL Technical University of Denmark NREL Partners with Technical University of Denmark on Renewable Energy System NREL is working in partnership with the Technical University of Denmark for the Centre for IT-Intelligent Energy Systems in Cities

  13. 44 CFR 352.24 - Provision of technical assistance and Federal facilities and resources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Provision of technical... PLANTS: EMERGENCY PREPAREDNESS PLANNING Federal Participation § 352.24 Provision of technical assistance... technical assistance to the licensee. Such assistance may be provided during the pendency of an appeal under...

  14. 9 CFR 351.11 - Identification and separation of technical animal fats for certification and materials for use...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... technical animal fats for certification and materials for use therein; removal of wrappers, etc.; cleaning... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.11 Identification and separation of technical animal fats for certification...

  15. 9 CFR 351.11 - Identification and separation of technical animal fats for certification and materials for use...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... technical animal fats for certification and materials for use therein; removal of wrappers, etc.; cleaning... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.11 Identification and separation of technical animal fats for certification...

  16. 9 CFR 351.11 - Identification and separation of technical animal fats for certification and materials for use...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... technical animal fats for certification and materials for use therein; removal of wrappers, etc.; cleaning... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.11 Identification and separation of technical animal fats for certification...

  17. 9 CFR 351.11 - Identification and separation of technical animal fats for certification and materials for use...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... technical animal fats for certification and materials for use therein; removal of wrappers, etc.; cleaning... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.11 Identification and separation of technical animal fats for certification...

  18. 9 CFR 351.11 - Identification and separation of technical animal fats for certification and materials for use...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... technical animal fats for certification and materials for use therein; removal of wrappers, etc.; cleaning... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT Facilities and Operations § 351.11 Identification and separation of technical animal fats for certification...

  19. Ames Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Phillips, Veronica J.

    2017-01-01

    The Ames Engineering Directorate is the principal engineering organization supporting aerospace systems and spaceflight projects at NASA's Ames Research Center in California's Silicon Valley. The Directorate supports all phases of engineering and project management for flight and mission projects-from R&D to Close-out-by leveraging the capabilities of multiple divisions and facilities.The Mission Design Center (MDC) has full end-to-end mission design capability with sophisticated analysis and simulation tools in a collaborative concurrent design environment. Services include concept maturity level (CML) maturation, spacecraft design and trades, scientific instruments selection, feasibility assessments, and proposal support and partnerships. The Engineering Systems Division provides robust project management support as well as systems engineering, mechanical and electrical analysis and design, technical authority and project integration support to a variety of programs and projects across NASA centers. The Applied Manufacturing Division turns abstract ideas into tangible hardware for aeronautics, spaceflight and science applications, specializing in fabrication methods and management of complex fabrication projects. The Engineering Evaluation Lab (EEL) provides full satellite or payload environmental testing services including vibration, temperature, humidity, immersion, pressure/altitude, vacuum, high G centrifuge, shock impact testing and the Flight Processing Center (FPC), which includes cleanrooms, bonded stores and flight preparation resources. The Multi-Mission Operations Center (MMOC) is composed of the facilities, networks, IT equipment, software and support services needed by flight projects to effectively and efficiently perform all mission functions, including planning, scheduling, command, telemetry processing and science analysis.

  20. One of the criteria for selecting a contractor for high-rise construction

    NASA Astrophysics Data System (ADS)

    Tuskaeva, Zalina; Tagirov, Timur

    2018-03-01

    The mechanisms for management of the building complex used and proposed to date do not always provide the required result in the assessment of the construction organization facilities. Therefore, the development of new effective methods for such an assessment is an urgent task especially in questions related to high-rise construction. The article formally sets the task of assessing the technical facilities of a construction organization. Due to the use of expert methods, the weighted values of the coefficients of local indicators for technical facilities are identified

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This report is concerned with the nature and scope of the technical services to be rendered and the general plan proposed for operation of Building 3525, High Radiation Level Examination Laboratory (HRLEL). The role of postirradiation examination in implementing the over- all task of irradiation testing for various programs under way at the Oak Ridge National Laboratory (ORNL) and the importance of this effort to the United Stat es reactor development program are stressed . The shielded-cell complex with provisions for remote decontamination, hot-equipment storage, and maintenance is described, as well as other supporting activities which are incorporated into themore » facility. The proposed technical functions include general observation, mensuration, nondestructive testing, burnup and induced-activity measurements, fission-gas sampling and analysis, corrosion evaluation and related measurements, disassembly and cutup, metallographic examination, mechanical-property determinations , and x -ray diffraction analyses. Equipment design and operational features to improve detection and measurement of selected properties in radioactive material s are described, also. The current status on design, procurement, construction, and preoperational testing of in- cell equipment in the mockup is presented along with a forecast of future needs. The mode of operation, manpower requirements, and management of the facility are discussed.« less

  2. Advanced light microscopy core facilities: Balancing service, science and career

    PubMed Central

    Hartmann, Hella; Reymann, Jürgen; Ansari, Nariman; Utz, Nadine; Fried, Hans‐Ulrich; Kukat, Christian; Peychl, Jan; Liebig, Christian; Terjung, Stefan; Laketa, Vibor; Sporbert, Anje; Weidtkamp‐Peters, Stefanie; Schauss, Astrid; Zuschratter, Werner; Avilov, Sergiy

    2016-01-01

    ABSTRACT Core Facilities (CF) for advanced light microscopy (ALM) have become indispensable support units for research in the life sciences. Their organizational structure and technical characteristics are quite diverse, although the tasks they pursue and the services they offer are similar. Therefore, throughout Europe, scientists from ALM‐CFs are forming networks to promote interactions and discuss best practice models. Here, we present recommendations for ALM‐CF operations elaborated by the workgroups of the German network of ALM‐CFs, German Bio‐Imaging (GerBI). We address technical aspects of CF planning and instrument maintainance, give advice on the organization and management of an ALM‐CF, propose a scheme for the training of CF users, and provide an overview of current resources for image processing and analysis. Further, we elaborate on the new challenges and opportunities for professional development and careers created by CFs. While some information specifically refers to the German academic system, most of the content of this article is of general interest for CFs in the life sciences. Microsc. Res. Tech. 79:463–479, 2016. © 2016 THE AUTHORS MICROSCOPY RESEARCH AND TECHNIQUE PUBLISHED BY WILEY PERIODICALS, INC. PMID:27040755

  3. Advanced light microscopy core facilities: Balancing service, science and career.

    PubMed

    Ferrando-May, Elisa; Hartmann, Hella; Reymann, Jürgen; Ansari, Nariman; Utz, Nadine; Fried, Hans-Ulrich; Kukat, Christian; Peychl, Jan; Liebig, Christian; Terjung, Stefan; Laketa, Vibor; Sporbert, Anje; Weidtkamp-Peters, Stefanie; Schauss, Astrid; Zuschratter, Werner; Avilov, Sergiy

    2016-06-01

    Core Facilities (CF) for advanced light microscopy (ALM) have become indispensable support units for research in the life sciences. Their organizational structure and technical characteristics are quite diverse, although the tasks they pursue and the services they offer are similar. Therefore, throughout Europe, scientists from ALM-CFs are forming networks to promote interactions and discuss best practice models. Here, we present recommendations for ALM-CF operations elaborated by the workgroups of the German network of ALM-CFs, German Bio-Imaging (GerBI). We address technical aspects of CF planning and instrument maintainance, give advice on the organization and management of an ALM-CF, propose a scheme for the training of CF users, and provide an overview of current resources for image processing and analysis. Further, we elaborate on the new challenges and opportunities for professional development and careers created by CFs. While some information specifically refers to the German academic system, most of the content of this article is of general interest for CFs in the life sciences. Microsc. Res. Tech. 79:463-479, 2016. © 2016 THE AUTHORS MICROSCOPY RESEARCH AND TECHNIQUE PUBLISHED BY WILEY PERIODICALS, INC. © 2016 The Authors Microscopy Research and Technique Published by Wiley Periodicals, Inc.

  4. Does service integration improve technical quality of care in low-resource settings? An evaluation of a model integrating HIV care into family planning services in Kenya

    PubMed Central

    Mutemwa, Richard; Mayhew, Susannah H; Warren, Charlotte E; Abuya, Timothy; Ndwiga, Charity; Kivunaga, Jackline

    2017-01-01

    Abstract The aim of this study was to investigate association between HIV and family planning integration and technical quality of care. The study focused on technical quality of client–provider consultation sessions. The cross-sectional study observed 366 client–provider consultation sessions and interviewed 37 health care providers in 12 public health facilities in Kenya. Multilevel random intercept and linear regression models were fitted to the matched data to investigate relationships between service integration and technical quality of care as well as associations between facility-level structural and provider factors and technical quality of care. A sensitivity analysis was performed to test for hidden bias. After adjusting for facility-level structural factors, HIV/family planning integration was found to have significant positive effect on technical quality of the consultation session, with average treatment effect 0.44 (95% CI: 0.63–0.82). Three of the 12 structural factors were significantly positively associated with technical quality of consultation session including: availability of family planning commodities (9.64; 95% CI: 5.07–14.21), adequate infrastructure (5.29; 95% CI: 2.89–7.69) and reagents (1.48; 95% CI: 1.02–1.93). Three of the nine provider factors were significantly positively associated with technical quality of consultation session: appropriate provider clinical knowledge (3.14; 95% CI: 1.92–4.36), job satisfaction (2.02; 95% CI: 1.21–2.83) and supervision (1.01; 95% CI: 0.35–1.68), while workload (−0.88; 95% CI: −1.75 to − 0.01) was negatively associated. Technical quality of the client–provider consultation session was also determined by duration of the consultation and type of clinic visit and appeared to depend on whether the clinic visit occurred early or later in the week. Integration of HIV care into family planning services can improve the technical quality of client–provider consultation sessions as measured by both health facility structural and provider factors. PMID:29194543

  5. Does service integration improve technical quality of care in low-resource settings? An evaluation of a model integrating HIV care into family planning services in Kenya.

    PubMed

    Mutemwa, Richard; Mayhew, Susannah H; Warren, Charlotte E; Abuya, Timothy; Ndwiga, Charity; Kivunaga, Jackline

    2017-11-01

    The aim of this study was to investigate association between HIV and family planning integration and technical quality of care. The study focused on technical quality of client-provider consultation sessions. The cross-sectional study observed 366 client-provider consultation sessions and interviewed 37 health care providers in 12 public health facilities in Kenya. Multilevel random intercept and linear regression models were fitted to the matched data to investigate relationships between service integration and technical quality of care as well as associations between facility-level structural and provider factors and technical quality of care. A sensitivity analysis was performed to test for hidden bias. After adjusting for facility-level structural factors, HIV/family planning integration was found to have significant positive effect on technical quality of the consultation session, with average treatment effect 0.44 (95% CI: 0.63-0.82). Three of the 12 structural factors were significantly positively associated with technical quality of consultation session including: availability of family planning commodities (9.64; 95% CI: 5.07-14.21), adequate infrastructure (5.29; 95% CI: 2.89-7.69) and reagents (1.48; 95% CI: 1.02-1.93). Three of the nine provider factors were significantly positively associated with technical quality of consultation session: appropriate provider clinical knowledge (3.14; 95% CI: 1.92-4.36), job satisfaction (2.02; 95% CI: 1.21-2.83) and supervision (1.01; 95% CI: 0.35-1.68), while workload (-0.88; 95% CI: -1.75 to - 0.01) was negatively associated. Technical quality of the client-provider consultation session was also determined by duration of the consultation and type of clinic visit and appeared to depend on whether the clinic visit occurred early or later in the week. Integration of HIV care into family planning services can improve the technical quality of client-provider consultation sessions as measured by both health facility structural and provider factors. © The Author 2017. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine.

  6. Development and application of dynamic simulations of a subsonic wind tunnel

    NASA Technical Reports Server (NTRS)

    Szuch, J. R.; Cole, G. L.; Seidel, R. C.; Arpasi, D. J.

    1986-01-01

    Efforts are currently underway at NASA Lewis to improve and expand ground test facilities and to develop supporting technologies to meet anticipated aeropropulsion research needs. Many of these efforts have been focused on a proposed rehabilitation of the Altitude Wind Tunnel (AWT). In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide input to the AWT final design process. This paper describes the approach taken to develop analytical, dynamic computer simulations of the AWT, and the use of these simulations as test-beds for: (1) predicting the dynamic response characteristics of the AWT, and (2) evaluating proposed AWT control concepts. Plans for developing a portable, real-time simulator for the AWT facility are also described.

  7. Atmospheric numerical modeling resource enhancement and model convective parameterization/scale interaction studies

    NASA Technical Reports Server (NTRS)

    Cushman, Paula P.

    1993-01-01

    Research will be undertaken in this contract in the area of Modeling Resource and Facilities Enhancement to include computer, technical and educational support to NASA investigators to facilitate model implementation, execution and analysis of output; to provide facilities linking USRA and the NASA/EADS Computer System as well as resident work stations in ESAD; and to provide a centralized location for documentation, archival and dissemination of modeling information pertaining to NASA's program. Additional research will be undertaken in the area of Numerical Model Scale Interaction/Convective Parameterization Studies to include implementation of the comparison of cloud and rain systems and convective-scale processes between the model simulations and what was observed; and to incorporate the findings of these and related research findings in at least two refereed journal articles.

  8. Some possibilities of a closure degree increase and matter turnover intensification in the bioregenerative life support system BIOS-3

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Ushakova, S. A.; Velichko, V. V.; Degermendzhy, Á. G.; Lasseur, Ch.; Lamaze, B.

    The problems of scientific-technical substantiation of perspective joint IBP-ESA works on imitation of functioning of stationary bioregenerative life support systems BLSS on Moon and or Mars are discussed With this purpose the possibilities of matter turnover intensification and closure degree increase which can be achieved after modernization of the BIOS-3 BLSS designed and constructed at Institute of Biophysics Siberian Branch of Russian Academy of Sciences IBP SB RAS Russia are considered These works are performed in the frame of INTAS IA project under the joint SB RAS-ESA financial support Specifically at the expense of intensity increase of photosynthetic active radiation from 150 to 250 Wt m 2 the productivity of photosynthesizing unit on oxygen and biomass is supposed to increase on 50 on average The given substantiation is based upon analysis of carried out preliminary experiments in a laboratory environment and in the BIOS-3 facility and also on series of experiments carried out at present time The results of technical reconstruction of lighting and thermoregulation systems demonstrating practical possibility of these plans implementation are produced On the grounds of mass exchange processes intensification the problems of a crew supply with vegetarian food and oxygen under a smaller photosynthesizing unit size are considered Some possibilities of the humans wastes utilization under combination of physicochemical and biological methods and necessary technical decisions allowing closure increase of matter turnover are

  9. Engaging the Geodetic and Geoscience Communities in EarthScope Education and Outreach

    NASA Astrophysics Data System (ADS)

    Charlevoix, D. J.; Berg, M.; Morris, A. R.; Olds, S. E.

    2013-12-01

    UNAVCO is NSF's geodetic facility and operates as a university-governed consortium dedicated to facilitating geoscience research and education, including the support of EarthScope. The Education and Community Engagement program at UNAVCO provides support for broader impacts both externally to the broader University and EarthScope community as well as internally to the UNAVCO. During the first 10 years of EarthScope UNAVCO has engaged in outreach and education activities across the EarthScope footprint ranging from outreach to formal and informal educators and interpreters, to technical training for university faculty and researchers. UNAVCO works jointly with the EarthScope National Office and IRIS while simultaneously maintaining and developing an independent engagement and education program. UNAVCO provides training in the form of technical short courses to researchers including graduate students and early-career professionals, and conducts educational workshops for K-12 educators. A suite of educational materials focused on the integration of EarthScope data into curriculum materials is available from UNAVCO and will soon expand the undergraduate offerings to include a broader suite of geodesy applications activities for undergraduate students. UNAVCO provides outreach materials and in support of EarthScope including summaries of research project and campaign highlights, science snapshots featuring summaries of scientific advancements made possible by UNAVCO services and non-technical communications via social media. UNAVCO also provides undergraduate students exposure to EarthScope science research participation in a year-long research internship managed by UNAVCO (Research Experiences in Solid Earth Science for Students - RESESS).

  10. Making geoscience education accessible for students who are blind and visually impaired

    NASA Astrophysics Data System (ADS)

    Charlevoix, D. J.; Berg, M.; Morris, A. R.; Olds, S. E.

    2011-12-01

    UNAVCO is NSF's geodetic facility and operates as a university-governed consortium dedicated to facilitating geoscience research and education, including the support of EarthScope. The Education and Community Engagement program at UNAVCO provides support for broader impacts both externally to the broader University and EarthScope community as well as internally to the UNAVCO. During the first 10 years of EarthScope UNAVCO has engaged in outreach and education activities across the EarthScope footprint ranging from outreach to formal and informal educators and interpreters, to technical training for university faculty and researchers. UNAVCO works jointly with the EarthScope National Office and IRIS while simultaneously maintaining and developing an independent engagement and education program. UNAVCO provides training in the form of technical short courses to researchers including graduate students and early-career professionals, and conducts educational workshops for K-12 educators. A suite of educational materials focused on the integration of EarthScope data into curriculum materials is available from UNAVCO and will soon expand the undergraduate offerings to include a broader suite of geodesy applications activities for undergraduate students. UNAVCO provides outreach materials and in support of EarthScope including summaries of research project and campaign highlights, science snapshots featuring summaries of scientific advancements made possible by UNAVCO services and non-technical communications via social media. UNAVCO also provides undergraduate students exposure to EarthScope science research participation in a year-long research internship managed by UNAVCO (Research Experiences in Solid Earth Science for Students - RESESS).

  11. Technical Insights for Saltstone PA Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G.; Sarkar, S.; Mahadevan, S.

    2011-07-20

    The Cementitious Barriers Partnership (CBP) is a collaborative program sponsored by the US DOE Office of Waste Processing. The objective of the CBP is to develop a set of computational tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers and waste forms used in nuclear applications. CBP tools are expected to better characterize and reduce the uncertainties of current methodologies for assessing cementitious barrier performance and increase the consistency and transparency of the assessment process, as the five-year program progresses. In September 2009, entering its second year of funded effort, the CBPmore » sought opportunities to provide near-term tangible support to DOE Performance Assessments (PAs). The Savannah River Saltstone Disposal Facility (SDF) was selected for the initial PA support effort because (1) cementitious waste forms and barriers play a prominent role in the performance of the facility, (2) certain important long-term behaviors of cementitious materials composing the facility are uncertain, (3) review of the SDF PA by external stakeholders is ongoing, and (4) the DOE contractor responsible for the SDF PA is open to receiving technical assistance from the CBP. A review of the current (SRR Closure & Waste Disposal Authority 2009) and prior Saltstone PAs (e.g., Cook et al. 2005) suggested five potential opportunities for improving predictions. The candidate topics considered were (1) concrete degradation from external sulfate attack, (2) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, (3) mechanistic prediction of geochemical conditions, (4) concrete degradation from rebar corrosion due to carbonation, and (5) early age cracking from drying and/or thermal shrinkage. The candidate topics were down-selected considering the feasibility of addressing each issue within approximately six months, and compatibility with existing CBP expertise and already-planned activities. Based on these criteria, the five original topics were down-selected to two: external sulfate attack and mechanistic geochemical prediction. For each of the selected topics, the CBP communicated with the PA analysts and subject matter experts at Savannah River to acquire input data specific to the Saltstone facility and related laboratory experiments. Simulations and analyses were performed for both topics using STADIUM (SIMCO 2008), LeachXS/ORCHESTRA (ECN 2007, Meeussen 2003), and other software tools. These supplemental CBP analyses produced valuable technical insights that can be used to strengthen the Saltstone PA using the ongoing PA maintenance process. This report in part summarizes key information gleaned from more comprehensive documents prepared by Sarkar et al. (2010), Samson (2010), and Sarkar (2010).« less

  12. Technical basis, supporting information, and strategy for development and implementation of DOE policy for natural phenomena hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, R.C.

