NASA Astrophysics Data System (ADS)
Bulega, T.; Kyeyune, A.; Onek, P.; Sseguya, R.; Mbabazi, D.; Katwiremu, E.
2011-10-01
Several publications have identified technical challenges facing Uganda's National Transmission Backbone Infrastructure project. This research addresses the technical limitations of the National Transmission Backbone Infrastructure project, evaluates the goals of the project, and compares the results against the technical capability of the backbone. The findings of the study indicate a bandwidth deficit, which will be addressed by using dense wave division multiplexing repeaters, leasing bandwidth from private companies. Microwave links for redundancy, a Network Operation Center for operation and maintenance, and deployment of wireless interoperability for microwave access as a last-mile solution are also suggested.
Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X
NASA Astrophysics Data System (ADS)
Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Bräuer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodié, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; König, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kühner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stäbler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, Ch.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K.-P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupiński, Ł.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; Eeten, P. v.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Fünfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; García Regaña, J. M.; Geiger, J.; Geißler, S.; Greuner, H.; Grahl, M.; Groß, S.; Grosman, A.; Grote, H.; Grulke, O.; Haas, M.; Haiduk, L.; Hartfuß, H.-J.; Harris, J. H.; Haus, D.; Hein, B.; Heitzenroeder, P.; Helander, P.; Heller, R.; Hidalgo, C.; Hildebrandt, D.; Höhnle, H.; Holtz, A.; Holzhauer, E.; Holzthüm, R.; Huber, A.; Hunger, H.; Hurd, F.; Ihrke, M.; Illy, S.; Ivanov, A.; Jablonski, S.; Jaksic, N.; Jakubowski, M.; Jaspers, R.; Jensen, H.; Jenzsch, H.; Kacmarczyk, J.; Kaliatk, T.; Kallmeyer, J.; Kamionka, U.; Karaleviciu, R.; Kern, S.; Keunecke, M.; Kleiber, R.; Knauer, J.; Koch, R.; Kocsis, G.; Könies, A.; Köppen, M.; Koslowski, R.; Koshurinov, J.; Krämer-Flecken, A.; Krampitz, R.; Kravtsov, Y.; Krychowiak, M.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kus, A.; Langish, S.; Laube, R.; Laux, M.; Lazerson, S.; Lennartz, M.; Li, C.; Lietzow, R.; Lohs, A.; Lorenz, A.; Louche, F.; Lubyako, L.; Lumsdaine, A.; Lyssoivan, A.; Maaßberg, H.; Marek, P.; Martens, C.; Marushchenko, N.; Mayer, M.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mizuuchi, T.; Modrow, H.; Mönnich, T.; Morizaki, T.; Murakami, S.; Musielok, F.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Nocentini, R.; Noterdaeme, J.-M.; Nührenberg, C.; Obermayer, S.; Offermanns, G.; Oosterbeek, H.; Otte, M.; Panin, A.; Pap, M.; Paquay, S.; Pasch, E.; Peng, X.; Petrov, S.; Pilopp, D.; Pirsch, H.; Plaum, B.; Pompon, F.; Povilaitis, M.; Preinhaelter, J.; Prinz, O.; Purps, F.; Rajna, T.; Récsei, S.; Reiman, A.; Reiter, D.; Remmel, J.; Renard, S.; Rhode, V.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Rodin, I.; Romé, M.; Roscher, H.-J.; Rummel, K.; Rummel, Th.; Runov, A.; Ryc, L.; Sachtleben, J.; Samartsev, A.; Sanchez, M.; Sano, F.; Scarabosio, A.; Schmid, M.; Schmitz, H.; Schmitz, O.; Schneider, M.; Schneider, W.; Scheibl, L.; Scholz, M.; Schröder, G.; Schröder, M.; Schruff, J.; Schumacher, H.; Shikhovtsev, I. V.; Shoji, M.; Siegl, G.; Skodzik, J.; Smirnow, M.; Speth, E.; Spong, D. A.; Stadler, R.; Sulek, Z.; Szabó, V.; Szabolics, T.; Szetefi, T.; Szökefalvi-Nagy, Z.; Tereshchenko, A.; Thomsen, H.; Thumm, M.; Timmermann, D.; Tittes, H.; Toi, K.; Tournianski, M.; Toussaint, U. v.; Tretter, J.; Tulipán, S.; Turba, P.; Uhlemann, R.; Urban, J.; Urbonavicius, E.; Urlings, P.; Valet, S.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Viebke, H.; Vilbrandt, R.; Vrancken, M.; Wauters, T.; Weissgerber, M.; Weiß, E.; Weller, A.; Wendorf, J.; Wenzel, U.; Windisch, T.; Winkler, E.; Winkler, M.; Wolowski, J.; Wolters, J.; Wrochna, G.; Xanthopoulos, P.; Yamada, H.; Yokoyama, M.; Zacharias, D.; Zajac, J.; Zangl, G.; Zarnstorff, M.; Zeplien, H.; Zoletnik, S.; Zuin, M.
2013-12-01
The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.
Hyper-Spectral Networking Concept of Operations and Future Air Traffic Management Simulations
NASA Technical Reports Server (NTRS)
Davis, Paul; Boisvert, Benjamin
2017-01-01
The NASA sponsored Hyper-Spectral Communications and Networking for Air Traffic Management (ATM) (HSCNA) project is conducting research to improve the operational efficiency of the future National Airspace System (NAS) through diverse and secure multi-band, multi-mode, and millimeter-wave (mmWave) wireless links. Worldwide growth of air transportation and the coming of unmanned aircraft systems (UAS) will increase air traffic density and complexity. Safe coordination of aircraft will require more capable technologies for communications, navigation, and surveillance (CNS). The HSCNA project will provide a foundation for technology and operational concepts to accommodate a significantly greater number of networked aircraft. This paper describes two of the HSCNA projects technical challenges. The first technical challenge is to develop a multi-band networking concept of operations (ConOps) for use in multiple phases of flight and all communication link types. This ConOps will integrate the advanced technologies explored by the HSCNA project and future operational concepts into a harmonized vision of future NAS communications and networking. The second technical challenge discussed is to conduct simulations of future ATM operations using multi-bandmulti-mode networking and technologies. Large-scale simulations will assess the impact, compared to todays system, of the new and integrated networks and technologies under future air traffic demand.
Evaluation of the Hanford 200 West Groundwater Treatment System: Fluidized Bed Bioreactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Looney, Brian B.; Jackson, Dennis G.; Dickson, John O.
A fluidized bed reactor (FBR) in the 200W water treatment facility at Hanford is removing nitrate from groundwater as part of the overall pump-treat-reinject process. Control of the FBR bed solids has proven challenging, impacting equipment, increasing operations and maintenance (O&M), and limiting the throughput of the facility. In response to the operational challenges, the Department of Energy Richland Office (DOE-RL) commissioned a technical assistance team to facilitate a system engineering evaluation and provide focused support recommendations to the Hanford Team. The DOE Environmental Management (EM) technical assistance process is structured to identify and triage technologies and strategies that addressmore » the target problem(s). The process encourages brainstorming and dialog and allows rapid identification and prioritization of possible options. Recognizing that continuous operation of a large-scale FBR is complex, requiring careful attention to system monitoring data and changing conditions, the technical assistance process focused on explicit identification of the available control parameters (“knobs”), how these parameters interact and impact the FBR system, and how these can be adjusted under different scenarios to achieve operational goals. The technical assistance triage process was performed in collaboration with the Hanford team.« less
Prototype design for a predictive model to improve evacuation operations : technical report.
DOT National Transportation Integrated Search
2011-08-01
Mass evacuations of the Texas Gulf Coast remain a difficult challenge. These events are massive in scale, : highly complex, and entail an intricate, ever-changing conglomeration of technical and jurisdictional issues. : This project focused primarily...
Wang, ShuQi; Lifson, Mark A.; Inci, Fatih; Liang, Li-Guo; Sheng, Ye-Feng; Demirci, Utkan
2016-01-01
The striking prevalence of HIV, TB and malaria, as well as outbreaks of emerging infectious diseases, such as influenza A (H7N9), Ebola and MERS, poses great challenges for patient care in resource-limited settings (RLS). However, advanced diagnostic technologies cannot be implemented in RLS largely due to economic constraints. Simple and inexpensive point-of-care (POC) diagnostics, which rely less on environmental context and operator training, have thus been extensively studied to achieve early diagnosis and treatment monitoring in non-laboratory settings. Despite great input from material science, biomedical engineering and nanotechnology for developing POC diagnostics, significant technical challenges are yet to be overcome. Summarized here are the technical challenges associated with POC diagnostics from a RLS perspective and the latest advances in addressing these challenges are reviewed. PMID:26777725
NASA Technical Reports Server (NTRS)
Ido, Haisam; Burns, Rich
2015-01-01
The NASA Goddard Space Science Mission Operations project (SSMO) is performing a technical cost-benefit analysis for centralizing and consolidating operations of a diverse set of missions into a unified and integrated technical infrastructure. The presentation will focus on the notion of normalizing spacecraft operations processes, workflows, and tools. It will also show the processes of creating a standardized open architecture, creating common security models and implementations, interfaces, services, automations, notifications, alerts, logging, publish, subscribe and middleware capabilities. The presentation will also discuss how to leverage traditional capabilities, along with virtualization, cloud computing services, control groups and containers, and possibly Big Data concepts.
The Hubble Space Telescope servicing missions: Past, present, and future operational challenges
NASA Technical Reports Server (NTRS)
Ochs, William R.; Barbehenn, George M.; Crabb, William G.
1996-01-01
The Hubble Space Telescope was designed to be serviced by the Space Shuttle to upgrade systems, replace failed components and boost the telescope into higher orbits. There exists many operational challenges that must be addressed in preparation for the execution of a servicing mission, including technical and managerial issues. The operational challenges faced by the Hubble operations and ground system project for the support of the first servicing mission and future servicing missions, are considered. The emphasis is on those areas that helped ensure the success of the mission, including training, testing and contingency planning.
PNNL Supports Hanford Waste Treatment
None
2018-04-16
For more than 40 years, technical assistance from PNNL has supported the operations and processing of Hanford tank waste. Our expertise in tank waste chemistry, fluid dynamics and scaling, waste forms, and safety bases has helped to shape the siteâs waste treatment baseline and solve operational challenges. The historical knowledge and unique scientific and technical expertise at PNNL are essential to the success of the Hanford mission.
Mentoring SFRM: A New Approach to International Space Station Flight Control Training
NASA Technical Reports Server (NTRS)
Huning, Therese; Barshi, Immanuel; Schmidt, Lacey
2009-01-01
The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (Operator) to a basic level of effectiveness in 1 year. SFRM training uses a twopronged approach to expediting operator certification: 1) imbed SFRM skills training into all Operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills.
Guidelines for deploying weather responsive operations in TxDOT traffic signals.
DOT National Transportation Integrated Search
2017-02-01
Inclement weather, such as rain, snow, fog, and ice, create special operational challenges for traffic : management agencies. This project provided Texas Department of Transportation with technical guidance : for improving safety and efficiency of si...
Space shuttle main engine: Interactive design challenges
NASA Technical Reports Server (NTRS)
Mccarty, J. P.; Wood, B. K.
1985-01-01
The operating requirements established by NASA for the SSME were considerably more demanding than those for earlier rocket engines used in the military launch vehicles or Apollo program. The SSME, in order to achieve the high performance, low weight, long life, reusable objectives, embodied technical demands far in excess of its predecessor rocket engines. The requirements dictated the use of high combustion pressure and the staged combustion cycle which maximizes performance through total use of all propellants in the main combustion process. This approach presented a myriad of technical challenges for maximization of performance within attainable state of the art capabilities for operating pressures, operating temperatures and rotating machinery efficiencies. Controlling uniformity of the high pressure turbomachinery turbine temperature environment was a key challenge for thrust level and life capability demanding innovative engineering. New approaches in the design of the components were necessary to accommodate the multiple use, minimum maintenance objectives. Included were the use of line replaceable units to facilitate field maintenance automatic checkout and internal inspection capabilities.
Aviation Trends Related to Atmospheric Environment Safety Technologies Project Technical Challenges
NASA Technical Reports Server (NTRS)
Reveley, Mary S.; Withrow, Colleen A.; Barr, Lawrence C.; Evans, Joni K.; Leone, Karen M.; Jones, Sharon M.
2014-01-01
Current and future aviation safety trends related to the National Aeronautics and Space Administration's Atmospheric Environment Safety Technologies Project's three technical challenges (engine icing characterization and simulation capability; airframe icing simulation and engineering tool capability; and atmospheric hazard sensing and mitigation technology capability) were assessed by examining the National Transportation Safety Board (NTSB) accident database (1989 to 2008), incidents from the Federal Aviation Administration (FAA) accident/incident database (1989 to 2006), and literature from various industry and government sources. The accident and incident data were examined for events involving fixed-wing airplanes operating under Federal Aviation Regulation (FAR) Parts 121, 135, and 91 for atmospheric conditions related to airframe icing, ice-crystal engine icing, turbulence, clear air turbulence, wake vortex, lightning, and low visibility (fog, low ceiling, clouds, precipitation, and low lighting). Five future aviation safety risk areas associated with the three AEST technical challenges were identified after an exhaustive survey of a variety of sources and include: approach and landing accident reduction, icing/ice detection, loss of control in flight, super density operations, and runway safety.
Addressing tomorrow's DMO technical challenges today
NASA Astrophysics Data System (ADS)
Milligan, James R.
2009-05-01
Distributed Mission Operations (DMO) is essentially a type of networked training that pulls in participants from all the armed services and, increasingly, allies to permit them to "game" and rehearse highly complex campaigns, using a mix of local, distant, and virtual players. The United States Air Force Research Laboratory (AFRL) is pursuing Science and Technology (S&T) solutions to address technical challenges associated with distributed communications and information management as DMO continues to progressively scale up the number, diversity, and geographic dispersal of participants in training and rehearsal exercises.
Capability Gap Assessment - Blending Warfighter Experience with Science
2013-02-15
This technical report describes the gap assessment method and the results of using it. 15. SUBJECT TERMS capability gap assessment, operational risk ...29 Challenges ...approach that blends warfighter experience with science. This paper describes the process, challenges , and opportunities associated with this technique
UAS Integration into the NAS Project
NASA Technical Reports Server (NTRS)
Bauer, Jeff
2010-01-01
The goal of the UAS Integration in the NAS Project is to contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS This goal will be accomplished through a two-phased approach of system-level integration of key concepts, technologies and/or procedures, and demonstrations of integrated capabilities in an operationally relevant environment. Technical objectives include: PHASE 1: a) Validating the key technical areas identified by this project. System-level analyses, a State of the Art Analysis (SOAA), and a ConOps will identify the challenges and barriers preventing routine UAS access to the NAS. b) Developing a national roadmap and gap analysis identifying specific deliverables in the area of operations, procedures, and technologies that will impact future policy decisions. PHASE 2: a) Provide regulators with a methodology for developing airworthiness requirements for UAS and data to support development of certifications standards and regulatory guidance. b) Provide systems-level integrated testing of concepts and/or capabilities that address barriers to routine access to the NAS. Through simulation and flight testing, address issues including separation assurance, communications requirements, and Pilot Aircraft Interfaces (PAIs) in operationally relevant environments
The U.S. Military’s Reliance on Bottled Water During Military Operations
2011-06-17
15 Tony Perry, "Afghan Dam a Monument to US Challenges," Daily Press Newspaper, (September 7...Effects on Operations. Santa Monica, CA: Arroyo Center, RAND Corporation, 2005. Peltz, Eric, Marc L Robbins , Kenneth J Girardini, Rick Eden, John M...Defense Technical Information Center, 2005. Perry, Tony . "Afghan Dam a Monument to US Challenges." Daily Press Newspaper, September 07, 2010. Rogers
Zada, Gabriel; Cavallo, Luigi M; Esposito, Felice; Fernandez-Jimenez, Julio Cesar; Tasiou, Anastasia; De Angelis, Michelangelo; Cafiero, Tullio; Cappabianca, Paolo; Laws, Edward R
2010-10-01
In addition to difficulties with anesthetic and medical management, transsphenoidal operations in patients with longstanding acromegaly are associated with inherent intraoperative challenges because of anatomical variations that occur frequently in these patients. The object of this study was to review the overall safety profile and anatomical/technical challenges associated with transsphenoidal surgery in patients with acromegaly. The authors performed a retrospective analysis of 169 patients who underwent endoscopic transsphenoidal operations for growth hormone-secreting adenomas to assess the incidence of surgical complications. A review of frequently occurring anatomical challenges and operative strategies employed during each phase of the operation to address these particular issues was performed. Of 169 cases reviewed, there was no perioperative mortality. Internal carotid artery injury occurred in 1 patient (0.6%) with complex sinus anatomy, who remained neurologically intact following endovascular unilateral carotid artery occlusion. Other complications included: significant postoperative epistaxis (5 patients [3%]), transient diabetes insipidus (5 patients [3%]), delayed symptomatic hyponatremia (4 patients [2%]), CSF leak (2 patients [1%]), and pancreatitis (1 patient [0.6%]). Preoperative considerations in patients with acromegaly should include a cardiopulmonary evaluation and planning regarding intubation and other aspects of the anesthetic technique. During the nasal phase of the transsphenoidal operation, primary challenges include maintaining adequate visualization and hemostasis, which is frequently compromised by redundant, edematous nasal mucosa and bony hypertrophy of the septum and the nasal turbinates. During the sphenoid phase, adequate bony removal, optimization of working space, and correlation of imaging studies to intraoperative anatomy are major priorities. The sellar phase is frequently challenged by increased sellar floor thickness, distinct patterns of tumor extension and bony invasion, and anatomical variations in the caliber and course of the internal carotid artery. Specific operative techniques for addressing each of these intraoperative challenges are discussed. Transsphenoidal surgery in patients with longstanding acromegaly frequently poses greater challenges than operations for other types of sellar lesions, yet these challenges may be safely and effectively overcome with the anticipation of specific issues and implementation of various intraoperative techniques.
Challenges in building intelligent systems for space mission operations
NASA Technical Reports Server (NTRS)
Hartman, Wayne
1991-01-01
The purpose here is to provide a top-level look at the stewardship functions performed in space operations, and to identify the major issues and challenges that must be addressed to build intelligent systems that can realistically support operations functions. The focus is on decision support activities involving monitoring, state assessment, goal generation, plan generation, and plan execution. The bottom line is that problem solving in the space operations domain is a very complex process. A variety of knowledge constructs, representations, and reasoning processes are necessary to support effective human problem solving. Emulating these kinds of capabilities in intelligent systems offers major technical challenges that the artificial intelligence community is only beginning to address.
Single-stage-to-orbit: Meeting the challenge
NASA Astrophysics Data System (ADS)
Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, Robert Eugene
1995-10-01
There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, and X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.
Single-stage-to-orbit — Meeting the challenge
NASA Astrophysics Data System (ADS)
Freeman, Delma C.; Talay, Theodore A.; Austin, Robert Eugene
1996-02-01
There has been and continues to be significant discussion about the viability of fully reusable, single-stage-to-orbit (SSTO) concepts for delivery of payloads to orbit. Often, these discussions have focused in detail on performance and technology requirements relating to the technical feasibility of the concept, with only broad generalizations on how the SSTO will achieve its economic goals of greatly reduced vehicle ground and flight operations costs. With the current industry and NASA Reusable Launch Vehicle Technology Program efforts underway to mature and demonstrate technologies leading to a viable commercial launch system that also satisfies national needs, achieving acceptable recurring costs becomes a significant challenge. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33, X-34 flight systems and associated technology programs. The paper also examines lessons learned from the recently completed DC-X reusable rocket demonstrator program. It examines how these technologies and flight systems address the technical and operability challenges of SSTO whose solutions are necessary to reduce costs. The paper also discusses the management and operational approaches that address the challenge of a new cost-effective, reusable launch vehicle system.
DOT National Transportation Integrated Search
2016-08-01
Rural and small urban transit providers across the United States face fiscal challenges caused by the growing : gap between the cost of providing transit service and available federal, state, and local funding. In Texas, the : fiscal challenges facin...
NASA Astrophysics Data System (ADS)
Ward, Patrick A.; Corgnale, Claudio; Teprovich, Joseph A.; Motyka, Theodore; Hardy, Bruce; Sheppard, Drew; Buckley, Craig; Zidan, Ragaiy
2016-04-01
Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.
Technical Challenges in the Development of a NASA Synthetic Vision System Concept
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Parrish, Russell V.; Kramer, Lynda J.; Harrah, Steve; Arthur, J. J., III
2002-01-01
Within NASA's Aviation Safety Program, the Synthetic Vision Systems Project is developing display system concepts to improve pilot terrain/situation awareness by providing a perspective synthetic view of the outside world through an on-board database driven by precise aircraft positioning information updating via Global Positioning System-based data. This work is aimed at eliminating visibility-induced errors and low visibility conditions as a causal factor to civil aircraft accidents, as well as replicating the operational benefits of clear day flight operations regardless of the actual outside visibility condition. Synthetic vision research and development activities at NASA Langley Research Center are focused around a series of ground simulation and flight test experiments designed to evaluate, investigate, and assess the technology which can lead to operational and certified synthetic vision systems. The technical challenges that have been encountered and that are anticipated in this research and development activity are summarized.
The Global Outbreak Alert and Response Network
Mackenzie, John S.; Drury, Patrick; Arthur, Ray R.; Ryan, Michael J.; Grein, Thomas; Slattery, Raphael; Suri, Sameera; Domingo, Christine Tiffany; Bejtullahu, Armand
2014-01-01
The Global Outbreak Alert and Response Network (GOARN) was established in 2000 as a network of technical institutions, research institutes, universities, international health organisations and technical networks willing to contribute and participate in internationally coordinated responses to infectious disease outbreaks. It reflected a recognition of the need to strengthen and coordinate rapid mobilisation of experts in responding to international outbreaks and to overcome the sometimes chaotic and fragmented operations characterising previous responses. The network partners agreed that the World Health Organization would coordinate the network and provide a secretariat, which would also function as the operational support team. The network has evolved to comprise 153 institutions/technical partners and 37 additional networks, the latter encompassing a further 355 members and has been directly involved in 137 missions to 79 countries, territories or areas. Future challenges will include supporting countries to achieve the capacity to detect and respond to outbreaks of international concern, as required by the International Health Regulations (2005). GOARN's increasing regional focus and expanding geographic composition will be central to meeting these challenges. The paper summarises some of network's achievements over the past 13 years and presents some of the future challenges. PMID:25186571
The global outbreak alert and response network.
Mackenzie, John S; Drury, Patrick; Arthur, Ray R; Ryan, Michael J; Grein, Thomas; Slattery, Raphael; Suri, Sameera; Domingo, Christine Tiffany; Bejtullahu, Armand
2014-01-01
The Global Outbreak Alert and Response Network (GOARN) was established in 2000 as a network of technical institutions, research institutes, universities, international health organisations and technical networks willing to contribute and participate in internationally coordinated responses to infectious disease outbreaks. It reflected a recognition of the need to strengthen and coordinate rapid mobilisation of experts in responding to international outbreaks and to overcome the sometimes chaotic and fragmented operations characterising previous responses. The network partners agreed that the World Health Organization would coordinate the network and provide a secretariat, which would also function as the operational support team. The network has evolved to comprise 153 institutions/technical partners and 37 additional networks, the latter encompassing a further 355 members and has been directly involved in 137 missions to 79 countries, territories or areas. Future challenges will include supporting countries to achieve the capacity to detect and respond to outbreaks of international concern, as required by the International Health Regulations (2005). GOARN's increasing regional focus and expanding geographic composition will be central to meeting these challenges. The paper summarises some of network's achievements over the past 13 years and presents some of the future challenges.
DOT National Transportation Integrated Search
2013-05-01
The development of both incremental and dedicated high-speed rail lines in the United States poses a number of questions. Despite nearly 50 years of international experience in planning, designing, building and operating high-speed passenger infrastr...
2007-12-01
tremendous opportunity to support telesurgical care using mobile systems, where communication assets are challenging . BODY RESEARCH PLAN This... challenged with constraints of remoteness, limited resources, and limited technical expertise. This telesurgery research, funded by TATRC and reported...utilized iChat (V.2.1.3) for the Apple Macintosh. Technology Summary The challenges of implementing the technology were numerous. Beyond the fact that
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... resolution of issues and challenges involving air transportation concepts, requirements, operational... impact the future Air Traffic Management System. This charter renewal will take effect on April 1, 2013... operational and technological issues that impact the Next Generation Air Transportation System (NextGen...
Enrollment Management Issue Analysis: Operating in a Post-Katrina Higher Education Environment
ERIC Educational Resources Information Center
Jones, Jacqueline; Das, Nabakrishna; Huggins, Desiree'; McNeely, Stanton, III
2008-01-01
A definition and brief history of enrollment management are presented. The challenges represented by Hurricane Katrina for enrollment management at one community technical college and a private 4-year college are identified along with three cases that illuminate the challenges. The need for rapid response planning is articulated. (Contains 1…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearce, R.J.H.; Bell, A.C.; Brennan, D.
'Trace Tritium Experiments' (TTE) were successfully performed on JET in 2003. The Campaign marked the first use of tritium in JET plasmas since the Deuterium-Tritium Experiment (DTE1) Campaign in 1997, and was the first use of tritium in experiments under the EFDA organisation with the UKAEA as JET Operator. The safety and regulatory preparations for the experiment were extensive. Since JET has been operated by the UKAEA the operations have followed the model of a licensed nuclear site. The safe operation of the JET torus is demonstrated in a safety case. Key Safety Management Requirement (KSMR) and Key Safety Relatedmore » Equipment (KSRE) are identified in the Safety Case for DT operation. The safe operation of the torus is within the bounds of, and under the control of, an Authority to Operate (ATO). New technical challenges were presented by the need to inject and account for small quantities of tritium in very short pulses ({approx}80ms), with an accurate time stamp. The safety and operational management of the campaign are described. Valuable lessons were learned which would help in running future experiments. It is concluded that JET is in a strong position to run future trace tritium and full DT discharges.« less
Projects for People: An International Exchange Focused on Drinking Water Quality in Rural Peru
NASA Astrophysics Data System (ADS)
Weathers, T. S.; Tarazona Vasquez, F.; Bailey, E.; Duong, V.; Gonzales Vera, R.; LaPorte, D.; Rojas Cala, B.; Torres Atencia, S.; Vasquez Auqui, J.
2016-12-01
The integration of human-centered design with technical engineering in a classroom setting can be challenging but immensely rewarding if coupled with a community-focused experience. Undergraduate students participated in an international exchange to address drinking water quality in the community of Huamancaca, located in the Junin region of Peru. Technical research and experimentation often comes easily to students in undergraduate engineering programs, however, implementation within a community requires a social license to operate. The objectives of this study were to address the technical challenges of designing a sustainable and effective water filtration system while also ensuring community support and education, coupled with user ownership of the process. In tandem with filter media experimentation with biochar and activated carbon produced using locally available agricultural waste from potatoes and carrots, we visited the people of Huamancaca to understand their needs and concerns. This direct communication with the community was invaluable; we observed that many of the residents' water quality problems could be solved with education. For example, proper sanitation techniques and appropriate addition of bleach or sufficient boiling time may make up for inconsistent water quality provided by the local distribution system. An education plan may also be developed for water treatment plant operators covering chlorine dosage for effective residual treatment within the distribution network in addition to filtration. Upon site visitation and sample collection, we realized that open communication with city officials, operators, business owners, and residents in both technical and social settings is essential for continued collaboration within this community. Solving a tangible problem or designing a product that can be effectively adopted is not a concept that is rigorously addressed in undergraduate education, however the setbacks, challenges, and triumphs experienced when interacting with a community can provide valuable lessons for career development.
DMDs for multi-object near-infrared spectrographs in astronomy
NASA Astrophysics Data System (ADS)
Smee, Stephen A.; Barkhouser, Robert; Hope, Stephen; Conley, Devin; Gray, Aidan; Hope, Gavin; Robberto, Massimo
2018-02-01
The Digital Micromirror Device (DMD), typically used in projection screen technology, has utility in instrumentation for astronomy as a digitally programmable slit in a spectrograph. When placed at an imaging focal plane the device can be used to selectively direct light from astronomical targets into the optical path of a spectrograph, while at the same time directing the remaining light into an imaging camera, which can be used for slit alignment, science imaging, or both. To date the use of DMDs in astronomy has been limited, especially for instruments that operate in the near infrared (1 - 2.5 μm). This limitation is due in part to a host of technical challenges with respect to DMDs that, to date, have not been thoroughly explored. Those challenges include operation at cryogenic temperature, control electronics that facilitate DMD use at these temperatures, window coatings properly coated for the near infrared bandpass, and scattered light. This paper discusses these technical challenges and presents progress towards understanding and mitigating them.
10 CFR 50.36 - Technical specifications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... presents a challenge to the integrity of a fission product barrier. (C) Criterion 3. A structure, system... integrity of a fission product barrier. (D) Criterion 4. A structure, system, or component which operating...
Technical Desiderata for the Integration of Genomic Data into Electronic Health Records
Masys, Daniel R.; Jarvik, Gail P.; Abernethy, Neil F.; Anderson, Nicholas R.; Papanicolaou, George J.; Paltoo, Dina N.; Hoffman, Mark A.; Kohane, Isaac S.; Levy, Howard P.
2012-01-01
The era of “Personalized Medicine,” guided by individual molecular variation in DNA, RNA, expressed proteins and other forms of high volume molecular data brings new requirements and challenges to the design and implementation of Electronic Health Records (EHRs). In this article we describe the characteristics of biomolecular data that differentiate it from other classes of data commonly found in EHRs, enumerate a set of technical desiderata for its management in healthcare settings, and offer a candidate technical approach to its compact and efficient representation in operational systems. PMID:22223081
Electric power restructuring in iran: achievements and challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khosroshahi, Kaveh Aflaki; Jadid, Shahram; Shahidehpour, Mohammad
2009-03-15
Although the power market in Iran is not fully constructed, several key steps have been taken to meet privatization and restructuring objectives. The addition of a power exchange sector has placed the power market on par with that in other countries. Operational concerns that still need to be addressed include technical and non-technical losses, enhancing new investment, and providing incentives for introducing energy efficiency and promoting green power generation. (author)
Choi, Yoonha; Liu, Tiffany Ting; Pankratz, Daniel G; Colby, Thomas V; Barth, Neil M; Lynch, David A; Walsh, P Sean; Raghu, Ganesh; Kennedy, Giulia C; Huang, Jing
2018-05-09
We developed a classifier using RNA sequencing data that identifies the usual interstitial pneumonia (UIP) pattern for the diagnosis of idiopathic pulmonary fibrosis. We addressed significant challenges, including limited sample size, biological and technical sample heterogeneity, and reagent and assay batch effects. We identified inter- and intra-patient heterogeneity, particularly within the non-UIP group. The models classified UIP on transbronchial biopsy samples with a receiver-operating characteristic area under the curve of ~ 0.9 in cross-validation. Using in silico mixed samples in training, we prospectively defined a decision boundary to optimize specificity at ≥85%. The penalized logistic regression model showed greater reproducibility across technical replicates and was chosen as the final model. The final model showed sensitivity of 70% and specificity of 88% in the test set. We demonstrated that the suggested methodologies appropriately addressed challenges of the sample size, disease heterogeneity and technical batch effects and developed a highly accurate and robust classifier leveraging RNA sequencing for the classification of UIP.
A Cost-Benefit Analysis of the National Guard Youth ChalleNGe Program. Technical Report
ERIC Educational Resources Information Center
Perez-Arce, Francisco; Constant, Louay; Loughran, David S.; Karoly, Lynn A.
2012-01-01
Decades of research show that high school dropouts are more likely than graduates to commit crimes, abuse drugs and alcohol, have children out of wedlock, earn low wages, be unemployed, and suffer from poor health. The ChalleNGe program, currently operating in 27 states, is a residential program coupled with post-residential mentoring that seeks…
Integrating high levels of variable renewable energy into electric power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, Benjamin
As more variable renewable energy (VRE) such as wind and solar are integrated into electric power systems, technical challenges arise from the need to maintain the balance between load and generation at all timescales. This paper examines the challenges with integrating ultra-high levels of VRE into electric power system, reviews a range of solutions to these challenges, and provides a description of several examples of ultra-high VRE systems that are in operation today.
Integrating high levels of variable renewable energy into electric power systems
Kroposki, Benjamin
2017-11-17
As more variable renewable energy (VRE) such as wind and solar are integrated into electric power systems, technical challenges arise from the need to maintain the balance between load and generation at all timescales. This paper examines the challenges with integrating ultra-high levels of VRE into electric power system, reviews a range of solutions to these challenges, and provides a description of several examples of ultra-high VRE systems that are in operation today.
Engineering the System and Technical Integration
NASA Technical Reports Server (NTRS)
Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.
2011-01-01
Approximately 80% of the problems encountered in aerospace systems have been due to a breakdown in technical integration and/or systems engineering. One of the major challenges we face in designing, building, and operating space systems is: how is adequate integration achieved for the systems various functions, parts, and infrastructure? This Contractor Report (CR) deals with part of the problem of how we engineer the total system in order to achieve the best balanced design. We will discuss a key aspect of this question - the principle of Technical Integration and its components, along with management and decision making. The CR will first provide an introduction with a discussion of the Challenges in Space System Design and meeting the challenges. Next is an overview of Engineering the System including Technical Integration. Engineering the System is expanded to include key aspects of the Design Process, Lifecycle Considerations, etc. The basic information and figures used in this CR were presented in a NASA training program for Program and Project Managers Development (PPMD) in classes at Georgia Tech and at Marshall Space Flight Center (MSFC). Many of the principles and illustrations are extracted from the courses we teach for MSFC.
[Robotic surgery -- the modern surgical treatment of prostate cancer].
Szabó, Ferenc János; Alexander, de la Taille
2014-09-01
Minimally invasive laparoscopic surgery replaces many open surgery procedures in urology due to its advantages concerning post-operative morbidity. However, the technical challenges and need of learning have limited the application of this method to the work of highly qualified surgeons. The introduction of da Vinci surgical system has offered important technical advantages compared to the laparoscopic surgical procedure. Robot-assisted radical prostatectomy became a largely accepted procedure. It has paved the way for urologists to start other, more complex operations, decreasing this way the operative morbidity. The purpose of this article is to overview the history of robotic surgery, its current and future states in the treatment of the cancer. We present our robot-assisted radical prostatectomy and the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faybishenko, Boris; Birkholzer, Jens; Sassani, David
The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Jessica; Denholm, Paul; Cochran, Jaquelin
2015-06-01
Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. Coordinating balancing area operation can promote more cost and resource efficient integration of variable renewable energy, such as wind and solar, into power systems. This efficiency is achieved by sharing or coordinating balancing resources and operating reserves across larger geographic boundaries.
Adapting Project Management Practices to Research-Based Projects
NASA Technical Reports Server (NTRS)
Bahr, P.; Baker, T.; Corbin, B.; Keith, L.; Loerch, L.; Mullenax, C.; Myers, R.; Rhodes, B.; Skytland, N.
2007-01-01
From dealing with the inherent uncertainties in outcomes of scientific research to the lack of applicability of current NASA Procedural Requirements guidance documentation, research-based projects present challenges that require unique application of classical project management techniques. If additionally challenged by the creation of a new program transitioning from basic to applied research in a technical environment often unfamiliar with the cost and schedule constraints addressed by project management practices, such projects can find themselves struggling throughout their life cycles. Finally, supplying deliverables to a prime vehicle customer, also in the formative stage, adds further complexity to the development and management of research-based projects. The Biomedical Research and Countermeasures Projects Branch at NASA Johnson Space Center encompasses several diverse applied research-based or research-enabling projects within the newly-formed Human Research Program. This presentation will provide a brief overview of the organizational structure and environment in which these projects operate and how the projects coordinate to address and manage technical requirements. We will identify several of the challenges (cost, technical, schedule, and personnel) encountered by projects across the Branch, present case reports of actions taken and techniques implemented to deal with these challenges, and then close the session with an open forum discussion of remaining challenges and potential mitigations.
NASA Technical Reports Server (NTRS)
Fargion, Giulietta S.; McClain, Charles R.; Busalacchi, Antonio J. (Technical Monitor)
2001-01-01
The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRAI) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.
1996 DOE technical standards program workshop: Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The workshop theme is `The Strategic Standardization Initiative - A Technology Exchange and Global Competitiveness Challenge for DOE.` The workshop goal is to inform the DOE technical standards community of strategic standardization activities taking place in the Department, other Government agencies, standards developing organizations, and industry. Individuals working on technical standards will be challenged to improve cooperation and communications with the involved organizations in response to the initiative. Workshop sessions include presentations by representatives from various Government agencies that focus on coordination among and participation of Government personnel in the voluntary standards process; reports by standards organizations, industry, and DOEmore » representatives on current technology exchange programs; and how the road ahead appears for `information superhighway` standardization. Another session highlights successful standardization case studies selected from several sites across the DOE complex. The workshop concludes with a panel discussion on the goals and objectives of the DOE Technical Standards Program as envisioned by senior DOE management. The annual workshop on technical standards has proven to be an effective medium for communicating information related to standards throughout the DOE community. Technical standards are used to transfer technology and standardize work processes to produce consistent, acceptable results. They provide a practical solution to the Department`s challenge to protect the environment and the health and safety of the public and workers during all facility operations. Through standards, the technologies of industries and governments worldwide are available to DOE. The DOE Technical Standards Program, a Department-wide effort that crosscuts all organizations and disciplines, links the Department to those technologies.« less
DOT National Transportation Integrated Search
1998-07-01
This evaluation addresses technical challenges of developing advanced traveler information systems (ATIS) in rural environments, institutional benefits and issues, usefulness of the information to the traveling public, effectiveness of various media ...
NASA Technical Reports Server (NTRS)
1987-01-01
Selected achievements at the Ames-Moffett and Ames-Dryden sites of the Ames Research Center are illustrated. The challenging work that was accomplished in the past year is presented for the following areas: engineering and technical services, aerospace systems, flight operations and research, aerophysics, and space research.
Foster, J D; Miskovic, D; Allison, A S; Conti, J A; Ockrim, J; Cooper, E J; Hanna, G B; Francis, N K
2016-06-01
Laparoscopic rectal resection is technically challenging, with outcomes dependent upon technical performance. No robust objective assessment tool exists for laparoscopic rectal resection surgery. This study aimed to investigate the application of the objective clinical human reliability analysis (OCHRA) technique for assessing technical performance of laparoscopic rectal surgery and explore the validity and reliability of this technique. Laparoscopic rectal cancer resection operations were described in the format of a hierarchical task analysis. Potential technical errors were defined. The OCHRA technique was used to identify technical errors enacted in videos of twenty consecutive laparoscopic rectal cancer resection operations from a single site. The procedural task, spatial location, and circumstances of all identified errors were logged. Clinical validity was assessed through correlation with clinical outcomes; reliability was assessed by test-retest. A total of 335 execution errors identified, with a median 15 per operation. More errors were observed during pelvic tasks compared with abdominal tasks (p < 0.001). Within the pelvis, more errors were observed during dissection on the right side than the left (p = 0.03). Test-retest confirmed reliability (r = 0.97, p < 0.001). A significant correlation was observed between error frequency and mesorectal specimen quality (r s = 0.52, p = 0.02) and with blood loss (r s = 0.609, p = 0.004). OCHRA offers a valid and reliable method for evaluating technical performance of laparoscopic rectal surgery.
Technical support for Life Sciences communities on a production grid infrastructure.
Michel, Franck; Montagnat, Johan; Glatard, Tristan
2012-01-01
Production operation of large distributed computing infrastructures (DCI) still requires a lot of human intervention to reach acceptable quality of service. This may be achievable for scientific communities with solid IT support, but it remains a show-stopper for others. Some application execution environments are used to hide runtime technical issues from end users. But they mostly aim at fault-tolerance rather than incident resolution, and their operation still requires substantial manpower. A longer-term support activity is thus needed to ensure sustained quality of service for Virtual Organisations (VO). This paper describes how the biomed VO has addressed this challenge by setting up a technical support team. Its organisation, tooling, daily tasks, and procedures are described. Results are shown in terms of resource usage by end users, amount of reported incidents, and developed software tools. Based on our experience, we suggest ways to measure the impact of the technical support, perspectives to decrease its human cost and make it more community-specific.
US Topo - A new national map series
Moore, Laurence R.
2011-01-01
In the second half of the 20th century, the foundation of the U.S. Geological Survey's national map series was the handcrafted 7.5-minute topographic map. Times change, budgets get squeezed and currency expectations become ever more challenging. The USGS's Larry Moore, who oversees data production operations at two National Geospatial Technical Operations Centers, provides an introduction to the new US Topo quadrangle maps.
The role of simulation in urological training - A quantitative study of practice and opinions.
Aydin, Abdullatif; Ahmed, Kamran; Shafi, Ahmed M A; Khan, Muhammad Shamim; Dasgupta, Prokar
2016-12-01
Over the past few decades, simulation-based training has rapidly been adopted by many centres for effective technical and non-technical skills training, as a supplementary method to traditional operating room experience. The aim of this study is to assess the current practice in training and seek opinion regarding the future role of simulation in urological training. A cross sectional survey was designed and distributed amongst expert and trainee urological surgeons. The survey consisted of twenty-two questions that were split into three sections; Introduction (6), Technical Skills training in urology (10) and Non-technical skills training in urology (6). A total of 91 residents and 172 specialists completed the survey. In both groups, there was an agreed consensus that laparoscopic training and exposure was insufficient as only 21% of trainees and 23% of specialists believed that they had sufficient training in this area. Furthermore, both groups lacked simulation-based training in common urological procedures including nephrectomy (62%), cystoscopy (69-74%), ureteroscopy (47-59%), transurethral resection of the prostate (56-65%) and percutaneous renal surgery (76-73%). 90% of trainees and 70% of specialists believed (agreed and strongly agreed) that there is a role for non-technical skills simulation in urological training. Simulation training has been under-used thus far and trainees face an uphill challenge to enhance their skills and technical abilities in the operating room. Simulation is recommended by both trainees and specialists and may represent one of the solutions to the challenges of safe and effective urology procedural training. Copyright © 2015 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
NASA's Analog Missions: Driving Exploration Through Innovative Testing
NASA Technical Reports Server (NTRS)
Reagan, Marcum L.; Janoiko, Barbara A.; Parker, Michele L.; Johnson, James E.; Chappell, Steven P.; Abercromby, Andrew F.
2012-01-01
Human exploration beyond low-Earth orbit (LEO) will require a unique collection of advanced, innovative technologies and the precise execution of complex and challenging operational concepts. One tool we in the Analog Missions Project at the National Aeronautics and Space Administration (NASA) utilize to validate exploration system architecture concepts and conduct technology demonstrations, while gaining a deeper understanding of system-wide technical and operational challenges, is our analog missions. Analog missions are multi-disciplinary activities that test multiple features of future spaceflight missions in an integrated fashion to gain a deeper understanding of system-level interactions and integrated operations. These missions frequently occur in remote and extreme environments that are representative in one or more ways to that of future spaceflight destinations. They allow us to test robotics, vehicle prototypes, habitats, communications systems, in-situ resource utilization, and human performance as it relates to these technologies. And they allow us to validate architectural concepts, conduct technology demonstrations, and gain a deeper understanding of system-wide technical and operational challenges needed to support crewed missions beyond LEO. As NASA develops a capability driven architecture for transporting crew to a variety of space environments, including the moon, near-Earth asteroids (NEA), Mars, and other destinations, it will use its analog missions to gather requirements and develop the technologies that are necessary to ensure successful human exploration beyond LEO. Currently, there are four analog mission platforms: Research and Technology Studies (RATS), NASA s Extreme Environment Mission Operations (NEEMO), In-Situ Resource Utilization (ISRU), and International Space Station (ISS) Test bed for Analog Research (ISTAR).
Reusable Launch Vehicle Technology Program
NASA Technical Reports Server (NTRS)
Freeman, Delma C., Jr.; Talay, Theodore A.; Austin, R. Eugene
1996-01-01
Industry/NASA Reusable Launch Vehicle (RLV) Technology Program efforts are underway to design, test, and develop technologies and concepts for viable commercial launch systems that also satisfy national needs at acceptable recurring costs. Significant progress has been made in understanding the technical challenges of fully reusable launch systems and the accompanying management and operational approaches for achieving a low-cost program. This paper reviews the current status of the Reusable Launch Vehicle Technology Program including the DC-XA, X-33 and X-34 flight systems and associated technology programs. It addresses the specific technologies being tested that address the technical and operability challenges of reusable launch systems including reusable cryogenic propellant tanks, composite structures, thermal protection systems, improved propulsion, and subsystem operability enhancements. The recently concluded DC-XA test program demonstrated some of these technologies in ground and flight tests. Contracts were awarded recently for both the X-33 and X-34 flight demonstrator systems. The Orbital Sciences Corporation X-34 flight test vehicle will demonstrate an air-launched reusable vehicle capable of flight to speeds of Mach 8. The Lockheed-Martin X-33 flight test vehicle will expand the test envelope for critical technologies to flight speeds of Mach 15. A propulsion program to test the X-33 linear aerospike rocket engine using a NASA SR-71 high speed aircraft as a test bed is also discussed. The paper also describes the management and operational approaches that address the challenge of new cost-effective, reusable launch vehicle systems.
The Future Cybersecurity Workforce: Going Beyond Technical Skills for Successful Cyber Performance.
Dawson, Jessica; Thomson, Robert
2018-01-01
One of the challenges in writing an article reviewing the current state of cyber education and workforce development is that there is a paucity of quantitative assessment regarding the cognitive aptitudes, work roles, or team organization required by cybersecurity professionals to be successful. In this review, we argue that the people who operate within the cyber domain need a combination of technical skills, domain specific knowledge, and social intelligence to be successful. They, like the networks they operate, must also be reliable, trustworthy, and resilient. Defining the knowledge, skills, attributes, and other characteristics is not as simple as defining a group of technical skills that people can be trained on; the complexity of the cyber domain makes this a unique challenge. There has been little research devoted to exactly what attributes individuals in the cyber domain need. What research does exist places an emphasis on technical and engineering skills while discounting the important social and organizational influences that dictate success or failure in everyday settings. This paper reviews the literature on cyber expertise and cyber workforce development to identify gaps and then argues for the important contribution of social fit in the highly complex and heterogenous cyber workforce. We then identify six assumptions for the future of cybersecurity workforce development, including the requirement for systemic thinkers, team players, a love for continued learning, strong communication ability, a sense of civic duty, and a blend of technical and social skill. Finally, we make recommendations for social and cognitive metrics which may be indicative of future performance in cyber work roles to provide a roadmap for future scholars.
Physical Origins of Space Weather Impacts: Open Physics Questions
NASA Astrophysics Data System (ADS)
Lanzerotti, L. J.
2011-12-01
Beginning with the era of development of electrical telegraph systems in the early 19th century, physical processes in the space environment on the Sun, in the interplanetary medium, and around Earth have influenced the design and operations of ever-increasing and sophisticated technical systems, both in space and on the ground. Understanding of Earth's space environment has increased enormously in the last century and one-half. Nevertheless, many of the physical processes that produced effects on early cable and wireless technologies continue to plague modern-day systems. And as new technologies are developed for improved communications, surveillance, navigation, and conditions for human space flight, the solar-terrestrial environment often offers surprises to their safe, secure and uninterrupted operations. This talk will address some of the challenges that I see to the successful operations of some modern-day technical systems that are posed by significant deficiencies of understanding of physical processes operating from the Sun to the Earth.
DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques Hugo; David Gertman
Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms ofmore » human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.« less
4th Generation ECR Ion Sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyneis, Claude M.; Leitner, D.; Todd, D.S.
2008-12-01
The concepts and technical challenges related to developing a 4th generation ECR ion source with an RF frequency greater than 40 GHz and magnetic confinement fields greater than twice Becr will be explored in this paper. Based on the semi-empirical frequency scaling of ECR plasma density with the square of operating frequency, there should be significant gains in performance over current 3rd generation ECR ion sources, which operate at RF frequencies between 20 and 30 GHz. While the 3rd generation ECR ion sources use NbTi superconducting solenoid and sextupole coils, the new sources will need to use different superconducting materialsmore » such as Nb3Sn to reach the required magnetic confinement, which scales linearly with RF frequency. Additional technical challenges include increased bremsstrahlung production, which may increase faster than the plasma density, bremsstrahlung heating of the cold mass and the availability of high power continuous wave microwave sources at these frequencies. With each generation of ECR ion sources, there are new challenges to be mastered, but the potential for higher performance and reduced cost of the associated accelerator continue to make this a promising avenue for development.« less
SIMBIOS Project 1999 Annual Report
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Fargion, Giulietta S.
1999-01-01
The purpose of this technical memorandum is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.
SIMBIOS Project 1998 Annual Report
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Fargion, Giulietta, S.
1999-01-01
The purpose of this series of technical reports is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Ocean Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant to substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issues by an operational project.
A review of design issues specific to hypersonic flight vehicles
NASA Astrophysics Data System (ADS)
Sziroczak, D.; Smith, H.
2016-07-01
This paper provides an overview of the current technical issues and challenges associated with the design of hypersonic vehicles. Two distinct classes of vehicles are reviewed; Hypersonic Transports and Space Launchers, their common features and differences are examined. After a brief historical overview, the paper takes a multi-disciplinary approach to these vehicles, discusses various design aspects, and technical challenges. Operational issues are explored, including mission profiles, current and predicted markets, in addition to environmental effects and human factors. Technological issues are also reviewed, focusing on the three major challenge areas associated with these vehicles: aerothermodynamics, propulsion, and structures. In addition, matters of reliability and maintainability are also presented. The paper also reviews the certification and flight testing of these vehicles from a global perspective. Finally the current stakeholders in the field of hypersonic flight are presented, summarizing the active programs and promising concepts.
Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies (Spanish Version)
DOE Office of Scientific and Technical Information (OSTI.GOV)
This is the Spanish version of 'Greening the Grid - Advancing Solar, Wind, and Smart Grid Technologies'. Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid.
Mission-Centered Network Models: Defending Mission-Critical Tasks From Deception
2015-09-29
celebrities ). In military applications, networked operations offer an effective way to reduce the footprint of a force, but become a center of gravity...from,-used-by-trust-algorithms-to-assess-quality-and- trustworthiness - • Technical&challenge:-Developing-standard-representa3ons-for-provenance-that
Dehnavieh, Reza; Haghdoost, AliAkbar; Khosravi, Ardeshir; Hoseinabadi, Fahime; Rahimi, Hamed; Poursheikhali, Atousa; Khajehpour, Nahid; Khajeh, Zahra; Mirshekari, Nadia; Hasani, Marziyeh; Radmerikhi, Samera; Haghighi, Hajar; Mehrolhassani, Mohammad Hossain; Kazemi, Elaheh; Aghamohamadi, Saeide
2018-01-01
Health information systems offer many potential benefits for healthcare, including financial benefits and for improving the quality of patient care. The purpose of District Health Information Systems (DHIS) is to document data that are routinely collected in all public health facilities in a country using the system. The aim of this study was to examine the strengths and operational challenges of DHIS2, with a goal to enable decision makers in different counties to more accurately evaluate the outcomes of introducing DHIS2 into their particular country. A review of the literature combined with the method of meta-synthesis was used to source information and interpret results relating to the strengths and operational challenges of DHIS2. Databases (Embase, PubMed, Scopus and Google Scholar) were searched for documents related to strengths and operational challenges of DHIS2, with no time limit up to 8 April 2017. The review and evaluation of selected studies was conducted in three stages: title, abstract and full text. Each of the selected studies was reviewed carefully and key concepts extracted. These key concepts were divided into two categories of strengths and operational challenges of DHIS2. Then, each category was grouped based on conceptual similarity to achieve the main themes and sub-themes. Content analysis was used to analyse extracted data. Of 766 identified citations, 20 studies from 11 countries were included and analysed in this study. Identified strengths in the DHIS were represented in seven themes (with 21 categories): technical features of software, proper management of data, application flexibility, networking and increasing the satisfaction of stakeholders, development of data management, increasing access to information and economic benefits. Operational challenges were identified and captured in 11 themes (with 18 categories): funds; appropriate communication infrastructure; the need for the existence of appropriate data; political, cultural, social and structural infrastructure; manpower; senior managers; training; using academic potentials; definition and standardising the deployment processes; neglect to application of criteria and clinical guidelines in the use of system; data security; stakeholder communications challenges and the necessity to establish a pilot system. This study highlighted specific strengths in the technical and functional aspects of DHIS2 and also drew attention to particular challenges and concerns. These results provide a sound evidence base for decision makers and policymakers to enable them to make more accurate decisions about whether or not to use the DHIS2 in the health system of their country.
Criteria and Planning Guidance for Ex-Plant Harvesting to Support Subsequent License Renewal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Devanathan, Ram; Meyer, Ryan M.
As U.S. nuclear power plants look to subsequent license renewal (SLR) to operate for a 20-year period beyond 60 years, the U.S. Nuclear Regulatory Commission and the industry will be addressing technical issues around the capability of long-lived passive components to meet their functionality objectives. A key challenge will be to better understand likely materials degradation mechanisms in these components and their impacts on component functionality and margins to safety. Research addressing many of the remaining technical gaps in these areas for SLR may greatly benefit from materials sampled from plants (decommissioned or operating). Because of the cost and inefficiencymore » of piecemeal sampling, there is a need for a strategic and systematic approach to sampling materials from structures, systems, and components (SSC) in both operating and decommissioned plants. This document describes a potential approach for sampling (harvesting) materials that focuses on prioritizing materials for sampling using a number of criteria. These criteria are based on an evaluation of technical gaps identified in the literature, research needs to address these technical gaps, and lessons learned from previous harvesting campaigns. The document also describes a process for planning future harvesting campaigns; such a plan would include an understanding of the harvesting priorities, available materials, and the planned use of the materials to address the technical gaps.« less
2006-06-01
series with the Philippines, Indonesia, Singapore, Malaysia , Brunei, and the United States. Another example of regional collaboration is the South East...computers to choose from producers such as Sony , Fujitsu, Compaq, Toshiba, Macintosh or a custom-built PC. The selection depends on factors such as
Assemby, test, and launch operations for the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Wallace, Matthew T.; Hardy, Paul V.; Romero, Raul A.; Salvo, Christopher G.; Shain, Thomas W.; Thompson, Arthur D.; Wirth, John W.
