Sample records for technique called atomic

  1. The Tunneling Microscope: A New Look at the Atomic World.

    ERIC Educational Resources Information Center

    Golovchenko, J. A.

    1986-01-01

    A new instrument called the tunneling microscope has recently been developed that is capable of generating real-space images of surfaces showing atomic structure. Discusses current capabilities, limitations, and the physics involved in the technique. Includes results from a study of silicon crystal surfaces. (JN)

  2. Proposed software system for atomic-structure calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, C.F.

    1981-07-01

    Atomic structure calculations are understood well enough that, at a routine level, an atomic structure software package can be developed. At the Atomic Physics Conference in Riga, 1978 L.V. Chernysheva and M.Y. Amusia of Leningrad University, presented a paper on Software for Atomic Calculations. Their system, called ATOM is based on the Hartree-Fock approximation and correlation is included within the framework of RPAE. Energy level calculations, transition probabilities, photo-ionization cross-sections, electron scattering cross-sections are some of the physical properties that can be evaluated by their system. The MCHF method, together with CI techniques and the Breit-Pauli approximation also provides amore » sound theoretical basis for atomic structure calculations.« less

  3. Resolving the morphology of niobium carbonitride nano-precipitates in steel using atom probe tomography.

    PubMed

    Breen, Andrew J; Xie, Kelvin Y; Moody, Michael P; Gault, Baptiste; Yen, Hung-Wei; Wong, Christopher C; Cairney, Julie M; Ringer, Simon P

    2014-08-01

    Atom probe is a powerful technique for studying the composition of nano-precipitates, but their morphology within the reconstructed data is distorted due to the so-called local magnification effect. A new technique has been developed to mitigate this limitation by characterizing the distribution of the surrounding matrix atoms, rather than those contained within the nano-precipitates themselves. A comprehensive chemical analysis enables further information on size and chemistry to be obtained. The method enables new insight into the morphology and chemistry of niobium carbonitride nano-precipitates within ferrite for a series of Nb-microalloyed ultra-thin cast strip steels. The results are supported by complementary high-resolution transmission electron microscopy.

  4. Surface Modification of Plastic Substrates Using Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Matsuo, Naoto

    The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking of hydrogen molecules on heated tungsten wire. Surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. In addition, plastic surface was reduced by AHA. The surface can be modified by the recombination reaction of atomic hydrogen, the reduction reaction and selective etching of halogen atom. It is concluded that this method is a promising technique for improvement of adhesion between inorganic films and plastic substrates at low temperatures.

  5. Computing Rydberg Electron Transport Rates Using Periodic Orbits

    NASA Astrophysics Data System (ADS)

    Sattari, Sulimon; Mitchel, Kevin

    2017-04-01

    Electron transport rates in chaotic atomic systems are computable from classical periodic orbits. This technique allows for replacing a Monte Carlo simulation launching millions of orbits with a sum over tens or hundreds of properly chosen periodic orbits using a formula called the spectral determiant. A firm grasp of the structure of the periodic orbits is required to obtain accurate transport rates. We apply a technique called homotopic lobe dynamics (HLD) to understand the structure of periodic orbits to compute the ionization rate in a classically chaotic atomic system, namely the hydrogen atom in strong parallel electric and magnetic fields. HLD uses information encoded in the intersections of stable and unstable manifolds of a few orbits to compute relevant periodic orbits in the system. All unstable periodic orbits are computed up to a given period, and the ionization rate computed from periodic orbits converges exponentially to the true value as a function of the period used. Using periodic orbit continuation, the ionization rate is computed over a range of electron energy and magnetic field values. The future goal of this work is to semiclassically compute quantum resonances using periodic orbits.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chambers, W.F.; Doyle, J.H.

    QUANT is a special schedule for electron microprobes which are automated with Tracor Northern electronics. QUANT is called from the SANDIA TASK-78 control program and provides simultaneous data acquisition and data reduction capabilities using either a first principles atomic number, absorption, fluorescence (ZAF) technique or a matrix correction (Bence--Albee) technique. During operation, QUANT controls the execution of three auxiliary programs - BA78, ZAF78, and SETUP.

  7. Particle dynamics during nanoparticle synthesis by laser ablation in a background gas

    NASA Astrophysics Data System (ADS)

    Nakata, Yoshiki; Muramoto, Junichi; Okada, Tatsuo; Maeda, Mitsuo

    2002-02-01

    Particle dynamics during Si nanoparticle synthesis in a laser-ablation plume in different background gases were investigated by laser-spectroscopic imaging techniques. Two-dimensional laser induced fluorescence and ultraviolet Rayleigh scattering techniques were used to visualize the spatial distribution of the Si atoms and nanoparticles grown, respectively. We have developed a visualization technique called re-decomposition laser-induced fluorescence to observe small nanoparticles (hereafter called clusters) which are difficult to observe by the conventional imaging techniques. In this article, the whole process of nanoparticle synthesis in different background gases of He, Ne, Ar, N2 and O2 was investigated by these techniques. In He, Ne, Ar and N2 background gases at 10 Torr, the clustering of the Si atoms started 200, 250, 300 and 800 μs after ablation, respectively. The growth rate of the clusters in He background gas was much larger than that in the other gases. The spatial distributions of the Si nanoparticles were mushroom like in He, N2 and O2, and column like in Ne and Ar. It is thought that the difference in distribution was caused by differences in the flow characteristics of the background gases, which would imply that the viscosity of the background gas is one of the main governing parameters.

  8. Triatomic molecules laser-cooled

    NASA Astrophysics Data System (ADS)

    2017-06-01

    Molecules containing three atoms have been laser-cooled to ultracold temperatures for the first time. John Doyle and colleagues at Harvard University in the US used a technique called Sisyphus cooling to chill an ensemble of about a million strontium-monohydroxide molecules to 750 μK.

  9. Dynamics of Hollow Atom Formation in Intense X-Ray Pulses Probed by Partial Covariance Mapping

    NASA Astrophysics Data System (ADS)

    Frasinski, L. J.; Zhaunerchyk, V.; Mucke, M.; Squibb, R. J.; Siano, M.; Eland, J. H. D.; Linusson, P.; v. d. Meulen, P.; Salén, P.; Thomas, R. D.; Larsson, M.; Foucar, L.; Ullrich, J.; Motomura, K.; Mondal, S.; Ueda, K.; Osipov, T.; Fang, L.; Murphy, B. F.; Berrah, N.; Bostedt, C.; Bozek, J. D.; Schorb, S.; Messerschmidt, M.; Glownia, J. M.; Cryan, J. P.; Coffee, R. N.; Takahashi, O.; Wada, S.; Piancastelli, M. N.; Richter, R.; Prince, K. C.; Feifel, R.

    2013-08-01

    When exposed to ultraintense x-radiation sources such as free electron lasers (FELs) the innermost electronic shell can efficiently be emptied, creating a transient hollow atom or molecule. Understanding the femtosecond dynamics of such systems is fundamental to achieving atomic resolution in flash diffraction imaging of noncrystallized complex biological samples. We demonstrate the capacity of a correlation method called “partial covariance mapping” to probe the electron dynamics of neon atoms exposed to intense 8 fs pulses of 1062 eV photons. A complete picture of ionization processes competing in hollow atom formation and decay is visualized with unprecedented ease and the map reveals hitherto unobserved nonlinear sequences of photoionization and Auger events. The technique is particularly well suited to the high counting rate inherent in FEL experiments.

  10. Surface Treatment of Plastic Substrates using Atomic Hydrogen Generated on Heated Tungsten Wire at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Matsuo, Naoto

    2007-06-01

    The surface properties of a plastic substrate were changed by a novel surface treatment called atomic hydrogen annealing (AHA). In this method, a plastic substrate was exposed to atomic hydrogen generated by cracking hydrogen molecules on heated tungsten wire. For the substrate, surface roughness was increased and halogen elements (F and Cl) were selectively etched by AHA. AHA was useful for pretreatment before film deposition on a plastic substrate because the changes in surface state relate to adhesion improvement. It is concluded that this method is a promising technique for preparing high-performance plastic substrates at low temperatures.

  11. Image quality improvement in cone-beam CT using the super-resolution technique.

    PubMed

    Oyama, Asuka; Kumagai, Shinobu; Arai, Norikazu; Takata, Takeshi; Saikawa, Yusuke; Shiraishi, Kenshiro; Kobayashi, Takenori; Kotoku, Jun'ichi

    2018-04-05

    This study was conducted to improve cone-beam computed tomography (CBCT) image quality using the super-resolution technique, a method of inferring a high-resolution image from a low-resolution image. This technique is used with two matrices, so-called dictionaries, constructed respectively from high-resolution and low-resolution image bases. For this study, a CBCT image, as a low-resolution image, is represented as a linear combination of atoms, the image bases in the low-resolution dictionary. The corresponding super-resolution image was inferred by multiplying the coefficients and the high-resolution dictionary atoms extracted from planning CT images. To evaluate the proposed method, we computed the root mean square error (RMSE) and structural similarity (SSIM). The resulting RMSE and SSIM between the super-resolution images and the planning CT images were, respectively, as much as 0.81 and 1.29 times better than those obtained without using the super-resolution technique. We used super-resolution technique to improve the CBCT image quality.

  12. Polarization switching detection method using a ferroelectric liquid crystal for dichroic atomic vapor laser lock frequency stabilization techniques.

    PubMed

    Dudzik, Grzegorz; Rzepka, Janusz; Abramski, Krzysztof M

    2015-04-01

    We present a concept of the polarization switching detection method implemented for frequency-stabilized lasers, called the polarization switching dichroic atomic vapor laser lock (PSDAVLL) technique. It is a combination of the well-known dichroic atomic vapor laser lock method for laser frequency stabilization with a synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC).The SSFLC is a polarization switch and quarter wave-plate component. This technique provides a 9.6 dB better dynamic range ratio (DNR) than the well-known two-photodiode detection configuration known as the balanced polarimeter. This paper describes the proposed method used practically in the VCSEL laser frequency stabilization system. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7×10⁻⁹ and a reproducibility of 1.2×10⁻⁸, with a DNR of detected signals of around 81 dB. It has been shown that PSDAVLL might be successfully used as a method for spectra-stable laser sources.

  13. Ballistic imaging of the near field in a diesel spray

    NASA Astrophysics Data System (ADS)

    Linne, Mark; Paciaroni, Megan; Hall, Tyler; Parker, Terry

    2006-06-01

    We have developed an optical technique called ballistic imaging to view breakup of the near-field of an atomizing spray. In this paper, we describe the successful use of a time-gated ballistic imaging instrument to obtain single-shot images of core region breakup in a transient, single hole atomizing diesel fuel spray issuing into one atmosphere. We present a sequence of images taken at the nozzle for various times after start of injection, and a sequence taken at various positions downstream of the nozzle exit at a fixed time. These images contain signatures of periodic behavior, voids, and entrainment processes.

  14. An x ray scatter approach for non-destructive chemical analysis of low atomic numbered elements

    NASA Technical Reports Server (NTRS)

    Ross, H. Richard

    1993-01-01

    A non-destructive x-ray scatter (XRS) approach has been developed, along with a rapid atomic scatter algorithm for the detection and analysis of low atomic-numbered elements in solids, powders, and liquids. The present method of energy dispersive x-ray fluorescence spectroscopy (EDXRF) makes the analysis of light elements (i.e., less than sodium; less than 11) extremely difficult. Detection and measurement become progressively worse as atomic numbers become smaller, due to a competing process called 'Auger Emission', which reduces fluorescent intensity, coupled with the high mass absorption coefficients exhibited by low energy x-rays, the detection and determination of low atomic-numbered elements by x-ray spectrometry is limited. However, an indirect approach based on the intensity ratio of Compton and Rayleigh scattered has been used to define light element components in alloys, plastics and other materials. This XRS technique provides qualitative and quantitative information about the overall constituents of a variety of samples.

  15. Demonstration of correlative atomic force and transmission electron microscopy using actin cytoskeleton

    PubMed Central

    Yamada, Yutaro; Konno, Hiroki; Shimabukuro, Katsuya

    2017-01-01

    In this study, we present a new technique called correlative atomic force and transmission electron microscopy (correlative AFM/TEM) in which a targeted region of a sample can be observed under AFM and TEM. The ultimate goal of developing this new technique is to provide a technical platform to expand the fields of AFM application to complex biological systems such as cell extracts. Recent advances in the time resolution of AFM have enabled detailed observation of the dynamic nature of biomolecules. However, specifying molecular species, by AFM alone, remains a challenge. Here, we demonstrate correlative AFM/TEM, using actin filaments as a test sample, and further show that immuno-electron microscopy (immuno-EM), to specify molecules, can be integrated into this technique. Therefore, it is now possible to specify molecules, captured under AFM, by subsequent observation using immuno-EM. In conclusion, correlative AFM/TEM can be a versatile method to investigate complex biological systems at the molecular level. PMID:28828286

  16. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    NASA Astrophysics Data System (ADS)

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.