    1991-09-01

    Policy for addressing natural phenomenon comprises a hierarchy of interrelated documents. The top level of policy is contained in the code of Federal Regulations which establishes the framework and intent to ensure overall safety of DOE facilities when subjected to the effects of natural phenomena. The natural phenomena to be considered include earthquakes and tsunami, winds, hurricanes and tornadoes, floods, volcano effects and seiches. Natural phenomena criteria have been established for design of new facilities; evaluation of existing facilities; additions, modifications, and upgrades to existing facilities; and evaluation criteria for new or existing sites. Steps needed to implement these fourmore » general criteria are described. The intent of these criteria is to identify WHAT needs to be done to ensure adequate protection from natural phenomena. The commentary provides discussion of WHY this is needed for DOE facilities within the complex. Implementing procedures identifying HOW to carry out these criteria are next identified. Finally, short and long term tasks needed to identify the implementing procedure are tabulated. There is an overall need for consistency throughout the DOE complex related to natural phenomena including consistent terminology, policy, and implementation. 1 fig, 6 tabs.« less

  13. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  14. OPERATION OF A PUBLIC GEOLOGIC CORE AND SAMPLE REPOSITORY IN HOUSTION, TEXAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott W. Tinker; Beverly Blakeney DeJarnett

    2006-04-14

    The Bureau of Economic Geology's Houston Research Center (HRC) is well established as a premier regional research center for geologic research serving not only Houston, but geoscientists from around Texas, the US, and even the world. As reported in the 2004-2005 technical progress report to the DOE, the HRC provides a state-of-the-art core viewing facility, two fully equipped conference rooms, and a comprehensive technical library, all available for public use. In addition, the HRC currently now houses over 600,000 boxes of rock material, and has space to hold approximately 300,000 more boxes. Use of the facility has remained strong during this fourth year of operation; the number of patrons averaged nearly 150 per month from June 1, to 2005 May 31, 2006. This usage is a combination of individuals describing core, groups of geoscientists holding seminars and workshops, and various industry and government-funded groups holding short courses, workshops, and seminars. These numbers are in addition to the numerous daily requests from patrons desiring to have rock material shipped offsite to their own offices. The BEG/HRC secured several substantial donations of rock materials and cash totaling approximatelymore » $2.2 million during the 2005-2006 operating period. All of these funds went directly into an endowment that will, when complete, endow the HRC in perpetuity. Specific details regarding the funds in the endowment are addressed in a table later in this report. Outreach during 2005 and 2006 included many technical presentations and several publications on the HRC. Several field trips to the facility were held for geoscience professionals and grade school students alike. Goals for the upcoming year include securing donations of rock material and cash to approach full funding of the HRC endowment. Thanks to donations totaling $2.2 million from Shea Homes (heritage Unocal rock material), Chevron and others this operating year, the HRC endowment now totals $8,015,621. A major project underway for the HRC in FY2007 is improvement of the existing online core/log database into a Geoinformatics-compatible, GIS-driven online system. Usage of the HRC has gone up every year and is now very respectable. This year we will strive to raise awareness of the HRC's 100,000-volume geoscience technical library. Our original business model targeted $10 million in endowment; after several years of operation we realize we require an $11 million endowment. We are ''on plan'' and need only $$3 million to fully fund the endowment. To meet these goals in the 2006-2007 operating year will require DOE support for the fifth and final year. DOE support will allow for {approx}$$600k in endowment growth and save using the fund for operation; lack of support will result in a net negative spread of up to $1 million, and set the plan way back. We recognize that DOE budgets for oil and gas research, against best efforts, have been cut substantially this year. Any support available for HRC operation, during continuing resolution or otherwise, would have a very positive impact on this critical final year of the original business plan.« less

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    VANNONI, MICHAEL G.; BIRINGER, KENT L.; TROST, LAWRENCE C.

    Missiles are attractive weapon systems because of their flexibility, survivability, and relatively low cost. Consequently, many nations are seeking to build missile forces resulting in regional arms races. Missile forces can be both stabilizing (e.g., providing a survivable force for deterrence) and destabilizing (e.g., creating strategic asymmetries). Efforts to control missile proliferation must account for these effects. A number of strategies to control the destabilizing effects of missiles were developed during the Cold War. Some of these strategies are applicable to regional missile control but new approaches, tailored to regional geographic and security conditions, are needed. Regional missile nonproliferation canmore » be pursued in a variety of ways: Reducing the demand for missiles by decreasing the perception of national threats; Restricting the export of missiles and associated equipment by supplier countries; Restricting information describing missile technology; Limiting missile development activities such as flight or engine tests; Restricting the operational deployment of existing missile forces; and Reducing existing missile forces by number and/or type. Even when development is complete, limits on deployment within range of potential targets or limits on operational readiness can help stabilize potential missile confrontations. Implementing these strategies often involves the collection and exchange of information about activities related to missile development or deployment. Monitoring is the process of collecting information used to for subsequent verification of commitments. A systematic approach to implementing verification is presented that identifies areas where monitoring could support missile nonproliferation agreements. The paper presents both non-technical and technical techniques for monitoring. Examples of non-technical techniques are declarations about planned test launches or on-site inspections. Examples of technical monitoring include remote monitoring (i.e., a sensor that is physically present at a facility) and remote sensing (i.e., a sensor that records activity without being physically present at a facility).« less

  16. 48. Photocopy of Architectural Layout drawing, dated August 6, 1976 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Photocopy of Architectural Layout drawing, dated August 6, 1976 by Raytheon Company. Original drawing property of United States Air Force, 21" Space Command. AL-2 - PAVE PAWS TECHNICAL FACILITY - OTIS AFB - EQUIPMENT LAYOUT - SECOND FLOOR AND PLATFORM 2A. DRAWING NO. AW35-46-06 - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. 120. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    120. Back side technical facilities S.R. radar transmitter & computer building no. 102, section II "foundation & first floor plan" - structural, AS-BLT AW 35-46-04, sheet 65, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  18. 119. Back side technical facilities S.R. radar transmitter & computer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    119. Back side technical facilities S.R. radar transmitter & computer building no. 102, section I "tower plan, sections & details" - structural, AS-BLT AW 35-46-04, sheet 62, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. Nuclear Matters. A Practical Guide

    DTIC Science & Technology

    2008-01-01

    plutonium science and engineering. Figure 4.6 depicts LANL workers in Technical Area (TA)-55, the Los Alamos plutonium facility. LANL oversees...facility at Los Alamos to produce plutonium pits in a laboratory environment, with a capacity to produce a small number of pits per year . At that...Office of Secure Transportation (OST). Technical Advisors represent the following organizations: Los Alamos National Chair ATSD(NCB) Vice-Chair

  20. Comparison of Perceived and Technical Healthcare Quality in Primary Health Facilities: Implications for a Sustainable National Health Insurance Scheme in Ghana

    PubMed Central

    Alhassan, Robert Kaba; Duku, Stephen Opoku; Janssens, Wendy; Nketiah-Amponsah, Edward; Spieker, Nicole; van Ostenberg, Paul; Arhinful, Daniel Kojo; Pradhan, Menno; Rinke de Wit, Tobias F.

    2015-01-01

    Background Quality care in health facilities is critical for a sustainable health insurance system because of its influence on clients’ decisions to participate in health insurance and utilize health services. Exploration of the different dimensions of healthcare quality and their associations will help determine more effective quality improvement interventions and health insurance sustainability strategies, especially in resource constrained countries in Africa where universal access to good quality care remains a challenge. Purpose To examine the differences in perceptions of clients and health staff on quality healthcare and determine if these perceptions are associated with technical quality proxies in health facilities. Implications of the findings for a sustainable National Health Insurance Scheme (NHIS) in Ghana are also discussed. Methods This is a cross-sectional study in two southern regions in Ghana involving 64 primary health facilities: 1,903 households and 324 health staff. Data collection lasted from March to June, 2012. A Wilcoxon-Mann-Whitney test was performed to determine differences in client and health staff perceptions of quality healthcare. Spearman’s rank correlation test was used to ascertain associations between perceived and technical quality care proxies in health facilities, and ordered logistic regression employed to predict the determinants of client and staff-perceived quality healthcare. Results Negative association was found between technical quality and client-perceived quality care (coef. = -0.0991, p<0.0001). Significant staff-client perception differences were found in all healthcare quality proxies, suggesting some level of unbalanced commitment to quality improvement and potential information asymmetry between clients and service providers. Overall, the findings suggest that increased efforts towards technical quality care alone will not necessarily translate into better client-perceived quality care and willingness to utilize health services in NHIS-accredited health facilities. Conclusion There is the need to intensify client education and balanced commitment to technical and perceived quality improvement efforts. This will help enhance client confidence in Ghana’s healthcare system, stimulate active participation in the national health insurance, increase healthcare utilization and ultimately improve public health outcomes. PMID:26465935

  1. Comparison of Perceived and Technical Healthcare Quality in Primary Health Facilities: Implications for a Sustainable National Health Insurance Scheme in Ghana.

    PubMed

    Alhassan, Robert Kaba; Duku, Stephen Opoku; Janssens, Wendy; Nketiah-Amponsah, Edward; Spieker, Nicole; van Ostenberg, Paul; Arhinful, Daniel Kojo; Pradhan, Menno; Rinke de Wit, Tobias F

    2015-01-01

    Quality care in health facilities is critical for a sustainable health insurance system because of its influence on clients' decisions to participate in health insurance and utilize health services. Exploration of the different dimensions of healthcare quality and their associations will help determine more effective quality improvement interventions and health insurance sustainability strategies, especially in resource constrained countries in Africa where universal access to good quality care remains a challenge. To examine the differences in perceptions of clients and health staff on quality healthcare and determine if these perceptions are associated with technical quality proxies in health facilities. Implications of the findings for a sustainable National Health Insurance Scheme (NHIS) in Ghana are also discussed. This is a cross-sectional study in two southern regions in Ghana involving 64 primary health facilities: 1,903 households and 324 health staff. Data collection lasted from March to June, 2012. A Wilcoxon-Mann-Whitney test was performed to determine differences in client and health staff perceptions of quality healthcare. Spearman's rank correlation test was used to ascertain associations between perceived and technical quality care proxies in health facilities, and ordered logistic regression employed to predict the determinants of client and staff-perceived quality healthcare. Negative association was found between technical quality and client-perceived quality care (coef. = -0.0991, p<0.0001). Significant staff-client perception differences were found in all healthcare quality proxies, suggesting some level of unbalanced commitment to quality improvement and potential information asymmetry between clients and service providers. Overall, the findings suggest that increased efforts towards technical quality care alone will not necessarily translate into better client-perceived quality care and willingness to utilize health services in NHIS-accredited health facilities. There is the need to intensify client education and balanced commitment to technical and perceived quality improvement efforts. This will help enhance client confidence in Ghana's healthcare system, stimulate active participation in the national health insurance, increase healthcare utilization and ultimately improve public health outcomes.

  2. Upgrades and Enclosure of Building 15 at Technical Area 40: Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plimpton, Kathryn D; Garcia, Kari L. M; Brunette, Jeremy Christopher

    The U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office (Field Office) proposes to upgrade and enclose Building 15 at Technical Area (TA) 40, Los Alamos National Laboratory. Building TA-40-15, a Cold War-era firing site, was determined eligible for listing in the National Register of Historic Places (Register) in DX Division’s Facility Strategic Plan: Consolidation and Revitalization at Technical Areas 6, 8, 9, 14, 15, 22, 36, 39, 40, 60, and 69 (McGehee et al. 2005). Building TA-40-15 was constructed in 1950 to support detonator testing. The firing site will be enclosed by a steel building tomore » create a new indoor facility that will allow for year-round mission capability. Enclosing TA-40-15 will adversely affect the building by altering the characteristics that make it eligible for the Register. In compliance with Section 106 of the National Historic Preservation Act of 1966, as amended, the Field Office is initiating consultation for this proposed undertaking. The Field Office is also requesting concurrence with the use of standard practices to resolve adverse effects as defined in the Programmatic Agreement among the U.S. Department of Energy, National Nuclear Security Administration, Los Alamos Field Office, the New Mexico State Historic Preservation Office and the Advisory Council on Historic Preservation Concerning Management of the Historic Properties at Los Alamos National Laboratory, Los Alamos, New Mexico.« less

  3. First International Symposium on Strain Gauge Balances. Pt. 1

    NASA Technical Reports Server (NTRS)

    Tripp, John S. (Editor); Tcheng, Ping (Editor)

    1999-01-01

    The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.

  4. First International Symposium on Strain Gauge Balances. Part 2

    NASA Technical Reports Server (NTRS)

    Tripp, John S (Editor); Tcheng, Ping (Editor)

    1999-01-01

    The first International Symposium on Strain Gauge Balances was sponsored and held at NASA Langley Research Center during October 22-25, 1996. The symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. Over 130 delegates from 15 countries were in attendance. The program opened with a panel discussion, followed by technical paper sessions, and guided tours of the National Transonic Facility (NTF) wind tunnel, a local commercial balance fabrication facility, and the LaRC balance calibration laboratory. The opening panel discussion addressed "Future Trends in Balance Development and Applications." Forty-six technical papers were presented in 11 technical sessions covering the following areas: calibration, automatic calibration, data reduction, facility reports, design, accuracy and uncertainty analysis, strain gauges, instrumentation, balance design, thermal effects, finite element analysis, applications, and special balances. At the conclusion of the Symposium, a steering committee representing most of the nations and several U.S. organizations attending the Symposium was established to initiate planning for a second international balance symposium, to be held in 1999 in the UK.

  5. Oil-Free Rotor Support Technologies for Long Life, Closed Cycle Brayton Turbines

    NASA Technical Reports Server (NTRS)

    Lucero, John M.; DellaCorte, Christopher

    2004-01-01

    The goal of this study is to provide technological support to ensure successful life and operation of a 50-300 kW dynamic power conversion system specifically with response to the rotor support system. By utilizing technical expertise in tribology, bearings, rotordynamic, solid lubricant coatings and extensive test facilities, valuable input for mission success is provided. A discussion of the history of closed cycle Brayton turboalternators (TA) will be included. This includes the 2 kW Mini-Brayton Rotating Unit (Mini-BRU), the 10kW Brayton Rotating Unit (BRU) and the 125 kW turboalternator-compressor (TAC) designed in mid 1970's. Also included is the development of air-cycle machines and terrestrial oil-free gas turbine power systems in the form of microturbines, specifically Capstone microturbines. A short discussion of the self-acting compliant surface hydrodynamic fluid film bearings, or foil bearings, will follow, including a short history of the load capacity advances, the NASA coatings advancements as well as design model advances. Successes in terrestrial based machines will be noted and NASA tribology and bearing research test facilities will be described. Finally, implementation of a four step integration process will be included in the discussion.

  6. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...

  7. [Investigation on Mobile Phone Based Thermal Imaging System and Its Preliminary Application].

    PubMed

    Li, Fufeng; Chen, Feng; Liu, Jing

    2015-03-01

    The technical structure of a low-cost thermal imaging system (TIM) lunched on a mobile phone was investigated, which consists of a thermal infrared module and mobile phone and application software. The designing strategies and technical factors toward realizing various TIM array performances are interpreted, including sensor cost and Noise Equivalent Temperature Difference (NETD). In the software algorithm, a mechanism for scene-change detection was implemented to optimize the efficiency of non-uniformity correction (NUC). The performance experiments and analysis indicate that the NETD of the system can be smaller than 150 mK when the integration time is larger than 16 frames. Furthermore, a practical application for human temperature monitoring during physical exercise is proposed and interpreted. The measurement results support the feasibility and facility of the system in the medical application.

  8. Grid-Scale Energy Storage Demonstration of Ancillary Services Using the UltraBattery Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seasholtz, Jeff

    2015-08-20

    The collaboration described in this document is being done as part of a cooperative research agreement under the Department of Energy’s Smart Grid Demonstration Program. This document represents the Final Technical Performance Report, from July 2012 through April 2015, for the East Penn Manufacturing Smart Grid Program demonstration project. This Smart Grid Demonstration project demonstrates Distributed Energy Storage for Grid Support, in particular the economic and technical viability of a grid-scale, advanced energy storage system using UltraBattery ® technology for frequency regulation ancillary services and demand management services. This project entailed the construction of a dedicated facility on the Eastmore » Penn campus in Lyon Station, PA that is being used as a working demonstration to provide regulation ancillary services to PJM and demand management services to Metropolitan Edison (Met-Ed).« less

  9. A Simple and Resource-efficient Setup for the Computer-aided Drug Design Laboratory.

    PubMed

    Moretti, Loris; Sartori, Luca

    2016-10-01

    Undertaking modelling investigations for Computer-Aided Drug Design (CADD) requires a proper environment. In principle, this could be done on a single computer, but the reality of a drug discovery program requires robustness and high-throughput computing (HTC) to efficiently support the research. Therefore, a more capable alternative is needed but its implementation has no widespread solution. Here, the realization of such a computing facility is discussed, from general layout to technical details all aspects are covered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Direct heat geothermal opportunities at Pahoa, Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, J.; Jones, W.L.

    1980-09-01

    A geothermal commercial park located near Pahoa, Hawaii, has been found to be technically feasible. However, community acceptance varies from optimistic support for the job opportunities to only lukewarm acceptance by most residents of the nearby planned residential community. Interviews, team evaluations, and calculations of energy and transportation savings were used to reduce a list of candidate processes to four. These four include an ethanol plant, a cattle feed mill, a protein recovery plant, and a papaya processing facility. In addition, a research laboratory is planned for the evaluation of other processes identified as very promising.

  11. Shuttle Ground Operations Efficiencies/Technologies Study (SGOE/T). Volume 5: Technical Information Sheets (TIS)

    NASA Technical Reports Server (NTRS)

    Scholz, A. L.; Hart, M. T.; Lowry, D. J.

    1987-01-01

    The Technology Information Sheet was assembled in database format during Phase I. This document was designed to provide a repository for information pertaining to 144 Operations and Maintenance Instructions (OMI) controlled operations in the Orbiter Processing Facility (OPF), Vehicle Assembly Building (VAB), and PAD. It provides a way to accumulate information about required crew sizes, operations task time duration (serial and/or parallel), special Ground Support Equipment (GSE). required, and identification of a potential application of existing technology or the need for the development of a new technolgoy item.

  12. Potential uses of a wireless network in physical security systems.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witzke, Edward L.

    2010-07-01

    Many possible applications requiring or benefiting from a wireless network are available for bolstering physical security and awareness at high security installations or facilities. These enhancements are not always straightforward and may require careful analysis, selection, tuning, and implementation of wireless technologies. In this paper, an introduction to wireless networks and the task of enhancing physical security is first given. Next, numerous applications of a wireless network are brought forth. The technical issues that arise when using a wireless network to support these applications are then discussed. Finally, a summary is presented.

  13. Design and Fabrication of the ISTAR Direct-Connect Combustor Experiment at the NASA Hypersonic Tunnel Facility

    NASA Technical Reports Server (NTRS)

    Lee, Jin-Ho; Krivanek, Thomas M.