2005-01-01
In January of 2004, NASA's twin Mars rovers, Spirit and Opportunity, successfully landed on opposite sides of the Red Planet after a seven month Earth to Mars cruise period. Both vehicles have operated well beyond their 90 day primary mission design life requirements. The Assembly, Test, and Launch Operations (ATLO) program for these missions presented unique technical and schedule challenges to the team at the Jet Propulsion Laboratory (JPL). Among these challenges were a highly compressed schedule and late deliveries leading to extended double shift staffing, dual spacecraft operations requiring test program diversification and resource arbitration, multiple atypical test configurations for airbag/rocket landings and surface mobility testing, and verification of an exceptionally large number of separations, deployments, and mechanisms. This paper discusses the flight system test philosophies and approach, and presents lessons learned.
History of Space Shuttle Rendezvous
NASA Technical Reports Server (NTRS)
Goodman, John L.
2011-01-01
This technical history is intended to provide a technical audience with an introduction to the rendezvous and proximity operations history of the Space Shuttle Program. It details the programmatic constraints and technical challenges encountered during shuttle development in the 1970s and over thirty years of shuttle missions. An overview of rendezvous and proximity operations on many shuttle missions is provided, as well as how some shuttle rendezvous and proximity operations systems and flight techniques evolved to meet new programmatic objectives. This revised edition provides additional information on Mercury, Gemini, Apollo, Skylab, and Apollo/Soyuz. Some chapters on the Space Shuttle have been updated and expanded. Four special focus chapters have been added to provide more detailed information on shuttle rendezvous. A chapter on the STS-39 mission of April/May 1991 describes the most complex deploy/retrieve mission flown by the shuttle. Another chapter focuses on the Hubble Space Telescope servicing missions. A third chapter gives the reader a detailed look at the February 2010 STS-130 mission to the International Space Station. The fourth chapter answers the question why rendezvous was not completely automated on the Gemini, Apollo, and Space Shuttle vehicles.
The expanded role of computers in Space Station Freedom real-time operations
NASA Technical Reports Server (NTRS)
Crawford, R. Paul; Cannon, Kathleen V.
1990-01-01
The challenges that NASA and its international partners face in their real-time operation of the Space Station Freedom necessitate an increased role on the part of computers. In building the operational concepts concerning the role of the computer, the Space Station program is using lessons learned experience from past programs, knowledge of the needs of future space programs, and technical advances in the computer industry. The computer is expected to contribute most significantly in real-time operations by forming a versatile operating architecture, a responsive operations tool set, and an environment that promotes effective and efficient utilization of Space Station Freedom resources.
A Survey of Terrestrial Approaches to the Challenge of Lunar Dust Containment
NASA Technical Reports Server (NTRS)
Aguilera, Tatiana; Perry, Jay L.
2009-01-01
Numerous technical challenges exist to successfully extend lunar surface exploration beyond the tantalizing first steps of Apollo. Among these is the challenge of lunar dust intrusion into the cabin environment. Addressing this challenge includes the design of barriers to intrusion as well as techniques for removing the dust from the cabin atmosphere. Opportunities exist for adapting approaches employed in dusty industrial operations and pristine manufacturing environments to cabin environmental quality maintenance applications. A survey of process technologies employed by the semiconductor, pharmaceutical, food processing, and mining industries offers insight into basic approaches that may be suitable for adaptation to lunar surface exploration applications.
The Future Cybersecurity Workforce: Going Beyond Technical Skills for Successful Cyber Performance
Dawson, Jessica; Thomson, Robert
2018-01-01
One of the challenges in writing an article reviewing the current state of cyber education and workforce development is that there is a paucity of quantitative assessment regarding the cognitive aptitudes, work roles, or team organization required by cybersecurity professionals to be successful. In this review, we argue that the people who operate within the cyber domain need a combination of technical skills, domain specific knowledge, and social intelligence to be successful. They, like the networks they operate, must also be reliable, trustworthy, and resilient. Defining the knowledge, skills, attributes, and other characteristics is not as simple as defining a group of technical skills that people can be trained on; the complexity of the cyber domain makes this a unique challenge. There has been little research devoted to exactly what attributes individuals in the cyber domain need. What research does exist places an emphasis on technical and engineering skills while discounting the important social and organizational influences that dictate success or failure in everyday settings. This paper reviews the literature on cyber expertise and cyber workforce development to identify gaps and then argues for the important contribution of social fit in the highly complex and heterogenous cyber workforce. We then identify six assumptions for the future of cybersecurity workforce development, including the requirement for systemic thinkers, team players, a love for continued learning, strong communication ability, a sense of civic duty, and a blend of technical and social skill. Finally, we make recommendations for social and cognitive metrics which may be indicative of future performance in cyber work roles to provide a roadmap for future scholars. PMID:29946276
Karimi, Ashkan; Pourafshar, Negiin; Dibu, George; Beaver, Thomas M; Bavry, Anthony A
2017-06-01
A 55-year-old male with a history of two prior cardiac surgeries presented with decompensated heart failure due to severe bioprosthetic aortic valve insufficiency. A third operation was viewed prohibitively high risk and valve-in-valve trans-catheter aortic valve replacement was considered. There were however several high-risk features and technically challenging aspects including low coronary ostia height, poor visualization of the aortic sinuses, and difficulty in identification of the coplanar view due to severe aortic insufficiency, and a highly mobile aortic valve mass. After meticulous peri-procedural planning, trans-catheter aortic valve replacement was carried out with a SAPIEN 3 balloon-expandable valve without any complication. Strategies undertaken to navigate the technically challenging aspects of the case are discussed.
The NASA Scientific and Technical Information Program: Exploring challenges, creating opportunities
NASA Technical Reports Server (NTRS)
Sepic, Ronald P.
1993-01-01
The NASA Scientific and Technical Information (STI) Program offers researchers access to the world's largest collection of aerospace information. An overview of Program activities, products and services, and new directions is presented. The R&D information cycle is outlined and specific examples of the NASA STI Program in practice are given. Domestic and international operations and technology transfer activities are reviewed and an agenda for the STI Program NASA-wide is presented. Finally, the incorporation of Total Quality Management and evaluation metrics into the STI Program is discussed.
NASA's 2004 Hall Thruster Program
NASA Technical Reports Server (NTRS)
Jacobson, David T.; Manzella, David H.; Hofer, Richard R.; Peterson, Peter Y.
2004-01-01
An overview of NASA's Hall thruster research and development tasks conducted during fiscal year 2004 is presented. These tasks focus on: raising the technology readiness level of high power Hall thrusters, developing a moderate-power/ moderate specific impulse Hall thruster, demonstrating high-power/high specific impulse Hall thruster operation, and addressing the fundamental technical challenges of emerging Hall thruster concepts. Programmatic background information, technical accomplishments and out year plans for each program element performed under the sponsorship of the In-Space Transportation Program, Project Prometheus, and the Energetics Project are provided.
Maintaining technical excellence requires a national plan
NASA Technical Reports Server (NTRS)
Davidson, T. F.
1991-01-01
To meet the challenge of technical excellence, AIA established a rocket propulsion committee to develop the National Rocket Propulsion Strategic Plan. Developing such a plan required a broad spectrum of experience and disciplines. The Strategic Plan team needed the participation of industry, government, and academia. The plan provides, if followed, a means for the U.S. to maintain technical excellence and world leadership in rocket propulsion. To implement the National Rocket Propulsion Strategic Plan is to invest in the social, economic, and technological futures of America. The plan lays the basis for upgrading existing propulsion systems and a firm base for future full scale development, production, and operation of rocket propulsion systems for space, defense, and commercial applications.
MODIS Validation, Data Merger and Other Activities Accomplished by the SIMBIOS Project: 2002-2003
NASA Technical Reports Server (NTRS)
Fargion, Giulietta S.; McClain, Charles R.
2003-01-01
The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, satellite data processing, and data product validation. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report focuses on the SIMBIOS Project s efforts in support of the Moderate-Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra platform (similar evaluations of MODIS/Aqua are underway). This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.
Operational Interventions to Maintenance Error
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.; Walter, Diane; Dulchinos, VIcki
1997-01-01
A significant proportion of aviation accidents and incidents are known to be tied to human error. However, research of flight operational errors has shown that so-called pilot error often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the team7 concept for maintenance operations and in tailoring programs to fit the needs of technical opeRAtions. Nevertheless, there remains a dual challenge: 1) to develop human factors interventions which are directly supported by reliable human error data, and 2) to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.
Reduction of Maintenance Error Through Focused Interventions
NASA Technical Reports Server (NTRS)
Kanki, Barbara G.; Walter, Diane; Rosekind, Mark R. (Technical Monitor)
1997-01-01
It is well known that a significant proportion of aviation accidents and incidents are tied to human error. In flight operations, research of operational errors has shown that so-called "pilot error" often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the "team" concept for maintenance operations and in tailoring programs to fit the needs of technical operations. Nevertheless, there remains a dual challenge: to develop human factors interventions which are directly supported by reliable human error data, and to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.
Remotely Operating a Fourier Transform Spectrometer for Atmospheric Remote Sensing
NASA Technical Reports Server (NTRS)
Blavier, J.-F.; Toon, G. C.; Sen, B.
2000-01-01
This paper describes how the MkIV instrument was adapted for remote operation from the Barcroft site, where the harsh winter conditions make access difficult. Some of the main technical challenges will be discussed including, (i) operation from solar panels and batteries, (ii) cooling the detectors with LN2, (iii) instrument control and monitoring over a cellular phone, and (iv) data storage, processing and analysis. Finally, MkIV spectra measured from Barcroft and compared with those measured from JPL to highlight the advantages of the higher altitude site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deuel, Jamieson K.; Mullaney, Christopher
The Western National Robot Rodeo & CAPEX (Capability Exercise) is a technical competition for military and civilian bomb squads and emergency responders that puts teams through ten to twelve challenging scenarios ranging from operator skill to full mission planning, execution, and TTPs (Tactics, Training, and Procedures). “The goal of the event is to make good robot operators into great robot operators,” Jake Deuel says. Jake Deuel of Sandia National Laboratories co-hosts the event each year with Chris Ory of Los Alamos National Laboratories. This year’s competition was held at Sandia Labs in Albuquerque, New Mexico.
Neutron Imaging Control Report: FY 2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, D. J.
2016-11-30
During the 2016 fiscal year, work began on the supervision and control systems for the neutron source currently under construction in the B194 accelerator caves. This source relies on a deuteron beam colliding with a high-speed stream of deuterium gas to create neutrons, which poses significant technical challenges. To help overcome those challenges, an integrated, operator-focused control architecture is required to collect and assimilate disparate data from a variety of measurement points, as well as provide the means to remotely control the system hardware.
2011-12-01
prepares for storms.” 11 RAND, High Altitude Airships for the Future Force Army, 32. 12 Boyd to author, email, 23 September 2011. 27...2011). High Altitude Airships for the Future Force Army, RAND Technical Report DASW01-01-C-0003. Santa Monica, CA: RAND, 2005. www.rand.org/pubs...beginning to realize the potential capabilities of HA for lift, misinformed opinions on airship challenges continue to plague a rational analysis on
ERIC Educational Resources Information Center
Research and Curriculum Unit, 2005
2005-01-01
Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…
ERIC Educational Resources Information Center
Gorman, Nathan; Parker, Ronald; Lurie, Charles; Maples, Thomas
2005-01-01
Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…
NASA Technical Reports Server (NTRS)
Welch, Gerand E.
2010-01-01
The main rotors of the NASA Large Civil Tilt-Rotor notional vehicle operate over a wide speed-range (100% at take-off to 54% at cruise). The variable-speed power turbine, when coupled to a fixed-gear-ratio transmission, offers one approach to accomplish this speed variation. The key aero-challenges of the variable-speed power turbine are related to high work factors at cruise, where the power turbine operates at 54% of take-off speed, wide incidence variations into the vane, blade, and exit-guide-vane rows associated with the power-turbine speed change, and the impact of low aft-stage Reynolds number (transitional flow) at 28 kft cruise. Meanline and 2-D Reynolds-Averaged Navier- Stokes analyses are used to characterize the variable-speed power-turbine aerodynamic challenges and to outline a conceptual design approach that accounts for multi-point operation. Identified technical challenges associated with the aerodynamics of high work factor, incidence-tolerant blading, and low Reynolds numbers pose research needs outlined in the paper
NASA Technical Reports Server (NTRS)
Varsi, Giulio
1989-01-01
The problem of the remote control of space operations is addressed by identifying the key technical challenge: the management of contact forces and the principal performance parameters. Three principal classes of devices for remote operation are identified: anthropomorphic exoskeletons, computer aided teleoperators, and supervised telerobots. Their fields of application are described, and areas in which progress has reached the level of system or subsystem laboratory demonstrations are indicated. Key test results, indicating performance at a level useful for design tradeoffs, are reported.
Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challenge
NASA Technical Reports Server (NTRS)
Dubon, Lydia P.
2006-01-01
The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), manages the project and is responsible for flight operation; Orbital Sciences Corporation (OSC), is the spacecraft builder and is responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), is responsible for science planning and operations. As a cost-capped mission, one of Dawn's implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL's ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL's GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project's commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to fundamental systems engineering practices: decomposition of the project request into manageable requirements; integration of multiple ground disciplines and experts into a focused team effort; definition of a structured yet flexible development process; definition of an in-process risk reduction plan; and aggregation of the intermediate products to an integrated final product. In addition, this paper will highlight the role of lessons learned from the integration experience. The lessons learned from an early GDS deployment have served as the foundation for the design and implementation of the Dawn Ground Data System.
Training for single port video assisted thoracoscopic surgery lung resections.
McElnay, Philip J; Lim, Eric
2015-11-01
With many surgical training programmes providing less time for training it can be challenging for trainees to acquire the necessary surgical skills to perform complex video assisted thoracoscopic surgery (VATS) lung resections. Indeed as the utilization of single port operations increases the need to approach the operating theatre with already-existing excellent hand-eye coordination skills increases. We suggest that there are a number of ways that trainees can begin to develop these necessary skills. Firstly, using computer games that involve changing horizons and orientations. Secondly, utilizing box-trainers to practice using the thoracoscopic instruments. Thirdly, learning how essential tools such as the stapler work. Trainees will then be able to progress to meaningfully assisting in theatre and indeed learning how to perform the operation themselves. At this stage is useful to observe expert surgeons whilst they operate-to watch both their technical and non-technical skills. Ultimately, surgery is a learned skill and requires implementation of these techniques over a sustained period of time.
The Human Dimension of Closing the Training Gap for Fifth-Generation Fighters
NASA Technical Reports Server (NTRS)
Hoke, Jaclyn; Postnikov, Alex; Schnell, Thomas
2012-01-01
Based on a review of the recent technical literature there is little question that a serious training gap exists for fifth-generation fighters, primarily arising from the need to provide their own red-air. There are several methods for reducing this gap, including injecting virtual and constructive threats into the live cockpit. This live-virtual-constructive (LVC) training approach provides a cost effective means for addressing training needs but faces several challenges. Technical challenges include data links and information assurance. A more serious challenge may be the human factors dimension of representing virtual and constructive entities in the cockpit while ensuring safety-of-flight. This also needs to happen without increasing pilot workload. This paper discusses the methods Rockwell Collins and the University of Iowa's Operator Performance Lab use to assess pilot workload and training fidelity measures in an LVC training environment and the research we are conducting in safety-of-flight requirements of integrated LVC symbology.
NASA Technical Reports Server (NTRS)
Fargion, Giulietta S.; Barnes, Robert; McClain, Charles
2001-01-01
The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project Office activities on in situ aerosol optical thickness (i.e., protocols, and data QC and analysis). This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.
The DOE Bioenergy Research Centers: History, Operations, and Scientific Output
Slater, Steven C.; Simmons, Blake A.; Rogers, Tamara S.; ...
2015-08-20
Over the past 7 years, the US Department of Energy's Office of Biological and Environmental Research has funded three Bioenergy Research Centers (BRCs). These centers have developed complementary and collaborative research portfolios that address the key technical and economic challenges in biofuel production from lignocellulosic biomass. All three centers have established a close, productive relationship with DOE's Joint Genome Institute (JGI). This special issue of Bioenergy Research samples the breadth of basic science and engineering work required to underpin a diverse, sustainable, and robust biofuel industry. In this report, which was collaboratively produced by all three BRCs, we discuss themore » BRC contributions over their first 7 years to the development of renewable transportation fuels. In additon, we also highlight the BRC research published in the current issue and discuss technical challenges in light of recent progress.« less
Laparoscopic partial nephrectomy: Technical considerations and an update
Dominguez-Escrig, Jose L; Vasdev, Nikhil; O’Riordon, Anna; Soomro, Naeem
2011-01-01
The widespread use of radiological imaging (ultrasound, computed tomography and magnetic resonance imaging) has resulted in a steady increase in the incidental diagnosis of small renal masses. While open partial nephrectomy (OPN) remains the reference standard for the management of small renal masses, laparoscopic partial nephrectomy (LPN) continues to evolve. LPN is currently advocated to be at par with OPN oncologically. The steep learning curve and technical demand of LPN make it challenging to establish this as a new procedure. We present a detailed up-to-date review on the previous, current and planned technical considerations for the use of LPN, highlighting important surgical techniques, including single-port and robotic surgery, techniques on improving intra-operative haemostasis and the management of complications specific to LPN. PMID:22022109
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hallbert, Bruce Perry; Thomas, Kenneth David
2015-10-01
Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.
2012-02-01
CJCS’s) companion document, the Capstone Concept for Joint Operations (CCJO) (discussed below) "ibid., 28. "That said, it should be noted that it...Capstone Concept for Joint Operations (CCJO) The companion document to the JOE that answers the challenges of the future identified in the JOE (and...Karin E. Kitchens , Aaron Martin, A Review of the Army’s Modular Force Structure" (RAND National Defense Research Institute, Technical Report,Jun. 2011
LESSONS LEARNED IN OPERATING THE HOSE-IN-HOSE SYSTEM FOR TRANSFSERRING SLUDGE AT HANFORDS K-BASINS
DOE Office of Scientific and Technical Information (OSTI.GOV)
PERES MW
In May 2007, the Department of Energy and the Fluor Hanford K Basin Closure Project completed transferring sludge from the K East Basin to new containers in the K West Basin using a Hose-in-Hose system. This project presented a number of complex and unique technical, operational, and management challenges that had to be resolved to complete the required transfers and satisfy project milestones. The project team (including DOE; regulators; and Fluor management, operations, maintenance, engineering and all other support organizations) found innovative solutions to each challenge. This paper records lessons learned during the operational phase of the sludge transfer viamore » the Hose-In-Hose system. The subject is limited to the operational phase and does not cover design, development, testing or turnover. A discussion of the situation or problem encountered is provided, along with the lesson learned as applicable to a future program or project.« less
ERIC Educational Resources Information Center
James, Lee; James, Terry; Washington, Lee; Taylor, John Grady; Rushing, Jimmy
2007-01-01
Secondary vocational-technical education programs in Mississippi are faced with many challenges resulting from sweeping educational reforms at the national and state levels. Schools and teachers are increasingly being held accountable for providing true learning activities to every student in the classroom. This accountability is measured through…
NASA Technical Reports Server (NTRS)
Kezirian, M. T.
2007-01-01
As NASA implements the nation's Vision for Space Exploration to return to the moon and travel to Mars, new considerations will be be given to the processes governing design and operations of manned spaceflight. New objectives bring new technical challenges; Safety will drive many of these decisions.
ERIC Educational Resources Information Center
Hollinshead, Graham
2006-01-01
This study is set in the rapidly changing higher educational environment that has ensued in Serbia and Montenegro in the post Milosevic era. Its primary focus is a "Training Trainers" initiative, mounted by the GTZ (Deutsche Gesellschaft fur Technische Zusammenarbeit/Society for Technical Co-operation), designed to upgrade the teaching…
Introduction to special section on The U.S. IOOS Coastal and Ocean Modeling Testbed
NASA Astrophysics Data System (ADS)
Luettich, Richard A.; Wright, L. Donelson; Signell, Richard; Friedrichs, Carl; Friedrichs, Marjy; Harding, John; Fennel, Katja; Howlett, Eoin; Graves, Sara; Smith, Elizabeth; Crane, Gary; Baltes, Rebecca
2013-12-01
Strong and strategic collaborations among experts from academia, federal operational centers, and industry have been forged to create a U.S. IOOS Coastal and Ocean Modeling Testbed (COMT). The COMT mission is to accelerate the transition of scientific and technical advances from the coastal and ocean modeling research community to improved operational ocean products and services. This is achieved via the evaluation of existing technology or the development of new technology depending on the status of technology within the research community. The initial phase of the COMT has addressed three coastal and ocean prediction challenges of great societal importance: estuarine hypoxia, shelf hypoxia, and coastal inundation. A fourth effort concentrated on providing and refining the cyberinfrastructure and cyber tools to support the modeling work and to advance interoperability and community access to the COMT archive. This paper presents an overview of the initiation of the COMT, the findings of each team and a discussion of the role of the COMT in research to operations and its interface with the coastal and ocean modeling community in general. Detailed technical results are presented in the accompanying series of 16 technical papers in this special issue.
Distributed architecture and distributed processing mode in urban sewage treatment
NASA Astrophysics Data System (ADS)
Zhou, Ruipeng; Yang, Yuanming
2017-05-01
Decentralized rural sewage treatment facility over the broad area, a larger operation and management difficult, based on the analysis of rural sewage treatment model based on the response to these challenges, we describe the principle, structure and function in networking technology and network communications technology as the core of distributed remote monitoring system, through the application of case analysis to explore remote monitoring system features in a decentralized rural sewage treatment facilities in the daily operation and management. Practice shows that the remote monitoring system to provide technical support for the long-term operation and effective supervision of the facilities, and reduced operating, maintenance and supervision costs for development.
NASA Technical Reports Server (NTRS)
Johnson, Charles W.
2011-01-01
The vision of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) Project is "A global transportation system which allows routine access for all classes of UAS." The goal of the UAS Integration in the NAS Project is to "contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS." This goal will be accomplished through a two-phased approach based on development of system-level integration of key concepts, technologies and/or procedures, and demonstrations of integrated capabilities in an operationally relevant environment. Phase 1 will take place the first two years of the Project and Phase 2 will take place the following three years. The Phase 1 and 2 technical objectives are: Phase 1: Developing a gap analysis between current state of the art and the Next Generation Air Transportation System (NextGen) UAS Concept of Operations . Validating the key technical areas identified by this Project . Conducting initial modeling, simulation, and flight testing activities . Completing Sub-project Phase 1 deliverables (spectrum requirements, comparative analysis of certification methodologies, etc.) and continue Phase 2 preparation (infrastructure, tools, etc.) Phase 2: Providing regulators with a methodology for developing airworthiness requirements for UAS, and data to support development of certifications standards and regulatory guidance . Providing systems-level, integrated testing of concepts and/or capabilities that address barriers to routine access to the NAS. Through simulation and flight testing, address issues including separation assurance, communications requirements, and human systems integration in operationally relevant environments. The UAS in the NAS Project will demonstrate solutions in specific technology areas, which will address operational/safety issues related to UAS access to the NAS. Since the resource allocation for this Project is limited ($150M over the five years), the focus is on reducing the technical barriers where NASA has unique capabilities. As a result, technical areas, such as Sense and Avoid (SAA) and beyond line of sight command and control will not be addressed. While these are critical barriers to UAS access, currently, there is a great deal of global effort being exercised to address these challenge areas. Instead, specific technology development in areas where there is certainty that NASA can advance the research to high technology readiness levels will be the Project's focus. Specific sub-projects include Separation Assurance, Human Systems Integration, Communications, Certification, and Integrated Test and Evaluation. Each sub-project will transfer technologies to relevant key stakeholders and decision makers through research transition teams, technology forums, or through other analogous means.
Implantable radio frequency identification sensors: wireless power and communication.
Hutchens, Chriswell; Rennaker, Robert L; Venkataraman, Srinivasan; Ahmed, Rehan; Liao, Ran; Ibrahim, Tamer
2011-01-01
There are significant technical challenges in the development of a fully implantable wirelessly powered neural interface. Challenges include wireless transmission of sufficient power to the implanted device to ensure reliable operation for decades without replacement, minimizing tissue heating, and adequate reliable communications bandwidth. Overcoming these challenges is essential for the development of implantable closed loop system for the treatment of disorders ranging from epilepsy, incontinence, stroke and spinal cord injury. We discuss the development of the wireless power, communication and control for a Radio-Frequency Identification Sensor (RFIDS) system with targeted power range for a 700 mV, 30 to 40 uA load attained at -2 dBm.
Zero Energy Schools: The Challenges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torcellini, Paul A
School buildings have a lot of potential to achieve zero energy (ZE) in new construction as well as in retrofits. There are many examples of schools operating at ZE, and many technical resources available to guide school districts and their design and construction teams through the process. When school districts embark on the path to ZE, however, they often confront challenges related to processes and a perception that ZE buildings require 'new,' unconventional, and expensive technologies, materials, or equipment. Here are some of the challenges school districts and their design and construction teams commonly encounter, and the solutions they usemore » to overcome them.« less
The key to successful management of STS operations: An integrated production planning system
NASA Technical Reports Server (NTRS)
Johnson, W. A.; Thomasen, C. T.
1985-01-01
Space Transportation System operations managers are being confronted with a unique set of challenges as a result of increasing flight rates, the demand for flight manifest/production schedule flexibility and an emphasis on continued cost reduction. These challenges have created the need for an integrated production planning system that provides managers with the capability to plan, schedule, status and account for an orderly flow of products and services across a large, multi-discipline organization. With increased visibility into the end-to-end production flow for individual and parallel missions in process, managers can assess the integrated impact of changes, identify and measure the interrelationships of resource, schedule, and technical performance requirements and prioritize productivity enhancements.
NASA Technical Reports Server (NTRS)
Ryan, Robert S.
1994-01-01
Structural dynamics and its auxiliary fields are the most progressive and challenging areas space system engineering design and operations face. Aerospace systems are dependent on structural dynamicists for their success. Past experiences (history) are colored with many dynamic issues, some producing ground or flight test failures. The innovation and creativity that was brought to these issues and problems are the aura from the past that lights the path to the future. Using this illumination to guide understanding of the dynamic phenomena and designing for its potential occurrence are the keys to successful space systems. Our great paradox, or challenge, is how we remain in depth specialists, yet become generalists to the degree that we make good team members and set the right priorities. This paper will deal with how we performed with acclaim in the past, the basic characteristics of structural dynamics (loads cycle, for example), and the challenges of the future.
NASA Technical Reports Server (NTRS)
VanHeukelem, Laurie; Thomas, Crystal S.; Gilbert, Patricia M.; Fargion, Giulietta S. (Editor); McClain, Charles R. (Editor)
2002-01-01
The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project. This particular document focus on the variability in chlorophyll pigment measurements resulting from differences in methodologies and laboratories conducting the pigment analysis.
Subscale Test Methods for Combustion Devices
NASA Technical Reports Server (NTRS)
Anderson, W. E.; Sisco, J. C.; Long, M. R.; Sung, I.-K.
2005-01-01
Stated goals for long-life LRE s have been between 100 and 500 cycles: 1) Inherent technical difficulty of accurately defining the transient and steady state thermochemical environments and structural response (strain); 2) Limited statistical basis on failure mechanisms and effects of design and operational variability; and 3) Very high test costs and budget-driven need to protect test hardware (aversion to test-to-failure). Ambitious goals will require development of new databases: a) Advanced materials, e.g., tailored composites with virtually unlimited property variations; b) Innovative functional designs to exploit full capabilities of advanced materials; and c) Different cycles/operations. Subscale testing is one way to address technical and budget challenges: 1) Prototype subscale combustors exposed to controlled simulated conditions; 2) Complementary to conventional laboratory specimen database development; 3) Instrumented with sensors to measure thermostructural response; and 4) Coupled with analysis
NASA Astrophysics Data System (ADS)
Kienle, Holger M.; Lober, Andreas; Vasiliu, Crina A.; Müller, Hausi A.
Virtual worlds such as World of Warcraft and Second Life enable consumers as producers, that is users can choose to be passive consumers of content, active producers of content, or both. Consumers as producers poses unique challenges and opportunities for both operators and users of virtual worlds. While the degrees of freedom for user-generated content differ depending on the world, instances of consumers as producers can be found in many virtual worlds. In this paper we characterize consumers as producers with the help of four "lenses"—social, technical, economic, and legal—and use the lenses to discuss implications for operators and users. These lenses provide a complementary analysis of consumers as producers from different angels and shows that an understanding of it requires a holistic approach.
Laparoscopic sleeve gastrectomy in patients with abdominoplasty: a case-control study.
Saber, Alan A; Shoar, Saeed; El-Matbouly, Moamena; Karem, Mohsen; Bashah, Moataz M; Al Najjar, Ahmad; Alkuwari, Mohammad J; Soltanian, Hooman
2017-02-01
Abdominoplasty is increasingly performed after weight loss surgery. However, performing a laparoscopic sleeve gastrectomy (LSG) after abdominoplasty poses technical challenges. The present study aimed to compare operative events and postoperative outcomes between LSG patients with and without a history of prior abdominoplasty. University hospital, Qatar. A case-control study was conducted on 2 groups of patients with (n = 33) and without (n = 69) prior abdominoplasty who underwent LSG. Patient demographics, baseline characteristics, as well as operative and postoperative events were compared between the 2 groups. A total of 102 patients with an average age of 39.6±7.7 years and body mass index (BMI) of 42.8±5.9 kg/m 2 were included. There were no significant differences between the 2 groups in terms of demographic characteristics, preoperative BMI, and co-morbidities. The number of ports required was significantly higher in the LSG patients with a history of prior abdominoplasty than in the nonabdominoplasty patients. The operation time was also significantly longer in the abdominoplasty patients than in the nonabdominoplasty patients (90.3±36.7 minutes versus 57.1±17.7 minutes; P<.0001). However, no significant differences were observed in terms of postoperative complications, length of hospital stay, and weight loss results. LSG after abdominoplasty is associated with longer operative times and the need for additional port placement to overcome the decreased working space. However, operative strategies should be considered to overcome the technical challenges during LSG in patients who underwent a prior abdominoplasty. Copyright © 2017. Published by Elsevier Inc.
Brush Seals for Improved Steam Turbine Performance
NASA Technical Reports Server (NTRS)
Turnquist, Norman; Chupp, Ray; Baily, Fred; Burnett, Mark; Rivas, Flor; Bowsher, Aaron; Crudgington, Peter
2006-01-01
GE Energy has retrofitted brush seals into more than 19 operating steam turbines. Brush seals offer superior leakage control compared to labyrinth seals, owing to their compliant nature and ability to maintain very tight clearances to the rotating shaft. Seal designs have been established for steam turbines ranging in size from 12 MW to over 1200 MW, including fossil, nuclear, combined-cycle and industrial applications. Steam turbines present unique design challenges that must be addressed to ensure that the potential performance benefits of brush seals are realized. Brush seals can have important effects on the overall turbine system that must be taken into account to assure reliable operation. Subscale rig tests are instrumental to understanding seal behavior under simulated steam-turbine operating conditions, prior to installing brush seals in the field. This presentation discusses the technical challenges of designing brush seals for steam turbines; subscale testing; performance benefits of brush seals; overall system effects; and field applications.
Status of the Regenerative ECLS Water Recovery System
NASA Technical Reports Server (NTRS)
Carter, Donald Layne
2010-01-01
The regenerative Water Recovery System (WRS) has completed its first full year of operation on the International Space Station (ISS). The major assemblies included in this system are the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2010, and describes the technical challenges encountered and lessons learned over the past year.
Technical challenges and opportunities in cogasification of coal and biomass
Jagpinder Singh Brar; Kaushlendra Singh; John Zondlo
2013-01-01
Biomass gasification manufacturers are beginning to market 5 to 100 kW capacity gasifiers (e.g., Community Power Corporation (CPC), Littleton, CO and gasifier experimenters kit (GEK), AllPower Labs, Berkeley, CA) for producing electricity and synthetic gas (syngas). These gasifiers operate at 900 to 1000 °C, consuming 1.3 kg of biomass per hour for every kW...
Continuous flow technology vs. the batch-by-batch approach to produce pharmaceutical compounds.
Cole, Kevin P; Johnson, Martin D
2018-01-01
For the manufacture of small molecule drugs, many pharmaceutical innovator companies have recently invested in continuous processing, which can offer significant technical and economic advantages over traditional batch methodology. This Expert Review will describe the reasons for this interest as well as many considerations and challenges that exist today concerning continuous manufacturing. Areas covered: Continuous processing is defined and many reasons for its adoption are described. The current state of continuous drug substance manufacturing within the pharmaceutical industry is summarized. Current key challenges to implementation of continuous manufacturing are highlighted, and an outlook provided regarding the prospects for continuous within the industry. Expert commentary: Continuous processing at Lilly has been a journey that started with the need for increased safety and capability. Over twelve years the original small, dedicated group has grown to more than 100 Lilly employees in discovery, development, quality, manufacturing, and regulatory designing in continuous drug substance processing. Recently we have focused on linked continuous unit operations for the purpose of all-at-once pharmaceutical manufacturing, but the technical and business drivers that existed in the very beginning for stand-alone continuous unit operations in hybrid processes have persisted, which merits investment in both approaches.
A Concept of Operations for an Integrated Vehicle Health Assurance System
NASA Technical Reports Server (NTRS)
Hunter, Gary W.; Ross, Richard W.; Berger, David E.; Lekki, John D.; Mah, Robert W.; Perey, Danie F.; Schuet, Stefan R.; Simon, Donald L.; Smith, Stephen W.
2013-01-01
This document describes a Concept of Operations (ConOps) for an Integrated Vehicle Health Assurance System (IVHAS). This ConOps is associated with the Maintain Vehicle Safety (MVS) between Major Inspections Technical Challenge in the Vehicle Systems Safety Technologies (VSST) Project within NASA s Aviation Safety Program. In particular, this document seeks to describe an integrated system concept for vehicle health assurance that integrates ground-based inspection and repair information with in-flight measurement data for airframe, propulsion, and avionics subsystems. The MVS Technical Challenge intends to maintain vehicle safety between major inspections by developing and demonstrating new integrated health management and failure prevention technologies to assure the integrity of vehicle systems between major inspection intervals and maintain vehicle state awareness during flight. The approach provided by this ConOps is intended to help optimize technology selection and development, as well as allow the initial integration and demonstration of these subsystem technologies over the 5 year span of the VSST program, and serve as a guideline for developing IVHAS technologies under the Aviation Safety Program within the next 5 to 15 years. A long-term vision of IVHAS is provided to describe a basic roadmap for more intelligent and autonomous vehicle systems.
Objective Assessment of Surgical Technical Skill and Competency in the Operating Room.
Vedula, S Swaroop; Ishii, Masaru; Hager, Gregory D
2017-06-21
Training skillful and competent surgeons is critical to ensure high quality of care and to minimize disparities in access to effective care. Traditional models to train surgeons are being challenged by rapid advances in technology, an intensified patient-safety culture, and a need for value-driven health systems. Simultaneously, technological developments are enabling capture and analysis of large amounts of complex surgical data. These developments are motivating a "surgical data science" approach to objective computer-aided technical skill evaluation (OCASE-T) for scalable, accurate assessment; individualized feedback; and automated coaching. We define the problem space for OCASE-T and summarize 45 publications representing recent research in this domain. We find that most studies on OCASE-T are simulation based; very few are in the operating room. The algorithms and validation methodologies used for OCASE-T are highly varied; there is no uniform consensus. Future research should emphasize competency assessment in the operating room, validation against patient outcomes, and effectiveness for surgical training.
Satellite Navigation Systems: Policy, Commercial and Technical Interaction.
NASA Astrophysics Data System (ADS)
Rycroft, M.
2003-12-01
This book adopts a broad perspective on positioning and navigation systems which rely on Earth orbiting satellites for their successful operation. The first of such global systems was the US Global Positioning System (GPS), and the next the Russian GLONASS system. Now studies relating to Europe's future Galileo system are gaining momentum and other nations are planning regional augmentation systems. All such systems are discussed here, particularly relating to political, commercial, legal and technical issues. The opportunities - and also the problems - of having three similar systems in operation simultaneously are examined, and several novel applications are proposed. These range from improved vehicular transport by land, sea and air, to more accurate surveying, more efficient agricultural practices and safer operations in mountainous regions. Everyone who is challenged by these topics will find this volume invaluable. ISU WWW Server; http://www.isunet.edu. Further information on ISU Symposia may also be obtained by e-mail from symposium@isu.isunet.edu Link: http://www.wkap.nl/prod/b/1-4020-1678-6
NASA Astrophysics Data System (ADS)
Nguyen, Hoa G.; Castelli, Robin
2014-06-01
The U.S. Navy and Marine Corps conduct thousands of Maritime Interdiction Operations (MIOs) every year around the globe. Navy Visit, Board, Search, and Seizure (VBSS) teams regularly board suspect ships and perform search operations, often in hostile environments. There is a need for a small tactical robot that can be deployed ahead of the team to provide enhanced situational awareness in these boarding, breaching, and clearing operations. In 2011, the Space and Naval Warfare Systems Center Pacific conducted user evaluations on a number of small throwable robots and sensors, verified the requirements, and developed the key performance parameters (KPPs) for an MIO robot. Macro USA Corporation was then tasked to design and develop two prototype systems, each consisting of one control/display unit and two small amphibious Stingray robots. Technical challenges included the combination paddle wheel/shock-absorbing wheel, the tradeoff between impact resistance, size, and buoyancy, and achieving adequate traction on wet surfaces. This paper describes the technical design of these robots and the results of subsequent user evaluations by VBSS teams.
Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lantz, E.; Warren, A.; Roberts, J. O.
This NREL technical report utilizes a development framework originated by NREL and known by the acronym SROPTTC to assist the U.S. Virgin Islands in identifying and understanding concrete opportunities for wind power development in the territory. The report covers each of the seven components of the SROPTTC framework: Site, Resource, Off-take, Permitting, Technology, Team, and Capital as they apply to wind power in the USVI and specifically to a site in Bovoni, St. Thomas. The report concludes that Bovoni peninsula is a strong candidate for utility-scale wind generation in the territory. It represents a reasonable compromise in terms of windmore » resource, distance from residences, and developable terrain. Hurricane risk and variable terrain on the peninsula and on potential equipment transport routes add technical and logistical challenges but do not appear to represent insurmountable barriers. In addition, integration of wind power into the St. Thomas power system will present operational challenges, but based on experience in other islanded power systems, there are reasonable solutions for addressing these challenges.« less
Instantiating the art of war for effects-based operations
NASA Astrophysics Data System (ADS)
Burns, Carla L.
2002-07-01
Effects-Based Operations (EBO) is a mindset, a philosophy and an approach for planning, executing and assessing military operations for the effects they produce rather than the targets or even objectives they deal with. An EBO approach strives to provide economy of force, dynamic tasking, and reduced collateral damage. The notion of EBO is not new. Military Commanders certainly have desired effects in mind when conducting military operations. However, to date EBO has been an art of war that lacks automated techniques and tools that enable effects-based analysis and assessment. Modeling and simulation is at the heart of this challenge. The Air Force Research Laboratory (AFRL) EBO Program is developing modeling techniques and corresponding tool capabilities that can be brought to bear against the challenges presented by effects-based analysis and assessment. Effects-based course-of-action development, center of gravity/target system analysis, and wargaming capabilities are being developed and integrated to help give Commanders the information decision support required to achieve desired national security objectives. This paper presents an introduction to effects-based operations, discusses the benefits of an EBO approach, and focuses on modeling and analysis for effects-based strategy development. An overview of modeling and simulation challenges for EBO is presented, setting the stage for the detailed technical papers in the subject session.
NASA Astrophysics Data System (ADS)
Esperon-Miguez, Manuel; John, Philip; Jennions, Ian K.
2013-01-01
Integrated Vehicle Health Management (IVHM) comprises a set of tools, technologies and techniques for automated detection, diagnosis and prognosis of faults in order to support platforms more efficiently. Specific challenges are faced when IVHM tools are to be retrofitted into legacy vehicles since major modifications are much more challenging than with platforms whose design can still be modified. The topics covered in this Review Paper include the state of the art of IVHM tools and how their characteristics match the requirements of legacy aircraft, a summary of problems faced in the past trying to retrofit IVHM tools both from a technical and organisational perspective and the current level of implementation of IVHM in industry. Although the technology has not reached the level necessary to implement IVHM to its full potential on every kind of component, significant progress has been achieved on rotating equipment, structures or electronics. Attempts to retrofit some of these tools in the past faced both technical difficulties and opposition by some stakeholders, the later being responsible for the failure of technically sound projects in more than one occasion. Nevertheless, despite these difficulties, products and services based on IVHM technology have started to be offered by the manufacturers and, what is more important, demanded by the operators, providing guidance on what the industry would demand from IVHM on legacy aircraft.
Achondroplasia and multiple-suture craniosynostosis.
Albino, Frank P; Wood, Benjamin C; Oluigbo, Chima O; Lee, Angela C; Oh, Albert K; Rogers, Gary F
2015-01-01
Genetic mutations in the fibroblast growth factor receptor 3 gene may lead to achondroplasia or syndromic forms of craniosynostosis. Despite sharing a common genetic basis, craniosynostosis has rarely been described in cases of confirmed achondroplasia. We report an infant with achondroplasia who developed progressive multiple-suture craniosynostosis to discuss the genetic link between these clinical entities and to describe the technical challenges associated with the operative management.
Overview of NASA's Supersonic Cruise Efficiency - Propulsion Research
NASA Technical Reports Server (NTRS)
DeBonis, James R.
2009-01-01
The research in Supersonic Cruise Efficiency Propulsion (SCE-P) Technical Challenge area of NASA's Supersonics project is discussed. The research in SCE-P is being performed to enable efficient supersonic flight over land. Research elements in this area include: Advance Inlet Concepts, High Performance/Wider Operability Fan and Compressor, Advanced Nozzle Concepts, and Intelligent Sensors/Actuators. The research under each of these elements is briefly discussed.
Automated Meta-Aircraft Operations for a More Efficient and Responsive Air Transportation System
NASA Technical Reports Server (NTRS)
Hanson, Curt
2015-01-01
A brief overview is given of the on-going NASA Automated Cooperative Trajectories project. Current status and upcoming work is previewed. The motivating factors and innovative aspects of ACT are discussed along with technical challenges and the expected system-level impacts if the project is successful. Preliminary results from the NASA G-III hardware in the loop simulation are included.
Building Space Power for the Nation: Air Force Achievements Challenges and Opportunities
2006-01-01
since space capabilities play in planning and con- that time , they have advanced from simply ducting.joint military operations. Space forces proving...collect critical this is a relatively short period of time . Addi- itelligence over dtenied areas, primarily the tionally nnmerous changes in military...novative program management ; cutting-edge grams. Shifts in responsibilities, organization, technical and engineering expertise; rapid, and culture created
NASA Technical Reports Server (NTRS)
Hochstetler, Ron; Chachad, Girish; Melton, John
2016-01-01
In April, 2015 NASA Ames Research Center conducted a study of the airship industry. The project called for a report that would describe airship concepts proposed or projects initiated, airship performance or capability targets, and the missions these activities were addressing. It would detail the principal technical features of these airships; the proposed value/advantages of the features, notional concepts of operation, and challenges associated with the vehicles. Also investigated would be the current status and near-term prospects of these airship development activities, whether they are active or, if curtailed the circumstances and possible reasons for that conclusion including technical, business, or other mitigating factors. For the most active programs an assessment would be conducted to identify the resources or activities required for airships to advance to series construction and operational deployment. The study would also identify impediments to these developments and deployments, with recommendations provided to address existing issues in the airship industry today.
Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challange
NASA Technical Reports Server (NTRS)
Dubon, Lydia P.
2006-01-01
The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), responsible for project management and flight operations; Orbital Sciences Corporation (OSC), spacecraft builder and responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), responsible for science planning and operations. As a cost-capped mission, one of Dawn s implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL s ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL s GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project s commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to an overall systems engineering process and fundamental systems engineering practices: decomposition of the project request into manageable requirements; definition of a structured yet flexible development process; integration of multiple ground disciplines and experts into a focused team effort; in-process risk management; and aggregation of the intermediate products to an integrated final product. In addition, this paper will highlight the role of lessons learned from the integration experience. The lessons learned from an early GDS deployment have served as the foundation for the design and implementation of the Dawn Ground Data System.
ADMS State of the Industry and Gap Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agalgaonkar, Yashodhan P.; Marinovici, Maria C.; Vadari, Subramanian V.
2016-03-31
An Advanced distribution management system (ADMS) is a platform for optimized distribution system operational management. This platform comprises of distribution management system (DMS) applications, supervisory control and data acquisition (SCADA), outage management system (OMS), and distributed energy resource management system (DERMS). One of the primary objectives of this work is to study and analyze several ADMS component and auxiliary systems. All the important component and auxiliary systems, SCADA, GISs, DMSs, AMRs/AMIs, OMSs, and DERMS, are discussed in this report. Their current generation technologies are analyzed, and their integration (or evolution) with an ADMS technology is discussed. An ADMS technology statemore » of the art and gap analysis is also presented. There are two technical gaps observed. The integration challenge between the component operational systems is the single largest challenge for ADMS design and deployment. Another significant challenge noted is concerning essential ADMS applications, for instance, fault location, isolation, and service restoration (FLISR), volt-var optimization (VVO), etc. There are a relatively small number of ADMS application developers as ADMS software platform is not open source. There is another critical gap and while not being technical in nature (when compared the two above) is still important to consider. The data models currently residing in utility GIS systems are either incomplete or inaccurate or both. This data is essential for planning and operations because it is typically one of the primary sources from which power system model are created. To achieve the full potential of ADMS, the ability to execute acute Power Flow solution is an important pre-requisite. These critical gaps are hindering wider Utility adoption of an ADMS technology. The development of an open architecture platform can eliminate many of these barriers and also aid seamless integration of distribution Utility legacy systems with an ADMS.« less
Factors affecting the technical efficiency of general hospitals in Iran: data envelopment analysis.
Kalhor, Rohollah; Amini, Saeed; Sokhanvar, Mobin; Lotfi, Farhad; Sharifi, Marziye; Kakemam, Edris
2016-03-01
Restrictions on resource accessibility and its optimal application is the main challenge in organizations nowadays. The aim of this research was to study the technical efficiency and its related factors in Tehran general hospitals. This descriptive analytical study was conducted retrospectively in 2014. Fifty-four hospitals with private, university, and social security ownerships from the total 110 general hospitals were randomly selected for inclusion into this study on the basis of the share of ownership. Data were collected using a checklist with three sections, including background variables, inputs, and outputs. Seventeen (31.48%) hospitals had an efficiency score of 1 (highest efficiency score). The highest average efficiency score was in social security hospitals (84.32). Private and university hospitals ranked next with an average of 84.29 and 79.64, respectively. Analytical results showed that there was a significant relationship between hospital ownership, hospital type in terms of duty and specialization, educational field of the chief executive officer, and technical efficiency. There was no significant relationship between education level of hospital manager and technical efficiency. Most of the studied hospitals were operating at low efficiency. Therefore, policymakers should plan to improve the hospital operations and promote hospitals to an optimal level of efficiency.
Collaborative engagement experiment (CEE)
NASA Astrophysics Data System (ADS)
Wade, Robert L.; Reames, Joseph M.
2005-05-01
Unmanned ground and air systems operating in collaboration have the potential to provide future Joint Forces a significant capability for operations in complex terrain. Ground and air collaborative engagements potentially offer force conservation, perform timely acquisition and dissemination of essential combat information, and can eliminate high value and time critical targets. These engagements can also add considerably to force survivability by reducing soldier and equipment exposure during critical operations. The Office of the Secretary of Defense, Joint Robotics Program (JRP) sponsored Collaborative Engagement Experiment (CEE) is a consolidation of separate Air Force, Army and Navy collaborative efforts to provide a Joint capability. The Air Force Research Laboratory (AFRL), Material and Manufacturing Directorate, Aerospace Expeditionary Force Division, Force Protection Branch (AFRLMLQF), The Army Aviation and Missile Research, Development and Engineering Center (AMRDEC) Joint Technology Center (JTC)/Systems Integration Laboratory (SIL), and the Space and Naval Warfare Systems Center-San Diego (SSC San Diego) are conducting technical research and proof of principle for an envisioned operational concept for extended range, three dimensional, collaborative operations between unmanned systems, with enhanced situational awareness for lethal operations in complex terrain. This program will assess information requirements and conduct experiments to identify and resolve technical risks for collaborative engagements using Unmanned Ground Vehicles (UGVs) and Unmanned Aerial Vehicles (UAVs). It will research, develop and physically integrate multiple unmanned systems and conduct live collaborative experiments. Modeling and Simulation systems will be upgraded to reflect engineering fidelity levels to greater understand technical challenges to operate as a team. This paper will provide an update of a multi-year program and will concentrate primarily on the JTC/SIL efforts. Other papers will outline in detail the Air Force and Navy portions of this effort.
7T: Physics, safety, and potential clinical applications.
Kraff, Oliver; Quick, Harald H
2017-12-01
With more than 60 installed magnetic resonance imaging (MRI) systems worldwide operating at a magnetic field strength of 7T or higher, ultrahigh-field (UHF) MRI has been established as a platform for clinically oriented research in recent years. Profound technical and methodological developments have helped overcome the inherent physical challenges of UHF radiofrequency (RF) signal homogenization in the human body. The ongoing development of dedicated RF coil arrays was pivotal in realizing UHF body MRI, beyond mere brain imaging applications. Another precondition to clinical application of 7T MRI is the safety testing of implants and the establishment of safety concepts. Against this backdrop, 7T MRI and MR spectroscopy (MRS) recently have demonstrated capabilities and potentials for clinical diagnostics in a variety of studies. This article provides an overview of the immanent physical challenges of 7T UHF MRI and discusses recent technical solutions and safety concepts. Furthermore, recent clinically oriented studies are highlighted that span a broad application spectrum from 7T UHF brain to body MRI. 4 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1573-1589. © 2017 International Society for Magnetic Resonance in Medicine.
Challenges of Integrating NASA's Space Communications Networks
NASA Technical Reports Server (NTRS)
Reinert, Jessica; Barnes, Patrick
2013-01-01
The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a significant obstacle for integration. Over the past few decades of use, user missions and network personnel alike have grown accustomed to the processes by which services are provided by the NASA communications and navigation networks. The culture established by each network has created several challenges that need to be overcome in order to effectively integrate the networks. As with any change, there has been resistance, an apprehension to explore automation of existing processes, and a working environment that attempts to indirectly influence change without mandating compliance. Overcoming technical and cultural challenges is essential to successfully integrating the networks and although the challenges are numerous, the integration of the networks promises a more efficient space communications network for NASA and its customers, as well as potential long-term cost savings to the agency. This paper, Challenges of Integrating NASA Legacy Communications Networks, will provide a brief overview of the current NASA space communications networks as well as the an overview of the process implemented while performing the SCaN Trade Studies and an introduction to the requirements driving integration of the SCaN Networks. This paper will describe in detail the challenges experienced, both technical and cultural, while working with NASA space communications network-specific personnel. The paper will also cover lessons learned during the performance of architecture trade studies and provide recommendations for ways to improve the process.
Challenges of Integrating NASAs Space Communication Networks
NASA Technical Reports Server (NTRS)
Reinert, Jessica M.; Barnes, Patrick
2013-01-01
The transition to new technology, innovative ideas, and resistance to change is something that every industry experiences. Recent examples of this shift are changing to using robots in the assembly line construction of automobiles or the increasing use of robotics for medical procedures. Most often this is done with cost-reduction in mind, though ease of use for the customer is also a driver. All industries experience the push to increase efficiency of their systems; National Aeronautics and Space Administration (NASA) and the commercial space industry are no different. NASA space communication services are provided by three separately designed, developed, maintained, and operated communications networks known as the Deep Space Network (DSN), Near Earth Network (NEN) and Space Network (SN). The Space Communications and Navigation (SCaN) Program is pursuing integration of these networks and has performed a variety of architecture trade studies to determine what integration options would be the most effective in achieving a unified user mission support organization, and increase the use of common operational equipment and processes. The integration of multiple, legacy organizations and existing systems has challenges ranging from technical to cultural. The existing networks are the progeny of the very first communication and tracking capabilities implemented by NASA and the Jet Propulsion Laboratory (JPL) more than 50 years ago and have been customized to the needs of their respective user mission base. The technical challenges to integrating the networks are many, though not impossible to overcome. The three distinct networks provide the same types of services, with customizable data rates, bandwidth, frequencies, and so forth. The differences across the networks have occurred in effort to satisfy their user missions' needs. Each new requirement has made the networks more unique and harder to integrate. The cultural challenges, however, have proven to be a significant obstacle for integration. Over the past few decades of use, user missions and network personnel alike have grown accustomed to the processes by which services are provided by the NASA communications and navigation networks. The culture established by each network has created several challenges that need to be overcome in order to effectively integrate the networks. As with any change, there has been resistance, an apprehension to explore automation of existing processes, and a working environment that attempts to indirectly influence change without mandating compliance. Overcoming technical and cultural challenges is essential to successfully integrating the networks and although the challenges are numerous, the integration of the networks promises a more efficient space communications network for NASA and its customers, as well as potential long-term cost savings to the agency. This paper, Challenges of Integrating NASA Legacy Communications Networks, will provide a brief overview of the current NASA space communications networks as well as the an overview of the process implemented while performing the SCaN Trade Studies and an introduction to the requirements driving integration of the SCaN Networks. This paper will describe in detail the challenges experienced, both technical and cultural, while working with NASA space communications network-specific personnel. The paper will also cover lessons learned during the performance of architecture trade studies and provide recommendations for ways to improve the process.