    2014-04-01

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called ``molecular movie'' within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.

  17. Cometary particulate analyzer. [mass spectrometry of laser plasmas

    NASA Technical Reports Server (NTRS)

    Friichtenicht, J. F.; Miller, D. J.; Utterback, N. G.

    1979-01-01

    A concept for determining the relative abundance of elements contained in cometary particulates was evaluated. The technique utilizes a short, high intensity burst of laser radiation to vaporize and ionize collected particulate material. Ions extracted from this laser produced plasma are analyzed in a time of flight mass spectrometer to yield an atomic mass spectrum representative of the relative abundance of elements in the particulates. Critical aspects of the development of this system are determining the ionization efficiencies for various atomic species and achieving adequate mass resolution. A technique called energy-time focus, which utilizes static electric fields to alter the length of the ion flight path in proportion to the ion initial energy, was used which results in a corresponding compression to the range of ion flight times which effectively improves the inherent resolution. Sufficient data were acquired to develop preliminary specifications for a flight experiment.

  18. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    PubMed Central

    Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.

    2014-01-01

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes. PMID:24740172

  19. Towards simultaneous measurements of electronic and structural properties in ultra-fast x-ray free electron laser absorption spectroscopy experiments

    DOE PAGES

    Gaudin, J.; Fourment, C.; Cho, B. I.; ...

    2014-04-17

    The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore » the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less

  20. Analysis of an Unusual Mirror in a 16th-Century Painting: A Museum Exercise for Physics Students

    ERIC Educational Resources Information Center

    Swaminathan, Sudha; Lamelas, Frank

    2017-01-01

    Physics students at Worcester State University visit the Worcester Art Museum (WAM) at the end of a special 100- level course called Physics in Art. The students have studied geometrical optics, and they have been introduced to concepts in atomic physics. The purpose of the museum tour is to show how physics-based techniques can be used in a…

  1. Solving the nanostructure problem: exemplified on metallic alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Petkov, Valeri; Prasai, Binay; Ren, Yang; Shan, Shiyao; Luo, Jin; Joseph, Pharrah; Zhong, Chuan-Jian

    2014-08-01

    With current technology moving rapidly toward smaller scales nanometer-size materials, hereafter called nanometer-size particles (NPs), are being produced in increasing numbers and explored for various useful applications ranging from photonics and catalysis to detoxification of wastewater and cancer therapy. Nature also is a prolific producer of useful NPs. Evidence can be found in ores on the ocean floor, minerals and soils on land and in the human body that, when water is excluded, is mostly made of proteins that are 6-10 nm in size and globular in shape. Precise knowledge of the 3D atomic-scale structure, that is how atoms are arranged in space, is a crucial prerequisite for understanding and so gaining more control over the properties of any material, including NPs. In the case of bulk materials such knowledge is fairly easy to obtain by Bragg diffraction experiments. Determining the 3D atomic-scale structure of NPs is, however, still problematic spelling trouble for science and technology at the nanoscale. Here we explore this so-called ``nanostructure problem'' from a practical point of view arguing that it can be solved when its technical, that is the inapplicability of Bragg diffraction to NPs, and fundamental, that is the incompatibility of traditional crystallography with NPs, aspects are both addressed properly. As evidence we present a successful and broadly applicable, 6-step approach to determining the 3D atomic-scale structure of NPs based on a suitable combination of a few experimental and computational techniques. This approach is exemplified on 5 nm sized PdxNi100-x particles (x = 26, 56 and 88) explored for catalytic applications. Furthermore, we show how once an NP atomic structure is determined precisely, a strategy for improving NP structure-dependent properties of particular interest to science and technology can be designed rationally and not subjectively as frequently done now.With current technology moving rapidly toward smaller scales nanometer-size materials, hereafter called nanometer-size particles (NPs), are being produced in increasing numbers and explored for various useful applications ranging from photonics and catalysis to detoxification of wastewater and cancer therapy. Nature also is a prolific producer of useful NPs. Evidence can be found in ores on the ocean floor, minerals and soils on land and in the human body that, when water is excluded, is mostly made of proteins that are 6-10 nm in size and globular in shape. Precise knowledge of the 3D atomic-scale structure, that is how atoms are arranged in space, is a crucial prerequisite for understanding and so gaining more control over the properties of any material, including NPs. In the case of bulk materials such knowledge is fairly easy to obtain by Bragg diffraction experiments. Determining the 3D atomic-scale structure of NPs is, however, still problematic spelling trouble for science and technology at the nanoscale. Here we explore this so-called ``nanostructure problem'' from a practical point of view arguing that it can be solved when its technical, that is the inapplicability of Bragg diffraction to NPs, and fundamental, that is the incompatibility of traditional crystallography with NPs, aspects are both addressed properly. As evidence we present a successful and broadly applicable, 6-step approach to determining the 3D atomic-scale structure of NPs based on a suitable combination of a few experimental and computational techniques. This approach is exemplified on 5 nm sized PdxNi100-x particles (x = 26, 56 and 88) explored for catalytic applications. Furthermore, we show how once an NP atomic structure is determined precisely, a strategy for improving NP structure-dependent properties of particular interest to science and technology can be designed rationally and not subjectively as frequently done now. Electronic supplementary information (ESI) available: XRD patterns, TEM and 3D structure modeling results. See DOI: 10.1039/c4nr01633e

  2. Examination of Short- and Long-Range Atomic Order Nanocrystalline SiC and Diamond by Powder Diffraction Methods

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.

    2002-01-01

    The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.

  3. Quantum Chemical Topology: Knowledgeable atoms in peptides

    NASA Astrophysics Data System (ADS)

    Popelier, Paul L. A.

    2012-06-01

    The need to improve atomistic biomolecular force fields remains acute. Fortunately, the abundance of contemporary computing power enables an overhaul of the architecture of current force fields, which typically base their electrostatics on fixed atomic partial charges. We discuss the principles behind the electrostatics of a more realistic force field under construction, called QCTFF. At the heart of QCTFF lies the so-called topological atom, which is a malleable box, whose shape and electrostatics changes in response to a changing environment. This response is captured by a machine learning method called Kriging. Kriging directly predicts each multipole moment of a given atom (i.e. the output) from the coordinates of the nuclei surrounding this atom (i.e. the input). This procedure yields accurate interatomic electrostatic energies, which form the basis for future-proof progress in force field design.

  4. Development of Two-Photon Pump Polarization Spectroscopy Probe Technique Tpp-Psp for Measurements of Atomic Hydrogen .

    NASA Astrophysics Data System (ADS)

    Satija, Aman; Lucht, Robert P.

    2015-06-01

    Atomic hydrogen (H) is a key radical in combustion and plasmas. Accurate knowledge of its concentration can be used to better understand transient phenomenon such as ignition and extinction in combustion environments. Laser induced polarization spectroscopy is a spatially resolved absorption technique which we have adapted for quantitative measurements of H atom. This adaptation is called two-photon pump, polarization spectroscopy probe technique (TPP-PSP) and it has been implemented using two different laser excitation schemes. The first scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-3P levels using a circularly polarized 656-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 656 nm. As a result, the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. The laser beams were created by optical parametric generation followed by multiple pulse dye amplification stages. This resulted in narrow linewidth beams which could be scanned in frequency domain and varied in energy. This allowed us to systematically investigate saturation and Stark effect in 2S-3P transitions with the goal of developing a quantitative H atom measurement technique. The second scheme involves the two-photon excitation of 1S-2S transitions using a linearly polarized 243-nm beam. An anisotropy is created amongst Zeeman states in 2S-4P transitions using a circularly polarized 486-nm pump beam. This anisotropy rotates the polarization of a weak, linearly polarized probe beam at 486 nm. As a result the weak probe beam "leaks" past an analyzer in the detection channel and is measured using a PMT. This signal can be related to H atom density in the probe volume. A dye laser was pumped by third harmonic of a Nd:YAG laser to create a laser beam at 486 nm. The 486-nm beam was frequency doubled to a 243-nm beam. Use of the second scheme simplifies the TPP-PSP technique making it more convenient for diagnostics in practical systems.

  5. Modeling protein structure at near atomic resolutions with Gorgon.

    PubMed

    Baker, Matthew L; Abeysinghe, Sasakthi S; Schuh, Stephen; Coleman, Ross A; Abrams, Austin; Marsh, Michael P; Hryc, Corey F; Ruths, Troy; Chiu, Wah; Ju, Tao

    2011-05-01

    Electron cryo-microscopy (cryo-EM) has played an increasingly important role in elucidating the structure and function of macromolecular assemblies in near native solution conditions. Typically, however, only non-atomic resolution reconstructions have been obtained for these large complexes, necessitating computational tools for integrating and extracting structural details. With recent advances in cryo-EM, maps at near-atomic resolutions have been achieved for several macromolecular assemblies from which models have been manually constructed. In this work, we describe a new interactive modeling toolkit called Gorgon targeted at intermediate to near-atomic resolution density maps (10-3.5 Å), particularly from cryo-EM. Gorgon's de novo modeling procedure couples sequence-based secondary structure prediction with feature detection and geometric modeling techniques to generate initial protein backbone models. Beyond model building, Gorgon is an extensible interactive visualization platform with a variety of computational tools for annotating a wide variety of 3D volumes. Examples from cryo-EM maps of Rotavirus and Rice Dwarf Virus are used to demonstrate its applicability to modeling protein structure. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    NASA Astrophysics Data System (ADS)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.

  7. Diagrammatic technique for calculating matrix elements of collective operators in superradiance. [eigenstates for N two-level atom systems

    NASA Technical Reports Server (NTRS)

    Lee, C. T.

    1975-01-01

    Adopting the so-called genealogical construction, one can express the eigenstates of collective operators corresponding to a specified mode for an N-atom system in terms of those for an (N-1) atom system. Using these Dicke states as bases and using the Wigner-Eckart theorem, a matrix element of a collective operator of an arbitrary mode can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME is obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups is then introduced. This gives a simple and systematic way of calculating the RME. This method is especially useful when the cooperation number r is close to N/2, where almost exact asymptotic expressions can be obtained easily. The result shows explicity the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes.

  8. Radio-Frequency-Controlled Cold Collisions and Universal Properties of Unitary Bose Gases

    NASA Astrophysics Data System (ADS)

    Ding, Yijue

    This thesis investigates two topics: ultracold atomic collisions in a radio-frequency field and universal properties of a degenerate unitary Bose gas. One interesting point of the unitary Bose gas is that the system has only one length scale, that is, the average interparticle distance. This single parameter determines all properties of the gas, which is called the universality of the system. We first introduce a renormalized contact interaction to extend the validity of the zero-range interaction to large scattering lengths. Then this renormalized interaction is applied to many-body theories to determined those universal relations of the system. From the few-body perspective, we discuss the scattering between atoms in a single-color radio-frequency field. Our motivation is proposing the radio-frequency field as an effective tool to control interactions between cold atoms. Such a technique may be useful in future experiments such as creating phase transitions in spinor condensates. We also discuss the formation of ultracold molecules using radio-freqency fields from a time-dependent approach.