    2005-01-01

    The Integrated Systems Test of an Airbreathing Rocket (ISTAR) project was a flight demonstration project initiated to advance the state of the art in Rocket Based Combined Cycle (RBCC) propulsion development. The primary objective of the ISTAR project was to develop a reusable air breathing vehicle and enabling technologies. This concept incorporated a RBCC propulsion system to enable the vehicle to be air dropped at Mach 0.7 and accelerated up to Mach 7 flight culminating in a demonstration of hydrocarbon scramjet operation. A series of component experiments was planned to reduce the level of risk and to advance the technology base. This paper summarizes the status of a full scale direct connect combustor experiment with heated endothermic hydrocarbon fuels. This is the first use of the NASA GRC Hypersonic Tunnel facility to support a direct-connect test. The technical and mechanical challenges involved with adapting this facility, previously used only in the free-jet configuration, for use in direct connect mode will be also described.

  14. Automated space processing payloads study. Volume 2, book 1: Technical report. [instrument packages and space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The extent was investigated to which experiment hardware and operational requirements can be met by automatic control and material handling devices; payload and system concepts that make extensive use of automation technology are defined. Hardware requirements for each experiment were established and tabulated, and investigations of applicable existing hardware were documented. The capabilities and characteristics of industrial automation equipment, controls, and techniques are presented in the form of a summary of applicable equipment characteristics in three basic mutually-supporting formats. Facilities for performing groups of experiments are defined along with four levitation groups and three furnace groups; major hardware elements required to implement them were identified. A conceptual design definition of ten different automated processing facilities is presented along with the specific equipment to implement each facility and the design layouts of the different units. Constraints and packaging, weight, and power requirements for six payloads postulated for shuttle missions in the 1979 to 1982 time period were examined.

  15. Quantum Materials at the Nanoscale - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Stephen Lance

    The central aim of the Quantum Materials at the Nanoscale (QMN) cluster was to understand and control collective behavior involving the interplay of spins, orbitals, and charges, which governs many scientifically interesting and technologically important phenomena in numerous complex materials. Because these phenomena involve various competing interactions, and influence properties on many different length and energy scales in complex materials, tackling this important area of study motivated a collaborative effort that combined the diverse capabilities of QMN cluster experimentalists, the essential theoretical analysis provided by QMN cluster theorists, and the outstanding facilities and staff of the FSMRL. During the fundingmore » period 2007-2014, the DOE cluster grant for the Quantum Materials at the Nanoscale (QMN) cluster supported, at various times, 15 different faculty members (14 in Physics and 1 in Materials Science and Engineering), 7 postdoctoral research associates, and 57 physics and materials science PhD students. 41 of these PhD students have since graduated and have gone on to a variety of advanced technical positions at universities, industries, and national labs: 25 obtained postdoctoral positions at universities (14), industrial labs (2 at IBM), DOE national facilities (3 at Argonne National Laboratory, 1 at Brookhaven National Lab, 1 at Lawrence Berkeley National Lab, and 1 at Sandia National Lab), and other federal facilities (2 at NIST); 13 took various industrial positions, including positions at Intel (5), Quantum Design (1), Lasque Industries (1), Amazon (1), Bloomberg (1), and J.P. Morgan (1). Thus, the QMN grant provided the essential support for training a large number of technically advanced personnel who have now entered key national facilities, industries, and institutions. Additionally, during the period 2007-2015, the QMN cluster produced 159 publications (see pages 14-23), including 23 papers published in Physical Review Letters; 16 papers in Nature, Nature Physics, Nature Materials, or Nature Communications; 4 papers in Science, and 8 papers in Applied Physics Letters. In this report, we provide some key highlights of the collaborative projects in which the QMN cluster members have been involved since 2007.« less

  16. Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondarymore » waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.« less

  17. 2009 Annual Health Physics Report for the HEU Transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2010-04-14

    During the 2009 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. LLNL also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2009, there were 159 person-trips that required dose monitoring of the U.S. monitors. Of the 159 person-trips, 149 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 4 monitoring visits by TMO monitors to facilities other than UEIE and 10 to UEIE itself. LLNL's Hazard Control Departmentmore » laboratories provided the dosimetry services for the HEU Transparency monitors. In 2009, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency Program now has over fifteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.« less

  18. Utilizing Regional Centers in Sustaining Upgraded Russian Federation Ministry of Defense Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaldenbach, Karen Yvonne; Chainikov, General Vladimir; Fedorov, General Victor

    2010-01-01

    Since the mid-1990s the governments of the United States (U.S.) and the Russian Federation (RF) have been collaborating on nonproliferation projects, particularly in the protection of nuclear material through the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). To date, this collaboration has resulted in upgrades to more than 72 RF Ministry of Defense (MOD) sensitive sites and facilities. These upgrades include physical protection systems (PPS), facilities to ensure material remains secure in various configurations, and infrastructure to support, maintain, and sustain upgraded sites. Significant effort on the part of both governments has also been expended to ensure thatmore » personnel obtain the necessary skills and training to both operate and maintain the security systems, thereby ensuring long term sustainability. To accomplish this, initial vendor training on physical protection systems was provided to key personnel, and an approved training curriculum was developed to teach the skills of operating, managing, administering, and maintaining the installed physical protection systems. This approach also included documentation of the processes and procedures to support infrastructure, requisite levels of maintenance and testing of systems and equipment, lifecycle management support, inventory systems and spare parts caches. One of the core components in the U.S. exit strategy and full transition to the RF MOD is the development and utilization of regional centers to facilitate centralized training and technical support to upgraded MOD sites in five regions of the RF. To date, two regional centers and one regional classroom facility are functional, and two additional regional centers are currently under construction. This paper will address the process and logistics of regional center establishment and the future vision for integrated regional center support by the RF MOD.« less

  19. 32 CFR 2001.51 - Technical security.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Surveillance Countermeasures and TEMPEST necessary to detect or deter exploitation of classified information..., TEMPEST Countermeasures for Facilities, and SPB Issuance 6-97, National Policy on Technical Surveillance...

  20. 32 CFR 2001.51 - Technical security.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Surveillance Countermeasures and TEMPEST necessary to detect or deter exploitation of classified information..., TEMPEST Countermeasures for Facilities, and SPB Issuance 6-97, National Policy on Technical Surveillance...

  1. 32 CFR 2001.51 - Technical security.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Surveillance Countermeasures and TEMPEST necessary to detect or deter exploitation of classified information..., TEMPEST Countermeasures for Facilities, and SPB Issuance 6-97, National Policy on Technical Surveillance...

  2. 32 CFR 2001.51 - Technical security.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Surveillance Countermeasures and TEMPEST necessary to detect or deter exploitation of classified information..., TEMPEST Countermeasures for Facilities, and SPB Issuance 6-97, National Policy on Technical Surveillance...

  3. 32 CFR 2001.51 - Technical security.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Surveillance Countermeasures and TEMPEST necessary to detect or deter exploitation of classified information..., TEMPEST Countermeasures for Facilities, and SPB Issuance 6-97, National Policy on Technical Surveillance...

  4. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end ofmore » its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, J.R.; Danneels, J.; Kenagy, W.D.

    The Al Tuwaitha nuclear complex near Baghdad contains a significant number of nuclear facilities from Saddam Hussein's dictatorship. Because of past military operations, lack of upkeep and looting there is now an enormous radioactive waste problem at Al Tuwaitha. Al Tuwaitha contains uncharacterised radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals. The current security situation in Iraq hampers all aspects of radioactive waste management. Further, Iraq has never had a radioactive waste disposal facility, which means that ever increasing quantities of radioactive waste and material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposalmore » Program (the NDs Program) has been initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS has funded the International Atomic Energy Agency (IAEA) to provide technical assistance to the GOI via a Technical Cooperation Project. Program coordination will be provided by the DOS, consistent with U.S. and GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and for providing waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for the vast majority of the implementation of the NDs Program. (authors)« less

  6. Impact of Contextual Factors on Interventions to Reduce Acute Care Transfers II Implementation and Hospital Readmission Rates.

    PubMed

    Rask, Kimberly J; Hodge, Jennifer; Kluge, Linda

    2017-11-01

    Identify contextual and implementation factors impacting the effectiveness of an organizational-level intervention to reduce preventable hospital readmissions from affiliated skilled nursing facilities (SNFs). Observational study of the implementation of Interventions to Reduce Acute Care Transfers tools in 3 different cohorts. SNFs. SNFs belonging to 1 of 2 corporate entities and a group of independent SNFs that volunteered to participate in a Quality Improvement Organization (QIO) training program. Two groups of SNFs received INTERACT II training and technical assistance from corporate staff, and 1 group of SNFs received training from QIO staff. Thirty-day acute care hospital readmissions from Medicare fee-for-service claims, contextual factors using the Model for Understanding Success in Quality framework. All 3 cohorts were able to deliver the INTERACT training program to their constituent facilities through regional events as well as onsite technical assistance, but the impact on readmission rates varied. Facilities supported by the QIO and corporation A were able to achieve statistically significant reductions in 30-day readmission rates. A review of contextual factors found that although all cohorts were challenged by staff turnover and workload, corporation B facilities struggled with a less mature quality improvement (QI) culture and infrastructure. Both corporations demonstrated a strong corporate commitment to implementing INTERACT II, but differences in training strategies, QI culture, capacity, and competing pressures may have impacted the effectiveness of the training. Proactively addressing these factors may help long-term care organizations interested in reducing acute care readmission rates increase the likelihood of QI success. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. All rights reserved.

  7. Computer usage among nurses in rural health-care facilities in South Africa: obstacles and challenges.

    PubMed

    Asah, Flora

    2013-04-01

    This study discusses factors inhibiting computer usage for work-related tasks among computer-literate professional nurses within rural healthcare facilities in South Africa. In the past two decades computer literacy courses have not been part of the nursing curricula. Computer courses are offered by the State Information Technology Agency. Despite this, there seems to be limited use of computers by professional nurses in the rural context. Focus group interviews held with 40 professional nurses from three government hospitals in northern KwaZulu-Natal. Contributing factors were found to be lack of information technology infrastructure, restricted access to computers and deficits in regard to the technical and nursing management support. The physical location of computers within the health-care facilities and lack of relevant software emerged as specific obstacles to usage. Provision of continuous and active support from nursing management could positively influence computer usage among professional nurses. A closer integration of information technology and computer literacy skills into existing nursing curricula would foster a positive attitude towards computer usage through early exposure. Responses indicated that change of mindset may be needed on the part of nursing management so that they begin to actively promote ready access to computers as a means of creating greater professionalism and collegiality. © 2011 Blackwell Publishing Ltd.

  8. The difficulties of conducting maternal death reviews in Malawi.

    PubMed

    Kongnyuy, Eugene J; van den Broek, Nynke

    2008-09-11

    Maternal death reviews is a tool widely recommended to improve the quality of obstetric care and reduce maternal mortality. Our aim was to explore the challenges encountered in the process of facility-based maternal death review in Malawi, and to suggest sustainable and logically sound solutions to these challenges. SWOT (strengths, weaknesses, opportunities and threats) analysis of the process of maternal death review during a workshop in Malawi. Strengths: Availability of data from case notes, support from hospital management, and having maternal death review forms. Weaknesses: fear of blame, lack of knowledge and skills to properly conduct death reviews, inadequate resources and missing documentation. Opportunities: technical assistance from expatriates, support from the Ministry of Health, national protocols and high maternal mortality which serves as motivation factor. Threats: Cultural practices, potential lawsuit, demotivation due to the high maternal mortality and poor planning at the district level. Solutions: proper documentation, conducting maternal death review in a blame-free manner, good leadership, motivation of staff, using guidelines, proper stock inventory and community involvement. Challenges encountered during facility-based maternal death review are provider-related, administrative, client related and community related. Countries with similar socioeconomic profiles to Malawi will have similar 'pull-and-push' factors on the process of facility-based maternal death reviews, and therefore we will expect these countries to have similar potential solutions.

  9. InterFacility communications technical document 1.1

    DOT National Transportation Integrated Search

    1996-04-01

    InterFacility (IF) communications allows 2 adjacent air traffic control (ATC) facilities to communicate with each other. IF is simulated in TGF to allow whatever lab we are responding to (ARTS/NAS) to simulate communications with one or more adjacent...

  10. Efficiency of private and public primary health facilities accredited by the National Health Insurance Authority in Ghana.

    PubMed

    Alhassan, Robert Kaba; Nketiah-Amponsah, Edward; Akazili, James; Spieker, Nicole; Arhinful, Daniel Kojo; Rinke de Wit, Tobias F

    2015-01-01

    Despite improvements in a number of health outcome indicators partly due to the National Health Insurance Scheme (NHIS), Ghana is unlikely to attain all its health-related millennium development goals before the end of 2015. Inefficient use of available limited resources has been cited as a contributory factor for this predicament. This study sought to explore efficiency levels of NHIS-accredited private and public health facilities; ascertain factors that account for differences in efficiency and determine the association between quality care and efficiency levels. The study is a cross-sectional survey of NHIS-accredited primary health facilities (n = 64) in two regions in southern Ghana. Data Envelopment Analysis was used to estimate technical efficiency of sampled health facilities while Tobit regression was employed to predict factors associated with efficiency levels. Spearman correlation test was performed to determine the association between quality care and efficiency. Overall, 20 out of the 64 health facilities (31 %) were optimally efficient relative to their peers. Out of the 20 efficient facilities, 10 (50 %) were Public/government owned facilities; 8 (40 %) were Private-for-profit facilities and 2 (10 %) were Private-not-for-profit/Mission facilities. Mission (Coef. = 52.1; p = 0.000) and Public (Coef. = 42.9; p = 0.002) facilities located in the Western region (predominantly rural) had higher odds of attaining the 100 % technical efficiency benchmark than those located in the Greater Accra region (largely urban). No significant association was found between technical efficiency scores of health facilities and many technical quality care proxies, except in overall quality score per the NHIS accreditation data (Coef. = -0.3158; p < 0.05) and SafeCare Essentials quality score on environmental safety for staff and patients (Coef. = -0.2764; p < 0.05) where the association was negative. The findings suggest some level of wastage of health resources in many healthcare facilities, especially those located in urban areas. The Ministry of Health and relevant stakeholders should undertake more effective need analysis to inform resource allocation, distribution and capacity building to promote efficient utilization of limited resources without compromising quality care standards.

  11. STARLAB UV-optical telescope facility, volume 1

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The STARLAB accomplishments to date include both the feasibility definition and detailed design study efforts on critical subsystems. Topics of discussion for this report include: (1) STARLAB capabilities; (2) scientific programs; (3) STARLAB technical description; (4) STARLAB Phase B studies; and (5) technical conclusions Technical recommendations.

  12. Data Sharing Report Characterization of Isotope Row Facilities Oak Ridge National Laboratory Oak Ridge TN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Phyllis C.

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management (EM-OR) requested that Oak Ridge Associated Universities (ORAU), working under the Oak Ridge Institute for Science and Education (ORISE) contract, provide technical and independent waste management planning support using funds provided by the American Recovery and Reinvestment Act (ARRA). Specifically, DOE EM-OR requested ORAU to plan and implement a survey approach, focused on characterizing the Isotope Row Facilities located at the Oak Ridge National Laboratory (ORNL) for future determination of an appropriate disposition pathway for building debris and systems, should the buildings be demolished. The characterization effort wasmore » designed to identify and quantify radiological and chemical contamination associated with building structures and process systems. The Isotope Row Facilities discussed in this report include Bldgs. 3030, 3031, 3032, 3033, 3033A, 3034, 3036, 3093, and 3118, and are located in the northeast quadrant of the main ORNL campus area, between Hillside and Central Avenues. Construction of the isotope production facilities was initiated in the late 1940s, with the exception of Bldgs. 3033A and 3118, which were enclosed in the early 1960s. The Isotope Row facilities were intended for the purpose of light industrial use for the processing, assemblage, and storage of radionuclides used for a variety of applications (ORNL 1952 and ORAU 2013). The Isotope Row Facilities provided laboratory and support services as part of the Isotopes Production and Distribution Program until 1989 when DOE mandated their shutdown (ORNL 1990). These facilities performed diverse research and developmental experiments in support of isotopes production. As a result of the many years of operations, various projects, and final cessation of operations, production was followed by inclusion into the surveillance and maintenance (S&M) project for eventual decontamination and decommissioning (D&D). The process for D&D and final dismantlement of facilities requires that the known contaminants of concern (COCs) be evaluated and quantified and to identify and quantify any additional contaminants in order to satisfy the waste acceptance criteria requirements for the desired disposal pathway. Known facility contaminants include, but are not limited to, asbestos-containing material (ACM), radiological contaminants, and chemical contaminants including polychlorinated biphenyls (PCBs) and metals.« less

  13. Monitored Natural Attenuation as a Remediation Strategy for Nuclear Power Plant Applications

    NASA Astrophysics Data System (ADS)

    Kim, K.; Bushart, S.

    2009-12-01

    A NRC Information Notice (IN 2006-13) was produced to inform holders of nuclear operating licenses “of the occurrence of radioactive contamination of ground water at multiple facilities due to undetected leakage from facility structures, systems, or components (SSCs) that contain or transport radioactive fluids” so that they could consider actions, as appropriate, to avoid similar problems. To reinforce their commitment to environmental stewardship the nuclear energy industry has committed to improving management of situations that have the potential to lead to the inadvertent release of radioactive fluids. This Industry Groundwater Protection Initiative, finalized in June 2007 as [NEI 07-07], calls for implementation and improvement of on-site groundwater monitoring programs and enhanced communications with stakeholders and regulators about situations related to inadvertent releases. EPRI developed its Groundwater Protection Program to provide the nuclear energy industry with the technical support needed to implement the Industry Groundwater Initiative. An objective of the EPRI Groundwater Protection Program is to provide the nuclear industry with technically sound guidance for implementing and enhancing on-site groundwater monitoring programs. EPRI, in collaboration with the EPRI Groundwater Protection Committee of utility members, developed the EPRI Groundwater Protection Guidelines for Nuclear Power Plants (EPRI Report 1015118, November 2007), which provides site-specific guidance for implementing a technically sound groundwater monitoring program. The guidance applies a graded approach for nuclear plants to tailor a technically effective and cost efficient groundwater monitoring program to the site’s hydrogeology and risk for groundwater contamination. As part of the Groundwater Protection Program, EPRI is also investigating innovative remediation technologies for addressing low-level radioactive contamination in soils and groundwater at nuclear power plant sites. One of these remediation technologies is monitored natural attenuation (MNA), which has been widely used in other industries for the remediation of contaminants in soil and groundwater. Monitored natural attenuation (MNA) is a non-intervention, but not a no-action, groundwater and soil remediation approach that involves monitoring the dilution, dispersion, and decay of contaminants to meet remediation objectives. MNA has been commonly applied at sites where soil and groundwater have been contaminated by volatile organic compounds. This method has also been applied to remediation of radiological contamination at U.S. DOE facilities and decommissioning nuclear power plant sites. The EPRI published report (1016764) provides guidance for implementing MNA at nuclear power plants for remediation of radiological contaminants in groundwater and soil. The goal of the EPRI Groundwater Protection program is to bring together experience and technologies - both from within the nuclear industry and other industries - to support the industry’s commitment to environmental stewardship. Results from the program are being published in an extensive series of reports and software, and are being communicated to members in an annual EPRI Groundwater Protection technical exchange workshop.

  14. Aeronautical Facilities Catalogue. Volume 1: Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Penaranda, F. E. (Compiler); Freda, M. S. (Compiler)

    1985-01-01

    Domestic and foreign wind tunnel facilities are enumerated and their technical parameters are described. Data pertinent to managers and engineers are presented. Facilities judged comparable in testing capability are noted and grouped together. Several comprehensive cross-indexes and charts are included.