SSME to RS-25: Challenges of Adapting a Heritage Engine to a New Vehicle Architecture
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2015-01-01
Following the cancellation of the Constellation program and retirement of the Space Shuttle, NASA initiated the Space Launch System (SLS) program to provide next-generation heavy lift cargo and crew access to space. A key constituent of the SLS architecture is the RS-25 engine, also known as the Space Shuttle Main Engine (SSME). The RS-25 was selected to serve as the main propulsion system for the SLS core stage in conjunction with the solid rocket boosters. This selection was largely based on the maturity and extensive experience gained through 135 missions, 3000+ ground tests, and over a million seconds total accumulated hot-fire time. In addition, there were also over a dozen functional flight assets remaining from the Space Shuttle program that could be leveraged to support the first four flights. However, while the RS-25 is a highly mature system, simply unbolting it from the Space Shuttle boat-tail and installing it on the new SLS vehicle is not a "plug-and-play" operation. In addition to numerous technical integration details involving changes to significant areas such as the environments, interface conditions, technical performance requirements, operational constraints and so on, there were other challenges to be overcome in the area of replacing the obsolete engine control system (ECS). While the magnitude of accomplishing this effort was less than that needed to develop and field a new clean-sheet engine system, the path to the first flight of SLS has not been without unexpected challenges.
NASA Astrophysics Data System (ADS)
Carrigan, Charles R.; Sun, Yunwei
2014-03-01
The development of a technically sound approach to detecting the subsurface release of noble gas radionuclides is a critical component of the on-site inspection (OSI) protocol under the Comprehensive Nuclear Test Ban Treaty. In this context, we are investigating a variety of technical challenges that have a significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments—a lesson we learned previously from the non-proliferation experiment (NPE). Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied by field experiments, making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated and complete the discussion of these issues with a description of a preliminary design for subsurface sampling that addresses some of the sampling challenges discussed here.
NASA Astrophysics Data System (ADS)
Canzian, Blaise; Barentine, J.; Hull, T.
2012-01-01
L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot” at the prime focus of the ATST and so presents special challenges. In this paper, we will describe the L-3 IOS technical approach to meet these challenges, including subsystems for opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management. Key words: ATST, TEOA, L-3 IOS, thermal management, silicon carbide (SiC) mirrors, hexapods, solar astronomy
NASA Technical Reports Server (NTRS)
Fargion, Giulietta S.; McClain, Charles R.
2002-01-01
The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project. The SIMBIOS Science Team Principal Investigators' (PIs) original contributions to this report are in chapters four and above. The purpose of these contributions is to describe the current research status of the SIMBIOS-NRA-96 funded research. The contributions are published as submitted, with the exception of minor edits to correct obvious grammatical or clerical errors.
NASA Technical Reports Server (NTRS)
Baldwin, Evelyn
2008-01-01
The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.
Integrated Data Modeling and Simulation on the Joint Polar Satellite System Program
NASA Technical Reports Server (NTRS)
Roberts, Christopher J.; Boyce, Leslye; Smith, Gary; Li, Angela; Barrett, Larry
2012-01-01
The Joint Polar Satellite System is a modern, large-scale, complex, multi-mission aerospace program, and presents a variety of design, testing and operational challenges due to: (1) System Scope: multi-mission coordination, role, responsibility and accountability challenges stemming from porous/ill-defined system and organizational boundaries (including foreign policy interactions) (2) Degree of Concurrency: design, implementation, integration, verification and operation occurring simultaneously, at multiple scales in the system hierarchy (3) Multi-Decadal Lifecycle: technical obsolesce, reliability and sustainment concerns, including those related to organizational and industrial base. Additionally, these systems tend to become embedded in the broader societal infrastructure, resulting in new system stakeholders with perhaps different preferences (4) Barriers to Effective Communications: process and cultural issues that emerge due to geographic dispersion and as one spans boundaries including gov./contractor, NASA/Other USG, and international relationships.
SSME to RS-25: Challenges of Adapting a Heritage Engine to a New Vehicle Architecture
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2015-01-01
A key constituent of the NASA Space Launch System (SLS) architecture is the RS-25 engine, also known as the Space Shuttle Main Engine (SSME). This engine was selected largely due to the maturity and extensive experience gained through 30-plus years of service. However, while the RS-25 is a highly mature system, simply unbolting it from the Space Shuttle and mounting it on the new SLS vehicle is not a "plug-and-play" operation. In addition to numerous technical integration and operational details, there were also hardware upgrades needed. While the magnitude of effort is less than that needed to develop a new clean-sheet engine system, this paper describes some of the expected and unexpected challenges encountered to date on the path to the first flight of SLS.
AFSPC Innovation and Science and Technology Outreach to Industry and Academia
NASA Technical Reports Server (NTRS)
Sanchez, Merri J.; Dills, Anthony N.; Chandler, Faith
2016-01-01
The U.S. Air Force is taking a strategic approach to ensuring that we are at the cutting edge of science and technology. This includes fostering game-changing approaches and technologies that are balanced with operational needs. The security of the Nation requires a constant pursuit of science, technical agility, and a rapid adoption of innovation. This includes pursuits of game-changing technologies and domains that perhaps we cannot even imagine today. This paper highlights the Air Force Space Command (AFSPC) collaboration and outreach to other government agencies, military and national laboratories, industry, and academia on long term science and technology challenges. In particular we discuss the development of the AFSPC Long Term Science and Technology Challenges that include both space and cyberspace operations within a multi-domain environment and the subsequent Innovation Summits.
Technical Challenges of the U.S. Army’s Ground Combat Vehicle Program
2012-11-01
for mine protection and a distinctive armored extension on the top, called the doghouse. Those features optimize it for counterinsurgency operations...vehicles. Less complex approaches have also evolved, such as mines designed to attack the weaker bottoms of vehicles or improvised explosive devices...Improvised Explosive Devices, Suicide Bombers, Unexploded Ordnance, and Mines ,” section I-G-10, “Countermeasures.” See also Clay Wilson, Improvised
Institutional Experience in the Management of Hilar Liver Obstruction- A Series of 13 Cases.
Pathanki, Adithya Malolan; Naragund, Adithya V; Mahadevappa, Basant
2016-12-01
Neoplastic hilar obstruction to the liver outflow presents a unique challenge to the surgeon, wherein, the balance between a curative and possibly larger resection has to be achieved against a more conservative local resection. These are often technically demanding and have thus, far produced equivocal outcomes on both ends. The present case series is on 13 patients who presented with hilar obstruction. They all underwent resections with possible curative intent. The focus of our review is on the technical nuances and the strategies we used, intra- and peri-operatively to make resections possible in these patients, who at first look were deemed inoperable. Among the 13, 10 had hilar cholangiocarcinoma (CCA) while the others had a more benign diagnosis e.g., Hydatid disease. We did not encounter any peri-operative mortality in our series. Two of our patients had to be re-explored for intra-abdominal complications. Among the 13, we encountered two deaths. The rest of the patients are still on follow-up as of April 2016. Hilar CCA continue to be rare and challenging tumours for the Hepato Pancreato Biliary (HPB) surgeon to manage. Outlooks are currently changing as we try to resect bigger and more complicated hilar liver tumours with better results.
High Altitude Venus Operational Concept (HAVOC): Proofs of Concept
NASA Technical Reports Server (NTRS)
Jones, Christopher A.; Arney, Dale C.; Bassett, George Z.; Clark, James R.; Hennig, Anthony I.; Snyder, Jessica C.
2015-01-01
The atmosphere of Venus is an exciting destination for both further scientific study and future human exploration. A recent internal NASA study of a High Altitude Venus Operational Concept (HAVOC) led to the development of an evolutionary program for the exploration of Venus, with focus on the mission architecture and vehicle concept for a 30-day crewed mission into Venus's atmosphere at 50 kilometers. Key technical challenges for the mission include performing the aerocapture maneuvers at Venus and Earth, inserting and inflating the airship at Venus during the entry sequence, and protecting the solar panels and structure from the sulfuric acid in the atmosphere. Two proofs of concept were identified that would aid in addressing some of the key technical challenges. To mitigate the threat posed by the sulfuric acid ambient in the atmosphere of Venus, a material was needed that could protect the systems while being lightweight and not inhibiting the performance of the solar panels. The first proof of concept identified candidate materials and evaluated them, finding FEP-Teflon (Fluorinated Ethylene Propylene-Teflon) to maintain 90 percent transmittance to relevant spectra even after 30 days of immersion in concentrated sulfuric acid. The second proof of concept developed and verified a packaging algorithm for the airship envelope to inform the entry, descent, and inflation analysis.
South African CSP projects under the REIPPP programme - Requirements, challenges and opportunities
NASA Astrophysics Data System (ADS)
Relancio, Javier; Cuellar, Alberto; Walker, Gregg; Ettmayr, Chris
2016-05-01
Thus far seven Concentrated Solar Power (CSP) projects have been awarded under the Renewable Energy Independent Power Producer Procurement Programme (REIPPPP), totalling 600MW: one project is in operation, four under construction and two on their way to financial close. This provides an excellent opportunity for analysis of key features of the projects that have contributed to or detracted from the programme's success. The paper draws from Mott MacDonald's involvement as Technical Advisor on the seven CSP projects that have been successful under the REIPPPP to date as well as other global CSP developments. It presents how various programme requirements have affected the implementation of projects, such as the technical requirements, time of day tariff structure, economic development requirements and the renewable energy grid code. The increasingly competitive tariffs offered have encouraged developers to investigate efficiency maximising project configurations and cost saving mechanisms, as well as featuring state of the art technology in their proposals. The paper assesses the role of the project participants (developers, lenders and government) with regards to these innovative technologies and solutions. In our paper we discuss the status of projects and the SA market, analysing the main challenges and opportunities that in turn have influenced various aspects such as technology choice, operational regimes and supply chain arrangements.
Foster, J D; Ewings, P; Falk, S; Cooper, E J; Roach, H; West, N P; Williams-Yesson, B A; Hanna, G B; Francis, N K
2016-10-01
The optimal time of rectal resection after long-course chemoradiotherapy (CRT) remains unclear. A feasibility study was undertaken for a multi-centre randomized controlled trial evaluating the impact of the interval after chemoradiotherapy on the technical complexity of surgery. Patients with rectal cancer were randomized to either a 6- or 12-week interval between CRT and surgery between June 2012 and May 2014 (ISRCTN registration number: 88843062). For blinded technical complexity assessment, the Observational Clinical Human Reliability Analysis technique was used to quantify technical errors enacted within video recordings of operations. Other measured outcomes included resection completeness, specimen quality, radiological down-staging, tumour cell density down-staging and surgeon-reported technical complexity. Thirty-one patients were enrolled: 15 were randomized to 6 and 16-12 weeks across 7 centres. Fewer eligible patients were identified than had been predicted. Of 23 patients who underwent resection, mean 12.3 errors were observed per case at 6 weeks vs. 10.7 at 12 weeks (p = 0.401). Other measured outcomes were similar between groups. The feasibility of measurement of operative performance of rectal cancer surgery as an endpoint was confirmed in this exploratory study. Recruitment of sufficient numbers of patients represented a challenge, and a proportion of patients did not proceed to resection surgery. These results suggest that interval after CRT may not substantially impact upon surgical technical performance.
DOE-GTO Low Temperture Projects Evaluation and Lessons Learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tom; Snyder, Neil; Gosnold, Will
2017-05-01
This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less
Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces
NASA Technical Reports Server (NTRS)
Ellman, Alvin; Carlton, Magdi
1993-01-01
The technical challenges, engineering solutions, and results of the NOCC computer-human interface design are presented. The use-centered design process was as follows: determine the design criteria for user concerns; assess the impact of design decisions on the users; and determine the technical aspects of the implementation (tools, platforms, etc.). The NOCC hardware architecture is illustrated. A graphical model of the DSN that represented the hierarchical structure of the data was constructed. The DSN spacecraft summary display is shown. Navigation from top to bottom is accomplished by clicking the appropriate button for the element about which the user desires more detail. The telemetry summary display and the antenna color decision table are also shown.
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
Members of team Mountaineers pose with officials from the 2014 NASA Centennial Challenges Sample Return Robot Challenge on Saturday, June 14, 2014 at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineer was the only team to complete the level one challenge this year. Team Mountaineer members, from left (in blue shirts) are: Ryan Watson, Marvin Cheng, Scott Harper, Jarred Strader, Lucas Behrens, Yu Gu, Tanmay Mandal, Alexander Hypes, and Nick Ohi Challenge judges and competition staff (in white and green polo shirts) from left are: Sam Ortega, NASA Centennial Challenge program manager; Ken Stafford, challenge technical advisor, WPI; Colleen Shaver, challenge event manager, WPI. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Purpose, Principles, and Challenges of the NASA Engineering and Safety Center
NASA Technical Reports Server (NTRS)
Gilbert, Michael G.
2016-01-01
NASA formed the NASA Engineering and Safety Center in 2003 following the Space Shuttle Columbia accident. It is an Agency level, program-independent engineering resource supporting NASA's missions, programs, and projects. It functions to identify, resolve, and communicate engineering issues, risks, and, particularly, alternative technical opinions, to NASA senior management. The goal is to help ensure fully informed, risk-based programmatic and operational decision-making processes. To date, the NASA Engineering and Safety Center (NESC) has conducted or is actively working over 600 technical studies and projects, spread across all NASA Mission Directorates, and for various other U.S. Government and non-governmental agencies and organizations. Since inception, NESC human spaceflight related activities, in particular, have transitioned from Shuttle Return-to-Flight and completion of the International Space Station (ISS) to ISS operations and Orion Multi-purpose Crew Vehicle (MPCV), Space Launch System (SLS), and Commercial Crew Program (CCP) vehicle design, integration, test, and certification. This transition has changed the character of NESC studies. For these development programs, the NESC must operate in a broader, system-level design and certification context as compared to the reactive, time-critical, hardware specific nature of flight operations support.
The BRITE Constellation Nanosatellite Mission: Testing, Commissioning, and Operations
NASA Astrophysics Data System (ADS)
Pablo, H.; Whittaker, G. N.; Popowicz, A.; Mochnacki, S. M.; Kuschnig, R.; Grant, C. C.; Moffat, A. F. J.; Rucinski, S. M.; Matthews, J. M.; Schwarzenberg-Czerny, A.; Handler, G.; Weiss, W. W.; Baade, D.; Wade, G. A.; Zocłońska, E.; Ramiaramanantsoa, T.; Unterberger, M.; Zwintz, K.; Pigulski, A.; Rowe, J.; Koudelka, O.; Orleański, P.; Pamyatnykh, A.; Neiner, C.; Wawrzaszek, R.; Marciniszyn, G.; Romano, P.; Woźniak, G.; Zawistowski, T.; Zee, R. E.
2016-12-01
BRIght Target Explorer (BRITE) Constellation, the first nanosatellite mission applied to astrophysical research, is a collaboration among Austria, Canada and Poland. The fleet of satellites (6 launched; 5 functioning) performs precise optical photometry of the brightest stars in the night sky. A pioneering mission like BRITE—with optics and instruments restricted to small volume, mass and power in several nanosatellites, whose measurements must be coordinated in orbit—poses many unique challenges. We discuss the technical issues, including problems encountered during on-orbit commissioning (especially higher-than-expected sensitivity of the CCDs to particle radiation). We describe in detail how the BRITE team has mitigated these problems, and provide a complete overview of mission operations. This paper serves as a template for how to effectively plan, build and operate future low-cost niche-driven space astronomy missions. Based on data collected by the BRITE Constellation satellite mission, designed, built, launched, operated and supported by the Austrian Research Promotion Agency (FFG), the University of Vienna, the Technical University of Graz, the Canadian Space Agency (CSA), the University of Toronto Institute for Aerospace Studies (UTIAS), the Foundation for Polish Science & Technology (FNiTP MNiSW), and National Science Centre (NCN).
ERIC Educational Resources Information Center
Haag, Patricia W.
2015-01-01
Career and technical education concurrent enrollment may pose unique challenges in programming and enrollment for program administrators, and this chapter describes the experiences and challenges of a CTE concurrent enrollment administrator.
Update on the Puerto Rico Electric Power Authority`s spinning reserve battery system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P.A.
1996-11-01
The Puerto Rico Electric Power Authority completed start-up testing and began commercial operation of a 20MW/14MWh battery energy storage facility in April 1995. The battery system was installed to provide rapid spinning reserve and frequency control for the utility`s island electrical system. This paper outlines the needs of an island utility for rapid spinning reserve; identifies Puerto Rico`s unique challenges; reviews the technical and economic analyses that justified installation of a battery energy system; describes the storage facility that was installed; and presents preliminary operating results of the facility.
Automated visual imaging interface for the plant floor
NASA Astrophysics Data System (ADS)
Wutke, John R.
1991-03-01
The paper will provide an overview of the challenges facing a user of automated visual imaging (" AVI" ) machines and the philosophies that should be employed in designing them. As manufacturing tools and equipment become more sophisticated it is increasingly difficult to maintain an efficient interaction between the operator and machine. The typical user of an AVI machine in a production environment is technically unsophisticated. Also operator and machine ergonomics are often a neglected or poorly addressed part of an efficient manufacturing process. This paper presents a number of man-machine interface design techniques and philosophies that effectively solve these problems.
NASA Technical Reports Server (NTRS)
Grindle, Laurie; Hackenberg, Davis L.
2016-01-01
UAS Integration in the NAS Project has: a) Developed Technical Challenges that are crucial to UAS integration, aligned with NASA's Strategic Plan and Thrusts, and support FAA standards development. b) Demonstrated rigorous project management processes through the execution of previous phases. c) Defined Partnership Plans. d) Established path to KDP-C. Request approval of Technical Challenges, execution of partnerships and plans, and execution of near-term FY17 activities. There is an increasing need to fly UAS in the NAS to perform missions of vital importance to National Security and Defense, Emergency Management, and Science. There is also an emerging need to enable commercial applications such as cargo transport (e.g. FedEx). Unencumbered NAS Access for Civil/Commercial UAS. Provide research findings, utilizing simulation and flight tests, to support the development and validation of DAA and C2 technologies necessary for integrating Unmanned Aircraft Systems into the National Airspace System.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Air Products and Chemicals
2008-09-30
An Air Products-led team successfully developed ITM Syngas technology from the concept stage to a stage where a small-scale engineering prototype was about to be built. This technology produces syngas, a gas containing carbon monoxide and hydrogen, by reacting feed gas, primarily methane and steam, with oxygen that is supplied through an ion transport membrane. An ion transport membrane operates at high temperature and oxygen ions are transported through the dense membrane's crystal lattice when an oxygen partial pressure driving force is applied. This development effort solved many significant technical challenges and successfully scaled-up key aspects of the technology tomore » prototype scale. Throughout the project life, the technology showed significant economic benefits over conventional technologies. While there are still on-going technical challenges to overcome, the progress made under the DOE-funded development project proved that the technology was viable and continued development post the DOE agreement would be warranted.« less
Development and missions of unmanned surface vehicle
NASA Astrophysics Data System (ADS)
Yan, Ru-Jian; Pang, Shuo; Sun, Han-Bing; Pang, Yong-Jie
2010-12-01
The navy and other Department of Defense organizations are increasingly interested in the use of unmanned surface vehicles (USVs) for a variety of missions and applications. The term USV refers to any vehicle that operates on the surface of the water without a crew. USVs have the potential, and in some cases the demonstrated ability, to reduce risk to manned forces, provide the necessary force multiplication to accomplish military missions, perform tasks which manned vehicles cannot, and do so in a way that is affordable for the navy. A survey of USV activities worldwide as well as the general technical challenges of USVs was presented below. A general description of USVs was provided along with their typical applications. The technical challenges of developing a USV include its intelligence level, control, high stability, and developmental cost reduction. Through the joint efforts of researchers around the world, it is believed that the development of USVs will enter a new phase in the near future, as USVs could soon be applied widely both in military and civilian service.
Operating a petabyte class archive at ESO
NASA Astrophysics Data System (ADS)
Suchar, Dieter; Lockhart, John S.; Burrows, Andrew
2008-07-01
The challenges of setting up and operating a Petabyte Class Archive will be described in terms of computer systems within a complex Data Centre environment. The computer systems, including the ESO Primary and Secondary Archive and the associated computational environments such as relational databases will be explained. This encompasses the entire system project cycle, including the technical specifications, procurement process, equipment installation and all further operational phases. The ESO Data Centre construction and the complexity of managing the environment will be presented. Many factors had to be considered during the construction phase, such as power consumption, targeted cooling and the accumulated load on the building structure to enable the smooth running of a Petabyte class Archive.
Low-Altitude Exploration of the Venus Atmosphere by Balloon
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
2010-01-01
The planet Venus represents an exciting target for future exploration by spacecraft. One target of scientific interest is the lower atmosphere, which represents an environment of high temperature and moderate to high atmospheric pressure. This represents a considerable challenge to the technical art of ballooning, but one which may be amenable to solution. Several possible designs for low-altitude balloons are discussed. Conceptual design for three mission examples are analyzed: a conventional balloon operating below the cloud level at an altitude of 25 kilometers, a large rigid-envelope balloon operating near the surface at an altitude of 5 kilometers, and a small, technology demonstrator rigid-envelope balloon operating at 5 kilometers.
Completion of the Design of the Top End Optical Assembly for ATST
NASA Astrophysics Data System (ADS)
Canzian, Blaise; Barentine, J.
2013-01-01
L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to make the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakala, Maui. ATST will perform to a very high optical performance level in a difficult operational environment. The TEOA (including a 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, Lyot stop, safety interlock and control system, and support frame) operates in the “hot spot” at the prime focus of the ATST, presenting unusual challenges. L-3 IOS has passed Critical Design Review of the TEOA. In this paper, we describe L-3 IOS success meeting technical challenges, including our solutions for optic fabrication, opto-mechanical positioning, rejected and stray light control, wavefront tip-tilt compensation, and thermal management and control.
NASA Technical Reports Server (NTRS)
Patterson, Linda P.
2001-01-01
The International Space Station (ISS) has an operational mission and profile that makes it a Logistics and Maintenance (L&M) support challenge different from previous programs. It is permanently manned, assembled on orbit, and multi-national. With this technical and operational challenge, a unique approach is needed to support the hardware and crew. The key is the integration of on-orbit and ground analysis, supply, maintenance, and crew training into a coherent functional process that supports ISS goals and objectives. To integrate all the necessary aspects of hardware and personnel to support on-orbit maintenance, a myriad of products and processes must be created and coordinated, such that the right resources are in the right place at the right time to ensure continued ISS functionality. This paper will familiarize the audience with ISS On-Orbit Maintenance (OOM) concepts and capabilities for different maintenance tasks and discuss some of the logic behind their selection. It will also identify the operational maintenance support responsibility split between the U.S. and the various International Partners (IPs).
Developing Use Cases for Evaluation of ADMS Applications to Accelerate Technology Adoption: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veda, Santosh; Wu, Hongyu; Martin, Maurice
Grid modernization for the distribution systems comprise of the ability to effectively monitor and manage unplanned events while ensuring reliable operations. Integration of Distributed Energy Resources (DERs) and proliferation of autonomous smart controllers like microgrids and smart inverters in the distribution networks challenge the status quo of distribution system operations. Advanced Distribution Management System (ADMS) technologies are being increasingly deployed to manage the complexities of operating distribution systems. The ability to evaluate the ADMS applications in specific utility environments and for future scenarios will accelerate wider adoption of the ADMS and will lower the risks and costs of their implementation.more » This paper addresses the first step - identify and define the use cases for evaluating these applications. The applications that are selected for this discussion include Volt-VAr Optimization (VVO), Fault Location Isolation and Service Restoration (FLISR), Online Power Flow (OLPF)/Distribution System State Estimation (DSSE) and Market Participation. A technical description and general operational requirements for each of these applications is presented. The test scenarios that are most relevant to the utility challenges are also addressed.« less
Mentoring SFRM: A New Approach to International Space Station Flight Controller Training
NASA Technical Reports Server (NTRS)
Huning, Therese; Barshi, Immanuel; Schmidt, Lacey
2008-01-01
The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (operator) to a basic level of effectiveness in 1 year. SFRM training uses a two-pronged approach to expediting operator certification: 1) imbed SFRM skills training into all operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills. Methods: A mentor works with an operator throughout the training flow. Inserted into the training flow are guided-discussion sessions and on-the-job observation opportunities focusing on specific SFRM skills, including: situational leadership, conflict management, stress management, cross-cultural awareness, self care and team care while on-console, communication, workload management, and situation awareness. The mentor and operator discuss the science and art behind the skills, cultural effects on skills applications, recognition of good and bad skills applications, recognition of how skills application changes subtly in different situations, and individual goals and techniques for improving skills. Discussion: This mentoring program provides an additional means of transferring SFRM knowledge compared to traditional CRM training programs. Our future endeavors in training SFRM skills (as well as other organization s) may benefit from adding team performance skills mentoring. This paper explains our mentoring approach and discusses its effectiveness and future applicability in promoting SFRM/CRM skills.
The challenges and benefits of lunar exploration
NASA Technical Reports Server (NTRS)
Cohen, Aaron
1992-01-01
Three decades into the Space Age, the United States is experiencing a fundamental shift in space policy with the adoption of a broad national goal to expand human presence and activity beyond Earth orbit and out into the Solar System. These plans mark a turning point in American space exploration, for they entail a shift away from singular forays to a long-term, evolutionary program of exploration and utilization of space. No longer limited to the technical and operational specifics of any one vehicle or any one mission plan, this new approach will involve a fleet of spacecraft and a stable of off-planet research laboratories, industrial facilities, and exploration programs. The challenges inherent in this program are immense, but so too are the benefits. Central to this new space architecture is the concept of using a lunar base for in-situ resource utilization, and for the development of planetary surface exploration systems, applicable to the Moon, Mars, and other planetary bodies in the Solar System. This paper discusses the technical, economic, and political challenges involved in this new approach, and details the latest thinking on the benefits that could come from bold new endeavors on the final frontier.
Overview of Propulsion Controls and Diagnostics Research at NASA Glenn
NASA Technical Reports Server (NTRS)
Garg, Sanjay
2012-01-01
With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of an Intelligent Engine. CDB conducts propulsion control and diagnostics research in support of various programs and projects under the NASA Aeronautics Research Mission Directorate and the Human Exploration and Operations Mission Directorate. The paper first provides an overview of the various research tasks in CDB relative to the NASA programs and projects, and briefly describes the progress being made on each of these tasks. The discussion here is at a high level providing the objectives of the tasks, the technical challenges in meeting the objectives and most recent accomplishments. References are provided for each of the technical tasks for the reader to familiarize themselves with the details.
Big Data Analytics in Chemical Engineering.
Chiang, Leo; Lu, Bo; Castillo, Ivan
2017-06-07
Big data analytics is the journey to turn data into insights for more informed business and operational decisions. As the chemical engineering community is collecting more data (volume) from different sources (variety), this journey becomes more challenging in terms of using the right data and the right tools (analytics) to make the right decisions in real time (velocity). This article highlights recent big data advancements in five industries, including chemicals, energy, semiconductors, pharmaceuticals, and food, and then discusses technical, platform, and culture challenges. To reach the next milestone in multiplying successes to the enterprise level, government, academia, and industry need to collaboratively focus on workforce development and innovation.
The "big bang" implementation: not for the faint of heart.
Anderson, Linda K; Stafford, Cynthia J
2002-01-01
Replacing a hospital's obsolete mainframe computer system with a modern integrated clinical and administrative information system presents multiple challenges. When the new system is activated in one weekend, in "big bang" fashion, the challenges are magnified. Careful planning is essential to ensure that all hospital staff are fully prepared for this transition, knowing this conversion will involve system downtime, procedural changes, and the resulting stress that naturally accompanies change. Implementation concerns include staff preparation and training, process changes, continuity of patient care, and technical and administrative support. This article outlines how the University of Missouri Health Care addressed these operational concerns during this dramatic information system conversion.
When a plant shuts down: The psychology of decommissioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulz, J.; Crawford, A.C.
Within the next decade, 10 to 25 nuclear plants in the United States may be taken off line. Many will have reached the end of their 40-year life cycles, but others will be retired because the cost of operating them has begun to outweigh their economic benefit. Such was the case at Fort St. Vrain, the first decommissioning of a US commercial plant under new Nuclear Regulatory Commission (NRC) regulations. Two major problems associated with decommissioning plants have been obvious: (1) the technical challenges and costs of decommissioning, and (2) the cost of maintaining and finally decommissioning a plant aftermore » a safe storage (SAFSTOR) period of approximately 60 years. What has received little attention is the challenge that affects not only the people who make a plant work, but the quality of the solutions to these problems: how to maintain effective organizational performance during the process of downsizing and decommissioning and/or SAFSTOR. The quality of technical solutions for closing a plant, as well as how successfully the decommissioning process is held within or below budget, will depend largely on how effectively the nuclear organization functions as a social unit. Technical and people issues are bound together. The difficulty is how to operate a plant effectively when plant personnel have no sense of long-term security. As the nuclear power industry matures and the pace for closing operating plants accelerates, the time has come to prepare for the widespread decommissioning of plants. The industry would be well served by conducting a selective, industry-wide evaluation of plants to assess its overall readiness for the decommissioning process. A decommissioning is not likely to be trouble free, but with a healthy appreciation for the human side of the process, it will undoubtedly go more smoothly than if approached as a matter of dismantling a machine.« less
New Mexico Small Business Assistance
expertise Technical Assistance Individual Assistance Individual Assistance Request Form Leveraged Projects Assistance (NMSBA) Program allows New Mexico small businesses facing a technical challenge to access the business, small businesses with a technical challenge can seek assistance from lab scientists or engineers
NASA Institute for Advanced Concepts
NASA Technical Reports Server (NTRS)
Cassanova, Robert A.
1999-01-01
The purpose of NASA Institute for Advanced Concepts (NIAC) is to provide an independent, open forum for the external analysis and definition of space and aeronautics advanced concepts to complement the advanced concepts activities conducted within the NASA Enterprises. The NIAC will issue Calls for Proposals during each year of operation and will select revolutionary advanced concepts for grant or contract awards through a peer review process. Final selection of awards will be with the concurrence of NASA's Chief Technologist. The operation of the NIAC is reviewed biannually by the NIAC Science, Exploration and Technology Council (NSETC) whose members are drawn from the senior levels of industry and universities. The process of defining the technical scope of the initial Call for Proposals was begun with the NIAC "Grand Challenges" workshop conducted on May 21-22, 1998 in Columbia, Maryland. These "Grand Challenges" resulting from this workshop became the essence of the technical scope for the first Phase I Call for Proposals which was released on June 19, 1998 with a due date of July 31, 1998. The first Phase I Call for Proposals attracted 119 proposals. After a thorough peer review, prioritization by NIAC and technical concurrence by NASA, sixteen subgrants were awarded. The second Phase I Call for Proposals was released on November 23, 1998 with a due date of January 31, 1999. Sixty-three (63) proposals were received in response to this Call. On December 2-3, 1998, the NSETC met to review the progress and future plans of the NIAC. The next NSETC meeting is scheduled for August 5-6, 1999. The first Phase II Call for Proposals was released to the current Phase I grantees on February 3,1999 with a due date of May 31, 1999. Plans for the second year of the contract include a continuation of the sequence of Phase I and Phase II Calls for Proposals and hosting the first NIAC Annual Meeting and USRA/NIAC Technical Symposium in NASA HQ.
Filippiadis, Dimitrios K; Spiliopoulos, Stavros; Konstantos, Chrysostomos; Reppas, Lazaros; Kelekis, Alexis; Brountzos, Elias; Kelekis, Nikolaos
2017-09-03
To evaluate the clinical efficacy/safety of CT-guided percutaneous microwave ablation for HCC in challenging locations using high-power microwave platforms. A retrospective review was conducted in 26 patients with 36 HCC tumours in challenging locations (hepatic dome, subcapsular, close to the heart/diaphragm/hepatic hilum, exophytic) undergoing CT-guided percutaneous microwave ablation in a single centre since January 2011. Two different microwave platforms were used both operating at 2.45 GHz: AMICA and Acculis MWA System. Patient demographics including age, sex, tumour size and location, as well as technical details were recorded. Technical success, treatment response, patients survival and complication rate were evaluated. Treated tumours were located in the hepatic dome (n = 14), subcapsularly (n = 16), in proximity to the heart (n = 2) or liver hilum (n = 2), while two were exophytic tumours at segment VI (n = 2). Mean tumour diameter was 3.30 cm (range 1.4-5 cm). In 3/26 patients (diameter >4 cm), an additional session of DEB-TACE was performed due to tumour size. Technical success rate was 100%; complete response rate was recorded in 33/36 tumours (91.6%). According to Kaplan-Meier analysis, survival rate was 92.3% and 72.11% at 24- and 60-month follow-up, respectively. There were no major complications; two cases of minor pneumothorax and two cases of small subcapsular haematoma were resolved only with observation requiring no further treatment. CT-guided percutaneous microwave ablation for hepatocellular carcinoma tumours in challenging locations and up to 5 cm in diameter can be performed with high efficacy and safety rates.
Testing of IDA’s CBStrike Model
2011-05-01
corporation that operates three federally funded research and development centers to provide objective analyses of national security issues...particularly those requiring scientific and technical expertise, and conduct related research on other national challenges. I N S T I T U T E F O R D E F E... associations • Report the time at which a specified number of casualties is exceeded during a simulation • Model localized donning of masks • Model
2012-03-21
Test Program ( STP ) was targeted for termination in the fiscal year 2013 budget. STP was created in 1965 to serve as an integrator to provide launch...been lagging behind schedule and it had taken positive actions to instill better practices and more focused leadership for space. Progress has...instance, the second Global Positioning System (GPS) IIF satellite experienced technical problems that could shorten its operational lifetime. The
Military Technical Revolution: A Structural Framework
1993-03-01
new world situation and draw conclusions about the military forces the United States will need in the years ahead to meet its demands and challenges...collectivization of peacetime military operations. In this new world , the United States will need to rethink the nature and scope of its national interests. Those...mission will also require defense of international sea- lanes and Middle East oil, both of which remain vital to the world and U ’. S . economies. Third
The Colombian nuclear scenario: Challenges and opportunities
NASA Astrophysics Data System (ADS)
Martinez, Isabel
2016-07-01
In Colombia, the absence of nuclear-oriented policies based on technical knowledge, the closing of the Nuclear Affairs Institute (1956-1998), the association of the word "nuclear" with weapons, plus the country's last six decades of internal conflict and narcotraffic have discourage the technical, social and environmental nuclear advance. However, there are technical, social and economic national challenges that could be faced by the present nuclear technical capacities.
Virtual Business Operating Environment in the Cloud: Conceptual Architecture and Challenges
NASA Astrophysics Data System (ADS)
Nezhad, Hamid R. Motahari; Stephenson, Bryan; Singhal, Sharad; Castellanos, Malu
Advances in service oriented architecture (SOA) have brought us close to the once imaginary vision of establishing and running a virtual business, a business in which most or all of its business functions are outsourced to online services. Cloud computing offers a realization of SOA in which IT resources are offered as services that are more affordable, flexible and attractive to businesses. In this paper, we briefly study advances in cloud computing, and discuss the benefits of using cloud services for businesses and trade-offs that they have to consider. We then present 1) a layered architecture for the virtual business, and 2) a conceptual architecture for a virtual business operating environment. We discuss the opportunities and research challenges that are ahead of us in realizing the technical components of this conceptual architecture. We conclude by giving the outlook and impact of cloud services on both large and small businesses.
Sustainable hydropower in Lower Mekong Countries: Technical assessment and training travel report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hadjerioua, Boualem; Witt, Adam M.
The U.S. Agency for International Development (USAID), through their partnership with the U.S. Department of the Interior (DOI), requested the support of Oak Ridge National Laboratory (ORNL) to provide specialized technical assistance as part of the Smart Infrastructure for the Mekong (SIM) Program in Thailand. Introduced in July 2013 by U.S. Secretary of State John Kerry, SIM is a U.S. Government Inter-Agency program that provides Lower Mekong partner countries with targeted, demand-driven technical and scientific assistance to support environmentally sound, climate conscious and socially equitable infrastructure, clean energy development, and water resources optimization. The U.S. Government is committed to supportingmore » sustainable economic development within the region by providing tools, best practices, technical assistance, and lessons learned for the benefit of partner countries. In response to a request from the Electricity Generating Authority of Thailand (EGAT), a SIM project was developed with two main activities: 1) to promote hydropower sustainability and efficiency through technical assessment training at two existing hydropower assets in Thailand, and 2) the design and implementation of one national and two or three regional science and policy workshops, to be co-hosted with EGAT, to build common understanding of and commitment to environmental and social safeguards for Mekong Basin hydropower projects. The U.S. Department of Energy (DOE) is leading the technical assessment (Activity 1), and has contracted ORNL to provide expert technical assistance focused on increasing efficiency at existing projects, with the goal of increasing renewable energy generation at little to no capital cost. ORNL is the leading national laboratory in hydropower analysis, with a nationally recognized and highly qualified team of scientists addressing small to large-scale systems (basin-, regional-, and national-scale) energy generation optimization analysis for DOE. The mission of the ORNL Water Power Program is to develop technologies, decision-support tools, and methods of analysis that enable holistic management of water-dependent energy infrastructure and natural resources in support of the DOE Energy Efficiency and Renewable Energy Office (DOE-EERE), Federal hydropower agencies, Federal Energy Regulatory Commission (FERC), Nuclear Regulatory Commission (NRC), energy producers, and other entities. In support of SIM, ORNL completed technical assessments of two hydropower plants owned and operated by the Electricity Generating Authority of Thailand (EGAT): Vajiralongkorn (VRK), with an installed capacity of 300 MW, and Rajjaprabha (RPB), with an installed capacity of 240MW. Technical assessment is defined as the assessment of hydropower operation and performance, and the identification of potential opportunities for performance improvement through plant optimization. At each plant, the assessment included an initial analysis of hydropower operating and performance metrics, provided by dam owners. After this analysis, ORNL engaged with the plant management team in a skills exchange, where best practices, operational methods, and technical challenges were discussed. The technical assessment process was outlined to plant management followed by a presentation of preliminary results and analysis based on 50 days of operational data. EGAT has agreed to provide a full year of operational data so a complete and detailed assessment that captures seasonal variability can be completed. The results of these assessments and discussions will be used to develop a set of best practices, training, and procedure recommendations to improve the efficiency of the two assessed plants« less
A Perkins Challenge: Assessing Technical Skills in CTE
ERIC Educational Resources Information Center
Stone, James R., III
2009-01-01
Federal law requires state to develop performance measures and data-collection systems for secondary and postsecondary technical-skill attainment. This poses many challenges, such as defining a technical skills, measurement and when to assess students. In this article, the author outlines various assessment models and looks at the challenges…
Education for a Working America. A Vision of Vocational Technical Education.
ERIC Educational Resources Information Center
National Association of State Directors of Vocational Technical Education Consortium.
This document presents the views of the National Association of State Directors of Vocational Technical Education regarding the challenge, mission, vision, underlying principles, practice, needs, and benefits/potential outcomes of vocational-technical education (VTE). The following topics are discussed: the challenge of making VTE the cornerstone…
Overcoming Resistance to New Ideas
ERIC Educational Resources Information Center
Powell, William; Kusuma-Powell, Ochan
2015-01-01
There are two types of challenges that adults face in their professional learning: technical and adaptive. Technical challenges simply require informational learning while adaptive challenges require transformational learning, which requires us to rethink our deeply held values, beliefs, assumptions, and even our professional identity. Adaptive…
Deep Space Network (DSN), Network Operations Control Center (NOCC) computer-human interfaces
NASA Technical Reports Server (NTRS)
Ellman, Alvin; Carlton, Magdi
1993-01-01
The Network Operations Control Center (NOCC) of the DSN is responsible for scheduling the resources of DSN, and monitoring all multi-mission spacecraft tracking activities in real-time. Operations performs this job with computer systems at JPL connected to over 100 computers at Goldstone, Australia and Spain. The old computer system became obsolete, and the first version of the new system was installed in 1991. Significant improvements for the computer-human interfaces became the dominant theme for the replacement project. Major issues required innovating problem solving. Among these issues were: How to present several thousand data elements on displays without overloading the operator? What is the best graphical representation of DSN end-to-end data flow? How to operate the system without memorizing mnemonics of hundreds of operator directives? Which computing environment will meet the competing performance requirements? This paper presents the technical challenges, engineering solutions, and results of the NOCC computer-human interface design.
Meeting the challenges of bringing a new base facility operation model to Gemini Observatory
NASA Astrophysics Data System (ADS)
Nitta, Atsuko; Arriagada, Gustavo; Adamson, A. J.; Cordova, Martin; Nunez, Arturo; Serio, Andrew; Kleinman, Scot
2016-08-01
The aim of the Gemini Observatory's Base Facilities Project is to provide the capabilities to perform routine night time operations with both telescopes and their instruments from their respective base facilities without anyone present at the summit. Tightening budget constraints prompted this project as both a means to save money and an opportunity to move toward increasing remote operations in the future. We successfully moved Gemini North nighttime operation to our base facility in Hawaii in Nov., 2015. This is the first 8mclass telescope to completely move night time operations to base facility. We are currently working on implementing BFO to Gemini South. Key challenges for this project include: (1) This is a schedule driven project. We have to implement the new capabilities by the end of 2015 for Gemini North and end of 2016 for Gemini South. (2) The resources are limited and shared with operations which has the higher priority than our project. (3) Managing parallel work within the project. (4) Testing, commissioning and introducing new tools to operational systems without adding significant disruptions to nightly operations. (5) Staff buying to the new operational model. (6) The staff involved in the project are spread on two locations separated by 10,000km, seven time zones away from each other. To overcome these challenges, we applied two principles: "Bare Minimum" and "Gradual Descent". As a result, we successfully completed the project ahead of schedule at Gemini North Telescope. I will discuss how we managed the cultural and human aspects of the project through these concepts. The other management aspects will be presented by Gustavo Arriagada [2], the Project Manager of this project. For technical details, please see presentations from Andrew Serio [3] and Martin Cordova [4].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tom; Snyder, Neil; Gosnold, Will
This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less
Rib fracture repair: indications, technical issues, and future directions.
Nirula, Raminder; Diaz, Jose J; Trunkey, Donald D; Mayberry, John C
2009-01-01
Rib fracture repair has been performed at selected centers around the world for more than 50 years; however, the operative indications have not been established and are considered controversial. The outcome of a strictly nonoperative approach may not be optimal. Potential indications for rib fracture repair include flail chest, painful, movable rib fractures refractory to conventional pain management, chest wall deformity/defect, rib fracture nonunion, and during thoracotomy for other traumatic indication. Rib fracture repair is technically challenging secondary to the human rib's relatively thin cortex and its tendency to fracture obliquely. Nonetheless, several effective repair systems have been developed. Future directions for progress on this important surgical problem include the development of minimally invasive techniques and the conduct of multicenter, randomized trials.
Space reflector technology and its system implications
NASA Technical Reports Server (NTRS)
Billman, K. W.; Gilbreath, W. P.; Bowen, S. W.
1979-01-01
The technical feasibility of providing nearly continuous solar energy to a world-distributed set of conversion sites by means of a system of orbiting, large-area, low-areal-density reflecting structures is examined. Requisite mirror area to provide a chosen, year-averaged site intensity is shown. A modeled reflector structure, with suitable planarity and ability to meet operational torques and loads, is discussed. Typical spatial and temporal insolation profiles are presented. These determine the sizing of components and the output electric power from a baselined photovoltaic conversion system. Technical and economic challenges which, if met, would allow the system to provide a large fraction of future world energy needs at costs competitive to circa-1995 fossil and nuclear sources are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Tom; Snyder, Neil; Gosnold, Will
This paper discusses opportunities and challenges related to the technical and economic feasibility of developing power generation from geothermal resources at temperatures of 150 degrees C and lower. Insights from projects funded by the U.S. Department of Energy (DOE), Geothermal Technologies Office inform these discussions and provide the basis for some lessons learned to help guide decisions by DOE and the industry in further developing this resource. The technical basis for low-temperature geothermal energy is well established and the systems can be economic today in certain situations. However, these applications are far from a 'plug and play' product; successful developmentmore » today requires a good knowledge of geothermal system design and operation.« less
The Difficult Gallbladder: A Safe Approach to a Dangerous Problem.
Santos, B Fernando; Brunt, L Michael; Pucci, Michael J
2017-06-01
Laparoscopic cholecystectomy is a common surgical procedure, and remains the gold standard for the management of benign gallbladder and biliary disease. While this procedure can be technically straightforward, it can also represent one of the most challenging operations facing surgeons. This dichotomy of a routine operation performed so commonly that poses such a hidden risk of severe complications, such as bile duct injury, must keep surgeons steadfast in the pursuit of safety. The "difficult gallbladder" requires strict adherence to the Culture of Safety in Cholecystectomy, which promotes safety first and assists surgeons in managing or avoiding difficult operative situations. This review will discuss the management of the difficult gallbladder and propose the use of subtotal fenestrating cholecystectomy as a definitive option during this dangerous situation.
Shuttle payload S-band communications system
NASA Technical Reports Server (NTRS)
Batson, B. H.; Teasdale, W. E.; Pawlowski, J. F.; Schmidt, O. L.
1985-01-01
The Shuttle payload S-band communications system design, operational capabilities, and performance are described in detail. System design requirements, overall system and configuration and operation, and laboratory/flight test results are presented. Payload communications requirements development is discussed in terms of evolvement of requirements as well as the resulting technical challenges encountered in meeting the initial requirements. Initial design approaches are described along with cost-saving initiatives that subsequently had to be made. The resulting system implementation that was finally adopted is presented along with a functional description of the system operation. A description of system test results, problems encountered, how the problems were solved, and the system flight experience to date is presented. Finally, a summary of the advancements made and the lessons learned is discussed.
Health regionalization in Amazonas: progress and challenges.
Garnelo, Luiza; Sousa, Amandia Braga Lima; Silva, Clayton de Oliveira da
2017-04-01
This paper analyses the health services regionalization process in the State of Amazonas through a case study covering the health sub-region Manaus Surroundings. This is a qualitative, descriptive and analytical research, which data were collected using interviews, documents and Internet reviews, oriented by the guiding concept of health regionalization. Study findings revealed a social setting dominated by asymmetry, verticality, competitiveness and fragile multilateral relations among municipalities, associated to a bureaucratic profile of local institutions operating in the region under study. The political agents have limited acknowledgement of the sociopolitical and institutional conditions in which they operate. They usually impute healthcare networks' management and operational issues to the natural and geographical characteristics of the Amazon region, but their financing, governance and technical capacity are insufficient to overcome them.
Defining Operational Space Suit Requirements for Commercial Orbital Spaceflight
NASA Technical Reports Server (NTRS)
Alpert, Brian K.
2015-01-01
As the commercial spaceflight industry transitions from suborbital brevity to orbital outposts, spacewalking will become a major consideration for tourists, scientists, and hardware providers. The challenge exists to develop a space suit designed for the orbital commercial spaceflight industry. The unique needs and requirements of this industry will drive space suit designs and costs that are unlike any existing product. Commercial space tourists will pay for the experience of a lifetime, while scientists may not be able to rely on robotics for all operations and external hardware repairs. This study was aimed at defining space suit operational and functional needs across the spectrum of spacewalk elements, identifying technical design drivers and establishing appropriate options. Recommendations from the analysis are offered for consideration
Initial operation of high power ICRF system for long pulse in EAST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, C. M., E-mail: chmq@ipp.ac.cn; Zhao, Y. P.; Zhang, X. J.
2015-12-10
The ICRF heating system on EAST upgraded by active cooling aims for long pulse operation. In this paper, the main technical features of the ICRF system are described. One of a major challenges for long pulse operation is RF-edge interactions induced impurity production and heat loading. In EAST, ICRF antenna protections and Faraday screen bars damaged due to LH electron beam are found. Preliminary results for the analysis of the interaction between LHCD and ICRF antenna are discussed. Increase of metal impurities in the plasma during RF pulse and in a larger core radiation are also shown. These RF-edge interactionsmore » at EAST and some preliminary results for the optimizing RF performance will be presented.« less
Virtual reality simulator: demonstrated use in neurosurgical oncology.
Clarke, David B; D'Arcy, Ryan C N; Delorme, Sebastien; Laroche, Denis; Godin, Guy; Hajra, Sujoy Ghosh; Brooks, Rupert; DiRaddo, Robert
2013-04-01
The overriding importance of patient safety, the complexity of surgical techniques, and the challenges associated with teaching surgical trainees in the operating room are all factors driving the need for innovative surgical simulation technologies. Despite these issues, widespread use of virtual reality simulation technology in surgery has not been fully implemented, largely because of the technical complexities in developing clinically relevant and useful models. This article describes the successful use of the NeuroTouch neurosurgical simulator in the resection of a left frontal meningioma. The widespread application of surgical simulation technology has the potential to decrease surgical risk, improve operating room efficiency, and fundamentally change surgical training.
NASA Technical Reports Server (NTRS)
Pedersen, L.; Kortenkamp, D.; Wettergreen, D.; Nourbakhsh, I.; Korsmeyer, David (Technical Monitor)
2003-01-01
In this paper we summarize a survey conducted by NASA to determine the state-of-the-art in space robotics and to predict future robotic capabilities under either nominal and intensive development effort. The space robotics assessment study examined both in-space operations including assembly, inspection, and maintenance and planetary surface operations like mobility and exploration. Applications of robotic autonomy and human-robot cooperation were considered. The study group devised a decomposition of robotic capabilities and then suggested metrics to specify the technical challenges associated with each. The conclusion of this paper identifies possible areas in which investment in space robotics could lead to significant advances of important technologies.
Final Progress Report, Renewable and Logistics Fuels for Fuel Cells at the Colorado School of Mines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Neal P.
The objective of this program is to advance the current state of technology of solid-oxide fuel cells (SOFCs) to improve performance when operating on renewable and logistics hydrocarbon fuel streams. Outcomes will include: 1.) new SOFC materials and architectures that address the technical challenges associated with carbon-deposit formation and sulfur poisoning; 2.) new integration strategies for combining fuel reformers with SOFCs; 3.) advanced modeling tools that bridge the scales of fundamental charge-transfer chemistry to system operation and control; and 4.) outreach through creation of the Distinguished Lecturer Series to promote nationwide collaboration with fuel-cell researchers and scientists.
Predictive risk models for proximal aortic surgery
Díaz, Rocío; Pascual, Isaac; Álvarez, Rubén; Alperi, Alberto; Rozado, Jose; Morales, Carlos; Silva, Jacobo; Morís, César
2017-01-01
Predictive risk models help improve decision making, information to our patients and quality control comparing results between surgeons and between institutions. The use of these models promotes competitiveness and led to increasingly better results. All these virtues are of utmost importance when the surgical operation entails high-risk. Although proximal aortic surgery is less frequent than other cardiac surgery operations, this procedure itself is more challenging and technically demanding than other common cardiac surgery techniques. The aim of this study is to review the current status of predictive risk models for patients who undergo proximal aortic surgery, which means aortic root replacement, supracoronary ascending aortic replacement or aortic arch surgery. PMID:28616348
NASA Astrophysics Data System (ADS)
Hullo, J.-F.; Thibault, G.; Boucheny, C.
2015-02-01
In a context of increased maintenance operations and workers generational renewal, a nuclear owner and operator like Electricité de France (EDF) is interested in the scaling up of tools and methods of "as-built virtual reality" for larger buildings and wider audiences. However, acquisition and sharing of as-built data on a large scale (large and complex multi-floored buildings) challenge current scientific and technical capacities. In this paper, we first present a state of the art of scanning tools and methods for industrial plants with very complex architecture. Then, we introduce the inner characteristics of the multi-sensor scanning and visualization of the interior of the most complex building of a power plant: a nuclear reactor building. We introduce several developments that made possible a first complete survey of such a large building, from acquisition, processing and fusion of multiple data sources (3D laser scans, total-station survey, RGB panoramic, 2D floor plans, 3D CAD as-built models). In addition, we present the concepts of a smart application developed for the painless exploration of the whole dataset. The goal of this application is to help professionals, unfamiliar with the manipulation of such datasets, to take into account spatial constraints induced by the building complexity while preparing maintenance operations. Finally, we discuss the main feedbacks of this large experiment, the remaining issues for the generalization of such large scale surveys and the future technical and scientific challenges in the field of industrial "virtual reality".
SIMBIOS Project; 2003 Annual Report
NASA Technical Reports Server (NTRS)
McClain, Charles R.; Fargion, Giulietta S.
2003-01-01
The purpose of this technical report is to provide current documentation of the the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project activities, NASA Research Announcement (NRA) research status, satellite data processing, data product validation, and field calibration. This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project. The SIMBIOS Science Team Principal Investigators (PIs) original contributions to this report are in chapters four and above. The purpose of these contributions is to describe the current research status of the SIMBIOS-NRA-99 funded research. The contributions are published as submitted, with the exception of minor edits to correct obvious grammatical or clerical errors.