  9. Optimization of a constrained linear monochromator design for neutral atom beams.

    PubMed

    Kaltenbacher, Thomas

    2016-04-01

    A focused ground state, neutral atom beam, exploiting its de Broglie wavelength by means of atom optics, is used for neutral atom microscopy imaging. Employing Fresnel zone plates as a lens for these beams is a well established microscopy technique. To date, even for favorable beam source conditions a minimal focus spot size of slightly below 1μm was reached. This limitation is essentially given by the intrinsic spectral purity of the beam in combination with the chromatic aberration of the diffraction based zone plate. Therefore, it is important to enhance the monochromaticity of the beam, enabling a higher spatial resolution, preferably below 100nm. We propose to increase the monochromaticity of a neutral atom beam by means of a so-called linear monochromator set-up - a Fresnel zone plate in combination with a pinhole aperture - in order to gain more than one order of magnitude in spatial resolution. This configuration is known in X-ray microscopy and has proven to be useful, but has not been applied to neutral atom beams. The main result of this work is optimal design parameters based on models for this linear monochromator set-up followed by a second zone plate for focusing. The optimization was performed for minimizing the focal spot size and maximizing the centre line intensity at the detector position for an atom beam simultaneously. The results presented in this work are for, but not limited to, a neutral helium atom beam. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Numerical Aspects of Atomic Physics: Helium Basis Sets and Matrix Diagonalization

    NASA Astrophysics Data System (ADS)

    Jentschura, Ulrich; Noble, Jonathan

    2014-03-01

    We present a matrix diagonalization algorithm for complex symmetric matrices, which can be used in order to determine the resonance energies of auto-ionizing states of comparatively simple quantum many-body systems such as helium. The algorithm is based in multi-precision arithmetic and proceeds via a tridiagonalization of the complex symmetric (not necessarily Hermitian) input matrix using generalized Householder transformations. Example calculations involving so-called PT-symmetric quantum systems lead to reference values which pertain to the imaginary cubic perturbation (the imaginary cubic anharmonic oscillator). We then proceed to novel basis sets for the helium atom and present results for Bethe logarithms in hydrogen and helium, obtained using the enhanced numerical techniques. Some intricacies of ``canned'' algorithms such as those used in LAPACK will be discussed. Our algorithm, for complex symmetric matrices such as those describing cubic resonances after complex scaling, is faster than LAPACK's built-in routines, for specific classes of input matrices. It also offer flexibility in terms of the calculation of the so-called implicit shift, which is used in order to ``pivot'' the system toward the convergence to diagonal form. We conclude with a wider overview.

  11. Similarities between principal components of protein dynamics and random diffusion

    NASA Astrophysics Data System (ADS)

    Hess, Berk

    2000-12-01

    Principal component analysis, also called essential dynamics, is a powerful tool for finding global, correlated motions in atomic simulations of macromolecules. It has become an established technique for analyzing molecular dynamics simulations of proteins. The first few principal components of simulations of large proteins often resemble cosines. We derive the principal components for high-dimensional random diffusion, which are almost perfect cosines. This resemblance between protein simulations and noise implies that for many proteins the time scales of current simulations are too short to obtain convergence of collective motions.

  12. In-situ Isotopic Analysis at Nanoscale using Parallel Ion Electron Spectrometry: A Powerful New Paradigm for Correlative Microscopy

    NASA Astrophysics Data System (ADS)

    Yedra, Lluís; Eswara, Santhana; Dowsett, David; Wirtz, Tom

    2016-06-01

    Isotopic analysis is of paramount importance across the entire gamut of scientific research. To advance the frontiers of knowledge, a technique for nanoscale isotopic analysis is indispensable. Secondary Ion Mass Spectrometry (SIMS) is a well-established technique for analyzing isotopes, but its spatial-resolution is fundamentally limited. Transmission Electron Microscopy (TEM) is a well-known method for high-resolution imaging down to the atomic scale. However, isotopic analysis in TEM is not possible. Here, we introduce a powerful new paradigm for in-situ correlative microscopy called the Parallel Ion Electron Spectrometry by synergizing SIMS with TEM. We demonstrate this technique by distinguishing lithium carbonate nanoparticles according to the isotopic label of lithium, viz. 6Li and 7Li and imaging them at high-resolution by TEM, adding a new dimension to correlative microscopy.

  13. Proton Therapy

    MedlinePlus

    ... matter is made up of tiny particles called atoms. At the center of every atom is a nucleus, which holds two types of ... which is a nuclear reactor that can smash atoms to release proton, neutron, and helium ion beams. ...

  14. Tried and True: The Romance of the Atoms--Animated Atomic Attractions

    ERIC Educational Resources Information Center

    Hibbitt, Catherine

    2010-01-01

    Since the formation of atomic bonds is active, the authors sought a way of learning through drama or kinetic activity. To achieve this goal, they developed an activity called Romance of the Atoms. The activity requires students to use computer-animation technology to develop short cartoons that explain atomic classification and bonds. This…

  15. Valence atom with bohmian quantum potential: the golden ratio approach

    PubMed Central

    2012-01-01

    Background The alternative quantum mechanical description of total energy given by Bohmian theory was merged with the concept of the golden ratio and its appearance as the Heisenberg imbalance to provide a new density-based description of the valence atomic state and reactivity charge with the aim of clarifying their features with respect to the so-called DFT ground state and critical charge, respectively. Results The results, based on the so-called double variational algorithm for chemical spaces of reactivity, are fundamental and, among other issues regarding chemical bonding, solve the existing paradox of using a cubic parabola to describe a quadratic charge dependency. Conclusions Overall, the paper provides a qualitative-quantitative explanation of chemical reactivity based on more than half of an electronic pair in bonding, and provide new, more realistic values for the so-called “universal” electronegativity and chemical hardness of atomic systems engaged in reactivity (analogous to the atoms-in-molecules framework). PMID:23146157

  16. Response spectra analysis of the modal summation technique verified by observed seismometer and accelerometer waveform data of the M6.5 Pidie Jaya Earthquake

    NASA Astrophysics Data System (ADS)

    Irwandi; Rusydy, Ibnu; Muksin, Umar; Rudyanto, Ariska; Daryono

    2018-05-01

    Wave vibration confined in the boundary will produce stationary wave solution in discrete states called modes. There are many physics applications related to modal solutions such as air column resonance, string vibration, and emission spectrum of the atomic Hydrogen. Naturally, energy is distributed in several modes so that the complete calculation is obtained from the sum of the whole modes called modal summation. The modal summation technique was applied to simulate the surface wave propagation above crustal structure of the earth. The method is computational because it uses 1D structural model which is not necessary to calculate the overall wave propagation. The simulation results of the magnitude 6.5 Pidie Jaya earthquake show the response spectral of the Summation Technique has a good correlation to the observed seismometer and accelerometer waveform data, especially at the KCSI (Kotacane) station. On the other hand, at the LASI (Langsa) station shows the modal simulation result of response is relatively lower than observation. The lower value of the reaction spectral estimation is obtained because the station is located in the thick sedimentary basin causing the amplification effect. This is the limitation of modal summation technique, and therefore it should be combined with different finite simulation on the 2D local structural model of the basin.

  17. Enhancement of neutron radiation dose by the addition of sulphur-33 atoms.

    PubMed

    Porras, I

    2008-04-07

    The use of neutrons in radiotherapy allows the possibility of producing nuclear reactions in a specific target inserted in the medium. (10)B is being used to induce reactions (n, alpha), a technique called boron neutron capture therapy. I have studied the possibility of inducing a similar reaction using the nucleus of (33)S, for which the reaction cross section presents resonances for keV neutrons, the highest peak occurring at 13.5 keV. Here shown, by means of Monte Carlo simulation of point-like sources of neutrons in this energy range, is an enhancement effect on the absorbed dose in water by the addition of (33)S atoms. In addition to this, as the range of the alpha particle is of the order of a mammalian cell size, the energy deposition via this reaction results mainly inside the cells adjacent to the interaction site. The main conclusion of the present work is that the insertion of these sulphur atoms in tumoral cells would enhance the effect of neutron irradiation in the keV range.

  18. Overview of Three-Dimensional Atomic-Resolution Holography and Imaging Techniques: Recent Advances in Local-Structure Science

    NASA Astrophysics Data System (ADS)

    Daimon, Hiroshi

    2018-06-01

    Local three-dimensional (3D) atomic arrangements without periodicity have not been able to be studied until recently. Recently, several holographies and related techniques have been developed to reveal the 3D atomic arrangement around specific atoms with no translational symmetry. This review gives an overview of these new local 3D atomic imaging techniques.

  19. Atomic interactions at the (100) diamond surface and the impact of surface and interface changes on the electronic transport properties

    NASA Astrophysics Data System (ADS)

    Deferme, Wim

    Centuries and centuries already, diamond is a material that speaks to ones imagination. Till the 18th century it was only mined in India, after it was also found in Brazil and South-Africa. But along the fascinating properties of diamond, it is also a very interesting material for industry. After the discovery at the end of the 18th century that diamond consists of carbon, it took until the 50's of the previous century before research groups from Russia, Japan and the USA were able to reproduce the growth process of diamond. In 1989 it was discovered that the surface of intrinsic, insulation diamond can be made conductive by hydrogenating the surface. It was clear that not only hydrogen at the surface but also the so called "adsorbates" were responsible for this conductivity. It was still not completely clear what was the influence of other species (like oxygen) on the mechanism of surface conductivity and therefore in this thesis the influence of oxygen on the electronic transport properties of atomically flat diamond are researched. Besides the growth of atomically flat diamond with the use of CVD (chemical vapour deposition) en the study of the grown surfaces with characterising techniques such as AFM (atomic force microscopy) and STM (scanning tunnelling microscopy), the study of the surface treatment with plasma techniques is the main topic of this thesis. The influence of oxygen on the surface conductivity is studied and with the ToF (Time-of-Flight) technique the transport properties of the freestanding diamond are examined. With a short laserflash, electrons and holes are created at the diamond/aluminium interface and due to an electric field (up to 500V) the charge carriers are translated to the back contact. In this way the influence of the surface and the changes at the aluminum contacts is studied leading to very interesting results.

  20. Analysis of an Unusual Mirror in a 16th-Century Painting: A Museum Exercise for Physics Students

    NASA Astrophysics Data System (ADS)

    Swaminathan, Sudha; Lamelas, Frank

    2017-04-01

    Physics students at Worcester State University visit the Worcester Art Museum (WAM) at the end of a special 100-level course called Physics in Art. The students have studied geometrical optics, and they have been introduced to concepts in atomic physics. The purpose of the museum tour is to show how physics-based techniques can be used in a nontraditional lab setting. Other examples of the use of museum-based art in physics instruction include analyses of Pointillism and image resolution, and of reflections in soap bubbles in 17- and 18th-century paintings.

  1. Method for the determination of cobalt from biological products with graphite furnace atomic absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Zamfir, Oana-Liliana; Ionicǎ, Mihai; Caragea, Genica; Radu, Simona; Vlǎdescu, Marian

    2016-12-01

    Cobalt is a chemical element with symbol Co and atomic number 27 and atomic weight 58.93. 59 Co is the only stable cobalt isotope and the only isotope to exist naturally on Earth. Cobalt is the active center of coenzymes called cobalamin or cyanocobalamin the most common example of which is vitamin B12. Vitamin B12 deficiency can potentially cause severe and irreversible damage, especially to the brain and nervous system in the form of fatigue, depression and poor memory or even mania and psychosis. In order to study the degree of deficiency of the population with Co or the correctness of treatment with vitamin B12, a modern optoelectronic method for the determination of metals and metalloids from biological samples has been developed, Graphite Furnace - Atomic Absorption Spectrometer (GF- AAS) method is recommended. The technique is based on the fact that free atoms will absorb light at wavelengths characteristic of the element of interest. Free atoms of the chemical element can be produced from samples by the application of high temperatures. The system GF-AAS Varian used as biological samples, blood or urine that followed the digest of the organic matrix. For the investigations was used a high - performance GF-AAS with D2 - background correction system and a transversely heated graphite atomizer. As result of the use of the method are presented the concentration of Co in the blood or urine of a group of patient in Bucharest. The method is sensitive, reproducible relatively easy to apply, with a moderately costs.

  2. FAST CARS: Engineering a laser spectroscopic technique for rapid identification of bacterial spores

    PubMed Central

    Scully, M. O.; Kattawar, G. W.; Lucht, R. P.; Opatrný, T.; Pilloff, H.; Rebane, A.; Sokolov, A. V.; Zubairy, M. S.

    2002-01-01

    Airborne contaminants, e.g., bacterial spores, are usually analyzed by time-consuming microscopic, chemical, and biological assays. Current research into real-time laser spectroscopic detectors of such contaminants is based on e.g., resonance fluorescence. The present approach derives from recent experiments in which atoms and molecules are prepared by one (or more) coherent laser(s) and probed by another set of lasers. However, generating and using maximally coherent oscillation in macromolecules having an enormous number of degrees of freedom is challenging. In particular, the short dephasing times and rapid internal conversion rates are major obstacles. However, adiabatic fast passage techniques and the ability to generate combs of phase-coherent femtosecond pulses provide tools for the generation and utilization of maximal quantum coherence in large molecules and biopolymers. We call this technique FAST CARS (femtosecond adaptive spectroscopic techniques for coherent anti-Stokes Raman spectroscopy), and the present article proposes and analyses ways in which it could be used to rapidly identify preselected molecules in real time. PMID:12177405

  3. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.