  15. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  16. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  17. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  18. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  19. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...

  20. Engaging Students and Scientists through ROV Competitions

    NASA Astrophysics Data System (ADS)

    Zande, J.

    2004-12-01

    The Marine Advanced Technology Education (MATE) Center's network of regional and national remotely operated vehicle (ROV) competitions for students provide a unique and exciting way for the scientific community to get involved in education and outreach and meet broader impact requirements. From Hawaii to New England, MATE's ROV competitions also facilitate collaborations among the scientific community, professional societies, government agencies, business and industry, and public aquaria. Since 2001, the MATE Center and organizations such as the Marine Technology Society (MTS), NOAA's Office of Ocean Exploration, and the Birch Aquarium at Scripps Institution of Oceanography, among others, have challenged 1,000+ students to design and build ROVs for underwater tasks based on science and exploration missions taking place in the real world. From the Monterey Bay Aquarium Research Institute to Woods Hole Oceanographic Institution (WHOI), more than 60 scientists, engineers, and their organizations have supported the students participating in these events and, in doing so, have contributed to E&O and increased the awareness and impact of their work. What does it take to get involved with this E&O effort? That depends on the time, technical expertise, facilities, equipment, building materials, and/or funds that you can afford to contribute. Examples of how scientists and their institutions have and continue to support MATE's ROV competitions include: -Serving as technical advisors, judges, and competition-day technical assistants. -Sharing time and technical expertise as mentors. -Providing access to facilities and equipment. -Donating building materials and supplies. -Hosting the event at your institution. In addition to helping you to become involved in E&O and meet broader impact requirements, benefits to you include: -Exposing yourself to technologies that could support your science. -Getting ideas for creative and inexpensive solutions to challenges that you may face while doing your work. -Recruiting students to your institution. -Heightening your and your institution's visibility within the scientific community -Building a positive image within your own local community. -Networking with other scientists and research and academic institutions as well as professional societies, industry, government, and other organizations such as aquaria. Whether or not you use ROVs to support your work is not important. What is important are the knowledge and skills that you do use to accomplish your research goals. In the case of the competition, ROVs are the vehicle to teach concepts such as physics, oceanography, math, science, and engineering - the same concepts that you understand and apply when doing your science. By sharing your time and expertise, you can help students solidify what they are learning as they design and build their ROVs and make the connection to how it can be applied to other disciplines.

  1. GENESIS 2: Advanced lunar outpost

    NASA Technical Reports Server (NTRS)

    Moore, Gary T.

    1991-01-01

    Advanced, second-generation lunar habitats for astronauts and mission specialists working on the Moon are investigated. The work was based on design constraints set forth in previous publications. Design recommendations are based on environmental response to the lunar environment, habitability, safety, near-term technology, replaceability and modularity, and suitability for NASA lunar research missions in the early 21st century. Scientists, engineers, and architects from NASA/JSC, Wisconsin aeronautical industry, and area universities gave technical input and offered critiques at design reviews throughout the process. The recommended design uses a lunar lava tube, with construction using a combination of Space Station Freedom-derived modules and lightweight Kevlar-laminate inflatables. The outpost includes research laboratories and biotron, crew quarters and support facility, mission control, health maintenance facility, and related areas for functional and psychological requirements. Furniture, specialized equipment, and lighting are included in the design analysis.

  2. 78 FR 56871 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-16

    ... Germantown Update on Exascale Update from Exascale technical approaches subcommittee Facilities update Report from Applied Math Committee of Visitors Exascale technical talks Public Comment (10-minute rule) Public...

  3. Building 21st Century Schools: Designing Smarter, Sleeker High-Tech Facilities.

    ERIC Educational Resources Information Center

    Cutshall, Sandy

    2003-01-01

    The demand for high-tech programs in tandem with traditional classes challenges school districts to provide flexible facilities for career and technical education. Some districts partner with local businesses to develop state-of-the art facilities and deal with costs, upkeep, and upgrading. Some high-tech educational facilities are themselves…

  4. The Role of the Russian Methodological and Training Center in providing Nondestructive Assay Technical Assistance to Russian Enterprises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, Sergey; Bezhunov, Gennady; Ryazanov, Boris

    The Russian Methodological and Training center (RMTC) was initially created to provide not only personnel training in the areas of nuclear material control and accounting (MC&A), but also methodological and technical assistance to the Russian government and nuclear facilities. The goal of the assistance was to promote enhancement of Russian MC&A infrastructure and modernize the MC&A systems at individual enterprises and facilities.

  5. Cementitious Barriers Partnership - FY2015 End-Year Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, H. H.; Flach, G. P.; Langton, C. A.

    2015-09-17

    The DOE-EM Office of Tank Waste Management Cementitious Barriers Partnership (CBP) is chartered with providing the technical basis for implementing cement-based waste forms and radioactive waste containment structures for long-term disposal. Therefore, the CBP ultimate purpose is to support progress in final treatment and disposal of legacy waste and closure of High-Level Waste (HLW) tanks in the DOE complex. This status report highlights the CBP 2015 Software and Experimental Program efforts and accomplishments that support DOE needs in environmental cleanup and waste disposal. DOE needs in this area include: Long-term performance predictions to provide credibility (i.e., a defensible technical basis)more » for regulator and DOE review and approvals, Facility flow sheet development/enhancements, and Conceptual designs for new disposal facilities. In 2015, the CBP developed a beta release of the CBP Software Toolbox – “Version 3.0”, which includes new STADIUM carbonation and damage models, a new SRNL module for estimating hydraulic properties and flow in fractured and intact cementitious materials, and a new LeachXS/ORCHESTRA (LXO) oxidation module. In addition, the STADIUM sulfate attack and chloride models have been improved as well as the LXO modules for sulfate attack, carbonation, constituent leaching, and percolation with radial diffusion (for leaching and transport in cracked cementitious materials). These STADIUM and LXO models are applicable to and can be used by both DOE and the Nuclear Regulatory Commission (NRC) end-users for service life prediction and long-term leaching evaluations of radioactive waste containment structures across the DOE complex.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamura

    This annual report of the Advanced Light Source details science highlights and facility developments during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  7. The quality of family planning services and client satisfaction in the public and private sectors in Kenya.

    PubMed

    Agha, Sohail; Do, Mai

    2009-04-01

    To compare the quality of family planning services delivered at public and private facilities in Kenya. Data from the 2004 Kenya Service Provision Assessment were analysed. The Kenya Service Provision Assessment is a representative sample of health facilities in the public and private sectors, and comprises data obtained from a facility inventory, service provider interviews, observations of client-provider interactions and exit interviews. Quality-of-care indicators are compared between the public and private sectors along three dimensions: structure, process and outcome. Private facilities were superior to public sector facilities in terms of physical infrastructure and the availability of services. Public sector facilities were more likely to have management systems in place. There was no difference between public and private providers in the technical quality of care provided. Private providers were better at managing interpersonal aspects of care. The higher level of client satisfaction at private facilities could not be explained by differences between public and private facilities in structural and process aspects of care. Formal private sector facilities providing family planning services exhibit greater readiness to provide services and greater attention to client needs than public sector facilities in Kenya. Consistent with this, client satisfaction is much higher at private facilities. Technical quality of care provided is similar in public and private facilities.

  8. 7 CFR 1735.17 - Facilities financed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... more economically or technically feasible. Economic and technical feasibility will be determined using total long range economic costs and risk analysis. (d) Generally, RUS will not make a loan to another...

  9. 77 FR 14007 - Sunshine Act Meeting Notice

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Sunshine Act Meeting Notice Federal Register CITATION OF... THE MEETING: The Defense Nuclear Facilities Safety Board (Board) is expanding the matters to be.../ resolution of safety and technical issues across the defense nuclear facilities complex. Since this panel...

  10. 43. CAPE COD AIR STATION PAVE PAWS FACILITY WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. CAPE COD AIR STATION PAVE PAWS FACILITY - WITH BUILDING METAL SIDING BEING APPLIED ON "C" FACE (RIGHT) AND "B" FACE BEING PREPARED FOR INSTALLATION. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. Russian University Education in Nuclear Safeguards and Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, Cristen L.; Kryuchkov, Eduard F.; Geraskin, Nikolay I.

    2009-03-15

    As safeguards and security (S&S) systems are installed and upgraded in nuclear facilities throughout Russia, it becomes increasingly important to develop mechanisms for educating future Russian nuclear scientists and engineers in the technologies and methodologies of physical protection (PP) and nuclear material control and accounting (MC&A). As part of the U.S. Department of Energy’s (DOE) program to secure nuclear materials in Russia, the Education Project supports technical S&S degree programs at key Russian universities and nonproliferation education initiatives throughout the Russian Federation that are necessary to achieve the overall objective of fostering qualified and vigilant Russian S&S personnel. The Educationmore » Project supports major educational degree programs at the Moscow Engineering Physics Institute (MEPhI) and Tomsk Polytechnic University (TPU). The S&S Graduate Program is available only at MEPhI and is the world’s first S&S degree program. Ten classes of students have graduated with a total of 79 Masters Degrees as of early 2009. At least 84% of the graduates over the ten years are still working in the S&S field. Most work at government agencies or research organizations, and some are pursuing their PhD. A 5½ year Engineering Degree Program (EDP) in S&S is currently under development at MEPhI and TPU. The EDP is more tailored to the needs of nuclear facilities. The program’s first students (14) graduated from MEPhI in February 2007. Similar-sized classes are graduating from MEPhI each February. All of the EDP graduates are working in the S&S field, many at nuclear facilities. TPU also established an EDP and graduated its first class of approximately 18 students in February 2009. For each of these degree programs, the American project team works with MEPhI and TPU to develop appropriate curriculum, identify and acquire various training aids, develop and publish textbooks, and strengthen instructor skills. The project has also supported the instruction of policy-oriented nonproliferation courses at various Russian universities. These courses are targeted towards future workers in the nuclear field to help build an effective nonproliferation awareness within the nuclear complex. A long-range goal of this project is to assist the educational programs at MEPhI and TPU in becoming self-sustainable and therefore able to maintain the three degree programs without DOE support. This paper describes current development of these education programs and new initiatives. The paper also describes general nonproliferation education activities supported by DOE that complement the more technical S&S degree programs.« less

  12. Corrective Action Investigation Plan for Corrective Action Unit 168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada (Rev. 0) includes Record of Technical Change No. 1 (dated 8/28/2002), Record of Technical Change No. 2 (dated 9/23/2002), and Record of Technical Change No. 3 (dated 6/2/2004)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. Department of Energy, National Nuclear Security Administration Nevada

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 168 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 168 consists of a group of twelve relatively diverse Corrective Action Sites (CASs 25-16-01, Construction Waste Pile; 25-16-03, MX Construction Landfill; 25-19-02, Waste Disposal Site; 25-23-02, Radioactive Storage RR Cars; 25-23-18, Radioactive Material Storage; 25-34-01, NRDS Contaminated Bunker; 25-34-02, NRDS Contaminated Bunker; CAS 25-23-13, ETL - Lab Radioactive Contamination; 25-99-16, USW G3;more » 26-08-01, Waste Dump/Burn Pit; 26-17-01, Pluto Waste Holding Area; 26-19-02, Contaminated Waste Dump No.2). These CASs vary in terms of the sources and nature of potential contamination. The CASs are located and/or associated wit h the following Nevada Test Site (NTS) facilities within three areas. The first eight CASs were in operation between 1958 to 1984 in Area 25 include the Engine Maintenance, Assembly, and Disassembly Facility; the Missile Experiment Salvage Yard; the Reactor Maintenance, Assembly, and Disassembly Facility; the Radioactive Materials Storage Facility; and the Treatment Test Facility Building at Test Cell A. Secondly, the three CASs located in Area 26 include the Project Pluto testing area that operated from 1961 to 1964. Lastly, the Underground Southern Nevada Well (USW) G3 (CAS 25-99-16), a groundwater monitoring well located west of the NTS on the ridgeline of Yucca Mountain, was in operation during the 1980s. Based on site history and existing characterization data obtained to support the data quality objectives process, contaminants of potential concern (COPCs) for CAU 168 are primarily radionuclide; however, the COPCs for several CASs were not defined. To address COPC uncertainty, the analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. Upon reviewing historical data and current site conditions, it has been determined that no further characterization is required at USW G3 (CAS 25-99-16) to select the appropriate corrective action. A cesium-137 source was encased in cement within the vadous zone during the drilling of the well (CAS 25-99-16). A corrective action of closure in place with a land-use restriction for drilling near USW G3 is appropriate. This corrective action will be documented in the Corrective Action Decision Document (CADD) for CAU 168. The results of the remaining field investigation will support a defensible evaluation of corrective action alternatives for the other CASs within CAU 168 in this CADD.« less

  13. Flat-plate solar array project. Volume 8: Project analysis and integration

    NASA Technical Reports Server (NTRS)

    Mcguire, P.; Henry, P.

    1986-01-01

    Project Analysis and Integration (PA&I) performed planning and integration activities to support management of the various Flat-Plate Solar Array (FSA) Project R&D activities. Technical and economic goals were established by PA&I for each R&D task within the project to coordinate the thrust toward the National Photovoltaic Program goals. A sophisticated computer modeling capability was developed to assess technical progress toward meeting the economic goals. These models included a manufacturing facility simulation, a photovoltaic power station simulation and a decision aid model incorporating uncertainty. This family of analysis tools was used to track the progress of the technology and to explore the effects of alternative technical paths. Numerous studies conducted by PA&I signaled the achievement of milestones or were the foundation of major FSA project and national program decisions. The most important PA&I activities during the project history are summarized. The PA&I planning function is discussed and how it relates to project direction and important analytical models developed by PA&I for its analytical and assessment activities are reviewed.

  14. Guidelines for Establishing and Evaluating High School Technical Electromechanics Programs.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. Div. of Vocational, Technical and Adult Education.

    Educators and industrial representatives developed these guidelines for school officials, instructors in technical education, and program and facility planners to use in planning a high school program in technical electromechanics. Designed to train students for entry into industry in applied electromechanics, the program includes electricity,…

  15. 76 FR 2147 - UAW-Chrysler National Training Center Technology Training Joint Programs Staff, Detroit, MI; UAW...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... Technical Training Center Technology Training Joint Programs Staff, Warren, MI; Notice of Revised... facilities. The information revealed that the technical training provided (such as applied industrial... engaged in employment related to the supply of technical training services, meet the worker group...

  16. 47 CFR 51.327 - Notice of network changes: Content of notice.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., but is not limited to, references to technical specifications, protocols, and standards regarding transmission, signaling, routing, and facility assignment as well as references to technical standards that...

  17. 47 CFR 51.327 - Notice of network changes: Content of notice.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., but is not limited to, references to technical specifications, protocols, and standards regarding transmission, signaling, routing, and facility assignment as well as references to technical standards that...

  18. 47 CFR 51.327 - Notice of network changes: Content of notice.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., but is not limited to, references to technical specifications, protocols, and standards regarding transmission, signaling, routing, and facility assignment as well as references to technical standards that...

  19. The effect of environmental factors on technical and scale efficiency of primary health care providers in Greece.

    PubMed

    Kontodimopoulos, Nick; Moschovakis, Giorgos; Aletras, Vassilis H; Niakas, Dimitris

    2007-11-17

    The purpose of this study was to compare technical and scale efficiency of primary care centers from the two largest Greek providers, the National Health System (NHS) and the Social Security Foundation (IKA) and to determine if, and how, efficiency is affected by various exogenous factors such as catchment population and location. The sample comprised of 194 units (103 NHS and 91 IKA). Efficiency was measured with Data Envelopment Analysis (DEA) using three inputs, -medical staff, nursing/paramedical staff, administrative/other staff- and two outputs, which were the aggregated numbers of scheduled/emergency patient visits and imaging/laboratory diagnostic tests. Facilities were categorized as small, medium and large (<15,000, 15,000-30,000 and >30,000 respectively) to reflect catchment population and as urban/semi-urban or remote/island to reflect location. In a second stage analysis, technical and scale efficiency scores were regressed against facility type (NHS or IKA), size and location using multivariate Tobit regression. Regarding technical efficiency, IKA performed better than the NHS (84.9% vs. 70.1%, Mann-Whitney P < 0.001), smaller units better than medium-sized and larger ones (84.2% vs. 72.4% vs. 74.3%, Kruskal-Wallis P < 0.01) and remote/island units better than urban centers (81.1% vs. 75.7%, Mann-Whitney P = 0.103). As for scale efficiency, IKA again outperformed the NHS (89.7% vs. 85.9%, Mann-Whitney P = 0.080), but results were reversed in respect to facility size and location. Specifically, larger units performed better (96.3% vs. 90.9% vs. 75.9%, Kruskal-Wallis P < 0.001), and urban units showed higher scale efficiency than remote ones (91.9% vs. 75.3%, Mann-Whitney P < 0.001). Interestingly 75% of facilities appeared to be functioning under increasing returns to scale. Within-group comparisons revealed significant efficiency differences between the two primary care providers. Tobit regression models showed that facility type, size and location were significant explanatory variables of technical and scale efficiency. Variations appeared to exist in the productive performance of the NHS and IKA as the two main primary care providers in Greece. These variations reflect differences in primary care organization, economical incentives, financial constraints, sociodemographic and local peculiarities. In all technical efficiency comparisons, IKA facilities appeared to outperform NHS ones irrespective of facility size or location. In respect to scale efficiency, the results were to some extent inconclusive and observed differences were mostly insignificant, although again IKA appeared to perform better.

  20. Development and implementation of centralized simulation training: evaluation of feasibility, acceptability and construct validity.

    PubMed

    Shamim Khan, Mohammad; Ahmed, Kamran; Gavazzi, Andrea; Gohil, Rishma; Thomas, Libby; Poulsen, Johan; Ahmed, Munir; Jaye, Peter; Dasgupta, Prokar

    2013-03-01

    WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: A competent urologist should not only have effective technical skills, but also other attributes that would make him/her a complete surgeon. These include team-working, communication and decision-making skills. Although evidence for effectiveness of simulation exists for individual simulators, there is a paucity of evidence for utility and effectiveness of these simulators in training programmes that aims to combine technical and non-technical skills training. This article explains the process of development and validation of a centrally coordinated simulation program (Participants - South-East Region Specialist Registrars) under the umbrella of the British Association for Urological Surgeons (BAUS) and the London Deanery. This program incorporated training of both technical (synthetic, animal and virtual reality models) and non-technical skills (simulated operating theatres). To establish the feasibility and acceptability of a centralized, simulation-based training-programme. Simulation is increasingly establishing its role in urological training, with two areas that are relevant to urologists: (i) technical skills and (ii) non-technical skills. For this London Deanery supported pilot Simulation and Technology enhanced Learning Initiative (STeLI) project, we developed a structured multimodal simulation training programme. The programme incorporated: (i) technical skills training using virtual-reality simulators (Uro-mentor and Perc-mentor [Symbionix, Cleveland, OH, USA], Procedicus MIST-Nephrectomy [Mentice, Gothenburg, Sweden] and SEP Robotic simulator [Sim Surgery, Oslo, Norway]); bench-top models (synthetic models for cystocopy, transurethral resection of the prostate, transurethral resection of bladder tumour, ureteroscopy); and a European (Aalborg, Denmark) wet-lab training facility; as well as (ii) non-technical skills/crisis resource management (CRM), using SimMan (Laerdal Medical Ltd, Orpington, UK) to teach team-working, decision-making and communication skills. The feasibility, acceptability and construct validity of these training modules were assessed using validated questionnaires, as well as global and procedure/task-specific rating scales. In total 33, three specialist registrars of different grades and five urological nurses participated in the present study. Construct-validity between junior and senior trainees was significant. Of the participants, 90% rated the training models as being realistic and easy to use. In total 95% of the participants recommended the use of simulation during surgical training, 95% approved the format of the teaching by the faculty and 90% rated the sessions as well organized. A significant number of trainees (60%) would like to have easy access to a simulation facility to allow more practice and enhancement of their skills. A centralized simulation programme that provides training in both technical and non-technical skills is feasible. It is expected to improve the performance of future surgeons in a simulated environment and thus improve patient safety. © 2012 BJU International.