Challenges of constructing salt cavern gas storage in China
NASA Astrophysics Data System (ADS)
Xia, Yan; Yuan, Guangjie; Ban, Fansheng; Zhuang, Xiaoqian; Li, Jingcui
2017-11-01
After more than ten years of research and engineering practice in salt cavern gas storage, the engineering technology of geology, drilling, leaching, completion, operation and monitoring system has been established. With the rapid growth of domestic consumption of natural gas, the requirement of underground gas storage is increasing. Because high-quality rock salt resources about 1000m depth are relatively scarce, the salt cavern gas storages will be built in deep rock salt. According to the current domestic conventional construction technical scheme, construction in deep salt formations will face many problems such as circulating pressure increasing, tubing blockage, deformation failure, higher completion risk and so on, caused by depth and the complex geological conditions. Considering these difficulties, the differences between current technical scheme and the construction scheme of twin well and big hole are analyzed, and the results show that the technical scheme of twin well and big hole have obvious advantages in reducing the circulating pressure loss, tubing blockage and failure risk, and they can be the alternative schemes to solve the technical difficulties of constructing salt cavern gas storages in the deep rock salt.
Surgical simulation: Current practices and future perspectives for technical skills training.
Bjerrum, Flemming; Thomsen, Ann Sofia Skou; Nayahangan, Leizl Joy; Konge, Lars
2018-06-17
Simulation-based training (SBT) has become a standard component of modern surgical education, yet successful implementation of evidence-based training programs remains challenging. In this narrative review, we use Kern's framework for curriculum development to describe where we are now and what lies ahead for SBT within surgery with a focus on technical skills in operative procedures. Despite principles for optimal SBT (proficiency-based, distributed, and deliberate practice) having been identified, massed training with fixed time intervals or a fixed number of repetitions is still being extensively used, and simulators are generally underutilized. SBT should be part of surgical training curricula, including theoretical, technical, and non-technical skills, and be based on relevant needs assessments. Furthermore, training should follow evidence-based theoretical principles for optimal training, and the effect of training needs to be evaluated using relevant outcomes. There is a larger, still unrealized potential of surgical SBT, which may be realized in the near future as simulator technologies evolve, more evidence-based training programs are implemented, and cost-effectiveness and impact on patient safety is clearly demonstrated.
Antenna Electronics Concept for the Next-Generation Very Large Array
NASA Astrophysics Data System (ADS)
Beasley, Anthony J.; Jackson, Jim; Selina, Robert
2017-01-01
The National Radio Astronomy Observatory (NRAO), in collaboration with its international partners, completed two major projects over the past decade: the sensitivity upgrade for the Karl Jansky Very Large Array (VLA) and the construction of the Atacama Large Millimeter/Sub-Millimeter Array (ALMA). The NRAO is now considering the scientific potential and technical feasibility of a next-generation VLA (ngVLA) with an emphasis on thermal imaging at milli-arcsecond resolution. The preliminary goals for the ngVLA are to increase both the system sensitivity and angular resolution of the VLA tenfold and to cover a frequency range of 1.2-116 GHz.A number of key technical challenges have been identified for the project. These include cost-effective antenna manufacturing (in the hundreds), suitable wide-band feed and receiver designs, broad-band data transmission, and large-N correlators. Minimizing the overall operations cost is also a fundamental design requirement.The designs of the antenna electronics, reference distribution system, and data transmission system are anticipated to be major construction and operations cost drivers for the facility. The electronics must achieve a high level of performance, while maintaining low operation and maintenance costs and a high level of reliability. Additionally, due to the uncertainty in the feasibility of wideband receivers, advancements in digitizer technology, and budget constraints, the hardware system architecture should be scalable to the number of receiver bands and the speed and resolution of available digitizers.Here, we present the projected performance requirements of the ngVLA, a proposed block diagram for the instrument’s electronics systems, parameter tradeoffs within the system specifications, and areas of technical risk where technical advances may be required for successful production and installation.
Water Demand Management Strategies and Challenges in the Upper Colorado River Basin
NASA Astrophysics Data System (ADS)
Kuhn, R. E.
2016-12-01
Under the 1922 Colorado River Compact, the Upper Basin (Colorado, New Mexico, Utah, and Wyoming) has flow obligations at Lee Ferry to downstream states and Mexico. The Colorado River Storage Project Act (CRSPA) of 1956 led to the construction of four large storage reservoirs. These provide river regulation to allow the Upper Basin to meet its obligations. Lake Powell, the largest and most important, and Lake Mead are now operated in a coordinated manner under the 2007 Interim Guidelines. Studies show that at current demand levels and if the hydrologic conditions the Basin has experienced since the mid-1980s continue or get drier, reservoir operations, alone, may not provide the necessary water to meet the Upper Basin's obligations. Therefore, the Upper Basin states are now studying demand management strategies that will reduce consumptive uses when total system reservoir storage reaches critically low levels. Demand management has its own economic, political and technical challenges and limitations and will provide new opportunities for applied research. This presentation will discuss some of those strategies, their challenges, and the kinds of information that research could provide to inform demand management.
2016-06-01
site customization of existing models. The author performed an empirical study centered around a survey of United States Marine Corps (USMC) and United...recommends that more studies be performed to determine the best way forward for AM within the USMC and USN. 14. SUBJECT TERMS 3D printing, additive...customization of existing models. The author performed an em- pirical study centered around a survey of United States Marine Corps (USMC) and United
Sustainability Challenge of Micro Hydro Power Development in Indonesia
NASA Astrophysics Data System (ADS)
Didik, H.; Bambang, P. N.; Asep, S.; Purwanto, Y. A.
2018-05-01
Rural electrification using renewable energy is the best choice for many locations that far away from national grid. Many renewable energy project have been built for rural electrification such as micro hydro power plant (MHPP) and solar photovoltaic (SPV). Sustainability still the main challenge of off-grid renewable energy development for off-grid rural electrification in Indonesia. The objective of this paper is to review sustainability of micro hydro power development in Indonesia. The research method was done by field observation, interview with MHPP management, and reviewing some research about MHPP in Indonesia. Sustainability issues include various aspects that can be classified into 5 dimensions: technical, economic, socio-cultural, institutional, and environmental. In technical factors that lead to sustainability problem are: improper MHPP design and construction, improper operation and maintenance, availability of spare parts and expertise. In the economic dimension are generally related to: low electricity tariff and utilization of MHPP for productive use. In the social dimension are: the growth of consumer’s load exceeding the capacity, reduced number of consumers, lack of external institutional support. In the institutional side, it is generally related to the ability of human resources in managing, operating and maintaining of MHPP. Environmental factors that lead the sustainability problems of MHPP are: scarcity of water discharge, conflict of water resources, land conversion over the watershed, and natural disasters.
Bishop, Felicity L
2015-02-01
To outline some of the challenges of mixed methods research and illustrate how they can be addressed in health psychology research. This study critically reflects on the author's previously published mixed methods research and discusses the philosophical and technical challenges of mixed methods, grounding the discussion in a brief review of methodological literature. Mixed methods research is characterized as having philosophical and technical challenges; the former can be addressed by drawing on pragmatism, the latter by considering formal mixed methods research designs proposed in a number of design typologies. There are important differences among the design typologies which provide diverse examples of designs that health psychologists can adapt for their own mixed methods research. There are also similarities; in particular, many typologies explicitly orient to the technical challenges of deciding on the respective timing of qualitative and quantitative methods and the relative emphasis placed on each method. Characteristics, strengths, and limitations of different sequential and concurrent designs are identified by reviewing five mixed methods projects each conducted for a different purpose. Adapting formal mixed methods designs can help health psychologists address the technical challenges of mixed methods research and identify the approach that best fits the research questions and purpose. This does not obfuscate the need to address philosophical challenges of mixing qualitative and quantitative methods. Statement of contribution What is already known on this subject? Mixed methods research poses philosophical and technical challenges. Pragmatism in a popular approach to the philosophical challenges while diverse typologies of mixed methods designs can help address the technical challenges. Examples of mixed methods research can be hard to locate when component studies from mixed methods projects are published separately. What does this study add? Critical reflections on the author's previously published mixed methods research illustrate how a range of different mixed methods designs can be adapted and applied to address health psychology research questions. The philosophical and technical challenges of mixed methods research should be considered together and in relation to the broader purpose of the research. © 2014 The British Psychological Society.
ACHP | Historic Preservation in Technical or Scientific Facilities
with the Operation of Highly Technical or Scientific Facilities Balancing Historic Preservation Needs with the Operation of Highly Technical or Scientific Facilities 1991; 79 pages; excerpt available Needs with the Operation of Highly Technical or Scientific Facilities considers the appropriate role of
76 FR 72885 - FM Asymmetric Sideband Operation and Associated Technical Studies
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-28
... Sideband Operation and Associated Technical Studies AGENCY: Federal Communications Commission. ACTION... Asymmetric Sideband Operation and Associated Technical Studies, MM Docket No. 99-325, Public Notice, DA 11-1832 (MB rel. Nov. 1, 2011). The iBiquity and NPR request and the iBiquity and NPR technical studies...
2014 NASA Centennial Challenges Sample Return Robot Challenge
2014-06-14
The NASA Centennial Challenges prize, level one, is presented to team Mountaineers for successfully completing level one of the NASA 2014 Sample Return Robot Challenge, from left, Ken Stafford, WPI Challenge technical advisor; Colleen Shaver, WPI Challenge Manager; Ryan Watson, Team Mountaineers; Marvin Cheng, Team Mountaineers; Alexander Hypes, Team Mountaineers; Jarred Strader, Team Mountaineers; Lucas Behrens, Team Mountaineers; Yu Gu, Team Mountaineers; Nick Ohi, Team Mountaineers; Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate; Scott Harper, Team Mountaineers; Tanmay Mandal, Team Mountaineers; David Miller, NASA Chief Technologist; Sam Ortega, NASA Program Manager for Centennial Challenges, Saturday, June 14, 2014, at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineers was the only team to complete the level one challenge. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)
Robinson, Suzanne; Dickinson, Helen; Durrington, Learne
2016-01-01
The concept of commissioning is starting to gain traction in the Australian health system. Primary Care Networks began operations in July 2015 with a remit around commissioning health services. Despite the centrality of this concept, we know relatively little about commissioning in Australia. Other systems have experimented with it for some time, and this paper reviews the evidence and lessons inherent within the international literature. The study defines commissioning, and explores experiences of others who have adopted commissioning approaches and the evidence concerning the outcomes of these experiments. Commissioning is a difficult topic in many senses and its application to a complex area such as health reform can make it even more challenging. Ultimately, this evidence suggests that commissioning is more than simply a technical or operational process, but one that is value-based and relational. This is not to downplay the technical aspects, which in many jurisdictions have resulted in explicit and evidenced-based approaches to planning and priority setting. However, if new commissioning organisations, such as Primary Health Networks, are to have an impact, they need to balance the operational and relational elements of commissioning.
Robotic acquisition programs: technical and performance challenges
NASA Astrophysics Data System (ADS)
Thibadoux, Steven A.
2002-07-01
The Unmanned Ground Vehicles/ Systems Joint Project Office (UGV/S JPO) is developing and fielding a variety of tactical robotic systems for the Army and Marine Corps. The Standardized Robotic System (SRS) provides a family of common components that can be installed in existing military vehicles, to allow unmanned operation of the vehicle and its payloads. The Robotic Combat Support System (RCSS) will be a medium sized unmanned system with interchangeable attachments, allowing a remote operator to perform a variety of engineering tasks. The Gladiator Program is a USMC initiative for a small to medium sized, highly mobile UGV to conduct scout/ surveillance missions and to carry various lethal and non-lethal payloads. Acquisition plans for these programs require preplanned evolutionary block upgrades to add operational capability, as new technology becomes available. This paper discusses technical and performance issues that must be resolved and the enabling technologies needed for near term block upgrades of these first generation robotic systems. Additionally, two Joint Robotics Program (JRP) initiatives, Robotic Acquisition through Virtual Environments and Networked Simulations (RAVENS) and Joint Architecture for Unmanned Ground Systems (JAUGS), will be discussed. RAVENS and JAUGS will be used to efficiently evaluate and integrate new technologies to be incorporated in system upgrades.
Minimally invasive repair of pectus excavatum
Calder, Bennett W.; Lesher, Aaron
2016-01-01
Pectus excavatum, an acquired or congenital depression of the anterior chest wall, is the most commonly occurring chest wall deformity. Patients with pectus excavatum experience psychosocial and physiologic consequences such as impaired social development and pulmonary and/or cardiac dysfunction as a result of the deformity. Traditionally, repair of the defect was performed with a major open operation, the most common being based on modifications of the Ravitch procedure. In the late 1990’s, the operative approach was challenged with a new minimally invasive technique described by Dr. Donald Nuss. This approach utilizes thoracoscopic visualization with small incisions and placement of a temporary metal bar positioned behind the sternum for support it while the costal cartilages remodel. Since introduction, the minimally invasive repair of pectus excavatum (MIRPE) has become accepted in many centers as the procedure of choice for repair of pectus excavatum. In experienced hands, the procedure has excellent outcomes, shorter procedural length, and outstanding cosmetic results. However, proper patient selection and attention to technical details are essential to achieve optimal outcomes and prevent significant complications. In the following, we describe our perspective on pectus excavatum deformities, operative planning, and technical details of the MIRPE procedure. PMID:29078501
The 6.5-m MMT Telescope: status and plans for the future
NASA Astrophysics Data System (ADS)
Williams, G. Grant; Ortiz, R.; Goble, W.; Gibson, J. D.
2016-08-01
The MMT Observatory, a joint venture of the Smithsonian Institution and the University of Arizona, operates the 6.5-m MMT telescope on the summit of Mount Hopkins approximately 45 miles south of Tucson, AZ. The upgraded telescope has been in routine operation for nearly fifteen years and, as such, is a very reliable and productive general purpose astronomical instrument. The telescope can be configured with one of three secondary mirrors that feed more than ten instruments at the Cassegrain focus. In this paper we provide an overview of the the telescope, its current capabilities, and its performance. We will review the existing suite of instruments and their different modes of operation. We will describe some of the general operations challenges and strategies for the Observatory. Finally, we will discuss plans for the near-term future including technical upgrades, new instrumentation and routine queue operation of MMIRS and Binospec.
Scaffold Translation: Barriers Between Concept and Clinic
Murphy, William L.
2011-01-01
Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. PMID:21902613
Four top tier challenges for Space Weather Research for the next decade
NASA Astrophysics Data System (ADS)
Spann, James
2017-04-01
The science of space weather is that which (1) develops the knowledge and understanding to predict conditions in space that impact life and society, and (2) leads to operational solutions that protect assets and systems to the benefit of society. Advances over the past decades in this area of research have yielded amazing discoveries and significant strides toward fulfilling the promise of an operational solution to space weather, and have facilitated the enterprise to make its way into the realm of national and international policy. Even if the resources, technologies, and political will were available to take advantage of this progress, our current lack of understanding of space weather would prevent the implementation of a fully operational system. This talk will highlight four distinct areas of research that, if fully understood, could enable operational solutions to space weather impacts, given sufficient resources and political will. These areas are (a) trigger of solar variability, (b) acceleration of mass and energy in interplanetary space, (c) geoeffectiveness of solar wind, and (d) ionospheric variability. A brief description, technical challenges, and possible pathways to resolution will be offered for each of these areas.
NASA Astrophysics Data System (ADS)
Abdullaev, Iskandar; Rakhmatullaev, Shavkat
2014-05-01
The paper discusses vulnerability areas of water sector in arid Central Asia due to climate change projections with particular focus on adaptation to sustainable operation of physical infrastructure capacities (from legal, institutional and technical aspects). Two types of technical installations are the main focus of this paper, i.e., electrical lift irrigation systems and water reservoirs. The first set of electrical lift infrastructure is strategic for delivering water to water users via pumps, diversion structures, vertical drainage facilities and groundwater boreholes; on the other hand, the primarily task of second set of structures is to accumulate the water resources for sectors of economy. In Central Asia, approximately, 20-50% of irrigation water is lifted, yet major of lift structures are in very poor technical conditions coupled with ever increasing of electricity tariffs. Furthermore, useful volumes capacities of water reservoirs are being severely diminished due to bio-physical geomorphologic processes, improper operational regimes and chronic financing for special in-house sedimentation surveys. Most importantly, the key argument is that irrigation sector should internalize its adaptation efforts, i.e., integrate renewable energy technologies, energy audit programs and lastly design comprehensive investment prioritization processes and programs. Otherwise, water sector will be at great risk for continued provision of fundamental services to the public, food security and industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Thomas M.; Boudreau, Marie-Claude; Helsen, Lieve
Recent advances in information and communications technology (ICT) have initiated development of a smart electrical grid and smart buildings. Buildings consume a large portion of the total electricity production worldwide, and to fully develop a smart grid they must be integrated with that grid. Buildings can now be 'prosumers' on the grid (both producers and consumers), and the continued growth of distributed renewable energy generation is raising new challenges in terms of grid stability over various time scales. Buildings can contribute to grid stability by managing their overall electrical demand in response to current conditions. Facility managers must balance demandmore » response requests by grid operators with energy needed to maintain smooth building operations. For example, maintaining thermal comfort within an occupied building requires energy and, thus an optimized solution balancing energy use with indoor environmental quality (adequate thermal comfort, lighting, etc.) is needed. Successful integration of buildings and their systems with the grid also requires interoperable data exchange. However, the adoption and integration of newer control and communication technologies into buildings can be problematic with older legacy HVAC and building control systems. Public policy and economic structures have not kept up with the technical developments that have given rise to the budding smart grid, and further developments are needed in both technical and non-technical areas.« less
Assessment of Technical Skills Competence in the Operating Room: A Systematic and Scoping Review.
Fahim, Christine; Wagner, Natalie; Nousiainen, Markku T; Sonnadara, Ranil
2018-05-01
While academic accreditation bodies continue to promote competency-based medical education (CBME), the feasibility of conducting regular CBME assessments remains challenging. The purpose of this study was to identify evidence pertaining to the practical application of assessments that aim to measure technical competence for surgical trainees in a nonsimulated, operative setting. In August 2016, the authors systematically searched Medline, Embase, and the Cochrane Database of Systematic Reviews for English-language, peer-reviewed articles published in or after 1996. The title, abstract, and full text of identified articles were screened. Data regarding study characteristics, psychometric and measurement properties, implementation of assessment, competency definitions, and faculty training were extracted. The findings from the systematic review were supplemented by a scoping review to identify key strategies related to faculty uptake and implementation of CBME assessments. A total of 32 studies were included. The majority of studies reported reasonable scores of interrater reliability and internal consistency. Seven articles identified minimum scores required to establish competence. Twenty-five articles mentioned faculty training. Many of the faculty training interventions focused on timely completion of assessments or scale calibration. There are a number of diverse tools used to assess competence for intraoperative technical skills and a lack of consensus regarding the definition of technical competence within and across surgical specialties. Further work is required to identify when and how often trainees should be assessed and to identify strategies to train faculty to ensure timely and accurate assessment.
Simulation in surgery: a review.
Tan, Shaun Shi Yan; Sarker, Sudip K
2011-05-01
The ability to acquire surgical skills requires consistent practice, and evidence suggests that many of these technical skills can be learnt away from the operating theatre. The aim of this review article is to discuss the importance of surgical simulation today and its various types, exploring the effectiveness of simulation in the clinical setting and its challenges for the future. Surgical simulation offers the opportunity for trainees to practise their surgical skills prior to entering the operating theatre, allowing detailed feedback and objective assessment of their performance. This enables better patient safety and standards of care. Surgical simulators can be divided into organic or inorganic simulators. Organic simulators, consisting of live animal and fresh human cadaver models, are considered to be of high-fidelity. Inorganic simulators comprise virtual reality simulators and synthetic bench models. Current evidence suggests that skills acquired through training with simulators, positively transfers to the clinical setting and improves operative outcome. The major challenge for the future revolves around understanding the value of this new technology and developing an educational curriculum that can incorporate surgical simulators.
Human Performance Considerations for Remotely Piloted Aircraft Systems (RPAS)
NASA Technical Reports Server (NTRS)
Shively, R. Jay; Hobbs, Alan; Lyall, Beth; Rorie, Conrad
2015-01-01
Successful integration of Remotely Piloted Aircraft Systems (RPAS) into civil airspace will not only require solutions to technical challenges, but will also require that the design and operation of RPAS take into account human limitations and capabilities. Human factors can affect overall system performance whenever the system relies on people to interact with another element of the system. Four types of broad interactions can be described. These are (1) interactions between people and hardware, such as controls and displays; (2) human use of procedures and documentation; (3) impact of the task environment, including lighting, noise and monotony; and lastly, (4) interactions between operational personnel, including communication and coordination. In addition to the human factors that have been identified for conventional aviation, RPAS operations introduce a set of unique human challenges. The purpose of document is to raise human factors issues for consideration by workgroups of the ICAO RPAS panel as they work to develop guidance material and additions to ICAO annexes. It is anticipated that the content of this document will be revised and updated as the work of the panel progresses.
Anion exchange membrane fuel cells: Current status and remaining challenges
NASA Astrophysics Data System (ADS)
Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles; Bae, Chulsung; Yan, Yushan; Zelenay, Piotr; Kim, Yu Seung
2018-01-01
The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. In this perspective article, we describe the current status of AEMFCs as having reached beginning of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. These perspectives may provide useful insights for the development of next-generation of AEMFCs.
Operation Windshield and the simplification of emergency management.
Andrews, Michael
2016-01-01
Large, complex, multi-stakeholder exercises are the culmination of years of gradual progression through a comprehensive training and exercise programme. Exercises intended to validate training, refine procedures and test processes initially tested in isolation are combined to ensure seamless response and coordination during actual crises. The challenges of integrating timely and accurate situational awareness from an array of sources, including response agencies, municipal departments, partner agencies and the public, on an ever-growing range of media platforms, increase information management complexity in emergencies. Considering that many municipal emergency operations centre roles are filled by staff whose day jobs have little to do with crisis management, there is a need to simplify emergency management and make it more intuitive. North Shore Emergency Management has accepted the challenge of making emergency management less onerous to occasional practitioners through a series of initiatives aimed to build competence and confidence by making processes easier to use as well as by introducing technical tools that can simplify processes and enhance efficiencies. These efforts culminated in the full-scale earthquake exercise, Operation Windshield, which preceded the 2015 Emergency Preparedness and Business Continuity Conference in Vancouver, British Columbia.
Anion exchange membrane fuel cells: Current status and remaining challenges
Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles; ...
2017-09-01
The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. Here in this perspective article, we describe the current status of AEMFCs as having reached beginningmore » of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. Finally, these perspectives may provide useful insights for the development of next-generation of AEMFCs.« less
Progress and future direction for the interim safe storage and disposal of Hanford high-level waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.
This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less
Vocational and Technical Education in Lebanon: Strategic Issues and Challenges
ERIC Educational Resources Information Center
Karam, Gebran
2006-01-01
The current status of the Lebanese vocational and technical education (VTE) system is assessed and the strategic issues and challenges facing it are identified. In addition to the economic and social challenges that are common to many developing countries, the Lebanese system suffers from idiosyncratic problems, which may require innovative and…
Advancing Innovation Through Collaboration: Implementation of the NASA Space Life Sciences Strategy
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.; Richard, Elizabeth E.
2010-01-01
On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 90 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed in this article. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations have been developed: (1) Space Act Agreement between NASA and GE for collaborative projects (2) NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011) (3) NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011) (4) NASA and the San Diego Zoo for a joint challenge in biomimicry (5) NASA and the FAA Center of Excellence for Commercial Space Flight for five collaborative projects (6) NASA and ESA for a Space Medicine Workshop (July 2011) (7) NASA and Tufts University for an education pilot (8) Establishment of long-term contracts (August 2011) to enable future challenges (9) Establishment of a new Center of Excellence for Collaborative Innovation (July 2011) for all federal agencies in the US
Back to the future: virtualization of the computing environment at the W. M. Keck Observatory
NASA Astrophysics Data System (ADS)
McCann, Kevin L.; Birch, Denny A.; Holt, Jennifer M.; Randolph, William B.; Ward, Josephine A.
2014-07-01
Over its two decades of science operations, the W.M. Keck Observatory computing environment has evolved to contain a distributed hybrid mix of hundreds of servers, desktops and laptops of multiple different hardware platforms, O/S versions and vintages. Supporting the growing computing capabilities to meet the observatory's diverse, evolving computing demands within fixed budget constraints, presents many challenges. This paper describes the significant role that virtualization is playing in addressing these challenges while improving the level and quality of service as well as realizing significant savings across many cost areas. Starting in December 2012, the observatory embarked on an ambitious plan to incrementally test and deploy a migration to virtualized platforms to address a broad range of specific opportunities. Implementation to date has been surprisingly glitch free, progressing well and yielding tangible benefits much faster than many expected. We describe here the general approach, starting with the initial identification of some low hanging fruit which also provided opportunity to gain experience and build confidence among both the implementation team and the user community. We describe the range of challenges, opportunities and cost savings potential. Very significant among these was the substantial power savings which resulted in strong broad support for moving forward. We go on to describe the phasing plan, the evolving scalable architecture, some of the specific technical choices, as well as some of the individual technical issues encountered along the way. The phased implementation spans Windows and Unix servers for scientific, engineering and business operations, virtualized desktops for typical office users as well as more the more demanding graphics intensive CAD users. Other areas discussed in this paper include staff training, load balancing, redundancy, scalability, remote access, disaster readiness and recovery.
Networking Cyberinfrastructure Resources to Support Global, Cross-disciplinary Science
NASA Astrophysics Data System (ADS)
Lehnert, K.; Ramamurthy, M. K.
2016-12-01
Geosciences are globally connected by nature and the grand challenge problems like climate change, ocean circulations, seasonal predictions, impact of volcanic eruptions, etc. all transcend both disciplinary and geographic boundaries, requiring cross-disciplinary and international partnerships. Cross-disciplinary and international collaborations are also needed to unleash the power of cyber- (or e-) infrastructure (CI) by networking globally distributed, multi-disciplinary data, software, and computing resources to accelerate new scientific insights and discoveries. While the promises of a global and cross-disciplinary CI are exhilarating and real, a range of technical, organizational, and social challenges needs to be overcome in order to achieve alignment and linking of operational data systems, software tools, and computing facilities. New modes of collaboration require agreement on and governance of technical standards and best practices, and funding for necessary modifications. This presentation will contribute the perspective of domain-specific data facilities to the discussion of cross-disciplinary and international collaboration in CI development and deployment, in particular those of IEDA (Interdisciplinary Earth Data Alliance) serving the solid Earth sciences and Unidata serving atmospheric sciences. Both facilities are closely involved with the US NSF EarthCube program that aims to network and augment existing Geoscience CI capabilities "to make disciplinary boundaries permeable, nurture and facilitate knowledge sharing, …, and enhance collaborative pursuit of cross-disciplinary research" (EarthCube Strategic Vision), while also collaborating internationally to network domain-specific and cross-disciplinary CI resources. These collaborations are driven by the substantial benefits to the science community, but create challenges, when operational and funding constraints need to be balanced with adjustments to new joint data curation practices and interoperability standards.
How does PET/MR work? Basic physics for physicians.
Delso, Gaspar; Ter Voert, Edwin; Veit-Haibach, Patrick
2015-08-01
The aim of this article is to provide Radiologists and Nuclear Medicine physicians the basic information required to understand how PET/MR scanners work, what are their limitations and how to evaluate their performance. It will cover the operational principles of standalone PET and MR imaging, as well as the technical challenges of creating a hybrid system and how they have been solved in the now commercially available scanners. Guidelines will be provided to interpret the main performance figures of hybrid PET/MR systems.
Airborne Separation Assurance and Traffic Management: Research of Concepts and Technology
NASA Technical Reports Server (NTRS)
Ballin, Mark G.; Wing, David J.; Hughes, Monica F.; Conway, Sheila R.
1999-01-01
To support the need for increased flexibility and capacity in the future National Airspace System, NASA is pursuing an approach that distributes air traffic separation and management tasks to both airborne and ground-based systems. Details of the distributed operations and the benefits and technical challenges of such a system are discussed. Technology requirements and research issues are outlined, and NASA s approach for establishing concept feasibility, which includes development of the airborne automation necessary to support the concept, is described.
Current and emerging laser sensors for greenhouse gas sensing and leak detection
NASA Astrophysics Data System (ADS)
Frish, Michael B.
2014-05-01
To reduce atmospheric accumulation of the greenhouse gases methane and carbon dioxide, networks of continuously operating sensors that monitor and map their sources are desirable. In this paper, we discuss advances in laser-based open-path leak detectors, as well as technical and economic challenges inhibiting widespread sensor deployment for "ubiquitous monitoring". We describe permanently-installed, wireless, solar-powered sensors that overcome previous installation and maintenance difficulties while providing autonomous real-time leak reporting without false alarms.
NASA Astrophysics Data System (ADS)
Suzuki, Yoichiro
2008-11-01
The personal view for the next to the next neutrino detector, the ultimate experiment, is discussed. Considering the size, cost and head winds against the basic science, the ultimate experiment will be the only experiment in the world. Here two such experiments one for the neutrino oscillation and the other for the double beta decay were discussed. The ultimate experiment needs to include a bread and butter science and to have a discovery potential for an unexpected phenomenon. There are many technical challenges and international co-operations are absolutely necessary.
Findings from a national needs assessment of American Indian/Alaska native child welfare programs.
Leake, Robin; Potter, Cathryn; Lucero, Nancy; Gardner, Jerry; Deserly, Kathy
2012-01-01
The National Child Welfare Resource Center for Tribes, a member of the Children's Bureau Child Welfare Training and Technical Assistance Network, conducted a national needs assessment of tribal child welfare. This assessment explored current practices in tribal child welfare to identify unique systemic strengths and challenges. A culturally based, multi-method design yielded findings in five areas: tribal child welfare practice, foster care and adoption, the Indian Child Welfare Act, legal and judicial, and program operations.
Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem
Williams, Patricia AH; Woodward, Andrew J
2015-01-01
The increased connectivity to existing computer networks has exposed medical devices to cybersecurity vulnerabilities from which they were previously shielded. For the prevention of cybersecurity incidents, it is important to recognize the complexity of the operational environment as well as to catalog the technical vulnerabilities. Cybersecurity protection is not just a technical issue; it is a richer and more intricate problem to solve. A review of the factors that contribute to such a potentially insecure environment, together with the identification of the vulnerabilities, is important for understanding why these vulnerabilities persist and what the solution space should look like. This multifaceted problem must be viewed from a systemic perspective if adequate protection is to be put in place and patient safety concerns addressed. This requires technical controls, governance, resilience measures, consolidated reporting, context expertise, regulation, and standards. It is evident that a coordinated, proactive approach to address this complex challenge is essential. In the interim, patient safety is under threat. PMID:26229513
Cybersecurity vulnerabilities in medical devices: a complex environment and multifaceted problem.
Williams, Patricia Ah; Woodward, Andrew J
2015-01-01
The increased connectivity to existing computer networks has exposed medical devices to cybersecurity vulnerabilities from which they were previously shielded. For the prevention of cybersecurity incidents, it is important to recognize the complexity of the operational environment as well as to catalog the technical vulnerabilities. Cybersecurity protection is not just a technical issue; it is a richer and more intricate problem to solve. A review of the factors that contribute to such a potentially insecure environment, together with the identification of the vulnerabilities, is important for understanding why these vulnerabilities persist and what the solution space should look like. This multifaceted problem must be viewed from a systemic perspective if adequate protection is to be put in place and patient safety concerns addressed. This requires technical controls, governance, resilience measures, consolidated reporting, context expertise, regulation, and standards. It is evident that a coordinated, proactive approach to address this complex challenge is essential. In the interim, patient safety is under threat.
Supersonics Project: Airport Noise Technical Challenge
NASA Technical Reports Server (NTRS)
Bridges, James E.
2008-01-01
This presentation gives an overview of the work being done under the Airport Noise Technical Challenge portion of the Supersonics Project in the Fundamental Aeronautics Program. The objective of the Challenge is to provide technology (e.g. low noise nozzle concepts) and engineering tools required for a viable supersonic aircraft. To accomplish this we have activities divided into Prediction, Diagnostics, and Engineering elements. Each of the tasks reviewed here have potential applications to work being done at other flight regimes and other aircraft and are of interest to the Acoustics Technical Working Group.
Marcus, Hani J; Cundy, Thomas P; Hughes-Hallett, Archie; Yang, Guang-Zhong; Darzi, Ara; Nandi, Dipankar
2014-10-01
The literature reflects a resurgence of interest in endoscopic and keyhole endoscope-assisted neurosurgical approaches as alternatives to conventional microsurgical approaches in carefully selected cases. The aim of this study was to assess the technical challenges of neuroendoscopy, and the scope for technological innovations to overcome these barriers. All full members of the Society of British Neurosurgeons (SBNS) were electronically invited to participate in an online survey. The open-ended structured survey asked three questions; firstly, whether the surgeon presently utilises or has experience with endoscopic or endoscope-assisted approaches; secondly, what they consider to be the major technical barriers to adopting such approaches; and thirdly, what technological advances they foresee improving safety and efficacy in the field. Responses were subjected to a qualitative research method of multi-rater emergent theme analysis. Three clear themes emerged: 1) surgical approach and better integration with image-guidance systems (20%), 2) intra-operative visualisation and improvements in neuroendoscopy (49%), and 3) surgical manipulation and improvements in instruments (74%). The analysis of responses to our open-ended survey revealed that although opinion was varied three major themes could be identified. Emerging technological advances such as augmented reality, high-definition stereo-endoscopy, and robotic joint-wristed instruments may help overcome the technical difficulties associated with neuroendoscopic approaches. Results of this qualitative survey provide consensus amongst the technology end-user community such that unambiguous goals and priorities may be defined. Systems integrating these advances could improve the safety and efficacy of endoscopic and endoscope-assisted neurosurgical approaches.
Marcus, Hani J; Cundy, Thomas P; Hughes-Hallett, Archie; Yang, Guang-Zhong; Darzi, Ara; Nandi, Dipankar
2014-01-01
Introduction The literature reflects a resurgence of interest in endoscopic and keyhole endoscope-assisted neurosurgical approaches as alternatives to conventional microsurgical approaches in carefully selected cases. The aim of this study was to assess the technical challenges of neuroendoscopy, and the scope for technological innovations to overcome these barriers. Materials and Methods All full members of the Society of British Neurosurgeons (SBNS) were electronically invited to participate in an online survey. The open-ended structured survey asked three questions; firstly, whether the surgeon presently utilises or has experience with endoscopic or endoscope-assisted approaches; secondly, what they consider to be the major technical barriers to adopting such approaches; and thirdly, what technological advances they foresee improving safety and efficacy in the field. Responses were subjected to a qualitative research method of multi-rater emergent themes analysis. Results Three clear themes emerged: 1) surgical approach and better integration with image-guidance systems (20%), 2) intra-operative visualisation and improvements in neuroendoscopy (49%), and 3) surgical manipulation and improvements in instruments (74%). Discussion The analysis of responses to our open-ended survey revealed that although opinion was varied three major themes could be identified. Emerging technological advances such as augmented reality, high-definition stereo-endoscopy, and robotic joint-wristed instruments may help overcome the technical difficulties associated with neuroendoscopic approaches. Conclusions Results of this qualitative survey provide consensus amongst the technology end-user community such that unambiguous goals and priorities may be defined. Systems integrating these advances could improve the safety and efficacy of endoscopic and endoscope-assisted neurosurgical approaches. PMID:24533591
Eyre, Nick; Darby, Sarah J; Grünewald, Philipp; McKenna, Eoghan; Ford, Rebecca
2018-05-13
A 1.5°C global average target implies that we should no longer focus on merely incremental emissions reductions from the electricity system, but rather on fundamentally re-envisaging a system that, sooner rather than later, becomes carbon free. Many low-carbon technologies are surpassing mainstream predictions for both uptake and cost reduction. Their deployment is beginning to be disruptive within established systems. 'Smart technologies' are being developed to address emerging challenges of system integration, but their rates of future deployment remain uncertain. We argue that transition towards a system that can fully displace carbon generation sources will require expanding the focus of our efforts beyond technical solutions. Recognizing that change has social and technical dimensions, and that these interact strongly, we set out a socio-technical review that covers electricity infrastructure, citizens, business models and governance. It describes some of the socio-technical challenges that need to be addressed for the successful transition of the existing electricity systems. We conclude that a socio-technical understanding of electricity system transitions offers new and better insights into the potential and challenges for rapid decarbonization.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Author(s).
Nefale, Avhashoni D.; Kamika, Ilunga; Obi, Chikwelu L.
2017-01-01
Water services providers should supply water that is fit for human consumption, taking into account multi-barrier approaches and technical aspects such as design aspects, operation monitoring, final water quality compliance monitoring, plant monitoring practices, maintenance, and risk management practices. Against this background, this study focused on applying the diagnostic tool for technical compliance as well as assessing the compliance of water treatment plants with management norms. Six plants in the Vhembe District Municipality were selected; the Vondo, Malamulele, Mutshedzi, and Mutale plants (conventional), and the Dzingahe and Tshedza package plants. During the first assessment, four (Malamulele, Mutshedzi, Mutale and Dzingahe) plants scored between 44% and 49% and achieved Class 3 certification, revealing serious challenges requiring immediate intervention. Two water plants (Vondo and Tshedza, scoring 53% and 63%, respectively) were in the Class 2 category, revealing serious challenges requiring attention and improvement. During the second assessment, all plants scored between 63% and 87% (Class 2 category). The greatest improvement (30%) was noted for the Dzingahe and Tshedza plants, followed by the Malamulele plant, while the Mutale, Vondo, and Mutshedzi plants improved their scores by 20%, 17% and 14%, respectively. After corrective actions and re-measurement, no plant complied. It is recommended that Water Services Providers (WSPs) regularly apply the diagnostic tools and water safety plans as developed in order to comply with applicable standards. PMID:28753964
Nefale, Avhashoni D; Kamika, Ilunga; Obi, Chikwelu L; Momba, Maggy Nb
2017-07-19
Water services providers should supply water that is fit for human consumption, taking into account multi-barrier approaches and technical aspects such as design aspects, operation monitoring, final water quality compliance monitoring, plant monitoring practices, maintenance, and risk management practices. Against this background, this study focused on applying the diagnostic tool for technical compliance as well as assessing the compliance of water treatment plants with management norms. Six plants in the Vhembe District Municipality were selected; the Vondo, Malamulele, Mutshedzi, and Mutale plants (conventional), and the Dzingahe and Tshedza package plants. During the first assessment, four (Malamulele, Mutshedzi, Mutale and Dzingahe) plants scored between 44% and 49% and achieved Class 3 certification, revealing serious challenges requiring immediate intervention. Two water plants (Vondo and Tshedza, scoring 53% and 63%, respectively) were in the Class 2 category, revealing serious challenges requiring attention and improvement. During the second assessment, all plants scored between 63% and 87% (Class 2 category). The greatest improvement (30%) was noted for the Dzingahe and Tshedza plants, followed by the Malamulele plant, while the Mutale, Vondo, and Mutshedzi plants improved their scores by 20%, 17% and 14%, respectively. After corrective actions and re-measurement, no plant complied. It is recommended that Water Services Providers (WSPs) regularly apply the diagnostic tools and water safety plans as developed in order to comply with applicable standards.
New Mass Properties Engineers Aerospace Ballasting Challenge Facilitated by the SAWE Community
NASA Technical Reports Server (NTRS)
Cutright, Amanda; Shaughnessy, Brendan
2010-01-01
The discipline of Mass Properties Engineering tends to find the engineers; not typically vice versa. In this case, two engineers quickly found their new responsibilities deep in many aspects of mass properties engineering and required to meet technical challenges in a fast paced environment. As part of NASA's Constellation Program, a series of flight tests will be conducted to evaluate components of the new spacecraft launch vehicles. One of these tests is the Pad Abort 1 (PA-1) flight test which will test the Launch Abort System (LAS), a system designed to provide escape for astronauts in the event of an emergency. The Flight Test Articles (FTA) used in this flight test are required to match mass properties corresponding to the operational vehicle, which has a continually evolving design. Additionally, since the structure and subsystems for the Orion Crew Module (CM) FTA are simplified versions of the final product, thousands of pounds of ballast are necessary to achieve the desired mass properties. These new mass properties engineers are responsible for many mass properties aspects in support of the flight test, including meeting the ballasting challenge for the CM Boilerplate FTA. SAWE expert and experienced mass properties engineers, both those that are directly on the team and many that supported via a variety of Society venues, significantly contributed to facilitating the success of addressing this particular mass properties ballasting challenge, in addition to many other challenges along the way. This paper discusses the details regarding the technical aspects of this particular mass properties challenge, as well as identifies recommendations for new mass properties engineers that were learned from the SAWE community along the way.
Scaffold translation: barriers between concept and clinic.
Hollister, Scott J; Murphy, William L
2011-12-01
Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges. © Mary Ann Liebert, Inc.
The French Space Operation Act: Technical Regulations
NASA Astrophysics Data System (ADS)
Trinchero, J. P.; Lazare, B.
2010-09-01
The French Space Operation Act(FSOA) stipulates that a prime objective of the National technical regulations is to protect people, property, public health and the environment. Compliance with these technical regulations is mandatory as of 10 December 2010 for space operations by French space operators and for space operations from French territory. The space safety requirements and regulations governing procedures are based on national and international best practices and experience. A critical design review of the space system and procedures shall be carried out by the applicant, in order to verify compliance with the Technical Regulations. An independent technical assessment of the operation is delegated to CNES. The principles applied when drafting technical regulations are as follows: requirements must as far as possible establish the rules according to the objective to be obtained, rather than how it is to be achieved; requirements must give preference to international standards recognised as being the state of the art; requirements must take previous experience into account. Technical regulations are divided into three sections covering common requirements for the launch, control and return of a space object. A dedicated section will cover specific rules to be applied at the Guiana Space Centre. The main topics addressed by the technical regulations are: operator safety management system; study of risks to people, property, public health and the Earth’s environment; impact study on the outer space environment: space debris generated by the operation; planetary protection.
Overview of Variable-Speed Power-Turbine Research
NASA Technical Reports Server (NTRS)
Welch, Gerard E.
2011-01-01
The vertical take-off and landing (VTOL) and high-speed cruise capability of the NASA Large Civil Tilt-Rotor (LCTR) notional vehicle is envisaged to enable increased throughput in the national airspace. A key challenge of the LCTR is the requirement to vary the main rotor speeds from 100% at take-off to near 50% at cruise as required to minimize mission fuel burn. The variable-speed power-turbine (VSPT), driving a fixed gear-ratio transmission, provides one approach for effecting this wide speed variation. The key aerodynamic and rotordynamic challenges of the VSPT were described in the FAP Conference presentation. The challenges include maintaining high turbine efficiency at high work factor, wide (60 deg.) of incidence variation in all blade rows due to the speed variation, and operation at low Reynolds numbers (with transitional flow). The PT -shaft of the VSPT must be designed for safe operation in the wide speed range required, and therefore poses challenges associated with rotordynamics. The technical challenges drive research activities underway at NASA. An overview of the NASA SRW VSPT research activities was provided. These activities included conceptual and preliminary aero and mechanical (rotordynamics) design of the VSPT for the LCTR application, experimental and computational research supporting the development of incidence tolerant blading, and steps toward component-level testing of a variable-speed power-turbine of relevance to the LCTR application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amitava Sarkar; James K. Neathery; Burtron H. Davis
A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of ironmore » catalyst particles and the formation of ultra-fine particles.« less
NASA Technical Reports Server (NTRS)
Jamar, L. G.
1986-01-01
Quality and innovation are the hallmarks of the national space program. In programs that preceded the Shuttle Program the emphasis was on meeting the risks and technical challenges of space with safety, quality, reliability, and success. At United Technologies Aerospace Operations, Inc. (UTAO), the battle has developed along four primary fronts. These fronts include programs to motivate and reward people, development and construction of optimized processes and facilities, implementation of specifically tailored management systems, and the application of appropriate measurement and control systems. Each of these initiatives is described. However, to put this quality and productivity program in perspective, UTAO and its role in the Shuttle Program are described first.
Fecso, A B; Kuzulugil, S S; Babaoglu, C; Bener, A B; Grantcharov, T P
2018-03-30
The operating theatre is a unique environment with complex team interactions, where technical and non-technical performance affect patient outcomes. The correlation between technical and non-technical performance, however, remains underinvestigated. The purpose of this study was to explore these interactions in the operating theatre. A prospective single-centre observational study was conducted at a tertiary academic medical centre. One surgeon and three fellows participated as main operators. All patients who underwent a laparoscopic Roux-en-Y gastric bypass and had the procedures captured using the Operating Room Black Box ® platform were included. Technical assessment was performed using the Objective Structured Assessment of Technical Skills and Generic Error Rating Tool instruments. For non-technical assessment, the Non-Technical Skills for Surgeons (NOTSS) and Scrub Practitioners' List of Intraoperative Non-Technical Skills (SPLINTS) tools were used. Spearman rank-order correlation and N-gram statistics were conducted. Fifty-six patients were included in the study and 90 procedural steps (gastrojejunostomy and jejunojejunostomy) were analysed. There was a moderate to strong correlation between technical adverse events (r s = 0·417-0·687), rectifications (r s = 0·380-0·768) and non-technical performance of the surgical and nursing teams (NOTSS and SPLINTS). N-gram statistics showed that after technical errors, events and prior rectifications, the staff surgeon and the scrub nurse exhibited the most positive non-technical behaviours, irrespective of operator (staff surgeon or fellow). This study demonstrated that technical and non-technical performances are related, on both an individual and a team level. Valuable data can be obtained around intraoperative errors, events and rectifications. © 2018 BJS Society Ltd Published by John Wiley & Sons Ltd.
The Electronic Documentation Project in the NASA mission control center environment
NASA Technical Reports Server (NTRS)
Wang, Lui; Leigh, Albert
1994-01-01
NASA's space programs like many other technical programs of its magnitude is supported by a large volume of technical documents. These documents are not only diverse but also abundant. Management, maintenance, and retrieval of these documents is a challenging problem by itself; but, relating and cross-referencing this wealth of information when it is all on a medium of paper is an even greater challenge. The Electronic Documentation Project (EDP) is to provide an electronic system capable of developing, distributing and controlling changes for crew/ground controller procedures and related documents. There are two primary motives for the solution. The first motive is to reduce the cost of maintaining the current paper based method of operations by replacing paper documents with electronic information storage and retrieval. And, the other is to improve the efficiency and provide enhanced flexibility in document usage. Initially, the current paper based system will be faithfully reproduced in an electronic format to be used in the document viewing system. In addition, this metaphor will have hypertext extensions. Hypertext features support basic functions such as full text searches, key word searches, data retrieval, and traversal between nodes of information as well as speeding up the data access rate. They enable related but separate documents to have relationships, and allow the user to explore information naturally through non-linear link traversals. The basic operational requirements of the document viewing system are to: provide an electronic corollary to the current method of paper based document usage; supplement and ultimately replace paper-based documents; maintain focused toward control center operations such as Flight Data File, Flight Rules and Console Handbook viewing; and be available NASA wide.
The International Space Station, Providing Opportunities to Tackle Most Challenging Questions
NASA Astrophysics Data System (ADS)
Gregory, Frederick; Suzuki, Nantel
2002-01-01
The International Space Station (ISS) now soars overhead, representing NASA's newest research center. It is a fully autonomous facility more capable than any Space laboratory ever deployed, with over 60 thousand hours of experiment operations time completed to date. Technical performance has been exceptional in the deployment and operation of the over 300 thousand pounds of hardware and the over one million plus line of software on orbit. Yet many obstacles are yet to be overcome to realize its fullest potential. The Agency has recently revalidated its research objectives for ISS to identify and answer questions that cannot be studied here on earth. These objectives include fundamental and applied research as well as engineering technology. The International Space Station is our first full-service weigh station on the road map for human-robotic exploration beyond low earth orbit. It will provide answers to a breadth of research questions and it will enable our ability the successfully overcome hurdles in the areas of crew health and safety, human/robotic partnerships, and space systems performance that now impede future exploration. Management control for the development and operation of large complex space systems has become one of the most important skills to develop at NASA. Many issues have surfaced concerning ISS management and organization. These problems are being addressed and we are moving to resolve our deficiencies and demonstrate the high degree of managerial performance already seen in our attention to technical challenges and safety. This paper will address the steps being taken, and the road ahead to provide answers of importance for our society and to further humankind's quest for exploration.
Surgeons' and trainees' perceived self-efficacy in operating theatre non-technical skills.
Pena, G; Altree, M; Field, J; Thomas, M J W; Hewett, P; Babidge, W; Maddern, G J
2015-05-01
An important factor that may influence an individual's performance is self-efficacy, a personal judgement of capability to perform a particular task successfully. This prospective study explored newly qualified surgeons' and surgical trainees' self-efficacy in non-technical skills compared with their non-technical skills performance in simulated scenarios. Participants undertook surgical scenarios challenging non-technical skills in two simulation sessions 6 weeks apart. Some participants attended a non-technical skills workshop between sessions. Participants completed pretraining and post-training surveys about their perceived self-efficacy in non-technical skills, which were analysed and compared with their performance in surgical scenarios in two simulation sessions. Change in performance between sessions was compared with any change in participants' perceived self-efficacy. There were 40 participants in all, 17 of whom attended the non-technical skills workshop. There was no significant difference in participants' self-efficacy regarding non-technical skills from the pretraining to the post-training survey. However, there was a tendency for participants with the highest reported self-efficacy to adjust their score downwards after training and for participants with the lowest self-efficacy to adjust their score upwards. Although there was significant improvement in non-technical skills performance from the first to second simulation sessions, a correlation between participants' self-efficacy and performance in scenarios in any of the comparisons was not found. The results suggest that new surgeons and surgical trainees have poor insight into their non-technical skills. Although it was not possible to correlate participants' self-belief in their abilities directly with their performance in a simulation, in general they became more critical in appraisal of their abilities as a result of the intervention. © 2015 BJS Society Ltd Published by John Wiley & Sons Ltd.
Closure of the operator product expansion in the non-unitary bootstrap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esterlis, Ilya; Fitzpatrick, A. Liam; Ramirez, David M.
We use the numerical conformal bootstrap in two dimensions to search for finite, closed sub-algebras of the operator product expansion (OPE), without assuming unitarity. We find the minimal models as special cases, as well as additional lines of solutions that can be understood in the Coulomb gas formalism. All the solutions we find that contain the vacuum in the operator algebra are cases where the external operators of the bootstrap equation are degenerate operators, and we argue that this follows analytically from the expressions in arXiv:1202.4698 for the crossing matrices of Virasoro conformal blocks. Our numerical analysis is a specialmore » case of the “Gliozzi” bootstrap method, and provides a simpler setting in which to study technical challenges with the method. In the supplementary material, we provide a Mathematica notebook that automates the calculation of the crossing matrices and OPE coefficients for degenerate operators using the formulae of Dotsenko and Fateev.« less
Closure of the operator product expansion in the non-unitary bootstrap
Esterlis, Ilya; Fitzpatrick, A. Liam; Ramirez, David M.
2016-11-07
We use the numerical conformal bootstrap in two dimensions to search for finite, closed sub-algebras of the operator product expansion (OPE), without assuming unitarity. We find the minimal models as special cases, as well as additional lines of solutions that can be understood in the Coulomb gas formalism. All the solutions we find that contain the vacuum in the operator algebra are cases where the external operators of the bootstrap equation are degenerate operators, and we argue that this follows analytically from the expressions in arXiv:1202.4698 for the crossing matrices of Virasoro conformal blocks. Our numerical analysis is a specialmore » case of the “Gliozzi” bootstrap method, and provides a simpler setting in which to study technical challenges with the method. In the supplementary material, we provide a Mathematica notebook that automates the calculation of the crossing matrices and OPE coefficients for degenerate operators using the formulae of Dotsenko and Fateev.« less
Technical Writing Teachers and the Challenges of Desktop Publishing.
ERIC Educational Resources Information Center
Kalmbach, James
1988-01-01
Argues that technical writing teachers must understand desktop publishing. Discusses the strengths that technical writing teachers bring to desktop publishing, and the impact desktop publishing will have on technical writing courses and programs. (ARH)
Activity Planning for the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Bresina, John L.; Jonsson, Ari K.; Morris, Paul H.; Rajan, Kanna
2004-01-01
Operating the Mars Exploration Rovers is a challenging, time-pressured task. Each day, the operations team must generate a new plan describing the rover activities for the next day. These plans must abide by resource limitations, safety rules, and temporal constraints. The objective is to achieve as much science as possible, choosing from a set of observation requests that oversubscribe rover resources. In order to accomplish this objective, given the short amount of planning time available, the MAPGEN (Mixed-initiative Activity Plan GENerator) system was made a mission-critical part of the ground operations system. MAPGEN is a mixed-initiative system that employs automated constraint-based planning, scheduling, and temporal reasoning to assist operations staff in generating the daily activity plans. This paper describes the adaptation of constraint-based planning and temporal reasoning to a mixed-initiative setting and the key technical solutions developed for the mission deployment of MAPGEN.
NASA Technical Reports Server (NTRS)
Schepis, Joseph; Woodard, Timothy; Hakun, Claef; Bergandy, Konrad; Church, Joseph; Ward, Peter; Lee, Michael; Conti, Alfred; Guzek, Jeffrey
2018-01-01
A high precision, high-resolution Ocean Color Imaging (OCI) instrument is under development for the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission which requires a pair of medium speed mechanisms to scan the ocean surface continuously. The design of the rotating telescope (RT) mechanism operating at 360 RPM and the half-angle mirror (HAM) mechanism synchronized at 180 RPM was concern for maintaining pointing precision over the required life and continuous operations. An effort was undertaken with the manufacturer to design and analyze a special bearing configuration to minimize axial and radial runout, minimize torque, and maintain nominal contact stresses and stiffness over the operating temperature range and to maximize life. The bearing design, development effort, analysis and testing will be discussed as will the technical challenges that this specific design imposed upon the mechanism engineers. Bearing performance, runout as achieved and verified during encoder installation and operating torque will be described.