  4. Superimposition of protein structures with dynamically weighted RMSD.

    PubMed

    Wu, Di; Wu, Zhijun

    2010-02-01

    In protein modeling, one often needs to superimpose a group of structures for a protein. A common way to do this is to translate and rotate the structures so that the square root of the sum of squares of coordinate differences of the atoms in the structures, called the root-mean-square deviation (RMSD) of the structures, is minimized. While it has provided a general way of aligning a group of structures, this approach has not taken into account the fact that different atoms may have different properties and they should be compared differently. For this reason, when superimposed with RMSD, the coordinate differences of different atoms should be evaluated with different weights. The resulting RMSD is called the weighted RMSD (wRMSD). Here we investigate the use of a special wRMSD for superimposing a group of structures with weights assigned to the atoms according to certain thermal motions of the atoms. We call such an RMSD the dynamically weighted RMSD (dRMSD). We show that the thermal motions of the atoms can be obtained from several sources such as the mean-square fluctuations that can be estimated by Gaussian network model analysis. We show that the superimposition of structures with dRMSD can successfully identify protein domains and protein motions, and that it has important implications in practice, e.g., in aligning the ensemble of structures determined by nuclear magnetic resonance.

  5. Workshop on Measurement Needs for Local-Structure Determination in Inorganic Materials

    PubMed Central

    Levin, Igor; Vanderah, Terrell

    2008-01-01

    The functional responses (e.g., dielectric, magnetic, catalytic, etc.) of many industrially-relevant materials are controlled by their local structure—a term that refers to the atomic arrangements on a scale ranging from atomic (sub-nanometer) to several nanometers. Thus, accurate knowledge of local structure is central to understanding the properties of nanostructured materials, thereby placing the problem of determining atomic positions on the nanoscale—the so-called “nanostructure problem”—at the center of modern materials development. Today, multiple experimental techniques exist for probing local atomic arrangements; nonetheless, finding accurate comprehensive, and robust structural solutions for the nanostructured materials still remains a formidable challenge because any one of these methods yields only a partial view of the local structure. The primary goal of this 2-day NIST-sponsored workshop was to bring together experts in the key experimental and theoretical areas relevant to local-structure determination to devise a strategy for the collaborative effort required to develop a comprehensive measurement solution on the local scale. The participants unanimously agreed that solving the nanostructure problem—an ultimate frontier in materials characterization—necessitates a coordinated interdisciplinary effort that transcends the existing capabilities of any single institution, including national laboratories, centers, and user facilities. The discussions converged on an institute dedicated to local structure determination as the most viable organizational platform for successfully addressing the nanostructure problem. The proposed “institute” would provide an intellectual infrastructure for local structure determination by (1) developing and maintaining relevant computer software integrated in an open-source global optimization framework (Fig. 2), (2) connecting industrial and academic users with experts in measurement techniques, (3) developing and maintaining pertinent databases, and (4) providing necessary education and training. PMID:27096131

  6. [Recent Development of Atomic Spectrometry in China].

    PubMed

    Xiao, Yuan-fang; Wang, Xiao-hua; Hang, Wei

    2015-09-01

    As an important part of modern analytical techniques, atomic spectrometry occupies a decisive status in the whole analytical field. The development of atomic spectrometry also reflects the continuous reform and innovation of analytical techniques. In the past fifteen years, atomic spectrometry has experienced rapid development and been applied widely in many fields in China. This review has witnessed its development and remarkable achievements. It contains several directions of atomic spectrometry, including atomic emission spectrometry (AES), atomic absorption spectrometry (AAS), atomic fluorescence spectrometry (AFS), X-ray fluorescence spectrometry (XRF), and atomic mass spectrometry (AMS). Emphasis is put on the innovation of the detection methods and their applications in related fields, including environmental samples, biological samples, food and beverage, and geological materials, etc. There is also a brief introduction to the hyphenated techniques utilized in atomic spectrometry. Finally, the prospects of atomic spectrometry in China have been forecasted.

  7. MISSE PEACE Polymers Atomic Oxygen Erosion Results

    NASA Technical Reports Server (NTRS)

    deGroh, Kim, K.; Banks, Bruce A.; McCarthy, Catherine E.; Rucker, Rochelle N.; Roberts, Lily M.; Berger, Lauren A.

    2006-01-01

    Forty-one different polymer samples, collectively called the Polymer Erosion and Contamination Experiment (PEACE) Polymers, have been exposed to the low Earth orbit (LEO) environment on the exterior of the International Space Station (ISS) for nearly 4 years as part of Materials International Space Station Experiment 2 (MISSE 2). The objective of the PEACE Polymers experiment was to determine the atomic oxygen erosion yield of a wide variety of polymeric materials after long term exposure to the space environment. The polymers range from those commonly used for spacecraft applications, such as Teflon (DuPont) FEP, to more recently developed polymers, such as high temperature polyimide PMR (polymerization of monomer reactants). Additional polymers were included to explore erosion yield dependence upon chemical composition. The MISSE PEACE Polymers experiment was flown in MISSE Passive Experiment Carrier 2 (PEC 2), tray 1, on the exterior of the ISS Quest Airlock and was exposed to atomic oxygen along with solar and charged particle radiation. MISSE 2 was successfully retrieved during a space walk on July 30, 2005, during Discovery s STS-114 Return to Flight mission. Details on the specific polymers flown, flight sample fabrication, pre-flight and post-flight characterization techniques, and atomic oxygen fluence calculations are discussed along with a summary of the atomic oxygen erosion yield results. The MISSE 2 PEACE Polymers experiment is unique because it has the widest variety of polymers flown in LEO for a long duration and provides extremely valuable erosion yield data for spacecraft design purposes.

  8. Structural tuning of nanogaps using electromigration induced by field emission current with bipolar biasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yagi, Mamiko; Ito, Mitsuki; Shirakashi, Jun-ichi, E-mail: shrakash@cc.tuat.ac.jp

    We report a new method for fabrication of Ni nanogaps based on electromigration induced by a field emission current. This method is called “activation” and is demonstrated here using a current source with alternately reversing polarities. The activation procedure with alternating current bias, in which the current source polarity alternates between positive and negative bias conditions, is performed with planar Ni nanogaps defined on SiO{sub 2}/Si substrates at room temperature. During negative biasing, a Fowler-Nordheim field emission current flows from the source (cathode) to the drain (anode) electrode. The Ni atoms at the tip of the drain electrode are thusmore » activated and then migrate across the gap from the drain to the source electrode. In contrast, in the positive bias case, the field emission current moves the activated atoms from the source to the drain electrode. These two procedures are repeated until the tunnel resistance of the nanogaps is successively reduced from 100 TΩ to 48 kΩ. Scanning electron microscopy and atomic force microscopy studies showed that the gap separation narrowed from approximately 95 nm to less than 10 nm because of the Ni atoms that accumulated at the tips of both the source and drain electrodes. These results show that the alternately biased activation process, which is a newly proposed atom transfer technique, can successfully control the tunnel resistance of the Ni nanogaps and is a suitable method for formation of ultrasmall nanogap structures.« less

  9. Second-order relativistic corrections for the S(L=0) states in one- and two-electron atomic systems

    NASA Astrophysics Data System (ADS)

    Frolov, A. M.; Mitelut, C. C.; Zhong, Z.

    2005-01-01

    An analytical approach is developed to compute the first- (similar to alpha(2)) and second-order (similar to alpha(4)) relativistic corrections in one- and two-electron atomic systems. The approach is based on the reduction of all operators to divergent (singular) and nondivergent (regular) parts. Then, we show that all the divergent parts from the differentmatrix elements cancel each other. The remaining expression contains only regular operators and its expectation value can be easily computed. Analysis of the S(L = 0) states in such systems is of specific interest since the corresponding operators for these states contain a large number of singularities. For one-electron systems the computed relativistic corrections coincide exactly with the appropriate result that follows from the Taylor expansion of the relativistic (i.e., Dirac) energy. We also discuss an alternative approach that allows one to cancel all singularities by using the so-called operator-compensation technique. This second approach is found to be very effective in applications of more complex systems, such as helium-like atoms and ions, H-2(+)-like ions, and some exotic three-body systems.

  10. Noise reduction in optically controlled quantum memory

    NASA Astrophysics Data System (ADS)

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2018-05-01

    Quantum memory is an essential tool for quantum communications systems and quantum computers. An important category of quantum memory, called optically controlled quantum memory, uses a strong classical beam to control the storage and re-emission of a single-photon signal through an atomic ensemble. In this type of memory, the residual light from the strong classical control beam can cause severe noise and degrade the system performance significantly. Efficiently suppressing this noise is a requirement for the successful implementation of optically controlled quantum memories. In this paper, we briefly introduce the latest and most common approaches to quantum memory and review the various noise-reduction techniques used in implementing them.

  11. Experimental level densities of atomic nuclei

    DOE PAGES

    Guttormsen, M.; Aiche, M.; Bello Garrote, F. L.; ...

    2015-12-23

    It is almost 80 years since Hans Bethe described the level density as a non-interacting gas of protons and neutrons. In all these years, experimental data were interpreted within this picture of a fermionic gas. However, the renewed interest of measuring level density using various techniques calls for a revision of this description. In particular, the wealth of nuclear level densities measured with the Oslo method favors the constant-temperature level density over the Fermi-gas picture. Furthermore, trom the basis of experimental data, we demonstrate that nuclei exhibit a constant-temperature level density behavior for all mass regions and at least upmore » to the neutron threshold.« less

  12. Topological Characterization of Carbon Graphite and Crystal Cubic Carbon Structures.

    PubMed

    Siddiqui, Wei Gao Muhammad Kamran; Naeem, Muhammad; Rehman, Najma Abdul

    2017-09-07

    Graph theory is used for modeling, designing, analysis and understanding chemical structures or chemical networks and their properties. The molecular graph is a graph consisting of atoms called vertices and the chemical bond between atoms called edges. In this article, we study the chemical graphs of carbon graphite and crystal structure of cubic carbon. Moreover, we compute and give closed formulas of degree based additive topological indices, namely hyper-Zagreb index, first multiple and second multiple Zagreb indices, and first and second Zagreb polynomials.

  13. Failure of Local Thermal Equilibrium in Quantum Friction

    NASA Astrophysics Data System (ADS)

    Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.

    2016-09-01

    Recent progress in manipulating atomic and condensed matter systems has instigated a surge of interest in nonequilibrium physics, including many-body dynamics of trapped ultracold atoms and ions, near-field radiative heat transfer, and quantum friction. Under most circumstances the complexity of such nonequilibrium systems requires a number of approximations to make theoretical descriptions tractable. In particular, it is often assumed that spatially separated components of a system thermalize with their immediate surroundings, although the global state of the system is out of equilibrium. This powerful assumption reduces the complexity of nonequilibrium systems to the local application of well-founded equilibrium concepts. While this technique appears to be consistent for the description of some phenomena, we show that it fails for quantum friction by underestimating by approximately 80% the magnitude of the drag force. Our results show that the correlations among the components of driven, but steady-state, quantum systems invalidate the assumption of local thermal equilibrium, calling for a critical reexamination of this approach for describing the physics of nonequilibrium systems.

  14. Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p.

    PubMed

    Brewer, Laurence R; Friddle, Raymond; Noy, Aleksandr; Baldwin, Enoch; Martin, Shelley S; Corzett, Michele; Balhorn, Rod; Baskin, Ronald J

    2003-10-01

    Mitochondrial and nuclear DNA are packaged by proteins in a very different manner. Although protein-DNA complexes called "nucleoids" have been identified as the genetic units of mitochondrial inheritance in yeast and man, little is known about their physical structure. The yeast mitochondrial protein Abf2p was shown to be sufficient to compact linear dsDNA, without the benefit of supercoiling, using optical and atomic force microscopy single molecule techniques. The packaging of DNA by Abf2p was observed to be very weak as evidenced by a fast Abf2p off-rate (k(off) = 0.014 +/- 0.001 s(-1)) and the extremely small forces (<0.6 pN) stabilizing the condensed protein-DNA complex. Atomic force microscopy images of individual complexes showed the 190-nm structures are loosely packaged relative to nuclear chromatin. This organization may leave mtDNA accessible for transcription and replication, while making it more vulnerable to damage.

  15. Chemical Bonding: The Orthogonal Valence-Bond View

    PubMed Central

    Sax, Alexander F.