  1. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities - A General Overview

    NASA Technical Reports Server (NTRS)

    Hebert, Phillip W., Sr.; Hughes, Mark S.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Marshall, PeggL.; Duncan, Michael E.; Morris, Jon A.; Franzl, Richard W.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition system (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis' development and deployment.

  2. Delivering the EarthScope Transportable Array as a Community Asset

    NASA Astrophysics Data System (ADS)

    Busby, R. W.; Woodward, R.; Simpson, D. W.; Hafner, K.

    2009-12-01

    The Transportable Array element of EarthScope/USArray is a culmination of years of coordination and planning for a large science initiative via the NSF MREFC program. US researchers and the IRIS Consortium conceived of the science objectives for a continental scale array and, together with the geodetic (PBO) and fault drilling (SAFOD) communities and NSF, successfully merged these scientific objectives with a compelling scientific and technical proposal, accompanied with the budget and schedule to accomplish it. The Transportable Array is now an efficient and exacting execution of an immense technical challenge that, by many measures, is yielding exciting science return, both expected and unanticipated. The technical facility is first-rate in its implementation, yet responsive to science objectives and discovery, actively engaging the community in discussion and new direction. The project is carried out by a core of dedicated and professional staff , guided and advised through considerable feedback from science users who have unprecedented access to high-quality data. This, in a sense, lets seismologists focus on research, rather than be administrators, drivers, shippers, battery mules, electronic technicians and radio hams. Now that USArray is operational, it is interesting to reflect on whether the TA, as a professionally executed project, could succeed as well if it were an independent endeavor, managed and operated outside of the resources developed and available through IRIS and its core programs. We detail how the support the USArray facility provides improves data accessibility and enhances interdisciplinary science. We suggest that the resources and community leadership provided by the IRIS Consortium, and the commitment to the principle of free and open data access, have been basic underpinnings for the success of the TA. This involvement of community-based, scientific leadership in the development of large facilities should be considered in planning future large Earth science or even basic science endeavors. The Global Seismographic Network provides another example where, with strong scientific leadership, the technical objectives have returned far more than expected results from all manner of application of new techniques to high quality data. Again, the key ingredient may be that the project oversight is driven by scientists with free and open access to data and broad and evolving expectations as to how the facility might be applied towards research objectives. Major projects must clearly follow defined plans and budgets; but, while it is important to have managers to motivate schedules and control costs, the energy, vigor and effort to optimize new measures and discover new applications derive from the insights and enthusiasm of the science community.

  3. Auto Emission Testing

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The photos show automobile engines being tested for nitrous oxide emissions, as required by the Environmental Protection Agency (EPA), at the Research and Engineering Division of Ford Motor Company, Dearborn. Michigan. NASA technical information helped the company develop a means of calculating emissions test results. Nitrous oxide emission readings vary with relative humidity in the test facility. EPA uses a standard humidity measurement, but the agency allows manufacturers to test under different humidity conditions, then apply a correction factor to adjust the results to the EPA standard. NASA's Dryden Flight Research Center developed analytic equations which provide a simple, computer-programmable method of correcting for humidity variations. A Ford engineer read a NASA Tech Brief describing the Dryden development and requested more detailed information in the form of a technical support package, which NASA routinely supplies to industry on request. Ford's Emissions Test Laboratory now uses the Dryden equations for humidity-adjusted emissions data reported to EPA.

  4. Engineering Technical Support Center Annual Report Fiscal Year 2015

    EPA Science Inventory

    The United States Environmental Protection Agency (EPA or Agency) Office of Research and Development (ORD) created the Engineering Technical Support Center (ETSC) in 1987, one of several technical support centers created as part of the Technical Support Project (TSP). ETSC provid...

  5. 42. CAPE COD AIR STATION PAVE PAWS FACILITY SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. CAPE COD AIR STATION PAVE PAWS FACILITY - SHOWING BUILDING "RED IRON" STEEL STRUCTURE AT 46T DAY OF STEEL CONSTRUCTION. "BUILDING TOPPED OFF, 7 JULY, 1974. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  6. An evaluation of the benefits and challenges of video consulting between general practitioners and residential aged care facilities.

    PubMed

    Wade, Victoria; Whittaker, Frank; Hamlyn, Jeremy

    2015-12-01

    This research evaluated a project that provided video consultations between general practitioners (GPs) and residential aged care facilities (RACFs), with the aim of enabling faster access to medical care and avoidance of unnecessary hospital transfers. GPs were paid for video consultations at a rate equivalent to existing insurance reimbursement for supporting telehealth services. Evaluation data were gathered by direct observation at the project sites, semi-structured interviews and video call data from the technical network. Three pairs of general practices and RACFs were recruited to the project. 40 video consultations eligible for payment occurred over a 6 month period, three of which were judged to have avoided hospital attendance. The process development and change management aspects of the project required substantially more effort than was anticipated. This was due to problems with RACF technical infrastructure, the need for repeated training and awareness raising in RACFs, the challenge of establishing new clinical procedures, the short length of the project and broader difficulties in the relationships between GPs and RACFs. Video consulting between GPs and RACFs was clinically useful and avoided hospital attendance on a small scale, but further focus on process development is needed to embed this as a routine method of service delivery. © The Author(s) 2015.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Monsanto Research Corporation operates Mound Laboratory, a government-owned facility of the U.S. Energy Research and Development Administration, at Miamisburg, Ohio. Mound Laboratory is an integrated, research, development, and production facility performing work in support of ERDA weapon and nonweapon programs with emphasis on explosive and nuclear technology. Mound Laboratory originated as a technical organization in 1943 when Monsanto Chemical Company was requested to accept responsibility for determining the chemical and metallurgical properties of polonium as a project of the Manhattan Engineering District. Work was carried on at Monsanto`s Central Research Department and several satellite units in the Dayton, Ohio area.more » Late in 1945, the Manhattan Engineering District determined that the research, development and production organization established by Monsanto at Dayton should become a permanent facility. A search for a suitable location in early 1946 led to the selection of a 180-acre tract adjacent to Miamisburg, about ten miles (16 km) south of Dayton. Construction of Mound Laboratory, which was named after the Miamisburg Indian Mound adjacent to the site, began in February 1947 and was completed in 1948. The new laboratory was the first permanent facility of the Atomic Energy Commission which had succeeded the Manhattan Engineering District.« less

  8. Standard Engineering Installation Package, Technical Control Facility, Technical Control Improvement Program (TCIP)

    DTIC Science & Technology

    1979-10-01

    software. This document may not be cited for purpose of advertisement . AVAILABILITY This publication is available to non-Government agencies and may be...voltage interface requirements for repeaters. This supply occupies one slot in the 10306 mounting shelf. 1.4.2.8.5 Teletypewriter monitor. The AN/ UGC -61X...The AN/ UGC -61X keyboard send-receive (KSR) TTY set is an electromechanical apparatus that provides terminal facilities with two receive only, one KSR

  9. Global Spent Fuel Logistics Systems Study (GSFLS). Volume 3A. GSFLS technical analysis (appendix). Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kriger, A.

    1978-01-31

    This report is a part of the interim report documentation for the Global Spent Fuel Logistics System (GSFLS) study. The technical and financial considerations underlying a global spent fuel logistics systems have been studied and are reported. The Pacific Basin is used as a model throughout this report; however the stated methodology and, in many cases, considerations and conclusions are applicable to other global regions. Spent fuel discharge profiles for Pacific Basin Countries were used to determine the technical systems requirements for alternative concepts. Functional analyses and flows were generated to define both system design requirements and logistics parameters. Amore » technology review was made to ascertain the state-of-the-art of relevant GSFLS technical systems. Modular GSFLS facility designs were developed using the information generated from the functional analysis and technology review. The modular facility designs were used as a basis for siting and cost estimates for various GSFLS alternatives. Various GSFLS concepts were analyzed from a financial and economic perspective in order to provide total concepts costs and ascertain financial and economic sensitivities to key GSFLS variations. Results of the study include quantification of GSFLS facility and hardware requirements; drawings of relevant GSFLS facility designs; system cost estimates; financial reports - including user service charges; and comparative analyses of various GSFLS alternatives.« less

  10. Numerical Facilities: A Review of the Literature. Technical Report 1985-3.

    ERIC Educational Resources Information Center

    Tal, Joseph S.

    This review of the relevant literature in the area of numerical facility attempts to clarify the construct of numerical facility and provide guidance for items tapping this ability. The review is presented in five parts. The first section introduces two approaches that can be used to investigate numerical facility, including factor analysis.…

  11. Operation of a Public Geologic Core and Sample Repository in Houstion, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Tinker; Beverly DeJarnett

    2007-07-31

    The Bureau of Economic Geology's Houston Research Center (HRC) is well established as a premier regional research center for geologic research serving not only Houston, but geoscientists from around Texas, the U. S., and even the world. As reported in the FY05 and FY06 technical progress reports to the DOE, the HRC provides a state-of-the-art core viewing facility, two fully equipped conference rooms, and a comprehensive technical library, all available for public use. In addition, the HRC currently now houses over 725,000 boxes of rock material (as of January 2008), and has space to hold approximately 300,000 more boxes. Use of the facility has remained strong; the number of patrons averaged over 100 per month from June 1, 2006 to October 2007, and 90,000 boxes of core were donated to, and received by, the HRC during this time. Usage is a combination of individuals describing core, groups of geoscientists holding seminars and workshops, and various industry and government-funded groups holding short courses, workshops, and seminars. These numbers are in addition to the numerous daily requests from patrons desiring to have rock material shipped offsite to their own offices. The BEG/HRC secured several substantial donations of rock materials and cash totaling approximatelymore » $2.2 million during the 2005-2006 operating period. All of these funds went directly into an endowment that UT is building in order to operate the HRC primarily off a portion of the interest generated by the fund. Specific details regarding the funds in the endowment are addressed in a table later in this report. Outreach during 2005 and 2006 included many technical presentations and several publications on the HRC. Several field trips to the facility were held for geoscience professionals and grade school students alike. Goals for the upcoming year involve securing a major donation of rock material and cash in order to approach full funding of the HRC endowment. Thanks to donations totaling $2.2 million from Shea Homes (heritage Unocal rock material),Chevron and others this operating year, the HRC endowment now totals $8,015,621. A major project underway for the HRC in FY2007 is improvement of the existing online core/log database into a geoinformatics-compatible, GIS-driven online system. Usage of the HRC has gone up every year and is now very respectable. This year we will strive to raise awareness of the HRC's 100,000-volume geoscience technical library. Our original business model targeted $10 million in endowment; after several years of operation we realize we require an $11 million endowment. We are 'on plan' and need only $$3 million to fully fund the endowment. To meet these goals in the 2007 operating year will require DOE support for the fifth and final year. DOW support will allow for {approx}$$600K in endowment growth and save using the fund for operation; lack of support will result in a net negative spread of up to $1 million, and set the plan way back. We recognize that DOE budgets for oil and gas research, against best efforts, have been cut substantially this year. Any support available for HRC operation, during continuing resolution or otherwise, would have a very positive impact on this critical final year of the original business plan.« less

  12. Nuclear facility decommissioning and site remedial actions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3)more » Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.« less

  13. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program,more » Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.« less

  14. Technical Support for Contaminated Sites | Science Inventory ...

    EPA Pesticide Factsheets

    In 1987, the U.S. Environmental Protection Agency’s (EPA) Office of Research and Development (ORD), Office of Land and Emergency Management, and EPA Regional waste management offices established the Technical Support Project. The creation of the Technical Support Project enabled ORD to provide effective technical assistance by ensuring ORD scientists and engineers were accessible to the Agency’s Office and Regional decision makers, including Remedial Project Managers, On-Scene Coordinators, and corrective action staff. Five ORD Technical Support Centers (TSCs) were created to facilitate this technical assistance. Three of the five TSCs are supported by the Sustainable and Healthy Communities Research Program, and are summarized in the poster being presented:• Engineering Technical Support Center (ETSC) in Cincinnati, Ohio• Ground Water Technical Support Center (GWTSC) in Ada, Oklahoma• Site Characterization and Monitoring Technical Support Center (SCMTSC) in Atlanta, GeorgiaOver the past 29 years, the Technical Support Centers have provided numerous influential products to its internal Agency clients and to those at the State level (through the EPA Regions). These products include, but are not limited to the following: Annual TSC reports from the three Centers, a hard-rock mining conference every other year, PRO-UCL software development for site characterization statistics, groundwater modeling using state-of-the-art modeling software, numerical mo

  15. Collaboration support system for "Phobos-Soil" space mission.

    NASA Astrophysics Data System (ADS)

    Nazarov, V.; Nazirov, R.; Zakharov, A.

    2009-04-01

    Rapid development of communication facilities leads growth of interactions done via electronic means. However we can see some paradox in this segment in last times: Extending of communication facilities increases collaboration chaos. And it is very sensitive for space missions in general and scientific space mission particularly because effective decision of this task provides successful realization of the missions and promises increasing the ratio of functional characteristic and cost of mission at all. Resolving of this problem may be found by using respective modern technologies and methods which widely used in different branches and not in the space researches only. Such approaches as Social Networking, Web 2.0 and Enterprise 2.0 look most prospective in this context. The primary goal of the "Phobos-Soil" mission is an investigation of the Phobos which is the Martian moon and particularly its regolith, internal structure, peculiarities of the orbital and proper motion, as well as a number of different scientific measurements and experiments for investigation of the Martian environment. A lot of investigators involved in the mission. Effective collaboration system is key facility for information support of the mission therefore. Further to main goal: communication between users of the system, modern approaches allows using such capabilities as self-organizing community, user generated content, centralized and federative control of the system. Also it may have one unique possibility - knowledge management which is very important for space mission realization. Therefore collaboration support system for "Phobos-Soil" mission designed on the base of multilayer model which includes such levels as Communications, Announcement and Information, Data sharing and Knowledge management. The collaboration support system for "Phobos-Soil" mission will be used as prototype for prospective Russian scientific space missions and the presentation describes its architecture, methodological and technical aspects of its design.

  16. 76 FR 64055 - Special Rules Governing Certain Information Obtained Under the Clean Air Act: Technical Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... natural gas. 211112 Natural gas liquid extraction facilities. Petrochemical Production....... 32511... facilities. 211112 Natural gas liquid extraction facilities. Suppliers of Industrial 325120 Industrial gas... reference in EPA's procedures for handling data collected under the Mandatory Greenhouse Gas Reporting Rule...

  17. Report on Cosmic Dust Capture Research and Development for the Exobiology Program

    NASA Technical Reports Server (NTRS)

    Nishioka, Kenji

    1997-01-01

    Collaboration with Ames' personnel was in: 1) grant administration, 2) intellectual science support, 3) collaboration with the University of Paris for the Mir flight experiment, and 4) arranging scanning and X-ray probe analytical support from UCB and SUNYP. LNIMS provided access to: 1) analytical research instruments, 2) chemical analyses support, 3) cleanroom facilities, and 4) design and fabrication expertise of hardware and electronics. They also supported the hypervelocity testing along with test data acquisition and its reduction for the breadboard instrument. A&M Associates provided technical expertise and support on determining the expected charges on orbital particles and a conceptual design for a breadboard particle charge detection sensor. University of California provided analytical support for the recovered Mir flight modules using their unique scanning capability to detect particle tracks in the aerogel. SUNYP, along with help from the University of Chicago, analyzed particle tracks found in the aerogel for biogenic compounds using an x-ray probe instrument. Dr. Schultz provided access to his experiments and the benefits of his considerable hyper-velocity testing expertise at the Ames hypervelocity gun facility, and this proved beneficial to our development testing, significantly reducing the test time and cost for the breadboard instrument development testing. The participants in this activity acknowledge and thank the National Aeronautics and Space Administration and its Ames Research Center for providing the necessary support and resources to conduct this investigation on instrument technology for exobiology application and being able to acquire some interesting results. Primarily, the newly identified technology problems for future research are the important results of this research.

  18. Research and Technology 1997

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA Lewis Research Center is responsible for developing and transferring critical technologies that address national priorities in aeropropulsion and space applications in partnership with U.S. industries, universities, and Government institutions. As NASA s designated Lead Center for Aeropropulsion, our role is to develop, verify, and transfer aeropropulsion technologies to U.S. industry. As NASA s designated Center of Excellence in Turbomachinery, our role is to develop new and innovative turbomachinery technology to improve the reliability, performance, efficiency and affordability, capacity, and environmental compatibility of future aerospace vehicles. We also maintain a science and technology development role in aeropropulsion, communications, space power and onboard propulsion, and microgravity fluid physics and combustion. We are committed to enabling non-aerospace U.S. industries to benefit directly from the technologies developed through our programs to maximize the benefit to the Nation and the return on each taxpayer s investment. In addition, we are aggressively pursuing continuous improvement in our management and business practices and striving for diversity in our workforce as together we push the edge of technology in space and aeronautics. The Lewis Research Center is a unique facility located in an important geographical area, the southwest corner of Cleveland, Ohio. Situated on 350 acres of land adjacent to the Cleveland Hopkins International Airport, Lewis comprises more than 140 buildings that include 24 major facilities and over 500 specialized research and test facilities. Additional facilities are located at Plum Brook Station, which is about 50 miles west of Cleveland. Over 3700 people staff Lewis, including civil service employees and support service contractors. Over half of them are scientists and engineers, who plan, conduct or oversee, and report on our research tasks and projects. They are assisted by technical specialists, skilled workers, and an administrative staff. Our end product is knowledge. This report is designed to help us make this knowledge fully available to potential users the aircraft engine industry, the energy industry, the automotive industry, the aerospace industry, and others. It is organized so that a broad cross section of the community can readily use it. Each article begins with a short introductory paragraph that should prove to be a valuable tool for the layperson. These articles summarize the progress made during the year in various technical areas and portray the technical and administrative support associated with Lewis technology programs. We hope that the information is useful to all. If additional information is desired, readers are encouraged to contact the researchers identified in the articles and to visit Lewis on the World Wide Web (http://www.lerc.nasa.gov/). This document is available on the World Wide Web (http://www.lerc.nasa.gov/WWW/RT).

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M. S.; Miller, D. H.; Fowley, M. D.

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the nitric-glycolic (NG) flowsheet. The work supports Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR)1 and is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 2014.2 The Slurry-fed Melt Rate Furnace (SMRF) was selected for the supplemental testing as it requires significantly less resources than the CEF and could provide a tool for more rapid analysis of melter feeds in the future. The SMRF platform has been used previouslymore » to evaluate melt rate behavior of DWPF glasses, but was modified to accommodate analysis of the offgas stream. Additionally, the Melt Rate Furnace (MRF) and Quartz Melt Rate Furnace (QMRF) were utilized for evaluations. MRF data was used exclusively for melt behavior observations and REDuction/OXidation (REDOX) prediction comparisons and will be briefly discussed in conjunction with its support of the SMRF testing. The QMRF was operated similarly to the SMRF for the same TTR task, but will be discussed in a separate future report. The overall objectives of the SMRF testing were to; 1) Evaluate the efficacy of the SMRF as a platform for steady state melter testing with continuous feeding and offgas analysis; and 2) Generate supplemental melter offgas flammability data to support the melter offgas flammability modelling effort for DWPF implementation of the NG flowsheet.« less

  20. Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberger, Kent H.