Machine Protection System Research and Development for the Fermilab PIP-II Proton Linac
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warner, Arden; Carmichael, Linden; Harrison, Beau
PIP-II is a high intensity proton linac being design to support a world-leading physics program at Fermilab. Initially it will provide high intensity beams for Fermilab's neutrino program with a future extension to other applications requiring an upgrade to CW linac operation (e.g. muon experiments). The machine is conceived to be 2 mA CW, 800 MeV H⁻ linac capable of working initially in a pulse (0.55 ms, 20 Hz) mode for injection into the existing Booster. The planned upgrade to CW operation implies that the total beam current and damage potential will be greater than in any present HEP hadronmore » linac. To mitigate the primary technical risk and challenges associated PIP-II an integrated system test for the PIP-II front-end technology is being developed. As part of the R&D a robust machine protection system (MPS) is being designed. This paper describes the progress and challenges associated with the MPS.« less
Cross species analysis of microarray expression data
Lu, Yong; Huggins, Peter; Bar-Joseph, Ziv
2009-01-01
Motivation: Many biological systems operate in a similar manner across a large number of species or conditions. Cross-species analysis of sequence and interaction data is often applied to determine the function of new genes. In contrast to these static measurements, microarrays measure the dynamic, condition-specific response of complex biological systems. The recent exponential growth in microarray expression datasets allows researchers to combine expression experiments from multiple species to identify genes that are not only conserved in sequence but also operated in a similar way in the different species studied. Results: In this review we discuss the computational and technical challenges associated with these studies, the approaches that have been developed to address these challenges and the advantages of cross-species analysis of microarray data. We show how successful application of these methods lead to insights that cannot be obtained when analyzing data from a single species. We also highlight current open problems and discuss possible ways to address them. Contact: zivbj@cs.cmu.edu PMID:19357096
Point-of-care diagnostics: extending the laboratory network to reach the last mile.
Drain, Paul K; Rousseau, Christine
2017-03-01
More point-of-care (POC) diagnostic tests are becoming available for HIV diagnosis and treatment in resource-limited settings. These novel technologies have the potential to foster decentralized HIV care and treatment for the benefit of clinical laboratories, HIV clinics, and HIV-infected patients. There continue to be many business, technological, and operational challenges that limit product development and regulatory approval, which limits products available for the required operational and cost-effectiveness studies and delays policy adoption and implementation. Although the rapid HIV diagnostic test has been widely successful, the pathways for POC CD4 cell count and HIV viral load assay analyzers have been more challenging. We describe significant hurdles for product development, approval, and implementation, which include the business case, technical development, clinical impact, and integrating laboratory and clinical networks. The objective of this review is to highlight the obstacles for developing and implementing appropriate strategies for POC HIV testing assays to improve the clinical services for HIV-infected patients in resource-limited settings.
[Bowel endometriosis and infertility: Do we need to operate?
Bourdon, M; Santulli, P; Marcellin, L; Lamau, M C; Maignien, C; Chapron, C
2017-09-01
Endometriosis is a benign chronic inflammatory disease, whose pathogenesis is still unclear. Endometriosis is responsible for infertility and/or pelvic pain. One of the most important features of the disease is the heterogeneity (clinical and anatomical: superficial peritoneal, ovarian and/or deep infiltrating lesions). Bowel involvement constitutes one particularly severe form of the disease, affecting 8-12% of women with deep endometriosis. In case of associated infertility, bowel endometriosis constitutes a real therapeutic challenge for gynecologists. Indeed, while complete resection of the lesions alleviates pain and seems to improve spontaneous fertility, surgery remains technically challenging and may cause severe complications. Reverting to assisted Reproductive Technology (ART) is another valuable therapeutic option regarding pregnancy rates. Thus, the choice between surgical management or ART is still debated. Benefits and risks of these two options should be considered and discussed before planning treatment. In the present study, we aimed to answer the question: Bowel endometriosis and infertility: do we need to operate? Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Assessing Induced Seismicity Risk at CO 2 Storage Projects: Recent Progress and Remaining Challenges
White, Joshua A.; Foxall, William
2016-04-13
It is well established that fluid injection has the potential to induce earthquakes—from microseismicity to magnitude 5+ events—by altering state-of-stress conditions in the subsurface. This paper reviews recent lessons learned regarding induced seismicity at carbon storage sites. While similar to other subsurface injection practices, CO 2 injection has distinctive features that should be included in a discussion of its seismic hazard. Induced events have been observed at CO 2 injection projects, though to date it has not been a major operational issue. Nevertheless, the hazard exists and experience with this issue will likely grow as new storage operations come online.more » This review paper focuses on specific technical difficulties that can limit the effectiveness of current risk assessment and risk management approaches, and highlights recent research aimed at overcoming them. Finally, these challenges form the heart of the induced seismicity problem, and novel solutions to them will advance our ability to responsibly deploy large-scale CO 2 storage.« less
Challenges, uncertainties, and issues facing gas production from gas-hydrate deposits
Moridis, G.J.; Collett, T.S.; Pooladi-Darvish, M.; Hancock, S.; Santamarina, C.; Boswel, R.; Kneafsey, T.; Rutqvist, J.; Kowalsky, M.B.; Reagan, M.T.; Sloan, E.D.; Sum, A.K.; Koh, C.A.
2011-01-01
The current paper complements the Moridis et al. (2009) review of the status of the effort toward commercial gas production from hydrates. We aim to describe the concept of the gas-hydrate (GH) petroleum system; to discuss advances, requirements, and suggested practices in GH prospecting and GH deposit characterization; and to review the associated technical, economic, and environmental challenges and uncertainties, which include the following: accurate assessment of producible fractions of the GH resource; development of methods for identifying suitable production targets; sampling of hydrate-bearing sediments (HBS) and sample analysis; analysis and interpretation of geophysical surveys of GH reservoirs; well-testing methods; interpretation of well-testing results; geomechanical and reservoir/well stability concerns; well design, operation, and installation; field operations and extending production beyond sand-dominated GH reservoirs; monitoring production and geomechanical stability; laboratory investigations; fundamental knowledge of hydrate behavior; the economics of commercial gas production from hydrates; and associated environmental concerns. ?? 2011 Society of Petroleum Engineers.
Giaimo, Susan
2013-06-01
A primary goal of the Patient Protection and Affordable Care Act (PPACA) is to reduce the number of uninsured by making health insurance more affordable for small businesses and individuals. Toward that end, the PPACA encourages the creation of nonprofit, member-owned health insurance cooperatives to operate inside each state exchange. Co-ops face significant challenges in entering mature insurance markets, but they also possess unique characteristics that may help them survive and thrive. Using Common Ground Healthcare Cooperative in Wisconsin as a case study, this article traces the origins of co-ops in health care reform at national and state levels and analyzes the political and technical challenges and opportunities facing these organizations.
Virtual reality and medicine--from the cockpit to the operating room: are we there yet?
Saied, Nahel
2005-01-01
Teaching medicine to medical students, physicians in training and nurses is a challenging task that has remained unchanged for decades. The airline industry has achieved a great deal of safety and quality in a technically challenging environment. Many believe that their outstanding achievement is due to team training and crew resource management using simulators and dedicated training programs. Many experts in the medical profession believe that adopting the same strategies in teaching medical students and trainees could achieve significant reductions in medical errors and improve the quality of patient care. This article explores the role of teaching medicine using virtual reality in a multitude of medical specialties and outlines the use of simulation training at Saint Louis University.
Enhancing the Safety, Security and Resilience of ICT and Scada Systems Using Action Research
NASA Astrophysics Data System (ADS)
Johnsen, Stig; Skramstad, Torbjorn; Hagen, Janne
This paper discusses the results of a questionnaire-based survey used to assess the safety, security and resilience of information and communications technology (ICT) and supervisory control and data acquisition (SCADA) systems used in the Norwegian oil and gas industry. The survey identifies several challenges, including the involvement of professionals with different backgrounds and expertise, lack of common risk perceptions, inadequate testing and integration of ICT and SCADA systems, poor information sharing related to undesirable incidents and lack of resilience in the design of technical systems. Action research is proposed as a process for addressing these challenges in a systematic manner and helping enhance the safety, security and resilience of ICT and SCADA systems used in oil and gas operations.
EHRs in primary care practices: benefits, challenges, and successful strategies.
Goetz Goldberg, Debora; Kuzel, Anton J; Feng, Lisa Bo; DeShazo, Jonathan P; Love, Linda E
2012-02-01
To understand the current use of electronic health records (EHRs) in small primary care practices and to explore experiences and perceptions of physicians and staff toward the benefits, challenges, and successful strategies for implementation and meaningful use of advanced EHR functions. Qualitative case study of 6 primary care practices in Virginia. We performed surveys and in-depth interviews with clinicians and administrative staff (N = 38) and observed interpersonal relations and use of EHR functions over a 16-month period. Practices with an established EHR were selected based on a maximum variation of quality activities, location, and ownership. Physicians and staff report increased efficiency in retrieving medical records, storing patient information, coordination of care, and office operations. Costs, lack of knowledge of EHR functions, and problems transforming office operations were barriers reported for meaningful use of EHRs. Major disruption to patient care during upgrades and difficulty utilizing performance tracking and quality functions were also reported. Facilitators for adopting and using advanced EHR functions include team-based care, adequate technical support, communication and training for employees and physicians, alternative strategies for patient care during transition, and development of new processes and work flow procedures. Small practices experience difficulty with implementation and utilization of advanced EHR functions. Federal and state policies should continue to support practices by providing technical assistance and financial incentives, grants, and/or loans. Small practices should consider using regional extension center services and reaching out to colleagues and other healthcare organizations with similar EHR systems for advice and guidance.
3D-printed tracheoesophageal puncture and prosthesis placement simulator.
Barber, Samuel R; Kozin, Elliott D; Naunheim, Matthew R; Sethi, Rosh; Remenschneider, Aaron K; Deschler, Daniel G
A tracheoesophageal prosthesis (TEP) allows for speech after total laryngectomy. However, TEP placement is technically challenging, requiring a coordinated series of steps. Surgical simulators improve technical skills and reduce operative time. We hypothesize that a reusable 3-dimensional (3D)-printed TEP simulator will facilitate comprehension and rehearsal prior to actual procedures. The simulator was designed using Fusion360 (Autodesk, San Rafael, CA). Components were 3D-printed in-house using an Ultimaker 2+ (Ultimaker, Netherlands). Squid simulated the common tracheoesophageal wall. A Blom-Singer TEP (InHealth Technologies, Carpinteria, CA) replicated placement. Subjects watched an instructional video and completed pre- and post-simulation surveys. The simulator comprised 3D-printed parts: the esophageal lumen and superficial stoma. Squid was placed between components. Ten trainees participated. Significant differences existed between junior and senior residents with surveys regarding anatomy knowledge(p<0.05), technical details(p<0.01), and equipment setup(p<0.01). Subjects agreed that simulation felt accurate, and rehearsal raised confidence in future procedures. A 3D-printed TEP simulator is feasible for surgical training. Simulation involving multiple steps may accelerate technical skills and improve education. Copyright © 2017 Elsevier Inc. All rights reserved.
Adaptive Management: From More Talk to Real Action
NASA Astrophysics Data System (ADS)
Williams, Byron K.; Brown, Eleanor D.
2014-02-01
The challenges currently facing resource managers are large-scale and complex, and demand new approaches to balance development and conservation goals. One approach that shows considerable promise for addressing these challenges is adaptive management, which by now is broadly seen as a natural, intuitive, and potentially effective way to address decision-making in the face of uncertainties. Yet the concept of adaptive management continues to evolve, and its record of success remains limited. In this article, we present an operational framework for adaptive decision-making, and describe the challenges and opportunities in applying it to real-world problems. We discuss the key elements required for adaptive decision-making, and their integration into an iterative process that highlights and distinguishes technical and social learning. We illustrate the elements and processes of the framework with some successful on-the-ground examples of natural resource management. Finally, we address some of the difficulties in applying learning-based management, and finish with a discussion of future directions and strategic challenges.
The Apollo Expericence Lessons Learned for Constellation Lunar Dust Management
NASA Astrophysics Data System (ADS)
Wagner, Sandra
2006-09-01
Lunar dust will present significant challenges to NASA's Lunar Exploration Missions. The challenges can be overcome by using best practices in system engineering design. For successful lunar surface missions, all systems that come into contact with lunar dust must consider the effects throughout the entire design process. Interfaces between all these systems with other systems also must be considered. Incorporating dust management into Concept of Operations and Requirements development are the best place to begin to mitigate the risks presented by lunar dust. However, that is only the beginning. To be successful, every person who works on NASA's Constellation lunar missions must be mindful of this problem. Success will also require fiscal responsibility. NASA must learn from Apollo the root cause of problems caused by dust, and then find the most cost-effective solutions to address each challenge. This will require a combination of common sense existing technologies and promising, innovative technical solutions
The Apollo Experience Lessons Learned for Constellation Lunar Dust Management
NASA Technical Reports Server (NTRS)
Wagner, Sandra
2006-01-01
Lunar dust will present significant challenges to NASA's Lunar Exploration Missions. The challenges can be overcome by using best practices in system engineering design. For successful lunar surface missions, all systems that come into contact with lunar dust must consider the effects throughout the entire design process. Interfaces between all these systems with other systems also must be considered. Incorporating dust management into Concept of Operations and Requirements development are the best place to begin to mitigate the risks presented by lunar dust. However, that is only the beginning. To be successful, every person who works on NASA's Constellation lunar missions must be mindful of this problem. Success will also require fiscal responsibility. NASA must learn from Apollo the root cause of problems caused by dust, and then find the most cost-effective solutions to address each challenge. This will require a combination of common sense existing technologies and promising, innovative technical solutions
The Sustainable Development of Space: Astro-environmental and dynamical considerations
NASA Astrophysics Data System (ADS)
Boley, Aaron; Byers, Michael; Russell, Sara
2018-04-01
The sustainable development of space is a global (and exo-global) challenge that is not limited by borders or research disciplines. Sustainable development is "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". While the development of space brings new economic and scientific possibilities, it also carries significant political, legal, and technical uncertainties. For example, the rapidly increasing accessibility of space is motivating states to unilaterally adopt legislation for the new era of space use, which may have significant unintended consequences, such as increased risks to space assets, disputes among state as well as non-state actors, and changes to unique astro-environments. Any policy or legal position must be informed by the dynamical and astrophysical realities of space use, creating complex and interwoven challenges. Here, we explore several of these potential challenges related to astro-environmentalism, space minining operations, and the associated dynamics.
Federsel, Hans-Jürgen
2009-05-19
In process research and development (PR&D), the generation and manipulation of small-molecule drugs ranges from bench-scale (laboratory) chemistry to pilot plant manufacture to commercial production. A broad range of disciplines, including process chemistry (organic synthesis), analytical chemistry, process engineering (mass and heat transfer, unit operations), process safety (chemical risk assessment), regulatory compliance, and plant operation, must be effectively applied. In the critical handover between medicinal chemistry and PR&D, compound production is typically scaled up from a few hundred grams to several kilograms. Can the methodologies applied to the former also satisfy the technical, safety, and scalability aspects that come into play in the latter? Occasionally, the transition might occur smoothly, but more often the situation is the opposite: much work and resources must be invested to design a process that is feasible for manufacturing on pilot scale and, eventually, for commercial production. Authentic examples provide enlightening illustrations of dos and don'ts for developing syntheses designed for round-flask operation into production-scale processes. Factors that are easily underestimated or even neglected in the laboratory, such as method robustness, chemical hazards, safety concerns, environmental impact, availability of starting materials and building blocks in bulk quantities, intellectual property (IP) issues, and the final cost of the product, will come into play and need to be addressed appropriately. The decision on which route will be the best for further development is a crucial event and should come into focus early on the R&D timeline. In addition to scientific and technical concerns, the parameter of speed has come to the forefront in the pharmaceutical arena. Although historically the drug industry has tolerated a total time investment of far more than 10 years from idea to market, the current worldwide paradigm requires a reduction to under 10 years for the specific segment covering preclinical development through launch. This change puts enormous pressure on the entire organization, and the implication for PR&D is that the time allowed for conducting route design and scale-up has shrunk accordingly. Furthermore, molecular complexity has become extremely challenging in many instances, and demand steadily grows for process understanding and knowledge generation about low-level byproduct, which often must be controlled even at trace concentrations to meet regulatory specifications (especially in the case of potentially genotoxic impurities). In this Account, we paint a broad picture of the technical challenges the PR&D community is grappling with today, focusing on what measures have been taken over the years to create more efficiency and effectiveness.
Counter-Terrorism Contributions from the National Labs
NASA Astrophysics Data System (ADS)
Davis, Jay
2002-04-01
The DOD and NNSA laboratories have significant technical capabilities that can contribute to counter-terrorism and homeland security. Maximizing those contributions, however, requires that laboratory staff engage the doctrinal and operational issues of these problems as well. The broader interagency community needs support in these components of the problem as much as in the technical components. The speaker's experiences as director of the DoD Defense Threat Reduction Agency, established in 1998 to address DoD's role in defense against weapons of mass destruction in all venues, have given him a somewhat unique perspective on this problem. Examples of issues identified in scenario play at Cabinet level in the last Admistration will be given to illustrate the breadth of this problem, as will the speaker's assessment of the grand challenges in deterring use of WMD against the Homeland.
Hamman, William R; Beaubien, Jeffrey M; Beaudin-Seiler, Beth M
2009-12-01
The aims of this research are to begin to understand health care teams in their operational environment, establish metrics of performance for these teams, and validate a series of scenarios in simulation that elicit team and technical skills. The focus is on defining the team model that will function in the operational environment in which health care professionals work. Simulations were performed across the United States in 70- to 1000-bed hospitals. Multidisciplinary health care teams analyzed more than 300 hours of videos of health care professionals performing simulations of team-based medical care in several different disciplines. Raters were trained to enhance inter-rater reliability. The study validated event sets that trigger team dynamics and established metrics for team-based care. Team skills were identified and modified using simulation scenarios that employed the event-set-design process. Specific skills (technical and team) were identified by criticality measurement and task analysis methodology. In situ simulation, which includes a purposeful and Socratic Method of debriefing, is a powerful intervention that can overcome inertia found in clinician behavior and latent environmental systems that present a challenge to quality and patient safety. In situ simulation can increase awareness of risks, personalize the risks, and encourage the reflection, effort, and attention needed to make changes to both behaviors and to systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oland, CB
Boiler owners and operators who need additional generating capacity face a number of legal, political, environmental, economic, and technical challenges. Their key to success requires selection of an adequately sized low-emission boiler and combustion equipment that can be operated in compliance with emission standards established by state and federal regulatory agencies. Recognizing that many issues are involved in making informed selection decisions, the U.S. Department of Energy (DOE), Office of Industrial Technologies (OIT) sponsored efforts at the Oak Ridge National Laboratory (ORNL) to develop a guide for use in choosing low-emission boilers and combustion equipment. To ensure that the guidemore » covers a broad range of technical and regulatory issues of particular interest to the commercial boiler industry, the guide was developed in cooperation with the American Boiler Manufacturers Association (ABMA), the Council of Industrial Boiler Owners (CIBO), and the U.S. Environmental Protection Agency (EPA). The guide presents topics pertaining to industrial, commercial, and institutional (ICI) boilers. Background information about various types of commercially available boilers is provided along with discussions about the fuels that they burn and the emissions that they produce. Also included are discussions about emissions standards and compliance issues, technical details related to emissions control techniques, and other important selection considerations. Although information in the guide is primarily applicable to new ICI boilers, it may also apply to existing boiler installations.« less
Elegant space systems: How do we get there?
NASA Astrophysics Data System (ADS)
Salado, Alejandro; Nilchiani, Roshanak
Can the space industry produce elegant systems? If so, how? Space systems development has become process-centric, e.g., process creation or modification is the default response to most development and/or operations challenges when problems are encountered. But is that really effective? An increasing number of researchers and practitioners disagree with such an approach and suggest that elegance is as important to a system and its operation as fulfillment of technical and contractual requirements; consequently they are proposing a review and refreshment of the systems engineering practice. Elegance is generally recognizable, but hard to achieve deterministically. The research community has begun an endeavor to define what elegance is in systems engineering terms, find ways to measure or at least characterize it, and create or adapt philosophies and methodologies that promote elegance as a design objective (driver?). This paper asserts that while elegance cannot be engineered in a traditional sense, it can emerge as a natural result of design activity. This needs to be enabled and can be facilitated, but ultimately depends on the talent of the design teams as individuals and as a group. This paper summarizes existing technical definitions of elegance and discusses a) how it can be pursued and b) cultural conditions and habits that help elegance emerge during the development and operation of a space system.
Nanotechnology on a dime: building affordable research facilities
NASA Astrophysics Data System (ADS)
DiBattista, Jeff; Clare, Donna; Lynch, David
2005-08-01
Designing buildings to house nanotechnology research presents a multitude of well-recognized challenges to architectural and engineering design teams, from environmental control to spatial arrangements to operational functionality. These technical challenges can be solved with relative ease on projects with large budgets: designers have the option of selecting leading-edge systems without undue regard for their expense. This is reflected in the construction cost of many nanotechnology research facilities that run well into the hundreds of millions of dollars. Smaller universities and other institutions need not be shut out of the nanotechnology research field simply because their construction budgets are tens of millions of dollars or less. The key to success for these less expensive projects lies with making good strategic decisions: identifying priorities for the facility in terms of what it will is--and will not--provide to the researchers. Making these strategic decisions puts bounds on the tactical, technical problems that the design team at large must address, allowing them to focus their efforts on the key areas for success. The process and challenges of this strategic decision-making process are examined, with emphasis placed on the types of decisions that must be made and the factors that must be considered when making them. Case study examples of projects undertaken at the University of Alberta are used to illustrate how strategic-level decision-making sets the stage for cutting-edge success on a modest budget.
New Capabilities and Future Downhole and Coring Tools for IODP
NASA Astrophysics Data System (ADS)
Skinner, A.
2001-05-01
The extremely successful Ocean Drilling Programme (ODP) set the scene for innovative technical solutions to meet scientific challenges. This scenario is set to expand when the Integrated Ocean Drilling Programme (IODP) comes on stream at the end of 2003. Firstly the programme will have access to two dedicated drilling vessels and additional `Fit to mission@ offshore drilling units. This will allow for a much wider base of scientific disciplinary objectives to be met by coring and geophysical logging. And in turn will require more and innovative techncial equipment to collect the data. Secondly there are a number of coring tool developments which can enhance and extend data collection and which are not currently being used within the ODP programme. This, coupled with the different operational capabilities within IODP poses a number of technical challenges to ensure that the new programme meets all of the anticipated scientific demands. Thridly, over the past few years and ongoing at an accelerated pace, there has been significant advances in remote geophysical logging of boreholes both during and after drilling. The full potential of this has yet to be released on the scientific community and is set to revolutionise the acquisition of data from scientific boreholes. All of these items are discussed in the context of meeting the scientific challenges of IODP by harnessing and developing present industry and (outwith ODP) scientific technologies for the new programme.
Teaching Intracultural and Intercultural Communication: A Critique and Suggested Method.
ERIC Educational Resources Information Center
DeVoss, Danielle; Jasken, Julia; Hayden, Dawn
2002-01-01
Summarizes recent literature about the importance of paying attention to intercultural communication. Analyzes the productive approaches in popular business and technical communication textbooks. Presents five challenges for business and technical communication teachers to consider. Includes teaching modules that address these challenges. Notes…
Extreme Mapping: Looking for Water on the Moon
NASA Technical Reports Server (NTRS)
Cohen, Tamar
2016-01-01
There are many challenges when exploring extreme environments. Gathering accurate data to build maps about places that you cannot go is incredibly complex. NASA supports scientists by remotely operating robotic rovers to explore uncharted territories. One potential upcoming mission is to look for water near a lunar pole (the Resource Prospector mission). Learn about the technical hurdles and research steps that NASA takes before the mission. NASA practices on Earth with Mission Analogs which simulate the proposed mission. This includes going to lunar-type landscapes, building field networks, testing out rovers, instruments and operational procedures. NASA sets up remote science back rooms just as there are for actual missions. NASA develops custom Ground Data Systems software to support scientific mission planning and monitoring over variable time delays, and separate commanding software and infrastructure to operate the rovers.
A review of recent American military space operations
NASA Astrophysics Data System (ADS)
Day, Dwayne A.
1993-12-01
The United States (US) Department of Defense (DOD) has launched a large number of satellites into Earth orbit during the past five and a half years. These range from highly classified signals intelligence and imaging satellites to more mundane scientific and experimental microsats. This period saw a dramatic overhaul in operations due to the Challenger and other launch disasters. Many of these resources were used during the war in the Persian Gulf, which highlighted some of the limitations of current systems. A significant amount of new information has emerged in recent years due to the changing political situation, leading to this general overview of American military satellite programs during this period using unclassified and declassified sources as well as informed specculation. It is primarily a review of space operations and technical developments rather than the policy and doctrine that drives them.
Technical challenges involved in supporting the Lambda Point Experiment
NASA Technical Reports Server (NTRS)
Petrac, D.; Israelsson, U.; Otth, D.; Simmons, L.; Staats, J.; Thompson, A.
1990-01-01
The Lambda Point Experiment (LPE) is one of the instruments included in the U.S. Microgravity Payload Mission 1 planned for one of the Space Shuttle flights in 1992. The objective of the experiment is to measure the heat capacity of liquid helium within a narrow interval around the transition between superfluid and normal helium (the lambda point) with an unprecedented temperature resolution of about 10 to the -10th. Multiple technical challenges are presented in the areas of structural support, safety analysis, and modal frequency tests. This paper describes the technical challenges of JPL's multidisciplinary involvement in support of these experiments in microgravity.
Role of Educational Strategies for Human Resources in Green Infrastructure Operation and Maintenance
NASA Astrophysics Data System (ADS)
Ebrahimi, G.; Thurm, B.; Öberg, G.
2014-12-01
Rainwater harvesting and water reuse are receiving increasing attention as they hold the potential to effectively improve water conservation efforts. While many technical solutions have been developed, alternative water systems in built environments face significant challenges in the implementation and operational phases. The aim of this study is to examine obstacles to the implementation of alternative water systems in practice and identify criteria of feasible and sustainable solutions that allow bypassing of the identified obstacles. Interviews were conducted with planners, system designers and operators to find out which factors that central actors believe influence successful implementation of such systems. The results were analyzed in light of the literature. The actual performance of the water harvesting and reuse systems in four recently built green buildings in the Province of British Columbia, Canada was analyzed in light of the predicted outcome, according to the criteria identified in the interviews. It was found that the major obstacle to success is that the practical challenges involved in the implementation of alternative systems are underestimated. This, for example, leads to that education strategies for operational staff are not developed, and the staff is left floundering. This study highlights the importance of recognizing the need for strategic and directed educational programs for the human resources who are involved in operating and maintaining rainwater harvesting and water reuse systems.
Environmental risk management and preparations for the first deep water well in Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, F.
Statoil is among the leaders in protecting health, environment and safety in all aspects of the business. The evaluations of business opportunities and development of blocks opened by authorities for petroleum exploration, are assessed in accordance with the goals for environmental protection. Progressive improvement of environmental performance is secured through proper environmental risk management. In 1995, Statoil, the technical operator on Block 210 off the Nigerian coast, was the first company to drill in deep waters in this area. An exploration well was drilled in a water depth of about 320 meters. The drilling preparations included environmental assessment, drillers Hazop,more » oil spill drift calculations, oil spill response plans and environmental risk analysis. In the environmental preparations for the well, Statoil adhered to local and national government legislation, as well as to international guidelines and company standards. Special attention was paid to the environmental sensitivity of potentially affected areas. Statoil co-operated with experienced local companies, with the authorities and other international and national oil companies. This being the first deep water well offshore Nigeria, it was a challenge to co-operate with other operators in the area. The preparations that were carried out, will set the standard for future environmental work in the area. Co-operation difficulties in the beginning were turned positively into a attitude to the environmental challenge.« less
Ocean Surface Vector Wind: Research Challenges and Operational Opportunities
NASA Technical Reports Server (NTRS)
Halpern, David
2012-01-01
The atmosphere and ocean are joined together over seventy percent of Earth, with ocean surface vector wind (OSVW) stress one of the linkages. Satellite OSVW measurements provide estimates of wind divergence at the bottom of the atmosphere and wind stress curl at the top of the ocean; both variables are critical for weather and climate applications. As is common with satellite measurements, a multitude of OSVW data products exist for each currently operating satellite instrument. In 2012 the Joint Technical Commission on Oceanography and Marine Meteorology (JCOMM) launched an initiative to coordinate production of OSVW data products to maximize the impact and benefit of existing and future OSVW measurements in atmospheric and oceanic applications. This paper describes meteorological and oceanographic requirements for OSVW data products; provides an inventory of unique data products to illustrate that the challenge is not the production of individual data products, but the generation of harmonized datasets for analysis and synthesis of the ensemble of data products; and outlines a vision for JCOMM, in partnership with other international groups, to assemble an international network to share ideas, data, tools, strategies, and deliverables to improve utilization of satellite OSVW data products for research and operational applications.
A Review of Radiolysis Concerns for Water Shielding in Fission Surface Power Applications
NASA Technical Reports Server (NTRS)
Schoenfeld, Michael P.
2008-01-01
This paper presents an overview of radiolysis concerns with regard to water shields for fission surface power. A review of the radiolysis process is presented and key parameters and trends are identified. From this understanding of the radiolytic decomposition of water, shield pressurization and corrosion are identified as the primary concerns. Existing experimental and modeling data addressing concerns are summarized. It was found that radiolysis of pure water in a closed volume results in minimal, if any net decomposition, and therefore reduces the potential for shield pressurization and corrosion. With the space program focus m emphasize more on permanent return to the Moon and eventually manned exploration of Mars, there has been a renewed look at fission power to meet the difficult technical & design challenges associated with this effort. This is due to the ability of fission power to provide a power rich environment that is insensitive to solar intensity and related aspects such as duration of night, dusty environments, and distance from the sun, etc. One critical aspect in the utilization of fission power for these applications of manned exploration is shielding. Although not typically considered for space applications, water shields have been identified as one potential option due to benefits in mass savings and reduced development cost and technical risk (Poston, 2006). However, the water shield option requires demonstration of its ability to meet key technical challenges including such things as adequate natural circulation for thermal management and capability for operational periods up to 8 years. Thermal management concerns have begun to be addressed and are not expected to be a problem (Pearson, 2007). One significant concern remaining is the ability to maintain the shield integrity through its operational lifetime. Shield integrity could be compromised through shield pressurization and corrosion resulting from the radiolytic decomposition of water.
Payne, Christopher J; Yang, Guang-Zhong
2014-08-01
Medical robots have evolved from autonomous systems to tele-operated platforms and mechanically-grounded, cooperatively-controlled robots. Whilst these approaches have seen both commercial and clinical success, uptake of these robots remains moderate because of their high cost, large physical footprint and long setup times. More recently, researchers have moved toward developing hand-held robots that are completely ungrounded and manipulated by surgeons in free space, in a similar manner to how conventional instruments are handled. These devices provide specific functions that assist the surgeon in accomplishing tasks that are otherwise challenging with manual manipulation. Hand-held robots have the advantages of being compact and easily integrated into the normal surgical workflow since there is typically little or no setup time. Hand-held devices can also have a significantly reduced cost to healthcare providers as they do not necessitate the complex, multi degree-of-freedom linkages that grounded robots require. However, the development of such devices is faced with many technical challenges, including miniaturization, cost and sterility, control stability, inertial and gravity compensation and robust instrument tracking. This review presents the emerging technical trends in hand-held medical robots and future development opportunities for promoting their wider clinical uptake.
Polio eradication is just over the horizon: the challenges of global resource mobilization.
Pirio, Gregory Alonso; Kaufmann, Judith
2010-01-01
This study draws lessons from the resource mobilization experiences of the Global Polio Eradication Initiative (GPEI). As the GPEI launched its eradication effort in 1988, it underestimated both the difficulty and the costs of the campaign. Advocacy for resource mobilization came as an afterthought in the late 1990s, when achieving eradication by the target date of 2000 began to look doubtful. The reality of funding shortfalls undercutting eradication leads to the conclusion that advocacy for resource mobilization is as central to operations as are scientific and technical factors.
High-speed atomic force microscopy coming of age
NASA Astrophysics Data System (ADS)
Ando, Toshio
2012-02-01
High-speed atomic force microscopy (HS-AFM) is now materialized. It allows direct visualization of dynamic structural changes and dynamic processes of functioning biological molecules in physiological solutions, at high spatiotemporal resolution. Dynamic molecular events unselectively appear in detail in an AFM movie, facilitating our understanding of how biological molecules operate to function. This review describes a historical overview of technical development towards HS-AFM, summarizes elementary devices and techniques used in the current HS-AFM, and then highlights recent imaging studies. Finally, future challenges of HS-AFM studies are briefly discussed.
Current Trends in the Management of Blunt Solid Organ Injuries.
Taviloglu, Korhan; Yanar, Hakan
2009-04-01
The management of patients with solid organ injuries has changed since the introduction of technically advanced imaging tools, such as ultrasonography and multiple scan computerized tomography, interventional radiological techniques and modern intensive care units. In spite of this development in the management of these patients, major solid organ traumas can still be challenging. There has been great improvement in the non-operative management (NOM) of intra-abdominal solid organ injury in recent decades. In most cases treatment of injuries has shifted from early surgical treatment to NOM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, K.D.
2006-07-01
Nuclear facility decontamination, dismantlement, and demolition activities provide a myriad of challenges along the path to reaching a safe, effective, and compliant decommissioning. Among the challenges faced during decommissioning, is the constant management and technical effort to eliminate, mitigate, or minimize the potential of risks of radiation exposures and other hazards to the worker, the surrounding community, and the environment. Management strategies to eliminate, mitigate, or minimize risks include incorporating strong safety and As Low As Reasonably Achievable (ALARA) principles into an integrated work planning process. Technical and operational strategies may include utilizing predictive risk analysis tools to establish contaminationmore » limits for demolition and using remote handling equipment to reduce occupational and radiation exposures to workers. ECC and E2 Closure Services, LLC (Closure Services) have effectively utilized these management and technical tools to eliminate, mitigate, and reduce radiation exposures under contract to the U.S. Department of Energy (DOE) for the decontamination and decommissioning Columbus Closure Project (CCP). In particular, Closure Services achieved significant dose reduction during the dismantling, decontamination, and demolition activities for Building JN-1. Management strategies during the interior dismantlement, decontamination, and demolition of the facility demanded an integrated work planning processes that involved project disciplines. Integrated planning processes identified multiple opportunities to incorporate the use of remote handling equipment during the interior dismantling and demolition activities within areas of high radiation. Technical strategies employed predictive risk analysis tools to set upper bounding contamination limits, allowed for the radiological demolition of the building without exceeding administrative dose limits to the worker, general public, and the environment. Adhering to management and technical strategies during the dismantlement, decontamination, and demolition of Building JN-1 enabled Closure Services to achieve strong ALARA performance, maintain absolute compliance under the regulatory requirements and meeting licensing conditions for decommissioning. (authors)« less
Issues Involving The OSI Concept of Operation For Noble Gas Radionuclide Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrigan, C R; Sun, Y
2011-01-21
The development of a technically sound protocol for detecting the subsurface release of noble gas radionuclides is critical to the successful operation of an on site inspection (OSI) under the CTBT and has broad ramifications for all aspects of the OSI regime including the setting of specifications for both sampling and analysis equipment used during an OSI. With NA-24 support, we are investigating a variety of issues and concerns that have significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work at LLNLmore » focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments - a lesson we learned previously from the LLNL Non-Proliferation Experiment (NPE). Evaluation of a number of important noble gas detection issues, potentially affecting OSI policy, has awaited the US re-engagement with the OSI technical community. Thus, there have been numerous issues to address during the past 18 months. Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of LLNL computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied in the field making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated during the past year. We complete the discussion of these issues with a description of a preliminary design for subsurface sampling that is intended to be a practical solution to most if not all the challenges addressed here.« less
Quantum information processing with a travelling wave of light
NASA Astrophysics Data System (ADS)
Serikawa, Takahiro; Shiozawa, Yu; Ogawa, Hisashi; Takanashi, Naoto; Takeda, Shuntaro; Yoshikawa, Jun-ichi; Furusawa, Akira
2018-02-01
We exploit quantum information processing on a traveling wave of light, expecting emancipation from thermal noise, easy coupling to fiber communication, and potentially high operation speed. Although optical memories are technically challenging, we have an alternative approach to apply multi-step operations on traveling light, that is, continuous-variable one-way computation. So far our achievement includes generation of a one-million-mode entangled chain in time-domain, mode engineering of nonlinear resource states, and real-time nonlinear feedforward. Although they are implemented with free space optics, we are also investigating photonic integration and performed quantum teleportation with a passive liner waveguide chip as a demonstration of entangling, measurement, and feedforward. We also suggest a loop-based architecture as another model of continuous-variable computing.
Quality Management in Astronomical Software and Data Systems
NASA Astrophysics Data System (ADS)
Radziwill, N. M.
2007-10-01
As the demand for more sophisticated facilities increases, the complexity of the technical and organizational challenges faced by operational space- and ground-based telescopes also increases. In many organizations, funding tends not to be proportional to this trend, and steps must be taken to cultivate a lean environment in both development and operations to consistently do more with less. To facilitate this transition, an organization must be aware of how it can meet quality-related goals, such as reducing variation, improving productivity of people and systems, streamlining processes, ensuring compliance with requirements (scientific, organizational, project, or regulatory), and increasing user satisfaction. Several organizations are already on this path. Quality-based techniques for the efficient, effective development of new telescope facilities and maintenance of existing facilities are described.
Siu, Joey; Maran, Nikki; Paterson-Brown, Simon
2016-06-01
The importance of non-technical skills in improving surgical safety and performance is now well recognised. Better understanding is needed of the impact that non-technical skills of the multi-disciplinary theatre team have on intra-operative incidents in the operating room (OR) using structured theatre-based assessment. The interaction of non-technical skills that influence surgical safety of the OR team will be explored and made more transparent. Between May-August 2013, a range of procedures in general and vascular surgery in the Royal Infirmary of Edinburgh were performed. Non-technical skills behavioural markers and associated intra-operative incidents were recorded using established behavioural marking systems (NOTSS, ANTS and SPLINTS). Adherence to the surgical safety checklist was also observed. A total of 51 procedures were observed, with 90 recorded incidents - 57 of which were considered avoidable. Poor situational awareness was a common area for surgeons and anaesthetists leading to most intra-operative incidents. Poor communication and teamwork across the whole OR team had a generally large impact on intra-operative incidents. Leadership was shown to be an essential set of skills for the surgeons as demonstrated by the high correlation of poor leadership with intra-operative incidents. Team-working and management skills appeared to be especially important for anaesthetists in the recovery from an intra-operative incident. A significant number of avoidable incidents occur during operative procedures. These can all be linked to failures in non-technical skills. Better training of both individual and team in non-technical skills is needed in order to improve patient safety in the operating room. Copyright © 2014 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.
The report discusses technical and non-technical considerations associated with the development and operation of landfill gas to energy projects. Much of the report is based on interviews and site visits with the major developers and operators of the more than 110 projects in the...
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.; Richard, Elizabeth E.
2011-01-01
On October 18, 2010, the NASA Human Health and Performance center (NHHPC) was opened to enable collaboration among government, academic and industry members. Membership rapidly grew to 60 members (http://nhhpc.nasa.gov ) and members began identifying collaborative projects as detailed below. In addition, a first workshop in open collaboration and innovation was conducted on January 19, 2011 by the NHHPC resulting in additional challenges and projects for further development. This first workshop was a result of the SLSD successes in running open innovation challenges over the past two years. In 2008, the NASA Johnson Space Center, Space Life Sciences Directorate (SLSD) began pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical problems. From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external challenges were conducted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive platform, customized to NASA use, and promoted as NASA@Work. The results from the 34 challenges involved not only technical solutions that were reported previously at the 61st IAC, but also the formation of new collaborative relationships. For example, the TopCoder pilot was expanded by the NASA Space Operations Mission Directorate to the NASA Tournament Lab in collaboration with Harvard Business School and TopCoder. Building on these initial successes, the NHHPC workshop in January of 2011, and ongoing NHHPC member discussions, several important collaborations are in development: Space Act Agreement between NASA and GE for collaborative projects, NASA and academia for a Visual Impairment / Intracranial Hypertension summit (February 2011), NASA and the DoD through the Defense Venture Catalyst Initiative (DeVenCI) for a technical needs workshop (June 2011), NASA and the San Diego Zoo in Biomimicry, NASA and the FAA Center of Excellence for Commercial Space Flight for collaborative projects, NASA and the FDA concerning automatic external defibrillators, and NASA and Tufts University for an education pilot. These and other collaborations will be detailed in the paper demonstrating that a government-sponsored convening entity (the NHHPC) can facilitate industry, academic, and non-profit collaborations for products of mutual benefit.
Model-based reasoning in SSF ECLSS
NASA Technical Reports Server (NTRS)
Miller, J. K.; Williams, George P. W., Jr.
1992-01-01
The interacting processes and reconfigurable subsystems of the Space Station Freedom Environmental Control and Life Support System (ECLSS) present a tremendous technical challenge to Freedom's crew and ground support. ECLSS operation and problem analysis is time-consuming for crew members and difficult for current computerized control, monitoring, and diagnostic software. These challenges can be at least partially mitigated by the use of advanced techniques such as Model-Based Reasoning (MBR). This paper will provide an overview of MBR as it is being applied to Space Station Freedom ECLSS. It will report on work being done to produce intelligent systems to help design, control, monitor, and diagnose Freedom's ECLSS. Specifically, work on predictive monitoring, diagnosability, and diagnosis, with emphasis on the automated diagnosis of the regenerative water recovery and air revitalization processes will be discussed.
Intermittent Renewable Management Pilot Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiliccote, Sila; Homan, Gregory; Anderson, Robert
The Intermittent Renewable Management Pilot - Phase 2 (IRM2) was designed to study the feasibility of demand-side resources to participate into the California Independent System Operator (CAISO) wholesale market as proxy demand resources (PDR). The pilot study focused on understanding the issues related with direct participation of third-parties and customers including customer acceptance; market transformation challenges (wholesale market, technology); technical and operational feasibility; and value to the rate payers, DR resource owners and the utility on providing an enabling mechanism for DR resources into the wholesale markets. The customer had the option of committing to either three contiguous hour blocksmore » for 24 days or six contiguous hours for 12 days a month with day-ahead notification that aligned with the CAISO integrated forward market. As a result of their being available, the customer was paid $10/ kilowatt (kW)-month for capacity in addition to CAISO energy settlements. The participants were limited to no more than a 2 megawatt (MW) capacity with a six-month commitment. Four participants successfully engaged in the pilot. In this report, we provide the description of the pilot, participant performance results, costs and value to participants as well as outline some of the issues encountered through the pilot. Results show that participants chose to participate with storage and the value of CAISO settlements were significantly lower than the capacity payments provided by the utility as incentive payments. In addition, this pilot revealed issues both on the participant side and system operations side. These issues are summarized in the report.The Intermittent Renewable Management Pilot - Phase 2 (IRM2) was designed to study the feasibility of demand-side resources to participate into the California Independent System Operator (CAISO) wholesale market as proxy demand resources (PDR). The pilot study focused on understanding the issues related with direct participation of third-parties and customers including customer acceptance; market transformation challenges (wholesale market, technology); technical and operational feasibility; and value to the rate payers, DR resource owners and the utility on providing an enabling mechanism for DR resources into the wholesale markets.« less
Engineering challenges of operating year-round portable seismic stations at high-latitude
NASA Astrophysics Data System (ADS)
Beaudoin, Bruce; Carpenter, Paul; Hebert, Jason; Childs, Dean; Anderson, Kent
2017-04-01
Remote portable seismic stations are, in most cases, constrained by logistics and cost. High latitude operations introduce environmental, technical and logistical challenges that require substantially more engineering work to ensure robust, high quality data return. Since 2006, IRIS PASSCAL has been funded by NSF to develop, deploy, and maintain a pool of polar specific seismic stations. Here, we describe our latest advancements to mitigate the challenges of high-latitude, year-round station operation. The IRIS PASSCAL program has supported high-latitude deployments since the late 1980s. These early deployments were largely controlled source, summer only experiments. In early 2000 PASSCAL users began proposing year-round deployments of broadband stations in some of the harshest environments on the planet. These early year-round deployments were stand-alone (no telemetry) stations largely designed to operate during summer months and then run as long as possible during the winter with hopes the stations would revive come following summer. In 2006 and in collaboration with UNAVCO, we began developing communications, power systems, and enclosures to extend recording to year-round. Since this initial effort, PASSCAL continued refinement to power systems, enclosure design and manufacturability, and real-time data communications. Several sensor and data logger manufacturers have made advances in cold weather performance and delivered newly designed instruments that have furthered our ability to successfully run portable stations at high-latitude with minimal logistics - reducing size and weight of instruments and infrastructure. All PASSCAL polar engineering work is openly shared through our website: www.passcal.nmt.edu/content/polar
Technical documentation challenges in aviation maintenance : a proceedings report.
DOT National Transportation Integrated Search
2012-11-01
The 2012 Technical Documentation workshop addressed both problems and solutions associated with technical : documentation for maintenance. These issues are known to cause errors, rework, maintenance delays, other : safety hazards, and FAA administrat...
Regenbogen, Scott E; Greenberg, Caprice C; Studdert, David M; Lipsitz, Stuart R; Zinner, Michael J; Gawande, Atul A
2007-11-01
To identify the most prevalent patterns of technical errors in surgery, and evaluate commonly recommended interventions in light of these patterns. The majority of surgical adverse events involve technical errors, but little is known about the nature and causes of these events. We examined characteristics of technical errors and common contributing factors among closed surgical malpractice claims. Surgeon reviewers analyzed 444 randomly sampled surgical malpractice claims from four liability insurers. Among 258 claims in which injuries due to error were detected, 52% (n = 133) involved technical errors. These technical errors were further analyzed with a structured review instrument designed by qualitative content analysis. Forty-nine percent of the technical errors caused permanent disability; an additional 16% resulted in death. Two-thirds (65%) of the technical errors were linked to manual error, 9% to errors in judgment, and 26% to both manual and judgment error. A minority of technical errors involved advanced procedures requiring special training ("index operations"; 16%), surgeons inexperienced with the task (14%), or poorly supervised residents (9%). The majority involved experienced surgeons (73%), and occurred in routine, rather than index, operations (84%). Patient-related complexities-including emergencies, difficult or unexpected anatomy, and previous surgery-contributed to 61% of technical errors, and technology or systems failures contributed to 21%. Most technical errors occur in routine operations with experienced surgeons, under conditions of increased patient complexity or systems failure. Commonly recommended interventions, including restricting high-complexity operations to experienced surgeons, additional training for inexperienced surgeons, and stricter supervision of trainees, are likely to address only a minority of technical errors. Surgical safety research should instead focus on improving decision-making and performance in routine operations for complex patients and circumstances.
Accomplishments and challenges of surgical simulation.
Satava, R M
2001-03-01
For nearly a decade, advanced computer technologies have created extraordinary educational tools using three-dimensional (3D) visualization and virtual reality. Pioneering efforts in surgical simulation with these tools have resulted in a first generation of simulators for surgical technical skills. Accomplishments include simulations with 3D models of anatomy for practice of surgical tasks, initial assessment of student performance in technical skills, and awareness by professional societies of potential in surgical education and certification. However, enormous challenges remain, which include improvement of technical fidelity, standardization of accurate metrics for performance evaluation, integration of simulators into a robust educational curriculum, stringent evaluation of simulators for effectiveness and value added to surgical training, determination of simulation application to certification of surgical technical skills, and a business model to implement and disseminate simulation successfully throughout the medical education community. This review looks at the historical progress of surgical simulators, their accomplishments, and the challenges that remain.
WHITE BOX: LOW COST BOX FOR LAPAROSCOPIC TRAINING
MARTINS, João Maximiliano Pedron; RIBEIRO, Roberto Vanin Pinto; CAVAZZOLA, Leandro Totti
2015-01-01
Background: Laparoscopic surgery is a reality in almost all surgical centers. Although with initial greater technical difficulty for surgeons, the rapid return to activities, less postoperative pain and higher quality aesthetic stimulates surgeons to evolve technically in this area. However, unlike open surgery where learning opportunities are more accessible, the laparoscopic training represents a challenge in surgeon formation. Aim: To present a low cost model for laparoscopic training box. Methods: This model is based in easily accessible materials; the equipment can be easily found based on chrome mini jet and passes rubber thread and a webcam attached to an aluminum handle. Results: It can be finalized in two days costing R$ 280,00 (US$ 90). Conclusion: It is possible to stimulate a larger number of surgeons to have self training in laparoscopy at low cost seeking to improve their surgical skills outside the operating room. PMID:26537148
[AWAKE CRANIOTOMY: IN SEARCH FOR OPTIMAL SEDATION].
Kulikova, A S; Sel'kov, D A; Kobyakov, G L; Shmigel'skiy, A V; Lubnin, A Yu
2015-01-01
Awake craniotomy is a "gold standard"for intraoperative brain language mapping. One of the main anesthetic challenge of awake craniotomy is providing of optimal sedation for initial stages of intervention. The goal of this study was comparison of different technics of anesthesia for awake craniotomy. Materials and methods: 162 operations were divided in 4 groups: 76 cases with propofol sedation (2-4mg/kg/h) without airway protection; 11 cases with propofol sedation (4-5 mg/kg/h) with MV via LMA; 36 cases of xenon anesthesia; and 39 cases with dexmedetomidine sedation without airway protection. Results and discussion: brain language mapping was successful in 90% of cases. There was no difference between groups in successfulness of brain mapping. However in the first group respiratory complications were more frequent. Three other technics were more safer Xenon anesthesia was associated with ultrafast awakening for mapping (5±1 min). Dexmedetomidine sedation provided high hemodynamic and respiratory stability during the procedure.
Technology Area Roadmap for In Space Propulsion Technologies
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Mike; Coote, David; Goebel, Dan; Palaszewski, Bryan; White, Sonny
2010-01-01
This slide presentation reviews the technology area (TA) roadmap to develop propulsion technologies that will be used to enable further exploration of the solar system, and beyond. It is hoped that development of the technologies within this TA will result in technical solutions that will improve thrust levels, specific impulse, power, specific mass, volume, system mass, system complexity, operational complexity, commonality with other spacecraft systems, manufacturability and durability. Some of the propulsion technologies that are reviewed include: chemical and non-chemical propulsion, and advanced propulsion (i.e., those with a Technology Readiness level of less than 3). Examples of these advanced technologies include: Beamed Energy, Electric Sail, Fusion, High Energy Density Materials, Antimatter, Advanced Fission and Breakthrough propulsion technologies. Timeframes for development of some of these propulsion technologies are reviewed, and top technical challenges are reviewed. This roadmap describes a portfolio of in-space propulsion technologies that can meet future space science and exploration needs.
NASA Technical Reports Server (NTRS)
Abell, Paul A.; Rivkin, Andy S.
2014-01-01
The joint ESA and NASA Asteroid Impact and Deflection Assessment (AIDA) mission will directly address aspects of NASA's Asteroid Initiative and will contribute to future human exploration. The NASA Asteroid Initiative is comprised of two major components: the Grand Challenge and the Asteroid Mission. The first component, the Grand Challenge, focuses on protecting Earth's population from asteroid impacts by detecting potentially hazardous objects with enough warning time to either prevent them from impacting the planet, or to implement civil defense procedures. The Asteroid Mission, involves sending astronauts to study and sample a near-Earth asteroid (NEA) prior to conducting exploration missions of the Martian system, which includes Phobos and Deimos. AIDA's primary objective is to demonstrate a kinetic impact deflection and characterize the binary NEA Didymos. The science and technical data obtained from AIDA will aid in the planning of future human exploration missions to NEAs and other small bodies. The dual robotic missions of AIDA, ESA's Asteroid Impact Monitor (AIM) and NASA's Double Asteroid Redirection Test (DART), will provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific examinations of the binary target Didymos both prior to and after the kinetic impact demonstration. The knowledge gained from this mission will help identify asteroidal physical properties in order to maximize operational efficiency and reduce mission risk for future small body missions. The AIDA data will help fill crucial strategic knowledge gaps concerning asteroid physical characteristics that are relevant for human exploration considerations at similar small body destinations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, R.M.
Although use of reverse-air filters dominates in operating US utility power stations, pulse-jet designs seem to be getting the lion`s share of attention for new and retrofit plants. This article examines key technical advantages of reverse-air designs that are becoming lost in the current debate. Control of particulate emissions continues to be an area of growing concern for operators of coal-fired powerplants, especially as it relates to air toxics and fine particulates. That concern has led to greater scrutiny of the devices used to control those emissions. Regarding the fabric-filter option, reverse-air (RA) designs have operated reliably at large utilitymore » units, but now face a strong challenge from pulse-jet (PJ) designs--which are more popular with operators of independent-power-producer, waste-to-energy, and other small solid-fuel-fired units. Both RA and PJ designs can adequately meet the particulate emissions requirements for large coal-fired units when properly applied. The wholesale shift by electric utilities from RA to PJ fabric filters--at least in discussion if not actual projects--is apparent but may be short-sighted. The oft-stated reason--that RA fabric filters can only handle a face velocity one-half that of PJ, resulting in higher cost for the RA option--is too simplistic. The many design and operating characteristics that distinguish the two should be thoroughly reviewed before blanket acceptance of PJ technology. Some of the technical areas reviewed here are level of commercial design experience, bag life, pressure drop, bag replacement procedure, cleaning cycles, particle elutriation, submicron-particle floaters, residual-cake preservation, and particle re-entrainment.« less
Parametric Modeling of the Safety Effects of NextGen Terminal Maneuvering Area Conflict Scenarios
NASA Technical Reports Server (NTRS)
Rogers, William H.; Waldron, Timothy P.; Stroiney, Steven R.