    2015-01-01

    Chemical bonding is the stabilization of a molecular system by charge- and spin-reorganization processes in chemical reactions. These processes are said to be local, because the number of atoms involved is very small. With multi-configurational self-consistent field (MCSCF) wave functions, these processes can be calculated, but the local information is hidden by the delocalized molecular orbitals (MO) used to construct the wave functions. The transformation of such wave functions into valence bond (VB) wave functions, which are based on localized orbitals, reveals the hidden information; this transformation is called a VB reading of MCSCF wave functions. The two-electron VB wave functions describing the Lewis electron pair that connects two atoms are frequently called covalent or neutral, suggesting that these wave functions describe an electronic situation where two electrons are never located at the same atom; such electronic situations and the wave functions describing them are called ionic. When the distance between two atoms decreases, however, every covalent VB wave function composed of non-orthogonal atomic orbitals changes its character from neutral to ionic. However, this change in the character of conventional VB wave functions is hidden by its mathematical form. Orthogonal VB wave functions composed of orthonormalized orbitals never change their character. When localized fragment orbitals are used instead of atomic orbitals, one can decide which local information is revealed and which remains hidden. In this paper, we analyze four chemical reactions by transforming the MCSCF wave functions into orthogonal VB wave functions; we show how the reactions are influenced by changing the atoms involved or by changing their local symmetry. Using orthogonal instead of non-orthogonal orbitals is not just a technical issue; it also changes the interpretation, revealing the properties of wave functions that remain otherwise undetected. PMID:25906476

  16. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    PubMed Central

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  17. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography.

    PubMed

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-09-06

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys.

  18. Techniques for Measuring Low Earth Orbital Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Demko, Rikako

    2002-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, where the atomic oxygen fluence is often so low that mass loss measurements can not produce acceptable uncertainties, recession measurements based on atomic force microscopy analyses can be used. Equally necessary to knowing the mass loss or recession depth for determining the erosion yield of polymers is the knowledge of the atomic oxygen fluence that the polymers were exposed to in space. This paper discusses the procedures and relevant issues for mass loss and recession depth measurements for passive atomic oxygen erosion yield characterization of polymers, along with techniques for active atomic oxygen fluence and erosion characterization. One active atomic oxygen erosion technique discussed is a new technique based on optical measurements. Details including the use of both semi-transparent and opaque polymers for active erosion measurement are reviewed.

  19. Using Atomic Force Microscopy to Characterize the Conformational Properties of Proteins and Protein-DNA Complexes That Carry Out DNA Repair.

    PubMed

    LeBlanc, Sharonda; Wilkins, Hunter; Li, Zimeng; Kaur, Parminder; Wang, Hong; Erie, Dorothy A

    2017-01-01

    Atomic force microscopy (AFM) is a scanning probe technique that allows visualization of single biomolecules and complexes deposited on a surface with nanometer resolution. AFM is a powerful tool for characterizing protein-protein and protein-DNA interactions. It can be used to capture snapshots of protein-DNA solution dynamics, which in turn, enables the characterization of the conformational properties of transient protein-protein and protein-DNA interactions. With AFM, it is possible to determine the stoichiometries and binding affinities of protein-protein and protein-DNA associations, the specificity of proteins binding to specific sites on DNA, and the conformations of the complexes. We describe methods to prepare and deposit samples, including surface treatments for optimal depositions, and how to quantitatively analyze images. We also discuss a new electrostatic force imaging technique called DREEM, which allows the visualization of the path of DNA within proteins in protein-DNA complexes. Collectively, these methods facilitate the development of comprehensive models of DNA repair and provide a broader understanding of all protein-protein and protein-nucleic acid interactions. The structural details gleaned from analysis of AFM images coupled with biochemistry provide vital information toward establishing the structure-function relationships that govern DNA repair processes. © 2017 Elsevier Inc. All rights reserved.

  20. From Graphite to Graphene via Scanning Tunneling Microscopy

    NASA Astrophysics Data System (ADS)

    Qi, Dejun

    The primary objective of this dissertation is to study both graphene on graphite and pristine freestanding grapheme using scanning tunneling microscopy (STM) and density functional theory (DFT) simulation technique. In the experiment part, good quality tungsten metalic tips for experiment were fabricated using our newly developed tip making setup. Then a series of measurements using a technique called electrostatic-manipulation scanning tunneling microscopy (EM-STM) of our own development were performed on a highly oriented pyrolytic graphite (HOPG) surface. The electrostatic interaction between the STM tip and the sample can be tuned to produce both reversible and irreversible large-scale movement of the graphite surface. Under this influence, atomic-resolution STM images reveal that a continuous electronic transition between two distinct patterns can be systematically controlled. DFT calculations reveal that this transition can be related to vertical displacements of the top layer of graphite relative to the bulk. Evidence for horizontal shifts in the top layer of graphite is also presented. Excellent agreement is found between experimental STM images and those simulated using DFT. In addition, the EM-STM technique was also used to controllably and reversibly pull freestanding graphene membranes up to 35 nm from their equilibrium height. Atomic-scale corrugation amplitudes 20 times larger than the STM electronic corrugation for graphene on a substrate were observed. The freestanding graphene membrane responds to a local attractive force created at the STM tip as a highly conductive yet flexible grounding plane with an elastic restoring force.

  1. Visualizing molecular polar order in tissues via electromechanical coupling

    PubMed Central

    Denning, Denise; Alilat, Sofiane; Habelitz, Stefan; Fertala, Andrzej; Rodriguez, Brian J.

    2015-01-01

    Electron microscopy (EM) and atomic force microscopy (AFM) techniques have long been used to characterize collagen fibril ordering and alignment in connective tissues. These techniques, however, are unable to map collagen fibril polarity, i.e., the polar orientation that is directed from the amine to the carboxyl termini. Using a voltage modulated AFM-based technique called piezoresponse force microscopy (PFM), we show it is possible to visualize both the alignment of collagen fibrils within a tissue and the polar orientation of the fibrils with minimal sample preparation. We demonstrate the technique on rat tail tendon and porcine eye tissues in ambient conditions. In each sample, fibrils are arranged into domains whereby neighboring domains exhibit opposite polarizations, which in some cases extend to the individual fibrillar level. Uniform polarity has not been observed in any of the tissues studied. Evidence of anti-parallel ordering of the amine to carboxyl polarity in bundles of fibrils or in individual fibrils is found in all tissues, which has relevance for understanding mechanical and biofunctional properties and the formation of connective tissues. The technique can be applied to any biological material containing piezoelectric biopolymers or polysaccharides. PMID:22985991

  2. Remote preparation of an atomic quantum memory.

    PubMed

    Rosenfeld, Wenjamin; Berner, Stefan; Volz, Jürgen; Weber, Markus; Weinfurter, Harald

    2007-02-02

    Storage and distribution of quantum information are key elements of quantum information processing and future quantum communication networks. Here, using atom-photon entanglement as the main physical resource, we experimentally demonstrate the preparation of a distant atomic quantum memory. Applying a quantum teleportation protocol on a locally prepared state of a photonic qubit, we realized this so-called remote state preparation on a single, optically trapped 87Rb atom. We evaluated the performance of this scheme by the full tomography of the prepared atomic state, reaching an average fidelity of 82%.

  3. A new technique for in situ measurement of the composition of neutral gas in interplanetary space

    NASA Technical Reports Server (NTRS)

    Gruntman, Michael A.

    1993-01-01

    Neutral atoms in interplanetary space play an important role in many processes relevant to the formation and evolution of the Solar System. An experimental approach is proposed for in situ atom detection based on the conversion of neutral atoms to negative ions at a specially prepared sensitive surface. Negative ions are subsequently analyzed and detected in an essentially noise-free mode. The use of the technique for in situ study of the composition of neutral interstellar atoms is considered. It is shown that interstellar H, D, and O atoms and possibly H2 molecules can be measured by the proposed technique. The experiment can be performed from a high-apogee Earth-orbiting satellite or from a deep space probe. Possible applications of the technique are discussed.

  4. Analysis of Size Correlations for Microdroplets Produced by Ultrasonic Atomization

    PubMed Central

    Barba, Anna Angela; d'Amore, Matteo

    2013-01-01

    Microencapsulation techniques are widely applied in the field of pharmaceutical production to control drugs release in time and in physiological environments. Ultrasonic-assisted atomization is a new technique to produce microencapsulated systems by a mechanical approach. Interest in this technique is due to the advantages evidenceable (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) when comparing it to more conventional techniques. In this paper, the groundwork of atomization is introduced, the role of relevant parameters in ultrasonic atomization mechanism is discussed, and correlations to predict droplets size starting from process parameters and material properties are presented and tested. PMID:24501580

  5. Determination of the line shapes of atomic nitrogen resonance lines by magnetic scans

    NASA Technical Reports Server (NTRS)

    Lawrence, G. M.; Stone, E. J.; Kley, D.

    1976-01-01

    A technique is given for calibrating an atomic nitrogen resonance lamp for use in determining column densities of atoms in specific states. A discharge lamp emitting the NI multiplets at 1200 A and 1493 A is studied by obtaining absorption by atoms in a magnetic field (0-2.5 T). This magnetic scanning technique enables the determination of the absorbing atom column density, and an empirical curve of growth is obtained because the atomic f-value is known. Thus, the calibrated lamp can be used in the determination of atomic column densities.

  6. Formation of the nitrogen aggregates in annealed diamond by neutron irradiation

    NASA Astrophysics Data System (ADS)

    Mita, Y.; Nisida, Y.; Okada, M.

    2018-02-01

    Neutron heavy irradiation was performed on synthetic diamonds contain nitrogen atoms in isolated substitutional form (called "type Ib diamond") and they were annealed under a pressure of 6 GPa. A large number of nitrogen B-aggregate which consists of four substitutional nitrogen atoms symmetrically surrounding a vacancy was formed within 30 m from single nitrogen atoms. Furthermore it is observed that, in these diamonds, single nitrogen atoms coexist with the B-aggregates, which is unexplainable by the simple nitrogen aggregation model.

  7. Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials

    PubMed Central

    Xie, Jingwei; Jiang, Jiang; Davoodi, Pooya; Srinivasan, M. P.; Wang, Chi-Hwa

    2014-01-01

    Electrohydrodynamic atomization (EHDA), also called electrospray technique, has been studied for more than one century. However, since 1990s it has begun to be used to produce and process micro-/nanostructured materials. Owing to the simplicity and flexibility in EHDA experimental setup, it has been successfully employed to generate particulate materials with controllable compositions, structures, sizes, morphologies, and shapes. EHDA has also been used to deposit micro- and nanoparticulate materials on surfaces in a well-controlled manner. All these attributes make EHDA a fascinating tool for preparing and assembling a wide range of micro- and nanostructured materials which have been exploited for use in pharmaceutics, food, and healthcare to name a few. Our goal is to review this field, which allows scientists and engineers to learn about the EHDA technique and how it might be used to create, process, and assemble micro-/nanoparticulate materials with unique and intriguing properties. We begin with a brief introduction to the mechanism and setup of EHDA technique. We then discuss issues critical to successful application of EHDA technique, including control of composition, size, shape, morphology, structure of particulate materials and their assembly. We also illustrate a few of the many potential applications of particulate materials, especially in the area of drug delivery and regenerative medicine. Next, we review the simulation and modeling of Taylor cone-jet formation for a single and co-axial nozzle. The mathematical modeling of particle transport and deposition is presented to provide a deeper understanding of the effective parameters in the preparation, collection and pattering processes. We conclude this article with a discussion on perspectives and future possibilities in this field. PMID:25684778

  8. Atomic photoionization processes under magnification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepine, F.; Bordas, Ch.; Nicole, C.

    2004-09-01

    Recently, classical simulations of threshold photoionization in the presence of an electric field have shown that a clear distinction between direct and indirect trajectories followed by the outgoing electron can be observed in the patterns of electron impacts on a two-dimensional detector. Subsequently, slow photoelectron imaging experiments have been reported where this distinction could be observed in atomic xenon. Furthermore, using a magnifying electrostatic lens to improve the velocity-map imaging technique, oscillatory patterns were observed modulating the classical envelope that was measured in the experiments of Nicole et al. [Phys. Rev. Lett. 88, 133001 (2002)]. This extension of slow photoelectronmore » imaging, called photoionization microscopy, relies on the existence of interferences between various trajectories by which the electron moves from the atom to the plane of observation. In this article we present the main experimental results obtained both in slow photoelectron imaging and in photoionization microscopy. The formation of the interference pattern is discussed in the framework of a semiclassical model that is described in detail elsewhere. The qualitative information that can be drawn from the experiments is discussed, and the potential applications of photoionization microscopy are considered. Particular attention is paid to the role of continuum Stark resonances that appear between the saddle point in the Coulomb+dc field potential and the field-free ionization limit.« less

  9. Sensitive Technique Developed Using Atomic Force Microscopy to Measure the Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim D.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne; Youngstrom, Erica; Kaminski, Carolyn; Fine, Elizabeth; Marx, Laura

    2001-01-01

    A recession measurement technique has been developed at the NASA Glenn Research Center to determine the atomic oxygen durability of polymers exposed to the space environment for short durations. Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene, DuPont) are commonly used in spacecraft because of their desirable properties, such as flexibility, low density, and in the case of FEP, low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low- Earth-orbit environment are exposed to energetic atomic oxygen, resulting in erosion and potential structural loss. It is, therefore, important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data are rare and very costly, short-term exposures, such as on the space shuttles, are often relied on for atomic oxygen erosion determination. The most common technique for determining E is through mass-loss measurements. For limited-duration exposure experiments, such as shuttle flight experiments, the atomic oxygen fluence is often so small that mass-loss measurements are not sensitive enough. Therefore, a recession measurement technique has been developed at Glenn to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences.