    2013-07-01

    The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of Southmore » Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)« less

  1. Evaluation results of xTCA equipment for HEP experiments at CERN

    NASA Astrophysics Data System (ADS)

    Di Cosmo, M.; Bobillier, V.; Haas, S.; Joos, M.; Mico, S.; Vasey, F.; Vichoudis, P.

    2013-12-01

    The MicroTCA and AdvancedTCA industry standards are candidate modular electronic platforms for the upgrade of the current generation of high energy physics experiments. The PH-ESE group at CERN launched in 2011 the xTCA evaluation project with the aim of performing technical evaluations and eventually providing support for commercially available components. Different devices from different vendors have been acquired, evaluated and interoperability tests have been performed. This paper presents the test procedures and facilities that have been developed and focuses on the evaluation results including electrical, thermal and interoperability aspects.

  2. Central Radar System, Over-the-Horizon Backscatter

    DTIC Science & Technology

    1990-03-09

    1,2-Dibromo-3- chloropropane (DBCP) 0.3 TABLE 41-6 (Continued). MINNESOTA RECOMMENDED ALLOWABLE LIMITS (RAL) FOR DRINKING WATER WELLS Compound RAL (ug/ 1 ...TABLE OF CONTENTS ENVIRONMENTAL IMPACT ANALYSIS PROCESS OVERVIEW ............ TECHNICAL STUDY 1 FACILITIES...TECHNICAL STUDY 10 0 TECHNICAL STUDY 1 CENTRAL RADAR SYSTEM OVER-THE-HORIZON BACKSCATTER RADAR PROGRAM 0 ENVIRONMENTAL IMPACT

  3. Environmental effects of dredging. Documentation of the dyecon module for ADDAMS: Determining the hydraulic retention and efficiency of confined disposal facilities. Technical note

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, D.F.; Schroeder, P.R.; Engler, R.M.

    This technical note describes procedures for determining mean hydraulic retention time and efficiency of a confined disposal facility (CDF) from a dye tracer slug test. These parameters are required to properly design a CDF for solids retention and for effluent quality considerations. Detailed information on conduct and analysis of dye tracer studies can be found in Engineer Manual 1110-2-5027, Confined Dredged Material Disposal. This technical note documents the DYECON computer program which facilitates the analysis of dye tracer concentration data and computes the hydraulic efficiency of a CDF as part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).

  4. Technical quality of delivery care in private- and public-sector health facilities in Enugu and Lagos States, Nigeria.

    PubMed

    Hirose, Atsumi; Yisa, Ibrahim O; Aminu, Amina; Afolabi, Nathanael; Olasunmbo, Makinde; Oluka, George; Muhammad, Khalilu; Hussein, Julia

    2018-06-01

    Private-sector providers are increasingly being recognized as important contributors to the delivery of healthcare. Countries with high disease burdens and limited public-sector resources are considering using the private sector to achieve universal health coverage. However, evidence for the technical quality of private-sector care is lacking. This study assesses the technical quality of maternal healthcare during delivery in public- and private-sector facilities in resource-limited settings, from a systems and programmatic perspective. A summary index (the skilled attendance index, SAI), was used. Two-staged cluster sampling with stratification was used to select representative samples of case records in public- and private-sector facilities in Enugu and Lagos States, Nigeria. Information to assess criteria was extracted, and the SAI calculated. Linear regression models examined the relationship between SAI and the private and public sectors, controlling for confounders. The median SAI was 54.8% in Enugu and 85.7% in Lagos. The private for-profit sector's SAI was lower than and the private not-for-profit sector's SAI was higher than the public sector in Enugu [coefficient = -3.6 (P = 0.018) and 12.6 (P < 0.001), respectively]. In Lagos, the private for-profit sector's SAI was higher and the private not-for-profit sector's SAI was lower than the public sector [3.71 (P = 0.005) and -3.92 (P < 0.001)]. Results indicate that the technical quality of private for-profit providers' care was poorer than public providers where the public provision of care was weak, while private for-profit facilities provided better technical quality care than public facilities where the public sector was strong and there was a relatively strong regulatory body. Our findings raise important considerations relating to the quality of maternity care, the public-private mix and needs for regulation in global efforts to achieve universal healthcare.

  5. ORD Scientific and Engineering Technical Support for RPMs – Ground Water Technical Support Center

    EPA Science Inventory

    ORD Scientific and Engineering Technical Support for RPMs (and Others) is a hybrid informational and panel session that focuses on the technical support available from EPA’s Office of Research and Development (ORD) to RPMs and other EPA cleanup program staff. Examples of technica...

  6. DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoginder P. Chugh

    2002-10-01

    The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research intomore » the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.« less

  7. Evaluating Technical Efficiency of Nursing Care Using Data Envelopment Analysis and Multilevel Modeling.

    PubMed

    Min, Ari; Park, Chang Gi; Scott, Linda D

    2016-05-23

    Data envelopment analysis (DEA) is an advantageous non-parametric technique for evaluating relative efficiency of performance. This article describes use of DEA to estimate technical efficiency of nursing care and demonstrates the benefits of using multilevel modeling to identify characteristics of efficient facilities in the second stage of analysis. Data were drawn from LTCFocUS.org, a secondary database including nursing home data from the Online Survey Certification and Reporting System and Minimum Data Set. In this example, 2,267 non-hospital-based nursing homes were evaluated. Use of DEA with nurse staffing levels as inputs and quality of care as outputs allowed estimation of the relative technical efficiency of nursing care in these facilities. In the second stage, multilevel modeling was applied to identify organizational factors contributing to technical efficiency. Use of multilevel modeling avoided biased estimation of findings for nested data and provided comprehensive information on differences in technical efficiency among counties and states. © The Author(s) 2016.

  8. Obtaining Technical Support for Superfund, RCRA and Brownfields Site Issues Fact Sheet

    EPA Pesticide Factsheets

    EPA’s Technical Support Centers (TSCs) and other technical support services are available to Regional RemedialProject Managers, Corrective Action Staff, and On-Scene Coordinators needing specialized technical expertisefor specific tasks or projects.

  9. Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) Quality Assurance Management Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, N. J.

    The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).

  10. Environmental effects of dredging. Documentation of the settle module for ADDAMS: Design of confined disposal facilities for solids retention and initial storage. Technical notes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, D.F.; Schroeder, P.R.

    This technical note documents the SETTLE computer program which facilitates the design of a confined disposal facility (CDF) to retain solids, provide initial storage, and meet effluent discharge limitations for suspended solids during a dredged matenal disposal operation. Detailed information can be found in Engineer Manual 1110-2-5027, Confined Dredged Material Disposal. SETTLE is a part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).

  11. Support and Maintenance of the International Monitoring System network

    NASA Astrophysics Data System (ADS)

    Pereira, Jose; Bazarragchaa, Sergelen; Kilgour, Owen; Pretorius, Jacques; Werzi, Robert; Beziat, Guillaume; Hamani, Wacel; Mohammad, Walid; Brely, Natalie

    2014-05-01

    The Monitoring Facilities Support Section of the Provisional Technical Secretariat (PTS) has as its main task to ensure optimal support and maintenance of an array of 321 monitoring stations and 16 radionuclide laboratories distributed worldwide. Raw seismic, infrasonic, hydroacoustic and radionuclide data from these facilities constitutes the basic product delivered by the International Monitoring System (IMS). In the process of maintaining such a wide array of stations of different technologies, the Support Section contributes to ensuring station mission capability. Mission capable data availability according to the IMS requirements should be at least 98% annually (no more than 7 days down time per year per waveform stations - 14 continuous for radionuclide stations) for continuous data sending stations. In this presentation, we will present our case regarding our intervention at stations to address equipment supportability and maintainability, as these are particularly large activities requiring the removal of a substantial part of the station equipment and installation of new equipment. The objective is always to plan these activities while minimizing downtime and continuing to meet all IMS requirements, including those of data availability mentioned above. We postulate that these objectives are better achieved by planning and making use of preventive maintenance, as opposed to "run-to-failure" with associated corrective maintenance. We use two recently upgraded Infrasound Stations (IS39 Palau and IS52 BIOT) as a case study and establish a comparison between these results and several other stations where corrective maintenance was performed, to demonstrate our hypothesis.

  12. Life Sciences Centrifuge Facility assessment

    NASA Technical Reports Server (NTRS)

    Benson, Robert H.

    1994-01-01

    This report provides an assessment of the status of the Centrifuge Facility being developed by ARC for flight on the International Space Station Alpha. The assessment includes technical status, schedules, budgets, project management, performance of facility relative to science requirements, and identifies risks and issues that need to be considered in future development activities.

  13. Tribal Child Care Facilities: A Guide to Construction and Renovation.

    ERIC Educational Resources Information Center

    National Child Care Information Center, Vienna, VA.

    This document provides technical assistance in addressing major areas of the child care facility construction and renovation process, including conducting a child care community needs assessment, identifying a site, financing costs, developing a business plan, conducting an environmental assessment, building and designing a facility, and hiring…

  14. 48 CFR 801.602-78 - Processing solicitations and contract documents for legal or technical review-Veterans Health...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., Central Office (except Office of Construction and Facilities Management), the National Acquisition Center... facilities, Central Office (except Office of Construction and Facilities Management), the National... takes exception to the accord and satisfaction language VA specifies, assignment of claims, changes to...

  15. 47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. CAPE COD AIR STATION PAVE PAWS FACILITY AERIAL VIEW OF "A" FACE (LEFT) WITH CLEANING SYSTEM INSTALLED (NOW REMOVED) AND "B" FACE (RIGHT) WITH CONSTRUCTION CRANE IN USE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  16. Office of Science User Facilities Summary Report, Fiscal Year 2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-01-01

    The U.S. Department of Energy Office of Science provides the Nation’s researchers with worldclass scientific user facilities to propel the U.S. to the forefront of science and innovation. A user facility is a federally sponsored research facility available for external use to advance scientific or technical knowledge under the following conditions: open, accessible, free, collaborative, competitive, and unique.

  17. The Utilization of a Space Flight Plant Growth Chamber in the Cultivation of Salad Crop Species: A Prelude to a Salad Machine

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.; Hoehn, A.; Stodieck, L. S.; Kliss, M.; Arnold, James O. (Technical Monitor)

    1998-01-01

    The application of bioregenerative life support systems provides an attractive approach to minimize resupply requirement and ultimate self-sufficiency on long duration manned missions in space. The on-board cultivation of salad-type vegetables for crew consumption has been proposed as a first step approach towards reducing a total reliance on the resupply of food. The recent advances in the development of space flight plant growth facilities such as the Plant Generic Bioprocessing Apparatus (PGBA) have established a firm technical basis upon which the implementation of a 'salad machine' concept may be achieved. A presentation on ground based studies will be made evaluating (a) the operational performance of the PGBA facility in a crop production mode and (b) the qualitative and quantitative value of salad plant material produced within the chamber.

  18. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAY TH; GEHNER PD; STEGEN GARY

    2009-12-28

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in additionmore » to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.« less

  19. Preliminary design for a Zero Gravity Test Facility (ZGTF). Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Germain, A.

    1981-01-01

    The functional requirements and best conceptual design of a test facility that simulates weightless operating conditions for a high gain antenna systems (HGAS), that will broadcast to the Tracking Data Relay Satellites were defined. The typical HGAS defined is mounted on a low Earth orbiting satellite, and consists of an antenna with a double gimbal pointing system mounted on a 13 foot long mast. Typically, the gimbals are driven by pulse modulated dc motors or stepper motors. These drivers produce torques on the mast, with jitter that excites the satellite and may cause disturbances to sensitive experiments. The dynamic properties of the antenna support structure (mast), including flexible mode characteristics were defined. The torque profile induced on the spacecraft by motion of the high gain antenna was estimated. Gain and phase margins of the servo control loop of the gimbal drive electronics was also verified.

  20. Mapping for Health in Cameroon: Polio Legacy and Beyond.

    PubMed

    Rosencrans, Louie C; Sume, Gerald E; Kouontchou, Jean-Christian; Voorman, Arend; Anokwa, Yaw; Fezeu, Maurice; Seaman, Vincent Y

    2017-07-01

    During the poliovirus outbreak in Cameroon from October 2013 to April 2015, the Ministry of Public Health's Expanded Program on Immunization requested technical support to improve mapping of health district boundaries and health facility locations for more effective planning and analysis of polio program data. In December 2015, teams collected data on settlements, health facilities, and other features using smartphones. These data, combined with high-resolution satellite imagery, were used to create new health area and health district boundaries, providing the most accurate health sector administrative boundaries to date for Cameroon. The new maps are useful to and used by the polio program as well as other public health programs within Cameroon such as the District Health Information System and the Emergency Operations Center, demonstrating the value of the Global Polio Eradication Initiative's legacy. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  1. Activities of the Institute for Mechanical Engineering

    NASA Astrophysics Data System (ADS)

    The Institute of Mechanical Engineering (IME) is part of Canada's National Research Council. Its mission is to undertake, support, promote, and disseminate research and development in the mechanical engineering aspects of three vital sectors of the Canadian economy: transportation, resource industries, and manufacturing. The IME achieves its mission by performing research and development in its own facilities; by developing, providing, and transferring expertise and knowledge; by making its research facilities available to collaborators and clients; and by participating in international liaison and collaborative research activities. Six research programs are conducted in the IME: Advanced Manufacturing Technology; Coastal Zone Engineering; Cold Regions Engineering; Combustion and Fluids Engineering; Ground Transportation Technology; and Machinery and Engine Technology. The rationale and major research thrusts of each program are described, and specific achievements in 1991-92 are reviewed. Lists of technical reports and papers presented by IME personnel are also included.

  2. 78 FR 70586 - Technical Support Document: Technical Update of the Social Cost of Carbon for Regulatory Impact...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... OFFICE OF MANAGEMENT AND BUDGET Technical Support Document: Technical Update of the Social Cost of... Budget, Executive Office of the President. ACTION: Notice of availability and request for comments. SUMMARY: The Office of Management and Budget (OMB) requests comments on the Technical Support Document...

  3. Ecological Safety of the Internal Space of the Cattle-Breeding Facility (Cowshed)

    NASA Astrophysics Data System (ADS)

    Potseluev, A. A.; Nazarov, I. V.; Tolstoukhova, T. N.; Kostenko, M. V.

    2018-01-01

    The article emphasizes the importance of observing the ecology of the internal airspace. The factors affecting the state of the air in the internal space of the cattle-breeding facility (cowshed) are revealed. Technical and technological solutions providing for a reduction in the airspace contamination of the livestock facility are proposed. The results of investigations of a technological operation for treating skin integuments of cows with activated water are disclosed, as well as the constructive solution of a heat and power unit that ensures a change in the hydrogen index of the treated water. The justification of the efficiency of the proposed technical and technological solutions is given.

  4. The ISOLDE facility

    NASA Astrophysics Data System (ADS)

    Catherall, R.; Andreazza, W.; Breitenfeldt, M.; Dorsival, A.; Focker, G. J.; Gharsa, T. P.; J, Giles T.; Grenard, J.-L.; Locci, F.; Martins, P.; Marzari, S.; Schipper, J.; Shornikov, A.; Stora, T.

    2017-09-01

    The ISOLDE facility has undergone numerous changes over the last 17 years driven by both the physics and technical community with a common goal to improve on beam variety, beam quality and safety. Improvements have been made in civil engineering and operational equipment while continuing developments aim to ensure operations following a potential increase in primary beam intensity and energy. This paper outlines the principal technical changes incurred at ISOLDE by building on a similar publication of the facility upgrades by Kugler (2000 Hyperfine Interact. 129 23-42). It also provides an insight into future perspectives through a brief summary issues addressed in the HIE-ISOLDE design study Catherall et al (2013 Nucl. Instrum. Methods Phys. Res. B 317 204-207).

  5. Strengthening Critical Infrastructure: Combined Heat and Power at Wastewater Treatment Facilities (Webinar) – November 15, 2011

    EPA Pesticide Factsheets

    This webinar provides information about CHP at wastewater treatment facilities (WWTFs), including advantages and challenges, financial incentives and funding programs, and technical and economic potential.

  6. Advanced Light Source Activity Report 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duque, Theresa; Greiner, Annette; Moxon, Elizabeth

    2003-06-12

    This annual report of the Advanced Light Source details science highlights and facility improvements during the year. It also offers information on events sponsored by the facility, technical specifications, and staff and publication information.

  7. Potential for Natural Gas Storage in Deep Basalt Formations at Canoe Ridge, Washington State: A Hydrogeologic Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2005-09-24

    Between 1999 and 2002, Pacific Gas Transmission Company (PGT) (now TransCanada Pipeline Company) and AVISTA Corporation, together with technical support provided by the Pacific Northwest National Laboratory and the U.S. Department of Energy (DOE) examined the feasibility of developing a subsurface, natural gas-storage facility in deep, underlying Columbia River basalt in south-central Washington state. As part of this project, the 100 Circles #1 well was drilled and characterized in addition to surface studies. This report provides data and interpretations of the geology and hydrology collected specific to the Canoe Ridge site as part of the U.S. DOE funding to themore » Pacific Northwest National Laboratory in support of this project.« less

  8. Bench-Scale Filtration Testing in Support of the Pretreatment Engineering Platform (PEP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Billing, Justin M.; Daniel, Richard C.; Kurath, Dean E.

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP testing program specifies that bench-scale testing is to bemore » performed in support of specific operations, including filtration, caustic leaching, and oxidative leaching.« less

  9. Food irradiation: Technology transfer to developing countries

    NASA Astrophysics Data System (ADS)

    Kunstadt, Peter

    This paper discusses Nordion's experiences to-date with the Food Irradiation Project in Thailand (1987-1990). This project will enable the Government of Thailand and the Thai food industry to benefit from established Canadian technology in food irradiation. It includes the design and the construction in Thailand of a multipurpose irradiation facility, similar to the Canadian Irradiation Centre. In addition Canada provides the services, for extended periods of time, of construction and installation management and experts in facility operation, maintenance and training. The Technology Transfer component is a major part of the overall Thai Food Irradiation Project. Its purpose is to familiarize Thai government and industry personnel with Canadian requirements in food regulations and distribution and to conduct market and consumer tests of selected Thai irradiated food products in Canada, once the products have Canadian regulatory approval. On completion of this project, Thailand will have the necessary facility, equipment and training to continue to provide leadership in food irradiation research, as well as scientific and technical support to food industries not only in Thailand by also in the ASEAN region.

  10. Hyperthermal Environments Simulator for Nuclear Rocket Engine Development

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Foote, John P.; Clifton, W. B.; Hickman, Robert R.; Wang, Ten-See; Dobson, Christopher C.

    2011-01-01

    An arc-heater driven hyperthermal convective environments simulator was recently developed and commissioned for long duration hot hydrogen exposure of nuclear thermal rocket materials. This newly established non-nuclear testing capability uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce hightemperature pressurized hydrogen flows representative of nuclear reactor core environments, excepting radiation effects, and is intended to serve as a low-cost facility for supporting non-nuclear developmental testing of hightemperature fissile fuels and structural materials. The resulting reactor environments simulator represents a valuable addition to the available inventory of non-nuclear test facilities and is uniquely capable of investigating and characterizing candidate fuel/structural materials, improving associated processing/fabrication techniques, and simulating reactor thermal hydraulics. This paper summarizes facility design and engineering development efforts and reports baseline operational characteristics as determined from a series of performance mapping and long duration capability demonstration tests. Potential follow-on developmental strategies are also suggested in view of the technical and policy challenges ahead. Keywords: Nuclear Rocket Engine, Reactor Environments, Non-Nuclear Testing, Fissile Fuel Development.