2011-01-01
The goal of this work was to analytically identify and quantify the issues, challenges, technical hurdles, and pilot-vehicle interface issues associated with conflict detection and resolution (CD&R)in emerging operational concepts for a NextGen terminal aneuvering area, including surface operations. To this end, the work entailed analytical and trade studies focused on modeling the achievable safety benefits of different CD&R strategies and concepts in the current and future airport environment. In addition, crew-vehicle interface and pilot performance enhancements and potential issues were analyzed based on review of envisioned NextGen operations, expected equipage advances, and human factors expertise. The results of perturbation analysis, which quantify the high-level performance impact of changes to key parameters such as median response time and surveillance position error, show that the analytical model developed could be useful in making technology investment decisions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schneider, Kevin; Tuffner, Frank; Elizondo, Marcelo
Regulated electricity utilities are required to provide safe and reliable service to their customers at a reasonable cost. To balance the objectives of reliable service and reasonable cost, utilities build and operate their systems to operate under typical historic conditions. As a result, when abnormal events such as major storms or disasters occur, it is not uncommon to have extensive interruptions in service to the end-use customers. Because it is not cost effective to make the existing electrical infrastructure 100% reliable, society has come to expect disruptions during abnormal events. However, with the increasing number of abnormal weather events, themore » public is becoming less tolerant of these disruptions. One possible solution is to deploy microgrids as part of a coordinated resiliency plan to minimize the interruption of power to essential loads. This paper evaluates the feasibility of using microgrids as a resiliency resource, including their possible benefits and the associated technical challenges. A use-case of an operational microgrid is included.« less
SME Acceptability Determination For DWPF Process Control (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, T.
2017-06-12
The statistical system described in this document is called the Product Composition Control System (PCCS). K. G. Brown and R. L. Postles were the originators and developers of this system as well as the authors of the first three versions of this technical basis document for PCCS. PCCS has guided acceptability decisions for the processing at the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) since the start of radioactive operations in 1996. The author of this revision to the document gratefully acknowledges the firm technical foundation that Brown and Postles established to support the ongoing successfulmore » operation at the DWPF. Their integration of the glass propertycomposition models, developed under the direction of C. M. Jantzen, into a coherent and robust control system, has served the DWPF well over the last 20+ years, even as new challenges, such as the introduction into the DWPF flowsheet of auxiliary streams from the Actinide Removal Process (ARP) and other processes, were met. The purpose of this revision is to provide a technical basis for modifications to PCCS required to support the introduction of waste streams from the Salt Waste Processing Facility (SWPF) into the DWPF flowsheet. An expanded glass composition region is anticipated by the introduction of waste streams from SWPF, and property-composition studies of that glass region have been conducted. Jantzen, once again, directed the development of glass property-composition models applicable for this expanded composition region. The author gratefully acknowledges the technical contributions of C.M. Jantzen leading to the development of these glass property-composition models. The integration of these models into the PCCS constraints necessary to administer future acceptability decisions for the processing at DWPF is provided by this sixth revision of this document.« less
ERIC Educational Resources Information Center
Ding, Daniel; Jablonski, John
2001-01-01
Relates the authors' experience teaching technical writing for two weeks at Suzhou University in China. Discusses activities; examines four technical writing textbooks purchased there; and offers suggestions about how technical communication might be established as a separate academic discipline in Chinese universities. Discusses technical…
Technical and Vocational Education in Nigeria: Issues, Challenges and a Way Forward
ERIC Educational Resources Information Center
Okoye, Reko; Arimonu, Maxwell Onyenwe
2016-01-01
Technical education, as enshrined in the Nigerian national policy on education, is concerned with qualitative technological human resources development directed towards a national pool of skilled and self reliant craftsmen, technicians and technologists in technical and vocational education fields. In Nigeria, the training of technical personnel…
Yule, Steven; Parker, Sarah Henrickson; Wilkinson, Jill; McKinley, Aileen; MacDonald, Jamie; Neill, Adrian; McAdam, Tim
2015-01-01
To investigate the effect of coaching on non-technical skills and performance during laparoscopic cholecystectomy in a simulated operating room (OR). Non-technical skills (situation awareness, decision making, teamwork, and leadership) underpin technical ability and are critical to the success of operations and the safety of patients in the OR. The rate of developing assessment tools in this area has outpaced development of workable interventions to improve non-technical skills in surgical training and beyond. A randomized trial was conducted with senior surgical residents (n = 16). Participants were randomized to receive either non-technical skills coaching (intervention) or to self-reflect (control) after each of 5 simulated operations. Coaching was based on the Non-Technical Skills For Surgeons (NOTSS) behavior observation system. Surgeon-coaches trained in this method coached participants in the intervention group for 10 minutes after each simulation. Primary outcome measure was non-technical skills, assessed from video by a surgeon using the NOTSS system. Secondary outcomes were time to call for help during bleeding, operative time, and path length of laparoscopic instruments. Non-technical skills improved in the intervention group from scenario 1 to scenario 5 compared with those in the control group (p = 0.04). The intervention group was faster to call for help when faced with unstoppable bleeding in the final scenario (no. 5; p = 0.03). Coaching improved residents' non-technical skills in the simulated OR compared with those in the control group. Important next steps are to implement non-technical skills coaching in the real OR and assess effect on clinically important process measures and patient outcomes. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Christensen, CarissaBryce; Beard, Suzette
2001-03-01
This paper will provide an overview of the Iridium business venture in terms of the challenges faced, the successes achieved, and the causes of the ultimate failure of the venture — bankruptcy and system de-orbit. The paper will address technical, business, and policy issues. The intent of the paper is to provide a balanced and accurate overview of the Iridium experience, to aid future decision-making by policy makers, the business community, and technical experts. Key topics will include the history of the program, the objectives and decision-making of Motorola, the market research and analysis conducted, partnering strategies and their impact, consumer equipment availability, and technical issues — target performance, performance achieved, technical accomplishments, and expected and unexpected technical challenges. The paper will use as sources trade media and business articles on the Iridium program, technical papers and conference presentations, Wall Street analyst's reports, and, where possible, interviews with participants and close observers.
NASA's Pursuit of Low-Noise Propulsion for Low-Boom Commercial Supersonic Vehicles
NASA Technical Reports Server (NTRS)
Bridges, James; Brown, Clifford A.; Seidel, Jonathan A.
2018-01-01
Since 2006, when the Fundamental Aeronautics Program was instituted within NASA's Aeronautics Mission Directorate, there has been a Project looking at the technical barriers to commercial supersonic flight. Among the barriers is the noise produced by aircraft during landing and takeoff. Over the years that followed, research was carried out at NASA aeronautics research centers, often in collaboration with academia and industry, addressing the problem. In 2013, a high-level milestone was established, described as a Technical Challenge, with the objective of demonstrating the feasibility of a low-boom supersonic airliner that could meet current airport noise regulations. The Technical Challenge was formally called "Low Noise Propulsion for Low Boom Aircraft", and was completed in late 2016. This paper reports the technical findings from this Technical Challenge, reaching back almost 10 years to review the technologies and tools that were developed along the way. It also discusses the final aircraft configuration and propulsion systems required for a supersonic civilian aircraft to meet noise regulations using the technologies available today. Finally, the paper documents the model-scale tests that validated the acoustic performance of the study aircraft.
NASA's Pursuit of Low-Noise Propulsion for Low-Boom Commercial Supersonic Vehicles
NASA Technical Reports Server (NTRS)
Bridges, James; Brown, Clifford A.; Seidel, Jonathan
2018-01-01
Since 2006, when the Fundamental Aeronautics Program was instituted within NASA's Aeronautics Mission Directorate, there has been a Project looking at the technical barriers to commercial supersonic flight. Among the barriers is the noise produced by aircraft during landing and takeoff. Over the years that followed, research was carried out at NASA aeronautics research centers, often in collaboration with academia and industry, addressing the problem. In 2013, a high-level milestone was established, described as a Technical Challenge, with the objective of demonstrating the feasibility of a low-boom supersonic airliner that could meet current airport noise regulations. The Technical Challenge was formally called a Low Noise Propulsion for Low Boom Aircraft and was completed in late 2016. This paper reports the technical findings from this Technical Challenge, reaching back almost 10 years to review the technologies and tools that were developed along the way. It also discusses the final aircraft configuration and propulsion systems required for a supersonic civilian aircraft to meet noise regulations using the technologies available today. Finally, the paper documents the model-scale tests that validated the acoustic performance of the study aircraft.
Space Fence PDR Concept Development Phase
NASA Astrophysics Data System (ADS)
Haines, L.; Phu, P.
2011-09-01
The Space Fence, a major Air Force acquisition program, will become the dominant low-earth orbit uncued sensor in the space surveillance network (SSN). Its primary objective is to provide a 24/7 un-cued capability to find, fix, and track small objects in low earth orbit to include emerging and evolving threats, as well as the rapidly growing population of orbital debris. Composed of up to two geographically dispersed large-scale S-band phased array radars, this new system-of-systems concept will provide comprehensive Space Situational Awareness through net-centric operations and integrated decision support. Additionally, this program will facilitate cost saving force structure changes in the SSN, specifically including the decommissioning of very-high frequency VHF Air Force Space Surveillance System (AFSSS). The Space Fence Program Office entered a Preliminary Design Review (PDR) concept development phase in January 2011 to achieve the delivery of the Initial Operational Capability (IOC) expected in FY17. Two contractors were awarded to perform preliminary system design, conduct radar performance analyses and evaluations, and develop a functional PDR radar system prototype. The key objectives for the Phase A PDR effort are to reduce Space Fence total program technical, cost, schedule, and performance risk. The overall program objective is to achieve a preliminary design that demonstrates sufficient technical and manufacturing maturity and that represents a low risk, affordable approach to meet the Space Fence Technical Requirements Document (TRD) requirements for the final development and production phase to begin in 3QFY12. This paper provides an overview of the revised Space Fence program acquisition strategy for the Phase-A PDR phase to IOC, the overall program milestones and major technical efforts. In addition, the key system trade studies and modeling/simulation efforts undertaken during the System Design Requirement (SDR) phase to address and mitigate technical challenges of the Space Fence System will also be discussed. Examples include radar system optimization studies, modeling and simulation for system performance assessment, investigation of innovative Astrodynamics algorithms for initial orbit determination and observation correlation.
Creating Pathways to Success for Supersized Wind Turbine Blades: 2018 Workshop Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Dayton
A workshop on Pathways to Success for Supersized Wind Turbine Blades was conducted by the U.S. Department of Energy’s (DOE’s) office of Energy Efficiency and Renewable Energy (EERE) at the Kimpton Hotel Palomar in Washington D.C., on March 6-7, 2018. Approximately 40-50 experts and industry stakeholders came together for the event, including manufacturers, transportation specialists, project developers, operators, engineering firms, consultants, and university researchers. Technical experts from the national laboratories and WETO were also present to engage in discussions about solving the challenges faced by supersized wind turbine blades. The workshop attendees participated in evaluating the current status of windmore » turbine blade design, manufacture, transportation, erection and operation, identifying constraints to cost-effective application of current technologies and methods for blades of increasing size, and discussing needs and opportunities for research, development and deployment of materials, manufacturing, structural configuration, and transportation. The workshop was one step within a larger initiative to identify specific R&D opportunities DOE could pursue to address technical barriers or implementation challenges faced by the U.S. wind energy industry to achieve continued decreases in LCOE. Following a plenary session, the 2-day workshop featured three group discussion sessions, with each session focusing on a specific “pathway” to enabling LCOE reductions for rotor blades of increasing size. The three pathways considered were “on-site manufacture,” “transport,” and “hybrid and alternative,” which included various options involving central manufacturing of sub-elements following on-site assembly. Each of the pathway group discussions was opened with a short presentation from one or more invited speakers, followed by an open discussion with balanced input from stakeholder groups and individuals. Participation among the workshop attendees was considered highly productive. Experts and stakeholders were engaged throughout the sessions and offered significant insights into the challenges and potential enabling technologies for supersized blades. Discussion highlights and take-aways for the three pathways are described.« less
Laparoscopic Partial Nephrectomy with Diode Laser: A Promising Technique
Knezevic, Nikola; Maric, Marjan; Grkovic, Marija Topalovic; Krhen, Ivan; Kastelan, Zeljko
2014-01-01
Abstract Objective: The aim of this study was to evaluate application of diode laser in laparoscopic partial nephrectomy (LPN), and to question this technique in terms of ease of tumor excision and reduction of warm ischemia time (WIT). Background data: LPN is the standard operative method for small renal masses. The benefits of LPN are numerous, including preserving renal function and prolonging overall survival. However, reduction of WIT remains main challenge in this operation. In order to shorten WIT, many techniques have been developed, with variable results. Patients and methods: We performed a prospective collection and analysis of health records for patients who were operated on between March 2011 and August 2012. Inclusion criteria were single tumor ≤4 cm, predominant exophytic growth and intraparenchymal depth ≤1.5 cm, with a minimum distance of 5 mm from the urinary collecting system. Results: We operated on 17 patients. Median operative time was 170 min. In all but two patients, we had to perform hilar clamping. Median duration of WIT was 16 min. Pathohistological evaluation revealed clear cell renal cancer and confirmed margins negative for tumor in all cases. Median size of the tumor was 3 cm. Median postoperative hospitalization was 5 days. Average follow up was 11.5 months. There were no intraoperative complications. One postoperative complication was noted: perirenal hematoma. Conclusions: Laser LPN is feasible, and offers the benefit of shorter WIT, with effective tissue coagulation and hemostasis. With operative experience and technical advances, WIT will be reduced or even eliminated, and a solution to some technical difficulties, such as significant smoke production, will be found. PMID:24460067
The production of audiovisual teaching tools in minimally invasive surgery.
Tolerton, Sarah K; Hugh, Thomas J; Cosman, Peter H
2012-01-01
Audiovisual learning resources have become valuable adjuncts to formal teaching in surgical training. This report discusses the process and challenges of preparing an audiovisual teaching tool for laparoscopic cholecystectomy. The relative value in surgical education and training, for both the creator and viewer are addressed. This audiovisual teaching resource was prepared as part of the Master of Surgery program at the University of Sydney, Australia. The different methods of video production used to create operative teaching tools are discussed. Collating and editing material for an audiovisual teaching resource can be a time-consuming and technically challenging process. However, quality learning resources can now be produced even with limited prior video editing experience. With minimal cost and suitable guidance to ensure clinically relevant content, most surgeons should be able to produce short, high-quality education videos of both open and minimally invasive surgery. Despite the challenges faced during production of audiovisual teaching tools, these resources are now relatively easy to produce using readily available software. These resources are particularly attractive to surgical trainees when real time operative footage is used. They serve as valuable adjuncts to formal teaching, particularly in the setting of minimally invasive surgery. Copyright © 2012 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
New Age Teaching: Beyond Didactics
Vlaovic, Peter D.; McDougall, Elspeth M.
2006-01-01
Widespread acceptance of laparoscopic urology techniques has posed many challenges to training urology residents and allowing postgraduate urologists to acquire often difficult new surgical skills. Several factors in surgical training programs are limiting the ability to train residents in the operating room, including limited-hours work weeks, increasing demand for operating room productivity, and general public awareness of medical errors. As such, surgical simulation may provide an opportunity to enhance residency experience and training, and optimize post-graduate acquisition of new skills and maintenance of competency. This review article explains and defines the various levels of validity as it pertains to surgical simulators. The most recently and comprehensively validity tested simulators are outlined and summarized. The potential role of surgical simulation in the formative and summative assessment of surgical trainees, as well as, the certification and recertification process of postgraduate surgeons will be delineated. Surgical simulation will be an important adjunct to the traditional methods of surgical skills training and will allow surgeons to maintain their proficiency in the technically challenging aspects of minimally invasive urologic surgery. PMID:17619704
NASA Astrophysics Data System (ADS)
Stepien, Z.
2016-09-01
Generally, ethanol fuel emits less pollutants than gasoline, it is completely renewable product and has the potential to reduce greenhouse gases emission but, at the same time can present a multitude of technical challenges to engine operation conditions including creation of very adverse engine deposits. These deposits increasing fuel consumption and cause higher exhaust emissions as well as poor performance in drivability. This paper describes results of research and determination the various factors influencing injector deposits build-up of ethanol-gasoline blends operated engine. The relationship between ethanol-gasoline fuel blends composition, their treatment, engine construction as well as its operation conditions and fuel injectors deposit formation has been investigated. Simulation studies of the deposit formation endanger proper functioning of fuel injection system were carried out at dynamometer engine testing. As a result various, important factors influencing the deposit creation process and speed formation were determined. The ability to control of injector deposits by multifunctional detergent-dispersant additives package fit for ethanol-gasoline blends requirements was also investigated.
Space astronomy for the mid-21st century: Robotically maintained space telescopes
NASA Astrophysics Data System (ADS)
Schartel, N.
2012-04-01
The historical development of ground based astronomical telescopes leads us to expect that space-based astronomical telescopes will need to be operational for many decades. The exchange of scientific instruments in space will be a prerequisite for the long lasting scientific success of such missions. Operationally, the possibility to repair or replace key spacecraft components in space will be mandatory. We argue that these requirements can be fulfilled with robotic missions and see the development of the required engineering as the main challenge. Ground based operations, scientifically and technically, will require a low operational budget of the running costs. These can be achieved through enhanced autonomy of the spacecraft and mission independent concepts for the support of the software. This concept can be applied to areas where the mirror capabilities do not constrain the lifetime of the mission. Online material is available at the CDS via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/AN/333/209
Virtual Human Role Players for Studying Social Factors in Organizational Decision Making
Khooshabeh, Peter; Lucas, Gale
2018-01-01
The cyber domain of military operations presents many challenges. A unique element is the social dynamic between cyber operators and their leadership because of the novel subject matter expertise involved in conducting technical cyber tasks, so there will be situations where senior leaders might have much less domain knowledge or no experience at all relative to the warfighters who report to them. Nonetheless, it will be important for junior cyber operators to convey convincing information relevant to a mission in order to persuade or influence a leader to make informed decisions. The power dynamic will make it difficult for the junior cyber operator to successfully influence a higher ranking leader. Here we present a perspective with a sketch for research paradigm(s) to study how different factors (normative vs. informational social influence, degree of transparency, and perceived appropriateness of making suggestions) might interact with differential social power dynamics of individuals in cyber decision-making contexts. Finally, we contextualize this theoretical perspective for the research paradigms in viable training technologies. PMID:29545759
Carbothermal Production of Magnesium: Csiro's Magsonic™ Process
NASA Astrophysics Data System (ADS)
Prentice, Leon H.; Nagle, Michael W.; Barton, Timothy R. D.; Tassios, Steven; Kuan, Benny T.; Witt, Peter J.; Constanti-Carey, Keri K.
Carbothermal production has been recognized as conceptually the simplest and cleanest route to magnesium metal, but has suffered from technical challenges of development and scale-up. Work by CSIRO has now successfully demonstrated the technology using supersonic quenching of magnesium vapor (the MagSonic™ Process). Key barriers to process development have been overcome: the experimental program has achieved sustained operation, no nozzle blockage, minimal reversion, and safe handling of pyrophoric powders. The laboratory equipment has been operated at industrially relevant magnesium vapor concentrations (>25% Mg) for multiple runs with no blockage. Novel computational fluid dynamics (CFD) modeling of the shock quenching and metal vapor condensation has informed nozzle design and is supported by experimental data. Reversion below 10% has been demonstrated, and magnesium successfully purified (>99.9%) from the collected powder. Safe operating procedures have been developed and demonstrated, minimizing the risk of powder explosion. The MagSonic™ Process is now ready to progress to significantly larger scale and continuous operation.
Ichikawa, Nobuki; Homma, Shigenori; Yoshida, Tadashi; Ohno, Yosuke; Kawamura, Hideki; Kamiizumi, You; Iijima, Hiroaki; Taketomi, Akinobu
2018-01-01
The use of laparoscopic colectomy is becoming widespread and acquisition of its technique is challenging. In this study, we investigated whether supervision by a technically qualified surgeon affects the proficiency and safety of laparoscopic colectomy performed by novice surgeons. The outcomes of 23 right colectomies and 19 high anterior resections for colon cancers performed by five novice surgeons (experience level of <10 cases) between 2014 and 2016 were assessed. A laparoscopic surgeon qualified by the Endoscopic Surgical Skill Qualification System (Japan Society for Endoscopic Surgery) participated in surgeries as the teaching assistant. In the right colectomy group, one patient (4.3%) required conversion to open surgery and postoperative morbidities occurred in two cases (8.6%). The operative time moving average gradually decreased from 216 to 150 min, and the blood loss decreased from 128 to 28 mL. In the CUSUM charts, the values for operative time decreased continuously after the 18th case, as compared to the Japanese standard. The values for blood loss also plateaued after the 18th case. In the high anterior resection group, one patient (5.2%) required conversion to open surgery and no postoperative complication occurred in any patient. The operative time moving average gradually decreased from 258 to 228 min, and the blood loss decreased from 33 to 18 mL. The CUSUM charts showed that the values of operative time plateaued after the 18th case, as compared to the Japanese standard. In the CUSUM chart for blood loss, no distinguishing peak or trend was noted. Supervision by a technically qualified surgeon affects the proficiency and safety of laparoscopic colectomy performed by novice surgeons. The trainee's learning curve in this study represents successful mentoring by the laparoscopic surgeon qualified by the Endoscopic Surgical Skill Qualification System.
An MBSE Approach to Space Suit Development
NASA Technical Reports Server (NTRS)
Cordova, Lauren; Kovich, Christine; Sargusingh, Miriam
2012-01-01
The EVA/Space Suit Development Office (ESSD) Systems Engineering and Integration (SE&I) team has utilized MBSE in multiple programs. After developing operational and architectural models, the MBSE framework was expanded to link the requirements space to the system models through functional analysis and interfaces definitions. By documenting all the connections within the technical baseline, ESSD experienced significant efficiency improvements in analysis and identification of change impacts. One of the biggest challenges presented to the MBSE structure was a program transition and restructuring effort, which was completed successfully in 4 months culminating in the approval of a new EVA Technical Baseline. During this time three requirements sets spanning multiple DRMs were streamlined into one NASA-owned Systems Requirement Document (SRD) that successfully identified requirements relevant to the current hardware development effort while remaining extensible to support future hardware developments. A capability-based hierarchy was established to provide a more flexible framework for future space suit development that can support multiple programs with minimal rework of basic EVA/Space Suit requirements. This MBSE approach was most recently applied for generation of an EMU Demonstrator technical baseline being developed for an ISS DTO. The relatively quick turnaround of operational concepts, architecture definition, and requirements for this new suit development has allowed us to test and evolve the MBSE process and framework in an extremely different setting while still offering extensibility and traceability throughout ESSD projects. The ESSD MBSE framework continues to be evolved in order to support integration of all products associated with the SE&I engine.
Green, B; Oeppen, R S; Smith, D W; Brennan, P A
2017-06-01
In healthcare, mistakes that are potentially harmful or fatal to patients are often the result of poor communication between members of a team. This is particularly important in high-risk areas such as operating theatres or during any intervention, and the ability to challenge colleagues who are in authority when something does not seem right or is clearly wrong, is crucial. Colleagues in oral and maxillofacial surgery recognised the importance of this as early as 2004, and it is now well known that failure or reluctance to challenge others who might be wrong can severely compromise a patient's safety. The Royal College of Surgeons of Edinburgh runs popular regular courses (Non-technical Skills for Surgeons, NOTSS) that teach how to ensure safety through good communication and teamwork. In this paper we introduce the concept of hierarchical challenge, and discuss models and approaches to address situations when problems arise within a team. Copyright © 2017 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...
Code of Federal Regulations, 2012 CFR
2012-01-01
... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...
Code of Federal Regulations, 2013 CFR
2013-01-01
... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...
Code of Federal Regulations, 2011 CFR
2011-01-01
... the Department of Agriculture (Continued) NATURAL RESOURCES CONSERVATION SERVICE, DEPARTMENT OF AGRICULTURE CONSERVATION OPERATIONS TECHNICAL ASSISTANCE Conservation Operations § 610.2 Scope. (a) Conservation operations, including technical assistance, is the basic soil and water conservation program of...
Digital media in the home: technical and research challenges
NASA Astrophysics Data System (ADS)
Ribas-Corbera, Jordi
2005-03-01
This article attempts to identify some of the technology and research challenges facing the digital media industry in the future. We first discuss several trends in the industry, such as the rapid growth of broadband Internet networks and the emergence of networking and media-capable devices in the home. Next, we present technical challenges that result from these trends, such as effective media interoperability in devices, and provide a brief overview of Windows Media, which is one of the technologies in the market attempting to address these challenges. Finally, given these trends and the state of the art, we argue that further research on data compression, encoder optimization, and multi-format transcoding can potentially make a significant technical and business impact in digital media. We also explore the reasons that research on related techniques such as wavelets or scalable video coding is having a relatively minor impact in today"s practical digital media systems.
ERIC Educational Resources Information Center
Killian, Susan A.; Beck, Dennis E.; O'Bryan, Corliss A.; Jarvis, Nathan; Clausen, Edgar C.; Crandall, Philip G.
2014-01-01
Communicating complex scientific and technical information presents a challenge for food science educators. The most efficient learning occurs when all senses are engaged, one reason that many educators believe that scientific principles are best taught with hands-on laboratory experiences. Today there are many challenges to the continuation of…
ERIC Educational Resources Information Center
Acquah, Prince C.; Asamoah, Jack N.; Konadu, Daniel D.
2017-01-01
Geographic Information System (GIS) continue to play very important role in improving spatial thinking skills of graduates from higher educational institutions. However, teaching and learning of GIS at the technical university level in Ghana remains very limited due to some implementation challenges. This paper reviews the implementation of GIS in…
Wireless Instrumentation Systems for Flight Testing at NASA AFRC
NASA Technical Reports Server (NTRS)
Hang, Richard
2017-01-01
NASA Armstrong Flight Research Center is revolutionizing its traditional wired instrumentation systems with wireless technologies. This effort faces many technical challenges, such as spectrum compliance, time synchronization, power distribution and airworthiness. This presentation summarizes NASA AFRC's flight test capabilities with current conventional instrumentation methodology and highlights the technical challenges of wireless systems used for flight test research applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-25
...-0087] Notice of Industry Workshop on Technical and Regulatory Challenges in Deep and Ultra-Deep Outer... and gas exploration and production in deep and ultra-deep OCS waters. Through this workshop, BSEE will... structured venue for consultation among offshore deepwater oil and gas industry and regulatory experts in...
NASA Astrophysics Data System (ADS)
Toy, V. G.; Maeda, L.; Toczko, S.; Eguchi, N.; Chester, F. M.; Mori, J. J.; Sawada, I.; Saruhashi, T.
2014-12-01
During IODP Expedition 343: The Japan Trench Fast Drilling Project (JFAST), two main boreholes were drilled from the D/V Chikyu in ~7000 m water depth. An uncored hole that penetrated to 850.5 meters below seafloor (mbsf) (total depth [TD] = 7740 meters below sea level [mbsl]) was documented using logging while drilling (LWD) tools. From an adjacent partially cored hole drilled to 844.5 mbsf (TD = 7734 mbsl) 21 cores were acquired that spanned the two main fault targets. The operations lasted 88 days. The drilling operation was very technically challenging. The drill string had to be withdrawn a number of times due to high seas, and technical issues; five holes were drilled (one abandoned after spud-in) and reoccupied in >6800 m water depth. A simple observatory was deployed in the wellhead installed during Exp 343 during the follow-up Exp 343T. In certain intervals during coring we mostly recovered loose, subrounded fine gravel clasts of the two major lithologies penetrated to those depths (silt and mudstones). We have performed particle shape and size analysis on these gravel aggregates. Particle shape variations apparent visually are not clearly quantified by conventional 'shape descriptors'. Variations in particle size distributions are apparent and we will discuss whether these relate to variations in drilling parameters.
76 FR 69612 - Amendment to the International Traffic in Arms Regulations: Sudan
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-09
... related technical training and assistance to monitoring, verification, or peace support operations... uses, and related technical training and assistance; (3) personal protective gear for the personal use... technical training and assistance to monitoring, verification, or peace support operations, including those...
47 CFR 15.517 - Technical requirements for indoor UWB systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for indoor UWB systems. 15.517 Section 15.517 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY DEVICES Ultra-Wideband Operation § 15.517 Technical requirements for indoor UWB systems. (a) Operation...
47 CFR 15.511 - Technical requirements for surveillance systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for surveillance systems... DEVICES Ultra-Wideband Operation § 15.511 Technical requirements for surveillance systems. (a) The UWB... surveillance systems operated by law enforcement, fire or emergency rescue organizations or by manufacturers...
47 CFR 15.511 - Technical requirements for surveillance systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for surveillance systems... DEVICES Ultra-Wideband Operation § 15.511 Technical requirements for surveillance systems. (a) The UWB... surveillance systems operated by law enforcement, fire or emergency rescue organizations or by manufacturers...
47 CFR 15.511 - Technical requirements for surveillance systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for surveillance systems... DEVICES Ultra-Wideband Operation § 15.511 Technical requirements for surveillance systems. (a) The UWB... surveillance systems operated by law enforcement, fire or emergency rescue organizations or by manufacturers...
47 CFR 15.511 - Technical requirements for surveillance systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for surveillance systems... DEVICES Ultra-Wideband Operation § 15.511 Technical requirements for surveillance systems. (a) The UWB... surveillance systems operated by law enforcement, fire or emergency rescue organizations or by manufacturers...
47 CFR 15.511 - Technical requirements for surveillance systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for surveillance systems... DEVICES Ultra-Wideband Operation § 15.511 Technical requirements for surveillance systems. (a) The UWB... surveillance systems operated by law enforcement, fire or emergency rescue organizations or by manufacturers...
75 FR 12740 - Wyoming Interstate Company, Inc.; Notice of Technical Conference
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... additional technical, engineering, and operational support for its proposed gas quality allocation procedures... should be prepared to support its position with adequate technical, engineering, and operational information. FERC conferences are accessible under section 508 of the Rehabilitation Act of 1973. For...
Numerical and Experimental Study of an Ambient Air Vaporizer Coupled with a Compact Heat Exchanger
NASA Astrophysics Data System (ADS)
Kimura, Randon
The University of Washington was tasked with designing a "21st century engine" that will make use of the thermal energy available in cryogenic gasses due to their coldness. There are currently large quantities of cryogenic gases stored throughout the U.S. at industrial facilities whereupon the regasification process, the potential for the fluid to do work is wasted. The engine proposed by the University of Washington will try to capture some of that wasted energy. One technical challenge that must be overcome during the regasification process is providing frost free operation. This thesis presents the numerical analysis and experimental testing of a passive heat exchange system that uses ambient vaporizers coupled with compact heat exchangers to provide frost free operation while minimizing pressure drop.
Weld Repair of a Stamped Pressure Vessel in a Radiologically Controlled Zone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cannell, Gary L.; Huth, Ralph J.; Hallum, Randall T.
2013-08-26
In September 2012 an ASME B&PVC Section VIII stamped pressure vessel located at the DOE Hanford Site Effluent Treatment Facility (ETF) developed a through-wall leak. The vessel, a steam/brine heat exchanger, operated in a radiologically controlled zone (by the CH2MHill PRC or CHPRC), had been in service for approximately 17 years. The heat exchanger is part of a single train evaporator process and its failure caused the entire system to be shut down, significantly impacting facility operations. This paper describes the activities associated with failure characterization, technical decision making/planning for repair by welding, logistical challenges associated with performing work inmore » a radiologically controlled zone, performing the repair, and administrative considerations related to ASME code requirements.« less
Kelly, Christopher R; Hogle, Nancy J; Landman, Jaime; Fowler, Dennis L
2008-09-01
The use of high-definition cameras and monitors during minimally invasive procedures can provide the surgeon and operating team with more than twice the resolution of standard definition systems. Although this dramatic improvement in visualization offers numerous advantages, the adoption of high definition cameras in the operating room can be challenging because new recording equipment must be purchased, and several new technologies are required to edit and distribute video. The purpose of this review article is to provide an overview of the popular methods for recording, editing, and distributing high-definition video. This article discusses the essential technical concepts of high-definition video, reviews the different kinds of equipment and methods most often used for recording, and describes several options for video distribution.
NASA Astrophysics Data System (ADS)
Crowe, B.; Black, P.; Tauxe, J.; Yucel, V.; Rawlinson, S.; Colarusso, A.; DiSanza, F.
2001-12-01
The National Nuclear Security Administration, Nevada Operations Office (NNSA/NV) operates and maintains two active facilities on the Nevada Test Site (NTS) that dispose Department of Energy (DOE) defense-generated low-level radioactive (LLW), mixed radioactive, and classified waste in shallow trenches, pits and large-diameter boreholes. The operation and maintenance of the LLW disposal sites are self-regulated under DOE Order 435.1, which requires review of a Performance Assessment for four performance objectives: 1) all pathways 25 mrem/yr limit; 2) atmospheric pathways 10 mrem/yr limit; 3) radon flux density of 20 pCi/m2/s; and 4) groundwater resource protection (Safe Drinking Water Act; 4 mrem/yr limit). The inadvertent human intruder is protected under a dual 500- and 100-mrem limit (acute and chronic exposure). In response to the Defense Nuclear Facilities Safety Board Recommendation 92 2, a composite analysis is required that must examine all interacting sources for compliance against both 30 and 100 mrem/yr limits. A small component of classified transuranic waste is buried at intermediate depths in 3-meter diameter boreholes at the Area 5 LLW disposal facility and is assessed through DOE-agreement against the requirements of the Environmental Protection Agency (EPA)'s 40 CFR 191. The hazardous components of mixed LLW are assessed against RCRA requirements. The NTS LLW sites fall directly under three sets of federal regulations and the regulatory differences result not only in organizational challenges, but also in different decision objectives and technical paths to completion. The DOE regulations require deterministic analysis for a 1,000-year compliance assessment supplemented by probabilistic analysis under a long-term maintenance program. The EPA regulations for TRU waste are probabilistically based for a compliance interval of 10,000 years. Multiple steps in the assessments are strongly dependent on assumptions for long-term land use policies. Integrating the different requirements into coherent and consistent sets of conceptual models of the disposal setting, alternative scenarios, and system models of fate, transport and dose-based assessments is technically challenging. Environmental assessments for these sites must be broad-based and flexible to accommodate the multiple objectives.
Economic Impacts of Climate Change on Winter Tourism: Challenges for Ski Area Operators
NASA Astrophysics Data System (ADS)
Damm, A.; Köberl, J.; Prettenthaler, F.; Töglhofer, C.
2012-04-01
Increasing temperatures and snow scarce winter seasons pose a big challenge for the winter tourism industry. Changing natural snow reliability influences tourism demand and ski area operators are faced with an enhanced need of technical snow production. The goal of the present research work is to analyze the economic effects of technical snow production under future climate conditions. Snowmaking as an adaptation strategy to climate change impacts on the ski tourism industry is already taken into consideration in several studies from a scientific perspective concerning snowmaking potentials under future climate conditions and the impacts on ski season length (e.g. Scott et al. 2003; Scott & McBoyle 2007; Hennessy et al. 2008; Steiger 2010). A few studies considered economic aspects of technical snowmaking (e.g. Teich et al. 2007; Gonseth 2008). However, a detailed analysis of the costs and benefits of snowmaking under future climate and snow conditions based on sophisticated climate and snow models has not been carried out yet. The present study addresses the gap of knowledge concerning the economic profitability of prospective snowmaking requirements under future climate scenarios. We carry out a detailed cost-revenue analysis of snowmaking under current and future climate conditions for a case study site in Styria (Austria) using dynamic investment models. The starting point of all economic calculations is the daily demand for artificial snow that determines the requirements for additional snowmaking investments and additional operating costs. The demand for artificial snow is delivered by the snow cover model AMUNDSEN (see Strasser et al. 2011) and is driven by four climate scenarios. Apart from future climate conditions the profitability of snowmaking depends on changes in costs and visitor numbers. The results of a ski tourism demand model analyzing daily visitor numbers and their dependencies of prevailing weather conditions enter the cost-revenue analysis of snowmaking and enable the determination of the immediate benefits in terms of additional revenues of ski ticket sales. Furthermore, we conduct an econometric analysis of how snowmaking investments changed ski ticket prices in previous years, as the positive effects of snowmaking on snow reliability could be offset in the longer term by the effects of higher prices for skiing, possibly resulting in lower demand.
Optimizing care for the obese patient in interventional radiology
Aberle, Dwight; Charles, Hearns; Hodak, Steven; O’Neill, Daniel; Oklu, Rahmi; Deipolyi, Amy R.
2017-01-01
With the rising epidemic of obesity, interventional radiologists are treating increasing numbers of obese patients, as comorbidities associated with obesity preclude more invasive treatments. These patients are at heightened risk of vascular and oncologic disease, both of which often require interventional radiology care. Obese patients pose unique challenges in imaging, technical feasibility, and periprocedural monitoring. This review describes the technical and clinical challenges posed by this population, with proposed methods to mitigate these challenges and optimize care. PMID:28082253
Modeling the Effects of Turbulence in Rotating Detonation Engines
NASA Astrophysics Data System (ADS)
Towery, Colin; Smith, Katherine; Hamlington, Peter; van Schoor, Marthinus; TESLa Team; Midé Team
2014-03-01
Propulsion systems based on detonation waves, such as rotating and pulsed detonation engines, have the potential to substantially improve the efficiency and power density of gas turbine engines. Numerous technical challenges remain to be solved in such systems, however, including obtaining more efficient injection and mixing of air and fuels, more reliable detonation initiation, and better understanding of the flow in the ejection nozzle. These challenges can be addressed using numerical simulations. Such simulations are enormously challenging, however, since accurate descriptions of highly unsteady turbulent flow fields are required in the presence of combustion, shock waves, fluid-structure interactions, and other complex physical processes. In this study, we performed high-fidelity three dimensional simulations of a rotating detonation engine and examined turbulent flow effects on the operation, performance, and efficiency of the engine. Along with experimental data, these simulations were used to test the accuracy of commonly-used Reynolds averaged and subgrid-scale turbulence models when applied to detonation engines. The authors gratefully acknowledge the support of the Defense Advanced Research Projects Agency (DARPA).
Options for Synthetic DNA Order Screening, Revisited.
DiEuliis, Diane; Carter, Sarah R; Gronvall, Gigi Kwik
2017-01-01
Gene synthesis providers affiliated with the International Gene Synthesis Consortium (IGSC) voluntarily screen double-stranded DNA (dsDNA) synthesis orders over 200 bp to check for matches to regulated pathogens and to screen customers. Questions have been raised, however, about the continuing feasibility and effectiveness of screening. There are technical challenges (e.g., oligonucleotides and tracts of DNA less than 200 bp are not screened) and corporate challenges (e.g., the costs of screening are high, but other costs are dropping, so screening is an increasing portion of operating costs). In this article, we describe tangible actions that should be taken to (i) preserve the effectiveness of DNA order screening as a security tool and (ii) develop additional mechanisms to increase the safety and security of DNA synthesis technologies. Screening is not a perfect solution to DNA synthesis security challenges, but we believe it is still a valuable addition to security, and it can remain effective for some time.
Advanced consequence management program: challenges and recent real-world implementations
NASA Astrophysics Data System (ADS)
Graser, Tom; Barber, K. S.; Williams, Bob; Saghir, Feras; Henry, Kurt A.
2002-08-01
The Enhanced Consequence Management, Planning and Support System (ENCOMPASS) was developed under DARPA's Advanced Consequence Management program to assist decision-makers operating in crisis situations such as terrorist attacks using conventional and unconventional weapons and natural disasters. ENCOMPASS provides the tools for first responders, incident commanders, and officials at all levels to share vital information and consequently, plan and execute a coordinated response to incidents of varying complexity and size. ENCOMPASS offers custom configuration of components with capabilities ranging from map-based situation assessment, situation-based response checklists, casualty tracking, and epidemiological surveillance. Developing and deploying such a comprehensive system posed significant challenges for DARPA program management, due to an inherently complex domain, a broad spectrum of customer sites and skill sets, an often inhospitable runtime environment, demanding development-to-deployment transition requirements, and a technically diverse and geographically distributed development team. This paper introduces ENCOMPASS and explores these challenges, followed by an outline of selected ENCOMPASS deployments, demonstrating how ENCOMPASS can enhance consequence management in a variety real world contexts.
Measurement and Instrumentation Challenges at X-ray Free Electron Lasers
NASA Astrophysics Data System (ADS)
Feng, Yiping
2015-03-01
X-ray Free Electron Laser sources based on the Self Amplified Spontaneous Emission process are intrinsically chaotic, giving rise to pulse-to-pulse fluctuations in all physical properties, including intensity, position and pointing, spatial and temporal profiles, spectral content, timing, and coherence. These fluctuations represents special challenges to users whose experiments are designed to reveal small changes in the underlying physical quantities, which would otherwise be completely washed out without using the proper diagnostics tools. Due to the X-ray FEL's unique characteristics such as the unprecedented peak power and nearly full spatial coherence, there are many technical challenges in conceiving and implementing these devices that are highly transmissive, provide sufficient signal-to-noise ratio, and most importantly work in the single-shot mode. Portions of this research were carried out at the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. LCLS is an Office of Science User Facility operated for the U.S. Department of Energy Office of Science by Stanford Univ.
Reusable single-port access device shortens operative time and reduces operative costs.
Shussman, Noam; Kedar, Asaf; Elazary, Ram; Abu Gazala, Mahmoud; Rivkind, Avraham I; Mintz, Yoav
2014-06-01
In recent years, single-port laparoscopy (SPL) has become an attractive approach for performing surgical procedures. The pitfalls of this approach are technical and financial. Financial concerns are due to the increased cost of dedicated devices and prolonged operating room time. Our aim was to calculate the cost of SPL using a reusable port and instruments in order to evaluate the cost difference between this approach to SPL using the available disposable ports and standard laparoscopy. We performed 22 laparoscopic procedures via the SPL approach using a reusable single-port access system and reusable laparoscopic instruments. These included 17 cholecystectomies and five other procedures. Operative time, postoperative length of stay (LOS) and complications were prospectively recorded and were compared with similar data from our SPL database. Student's t test was used for statistical analysis. SPL was successfully performed in all cases. Mean operative time for cholecystectomy was 72 min (range 40-116). Postoperative LOS was not changed from our standard protocols and was 1.1 days for cholecystectomy. The postoperative course was within normal limits for all patients and perioperative morbidity was recorded. Both operative time and length of hospital stay were shorter for the 17 patients who underwent cholecystectomy using a reusable port than for the matched previous 17 SPL cholecystectomies we performed (p < 0.001). Prices of disposable SPL instruments and multiport access devices as well as extraction bags from different manufacturers were used to calculate the cost difference. Operating with a reusable port ended up with an average cost savings of US$388 compared with using disposable ports, and US$240 compared with standard laparoscopy. Single-port laparoscopic surgery is a technically challenging and expensive surgical approach. Financial concerns among others have been advocated against this approach; however, we demonstrate herein that using a reusable port and instruments reduces operative time and overall operative costs, even beyond the cost of standard laparoscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fix, N. J.
The scope of the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project) is to provide technical and integration support to Fluor Hanford, Inc., including operable unit investigations at 300-FF-5 and other groundwater operable units, strategic integration, technical integration and assessments, remediation decision support, and science and technology. This Quality Assurance Management Plan provides the quality assurance requirements and processes that will be followed by the Fluor Hanford, Inc. Groundwater and Technical Integration Support (Master Project).
A Ten-Meter Ground-Station Telescope for Deep-Space Optical Communications: A Preliminary Design
NASA Technical Reports Server (NTRS)
Britcliffe, M.; Hoppe, D.; Roberts, W.; Page, N.
2001-01-01
This article describes a telescope design for a 10-m optical ground station for deep-space communications. The design for a direct-detection optical communications telescope differs dramatically from a telescope for imaging applications. In general, the requirements for optical manufacturing and tracking performance are much less stringent for direct detection of optical signals. The technical challenge is providing a design that will operate in the daytime/nighttime conditions required for a Deep Space Network tracking application. The design presented addresses these requirements. The design will provide higher performance at lower cost than existing designs.
NASA Technical Reports Server (NTRS)
1986-01-01
With regards to technical performance, the project is running according to plan. An increase in total cost outlay was required. The new Dornier Systems schedule projects ROSAT launch readiness for April 27, 1988. However, as a result of the Challenger accident, no binding launch date has been received from NASA. The thirteenth status review was conducted at the prime contractor in March, 1986. Assembly of the FM mirror system has been interrupted due to irregularities in the gold damping; in addition, mission operation and simulator development are effected by understaffing. Postponements have been announced in the data transmission and components acquisition subsystems.
Kulcsár, Zsolt; Machi, Paolo; Schaller, Karl; Lovblad, Karl Olof; Bijlenga, Philippe
2018-05-01
Treatment of ruptured deep-seated arteriovenous malformations is challenging and associated with elevated risks. This is due to the proximity or involvement of critical brain structures and the specifically fine and delicate angioarchitecture of these lesions, making both endovascular and surgical access technically complicated. We present the advantages of a true combined, open surgical and endovascular transvenous approach in a hybrid operating room. The technique may overcome in part the difficulties and may improve safety and risk related concerns. Copyright © 2018. Published by Elsevier Masson SAS.
The Systems Autonomy Demonstration Project - Catalyst for Space Station advanced automation
NASA Technical Reports Server (NTRS)
Healey, Kathleen J.
1988-01-01
The Systems Autonomy Demonstration Project (SADP) was initiated by NASA to address the advanced automation needs for the Space Station program. The application of advanced automation to the Space Station's operations management system (OMS) is discussed. The SADP's future goals and objectives are discussed with respect to OMS functional requirements, design, and desired evolutionary capabilities. Major technical challenges facing the designers, developers, and users of the OMS are identified in order to guide the definition of objectives, plans, and scenarios for future SADP demonstrations, and to focus the efforts on the supporting research.
Efficient Computation Of Behavior Of Aircraft Tires
NASA Technical Reports Server (NTRS)
Tanner, John A.; Noor, Ahmed K.; Andersen, Carl M.
1989-01-01
NASA technical paper discusses challenging application of computational structural mechanics to numerical simulation of responses of aircraft tires during taxing, takeoff, and landing. Presents details of three main elements of computational strategy: use of special three-field, mixed-finite-element models; use of operator splitting; and application of technique reducing substantially number of degrees of freedom. Proposed computational strategy applied to two quasi-symmetric problems: linear analysis of anisotropic tires through use of two-dimensional-shell finite elements and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry and combinations exhibited by response of tire identified.
NASA Technical Reports Server (NTRS)
Piepmeier, Jeffrey R.; Vega, Manuel; Fritts, Matthew; Du Toit, Cornelis; Knuble, Joseph; Lin, Yao-Cheng; Nold, Benjamin; Garrison, James
2017-01-01
Low frequency observations are desired for soil moisture and biomass remote sensing. Long wavelengths are needed to penetrate vegetation and Earths land surface. In addition to the technical challenges of developing Earth observing spaceflight instruments operating at low frequencies, the radio frequency spectrum allocated to remote sensing is limited. Signal-of-opportunity remote sensing offers the chance to use existing signals exploiting their allocated spectrum to make Earth science measurements. We have made observations of the radio frequency environment around 240-270 MHz and discuss properties of desired and undesired signals.
9 CFR 351.14 - Processes to be supervised; extent of examinations.
Code of Federal Regulations, 2010 CFR
2010-01-01
....3 for the preparation of certified technical animal fat and the plant operator, in writing... and technical animal fats, and the plant operator, in writing, certifies that he is maintaining this... AND VOLUNTARY INSPECTION AND CERTIFICATION CERTIFICATION OF TECHNICAL ANIMAL FATS FOR EXPORT...
The National Geospatial Technical Operations Center
Craun, Kari J.; Constance, Eric W.; Donnelly, Jay; Newell, Mark R.
2009-01-01
The United States Geological Survey (USGS) National Geospatial Technical Operations Center (NGTOC) provides geospatial technical expertise in support of the National Geospatial Program in its development of The National Map, National Atlas of the United States, and implementation of key components of the National Spatial Data Infrastructure (NSDI).
Research gaps and technology needs in development of PHM for passive AdvSMR components
NASA Astrophysics Data System (ADS)
Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henagar, Chuck H., Jr.
2014-02-01
Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.
Challenges and opportunities of power systems from smart homes to super-grids.
Kuhn, Philipp; Huber, Matthias; Dorfner, Johannes; Hamacher, Thomas
2016-01-01
The world's power systems are facing a structural change including liberalization of markets and integration of renewable energy sources. This paper describes the challenges that lie ahead in this process and points out avenues for overcoming different problems at different scopes, ranging from individual homes to international super-grids. We apply energy system models at those different scopes and find a trade-off between technical and social complexity. Small-scale systems would require technological breakthroughs, especially for storage, but individual agents can and do already start to build and operate such systems. In contrast, large-scale systems could potentially be more efficient from a techno-economic point of view. However, new political frameworks are required that enable long-term cooperation among sovereign entities through mutual trust. Which scope first achieves its breakthrough is not clear yet.
Kuhlmann, Andrea; Reuter, Verena; Schramek, Renate; Dimitrov, Todor; Görnig, Matthias; Matip, Eva-Maria; Matthies, Olaf; Naroska, Edwin
2018-01-01
The "OurPuppet" project comprises a sensor-based, interactive puppet that will be developed to communicate with people in need of care during a short period of absence of the informal caregiver. Specially qualified puppet guides will support the use of the new technical development. They instruct people with dementia and caregivers on how to use the puppet and supervise the (informal) care relationship through discussions on a regular basis. The article shows the specific components of users' needs for which the concrete technical development should find answers. It also focuses on the opportunities and challenges for the technical and social developmental process accompanied by these demands. The analysis of the users' needs is based on a participatory approach. Semi-structured focus group interviews were conducted with informal caregivers, nurses and volunteers in order to identify typical situations in home care settings. The interviews were paraphrased and summarized in order to deduce inductive categories (qualitative data analysis), which describe everyday situations that the technical system should address. Such analyses provide information about the needs of potential users and indicate how to design such technical systems. Furthermore, opportunities and challenges of the development process as well as important contextual information were identified.
Formal Methods in Air Traffic Management: The Case of Unmanned Aircraft Systems
NASA Technical Reports Server (NTRS)
Munoz, Cesar A.
2015-01-01
As the technological and operational capabilities of unmanned aircraft systems (UAS) continue to grow, so too does the need to introduce these systems into civil airspace. Unmanned Aircraft Systems Integration in the National Airspace System is a NASA research project that addresses the integration of civil UAS into non-segregated airspace operations. One of the major challenges of this integration is the lack of an onboard pilot to comply with the legal requirement that pilots see and avoid other aircraft. The need to provide an equivalent to this requirement for UAS has motivated the development of a detect and avoid (DAA) capability to provide the appropriate situational awareness and maneuver guidance in avoiding and remaining well clear of traffic aircraft. Formal methods has played a fundamental role in the development of this capability. This talk reports on the formal methods work conducted under NASA's Safe Autonomous System Operations project in support of the development of DAA for UAS. This work includes specification of low-level and high-level functional requirements, formal verification of algorithms, and rigorous validation of software implementations. The talk also discusses technical challenges in formal methods research in the context of the development and safety analysis of advanced air traffic management concepts.
Matsuoka, Sadatoshi; Obara, Hiromi; Nagai, Mari; Murakami, Hitoshi; Chan Lon, Rasmey
2014-07-01
Though Cambodia made impressive gains in immunization coverage between the years 2000 and 2005, it recognized several health system challenges to greater coverage of immunization and sustainability. The Global Alliance for Vaccines and Immunization (GAVI) opened a Health System Strengthening (HSS) funding window in 2006. To address the health system challenges, Cambodia has been receiving the GAVI HSS fund since October 2007. The major component of the support is performance-based financing (PBF) for maternal, neonatal and child health (MNCH) services. To examine the impact of the PBF scheme on MNCH services and administrative management in rural Cambodia. Quantitative and qualitative studies were conducted in Kroch Chhmar Operational District (OD), Cambodia. Quantitative analyses were conducted on the trends of the numbers of MNCH services. A brief analysis was conducted using qualitative data. After the commencement of the PBF support, the volume of MNCH services was significantly boosted. In addition, strengthened financial and operational management was observed in the study area. However, the quality of the MNCH services was not ensured. Technical assistance, rather than the PBF scheme, was perceived by stakeholders to play a vital role in increasing the quality of the services. To improve the quality of the health services provided, it is better to include indicators on the quality of care in the PBF scheme. Mutual co-operation between PBF models and technical assistance may ensure better service quality while boosting the quantity. A robust but feasible data validation mechanism should be in place, as a PBF could incentivize inaccurate reporting. The capacity for financial management should be strengthened in PBF recipient ODs. To address the broader aspects of MNCH, a balanced input of resources and strengthening of all six building blocks of a health system are necessary. Published by Oxford University Press in association with The London School of Hygiene and Tropical Medicine © The Author 2013; all rights reserved.
NASA Technical Reports Server (NTRS)
Younes, Badri A.; Schier, James S.