  10. Recent trends in atomic fluorescence spectrometry towards miniaturized instrumentation-A review.

    PubMed

    Zou, Zhirong; Deng, Yujia; Hu, Jing; Jiang, Xiaoming; Hou, Xiandeng

    2018-08-17

    Atomic fluorescence spectrometry (AFS), as one of the common atomic spectrometric techniques with high sensitivity, simple instrumentation, and low acquisition and running cost, has been widely used in various fields for trace elemental analysis, notably the determination of hydride-forming elements by hydride generation atomic fluorescence spectrometry (HG-AFS). In recent years, the soaring demand of field analysis has significantly promoted the miniaturization of analytical atomic spectrometers or at least instrumental components. Various techniques have also been developed to approach the goal of portable/miniaturized AFS instrumentation for field analysis. In this review, potentially portable/miniaturized AFS techniques, primarily involving advanced instrumental components and whole instrumentation with references since 2000, are summarized and discussed. The discussion mainly includes five aspects: radiation source, atomizer, detector, sample introduction, and miniaturized atomic fluorescence spectrometer/system. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. The Determination of Trace Metals in Saline Waters and Biological Tissues Using the Heated Graphite Atomizer

    NASA Technical Reports Server (NTRS)

    Segar, D. A.

    1971-01-01

    A selective, volatalization technique utilizing the heated graphite atomizer atomic absorption technique has been developed for the analysis of iron in sea water. A similar technique may be used to determine vanadium, copper, nickel and cobalt in saline waters when their concentrations are higher than those normally encountered'in unpolluted sea waters. A preliminary solvent extraction using ammonium pyrolidine dithiocarbamate and methyl iso-butyl ketone permits the determination of a number of elements including iron, copper, zinc, nickel, cobalt and lead in sea water. The heated graphite atomized technique has also been applied to the determination of a range of trace transition elements in marine plant and animal tissues.

  12. Gas atomization processing of tin and silicon modified LaNi 5 for nickel-metal hydride battery applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ting, Jason

    1999-02-12

    Numerous researchers have studied the relevant material properties of so-called AB 5 alloys for battery applications. These studies involved LaNi 5 substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 μm) atomized powders with high surface area for enhanced battery performance. Concurrently, developmentmore » of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB 5 alloy powder for further processing advantage. Gas atomization processing of the AB 5 alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB 5 alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB 5 alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB 5 production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle applications in the foreseeable future.« less

  13. Strong Inter-channel Effects in Dipole Photoionization of d-subshells of Xe, Cs, and Ba Atoms

    NASA Astrophysics Data System (ADS)

    Manson, S.; Amusia, M.; Baltenkov, A.; Chernysheva, L.; Felfli, Z.; Msezane, A.

    2003-05-01

    In the framework of a specially modified Random Phase Approximation with Exchange approach (SPRPAE) developed for half-filled atomic subshells the dipole angular anisotropy parameters β(ω) for the 3d-photoionization of Xe, Cs and Ba atoms have been calculated. The main point of this approach is that we consider the 3d electrons of these atoms as belonging to two semi-filled atomic levels that contain two different sorts of electrons, namely that six electrons form the 3d_5/2 subshell (called "up"), while the other four electrons form the 3d_3/2 subshell (called "down"). This permits to apply straightforwardly the RPAE for these semi-filled subshells. We show that the interaction between "up" and "down" electrons results in a qualitative alteration of the frequency (ω) dependence of β_5/2(ω) and β_3/2(ω) that define the photoelectron angular distribution from the 3d_5/2 and 3d_3/2 levels. In all these atoms the effect of 3d_3/2 upon 3d_5/2 leads to the creation of an additional maximum near the photoionization thresholds, while the effect for 3d_3/2 is rather weak. Work supported by CRDF (No ZP1- 2449-TA-02), ISTC grant 1358 and NSF

  14. New Active Optical Technique Developed for Measuring Low-Earth-Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Polymers such as polyimide Kapton (DuPont) and Teflon FEP (DuPont, fluorinated ethylene propylene) are commonly used spacecraft materials because of desirable properties such as flexibility, low density, and in the case of FEP, a low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low-Earth-orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen reaction with polymers causes erosion, which is a threat to spacecraft performance and durability. It is, therefore, important to understand the atomic oxygen erosion yield E (the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. The most common technique for determining E is a passive technique based on mass-loss measurements of samples exposed to LEO atomic oxygen during a space flight experiment. There are certain disadvantages to this technique. First, because it is passive, data are not obtained until after the flight is completed. Also, obtaining the preflight and postflight mass measurements is complicated by the fact that many polymers absorb water and, therefore, the mass change due to water absorption can affect the E data. This is particularly true for experiments that receive low atomic oxygen exposures or for samples that have a very low E. An active atomic oxygen erosion technique based on optical measurements has been developed that has certain advantages over the mass-loss technique. This in situ technique can simultaneously provide the erosion yield data on orbit and the atomic oxygen exposure fluence, which is needed for erosion yield determination. In the optical technique, either sunlight or artificial light can be used to measure the erosion of semitransparent or opaque polymers as a result of atomic oxygen attack. The technique is simple and adaptable to a rather wide range of polymers, providing that they have a sufficiently high optical absorption coefficient. If one covers a photodiode with a uniformly thick sheet of semitransparent polymer such as Kapton H polyimide, then as atomic oxygen erodes the polymer, the short-circuit current from the photodiode will increase in an exponential manner with fluence. This nonlinear response with fluence results in a lack of sensitivity for measuring low atomic oxygen fluences. However, if one uses a variable-thickness polymer or carbon sample, which is configured as shown in the preceding figure, then a linear response can be achieved for opaque materials using a parabolic well for a circular geometry detector or a V-shaped well for a rectangular-geometry detector. Variable-thickness samples can be fabricated using many thin polymer layers. For semitransparent polymers such as Kapton H polyimide, there is an initial short-circuit current that is greater than zero. This current has a slightly nonlinear dependence on atomic oxygen fluence in comparison to opaque materials such as black Kapton as shown in the graph. For this graph figure, the total thickness of Kapton H was assumed to be 0.03 cm. The photodiode short-circuit current shown in the graph was generated on the basis of preliminary measurements-a total reflectance rho of 0.0424 and an optical absorption coefficient a of 146.5 cm(sup -1). In addition to obtaining on-orbit data, the advantage of this active erosion and erosion yield measurement technique is its simplicity and reliance upon well-characterized fluence witness materials as well as a nearly linear photodiode short-circuit current dependence upon atomic oxygen fluence. The optical technique is useful for measuring either atomic oxygen fluence or erosion, depending on the information desired. To measure the atomic oxygen erosion yield of a test material, one would need to have two photodiode sensors, one for the test material and one that uses a known erosion yield material (such as Kapton) to measure the atomic oxygen fluence.

  15. ProteinAC: a frequency domain technique for analyzing protein dynamics

    NASA Astrophysics Data System (ADS)

    Bozkurt Varolgunes, Yasemin; Demir, Alper

    2018-03-01

    It is widely believed that the interactions of proteins with ligands and other proteins are determined by their dynamic characteristics as opposed to only static, time-invariant processes. We propose a novel computational technique, called ProteinAC (PAC), that can be used to analyze small scale functional protein motions as well as interactions with ligands directly in the frequency domain. PAC was inspired by a frequency domain analysis technique that is widely used in electronic circuit design, and can be applied to both coarse-grained and all-atom models. It can be considered as a generalization of previously proposed static perturbation-response methods, where the frequency of the perturbation becomes the key. We discuss the precise relationship of PAC to static perturbation-response schemes. We show that the frequency of the perturbation may be an important factor in protein dynamics. Perturbations at different frequencies may result in completely different response behavior while magnitude and direction are kept constant. Furthermore, we introduce several novel frequency dependent metrics that can be computed via PAC in order to characterize response behavior. We present results for the ferric binding protein that demonstrate the potential utility of the proposed techniques.

  16. Kinematic cooling of molecules in a magneto-optical trap

    NASA Astrophysics Data System (ADS)

    Takase, Ken; Chandler, David W.; Strecker, Kevin E.

    2008-05-01

    We will present our current progress on a new experimental technique aimed at slowing and cooling hot molecules using a single collision with magneto-optically trapped atoms. Kinematic cooling, unlike buffer gas and sympathetic cooling, relies only on a single collision between the molecule and atom to stop the molecule in the laboratory frame. This technique has recently been demonstrated in a crossed atomic and molecular beam machine to produce 35mK samples of nitric oxide via a single collision with argon [1]. In this technique we replace the atomic beam with a sample magneto-optically trapped atoms. We are currently designing and building a new apparatus to attempt these experiments. [1] Kevin E. Strecker and David W. Chandler (to be published)

  17. The 6-31B(d) basis set and the BMC-QCISD and BMC-CCSD multicoefficient correlation methods.

    PubMed

    Lynch, Benjamin J; Zhao, Yan; Truhlar, Donald G

    2005-03-03

    Three new multicoefficient correlation methods (MCCMs) called BMC-QCISD, BMC-CCSD, and BMC-CCSD-C are optimized against 274 data that include atomization energies, electron affinities, ionization potentials, and reaction barrier heights. A new basis set called 6-31B(d) is developed and used as part of the new methods. BMC-QCISD has mean unsigned errors in calculating atomization energies per bond and barrier heights of 0.49 and 0.80 kcal/mol, respectively. BMC-CCSD has mean unsigned errors of 0.42 and 0.71 kcal/mol for the same two quantities. BMC-CCSD-C is an equally effective variant of BMC-CCSD that employs Cartesian rather than spherical harmonic basis sets. The mean unsigned error of BMC-CCSD or BMC-CCSD-C for atomization energies, barrier heights, ionization potentials, and electron affinities is 22% lower than G3SX(MP2) at an order of magnitude less cost for gradients for molecules with 9-13 atoms, and it scales better (N6 vs N,7 where N is the number of atoms) when the size of the molecule is increased.

  18. Atomic force microscopy as nano-stethoscope to study living organisms, insects

    NASA Astrophysics Data System (ADS)

    Sokolov, Igor; Dokukin, Maxim; Guz, Nataliia

    2012-02-01

    Atomic force microscopy (AFM) is a known method to study various surfaces. Here we report on the use of AFM to study surface oscillations (coming from the work of internal organs) of living organisms, like insects. As an example, ladybird beetles (Hippodamia convergens) measured in different parts of the insect at picometer level. This allows us to record a much broader spectral range of possible surface vibrations (up to several kHz) than the previously studied oscillations due to breathing, heartbeat cycles, coelopulses, etc. (up to 5 -10 Hz). The used here AFM method allows collecting signal from the area as small as ˜100nm2 (0.0001μm2) with an example of noise level of (2±0.2)x10-3 nm r.m.s. at the range of frequencies >50Hz (potentially, up to a MHz). Application of this method to humans is discussed. The method, being a relatively non-invasive technique providing a new type of information, may be useful in developing of what could be called ``nanophysiology.''

  19. Failure of local thermal equilibrium in quantum friction

    DOE PAGES

    Intravaia, Francesco; Behunin, Ryan; Henkel, Carsten; ...