  11. 2011 Annual Health Physics Report for the HEU transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R

    2012-04-30

    During the 2008 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. They also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2008, there were 158 person-trips that required dose monitoring of the U.S. monitors. Of the 158 person-trips, 148 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 6 monitoring visits by TMO monitors to facilities other than UEIE and 8 to UEIE itself. There were three monitoringmore » visits (source changes) that were back-to-back with a total of 24 monitors. LLNL's Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors. In 2008, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency now has thirteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.« less

  12. 2008 Annual Health Physics Report for the HEU Transparency Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radev, R.

    2009-03-24

    During the 2008 calendar year, Lawrence Livermore National Laboratory (LLNL) provided health physics support for the Highly Enriched Uranium (HEU) Transparency Program for external and internal radiation protection. They also provided technical expertise related to BDMS radioactive sources and Russian radiation safety regulatory compliance. For the calendar year 2008, there were 158 person-trips that required dose monitoring of the U.S. monitors. Of the 158 person-trips, 148 person-trips were SMVs and 10 person-trips were Transparency Monitoring Office (TMO) trips. There were 6 monitoring visits by TMO monitors to facilities other than UEIE and 8 to UEIE itself. There were three monitoringmore » visits (source changes) that were back-to-back with a total of 24 monitors. LLNL’s Hazard Control Department laboratories provided the dosimetry services for the HEU Transparency monitors. In 2008, the HEU Transparency activities in Russia were conducted in a radiologically safe manner for the HEU Transparency monitors in accordance with the expectations of the HEU Transparency staff, NNSA and DOE. The HEU Transparency now has thirteen years of successful experience in developing and providing health and safety support in meeting its technical objectives.« less

  13. Challenges and successes for the grantees and the Technical Advisory Group of WHO's influenza vaccine technology transfer initiative.

    PubMed

    Grohmann, Gary; Francis, Donald P; Sokhey, Jaspal; Robertson, James

    2016-10-26

    One of the aims of the WHO Global Action Plan for Influenza Vaccines (GAP) was to transfer influenza vaccine production technology to interested manufacturers and governments in developing countries, to enable greater influenza vaccine manufacturing capacity against any pandemic threat or pandemic. For this objective, the GAP was supported by an independent Technical Advisory Group (TAG) to assist WHO to select vaccine manufacturing proposals for funding and to provide programmatic support for successful grantees. While there were many challenges, for both the TAG and grantees, there were also notable successes with an additional capacity of 338-600 million pandemic vaccine doses being made possible by the programme between 2007 and 2015, and a potential capacity of more than 600 million by 2016/17 with up to one billion doses expected by 2018/19. Seasonal vaccine production was also developed in 4 countries with another 4-5 countries expected to be producing seasonal vaccine by 2018/19. The relatively small WHO investments - in time and funding - made in these companies to develop their own influenza vaccine production facilities have had quite dramatic results. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Implementation of Best Practices in Obesity Prevention in Child Care Facilities: The Arizona Empower Program, 2013–2015

    PubMed Central

    Papa, Jillian; Rodriguez, Gertrudes; Robinson, Deborah

    2017-01-01

    Introduction Obesity is a major health concern in every US age group. Approximately one in 4 children in Arizona’s Special Supplemental Nutrition Program for Women, Infants, and Children is overweight or obese. The Arizona Department of Health Services developed the Empower program to promote healthy environments in licensed child care facilities. The program consists of 10 standards, including one standard for each of these 5 areas: physical activity and screen time, breastfeeding, fruit juice and water, family-style meals, and staff training. The objective of this evaluation was to determine the level of implementation of these 5 Empower standards. Methods A self-assessment survey was completed from July 2013 through June 2015 by 1,850 facilities to evaluate the level of implementation of 5 Empower standards. We calculated the percentage of facilities that reported the degree to which they implemented each standard and identified common themes in comments recorded in the survey. Results All facilities reported either full or partial implementation of the 5 standards. Of 1,678 facilities, 21.7% (n = 364) reported full implementation of all standards, and 78.3% (n = 1,314) reported at least partial implementation. Staff training, which has only one component, had the highest level of implementation: 77.4% (n = 1,299) reported full implementation. Only 44.0% (n = 738) reported full implementation of the standard on a breastfeeding-friendly environment. Conclusion Arizona child care facilities have begun to implement the Empower program, but facilities will need more education, technical assistance, and support in some areas to fully implement the program. PMID:28880840

  15. Implementation of Best Practices in Obesity Prevention in Child Care Facilities: The Arizona Empower Program, 2013-2015.

    PubMed

    Papa, Jillian; Agostinelli, Joan; Rodriguez, Gertrudes; Robinson, Deborah

    2017-09-07

    Obesity is a major health concern in every US age group. Approximately one in 4 children in Arizona's Special Supplemental Nutrition Program for Women, Infants, and Children is overweight or obese. The Arizona Department of Health Services developed the Empower program to promote healthy environments in licensed child care facilities. The program consists of 10 standards, including one standard for each of these 5 areas: physical activity and screen time, breastfeeding, fruit juice and water, family-style meals, and staff training. The objective of this evaluation was to determine the level of implementation of these 5 Empower standards. A self-assessment survey was completed from July 2013 through June 2015 by 1,850 facilities to evaluate the level of implementation of 5 Empower standards. We calculated the percentage of facilities that reported the degree to which they implemented each standard and identified common themes in comments recorded in the survey. All facilities reported either full or partial implementation of the 5 standards. Of 1,678 facilities, 21.7% (n = 364) reported full implementation of all standards, and 78.3% (n = 1,314) reported at least partial implementation. Staff training, which has only one component, had the highest level of implementation: 77.4% (n = 1,299) reported full implementation. Only 44.0% (n = 738) reported full implementation of the standard on a breastfeeding-friendly environment. Arizona child care facilities have begun to implement the Empower program, but facilities will need more education, technical assistance, and support in some areas to fully implement the program.

  16. Efficiency of U.S. Dialysis Centers: An Updated Examination of Facility Characteristics That Influence Production of Dialysis Treatments

    PubMed Central

    Shreay, Sanatan; Ma, Martin; McCluskey, Jill; Mittelhammer, Ron C; Gitlin, Matthew; Stephens, J Mark

    2014-01-01

    Objective To explore the relative efficiency of dialysis facilities in the United States and identify factors that are associated with efficiency in the production of dialysis treatments. Data Sources/Study Setting Medicare cost report data from 4,343 free-standing dialysis facilities in the United States that offered in-center hemodialysis in 2010. Study Design A cross-sectional, facility-level retrospective database analysis, utilizing data envelopment analysis (DEA) to estimate facility efficiency. Data Collection/Extraction Methods Treatment data and cost and labor inputs of dialysis treatments were obtained from 2010 Medicare Renal Cost Reports. Demographic data were obtained from the 2010 U.S. Census. Principal Findings Only 26.6 percent of facilities were technically efficient. Neither the intensity of market competition nor the profit status of the facility had a significant effect on efficiency. Facilities that were members of large chains were less likely to be efficient. Cost and labor savings due to changes in drug protocols had little effect on overall dialysis center efficiency. Conclusions The majority of free-standing dialysis facilities in the United States were functioning in a technically inefficient manner. As payment systems increasingly employ capitation and bundling provisions, these institutions will need to evaluate their efficiency to remain competitive. PMID:24237043

  17. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gougar, Hans David

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each ofmore » the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.« less

  18. Hanford Waste Vitrification Plant technical manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, D.E.; Watrous, R.A.; Kruger, O.L.

    1996-03-01

    A key element of the Hanford waste management strategy is the construction of a new facility, the Hanford Waste Vitrification Plant (HWVP), to vitrify existing and future liquid high-level waste produced by defense activities at the Hanford Site. The HWVP mission is to vitrify pretreated waste in borosilicate glass, cast the glass into stainless steel canisters, and store the canisters at the Hanford Site until they are shipped to a federal geological repository. The HWVP Technical Manual (Manual) documents the technical bases of the current HWVP process and provides a physical description of the related equipment and the plant. Themore » immediate purpose of the document is to provide the technical bases for preparation of project baseline documents that will be used to direct the Title 1 and Title 2 design by the A/E, Fluor. The content of the Manual is organized in the following manner. Chapter 1.0 contains the background and context within which the HWVP was designed. Chapter 2.0 describes the site, plant, equipment and supporting services and provides the context for application of the process information in the Manual. Chapter 3.0 provides plant feed and product requirements, which are primary process bases for plant operation. Chapter 4.0 summarizes the technology for each plant process. Chapter 5.0 describes the engineering principles for designing major types of HWVP equipment. Chapter 6.0 describes the general safety aspects of the plant and process to assist in safe and prudent facility operation. Chapter 7.0 includes a description of the waste form qualification program and data. Chapter 8.0 indicates the current status of quality assurance requirements for the Manual. The Appendices provide data that are too extensive to be placed in the main text, such as extensive tables and sets of figures. The Manual is a revision of the 1987 version.« less

  19. Characteristics of HIV Care and Treatment in PEPFAR-Supported Sites

    PubMed Central

    Filler, Scott; Berruti, Andres A.; Menzies, Nick; Berzon, Rick; Ellerbrock, Tedd V.; Ferris, Robert; Blandford, John M.

    2011-01-01

    Background The U.S. President’s Emergency Plan for AIDS Relief (PEPFAR) has supported the extension of HIV care and treatment to 2.4 million individuals by September 2009. With increasing resources targeted toward scale-up, it is important to understand the characteristics of current PEPFAR-supported HIV care and treatment sites. Methods Forty-five sites in Botswana, Ethiopia, Nigeria, Uganda, and Vietnam were sampled. Data were collected retrospectively from successive 6-month periods of site operations, through reviews of facility records and interviews with site personnel between April 2006 and March 2007. Facility size and scale-up rate, patient characteristics, staffing models, clinical and laboratory monitoring, and intervention mix were compared. Results Sites added a median of 293 patients per quarter. By the evaluation’s end, sites supported a median of 1,649 HIV patients, 922 of them receiving antiretroviral therapy (ART). Patients were predominantly adult (97.4%) and the majority (96.5%) were receiving regimens based on nonnucleoside reverse transcriptase inhibitors (NNRTIs). The ratios of physicians to patients dropped substantially as sites matured. ART patients were commonly seen monthly or quarterly for clinical and laboratory monitoring, with CD4 counts being taken at 6-month intervals. One-third of sites provided viral load testing. Cotrimoxazole prophylaxis was the most prevalent supportive service. Conclusions HIV treatment sites scaled up rapidly with the influx of resources and technical support through PEPFAR, providing complex health services to progressively expanding patient cohorts. Human resources are stretched thin, and delivery models and intervention mix differ widely between sites. Ongoing research is needed to identify best-practice service delivery models. PMID:21346585

  20. Construction, testing and development of large wind energy facilities

    NASA Technical Reports Server (NTRS)

    Windheim, R. (Editor); Cuntze, R. (Editor)

    1982-01-01

    Building large rotor blades and control of oscillations in large facilities are discussed. It is concluded that the technical problems in the design of large rotor blades and control of oscillations can be solved.

  1. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directorymore » and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.« less

  2. Factors influencing the development of primary care data collection projects from electronic health records: a systematic review of the literature.

    PubMed

    Gentil, Marie-Line; Cuggia, Marc; Fiquet, Laure; Hagenbourger, Camille; Le Berre, Thomas; Banâtre, Agnès; Renault, Eric; Bouzille, Guillaume; Chapron, Anthony

    2017-09-25

    Primary care data gathered from Electronic Health Records are of the utmost interest considering the essential role of general practitioners (GPs) as coordinators of patient care. These data represent the synthesis of the patient history and also give a comprehensive picture of the population health status. Nevertheless, discrepancies between countries exist concerning routine data collection projects. Therefore, we wanted to identify elements that influence the development and durability of such projects. A systematic review was conducted using the PubMed database to identify worldwide current primary care data collection projects. The gray literature was also searched via official project websites and their contact person was emailed to obtain information on the project managers. Data were retrieved from the included studies using a standardized form, screening four aspects: projects features, technological infrastructure, GPs' roles, data collection network organization. The literature search allowed identifying 36 routine data collection networks, mostly in English-speaking countries: CPRD and THIN in the United Kingdom, the Veterans Health Administration project in the United States, EMRALD and CPCSSN in Canada. These projects had in common the use of technical facilities that range from extraction tools to comprehensive computing platforms. Moreover, GPs initiated the extraction process and benefited from incentives for their participation. Finally, analysis of the literature data highlighted that governmental services, academic institutions, including departments of general practice, and software companies, are pivotal for the promotion and durability of primary care data collection projects. Solid technical facilities and strong academic and governmental support are required for promoting and supporting long-term and wide-range primary care data collection projects.

  3. EPA Technical Support Centers (TSC): FY14 Lessons ...

    EPA Pesticide Factsheets

    EPA’s Technical Support Centers (TSC) included in ORD’s Safe and Healthy Communities (SHC) Research Action Plan fill the need for supplying subject-matter experts to continually assess state-of-the-art research and practices and channel this information to users in both direct applications (i.e., site-specific technical support) and general applications (i.e., technical transfer activities such as technical guidance documents, conferences, or workshops) . The TSCs are charged with providing solutions by: 1) linking EPA research to Agency decision-makers; 2) applying best practices to real world field applications; and 3) channeling feedback from field application to research communities. The TSP goal is to provide Regional Remedial Project Managers (RPMs), Corrective Action Staff, and On-Scene Coordinators (OSCs) with a diverse set of readily-accessible resources for technical assistance. This research summary provides six case studies – two from each of the three TSCs (Ground Water Technical Support Center, Engineering Technical Support Center, and Site Characterization Technical Support Center) – to exemplify and summarize the variety of TSC approaches that contribute to fulfilling the TSP mission. EPA’s Technical Support Centers (TSC) included in ORD’s Safe and Healthy Communities (SHC) Research Action Plan fill the need for supplying subject-matter experts to continually assess state-of-the-art research and practices and channel this informati

  4. Evaluating the relative impacts of operational and financial factors on the competitiveness of an algal biofuel production facility.

    PubMed

    Hise, Adam M; Characklis, Gregory W; Kern, Jordan; Gerlach, Robin; Viamajala, Sridhar; Gardner, Robert D; Vadlamani, Agasteswar

    2016-11-01

    Algal biofuels are becoming more economically competitive due to technological advances and government subsidies offering tax benefits and lower cost financing. These factors are linked, however, as the value of technical advances is affected by modeling assumptions regarding the growth conditions, process design, and financing of the production facility into which novel techniques are incorporated. Two such techniques, related to algal growth and dewatering, are evaluated in representative operating and financing scenarios using an integrated techno-economic model. Results suggest that these techniques can be valuable under specified conditions, but also that investment subsidies influence cost competitive facility design by incentivizing development of more capital intensive facilities (e.g., favoring hydrothermal liquefaction over transesterification-based facilities). Evaluating novel techniques under a variety of operational and financial scenarios highlights the set of site-specific conditions in which technical advances are most valuable, while also demonstrating the influence of subsidies linked to capital intensity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The 50-horsepower solar-powered irrigation facility located near Gila Bend, Arizona

    NASA Astrophysics Data System (ADS)

    Smith, W. A.; Alexander, G.; Busch, D. F.

    1980-05-01

    The 50 horsepower solar powered irrigation facility near Gila Bend, Arizona which includes a Rankine cycle demonstrates the technical feasibility of solar powered pumping. The design of a facility specifically for the irrigation farmer using the technology that has been developed over the last four years is proposed.

  6. The 50-horsepower solar-powered irrigation facility located near Gila Bend, Arizona

    NASA Technical Reports Server (NTRS)

    Smith, W. A.; Alexander, G.; Busch, D. F.

    1980-01-01

    The 50 horsepower solar powered irrigation facility near Gila Bend, Arizona which includes a Rankine cycle demonstrates the technical feasibility of solar powered pumping. The design of a facility specifically for the irrigation farmer using the technology that has been developed over the last four years is proposed.

  7. 45. CAPE COD AIR STATION PAVE PAWS FACILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. CAPE COD AIR STATION PAVE PAWS FACILITY - BUILDING ELEVATION VIEW WITH BUILDING METAL SIDING BEING APPLIED ON "A" FACE (LEFT) AND "B" FACE (RIGHT). NOTE THAT NORTH IS GENERALLY TO RIGHT OF VIEW. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  8. 7 CFR 3401.17 - Review criteria.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Regulations of the Department of Agriculture (Continued) COOPERATIVE STATE RESEARCH, EDUCATION, AND EXTENSION.... Overall scientific and technical quality of proposal 10 2. Scientific and technical quality of the.... Feasibility of attaining objectives; adequacy of professional training and experience, facilities and...

  9. An image, looking east into Room 112A, filled with technical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    An image, looking east into Room 112A, filled with technical equipment pertinent to the building's recent use - Department of Energy, Mound Facility, Electronics Laboratory Building (E Building), One Mound Road, Miamisburg, Montgomery County, OH

  10. Automated water monitor system field demonstration test report. Volume 2: Technical summary

    NASA Technical Reports Server (NTRS)

    Brooks, R. L.; Jeffers, E. L.; Perreira, J.; Poel, J. D.; Nibley, D.; Nuss, R. H.

    1981-01-01

    The NASA Automatic Water Monitor System was installed in a water reclamation facility to evaluate the technical and cost feasibility of producing high quality reclaimed water. Data gathered during this field demonstration test are reported.

  11. [The Engineering and Technical Services Directorate at the Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Moon, James

    2004-01-01

    My name is James Moon and I am a senior at Tennessee State University where my major is Aeronautical and Industrial Technology with a concentration in industrial electronics. I am currently serving my internship in the Engineering and Technical Services Directorate at the Glenn Research Center (GRC). The Engineering and Technical Service Directorate provides the services and infrastructure for the Glenn Research Center to take research concepts to reality. They provide a full range of integrated services including engineering, advanced prototyping and testing, facility management, and information technology for NASA, industry, and academia. Engineering and Technical Services contains the core knowledge in Information Technology (IT). This includes data systems and analysis, inter and intranet based systems design and data security. Including the design and development of embedded real-time s o h a r e applications for flight and supporting ground systems, Engineering and Technical Services provide a wide range of IT services and products specific to the Glenn Research Center research and engineering community. In the 7000 Directorate I work directly in the 7611 organization. This organization is known as the Aviation Environments Technical Branch. My mentor is Vincent Satterwhite who is also the Branch Chief of the Aviation Environments Technical Branch. In this branch, I serve as the Assistant program manager of the Engineering Technology Program. The Engineering Technology Program (ETP) is one of three components of the High School L.E.R.C.I.P. This is an Agency-sponsored, eight-week research-based apprenticeship program designed to attract traditionally underrepresented high school students that demonstrate an aptitude for and interest in mathematics, science, engineering, and technology.