2010-01-01
The SCaN Program has defined an integrated network architecture that fully meets the Administrator s mandate to the Program, and will result in a NASA infrastructure capable of providing the needed and enabling communications services to future space missions. The integrated network architecture will increase SCaN operational efficiency and interoperability through standardization, commonality and technology infusion. It will enable NASA missions requiring advanced communication and tracking capabilities such as: a. Optical communication b. Antenna arraying c. Lunar and Mars Relays d. Integrated network management (service management and network control) and integrated service execution e. Enhanced tracking for navigation f. Space internetworking with DTN and IP g. End-to-end security h. Enhanced security services Moreover, the SCaN Program has created an Integrated Network Roadmap that depicts an orchestrated and coherent evolution path toward the target architecture, encompassing all aspects that concern network assets (i.e., operations and maintenance, sustaining engineering, upgrade efforts, and major development). This roadmap identifies major NASA ADPs, and shows dependencies and drivers among the various planned undertakings and timelines. The roadmap is scalable to accommodate timely adjustments in response to Agency needs, goals, objectives and funding. Future challenges to implementing this architecture include balancing user mission needs, technology development, and the availability of funding within NASA s priorities. Strategies for addressing these challenges are to: define a flexible architecture, update the architecture periodically, use ADPs to evaluate options and determine when to make decisions, and to engage the stakeholders in these evaluations. In addition, the SCaN Program will evaluate and respond to mission need dates for technical and operational capabilities to be provided by the SCaN integrated network. In that regard, the architecture defined in this ADD is scalable to accommodate programmatic and technical changes.
Pirnejad, Habibollah; Bal, Roland; Stoop, Arjen P.; Berg, Marc
2007-01-01
Background To afford efficient and high quality care, healthcare providers increasingly need to exchange patient data. The existence of a communication network amongst care providers will help them to exchange patient data more efficiently. Information and communication technology (ICT) has much potential to facilitate the development of such a communication network. Moreover, in order to offer integrated care interoperability of healthcare organizations based upon the exchanged data is of crucial importance. However, complications around such a development are beyond technical impediments. Objectives To determine the challenges and complexities involved in building an Inter-organisational Communication network (IOCN) in healthcare and the appropriations in the strategies. Case study Interviews, literature review, and document analysis were conducted to analyse the developments that have taken place toward building a countrywide electronic patient record and its challenges in The Netherlands. Due to the interrelated nature of technical and non-technical problems, a socio-technical approach was used to analyse the data and define the challenges. Results Organisational and cultural changes are necessary before technical solutions can be applied. There are organisational, financial, political, and ethicolegal challenges that have to be addressed appropriately. Two different approaches, one “centralised” and the other “decentralised” have been used by Dutch healthcare providers to adopt the necessary changes and cope with these challenges. Conclusion The best solutions in building an IOCN have to be drawn from both the centralised and the decentralised approaches. Local communication initiatives have to be supervised and supported centrally and incentives at the organisations' interest level have to be created to encourage the stakeholder organisations to adopt the necessary changes. PMID:17627296
Pirnejad, Habibollah; Bal, Roland; Stoop, Arjen P; Berg, Marc
2007-05-16
To afford efficient and high quality care, healthcare providers increasingly need to exchange patient data. The existence of a communication network amongst care providers will help them to exchange patient data more efficiently. Information and communication technology (ICT) has much potential to facilitate the development of such a communication network. Moreover, in order to offer integrated care interoperability of healthcare organizations based upon the exchanged data is of crucial importance. However, complications around such a development are beyond technical impediments. To determine the challenges and complexities involved in building an Inter-organisational Communication network (IOCN) in healthcare and the appropriations in the strategies. Interviews, literature review, and document analysis were conducted to analyse the developments that have taken place toward building a countrywide electronic patient record and its challenges in The Netherlands. Due to the interrelated nature of technical and non-technical problems, a socio-technical approach was used to analyse the data and define the challenges. Organisational and cultural changes are necessary before technical solutions can be applied. There are organisational, financial, political, and ethicolegal challenges that have to be addressed appropriately. Two different approaches, one "centralised" and the other "decentralised" have been used by Dutch healthcare providers to adopt the necessary changes and cope with these challenges. The best solutions in building an IOCN have to be drawn from both the centralised and the decentralised approaches. Local communication initiatives have to be supervised and supported centrally and incentives at the organisations' interest level have to be created to encourage the stakeholder organisations to adopt the necessary changes.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-03
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER13-2124-000] Midcontinent Independent System Operator, Inc.; Supplemental Notice Concerning Post-Technical Conference Comments As announced in the Notice of Technical Conference issued on October 25, 2013, and as required in the...
47 CFR 15.515 - Technical requirements for vehicular radar systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 47 Telecommunication 1 2011-10-01 2011-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system operating...
47 CFR 15.515 - Technical requirements for vehicular radar systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system operating...
47 CFR 15.515 - Technical requirements for vehicular radar systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 47 Telecommunication 1 2014-10-01 2014-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system operating...
47 CFR 15.515 - Technical requirements for vehicular radar systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 47 Telecommunication 1 2013-10-01 2013-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system operating...
47 CFR 15.515 - Technical requirements for vehicular radar systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 1 2012-10-01 2012-10-01 false Technical requirements for vehicular radar... DEVICES Ultra-Wideband Operation § 15.515 Technical requirements for vehicular radar systems. (a..., changing gears, or engaging a turn signal. (b) The UWB bandwidth of a vehicular radar system operating...
Commercially Hosted Government Payloads: Lessons from Recent Programs
NASA Technical Reports Server (NTRS)
Andraschko, Mark A.; Antol, Jeffrey; Horan, Stephen; Neil, Doreen
2011-01-01
In a commercially hosted operational mode, a scientific instrument or operational device is attached to a spacecraft but operates independently from the spacecraft s primary mission. Despite the expected benefits of this arrangement, there are few examples of hosted payload programs actually being executed by government organizations. The lack of hosted payload programs is largely driven by programmatic challenges, both real and perceived, rather than by technical challenges. Partly for these reasons, NASA has not sponsored a hosted payload program, in spite of the benefits and visible community interest in doing so. In the interest of increasing the use of hosted payloads across the space community, this paper seeks to alleviate concerns about hosted payloads by identifying these programmatic challenges and presenting ways in which they can be avoided or mitigated. Despite the challenges, several recent hosted payload programs have been successfully completed or are currently in progress. This paper presents an assessment of these programs, with a focus on acquisition, costs, schedules, risks, and other programmatic aspects. The hosted payloads included in this study are the Federal Aviation Administration's Wide Area Augmentation System (WAAS) payloads, United States Coast Guard's Automatic Identification System (AIS) demonstration payload, Department of Defense's IP Router In Space (IRIS) demonstration payload, the United States Air Force's Commercially Hosted Infrared Payload (CHIRP), and the Australian Defence Force's Ultra High Frequency (UHF) payload. General descriptions of each of these programs are presented along with issues that have been encountered and lessons learned from those experiences. A set of recommended approaches for future hosted payload programs is presented, with a focus on addressing risks or potential problem areas through smart and flexible contracting up front. This set of lessons and recommendations is broadly applicable to future hosted payload programs, whether they are technology demonstrations, communications systems, or operational sensors. Additionally, we present a basic cost model for commercial access to space for hosted payloads as a function of payload mass
The Scientific Value and Technical Challenge of Chang'E-4 Landing on the Far-side of the Moon
NASA Astrophysics Data System (ADS)
Li, Fei; Zhang, He; Wu, Xueying; Ma, Jinan; Zhou, Wenyan
2016-07-01
The mission of Chang'E-4 probe is landing on the far-side of the moon for the first time in human history. Compared with the near-side, far-side landing has unique scientific value and more challenging technology implementation. The scientific significance of the exploration of far-side of the moon and the technical difficulties and solution approach of the Chang'E-4 were discussed in this paper. In science, the far-side of the Moon is an ideal scientific platform in that it is shielded from terrestrial radio-frequency interference. The terrane that records the formation of the primordial crust is located largely on the far-side hemisphere, and there is the largest and oldest recognized impact basin in our Solar System, the South Pole-Aitken basin. In technology, the difficulties mainly includes the analysis of the influence of lunar topography of far-side on the landing descent strategy, the study of relay orbit and operating modes for the relay satellite in the Earth-Moon L2(Lagrange point 2), and the requirement analysis of autonomous management due to the relay communication. It will provide the reference for landing exploration of the far-side of the moon.
Rungsakulkij, Narongsak; Tangtawee, Pongsatorn
2017-04-20
Situs inversus totalis is a rare autosomal disorder in which the patient's affected visceral organs are a perfect mirror image of their normal positions. Surgery in these patients is technically challenging. Minimally invasive surgery such as laparoscopic cholecystectomy is the standard treatment for symptomatic cholelithiasis, but it can be difficult to perform. Laparoscopic cholecystectomy in patients with situs inversus totalis may be even more technically challenging. Fluorescence cholangiography is a new innovation in the field of navigation surgery. This procedure is safe and easy to perform, its findings are easy to interpret, and it does not require a learning curve or radiographs. It can be used in real time during surgery to identify extrahepatic biliary structures. We herein report a case of situs inversus totalis in a Thai patient with a history of biliary pancreatitis. He underwent laparoscopic cholecystectomy with intraoperative fluorescence cholangiography. The operation was successfully completed without complications. To the best of our knowledge, this is the first case report of the use of fluorescence cholangiography during laparoscopic cholecystectomy in a patient with situs inversus. Fluorescence cholangiographyis a new navigational surgical technique with which to identify extrahepatic biliary structures. It can be used as an adjunct technique during laparoscopic cholecystectomy to avoid biliary tract injury in difficult cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runkle, Robert C.; White, Timothy A.; Miller, Erin A.
Scanning cargo transported via aircraft ("air cargo") for explosive threats is a problem that, at present, lacks a comprehensive technical solution. While explosives detection in the baggage-scanning domain has a rich history that sheds light on potential solutions for air cargo, baggage scanning differs in several ways and thus one cannot look to the present array of technologies. Some contemporary solutions, like trace analysis, are not readily applied to cargo due to sampling challenges while the larger geometry of air cargo makes others less effective. This review article examines an array of interrogation techniques using photons and neutrons as incidentmore » particles. We first present a summary of the signatures and observables explosives provide and review how they have been exploited in baggage scanning. Following this is a description of the challenges posed by the air cargo application space. After considering interrogation sources, methods focused on transmission imaging, sub-surface examination and elemental characterization are described. It is our goal to shed light on the technical promise of each method while largely deferring questions that revolve around footprint, safety and conduct of operations. Our overarching intent is that a comprehensive understanding of potential techniques will foster development of a comprehensive solution.« less
Glucose Meters: A Review of Technical Challenges to Obtaining Accurate Results
Tonyushkina, Ksenia; Nichols, James H.
2009-01-01
Glucose meters are universally utilized in the management of hypoglycemic and hyperglycemic disorders in a variety of healthcare settings. Establishing the accuracy of glucose meters, however, is challenging. Glucose meters can only analyze whole blood, and glucose is unstable in whole blood. Technical accuracy is defined as the closeness of agreement between a test result and the true value of that analyte. Truth for glucose is analysis by isotope dilution mass spectrometry, and frozen serum standards analyzed by this method are available from the National Institute of Standards and Technology. Truth for whole blood has not been established, and cells must be separated from the whole blood matrix before analysis by a method like isotope dilution mass spectrometry. Serum cannot be analyzed by glucose meters, and isotope dilution mass spectrometry is not commonly available in most hospitals and diabetes clinics to evaluate glucose meter accuracy. Consensus standards recommend comparing whole blood analysis on a glucose meter against plasma/serum centrifuged from a capillary specimen and analyzed by a clinical laboratory comparative method. Yet capillary samples may not provide sufficient volume to test by both methods, and venous samples may be used as an alternative when differences between venous and capillary blood are considered. There are thus multiple complexities involved in defining technical accuracy and no clear consensus among standards agencies and professional societies on accuracy criteria. Clinicians, however, are more concerned with clinical agreement of the glucose meter with a serum/plasma laboratory result. Acceptance criteria for clinical agreement vary across the range of glucose concentrations and depend on how the result will be used in screening or management of the patient. A variety of factors can affect glucose meter results, including operator technique, environmental exposure, and patient factors, such as medication, oxygen therapy, anemia, hypotension, and other disease states. This article reviews the challenges involved in obtaining accurate glucose meter results. PMID:20144348
High Energy Density Li-ion Cells for EV’s Based on Novel, High Voltage Cathode Material Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kepler, Keith D.; Slater, Michael
This Li-ion cell technology development project had three objectives: to develop advanced electrode materials and cell components to enable stable high-voltage operation; to design and demonstrate a Li-ion cell using these materials that meets the PHEV40 performance targets; and to design and demonstrate a Li-ion cell using these materials that meets the EV performance targets. The major challenge to creating stable high energy cells with long cycle life is system integration. Although materials that can give high energy cells are known, stabilizing them towards long-term cycling in the presence of other novel cell components is a major challenge. The majormore » technical barriers addressed by this work include low cathode specific energy, poor electrolyte stability during high voltage operation, and insufficient capacity retention during deep discharge for Si-containing anodes. Through the course of this project, Farasis was able to improve capacity retention of NCM materials for 4.4+ V operation, through both surface treatment and bulk-doping approaches. Other material advances include increased rate capability and of HE-NCM materials through novel synthesis approach, doubling the relative capacity at 1C over materials synthesized using standard methods. Silicon active materials proved challenging throughout the project and ultimately were the limiting factor in the energy density vs. cycle life trade off. By avoiding silicon anodes for the lower energy PHEV design, we manufactured cells with intermediate energy density and long cycle life under high voltage operation for PHEV applications. Cells with high energy density for EV applications were manufactured targeting a 300 Wh/kg design and were able to achieve > 200 cycles.« less
Stepanauskas, Ramunas
2018-02-06
DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.
ERIC Educational Resources Information Center
Terasawa, Ikuo
2016-01-01
The challenge study is a project based learning curriculum at Technical High School aimed at the construction of a wireless communication system. The first period was engineering issues in the construction of an artificial satellite and the second period was a positional locating system based on the general purpose wire-less device--ZigBee device.…
CMMI (Trademark) for Acquisition, Version 1.2
2007-11-01
conjunction with the development of the operational concept to derive more detailed and prec inclu even t . The level of detail of contractual...technical solution, different products or product components ma suppliers. idate Requirem Requirements Ana t the intended operational environment will have...Technical Solutions SP 1.1 Select Technical So SP 1.2 Analyze Selected T SP 1.3 Conduct Technical SG 2 Perform Interface Managemen SP 2.1 Select
NASA Environmentally Responsible Aviation's Highly-Loaded Front Block Compressor Demonstration
NASA Technical Reports Server (NTRS)
Celestina, Mark
2017-01-01
The ERA project was created in 2009 as part of NASAs Aeronautics Research Mission Directorates (ARMD) Integrated Systems Aviation Program (IASP). The purpose of the ERA project was to explore and document the feasibility, benefit, and technical risk of vehicles concepts and enabling technologies to reduce aviations impact on the environment. The metrics for this technology is given in Figure 1 with the N+2 metrics highlighted in green. It is anticipated that the United States air transportation system will continue to expand significantly over the next few decades thus adversely impacting the environment unless new technology is incorporated to simultaneously reduce nitrous oxides (NOx), noise and fuel consumption. In order to achieve the overall goals and meet the technology insertion challenges, these goals were divided into technical challenges that were to be achieved during the execution of the ERA project. Technical challenges were accomplished through test campaigns conducted by Integrated Technology Demonstration (ITDs). ERAs technical performance period ended in 2015.
Proceedings of the Oak Ridge Electron Linear Accelerator (ORELA) Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, M.E.
2006-02-27
The Oak Ridge National Laboratory (ORNL) organized a workshop at ORNL July 14-15, 2005, to highlight the unique measurement capabilities of the Oak Ridge Electron Linear Accelerator (ORELA) facility and to emphasize the important role of ORELA for performing differential cross-section measurements in the low-energy resonance region that is important for nuclear applications such as nuclear criticality safety, nuclear reactor and fuel cycle analysis, stockpile stewardship, weapons research, medical diagnosis, and nuclear astrophysics. The ORELA workshop (hereafter referred to as the Workshop) provided the opportunity to exchange ideas and information pertaining to nuclear cross-section measurements and their importance for nuclearmore » applications from a variety of perspectives throughout the U.S. Department of Energy (DOE). Approximately 50 people, representing DOE, universities, and seven U.S. national laboratories, attended the Workshop. The objective of the Workshop was to emphasize the technical community endorsement for ORELA in meeting nuclear data challenges in the years to come. The Workshop further emphasized the need for a better understanding of the gaps in basic differential nuclear measurements and identified the efforts needed to return ORELA to a reliable functional measurement facility. To accomplish the Workshop objective, nuclear data experts from national laboratories and universities were invited to provide talks emphasizing the unique and vital role of the ORELA facility for addressing nuclear data needs. ORELA is operated on a full cost-recovery basis with no single sponsor providing complete base funding for the facility. Consequently, different programmatic sponsors benefit by receiving accurate cross-section data measurements at a reduced cost to their respective programs; however, leveraging support for a complex facility such as ORELA has a distinct disadvantage in that the programmatic funds are only used to support program-specific measurements. As a result, ORELA has not received base funding to support major upgrades and significant maintenance operations that are essential to keep the facility in a state of readiness over the long term. As a result, ORELA has operated on a ''sub-bare-minimum'' budget for the past 10 to 15 years, and the facility has not been maintained at a level for continued reliable operation for the long term. During the Workshop, Jerry McKamy (NNSA/NA-117) used a hospital patient metaphor that accurately depicts the facility status. ORELA is currently in the intensive care unit (ICU) on life support, and refurbishment efforts are needed to get the ''patient'' off life support and out to an ordinary hospital room. McKamy further noted that the DOE NCSP is planning to fund immediate refurbishment tasks ($1.5 M over three years) to help reestablish reliable ORELA operation (i.e., move ORELA from ICU to an ordinary hospital room). Furthermore, the NCSP will work to identify and carry out the actions needed to discharge ORELA from the ''hospital'' over the next five to seven years. In accordance with the Workshop objectives, the technical community publicly endorsed the need for a reliable ORELA facility that can meet current and future nuclear data needs. These Workshop proceedings provide the formal documentation of the technical community endorsement for ORELA. Furthermore, the proceedings highlight the past and current contributions that ORELA has made to the nuclear industry. The Workshop further emphasized the operational and funding problems that currently plague the facility, thereby limiting ORELA's operational reliability. Despite the recent operational problems, ORELA is a uniquely capable measurement facility that must be part of the overall U.S. nuclear data measurement portfolio in order to support current and emerging nuclear applications. The Workshop proceedings further emphasize that ORNL, the technical community, and programmatic sponsors are eager to see ORELA reestablish reliable measurement operation and be readily available to address nuclear data challenges in the United States.« less
Site Guidelines for a "Making Middle Grades Work" Technical Review Visit
ERIC Educational Resources Information Center
Southern Regional Education Board, 2004
2004-01-01
The purpose of the Technical Review Visit (TRV) is to follow up on the actions taken to implement the recommendations indicated for each challenge in the most recent Technical Assistance Visit (TAV) report. This document provides the following: (1) Site Guidelines for the Making Middle Grades Work (MMGW) Technical Review Visit; (2) Site Checklist;…
ERIC Educational Resources Information Center
Rutledge, Gene; And Others
This report includes the presentations of the speakers appearing before the National Clinic on Technical Education. Topics cover human resource development; the impact of technical education on economic development (in Mississippi); economics of allied health education; manpower implications of environmental protection; manpower needs for…
ERIC Educational Resources Information Center
Washington State Community Coll. District 17, Spokane.
Speeches and discussions are transcribed in this report, which also includes a listing of the American Technical Education Association (ATEA) committee members, exhibitors, officers, and directory of speakers. Speeches covered "Human Resource Development" by Gene Rutledge; "The Impact of Technical Education on Economic…
Describing Acupuncture: A New Challenge for Technical Communicators.
ERIC Educational Resources Information Center
Karanikas, Marianthe
1997-01-01
Considers acupuncture as an increasingly popular alternative medical therapy, but difficult to describe in technical communication. Notes that traditional Chinese medical explanations of acupuncture are unscientific, and that scientific explanations of acupuncture are inconclusive. Finds that technical communicators must translate acupuncture for…
7 CFR 610.23 - State Technical Committee meetings.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Technical Committee member. (b) NRCS will establish and maintain national standard operating procedures... standard operating procedures will outline items such as: The best practice approach to establishing... standard operating procedures established under paragraph (b) of this section, the State Conservationist...
7 CFR 610.23 - State Technical Committee meetings.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Technical Committee member. (b) NRCS will establish and maintain national standard operating procedures... standard operating procedures will outline items such as: The best practice approach to establishing... standard operating procedures established under paragraph (b) of this section, the State Conservationist...
7 CFR 610.23 - State Technical Committee meetings.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Technical Committee member. (b) NRCS will establish and maintain national standard operating procedures... standard operating procedures will outline items such as: The best practice approach to establishing... standard operating procedures established under paragraph (b) of this section, the State Conservationist...
7 CFR 610.23 - State Technical Committee meetings.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Technical Committee member. (b) NRCS will establish and maintain national standard operating procedures... standard operating procedures will outline items such as: The best practice approach to establishing... standard operating procedures established under paragraph (b) of this section, the State Conservationist...
7 CFR 610.23 - State Technical Committee meetings.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Technical Committee member. (b) NRCS will establish and maintain national standard operating procedures... standard operating procedures will outline items such as: The best practice approach to establishing... standard operating procedures established under paragraph (b) of this section, the State Conservationist...
Planning as an Iterative Process
NASA Technical Reports Server (NTRS)
Smith, David E.
2012-01-01
Activity planning for missions such as the Mars Exploration Rover mission presents many technical challenges, including oversubscription, consideration of time, concurrency, resources, preferences, and uncertainty. These challenges have all been addressed by the research community to varying degrees, but significant technical hurdles still remain. In addition, the integration of these capabilities into a single planning engine remains largely unaddressed. However, I argue that there is a deeper set of issues that needs to be considered namely the integration of planning into an iterative process that begins before the goals, objectives, and preferences are fully defined. This introduces a number of technical challenges for planning, including the ability to more naturally specify and utilize constraints on the planning process, the ability to generate multiple qualitatively different plans, and the ability to provide deep explanation of plans.
Satellite end of life constraints: Technical and organisational solutions
NASA Astrophysics Data System (ADS)
Cabrières, Bernard; Alby, Fernand; Cazaux, Christian
2012-04-01
Since 1974 with the radiocommunication satellite Symphony1, CNES launched and operated 11 GEO and 20 LEO satellites. During those 36 years, both flight segment and ground segment dramatically evolved and operational organisations and techniques equally improved. At the present time, CNES operates 1 GEO satellite and 17 LEO satellites with not much more people and costs than in 1986 when its first Satellite Operation Direction in Toulouse was only in charge of Telecom1A, Telecom1B and Spot1. This fantastic technical evolution combined with the huge increase of services to citizens and governments given by Space systems was unfortunately also associated with an enormous growth of space pollution by debris of all sizes. From the beginning, CNES was a major actor of the international effort to promote regulations in order to try to reduce or at least control this problematic situation. Internally, CNES, not only set up an operational on-call service to deal with collision risks, but decided to do its best to apply the new guidelines to the end of life of satellites under its responsibility even for those developed and launched a very long time ago. For instance, that was the case in 2009 for the reorbitation of the GEO satellite Telecom 2C (launched in 1995) and for the deorbitation of the LEO satellite Spot2 (launched in 1990). In addition, CNES prepares procedures to be able to be as exemplary as possible for its other spacecrafts whose end of life approaches. The constraints and challenges to face in order to cope with these new requirements are multiple: choice of final orbit, realistic calculation of re-entry duration, estimation of residual propellant, electric passivation, management of explosion risks… All these studies and operational experience gained will be helpful for the new role of CNES, which recently became in charge of controlling space operators in the frame of the new French space law on space operations.
78 FR 50404 - Advanced Scientific Computing Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-19
... for the exascale challenges charge. Tentative Agenda: Agenda will include discussion of the following: Exascale Challenges Workshop and preliminary list of most critical challenges, and technical approaches to...
Operation Greenhouse: Communications
1951-01-01
jottication •__ By,. , Dtsl•-bution1 TECHNICAL REPORT mailability Code’s Avait and -or Dist Special COMMUNICATIONS OPERATION GREENHOUSE 1951 COMMANDED BY...stem GREENHOUSE to include technical informa- therefrom. tion and operational experience not desirable Details of operation, such as call sign, fre- for...Atomic planning, organization, and engineering for Weapons Proving Ground. Where, in this re- Operation GREENHOUSE , since the solution port, reference is
Lehoux, Pascale; Richard, L; Pineault, R; Saint-Arnaud, J
2006-03-01
The role that hospital-based nurses should play in the delivery of high-tech home care, and how they should be supported in that role, are topics that remain understudied. Our research objective was to document how hospital-based nursing teams perceive and deal with the clinical and technical challenges associated with the provision of high-tech home care. Four home care interventions were selected: antibiotic intravenous therapy, parenteral nutrition, peritoneal dialysis and oxygen therapy. A self-administered survey was sent to all hospital-based units providing these interventions in the province of Quebec, Canada (n = 154; response rate: 70.8%). We used descriptive statistical analyses to derive mean values for scores on either a five- or a six-level Likert scale. Despite variation across the four interventions, our results indicate that while nursing teams believe these interventions increase patients' autonomy, they also recognize that they generate anxiety and impose constraints on patients' lives. Nurses must increase efforts to deal with both clinical and technical challenges and help patients overcome the barriers to appropriate use of home care technologies. While nursing teams generally perceive high-tech home care as beneficial, they still experience significant technical and clinical challenges. Some of these challenges could be addressed by strengthening professional training initiatives, while others require broader home care policy interventions.
Important skills for biomedical services: The perspectives of Malaysian employers and employees.
Buntat, Yahya; Saud, Muhammad Sukri; Mokhtar, Mahani; Kamin, Yusri; Feh, Lim Set
2016-10-17
Increase in the occurrence of existing diseases, continual emergence of new or exotic diseases and re-emergence of old diseases have placed increasing demands on biomedical services in Malaysia. Biomedical technicians play an important role in operating biomedical instruments. However, there are no clear specifications about characteristics and traits for these semi-professional employees. Employers in a few studies claimed that biomedical graduates are not ready to enter and face challenges in the job market. Therefore, the purpose of this study is to identify technical and generic skills for a biomedical technician from the perspectives of the biomedical technicians and their employers. A quantitative survey design was employed whereby data were obtained through the administration of an instrument developed by the researchers. The sample consisted of 20 hospital managers and 186 biomedical technicians who are currently working in Malaysian government hospitals. The findings show that there are no difference in the perceptions of hospital managers and biomedical technicians regarding technical and non-technical skills. These findings resulted in a checklist which can be used for institutions to produce future biomedical technician graduates in order to meet job demands. However, future research is needed to validate the findings and explore the variables in depth.
The Water Framework Directive: The Challenges of Testing and Validation of Guidance Documents
NASA Astrophysics Data System (ADS)
Barth, F.; Bidoglio, G.; Murray, C. N.; Zaldivar, J.; Bouraoui, F.
On the 23rd October 2000 the European Parliament and Council passed a Directive establishing a framework of community action in the field of water policy (Water Framework Directive- FWD). The Water Framework Directive (FWD) raises major challenges, these include an extremely demanding timetable, in particular in the nine preparatory years; the complexity of the text and the diversity of possible solutions to scientific, technical and practical questions. A further problem is that a common understanding and methodologies for the application of the different areas of the FWD do not necessarily exist. Member States have, historically, developed approaches to monitoring, impact assessment, economic analysis etc. that will need to be compared in order to be certain that they provide comparable level of results over the range of ecosystems covered in the European Union. Accession Countries will also have to start to adjust their environmental legislation to be compatible with EU Directives and standards. The Framework Water Directive imposes a series of deadlines for the reporting by Member States to the European Commission. In order to respond to this problem a Common Strategy on the Implementation of the Water Framework Directive is being developed by the European Commission and Member States. The aim of the development of this Common Strategy is to allow, as far as possible, a coherent and harmonious implementation of the Directive. Focus is on methodological questions related to a common understanding of the technical and scientific implications of the Directive. The aim is to clarify and develop, where appropriate, supporting technical and scientific information to assist in the practical implementation of the Directive. Guidance documents, advice for operational methods and other supporting documents will be developed for this purpose. A modular structure has been chosen for the overall strategy. The main modules are the key activities for the implementation process.. · Activity 1: Information sharing · Activity 2: Develop guidance on technical issues · Activity 3: Information and data management · Activity 4: Application, testing and validation The first three priorities have a more horizontal character. They are the key activities for developing a common understanding of the implementation of the Water Framework Directive. All these horizontal activities need to be integrated and made operational in the River Basin Management Plans. Activity 4 (Application, Testing and Validation) significantly contributes to this integration role by making these activities operational in the River Basin Management Plans. The integration step is crucial for the effective implementation of the WFD. The objective of Activity 4 is to ensure coherence amongst the different guidance documents and their cross applicability by testing the guidance documents in selected pilot river basins. To achieve these objectives a Network of pilot river basins and associated coastal zones (where applicable) will be identified, in close co- operation with WGs in Key Action 2, that are considered to represent a range of problems and conditions characteristic of those to be found in the application of the different guidelines. The Network of identified sites will used for testing and cross- validation of proposed WG guidelines. The Joint Research Centre is acting as the technical secretariat for the Scientific Coordination Committee who is responsible for Activity 4. The purpose of the present paper is to describe approach, methodology and timetable for integrated testing of guidance documents.
Enhanced Collaboration for Space Situational Awareness via Proxy Agents
NASA Astrophysics Data System (ADS)
Picciano, P.; Schurr, N.
2012-09-01
The call for dynamic partnerships demanded in the US. Space Policy confronts two formidable challenges. The first is evident in the lack of the adoption of technical innovations that could substantially enhance collaboration. The second category, and perhaps a greater impediment, involves organizational and social constraints that minimize information sharing. Compounding the technical challenges, the organizational barriers to collaboration present a different problem set. There is a culture in the space domain that predisposes most stakeholders to guard their information. Most owner/operators are reluctant to share asset data, whether experiencing an anomaly or just providing status updates. This is unfortunate, because the owner/operators generally have the most accurate and timely data pertaining to their satellite. Comprehensive Space Situational Awareness (SSA) requires the marshaling of disparate mission critical elements. The mission threads reliant on SSA are complex and often require analysis from a diverse team of experts with sophisticated systems and tools that may be dispersed across multiple entities including military, commercial, and public interests. Two significant trends are likely to further perpetuate this state of affairs: 1) the space environment continues to be more congested, contested, and competitive, and 2) further pressures to increase SSA Sharing with a greater number of stakeholders throughout the world. The challenge of delivering the right information to the right people, while protecting national security and privacy interests, is in need of an innovative solution. Our approach, entitled Space Collaboration via an Agent Network (SCAN), enables proxy software agents to represent stakeholders (as individuals and organizations) to enhance collaboration among various agency producers and consumers of space information The SCAN agent network will facilitate collaboration by identifying opportunities to collaborate, as well as optimize the processes given the mission context. The agent-based approach is uniquely capable of addressing the collaboration challenges from both the technical and organizational perspectives. To achieve these objectives, we are employing a modeling approach based on a Markov decision process (MDP). MDPs are very general models for optimizing decisions under uncertainty. The model was chosen because it is able to represent the uncertainty in outcomes (such as loss of satellite communication or inability for a colleague to finish a task on time) as well as the associated values of decisions made and their resulting outcomes. The key aspect of MDPs is that it is a sequential model, not only does it represent uncertainty for single decisions and outcomes, but estimates the state of the world in the future and optimizes decisions based on these future expectations. The SCAN prototype will be used to assess modeling parameters and assumptions as well as collect user feedback.
ATS-6 - Technical aspects of the Health/Education Telecommunications Experiment
NASA Technical Reports Server (NTRS)
Boor, J. L.; Braunstein, J.; Janky, J. M.; Ogden, D.; Potter, J. G.; Harper, E. L.; Volkmer, E.; Whalen, A. A.; Henderson, E.; Hupe, H. H.
1975-01-01
An overview is given of the HET experiment on ATS-6. The paper is divided into nine parts, including a technical overview, a preliminary evaluation of the HET demonstration, a review of operations at the Denver uplink terminal, a discussion of remote ground terminals, a review of C-band comprehensive terminals and of S-band comprehensive terminals, and parts devoted to general network operations, technical management and effectiveness of the network, and the site equipment operator.
Crowd Sourcing for Challenging Technical Problems and Business Model
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.; Richard, Elizabeth
2011-01-01
Crowd sourcing may be defined as the act of outsourcing tasks that are traditionally performed by an employee or contractor to an undefined, generally large group of people or community (a crowd) in the form of an open call. The open call may be issued by an organization wishing to find a solution to a particular problem or complete a task, or by an open innovation service provider on behalf of that organization. In 2008, the Space Life Sciences Directorate (SLSD), with the support of Wyle Integrated Science and Engineering, established and implemented pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical challenges. These unsolved technical problems were converted to problem statements, also called "Challenges" or "Technical Needs" by the various open innovation service providers, and were then posted externally to seek solutions. In addition, an open call was issued internally to NASA employees Agency wide (10 Field Centers and NASA HQ) using an open innovation service provider crowd sourcing platform to post NASA challenges from each Center for the others to propose solutions). From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external problems or challenges were posted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive crowd sourcing platform designed for internal use by an organization. This platform was customized for NASA use and promoted as NASA@Work. The results were significant. Of the seven InnoCentive external challenges, two full and five partial awards were made in complex technical areas such as predicting solar flares and long-duration food packaging. Similarly, the TopCoder challenge yielded an optimization algorithm for designing a lunar medical kit. The Yet2.com challenges yielded many new industry and academic contacts in bone imaging, microbial detection and even the use of pharmaceuticals for radiation protection. The internal challenges through NASA@Work drew over 6000 participants across all NASA centers. Challenges conducted by each NASA center elicited ideas and solutions from several other NASA centers and demonstrated rapid and efficient participation from employees at multiple centers to contribute to problem solving. Finally, on January 19, 2011, the SLSD conducted a workshop on open collaboration and innovation strategies and best practices through the newly established NASA Human Health and Performance Center (NHHPC). Initial projects will be described leading to a new business model for SLSD.
Turbines, Wind Tunnels, and Teamwork: The 2017 Collegiate Wind Competition Technical Challenge
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Ten college teams put their turbines to the test at the U.S. Department of Energy’s 2017 Collegiate Wind Competition Technical Challenge, held April 20–22 at the National Wind Technology Center (NWTC). The competition showcased a wide variety of turbine designs and highlighted the competitors’ brilliance, agility, and ingenuity. College students weren’t the only future wind energy experts at the NWTC that weekend: elementary and middle school students tested their turbines—crafted creatively from materials like soda bottles and aluminum foil—in the Colorado KidWind Challenge.
DRACO Flowpath Performance and Environments
NASA Technical Reports Server (NTRS)
Komar, D. R.; McDonald, Jon
1999-01-01
The Advanced Space Transportation (AST) project office has challenged NASA to design, manufacture, ground-test and flight-test an axisymmetric, hydrocarbon-fueled, flight-weight, ejector-ramjet engine system testbed no later than 2005. To accomplish this, a multi-center NASA team has been assembled. The goal of this team, led by NASA-Marshall Space Flight Center (MSFC), is to develop propulsion technologies that demonstrate rocket and airbreathing combined-cycle operation (DRACO). Current technical activities include flowpath conceptual design, engine systems conceptual design, and feasibility studies investigating the integration and operation of the DRACO engine with a Lockheed D-21B drone. This paper focuses on the activities of the Flowpath Systems Product Development Team (PDT), led by NASA-Glenn Research Center (GRC) and supported by NASA-MSFC and TechLand Research, Inc. The objective of the Flowpath PDT at the start of the DRACO program was to establish a conceptual design of the flowpath aerodynamic lines, determine the preliminary performance, define the internal environments, and support the DRACO testbed concept feasibility studies. To accomplish these tasks, the PDT convened to establish a baseline flowpath concept. With the conceptual lines defined, cycle analysis tasks were planned and the flowpath performance and internal environments were defined. Additionally, sensitivity studies investigating the effects of inlet reference area, combustion performance, and combustor/nozzle materials selection were performed to support the Flowpath PDT design process. Results of these tasks are the emphasis of this paper and are intended to verify the feasibility of the DRACO flowpath and engine system as well as identify the primary technical challenges inherent in the flight-weight design of an advanced propulsion technology demonstration engine. Preliminary cycle performance decks were developed to support the testbed concept feasibility studies but are not discussed further in this paper.
Fuzzy Multicriteria Decision Analysis for Adaptive Watershed Management
NASA Astrophysics Data System (ADS)
Chang, N.
2006-12-01
The dramatic changes of societal complexity due to intensive interactions among agricultural, industrial, and municipal sectors have resulted in acute issues of water resources redistribution and water quality management in many river basins. Given the fact that integrated watershed management is more a political and societal than a technical challenge, there is a need for developing a compelling method leading to justify a water-based land use program in some critical regions. Adaptive watershed management is viewed as an indispensable tool nowadays for providing step-wise constructive decision support that is concerned with all related aspects of the water consumption cycle and those facilities affecting water quality and quantity temporally and spatially. Yet the greatest challenge that decision makers face today is to consider how to leverage ambiguity, paradox, and uncertainty to their competitive advantage of management policy quantitatively. This paper explores a fuzzy multicriteria evaluation method for water resources redistribution and subsequent water quality management with respect to a multipurpose channel-reservoir system--the Tseng- Wen River Basin, South Taiwan. Four fuzzy operators tailored for this fuzzy multicriteria decision analysis depict greater flexibility in representing the complexity of various possible trade-offs among management alternatives constrained by physical, economic, and technical factors essential for adaptive watershed management. The management strategies derived may enable decision makers to integrate a vast number of internal weirs, water intakes, reservoirs, drainage ditches, transfer pipelines, and wastewater treatment facilities within the basin and bring up the permitting issue for transboundary diversion from a neighboring river basin. Experience gained indicates that the use of different types of fuzzy operators is highly instructive, which also provide unique guidance collectively for achieving the overarching goals of sustainable development on a regional scale.
Web-based technical assistance and training to promote community tobacco control policy change.
Young, Walter F; Montgomery, Debbie; Nycum, Colleen; Burns-Martin, Lavon; Buller, David B
2006-01-01
In 1998 the tobacco industry was released of claims that provided monetary relief for states. A significant expansion of tobacco control activity in many states created a need to develop local capacity. Technical assistance and training for new and experienced staff became a significant challenge for tobacco control leadership. In Colorado, this challenge was addressed in part through the development of a technical assistance and training Web site designed for local tobacco control staff and coalition members. Researchers, technical Web site development specialists, state health agency, and state tobacco control coalition staff collaborated to develop, promote, and test the efficacy of this Web site. The work group embodied a range of skills including tobacco control, Web site technical development, marketing, training, and project management. Persistent marketing, updating of Web site content, and institutionalizing it as a principal source of information and training were key to use by community coalition members.
High-Resolution X-Ray Telescopes
NASA Technical Reports Server (NTRS)
ODell, Stephen L.; Brissenden, Roger J.; Davis, William; Elsner, Ronald F.; Elvis, Martin; Freeman, Mark; Gaetz, Terry; Gorenstein, Paul; Gubarev, Mikhail V.
2010-01-01
Fundamental needs for future x-ray telescopes: a) Sharp images => excellent angular resolution. b) High throughput => large aperture areas. Generation-X optics technical challenges: a) High resolution => precision mirrors & alignment. b) Large apertures => lots of lightweight mirrors. Innovation needed for technical readiness: a) 4 top-level error terms contribute to image size. b) There are approaches to controlling those errors. Innovation needed for manufacturing readiness. Programmatic issues are comparably challenging.
TADS and Technical Assistance.
ERIC Educational Resources Information Center
Trohanis, Pascal L.
1983-01-01
Accomplishments of the Technical Assistance Development System (TADS) are cited, current challenges (including program development, and communication and coordination) are noted, and the mission mandated for TADS is outlined. (CL)
Technical Operating Procedures for Resource Documentation Under the Oil Pollution Act of 1990
DOT National Transportation Integrated Search
1996-06-01
Technical Operating Procedures (TOPs) for Resource Documentation under the Oil Pollution Act of 1990 (P.L.101-380) have been developed to provide guidance to users operating as, or in support of, the Federal On-Scene Coordinator(FOSC). The procedures...
Control of Technology Transfer at JPL
NASA Technical Reports Server (NTRS)
Oliver, Ronald
2006-01-01
Controlled Technology: 1) Design: preliminary or critical design data, schematics, technical flow charts, SNV code/diagnostics, logic flow diagrams, wirelist, ICDs, detailed specifications or requirements. 2) Development: constraints, computations, configurations, technical analyses, acceptance criteria, anomaly resolution, detailed test plans, detailed technical proposals. 3) Production: process or how-to: assemble, operated, repair, maintain, modify. 4) Manufacturing: technical instructions, specific parts, specific materials, specific qualities, specific processes, specific flow. 5) Operations: how-to operate, contingency or standard operating plans, Ops handbooks. 6) Repair: repair instructions, troubleshooting schemes, detailed schematics. 7) Test: specific procedures, data, analysis, detailed test plan and retest plans, detailed anomaly resolutions, detailed failure causes and corrective actions, troubleshooting, trended test data, flight readiness data. 8) Maintenance: maintenance schedules and plans, methods for regular upkeep, overhaul instructions. 9) Modification: modification instructions, upgrades kit parts, including software
Airport Noise Tech Challenge Overview
NASA Technical Reports Server (NTRS)
Bridges, James
2011-01-01
The Supersonics Project, operating under NASA Aeronautics Mission Directorate#s Fundamental Aero Program, has been organized around the Technical Challenges that have historically precluded commercial supersonic flight. One of these Challenges is making aircraft that are capable of such high aerodynamic performance quiet enough around airports that they will not be objectionable. It is recognized that a successful civilian supersonic aircraft will be a system where many new technologies will come together, and for this to happen not only will new low noise propulsion concepts be required, but new engineering tools that predict the noise of the aircraft as these technologies are combined and compromised with the rest of the aircraft design. These are the two main objectives of the Airport Noise Tech Challenge. " ! As a Project in the Fundamental Aero Program, we work at a relatively low level of technology readiness. However, we have high level milestones which force us to integrate our efforts to impact systems-level activities. To keep the low-level work tied to delivering engineering tools and low-noise concepts, we have structured our milestones around development of the concepts and organized our activities around developing and applying our engineering tools to these concepts. The final deliverables in these milestones are noise prediction modules validated against the best embodiment of each concept. These will then be used in cross-disciplinary exercises to demonstrate the viability of aircraft designs to meet all the Technical Challenges. Some of the concepts being developed are shown: Fan Flow Diverters, Multi-jet Shielding, High-Aspect Ratio Embedded Nozzles, Plasma Actuated Instability Manipulation, Highly Variable Cycle Mixer- Ejectors, and Inverted Velocity Profiles. These concepts are being developed for reduced jet noise along with the design tools which describe how they perform when used in various aircraft configurations. Several key upcoming events are highlighted, including tests of the Highly Variable Cycle Mixer-Ejectors, and Inverted Velocity Profiles. Other key events are milestones to be delivered within the next calendar year.
Lotti, Marco
2017-06-01
Nonoperative treatment of acute appendicitis is embraced by many surgical teams, driven by low to moderate quality randomized studies that support noninferiority of antibiotics versus appendectomy for treatment of acute uncomplicated appendicitis. Several flaws of these studies have emerged, especially in the recruitment strategy and in the diagnostic criteria that were used. The growing confidence given to antibiotics, together with the lack of reliable criteria to distinguish between uncomplicated and perforated appendicitis, exposes patients with perforated appendicitis to the likelihood to be treated with antibiotics instead of surgery. Among them, those patients who experience a temporary relief of symptoms due to antibiotics, followed by early recurrence of disease when antibiotics are discontinued, are likely to undergo appendectomy at their second date. Second date appendectomy, i.e. the removal of the appendix when acute inflammation relapses within the scar of a previously unhealed perforated appendicitis, is the unwanted child of the nonoperative treatment and a new challenge for both the surgeon and the patient. Between June and July 2016, two patients were readmitted and operated for failure of nonoperative treatment with antibiotics. A video is presented, which focuses on the different anatomic presentation and technical challenges between prompt and second date laparoscopic appendectomy. When proposing nonoperative treatment for acute appendicitis, surgeons should be aware and inform their patients that if the appendix is perforated and an incomplete healing and early recurrence occur, a second date appendectomy could be a more challenging operation compared to a prompt appendectomy. Copyright © 2016 Elsevier Inc. All rights reserved.
AMORE: Applied Momentum for Orbital Refuse Elimination
NASA Astrophysics Data System (ADS)
Wolfson, M.
2014-09-01
The need for active orbital debris remediation has increasingly gained acceptance throughout the space community throughout the last decade as the threat to our assets has also increased. While there have been a wide variety of conceptual solutions proposed, a debris removal system has yet to be put in place. The challenges that stand in the way of action are formidable and range from technical to political to economic. The AMORE concept is a nascent technique that has the potential to address these challenges and bring active debris remediation into reality. It uses an on-orbit low energy neutral particle beam (~10 keV, TBD) to impart momentum onto medium (5mm 10 cm) debris objects in Low Earth Orbit (LEO), thereby reducing their kinetic energy and expediting their reentry. The advantage of this technique over other proposed concepts is that it does not require delta-V intensive rendezvous, has an effective range that allows daily access to hundreds of debris objects, and does not create policy concerns over violation of international treaties. In essence, AMORE would be a medium-sized high power satellite with one or more particle beams fed by a large propellant tank, and an on-board tracking sensor that provides beam control. The particle beam would be similar to existing Xenon Hall Effect thrusters being used today, with the addition of a beam lens that would focus and aim the beam. The primary technical challenge of this concept is the focusing, pointing, and closed loop control of the beam that is necessary to maintain effective momentum transfer at ranges up to 100 km. This effective range is critical in order to maximize daily access to debris objects. Even in the densely populated 800 km debris band, it can be expected that a single AMORE system would be within 100 km of a debris object less than an hour a day. Space is big, and range is critical for timely, cost effective debris removal. Initial analysis indicates that a single AMORE vehicle operating in the 800 km regime could lower the perigee of 100 pieces of 1 kg debris to a 25 year reentry orbit annually. The actual performance of a system would be highly dependent on the debris regime. An operational AMORE system would likely involve several vehicles operating autonomously for continuous mitigation of existing and future debris.
Ahmad, Harris; Berzin, Tyler M.; Yu, Hui Jing; Huang, Christopher S.; Mishkin, Daniel S.
2014-01-01
Clinical trials in inflammatory bowel disease (IBD) are evolving at a rapid pace by employing central reading for endoscopic mucosal assessment in a field that was, historically, largely based on assessments by local physicians. This transition from local to central reading carries with it numerous technical, operational, and scientific challenges, many of which can be resolved by imaging core laboratories (ICLs), a concept that has a longer history in clinical trials in a number of diseases outside the realm of gastroenterology. For IBD trials, ICLs have the dual goals of providing objective, consistent assessments of endoscopic findings using central-reading paradigms whilst providing important expertise with regard to operational issues and regulatory expectations. This review focuses on current approaches to using ICLs for central endoscopic reading in IBD trials. PMID:24994835
NASA Astrophysics Data System (ADS)
Moore, A. W.
2007-12-01
The International GNSS Service (IGS) is a voluntary collaboration of more than 200 worldwide agencies that pool resources to generate precise GPS and GLONASS products. The foundation of the IGS is a global network of 385 permanent, continuous, geodetic-quality stations independently operated by about 100 agencies. The IGS Central Bureau develops minimum functional requirements and operational standards that enable the individual stations' data to be used coherently in global analyses, but the IGS remains vendor neutral, leaving procurement decisions and implementation details to the individual agencies. The IGS network is hence quite heterogeneous in instrumentation, station management strategies, and culture; these diversities bring both strengths and challenges in coordination. This presentation will detail the IGS's approaches, successes, and opportunities for improvement in coordinating and monitoring the collaborative network.
The history of head transplantation: a review.
Lamba, Nayan; Holsgrove, Daniel; Broekman, Marike L
2016-12-01
Since the turn of the last century, the prospect of head transplantation has captured the imagination of scientists and the general public. Recently, head transplant has regained attention in popular media, as neurosurgeons have proposed performing this procedure in 2017. Given the potential impact of such a procedure, we were interested in learning the history of the technical hurdles that need to be overcome, and determine if it is even technically possible to perform such a procedure on humans today. We conducted a historical review of available literature on the technical challenges and developments of head transplantation. The many social, psychological, ethical, religious, cultural, and legal questions of head transplantation were beyond the scope of this review. Our historical review identified the following important technical considerations related to performing a head transplant: maintenance of blood flow to an isolated brain via vessel anastomosis; availability of immunosuppressive agents; spinal anastomosis and fusion following cord transfection; pain control in the recipient. Several animal studies have demonstrated success in maintaining recipient cerebral perfusion and achieving immunosuppression. However, there is currently sparse evidence in favor of successful spinal anastomosis and fusion after transection. While recent publications by an Italian group offer novel approaches to this challenge, research on this topic has been sparse and hinges on procedures performed in animal models in the 1970s. How transferrable these older methods are to the human nervous system is unclear and warrants further exploration. Our review identified several important considerations related to performing a viable head transplantation. Besides the technical challenges that remain, there are important ethical issues to consider, such as exploitation of vulnerable patients and informed consent. Thus, besides the remaining technical challenges, these ethical issues will also need to be addressed before moving these studies to the clinic.
A new generation of real-time DOS technology for mission-oriented system integration and operation
NASA Technical Reports Server (NTRS)
Jensen, E. Douglas
1988-01-01
Information is given on system integration and operation (SIO) requirements and a new generation of technical approaches for SIO. Real-time, distribution, survivability, and adaptability requirements and technical approaches are covered. An Alpha operating system program management overview is outlined.
Managing Challenges in a Multi Contractor Project
NASA Technical Reports Server (NTRS)
King, Ron
2011-01-01
The presentation provides a project description, describes the integrated product team, and review project challenges. The challenges include programmatic, technical, basic drop tests, heavy drop tests, C-17 envelope expansion, and Ares I-X.
Sirintrapun, Sahussapont Joseph; Rudomina, Dorota; Mazzella, Allix; Feratovic, Rusmir; Alago, William; Siegelbaum, Robert; Lin, Oscar
2017-01-01
Background: The first satellite center to offer interventional radiology procedures at Memorial Sloan Kettering Cancer Center opened in October 2014. Two of the procedures offered, fine needle aspirations and core biopsies, required rapid on-site cytologic evaluation of smears and biopsy touch imprints for cellular content and adequacy. The volume and frequency of such evaluations did not justify hiring on-site cytotechnologists, and therefore, a dynamic robotic telecytology (TC) solution was created. In this technical article, we present a detailed description of our implementation of robotic TC. Methods: Pathology devised the remote robotic TC solution after acknowledging that it would not be cost effective to staff cytotechnologists on-site at the satellite location. Sakura VisionTek was selected as our robotic TC solution. In addition to configuration of the dynamic robotic TC solution, pathology realized integrating the technology solution into operations would require a multidisciplinary effort and reevaluation of existing staffing and workflows. Results: Extensively described are the architectural framework and multidisciplinary process re-design, created to navigate the constraints of our technical, cultural, and organizational environment. Also reviewed are the benefits and challenges associated with available desktop sharing solutions, particularly accounting for information security concerns. Conclusions: Dynamic robotic TC is effective for immediate evaluations performed without on-site cytotechnology staff. Our goal is providing an extensive perspective of the implementation process, particularly technical, cultural, and operational constraints. Through this perspective, our template can serve as an extensible blueprint for other centers interested in implementing robotic TC without on-site cytotechnologists. PMID:28966832
Sirintrapun, Sahussapont Joseph; Rudomina, Dorota; Mazzella, Allix; Feratovic, Rusmir; Alago, William; Siegelbaum, Robert; Lin, Oscar
2017-01-01
The first satellite center to offer interventional radiology procedures at Memorial Sloan Kettering Cancer Center opened in October 2014. Two of the procedures offered, fine needle aspirations and core biopsies, required rapid on-site cytologic evaluation of smears and biopsy touch imprints for cellular content and adequacy. The volume and frequency of such evaluations did not justify hiring on-site cytotechnologists, and therefore, a dynamic robotic telecytology (TC) solution was created. In this technical article, we present a detailed description of our implementation of robotic TC. Pathology devised the remote robotic TC solution after acknowledging that it would not be cost effective to staff cytotechnologists on-site at the satellite location. Sakura VisionTek was selected as our robotic TC solution. In addition to configuration of the dynamic robotic TC solution, pathology realized integrating the technology solution into operations would require a multidisciplinary effort and reevaluation of existing staffing and workflows. Extensively described are the architectural framework and multidisciplinary process re-design, created to navigate the constraints of our technical, cultural, and organizational environment. Also reviewed are the benefits and challenges associated with available desktop sharing solutions, particularly accounting for information security concerns. Dynamic robotic TC is effective for immediate evaluations performed without on-site cytotechnology staff. Our goal is providing an extensive perspective of the implementation process, particularly technical, cultural, and operational constraints. Through this perspective, our template can serve as an extensible blueprint for other centers interested in implementing robotic TC without on-site cytotechnologists.
The Defense Threat Reduction Agency's Technical Nuclear Forensics Research and Development Program
NASA Astrophysics Data System (ADS)
Franks, J.
2015-12-01
The Defense Threat Reduction Agency (DTRA) Technical Nuclear Forensics (TNF) Research and Development (R&D) Program's overarching goal is to design, develop, demonstrate, and transition advanced technologies and methodologies that improve the interagency operational capability to provide forensics conclusions after the detonation of a nuclear device. This goal is attained through the execution of three focus areas covering the span of the TNF process to enable strategic decision-making (attribution): Nuclear Forensic Materials Exploitation - Development of targeted technologies, methodologies and tools enabling the timely collection, analysis and interpretation of detonation materials.Prompt Nuclear Effects Exploitation - Improve ground-based capabilities to collect prompt nuclear device outputs and effects data for rapid, complementary and corroborative information.Nuclear Forensics Device Characterization - Development of a validated and verified capability to reverse model a nuclear device with high confidence from observables (e.g., prompt diagnostics, sample analysis, etc.) seen after an attack. This presentation will outline DTRA's TNF R&D strategy and current investments, with efforts focusing on: (1) introducing new technical data collection capabilities (e.g., ground-based prompt diagnostics sensor systems; innovative debris collection and analysis); (2) developing new TNF process paradigms and concepts of operations to decrease timelines and uncertainties, and increase results confidence; (3) enhanced validation and verification (V&V) of capabilities through technology evaluations and demonstrations; and (4) updated weapon output predictions to account for the modern threat environment. A key challenge to expanding these efforts to a global capability is the need for increased post-detonation TNF international cooperation, collaboration and peer reviews.