    2016-09-01

    Recent progress in manipulating atomic and condensed matter systems has instigated a surge of interest in nonequilibrium physics, including many-body dynamics of trapped ultracold atoms and ions, near-field radiative heat transfer, and quantum friction. Under most circumstances the complexity of such nonequilibrium systems requires a number of approximations to make theoretical descriptions tractable. In particular, it is often assumed that spatially separated components of a system thermalize with their immediate surroundings, although the global state of the system is out of equilibrium. This powerful assumption reduces the complexity of nonequilibrium systems to the local application of well-founded equilibrium concepts. Whilemore » this technique appears to be consistent for the description of some phenomena, we show that it fails for quantum friction by underestimating by approximately 80% the magnitude of the drag force. Here, our results show that the correlations among the components of driven, but steady-state, quantum systems invalidate the assumption of local thermal equilibrium, calling for a critical reexamination of this approach for describing the physics of nonequilibrium systems.« less

  20. LiBSi2: a tetrahedral semiconductor framework from boron and silicon atoms bearing lithium atoms in the channels.

    PubMed

    Zeilinger, Michael; van Wüllen, Leo; Benson, Daryn; Kranak, Verina F; Konar, Sumit; Fässler, Thomas F; Häussermann, Ulrich

    2013-06-03

    Silicon swallows up boron: The novel open tetrahedral framework structure (OTF) of the Zintl phase LiBSi2 was made by applying high pressure to a mixture of LiB and elemental silicon. The compound represents a new topology in the B-Si net (called tum), which hosts Li atoms in the channels (see picture). LiBSi2 is the first example where B and Si atoms form an ordered common framework structure with B engaged exclusively in heteronuclear B-Si contacts.

  1. Theoretical Calculations of Atomic Data for Spectroscopy

    NASA Technical Reports Server (NTRS)

    Bautista, Manuel A.

    2000-01-01

    Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.

  2. Quantum Optics Models of EIT Noise and Power Broadening

    NASA Astrophysics Data System (ADS)

    Snider, Chad; Crescimanno, Michael; O'Leary, Shannon

    2011-04-01

    When two coherent beams of light interact with an atom they tend to drive the atom to a non-absorbing state through a process called Electromagnetically Induced Transparency (EIT). If the light's frequency dithers, the atom's state stochastically moves in and out of this non-absorbing state. We describe a simple quantum optics model of this process that captures the essential experimentally observed statistical features of this EIT noise, with a particular emphasis on understanding power broadening.

  3. A novel method for the fabrication of microfluidic devices by photopolymerization of polymethylmethacrylate

    NASA Astrophysics Data System (ADS)

    Forstater, Jacob; Augustine, Brian; Hughes, Chris

    2006-11-01

    We have developed a new technique for the rapid fabrication of structures useful for microfluidic devices called micromolding by photopolymerization in capillaries (μ-PIC). The technique involves the replication of features from a silicon master in which features on the order of tens to hundreds of microns have been formed by crystallographic etching. The negative of the features is then transferred to a sheet of polymethylmethacrylate (PMMA) by placing the PMMA sheet over the silicon master and injecting a solution of methylmethacrylate monomer with a benzoin methyl ether photoinitiator. This solution is drawn between the PMMA and the silicon by capillary action forming a liquid layer that is no more than a few hundred microns thick. This liquid is then polymerized by exposure to ultraviolet light for less than a half hour. The features transferred in this manner have nearly identical surface structure and roughness. Analysis of these surfaces and structures by atomic force microscopy and scanning electron microscopy will be presented.

  4. Limit on Excitation and Stabilization of Atoms in Intense Optical Laser Fields.

    PubMed

    Zimmermann, H; Meise, S; Khujakulov, A; Magaña, A; Saenz, A; Eichmann, U

    2018-03-23

    Atomic excitation in strong optical laser fields has been found to take place even at intensities exceeding saturation. The concomitant acceleration of the atom in the focused laser field has been considered a strong link to, if not proof of, the existence of the so-called Kramers-Henneberger (KH) atom, a bound atomic system in an intense laser field. Recent findings have moved the importance of the KH atom from being purely of theoretical interest toward real world applications; for instance, in the context of laser filamentation. Considering this increasing importance, we explore the limits of strong-field excitation in optical fields, which are basically imposed by ionization through the spatial field envelope and the field propagation.

  5. Statistical analysis of dimer formation in supersaturated metal vapor based on molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Korenchenko, Anna E.; Vorontsov, Alexander G.; Gelchinski, Boris R.; Sannikov, Grigorii P.

    2018-04-01

    We discuss the problem of dimer formation during the homogeneous nucleation of atomic metal vapor in an inert gas environment. We simulated nucleation with molecular dynamics and carried out the statistical analysis of double- and triple-atomic collisions as the two ways of long-lived diatomic complex formation. Close pair of atoms with lifetime greater than the mean time interval between atom-atom collisions is called a long-lived diatomic complex. We found that double- and triple-atomic collisions gave approximately the same probabilities of long-lived diatomic complex formation, but internal energy of the resulted state was essentially lower in the second case. Some diatomic complexes formed in three-particle collisions are stable enough to be a critical nucleus.

  6. A circularly polarized optical dipole trap and other developments in laser trapping of atoms

    NASA Astrophysics Data System (ADS)

    Corwin, Kristan Lee

    Several innovations in laser trapping and cooling of alkali atoms are described. These topics share a common motivation to develop techniques for efficiently manipulating cold atoms. Such advances facilitate sensitive precision measurements such as parity non- conservation and 8-decay asymmetry in large trapped samples, even when only small quantities of the desired species are available. First, a cold, bright beam of Rb atoms is extracted from a magneto-optical trap (MOT) using a very simple technique. This beam has a flux of 5 × 109 atoms/s and a velocity of 14 m/s, and up to 70% of the atoms in the MOT were transferred to the atomic beam. Next, a highly efficient MOT for radioactive atoms is described, in which more than 50% of 221Fr atoms contained in a vapor cell are loaded into a MOT. Measurements were also made of the 221Fr 7 2P1/2 and 7 2P3/2 energies and hyperfine constants. To perform these experiments, two schemes for stabilizing the frequency of the light from a diode laser were developed and are described in detail. Finally, a new type of trap is described and a powerful cooling technique is demonstrated. The circularly polarized optical dipole trap provides large samples of highly spin-polarized atoms, suitable for many applications. Physical processes that govern the transfer of large numbers of atoms into the trap are described, and spin-polarization is measured to be 98(1)%. In addition, the trap breaks the degeneracy of the atomic spin states much like a magnetic trap does. This allows for RF and microwave cooling via both forced evaporation and a Sisyphus mechanism. Preliminary application of these techniques to the atoms in the circularly polarized dipole trap has successfully decreased the temperature by a factor of 4 while simultaneously increasing phase space density.

  7. Molecular Beam Studies of Hot Atom Chemical Reactions: Reactive Scattering of Energetic Deuterium Atoms

    DOE R&D Accomplishments Database

    Continetti, R. E.; Balko, B. A.; Lee, Y. T.

    1989-02-01

    A brief review of the application of the crossed molecular beams technique to the study of hot atom chemical reactions in the last twenty years is given. Specific emphasis is placed on recent advances in the use of photolytically produced energetic deuterium atoms in the study of the fundamental elementary reactions D + H{sub 2} -> DH + H and the substitution reaction D + C{sub 2}H{sub 2} -> C{sub 2}HD + H. Recent advances in uv laser and pulsed molecular beam techniques have made the detailed study of hydrogen atom reactions under single collision conditions possible.

  8. ACES microwave link requirements.

    PubMed

    Uhrich, P M; Guillernot, P; Aubry, P; Gonzalez, F; Salomon, C

    2000-01-01

    Atomic Clock Ensemble in Space (ACES) is a project of the European Space Agency on-board the future International Space Station (ISS). The payload consists mainly of two atomic frequency standards, one space hydrogen maser (SHM) prepared by the Observatoire de Neuchatel (Switzerland), and one cold atom caesium clock called PHARAO prepared by the CNES (France), with the participation of the BNM-LPTF, the ENS-LKB, and the CNRS-LHA. Because of the anticipated performances of these clocks on-board the ISS, the requirements of the links between the payload and the clocks on the Earth are at the limits of the known potential of the optical or microwave techniques. The microwave link (MWL) requirements are described in this paper. Taking into account the characteristics of the ISS orbit, and fixing an arbitrary limit to the additional noise brought to the clock readings by the MWL, the computation of the required stability leads to two kinds of requirements: the first one at the subpicosecond level over each single continuous pass of the ISS above any Earth station, and the second one at the level of one part in 10(16) and below over a one day or more averaging period. Moreover, the ISS orbit parameters should lead to a knowledge of the ACES clock position at the m level, and of the ACES clock speed at the mm/s level.

  9. Atom-chip based quantum gravimetry for the precise determination of absolute local gravity

    NASA Astrophysics Data System (ADS)

    Abend, S.

    2015-12-01

    We present a novel technique for the precise measurement of absolute local gravity based on cold atom interferometry. Atom interferometry utilizes the interference of matter waves interrogated by laser light to read out inertial forces. Today's generation of these devices typically operate with test mass samples, that consists of ensembles of laser cooled atoms. Their performance is limited by the velocity spread and finite-size of the test masses that impose systematic uncertainties at the level of a few μGal. Rather than laser cooled atoms we employ quantum degenerate ensembles, so called Bose-Einstein condensates, as ultra-sensitive probes for gravity. These sources offer unique properties in temperature as well as in ensemble size that will allow to overcome the current limitations with the next generation of sensors. Furthermore, atom-chip technologies offer the possibility to generate Bose-Einstein condensates in a fast and reliable way. We show a lab-based prototype that uses the atom-chip itself to retro-reflect the interrogation laser and thus serving as inertial reference inside the vacuum. With this setup it is possible to demonstrate all necessary steps to measure gravity, including the preparation of the source, spanning an interferometer as well as the detection of the output signal, within an area of 1 cm3 right below the atom-chip and to analyze relevant systematic effects. In the framework of the center of excellence geoQ a next generation device is under construction at the Institut für Quantenoptik, that will allow for in-field measurements. This device will feature a state-of-the-art atom-chip source with a high-flux of ultra-cold atoms at a repetition rate of 1-2 Hz. In cooperation with the Müller group at the Institut für Erdmessung the sensor will be characterized in the laboratory first, to be ultimately employed in campaigns to measure the Fennoscandian uplift at the level of 1 μGal. The presented work is part of the center of excellence geoQ (SFB 1128), funded by the Deutsche Forschungsgemeinschaft (DFG). This work is supported by the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under grant numbers DLR 50 1131-1137 (QUANTUS-III).

  10. Influence Of Inelastic Ridberg Atom-Atom Collisional Process On Kinetic And Optical Properties Of Low-Temperature Laboratory And Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Klyucharev, A. N.; Bezuglov, N. N.; Mihajlov, A. A.; Ignjatovic, Lj. M.

    2010-07-01

    Elementary processes in plasma phenomena traditionally attract physicist`s attention. The channel of charged-particle formation in Rydberg Atom-Atom thermal and subthermal collisions (the low temperature plasmas conditions) leads to creation of the molecular ions - associative ionization (AI), atomic ions - penning-like ionization (PI) and the pair of the negative and positive ions. In our universe the chemical composition of the primordial gas consists mainly of Hydrogen and Helium (H, H- , H+, H2, He, He+ ), Hydrogen-like alkali-metal Litium (Li, Li+, Li-) and combinations (HeH+ , LiH- , LiH+). There is a wide range of plasma parameters in which the Rydberg Atoms of the elements called above make the dominant construction to ionization and that process may be regarded as a prototype of the elementary process of light excitation energy transformation into electric one. The first series of quantitative measurements of the rate constants for Rydberg Atoms starts in 1978 (Devdariani, Klyucharev et al.). The method of AI and PI calculations, so-called "dipole resonant" mechanism proposed in 1971 (Smirnov, Mihaylov) was used in semiclassical (Mihailov and Janev 1981) and quantum mechanical theories (Duman, Shmatov, 1980). The latest stochastic version of chemi-ionisation (AI+PI) on Rydberg Atom - Atom collisions extends the treatment of the "dipole resonant" model by taking into account redistribution of population over a range of Rydberg states prior to ionization. This redistribution is modeled as diffusion in the frame of stochastic dynamic of the Rydberg electron in the Rydberg energy spectrum (Bezuglov, Borodin, Klyucharev et al. 1997). Such approach makes it possible to operate on efficiently of inelastic collisional processes and sometimes to operate on time of Rydberg Atoms life. This may lead to anomalies of Rydberg Atoms spectra. Another result obtained in recent time is understanding that experimental results on chemi-ionization relate to the group of mixed Rydberg Atom closed to the primary selected one. The Rydberg Atoms ionisaton theory today makes a valuable contribution in the deterministic and stochastic approaches correlation in atomic physic.

  11. An overview of heavy-atom derivatization of protein crystals

    PubMed Central

    Pike, Ashley C. W.; Garman, Elspeth F.; Krojer, Tobias; von Delft, Frank; Carpenter, Elisabeth P.