  12. Joint Assessment of Renewable Energy and Water Desalination Research Center (REWDC) Program Capabilities and Facilities In Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bissani, M; Fischer, R; Kidd, S

    2006-04-03

    The primary goal of this visit was to perform a joint assessment of the Renewable Energy and Water Desalination Center's (REWDC) program in radioactive waste management. The visit represented the fourth technical and scientific interaction with Libya under the DOE/NNSA Sister Laboratory Arrangement. Specific topics addressed during the visit focused on Action Sheet P-05-5, ''Radioactive Waste Management''. The Team, comprised of Mo Bissani (Team Lead), Robert Fischer, Scott Kidd, and Jim Merrigan, consulted with REWDC management and staff. The team collected information, discussed particulars of the technical collaboration and toured the Tajura facility. The tour included the waste treatment facility,more » waste storage/disposal facility, research reactor facility, hot cells and analytical labs. The assessment team conducted the first phase of Task A for Action Sheet 5, which involved a joint assessment of the Radioactive Waste Management Program. The assessment included review of the facilities dedicated to the management of radioactive waste at the Tourja site, the waste management practices, proposed projects for the facility and potential impacts on waste generation and management.« less

  13. RETROFITTING CONTROL FACILITIES FOR WET WEATHER FLOW TREATMENT

    EPA Science Inventory

    Available technologies were evaluated to demonstrate the technical feasibility and cost-effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilitie...

  14. An Overview of the Performance of the Chandra X-ray Observatory

    NASA Technical Reports Server (NTRS)

    Weisskopf, M. C.; Aldcroft, T. L.; Bautz, M.; Cameron, R. A.; Dewey, D.; Drake, J. J.; Grant, C. E.; Marshall, H. L.; Murray, S. S.

    2004-01-01

    The Chandra X-ray Observatory is the X-ray component of NASA's Great Observatory Program which includes the recently launched Spitzer Infrared Telescope, the Hubble Space Telescope (HST) for observations in the visible, and the Compton Gamma-Ray Observatory (CGRO) which, after providing years of useful data has reentered the atmosphere. All these facilities provide, or provided, scientific data to the international astronomical community in response to peer-reviewed proposals for their use. The Chandra X-ray Observatory was the result of the efforts of many academic, commercial, and government organizations primarily in the United States but also in Europe. NASA s Marshall Space Flight Center (MSFC) manages the Project and provides Project Science; Northrop Grumman Space Technology (NGST - formerly TRW) served as prime contractor responsible for providing the spacecraft, the telescope, and assembling and testing the Observatory; and the Smithsonian Astrophysical Observatory (SAO) provides technical support and is responsible for ground operations including the Chandra X-ray Center (CXC). Telescope and instrument teams at SAO, the Massachusetts Institute of Technology (MIT), the Pennsylvania State University (PSU), the Space Research Institute of the Netherlands (SRON), the Max-Planck Institut fur extraterrestrische Physik (MPE), and the University of Kiel support also provide technical support to the Chandra Project. We present here a detailed description of the hardware, its on-orbit performance, and a brief overview of some of the remarkable discoveries that illustrate that performance.

  15. Supplement to a Methodology for Succession Planning for Technical Experts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Bernadette Lugue; Cain, Ronald A.; Agreda, Carla L.

    This report complements A Methodology for Succession Planning for Technical Experts (Ron Cain, Shaheen Dewji, Carla Agreda, Bernadette Kirk, July 2017), which describes a draft methodology for identifying and evaluating the loss of key technical skills at nuclear operations facilities. This report targets the methodology for identifying critical skills, and the methodology is tested through interviews with selected subject matter experts.

  16. BAGHEERA: A new experimental facility at CEA / Valduc for actinides studies under high dynamic loading

    NASA Astrophysics Data System (ADS)

    Roy, G.; Llorca, F.; Lanier, G.; Lamalle, S.; Beaulieu, J.; Antoine, P.; Martinuzzi, P.

    2006-08-01

    This paper is a technical presentation about a new experimental facility recently developed at CEA/Valduc, BAGHEERA, a French acronym for “Hopkinson And High Speed Experiments Glove Box”. This facility is used since mid-2003 to characterize the physical and mechanical behaviour of actinides under high dynamic loadings. For this purpose, four basic experimental devices are confined inside a single glove box: a 50 mm bore diameter single stage light gas gun, two compression and torsion split Hopkinson bars (SHPB and TSHB respectively) and a Taylor test device (TTD). Design and technical data on the experimental equipment are addressed, with a particular emphasis on the gas gun specific features due to actinide applications.

  17. Operating a wide-area high-availability collaborative remote observing system for classically-scheduled observations at the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Kibrick, Robert I.; Wirth, Gregory D.; Allen, Steven L.; Deich, William T. S.; Goodrich, Robert W.; Lanclos, Kyle; Lyke, James E.

    2011-03-01

    For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 9 years, WMKO remote observing has expanded to allow observing teams at dedicated sites located across California to observe via the Internet either in collaboration with colleagues in Waimea or entirely from California; this capability was extended to Swinburne University in Melbourne, Australia in 2010 and to Yale University in New Haven, Connecticut in early 2011. All Keck facility science instruments are currently supported. Observers distributed between as many as four sites can collaborate in the interactive operation of each instrument by means of shared VNC desktops and multipoint video and/or telephone conferencing. Automated routers at primary remote observing sites ensure continued connectivity during Internet outages. Each Keck remote observing facility is similarly equipped and configured so observers have the same operating environment. This architecture provides observers the flexibility to conduct observations from the location best suited to their needs and to adapt to last-minute changes. It also enhances the ability of off-site technical staff to provide remote support.

  18. Site Sustainability Plan with FY2015 Performance Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Teresa A.; Lapsa, Melissa Voss; Hudey, Bryce D.

    Oak Ridge National Laboratory (ORNL) is both the largest science and energy laboratory in the US Department of Energy (DOE) complex and one of the oldest national laboratories still operating at its original site. ORNL implemented an aggressive modernization program in 2000, providing modern, energy-efficient facilities that help to support the growth of important national scientific missions while faced with the unique and challenging opportunity to integrate sustainability into legacy assets. ORNL is committed to leveraging the outcomes of DOE-sponsored research programs to maximize the efficient use of energy and natural resources across a diverse campus. ORNL leadership in conjunctionmore » with the Sustainable Campus Initiative (SCI) maintains a commitment to the integration of technical innovations into new and existing facilities, systems, and processes with a comprehensive approach to achieving DOE directives and the new Executive Order 13693. Energy efficiency, greenhouse gas reductions, climate change resiliency, and other pursuits toward integrated sustainability factor in all we do. ORNL continues to pursue and deploy innovative solutions and initiatives to advance regional, national, and worldwide sustainability and continues to transform its culture and engage employees in supporting sustainability at work, at home, and in the community.« less

  19. Evaluation of quartz melt rate furnace with the nitric-glycolic flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, M. S.; Miller, D. H.

    The Savannah River National Laboratory (SRNL) was tasked to support validation of the Defense Waste Processing Facility (DWPF) melter offgas flammability model for the Nitric-Glycolic (NG) flowsheet. The work is supplemental to the Cold Cap Evaluation Furnace (CEF) testing conducted in 20141 and the Slurry-fed Melt Rate Furnace (SMRF) testing conducted in 20162 that supported Deliverable 4 of the DWPF & Saltstone Facility Engineering Technical Task Request (TTR).3 The Quartz Melt Rate Furnace (QMRF) was evaluated as a bench-scale scoping tool to potentially be used in lieu of or simply prior to the use of the larger-scale SMRF or CEF.more » The QMRF platform has been used previously to evaluate melt rate behavior and offgas compositions of DWPF glasses prepared from the Nitric-Formic (NF) flowsheet but not for the NG flowsheet and not with continuous feeding.4 The overall objective of the 2016-2017 testing was to evaluate the efficacy of the QMRF as a lab-scale platform for steady state, continuously fed melter testing with the NG flowsheet as an alternative to more expensive and complex testing with the SMRF or CEF platforms.« less

  20. Advancing technician practice: Deliberations of a regulatory board.

    PubMed

    Adams, Alex J

    2018-01-01

    In 2016, the Idaho State Board of Pharmacy (U.S.) undertook a major rulemaking initiative to advance pharmacy practice by broadening the ability of pharmacists to delegate tasks to pharmacy technicians. The new rules of the Board thus moved the locus of control in technician scope of practice from law to pharmacist delegation. Pharmacist delegation is individualistic and takes into account the individual technician's capabilities, the pharmacist's comfort level, facility policies, and the risk mitigation strategies present at the facility, among other factors. State law limits, by contrast, are rigid and can mean that pharmacists are unable to delegate tasks that are or could otherwise be within the abilities of their technicians. The expanded technician duties are in two domains: 1) medication dispensing support (e.g., tech-check-tech, accepting verbal prescriptions, transferring prescriptions, and performing remote data entry); and 2) technical support for pharmacist clinical services (e.g., administering immunizations). This commentary reviews the evidence behind these expanded duties, as well as the key regulatory decision points for each task. The Board's rules and approach may prove useful to other states and even other governing bodies outside the U.S. as they consider similar issues. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Cryogenic helium gas convection research

    NASA Astrophysics Data System (ADS)

    Behringer, Robert P.; Donnelly, Russell J.; McAshan, Michael; Maddocks, James; Sreenivasan, Katepalli; Swanson, Chris; Wu, Xaio-Zhong

    1994-10-01

    This is a report prepared by a group interested in doing research in thermal convection using the large scale refrigeration facilities available at the SSC Laboratories (SSCL). The group preparing this report consists of Michael McAshan at SSCL, Robert Behringer at Duke University, Katepalli Sreenivasan at Yale University, Xiao-Zhong Wu at Northern Illinois University and Russell Donnelly at the University of Oregon, who served as Editor for this report. This study reports the research and development opportunities in such a project, the technical requirements and feasibility of its construction and operation, and the costs associated with the needed facilities and support activities. The facility will be a unique national resource for studies of high-Reynolds-number and high-Rayleigh-number and high Rayleigh number turbulence phenomena, and is one of the six items determined as suitable for potential funding through a screening of Expressions of Interest. The proposed facility is possible only because of the advanced cryogenic technology available at the SSCL. Typical scientific issues to be addressed in the facility will be discussed. It devolved during our study, that while the main experiment is still considered to be the thermal convection experiment discussed in our original Expression of Interest, there are now a very substantial set of other, important and fundamental experiments which can be done with the large cryostat proposed for the convection experiment. We believe the facility could provide several decades of front-line research in turbulence, and shall describe why this is so.

  2. Experiment Definition Using the Space Laboratory, Long Duration Exposure Facility, and Space Transportation System Shuttle

    NASA Technical Reports Server (NTRS)

    Sheppard, Albert P.; Wood, Joan M.

    1976-01-01

    Candidate experiments designed for the space shuttle transportation system and the long duration exposure facility are summarized. The data format covers: experiment title, Experimenter, technical abstract, benefits/justification, technical discussion of experiment approach and objectives, related work and experience, experiment facts space properties used, environmental constraints, shielding requirements, if any, physical description, and sketch of major elements. Information was also included on experiment hardware, research required to develop experiment, special requirements, cost estimate, safety considerations, and interactions with spacecraft and other experiments.

  3. Technical and Vocational Education in Kuwait.

    ERIC Educational Resources Information Center

    Al-Ali, Salahaldeen

    1993-01-01

    The Kuwaiti system of vocational-technical education has not lived up to expectations because of low student aptitude, lack of managerial and academic facilities, and weak industrial linkages. The Gulf War exacerbated skilled labor shortages, leaving the country dependent on expatriates. (SK)

  4. Solid Waste Program technical baseline description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, A.B.

    1994-07-01

    The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

  5. Analysis of the Parameters Required for Performance Monitoring and Assessment of Military Communications Systems by Military Technical Controller

    DTIC Science & Technology

    1975-12-01

    139 APPENDIX A* BASIC CONCEPT OF MILITARY TECHNICAL CONTROL.142 6 APIENDIX Es TEST EQUIPMENI REQUIRED FOR lEASURF.4ENr OF 1AF’AMETE RS...Control ( SATEC ) Automatic Facilities heport Army Automated Quality Monitoring Reporting System (AQMPS) Army Autcmated Technical Control-Semi (ATC-Semi...technical control then beco.. es equipment status monitoring. All the major equipment in a system wculd have internal sensors with properly selected parameters

  6. Proposal for Monitoring Within the Centrifuge Cascades of Uranium Enrichment Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrar, David R.

    2017-04-01

    Safeguards are technical measures implemented by the International Atomic Energy Agency (IAEA) to independently verify that nuclear material is not diverted from peaceful purposes to weapons (IAEA, 2017a). Safeguards implemented at uranium enrichment facilities (facilities hereafter) include enrichment monitors (IAEA, 2011). Figure 1 shows a diagram of how a facility could be monitored. The use of a system for monitoring within centrifuge cascades is proposed.

  7. Electric power generation using geothermal brine resources for a proof of concept facility

    NASA Technical Reports Server (NTRS)

    Hankin, J. W.

    1974-01-01

    An exploratory systems study of a geothermal proof-of-concept facility is being conducted. This study is the initial phase (Phase 0) of a project to establish the technical and economic feasibility of using hot brine resources for electric power production and other industrial applications. Phase 0 includes the conceptual design of an experimental test-bed facility and a 10-MWe power generating facility.

  8. A DECISION SUPPORT TOOL (DST) FOR DISPOSAL OF ...

    EPA Pesticide Factsheets

    Symposium Paper AFTER A BUILDING OR WATER TREATMENT/DISTRIBUTION FACILITY HAS GONE THROUGH DECONTAMINATION ACTIVITIES FOLLOWING A CONTAMINATION EVENT WITH CHEMICAL/BIOLOGICAL WARFARE AGENTS OR TOXIC INDUSTRIAL CHEMICAL, THERE WILL BE A SIGNIFICANT AMOUNT OF RESIDUAL MATERIAL AND WASTE TO BE DISPOSED. A CONTAMINATION EVENT COULD OCCUR FROM TERRORIST ACTIVITY OR FROM A NATURAL DISASTER SUCH AS THE RECENT HURRICANE EVENTS IN THE GULF COAST WHERE MOLD AND POLLUTANTS FROM DAMAGED CHEMICAL AND INDUSTRIAL FACILITIES HAVE RESULTED IN SIGNIFICANT QUANTITIES OF CONTAMINATED MATERIALS. IT iS LIKELY THAT MUCH OF THIS MATERIAL WILL BE DISPOSED OF IN PERMITTED LANDFILLS OR HIGH TEMPERATURE THERMAL INCINERATION FACILITIES. DATA HAS BEEN COLLECTED FROM THE OPEN LITERATURE, FROM STATE AND FEDERAL REGULATORY AGENCIES, AND FROM WASTE MANAGEMENT AND WATER UTILITY INDUSTRY STAKEHOLDER GROUPS, TO DEVELOP TECHNICAL GUIDANCE FOR DISPOSAL OF THESe RESIDUES. THE INFORMATION BECOMES AVAILABLE, AND OLD INFORMATION (SUCH AS CONTACT INFORMATION FOR KEY PERSONNEL) CHANGES. THE PRiMARY AUDIENCE FOR THIS TOOL WILL BE: 1) EMERGENCY RESPONSE AUTHORITIES WHO HAVE TO DECIDE THE MOST APPROPRIATE DECONTAMINATION METHODS AND DISPOSAL OF THE RESULTING RESIDUES; 2)STATE AND LOCAL PERMITTING AGENCIES, WHO HAVE TO MAKE DECISIONS ABOUT WHICH FACILITIES WILL BE ALLOWED TO DISPOSE OF THE MATERIALS: AND 3) THE WASTE MANAGEMENT AND WATER UTILITY INDUSTRY, THAT NEEDS TO SAFELY DISPOSE OF DECONTAMINATION RESIDUE

  9. Feasibility study for a biomedical experimental facility based on LEIR at CERN.

    PubMed

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-07-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments.

  10. Feasibility study for a biomedical experimental facility based on LEIR at CERN

    PubMed Central

    Abler, Daniel; Garonna, Adriano; Carli, Christian; Dosanjh, Manjit; Peach, Ken

    2013-01-01

    In light of the recent European developments in ion beam therapy, there is a strong interest from the biomedical research community to have more access to clinically relevant beams. Beamtime for pre-clinical studies is currently very limited and a new dedicated facility would allow extensive research into the radiobiological mechanisms of ion beam radiation and the development of more refined techniques of dosimetry and imaging. This basic research would support the current clinical efforts of the new treatment centres in Europe (for example HIT, CNAO and MedAustron). This paper presents first investigations on the feasibility of an experimental biomedical facility based on the CERN Low Energy Ion Ring LEIR accelerator. Such a new facility could provide beams of light ions (from protons to neon ions) in a collaborative and cost-effective way, since it would rely partly on CERN's competences and infrastructure. The main technical challenges linked to the implementation of a slow extraction scheme for LEIR and to the design of the experimental beamlines are described and first solutions presented. These include introducing new extraction septa into one of the straight sections of the synchrotron, changing the power supply configuration of the magnets, and designing a new horizontal beamline suitable for clinical beam energies, and a low-energy vertical beamline for particular radiobiological experiments. PMID:23824122

  11. Technical Support Documents Used to Develop the Chesapeake Bay TMDL

    EPA Pesticide Factsheets

    The Chesapeake Bay TMDL development was supported by several technical documents for water quality standards and allocation methodologies specific to the Chesapeake Bay. This page provides the technical support documents.

  12. SUPERFUND TECHNICAL SUPPORT

    EPA Science Inventory

    Under this task, technical support is provided to Regional Remedial Project Managers (RPMs)/On-Scene Coordinators (OSCs) at Superfund, RCRA, and Brownfields sites contaminated with hazardous materials by the Technical Support Center (TSC) for Monitoring and Site Characterization....

  13. Integrated low emissions cleanup system for direct coal-fueled turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.

    1992-01-01

    The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less

  14. Integrated low emissions cleanup system for direct coal-fueled turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lippert, T.E.; Newby, R.A.; Alvin, M.A.

    1992-12-31

    The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less

  15. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  16. 46. CAPE COD AIR STATION PAVE PAWS FACILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. CAPE COD AIR STATION PAVE PAWS FACILITY - BUILDING ELEVATION VIEW WITH ALL METAL SIDING INSTALLED AND WITH EMITTER/ANTENNA ARRAY SYSTEM NEARING OCMPLETION ON "B" FACE (RIGHT). VIEW ALSO SHOWS TRAVELING "CLEANING" SYSTEM ON "B" FACE - NOW REMOVED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. Menus and mnemonics in airway facilities.

    DOT National Transportation Integrated Search

    2003-04-01

    This study examines the use of menus and mnemonics in current Airway Facilities (AF) systems and compares them to human factors : guidelines and best practices. Researchers from the William J. Hughes Technical Center traveled to AF field sites and co...

  18. Technical solutions to overcrowded park and ride facilities

    DOT National Transportation Integrated Search

    2007-05-01

    This report presents the results on potential techniques to more efficiently utilize existing park and ride : technologies and plan for future changes to the park and ride facilities. It presents: : A summary of parking monitoring and parking guidanc...

  19. Providing Services to Virtual Patrons.

    ERIC Educational Resources Information Center

    Hulshof, Robert

    1999-01-01

    Discusses the types of services libraries need to support patrons who access the library via the Internet or e-mail. Highlights include issues in technical support; establishing policies and procedures; tools for technical support, including hardware and software; impacts of technical support on staff; and future possibilities. (LRW)

  20. American Recovery and Reinvestment Act (ARRA) - FEMP Technical Assistance - Federal Aviation Administration - Project 209 - Control Tower and Support Building, Boise, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arends, J.; Sandusky, William F.

    2010-06-28

    This report documents an energy audit performed by Pacific Northwest National Laboratory (PNNL) and Redhorse Corporation (Redhorse) conducted on the Federal Aviation Administration (FAA) control tower and base building in Boise, Idaho. This report presents findings of the energy audit team that evaluated construction documents and operating specifications (at the 100% level) followed by a site visit of the facility under construction. The focus of the review was to identify measures that could be incorporated into the final design and operating specifications that would result in additional energy savings for FAA that would not have otherwise occurred.

Top