New Quality Standards of Testing Idlers for Highly Effective Belt Conveyors
NASA Astrophysics Data System (ADS)
Król, Robert; Gladysiewicz, Lech; Kaszuba, Damian; Kisielewski, Waldemar
2017-12-01
The paper presents result of research and analyses carried out into the belt conveyors idlers’ rotational resistance which is one of the key factor indicating the quality of idlers. Moreover, idlers’ rotational resistance is important factor in total resistance to motion of belt conveyor. The evaluation of the technical condition of belt conveyor idlers is carried out in accordance with actual national and international standards which determine the methodology of measurements and acceptable values of measured idlers’ parameters. Requirements defined by the standards, which determine the suitability of idlers to a specific application, despite the development of knowledge on idlers and quality of presently manufactured idlers maintain the same level of parameters values over long periods of time. Nowadays the need to implement new, efficient and economically justified solution for belt conveyor transportation systems characterized by long routes and energy-efficiency is often discussed as one of goals in belt conveyors’ future. One of the basic conditions for achieving this goal is to use only carefully selected idlers with low rotational resistance under the full range of operational loads and high durability. Due to this it is necessary to develop new guidelines for evaluation of the technical condition of belt conveyor idlers in accordance with actual standards and perfecting of existing and development of new methods of idlers testing. The changes in particular should concern updating of values of parameters used for evaluation of the technical condition of belt conveyor idlers in relation to belt conveyors’ operational challenges and growing demands in terms of belt conveyors’ energy efficiency.
International Space Station Passive Thermal Control System Analysis, Top Ten Lessons-Learned
NASA Technical Reports Server (NTRS)
Iovine, John
2011-01-01
The International Space Station (ISS) has been on-orbit for over 10 years, and there have been numerous technical challenges along the way from design to assembly to on-orbit anomalies and repairs. The Passive Thermal Control System (PTCS) management team has been a key player in successfully dealing with these challenges. The PTCS team performs thermal analysis in support of design and verification, launch and assembly constraints, integration, sustaining engineering, failure response, and model validation. This analysis is a significant body of work and provides a unique opportunity to compile a wealth of real world engineering and analysis knowledge and the corresponding lessons-learned. The analysis lessons encompass the full life cycle of flight hardware from design to on-orbit performance and sustaining engineering. These lessons can provide significant insight for new projects and programs. Key areas to be presented include thermal model fidelity, verification methods, analysis uncertainty, and operations support.
Multifunctional wearable devices for diagnosis and therapy of movement disorders.
Son, Donghee; Lee, Jongha; Qiao, Shutao; Ghaffari, Roozbeh; Kim, Jaemin; Lee, Ji Eun; Song, Changyeong; Kim, Seok Joo; Lee, Dong Jun; Jun, Samuel Woojoo; Yang, Shixuan; Park, Minjoon; Shin, Jiho; Do, Kyungsik; Lee, Mincheol; Kang, Kwanghun; Hwang, Cheol Seong; Lu, Nanshu; Hyeon, Taeghwan; Kim, Dae-Hyeong
2014-05-01
Wearable systems that monitor muscle activity, store data and deliver feedback therapy are the next frontier in personalized medicine and healthcare. However, technical challenges, such as the fabrication of high-performance, energy-efficient sensors and memory modules that are in intimate mechanical contact with soft tissues, in conjunction with controlled delivery of therapeutic agents, limit the wide-scale adoption of such systems. Here, we describe materials, mechanics and designs for multifunctional, wearable-on-the-skin systems that address these challenges via monolithic integration of nanomembranes fabricated with a top-down approach, nanoparticles assembled by bottom-up methods, and stretchable electronics on a tissue-like polymeric substrate. Representative examples of such systems include physiological sensors, non-volatile memory and drug-release actuators. Quantitative analyses of the electronics, mechanics, heat-transfer and drug-diffusion characteristics validate the operation of individual components, thereby enabling system-level multifunctionalities.
Challenges and perspectives of metaproteomic data analysis.
Heyer, Robert; Schallert, Kay; Zoun, Roman; Becher, Beatrice; Saake, Gunter; Benndorf, Dirk
2017-11-10
In nature microorganisms live in complex microbial communities. Comprehensive taxonomic and functional knowledge about microbial communities supports medical and technical application such as fecal diagnostics as well as operation of biogas plants or waste water treatment plants. Furthermore, microbial communities are crucial for the global carbon and nitrogen cycle in soil and in the ocean. Among the methods available for investigation of microbial communities, metaproteomics can approximate the activity of microorganisms by investigating the protein content of a sample. Although metaproteomics is a very powerful method, issues within the bioinformatic evaluation impede its success. In particular, construction of databases for protein identification, grouping of redundant proteins as well as taxonomic and functional annotation pose big challenges. Furthermore, growing amounts of data within a metaproteomics study require dedicated algorithms and software. This review summarizes recent metaproteomics software and addresses the introduced issues in detail. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
The management of large cabling campaigns during the Long Shutdown 1 of LHC
NASA Astrophysics Data System (ADS)
Meroli, S.; Machado, S.; Formenti, F.; Frans, M.; Guillaume, J. C.; Ricci, D.
2014-03-01
The Large Hadron Collider at CERN entered into its first 18 month-long shutdown period in February 2013. During this period the entire CERN accelerator complex will undergo major consolidation and upgrade works, preparing the machines for LHC operation at nominal energy (7 TeV/beam). One of the most challenging activities concerns the cabling infrastructure (copper and optical fibre cables) serving the CERN data acquisition, networking and control systems. About 1000 kilometres of cables, distributed in different machine areas, will be installed, representing an investment of about 15 MCHF. This implies an extraordinary challenge in terms of project management, including resource and activity planning, work execution and quality control. The preparation phase of this project started well before its implementation, by defining technical solutions and setting financial plans for staff recruitment and material supply. Enhanced task coordination was further implemented by deploying selected competences to form a central support team.
Preparing your Offshore Organization for Agility: Experiences in India
NASA Astrophysics Data System (ADS)
Srinivasan, Jayakanth
Two strategies that have significantly changed the way we conventionally think about managing software development and sustainment are the family of development approaches collectively referred to as agile methods, and the distribution of development efforts on a global scale. When you combine the two strategies, organizations have to address not only the technical challenges that arise from introducing new ways of working, but more importantly have to manage the 'soft' factors that if ignored lead to hard challenges. Using two case studies of distributed agile software development in India we illustrate the areas that organizations need to be aware of when transitioning work to India. The key issues that we emphasize are the need to recruit and retain personnel; the importance of teaching, mentoring and coaching; the need to manage customer expectations; the criticality of well-articulated senior leadership vision and commitment; and the reality of operating in a heterogeneous process environment.
Linte, Cristian A.; Davenport, Katherine P.; Cleary, Kevin; Peters, Craig; Vosburgh, Kirby G.; Navab, Nassir; Edwards, Philip “Eddie”; Jannin, Pierre; Peters, Terry M.; Holmes, David R.; Robb, Richard A.
2013-01-01
Mixed reality environments for medical applications have been explored and developed over the past three decades in an effort to enhance the clinician’s view of anatomy and facilitate the performance of minimally invasive procedures. These environments must faithfully represent the real surgical field and require seamless integration of pre- and intra-operative imaging, surgical instrument tracking, and display technology into a common framework centered around and registered to the patient. However, in spite of their reported benefits, few mixed reality environments have been successfully translated into clinical use. Several challenges that contribute to the difficulty in integrating such environments into clinical practice are presented here and discussed in terms of both technical and clinical limitations. This article should raise awareness among both developers and end-users toward facilitating a greater application of such environments in the surgical practice of the future. PMID:23632059
Electroactive polymer (EAP) actuators for future humanlike robots
NASA Astrophysics Data System (ADS)
Bar-Cohen, Yoseph
2009-03-01
Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.
An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide
Kuyken, Bart; Ideguchi, Takuro; Holzner, Simon; Yan, Ming; Hänsch, Theodor W.; Van Campenhout, Joris; Verheyen, Peter; Coen, Stéphane; Leo, Francois; Baets, Roel; Roelkens, Gunther; Picqué, Nathalie
2015-01-01
Laser frequency combs, sources with a spectrum consisting of hundred thousands evenly spaced narrow lines, have an exhilarating potential for new approaches to molecular spectroscopy and sensing in the mid-infrared region. The generation of such broadband coherent sources is presently under active exploration. Technical challenges have slowed down such developments. Identifying a versatile highly nonlinear medium for significantly broadening a mid-infrared comb spectrum remains challenging. Here we take a different approach to spectral broadening of mid-infrared frequency combs and investigate CMOS-compatible highly nonlinear dispersion-engineered silicon nanophotonic waveguides on a silicon-on-insulator chip. We record octave-spanning (1,500–3,300 nm) spectra with a coupled input pulse energy as low as 16 pJ. We demonstrate phase-coherent comb spectra broadened on a room-temperature-operating CMOS-compatible chip. PMID:25697764
Electroactive Polymer (EAP) Actuators for Future Humanlike Robots
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph
2009-01-01
Human-like robots are increasingly becoming an engineering reality thanks to recent technology advances. These robots, which are inspired greatly by science fiction, were originated from the desire to reproduce the human appearance, functions and intelligence and they may become our household appliance or even companion. The development of such robots is greatly supported by emerging biologically inspired technologies. Potentially, electroactive polymer (EAP) materials are offering actuation capabilities that allow emulating the action of our natural muscles for making such machines perform lifelike. There are many technical issues related to making such robots including the need for EAP materials that can operate as effective actuators. Beside the technology challenges these robots also raise concerns that need to be addressed prior to forming super capable robots. These include the need to prevent accidents, deliberate harm, or their use in crimes. In this paper, the potential EAP actuators and the challenges that these robots may pose will be reviewed.
LLNL/LANS mission committee meeting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Michael J
2010-12-06
Recent events continue to show the national security imperative of the global security mission: (1) Fighting Proliferation - (a) At Yongbyon, 'a modern, industrial-scale U-enrichment facility w/2000 centrifuges' seen Nov. 2010, (b) In Iran, fueling began at Bushehr while P5+1/lran talks delayed to Dec. 2010; (2) Continuing need to support the warfighter and IC - (a) tensions on the Korean peninsula, (b) primitative IEDs a challenge in Afghanistan, (c) cyber command, (d)another Georgian smuggling event; and (3) Countering terrorisms on US soil - (a) toner cartridge bomb, (b) times square bomb, (c) christmas tree bomb. Joint Technical Operations Team (JTOT)more » and Accident Response Group (ARG) elements deployed to two East Coast locations in November to work a multi-weapon scenario. LANL provided 70% of on-duty field and reconstitution teams for both Marble Challenge 11-01 and JD 11-01. There were a total of 14 deployments in FY10.« less
Legal Issues of Ambient Intelligence in the SERENITY Project
NASA Astrophysics Data System (ADS)
Krausová, Alžběta; Dumortier, Jos
The successful functionality of the solutions proposed by the SERENITY project will only be achieved when they fit into the existing legal framework. Therefore, when developing software and hardware solutions, developers must respect requirements set out by law. The aim of this chapter is to define legal challenges that arise with the advent of the Ambient Intelligence, and to explain how SERENITY deals with the challenge of legal compliance. To do this, we will first describe how the legal requirements are translated into a machinereadable form in the SERENITY project, and introduce the concept of so called legal patterns. The application of relevant legal principles on data protection will be illustrated using two particular scenarios. We will then focus on practical legal problems related to daily operations of SERENITY technical solutions. Finally, we conclude with an evaluation of the SERENITY approach and its outcomes
Crowdsourcing for Challenging Technical Problems - It Works!
NASA Technical Reports Server (NTRS)
Davis, Jeffrey R.
2011-01-01
The NASA Johnson Space Center Space Life Sciences Directorate (SLSD) and Wyle Integrated Science and Engineering (Wyle) will conduct a one-day business cluster at the 62nd IAC so that IAC attendees will understand the benefits of open innovation (crowdsourcing), review successful results of conducting technical challenges in various open innovation projects, and learn how an organization can effectively deploy these new problem solving tools to innovate more efficiently and effectively. Results from both the SLSD open innovation pilot program and the open innovation workshop conducted by the NASA Human Health and Performance Center will be discussed. NHHPC members will be recruited to participate in the business cluster (see membership http://nhhpc.nasa.gov) and as IAF members. Crowdsourcing may be defined as the act of outsourcing tasks that are traditionally performed by an employee or contractor to an undefined, generally large group of people or community (a crowd) in the form of an open call. The open call may be issued by the organization wishing to find a solution to a particular problem or complete a task, or by an open innovation service provider on behalf of that organization. In 2008, the SLSD, with the support of Wyle, established and implemented pilot projects in open innovation (crowdsourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical challenges. These unsolved technical problems were converted to problem statements, called Challenges by some open innovation service providers, and were then posted externally to seek solutions to these problems. In addition, an open call was issued internally to NASA employees Agency wide (11 Field Centers and NASA HQ) using an open innovation service provider crowdsourcing platform to post NASA challenges from each Center for the others to propose solutions). From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external problems or challenges were posted through three different vendors: InnoCentive, yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive crowdsourcing platform designed for use internal to an organization and customized for NASA use, and promoted as NASA@Work. The results were significant. Of the seven InnoCentive external challenges, two full and five partial awards were made in complex technical areas such as predicting solar flares and long-duration food packaging.
Developing Technical Skill Assessments
ERIC Educational Resources Information Center
Hyslop, Alisha
2009-01-01
One of the biggest challenges facing the career and technical education (CTE) community as it works to implement the 2006 Perkins Act is responding to more rigorous requirements for reporting on CTE students' technical skill attainment. The U.S. Department of Education suggested in non-regulatory guidance that states and locals use the number of…
A Decision Support Tool to Evaluate Sources and Sinks of Nitrogen within a Watershed Framework
Human transformation of the nitrogen (N) cycle is causing a number of environmental and human health problems. Federal, state and local authorities focusing on management of N loadings face both technical and non-technical challenges. One technical issue is that we need a bette...
The Technical Communicator as Corporate Spokesperson: A Public Relations Primer.
ERIC Educational Resources Information Center
Troester, Rod; Warburton, Terrence L.
2001-01-01
Examines the changing role of the technical communication professional in the rapidly evolving environment of organizational life. Presents five principles that serve as an initial step in laying a foundation for the preparation of technical communicators for the challenges and opportunities awaiting in contemporary organizations and the…
NASA Astrophysics Data System (ADS)
Biebow, N.; Lembke-Jene, L.; Wolff-Boenisch, B.; Bergamasco, A.; De Santis, L.; Eldholm, O.; Mevel, C.; Willmott, V.; Thiede, J.
2011-12-01
Despite significant advances in Arctic and Antarctic marine science over the past years, the polar Southern Ocean remains a formidable frontier due to challenging technical and operational requirements. Thus, key data and observations from this important region are still missing or lack adequate lateral and temporal coverage, especially from time slots outside optimal weather seasons and ice conditions. These barriers combined with the obligation to efficiently use financial resources and funding for expeditions call for new approaches to create optimally equipped, but cost-effective infrastructures. These must serve the international science community in a dedicated long-term mode and enable participation in multi-disciplinary expeditions, with secured access to optimally equipped marine platforms for world-class research in a wide range of Antarctic science topics. The high operational and technical performance capacity of a future joint European Research Icebreaker and Deep-sea Drilling Vessel (the AURORA BOREALIS concept) aims at integrating still separately operating national science programmes with different strategic priorities into joint development of long-term research missions with international cooperation both in Arctic and Antarctica. The icebreaker is planned to enable, as a worldwide first, autonomous year-round operations in the central Arctic and polar Southern Ocean, including severest ice conditions in winter, and serving all polar marine disciplines. It will facilitate the implementation of atmospheric, oceanographic, cryospheric or geophysical observatories for long-term monitoring of the polar environment. Access to the biosphere and hydrosphere e.g. beneath ice shelves or in remote regions is made possible by acting as advanced deployment platform for instruments, robotic and autonomous vehicles and ship-based air operations. In addition to a report on the long-term strategic science and operational planning objectives, we describe foreseen on- and offshore science support infrastructure, recommended operational and scientific support structures and the relevance of AURORA BOREALIS for other present and future Antarctic science programmes and initiatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stokes, David
This program seeks to demonstrate a solution to enhance existing biomass cookstove performance through the use of RTI’s Thermoelectric Enhanced Cookstove Add-on (TECA) device. The self-powered TECA device captures a portion of heat from the stove and converts it to electricity through a thermoelectric (TE) device to power a blower. Colorado State University and Envirofit International are partners to support the air injection design and commercialization to enhance combustion in the stove and reduce emissions. Relevance: By demonstrating a proof of concept of the approach with the Envirofit M-5000 stove and TECA device, we hope to apply this technology tomore » existing stoves that are already in use and reduce emissions for stoves that have already found user acceptance to provide a true health benefit. Challenges: The technical challenges include achieving Tier 4 emissions from a biomass stove and for such a stove to operate reliably in the harsh field environment. Additional challenges include the fact that it is difficult to develop a cost effective solution and insure adoption and proper use in the field. Outcomes: In this program we have demonstrated PM emissions at 82 mg/MJd, a 70% reduction as compared to baseline stove operation. We have also developed a stove optimization approach that reduces the number of costly experiments. We have evaluated component-level reliability and will be testing the stove prototype in the field for performance and reliability.« less
Data Assimilation in the Solar Wind: Challenges and First Results.
Lang, Matthew; Browne, Philip; van Leeuwen, Peter Jan; Owens, Mathew
2017-11-01
Data assimilation (DA) is used extensively in numerical weather prediction (NWP) to improve forecast skill. Indeed, improvements in forecast skill in NWP models over the past 30 years have directly coincided with improvements in DA schemes. At present, due to data availability and technical challenges, DA is underused in space weather applications, particularly for solar wind prediction. This paper investigates the potential of advanced DA methods currently used in operational NWP centers to improve solar wind prediction. To develop the technical capability, as well as quantify the potential benefit, twin experiments are conducted to assess the performance of the Local Ensemble Transform Kalman Filter (LETKF) in the solar wind model ENLIL. Boundary conditions are provided by the Wang-Sheeley-Arge coronal model and synthetic observations of density, temperature, and momentum generated every 4.5 h at 0.6 AU. While in situ spacecraft observations are unlikely to be routinely available at 0.6 AU, these techniques can be applied to remote sensing of the solar wind, such as with Heliospheric Imagers or interplanetary scintillation. The LETKF can be seen to improve the state at the observation location and advect that improvement toward the Earth, leading to an improvement in forecast skill in near-Earth space for both the observed and unobserved variables. However, sharp gradients caused by the analysis of a single observation in space resulted in artificial wavelike structures being advected toward Earth. This paper is the first attempt to apply DA to solar wind prediction and provides the first in-depth analysis of the challenges and potential solutions.
Data Assimilation in the Solar Wind: Challenges and First Results
NASA Astrophysics Data System (ADS)
Lang, Matthew; Browne, Philip; van Leeuwen, Peter Jan; Owens, Mathew
2017-11-01
Data assimilation (DA) is used extensively in numerical weather prediction (NWP) to improve forecast skill. Indeed, improvements in forecast skill in NWP models over the past 30 years have directly coincided with improvements in DA schemes. At present, due to data availability and technical challenges, DA is underused in space weather applications, particularly for solar wind prediction. This paper investigates the potential of advanced DA methods currently used in operational NWP centers to improve solar wind prediction. To develop the technical capability, as well as quantify the potential benefit, twin experiments are conducted to assess the performance of the Local Ensemble Transform Kalman Filter (LETKF) in the solar wind model ENLIL. Boundary conditions are provided by the Wang-Sheeley-Arge coronal model and synthetic observations of density, temperature, and momentum generated every 4.5 h at 0.6 AU. While in situ spacecraft observations are unlikely to be routinely available at 0.6 AU, these techniques can be applied to remote sensing of the solar wind, such as with Heliospheric Imagers or interplanetary scintillation. The LETKF can be seen to improve the state at the observation location and advect that improvement toward the Earth, leading to an improvement in forecast skill in near-Earth space for both the observed and unobserved variables. However, sharp gradients caused by the analysis of a single observation in space resulted in artificial wavelike structures being advected toward Earth. This paper is the first attempt to apply DA to solar wind prediction and provides the first in-depth analysis of the challenges and potential solutions.
Benchmarking Gas Path Diagnostic Methods: A Public Approach
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Bird, Jeff; Davison, Craig; Volponi, Al; Iverson, R. Eugene
2008-01-01
Recent technology reviews have identified the need for objective assessments of engine health management (EHM) technology. The need is two-fold: technology developers require relevant data and problems to design and validate new algorithms and techniques while engine system integrators and operators need practical tools to direct development and then evaluate the effectiveness of proposed solutions. This paper presents a publicly available gas path diagnostic benchmark problem that has been developed by the Propulsion and Power Systems Panel of The Technical Cooperation Program (TTCP) to help address these needs. The problem is coded in MATLAB (The MathWorks, Inc.) and coupled with a non-linear turbofan engine simulation to produce "snap-shot" measurements, with relevant noise levels, as if collected from a fleet of engines over their lifetime of use. Each engine within the fleet will experience unique operating and deterioration profiles, and may encounter randomly occurring relevant gas path faults including sensor, actuator and component faults. The challenge to the EHM community is to develop gas path diagnostic algorithms to reliably perform fault detection and isolation. An example solution to the benchmark problem is provided along with associated evaluation metrics. A plan is presented to disseminate this benchmark problem to the engine health management technical community and invite technology solutions.
ERIC Educational Resources Information Center
Alford, Perrin J.
2014-01-01
The Technical College System of Georgia serves the people and the state by creating a system of technical education whose purpose is to use the latest technology and easy access for all adult Georgians and corporate citizens. Within each technical college is a hierarchy of faculty, staff, and administrators. The instructional deans serve a vital…
The Kepler End-to-End Data Pipeline: From Photons to Far Away Worlds
NASA Technical Reports Server (NTRS)
Cooke, Brian; Thompson, Richard; Standley, Shaun
2012-01-01
The Kepler mission is described in overview and the Kepler technique for discovering exoplanets is discussed. The design and implementation of the Kepler spacecraft, tracing the data path from photons entering the telescope aperture through raw observation data transmitted to the ground operations team is described. The technical challenges of operating a large aperture photometer with an unprecedented 95 million pixel detector are addressed as well as the onboard technique for processing and reducing the large volume of data produced by the Kepler photometer. The technique and challenge of day-to-day mission operations that result in a very high percentage of time on target is discussed. This includes the day to day process for monitoring and managing the health of the spacecraft, the annual process for maintaining sun on the solar arrays while still keeping the telescope pointed at the fixed science target, the process for safely but rapidly returning to science operations after a spacecraft initiated safing event and the long term anomaly resolution process.The ground data processing pipeline, from the point that science data is received on the ground to the presentation of preliminary planetary candidates and supporting data to the science team for further evaluation is discussed. Ground management, control, exchange and storage of Kepler's large and growing data set is discussed as well as the process and techniques for removing noise sources and applying calibrations to intermediate data products.
Enabling Airspace Integration for High-Density On-Demand Mobility Operations
NASA Technical Reports Server (NTRS)
Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.
2017-01-01
Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitudethe UAS traffic management (UTM) systemto higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.
NASA Technical Reports Server (NTRS)
Gast, Matthew A.
2010-01-01
NASA has considerable experience in two areas of Extravehicular Activities (EVA). The first can be defined as microgravity, orbital EVAs. This consists of everything done in low Earth orbit (LEO), from the early, proof of concept EVAs conducted during the Gemini program of the 1960s, to the complex International Space Station (ISS) assembly tasks of the first decade of the 21st century. The second area of expertise is comprised of those EVAs conducted on the lunar surface, under a gravitational force one-sixth that of Earth. This EVA expertise encapsulates two extremes - microgravity and Earthlike gravitation - but is insufficient as humans expand their exploration purview, most notably with respect to spacewalks conducted on very low-gravity bodies, such as near- Earth objects (NEO) and the moons of Mars. The operational and technical challenges of this category of EVA have yet to be significantly examined, and as such, only a small number of operational concepts have been proposed thus far. To ensure mission success, however, EVA techniques must be developed and vetted to allow the selection of operational concepts that can be utilized across an assortment of destinations whose physical characteristics vary. This paper examines the utilization of ISS-based EVAs to test operational concepts and hardware in preparation for a low-gravity terrestrial EVA. While the ISS cannot mimic some of the fundamental challenges of a low-gravity terrestrial EVA - such as rotation rate and surface composition - it may be the most effective test bed available.
Atug, Fatih; Castle, Erik P; Burgess, Scott V; Thomas, Raju
2005-12-01
To present technical recommendations for robotic-assisted laparoscopic pyeloplasty (RALP) and stone extraction, as patients with kidney stones proximal to a pelvi-ureteric junction obstruction (PUJO) present a technical challenge, and have traditionally been managed with open surgery or percutaneous antegrade endopyelotomy. From November 2002 to April 2005, 55 patients had RALP for PUJO; eight of these had concomitant renal calculi. Stone burden and location were assessed with a preoperative radiological examination. Before completing the PUJO repair, one robot working arm (cephalad one) was temporarily undocked to allow passage of a flexible nephroscope into the renal pelvis and collecting systems under direct vision. Stones were extracted with graspers or basket catheters and removed via the port. The surgical-assistant port in the subxiphoid area was used to introduce laparoscopic suction and other instruments. The Anderson-Hynes dismembered pyeloplasty was the preferred reconstructive technique in all patients. Operations were completed robotically with no conversions to open surgery. All patients were rendered stone-free, confirmed by imaging, and there were no intraoperative or delayed complications during a mean (range) follow-up of 12.3 (4-22) months. The mean operative time was 275.8 min, 61.7 min longer than in patients who did not have concomitant stone removal. Concurrent stone extraction and PUJO repair can be successful with RALP. Operative times are longer than in patients with isolated PUJO repair, but this is to be expected as there is an additional procedure.
Artificial neural network intelligent method for prediction
NASA Astrophysics Data System (ADS)
Trifonov, Roumen; Yoshinov, Radoslav; Pavlova, Galya; Tsochev, Georgi
2017-09-01
Accounting and financial classification and prediction problems are high challenge and researchers use different methods to solve them. Methods and instruments for short time prediction of financial operations using artificial neural network are considered. The methods, used for prediction of financial data as well as the developed forecasting system with neural network are described in the paper. The architecture of a neural network used four different technical indicators, which are based on the raw data and the current day of the week is presented. The network developed is used for forecasting movement of stock prices one day ahead and consists of an input layer, one hidden layer and an output layer. The training method is algorithm with back propagation of the error. The main advantage of the developed system is self-determination of the optimal topology of neural network, due to which it becomes flexible and more precise The proposed system with neural network is universal and can be applied to various financial instruments using only basic technical indicators as input data.
Initial operation with sodium in the Madison Dynamo Experiment.
NASA Astrophysics Data System (ADS)
Kendrick, R.; Spence, Ej; Forest, C. B.; O'Connell, R.; Nornberg, Md; Canary, Hw; Wright, A.; Robinson, K.
1999-11-01
A new liquid metal MHD experiment has been constructed at the University of Wisconsin to test several key predictions of dynamo theory: magnetic instabilities driven by sheared flow, the effects of turbulence on current generation, and the back-reaction of the self-generated magnetic field on the fluid motion which brings saturation. This presentation describes the engineering design of the experiment, which is a 0.5 m radius spherical vessel, filled with liquid sodium at 150 ^circC. The experiment is designed to achieve a magnetic Reynolds number in excess of 100, which requires approximately 80 Hp of mechanical drive, producing flow velocities in sodium of 15 m/s through impellers. Handling liquid sodium offers a number of technical challenges, but routine techniques have been developed over the past several decades for safely handling large quantities for the fast breeder reactor. The handling strategy is discussed, technical details concerning seals and pressurization are presented, and safety elements are highlighted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinto, I.A.
1985-01-01
The mining facilities, crushing plant, and concentrator of the Iron Ore Company of Canada were in operation by 1962. Today, the Carol Project has the capacity to produce 20 million tonnes of concentrate from which 10.5 million tonnes of pellets can be produced. The period 1980-85 spans a period of energy crisis, world-wide recession, and a consequent re-structuring of the North American steel industry as it struggles to survive in an arena of excess world stell making capacity, government subsidized industries, and the increasing competition from overseas and from developing countries. This paper reviews cost reduction programs implemented by themore » Iron Ore Company of Canada at its 'Carol Project' and emphasizes improvements made in labour productivity, energy conservation, mining strategy, quality control, and reduced cost through technical innovations over this difficult period. The cost reduction program is reviewed under the headings of labor productivity, energy conservation, mining strategy, technical innovations and quality control.« less
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations : for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and E...
NASA Astrophysics Data System (ADS)
Yagi, Yukio; Takahashi, Kaei
The purpose of this report is to describe how the activities for managing technical information has been and is now being conducted by the Engineering department of Nippon Kokan Corp. In addition, as a practical example of database generation promoted by the department, this book gives whole aspects of the NEW-KOTIS (background of its development, history, features, functional details, control and operation method, use in search operations, and so forth). The NEW-KOTIS (3rd-term system) is an "in-house technical information database system," which started its operation on May, 1987. This database system now contains approximately 65,000 information items (research reports, investigation reports, technical reports, etc.) generated within the company, and this information is available to anyone in any department through the network connecting all the company's structures.
Flight Testing of the Gulfstream Quiet Spike(TradeMark) on a NASA F-15B
NASA Technical Reports Server (NTRS)
Smolka, James W.; Cowert, Robert A.; Molzahn, Leslie M.
2007-01-01
Gulfstream Aerospace has long been interested in the development of an economically viable supersonic business jet (SBJ). A design requirement for such an aircraft is the ability for unrestricted supersonic flight over land. Although independent studies continue to substantiate that a market for a SBJ exists, regulatory and public acceptance challenges still remain for supersonic operation over land. The largest technical barrier to achieving this goal is sonic boom attenuation. Gulfstream's attention has been focused on fundamental research into sonic boom suppression for several years. This research was conducted in partnership with the NASA Aeronautics Research Mission Directorate (ARMD) supersonic airframe cruise efficiency technical challenge. The Quiet Spike, a multi-stage telescopic nose boom and a Gulfstream-patented design (references 1 and 2), was developed to address the sonic boom attenuation challenge and validate the technical feasibility of a morphing fuselage. The Quiet Spike Flight Test Program represents a major step into supersonic technology development for sonic boom suppression. The Gulfstream Aerospace Quiet Spike was designed to reduce the sonic boom signature of the forward fuselage for an aircraft flying at supersonic speeds. In 2004, the Quiet Spike Flight Test Program was conceived by Gulfstream and NASA to demonstrate the feasibility of sonic boom mitigation and centered on the structural and mechanical viability of the translating test article design. Research testing of the Quiet Spike consisted of numerous ground and flight operations. Each step in the process had unique objectives, and involved numerous test team members from the NASA Dryden Flight Research Center (DFRC) and Gulfstream Aerospace. Flight testing of the Quiet Spike was conducted at the NASA Dryden Flight Research Center on an F-15B aircraft from August, 2006, to February, 2007. During this period, the Quiet Spike was flown at supersonic speeds up to Mach 1.8 at the maximum design dynamic pressure of 685 pounds per square foot. Extension and retraction tests were conducted at speeds up to Mach 1.4. The design of the Quiet Spike to shape the forward shock wave environment of the aircraft was confirmed during near-field shock wave probing at Mach 1.4. Thirty-two flights were performed without incident and all project objectives were achieved. The success of the Quiet Spike Flight Test Program represents an important step towards developing commercial aircraft capable of supersonic flight over land within the continental United States and in international airspace.
Kieu, Violet; Stroud, Leanne; Huang, Paul; Smith, Mitchell; Spychal, Robert; Hunter-Smith, David; Nestel, Debra
2015-01-01
There has been a worldwide movement toward competency-based medical education and training. However, this is the first qualitative study to analyze the perceptions of surgical trainees and surgeons toward competency-based education in the operating theatre. We aim to examine views toward the specific learning and teaching of the nine competencies of the Royal Australasian College of Surgeons (RACS) and to explore perceived ideal conditions and challenges for learning and teaching these competencies in the operating theatre. Individual semi-structured interviews with surgical trainees and surgeons in the specialty of General Surgery. Ten surgical trainees and surgeons who worked together were purposively sampled, for maximum variation, from an outer metropolitan public hospital in Melbourne, Australia, to identify emergent themes relating to learning and teaching surgical competencies in the operating theatre. Five themes were identified as: (1) Learning and teaching specific surgical competencies is through relationship based mentoring and experiential learning; (2) Ideal conditions and challenges in the operating theatre are availability of time and personal attitude; (3) Level of pre-operative briefing was variable; (4) Intra-operative teaching is perceived as structured; and, (5) Post-operative debriefing is recognized as ideal but not consistently performed. Professional relationships are important to both surgical trainees and surgeons in the process of learning and teaching competencies. Ad hoc apprenticeship style learning is perceived to remain prominent in the operating theatre. Sufficient time for training is valued by both groups. The surgical competencies are inherently different to each other. Some appear more difficult to learn and teach in the operating theatre, with technical expertise most readily identified and health advocacy least so. Elements of guided discovery learning and other educational models are described. Further emphasis on structured competency-based teaching methods may be beneficial for surgical trainees, surgeons and other specialties, both in Australia and worldwide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gottesfeld, Shimshon; Dekel, Dario R.; Page, Miles
The anion exchange membrane fuel cell (AEMFC) is an attractive alternative to acidic proton exchange membrane fuel cells, which to date have required platinum-based catalysts, as well as acid-tolerant stack hardware. The AEMFC could use non-platinum-group metal catalysts and less expensive metal hardware thanks to the high pH of the electrolyte. Over the last decade, substantial progress has been made in improving the performance and durability of the AEMFC through the development of new materials and the optimization of system design and operation conditions. Here in this perspective article, we describe the current status of AEMFCs as having reached beginningmore » of life performance very close to that of PEMFCs when using ultra-low loadings of Pt, while advancing towards operation on non-platinum-group metal catalysts alone. In the latter sections, we identify the remaining technical challenges, which require further research and development, focusing on the materials and operational factors that critically impact AEMFC performance and/or durability. Finally, these perspectives may provide useful insights for the development of next-generation of AEMFCs.« less
Status of ISS Water Management and Recovery
NASA Technical Reports Server (NTRS)
Carter, Layne; Wilson, Laura Labuda; Orozco, Nicole
2012-01-01
Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2011, and describes the technical challenges encountered and lessons learned over the past year.
Air traffic management as principled negotiation between intelligent agents
NASA Technical Reports Server (NTRS)
Wangermann, J. P.
1994-01-01
The major challenge facing the world's aircraft/airspace system (AAS) today is the need to provide increased capacity, while reducing delays, increasing the efficiency of flight operations, and improving safety. Technologies are emerging that should improve the performance of the system, but which could also introduce uncertainty, disputes, and inefficiency if not properly implemented. The aim of our research is to apply techniques from intelligent control theory and decision-making theory to define an Intelligent Aircraft/Airspace System (IAAS) for the year 2025. The IAAS would make effective use of the technical capabilities of all parts of the system to meet the demand for increased capacity with improved performance.
Shprits, Sagi; Moskovits, Boaz; Sachner, Robert; Nativ, Ofer
2016-05-01
Renal cell carcinoma in a transplant kidney is a rare condition. Nephron Sparing Surgery (NSS) is the treatment of choice. One of the main technical challenges is obtaining adequate vascular control. We present a rare case of large centrally located hillar tumor in a kidney 18 years after transplantation treated with NSS. Vascular control was achieved by using a novel approach. Post-operative course was uneventful with minimal decrease in renal function. We believe that this unique choice of treatment can be used in cases of NSS where the access to the renal pedicle is limited.
Status of ISS Water Management and Recovery
NASA Technical Reports Server (NTRS)
Carter, Layne; Pruitt, Jennifer; Brown, Christopher A.; Bazley, Jesse; Gazda, Daniel; Schaezler, Ryan; Bankers, Lyndsey
2016-01-01
Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2016 and describes the technical challenges encountered and lessons learned over the past year.
Status of ISS Water Management and Recovery
NASA Technical Reports Server (NTRS)
Carter, Layne; Brown, Christopher; Orozco, Nicole
2014-01-01
Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2013, and describes the technical challenges encountered and lessons learned over the past year.
Status of ISS Water Management and Recovery
NASA Technical Reports Server (NTRS)
Carter, Layne; Tobias, Barry; Orozco, Nicole
2012-01-01
Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2012, and describes the technical challenges encountered and lessons learned over the past year.
Transoral robotic thyroid surgery
Clark, James H.; Kim, Hoon Yub
2015-01-01
There is currently significant demand for minimally invasive thyroid surgery; however the majority of proposed surgical approaches necessitate a compromise between minimal tissue dissection with a visible cervical scar or extensive tissue dissection with a remote, hidden scar. The development of transoral endoscopic thyroid surgery however provides an approach which is truly minimally invasive, as it conceals the incision within the oral cavity without significantly increasing the amount of required dissection. The transoral endoscopic approach however presents multiple technical challenges, which could be overcome with the incorporation of a robotic operating system. This manuscript summarizes the literature on the feasibility and current clinical experience with transoral robotic thyroid surgery. PMID:26425456
Solar Power Satellite Development: Advances in Modularity and Mechanical Systems
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Dorsey, John T.; Watson, Judith J.
2010-01-01
Space solar power satellites require innovative concepts in order to achieve economically and technically feasible designs. The mass and volume constraints of current and planned launch vehicles necessitate highly efficient structural systems be developed. In addition, modularity and in-space deployment will be enabling design attributes. This paper reviews the current challenges of launching and building very large space systems. A building block approach is proposed in order to achieve near-term solar power satellite risk reduction while promoting the necessary long-term technology advances. Promising mechanical systems technologies anticipated in the coming decades including modularity, material systems, structural concepts, and in-space operations are described
High Temperature Materials Needs in NASA's Advanced Space Propulsion Programs
NASA Technical Reports Server (NTRS)
Eckel, Andrew J.; Glass, David E.
2005-01-01
In recent years, NASA has embarked on several new and exciting efforts in the exploration and use of space. The successful accomplishment of many planned missions and projects is dependent upon the development and deployment of previously unproven propulsion systems. Key to many of the propulsion systems is the use of emergent materials systems, particularly high temperature structural composites. A review of the general missions and benefits of utilizing high temperature materials will be presented. The design parameters and operating conditions will be presented for both specific missions/vehicles and classes of components. Key technical challenges and opportunities are identified along with suggested paths for addressing them.
Mason, Katrina A; Theodorakopoulou, Evgenia; Pafitanis, Georgios; Ghanem, Ali M; Myers, Simon R
2016-09-01
Microsurgery is used in a variety of surgical specialties, including Plastic Surgery, Maxillofacial Surgery, Ophthalmic Surgery, Otolaryngology and Neurosurgery. It is considered one of the most technically challenging fields of surgery. Microsurgical skills demand fine, precise and controlled movements, and microsurgical skill acquisition has a steep initial learning curve. Microsurgical simulation provides a safe environment for skill acquisition before operating clinically. The traditional starting point for anyone wanting to pursue microsurgery is a basic simulation training course. We present twelve tips for postgraduate and undergraduate medics on how to set up and run a basic ex-vivo microsurgery simulation training course suitable for their peers.
Status of ISS Water Management and Recovery
NASA Technical Reports Server (NTRS)
Carter, Layne; Takada, Kevin; Gazda, Daniel; Brown, Christopher; Bazley, Jesse; Schaezler, Ryan; Bankers, Lyndsey
2017-01-01
Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of June 2017 and describes the technical challenges encountered and lessons learned over the past year.
Retrograde Coronary Chronic Total Occlusion Intervention
Dash, Debabrata
2015-01-01
Coronary chronic total occlusion (CTO) is a frequent finding in patients with coronary artery disease. It remains one of the most challenging subsets, accounting for 10-20% of all percutaneous coronary interventions (PCI). Although remarkable progress in PCI has been made, it is reasonable to state that successful recanalization of CTO represents the “last frontier” of PCI. PCI of CTOs has been limited historically by technical success rates of 50-70%. The introduction of enhanced guidewires, microcatheter, channel dilatator with increasing operator experience, and innovative techniques such as the retrograde approach have raised hopes for better outcomes. This article goes into depth into various strategies of retrograde approach in CTO.
NASA Astrophysics Data System (ADS)
Duff, Edward A.; Washburn, Donald C.
2004-09-01
Laser weapon systems would be significantly enhanced with the addition of high altitude or space-borne relay mirrors. Such mirrors, operating alone with a directed energy source, or many in a series fashion, can be shown to effectively move the laser source to the last, so-called fighting mirror. This "magically" reduces the range to target and offers to enhance the performance of directed energy systems like the Airborne Laser and even ground-based or ship-based lasers. Recent development of high altitude airships will be shown to provide stationary positions for such relay mirrors thereby enabling many new and important applications for laser weapons. The technical challenges to achieve this capability are discussed.
Status of ISS Water Management and Recovery
NASA Technical Reports Server (NTRS)
Carter, Layne; Pruitt, Jennifer; Brown, Christopher A.; Schaezler, Ryan; Bankers, Lyndsey
2015-01-01
Water management on ISS is responsible for the provision of water to the crew for drinking water, food preparation, and hygiene, to the Oxygen Generation System (OGS) for oxygen production via electrolysis, to the Waste & Hygiene Compartment (WHC) for flush water, and for experiments on ISS. This paper summarizes water management activities on the ISS US Segment, and provides a status of the performance and issues related to the operation of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA). This paper summarizes the on-orbit status as of May 2015 and describes the technical challenges encountered and lessons learned over the past two years.
Design requirements, challenges, and solutions for high-temperature falling particle receivers
NASA Astrophysics Data System (ADS)
Christian, Joshua; Ho, Clifford
2016-05-01
Falling particle receivers (FPR) utilize small particles as a heat collecting medium within a cavity receiver structure. Previous analysis for FPR systems include computational fluid dynamics (CFD), analytical evaluations, and experiments to determine the feasibility and achievability of this CSP technology. Sandia National Laboratories has fabricated and tested a 1 MWth FPR that consists of a cavity receiver, top hopper, bottom hopper, support structure, particle elevator, flux target, and instrumentation. Design requirements and inherent challenges were addressed to enable continuous operation of flowing particles under high-flux conditions and particle temperatures over 700 °C. Challenges include being able to withstand extremely high temperatures (up to 1200°C on the walls of the cavity), maintaining particle flow and conveyance, measuring temperatures and mass flow rates, filtering out debris, protecting components from direct flux spillage, and measuring irradiance in the cavity. Each of the major components of the system is separated into design requirements, associated challenges and corresponding solutions. The intent is to provide industry and researchers with lessons learned to avoid pitfalls and technical problems encountered during the development of Sandia's prototype particle receiver system at the National Solar Thermal Test Facility (NSTTF).
The aerodynamic challenges of the design and development of the space shuttle orbiter
NASA Technical Reports Server (NTRS)
Young, J. C.; Underwood, J. M.; Hillje, E. R.; Whitnah, A. M.; Romere, P. O.; Gamble, J. D.; Roberts, B. B.; Ware, G. M.; Scallion, W. I.; Spencer, B., Jr.
1985-01-01
The major aerodynamic design challenge at the beginning of the United States Space Transportation System (STS) research and development phase was to design a vehicle that would fly as a spacecraft during early entry and as an aircraft during the final phase of entry. The design was further complicated because the envisioned vehicle was statically unstable during a portion of the aircraft mode of operation. The second challenge was the development of preflight aerodynamic predictions with an accuracy consistent with conducting a manned flight on the initial orbital flight. A brief history of the early contractual studies is presented highlighting the technical results and management decisions influencing the aerodynamic challenges. The configuration evolution and the development of preflight aerodynamic predictions will be reviewed. The results from the first four test flights shows excellent agreement with the preflight aerodynamic predictions over the majority of the flight regimes. The only regimes showing significant disagreement is confined primarily to early entry, where prediction of the basic vehicle trim and the influence of the reaction control system jets on the flow field were found to be deficient. Postflight results are analyzed to explain these prediction deficiencies.
NASA Astrophysics Data System (ADS)
Canzian, Blaise; Barentine, J.; Arendt, J.; Bader, S.; Danyo, G.; Heller, C.
2012-09-01
L-3 Integrated Optical Systems (IOS) Division has been selected by the National Solar Observatory (NSO) to design and produce the Top End Optical Assembly (TEOA) for the 4-meter Advanced Technology Solar Telescope (ATST) to operate at Haleakal', Maui. ATST will perform to a very high optical performance level in a difficult thermal environment. The TEOA, containing the 0.65-meter silicon carbide secondary mirror and support, mirror thermal management system, mirror positioning and fast tip-tilt system, field stop with thermally managed heat dump, thermally managed Lyot stop, safety interlock and control system, and support frame, operates in the "hot spot" at the prime focus of the ATST and so presents special challenges. In this paper, we describe progress in the L-3 technical approach to meeting these challenges, including silicon carbide off-axis mirror design, fabrication, and high accuracy figuring and polishing all within L-3; mirror support design; the design for stray light control; subsystems for opto-mechanical positioning and high accuracy absolute mirror orientation sensing; Lyot stop design; and thermal management of all design elements to remain close to ambient temperature despite the imposed solar irradiance load.
Multigeneration data migration from legacy systems
NASA Astrophysics Data System (ADS)
Ratib, Osman M.; Liu, Brent J.; Kho, Hwa T.; Tao, Wenchao; Wang, Cun; McCoy, J. Michael
2003-05-01
The migration of image data from different generations of legacy archive systems represents a technical challenge and in incremental cost in transitions to newer generations of PACS. UCLA medical center has elected to completely replace the existing PACS infrastructure encompassing several generations of legacy systems by a new commercial system providing enterprise-wide image management and communication. One of the most challenging parts of the project was the migration of large volumes of legacy images into the new system. Planning of the migration required the development of specialized software and hardware, and included different phases of data mediation from existing databases to the new PACS database prior to the migration of the image data. The project plan included a detailed analysis of resources and cost of data migration to optimize the process and minimize the delay of a hybrid operation where the legacy systems need to remain operational. Our analysis and project planning showed that the data migration represents the most critical path in the process of PACS renewal. Careful planning and optimization of the project timeline and resources allocated is critical to minimize the financial impact and the time delays that such migrations can impose on the implementation plan.
Tendon 'turnover lengthening' technique.
Cerovac, S; Miranda, B H
2013-11-01
Tendon defect reconstruction is amongst the most technically challenging areas in hand surgery. Tendon substance deficiency reconstruction techniques include lengthening, grafting, two-stage reconstruction and tendon transfers, however each is associated with unique challenges over and above direct repair. We describe a novel 'turnover lengthening' technique for hand tendons that has successfully been applied to the repair of several cases, including a case of attritional flexor and traumatic extensor tendon rupture in two presented patients where primary tenorrhaphy was not possible. In both cases a good post-operative outcome was achieved, as the patients were happy having returned back to normal activities of daily living such that they were discharged 12 weeks post-operatively. Our technique avoids the additional morbidity and complications associated with grafting, transfers and two stage reconstructions. It is quick, simple and reproducible for defects not exceeding 3-4 cm, provides a means of immediate one stage reconstruction, no secondary donor site morbidity and does not compromise salvage by tendon transfer and/or two-stage reconstruction in cases of failure. To our knowledge no such technique has been previously been described to reconstruct such hand tendon defects. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Online Monitoring To Enable Improved Diagnostics, Prognostics and Maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Leonard J.
2011-08-31
Only time will tell what the implications of the Fukushima incident will be. Discussions are on-going with regard to continued operation and life extension of the existing fleet, new build, and the wider policy issues including technologies needed to address spent fuel storage and ensure energy security, and the related desires to provide sustainable energy systems while at the same time limiting greenhouse gas emissions. The science base for advanced diagnostics and prognostics to support its use in nuclear power plants (NPPs) for active components (pumps, valves etc) has been demonstrated. A challenge is enabling adaption of these technologies formore » NPP deployment and the validation of the data from these technologies. Advanced diagnostics, monitoring and prognostics applied to passive structures, which in the USA context of longer term operation is up to 80 years, are being researched. Early laboratory work is demonstrating the potential for these methods, although technical challenges remain. It can be expected that there will be an increased need for and use of on-line monitoring for a wide range of both active and passive systems in all types of nuclear power plants.« less
Policy Considerations for Commercializing Natural Gas and Biomass CCUS
NASA Astrophysics Data System (ADS)
Abrahams, L.; Clavin, C.
2017-12-01
Captured CO2 from power generation has been discussed as an opportunity to improve the environmental sustainability of fossil fuel-based electricity generation and likely necessary technological solution necessary for meeting long-term climate change mitigation goals. In our presentation, we review the findings of a study of natural gas CCUS technology research and development and discuss their applications to biomass CCUS technology potential. Based on interviews conducted with key stakeholders in CCUS technology development and operations, this presentation will discuss these technical and economic challenges and potential policy opportunities to support commercial scale CCUS deployment. In current domestic and electricity and oil markets, CCUS faces economic challenges for commercial deployment. In particular, the economic viability of CCUS has been impacted by the sustained low oil prices that have limited the potential for enhanced oil recovery (EOR) to serve as a near-term utilization opportunity for the captured CO2. In addition, large scale commercial adoption of CCUS is constrained by regulatory inconsistencies and uncertainties across the United States, high initial capital costs, achieving familiarity with new technology applications to existing markets, developing a successful performance track record to acquire financing agreements, and competing against well-established incumbent technologies. CCUS also has additional technical hurdles for measurement, verification, and reporting within states that have existing policy and regulatory frameworks for climate change mitigation. In addition to fossil-fuel based CCUS, we will discuss emerging opportunities to utilize CCUS fueled by gasified biomass resulting in carbon negative power generation with expanded economic opportunities associated with the enhanced carbon sequestration. Successful technology development of CCUS technology requires a portfolio of research leading to technical advances, advances in financial instruments to leverage the benefits of multiple commodity markets (e.g. natural gas, oil, biomass), and policy instruments that address regulatory hurdles posed CCUS technology deployment.
INDOT Technical Training Plan : Appendix B
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix M
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix P
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix F
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix H
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix E
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix O
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix J
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix L
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix A
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix D
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix K
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix G
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix I
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix N
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
INDOT Technical Training Plan : Appendix C
DOT National Transportation Integrated Search
2012-04-01
The study provides the background documents necessary for the development of a Technical Training Plan and makes recommendations for the content and structure of such a plan for the District Operations, Operations, Capital Program Management, and Eng...
Trace Contaminant Control During the International Space Station's On-Orbit Assembly and Outfitting
NASA Technical Reports Server (NTRS)
Perry, J. L.
2017-01-01
Achieving acceptable cabin air quality must balance competing elements during spacecraft design, assembly, ground processing, and flight operations. Among the elements that contribute to the trace chemical contaminant load and, therefore, the cabin air quality aboard crewed spacecraft are the vehicle configuration, crew size and activities, mission duration and objectives, materials selection, and vehicle manufacturing and preflight ground processing methods. Trace chemical contaminants produced from pervasive sources such as equipment offgassing, human metabolism, and cleaning fluids during preflight ground processing present challenges to maintaining acceptable cabin air quality. To address these challenges, both passive and active contamination control techniques are used during a spacecraft's design, manufacturing, preflight preparation, and operational phases. Passive contamination control methods seek to minimize the equipment offgassing load by selecting materials, manufacturing processes, preflight preparation processes, and in-flight operations that have low chemical offgassing characteristics. Passive methods can be employed across the spacecraft's entire life cycle from conceptual design through flight operations. However, because the passive contamination control techniques cannot fully eliminate the contaminant load, active contamination control equipment must be deployed aboard the spacecraft to purify and revitalize the cabin atmosphere during in-flight operations. Verifying that the passive contamination control techniques have successfully maintained the total trace contaminant load within the active contamination control equipment's capabilities occurs late in the preflight preparation stages. This verification consists of subjecting the spacecraft to an offgassing test to determine the trace contaminant load. This load is then assessed versus the active contamination control equipment's capabilities via trace contaminant control (TCC) engineering analysis. During the International Space Station's (ISS's) on-orbit assembly and outfitting, a series of engineering analyses were conducted to evaluate how effective the passive TCC methods were relative to providing adequate operational margin for the active TCC equipment's capabilities aboard the ISS. These analyses were based on habitable module and cargo vehicle offgassing test results. The offgassing test for a fully assembled module or cargo vehicle is an important preflight spacecraft evaluation method that has been used successfully during all crewed spacecraft programs to provide insight into how effectively the passive contamination control methods limit the equipment offgassing component of the overall trace contaminant generation load. The progression of TCC assessments beginning in 1998 with the ISS's first habitable element launch and continuing through the final pressurized element's arrival in 2010 are presented. Early cargo vehicle flight assessments between 2008 and 2011 are also presented as well as a discussion on predictive methods for assessing cargo via a purely analytical technique. The technical approach for TCC employed during this 13-year period successfully maintained the cabin atmospheric quality within specified parameters during the technically challenging ISS assembly and outfitting stages. The following narrative provides details on the important role of spacecraft offgassing testing, trace contaminant performance requirements, and flight rules for achieving the ultimate result-a cabin environment that enables people to live and work safely in space.