    2016-01-01

    Heavy-atom derivatization is one of the oldest techniques for obtaining phase information for protein crystals and, although it is no longer the first choice, it remains a useful technique for obtaining phases for unknown structures and for low-resolution data sets. It is also valuable for confirming the chain trace in low-resolution electron-density maps. This overview provides a summary of the technique and is aimed at first-time users of the method. It includes guidelines on when to use it, which heavy atoms are most likely to work, how to prepare heavy-atom solutions, how to derivatize crystals and how to determine whether a crystal is in fact a derivative. PMID:26960118

  12. Using an Advanced Computational Laboratory Experiment to Extend and Deepen Physical Chemistry Students' Understanding of Atomic Structure

    ERIC Educational Resources Information Center

    Hoffman, Gary G.

    2015-01-01

    A computational laboratory experiment is described, which involves the advanced study of an atomic system. The students use concepts and techniques typically covered in a physical chemistry course but extend those concepts and techniques to more complex situations. The students get a chance to explore the study of atomic states and perform…

  13. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  14. The Population Inversion and the Entropy of a Moving Two-Level Atom in Interaction with a Quantized Field

    NASA Astrophysics Data System (ADS)

    Abo-Kahla, D. A. M.; Abdel-Aty, M.; Farouk, A.

    2018-05-01

    An atom with only two energy eigenvalues is described by a two-dimensional state space spanned by the two energy eigenstates is called a two-level atom. We consider the interaction between a two-level atom system with a constant velocity. An analytic solution of the systems which interacts with a quantized field is provided. Furthermore, the significant effect of the temperature on the atomic inversion, the purity and the information entropy are discussed in case of the initial state either an exited state or a maximally mixed state. Additionally, the effect of the half wavelengths number of the field-mode is investigated.

  15. Low Earth orbit atomic oxygen simulation for durability evaluation of solar reflector surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Banks, Bruce A.

    1992-01-01

    To evaluate the performance and durability of solar reflector surfaces in the atomic oxygen environment typical of low Earth orbit (LEO), one must expose the reflector surface either directly to LEO or to ground-laboratory atomic oxygen environments. Although actual LEO exposures are most desired, such opportunities are typically scarce, expensive, and of limited duration. As a result, ground-laboratory exposures must be relied upon as the most practical long-term durability evaluation technique. Plasma ashers are widely used as LEO simulation facilities by producing atomic oxygen environments for durability evaluation of potential spacecraft materials. Atomic oxygen arrival differs between ground and space exposure in that plasma asher exposure produces isotropic arrival and space solar tracking produces sweeping arrival. Differences in initial impact reaction probability occur, dependent upon the energy and species existing in these environments. Due to the variations in ground-laboratory and space atomic oxygen, quantification of in-space performance based on plasma asher testing is not straightforward. The various atomic oxygen interactions that can occur with reflector surfaces, such as undercutting in organic substrates at protective coating defect sites, ground-laboratory techniques recommended for evaluating the atomic oxygen durability of reflectors based on asher exposures, and computational techniques which make use of ground-laboratory atomic oxygen exposure to predict in-space LEO durability are addressed.

  16. Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography

    PubMed Central

    2011-01-01

    Silicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage...) of systems using such nanoclusters are strongly dependent on nanostructural characteristics. These characteristics (size, composition, distribution, and interface nature) are until now obtained using conventional high-resolution analytic methods, such as high-resolution transmission electron microscopy, EFTEM, or EELS. In this article, a complementary technique, the atom probe tomography, was used for studying a multilayer (ML) system containing silicon clusters. Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques. A description of the different steps for such analysis: sample preparation, atom probe analysis, and data treatment are detailed. An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described. This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C. PMID:21711666

  17. Image Processing

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A new spinoff product was derived from Geospectra Corporation's expertise in processing LANDSAT data in a software package. Called ATOM (for Automatic Topographic Mapping), it's capable of digitally extracting elevation information from stereo photos taken by spaceborne cameras. ATOM offers a new dimension of realism in applications involving terrain simulations, producing extremely precise maps of an area's elevations at a lower cost than traditional methods. ATOM has a number of applications involving defense training simulations and offers utility in architecture, urban planning, forestry, petroleum and mineral exploration.

  18. Computational techniques in tribology and material science at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Bozzolo, G. H.

    1992-01-01

    Computations in tribology and material science at the atomic level present considerable difficulties. Computational techniques ranging from first-principles to semi-empirical and their limitations are discussed. Example calculations of metallic surface energies using semi-empirical techniques are presented. Finally, application of the methods to calculation of adhesion and friction are presented.

  19. Atomic Structure and Properties of Extended Defects in Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buczko, R.; Chisholm, M.F.; Kaplan, T.

    1998-10-15

    The Z-contrast technique represents a new approach to high-resolution electron microscopy allowing for the first time incoherent imaging of materials on the atomic scale. The key advantages of the technique, an intrinsically higher resolution limit and directly interpretable, compositionally sensitive imaging, allow a new level of insight into the atomic configurations of extended defects in silicon. This experimental technique has been combined with theoretical calculations (a combination of first principles, tight binding, and classical methods) to extend this level of insight by obtaining the energetic and electronic structure of the defects.

  20. Atomic Absorption, Atomic Fluorescence, and Flame Emission Spectrometry.

    ERIC Educational Resources Information Center

    Horlick, Gary

    1984-01-01

    This review is presented in six sections. Sections focus on literature related to: (1) developments in instrumentation, measurement techniques, and procedures; (2) performance studies of flames and electrothermal atomizers; (3) applications of atomic absorption spectrometry; (4) analytical comparisons; (5) atomic fluorescence spectrometry; and (6)…

  1. A Compact, High-Flux Cold Atom Beam Source

    NASA Technical Reports Server (NTRS)

    Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis

    2012-01-01

    The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.

  2. Measuring Roughnesses Of Optical Surfaces

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.; Al-Jumaily, Gahnim A.; Raouf, Nasrat A.; Anderson, Mark S.

    1994-01-01

    Report discusses use of scanning tunneling microscopy and atomic force microscopy to measure roughnesses of optical surfaces. These techniques offer greater spatial resolution than other techniques. Report notes scanning tunneling microscopes and atomic force microscopes resolve down to 1 nm.

  3. Tungsten devices in analytical atomic spectrometry

    NASA Astrophysics Data System (ADS)

    Hou, Xiandeng; Jones, Bradley T.

    2002-04-01

    Tungsten devices have been employed in analytical atomic spectrometry for approximately 30 years. Most of these atomizers can be electrically heated up to 3000 °C at very high heating rates, with a simple power supply. Usually, a tungsten device is employed in one of two modes: as an electrothermal atomizer with which the sample vapor is probed directly, or as an electrothermal vaporizer, which produces a sample aerosol that is then carried to a separate atomizer for analysis. Tungsten devices may take various physical shapes: tubes, cups, boats, ribbons, wires, filaments, coils and loops. Most of these orientations have been applied to many analytical techniques, such as atomic absorption spectrometry, atomic emission spectrometry, atomic fluorescence spectrometry, laser excited atomic fluorescence spectrometry, metastable transfer emission spectroscopy, inductively coupled plasma optical emission spectrometry, inductively coupled plasma mass spectrometry and microwave plasma atomic spectrometry. The analytical figures of merit and the practical applications reported for these techniques are reviewed. Atomization mechanisms reported for tungsten atomizers are also briefly summarized. In addition, less common applications of tungsten devices are discussed, including analyte preconcentration by adsorption or electrodeposition and electrothermal separation of analytes prior to analysis. Tungsten atomization devices continue to provide simple, versatile alternatives for analytical atomic spectrometry.

  4. Visualization and automatic detection of defect distribution in GaN atomic structure from sampling Moiré phase.

    PubMed

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Kodera, Masako; Suguro, Kyoichi; Miyashita, Naoto

    2017-09-19

    Quantitative detection of defects in atomic structures is of great significance to evaluating product quality and exploring quality improvement process. In this study, a Fourier transform filtered sampling Moire technique was proposed to visualize and detect defects in atomic arrays in a large field of view. Defect distributions, defect numbers and defect densities could be visually and quantitatively determined from a single atomic structure image at low cost. The effectiveness of the proposed technique was verified from numerical simulations. As an application, the dislocation distributions in a GaN/AlGaN atomic structure in two directions were magnified and displayed in Moire phase maps, and defect locations and densities were detected automatically. The proposed technique is able to provide valuable references to material scientists and engineers by checking the effect of various treatments for defect reduction. © 2017 IOP Publishing Ltd.

  5. Programmable solid state atom sources for nanofabrication.

    PubMed

    Han, Han; Imboden, Matthias; Stark, Thomas; del Corro, Pablo G; Pardo, Flavio; Bolle, Cristian A; Lally, Richard W; Bishop, David J

    2015-06-28

    In this paper we discuss the development of a MEMS-based solid state atom source that can provide controllable atom deposition ranging over eight orders of magnitude, from ten atoms per square micron up to hundreds of atomic layers, on a target ∼1 mm away. Using a micron-scale silicon plate as a thermal evaporation source we demonstrate the deposition of indium, silver, gold, copper, iron, aluminum, lead and tin. Because of their small sizes and rapid thermal response times, pulse width modulation techniques are a powerful way to control the atomic flux. Pulsing the source with precise voltages and timing provides control in terms of when and how many atoms get deposited. By arranging many of these devices into an array, one has a multi-material, programmable solid state evaporation source. These micro atom sources are a complementary technology that can enhance the capability of a variety of nano-fabrication techniques.

  6. Ultraviolet absorption: Experiment MA-059. [measurement of atmospheric species concentrations

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hudson, R. D.; Rawlins, W. T.; Anderson, J.; Kaufman, F.; Mcelroy, M. B.

    1977-01-01

    A technique devised to permit the measurement of atmospheric species concentrations is described. This technique involves the application of atomic absorption spectroscopy and the quantitative observation of resonance fluorescence in which atomic or molecular species scatter resonance radiation from a light source into a detector. A beam of atomic oxygen and atomic nitrogen resonance radiation, strong unabsorbable oxygen and nitrogen radiation, and visual radiation was sent from Apollo to Soyuz. The density of atomic oxygen and atomic nitrogen between the two spacecraft was measured by observing the amount of resonance radiation absorbed when the line joining Apollo and Soyuz was perpendicular to their velocity with respect to the ambient atmosphere. Results of postflight analysis of the resonance fluorescence data are discussed.

  7. Structural analysis of the industrial grade calcite

    NASA Astrophysics Data System (ADS)

    Shah, Rajiv P.; Raval, Kamlesh G.

    2017-05-01

    The chemical, optical and structural characterization of the industrial grade Calcite by EDAX, FT-IR and XRD. EDAX is a widely used technique to analyze the chemical components in a material, FT-IR stands for Fourier Transform Infra-Red, the preferred method of infrared spectroscopy. The resultant spectrum represents the molecular absorption and transmission, creating a molecular fingerprint of the sample, The atomic planes of a crystal cause an incident beam of X-rays to interfere with one another as they leave the crystal. The phenomenon is called X ray diffraction.(XRD). Data analysis of EDAX, FT-IR and XRD has been carried out with help of various instruments and software and find out the results of the these industrial grade materials which are mostly used in ceramics industries

  8. High Harmonic Generation XUV Spectroscopy for Studying Ultrafast Photophysics of Coordination Complexes

    NASA Astrophysics Data System (ADS)

    Ryland, Elizabeth S.; Lin, Ming-Fu; Benke, Kristin; Verkamp, Max A.; Zhang, Kaili; Vura-Weis, Josh

    2017-06-01

    Extreme ultraviolet (XUV) spectroscopy is an inner shell technique that probes the M_{2,3}-edge excitation of atoms. Absorption of the XUV photon causes a 3p→3d transition, the energy and shape of which is directly related to the element and ligand environment. This technique is thus element-, oxidation state-, spin state-, and ligand field specific. A process called high-harmonic generation (HHG) enables the production of ultrashort (˜20fs) pulses of collimated XUV photons in a tabletop instrument. This allows transient XUV spectroscopy to be conducted as an in-lab experiment, where it was previously only possible at accelerator-based light sources. Additionally, ultrashort pulses provide the capability for unprecedented time resolution (˜50fs IRF). This technique has the capacity to serve a pivotal role in the study of electron and energy transfer processes in materials and chemical biology. I will present the XUV transient absorption instrument we have built, along with ultrafast transient M_{2,3}-edge absorption data of a series of small inorganic molecules in order to demonstrate the high specificity and time resolution of this tabletop technique as well as how our group is applying it to the study of ultrafast electronic dynamics of coordination complexes.

  9. Artificial electromagnetism for neutral atoms: Escher staircase and Laughlin liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, Erich J.

    2004-10-01

    We present a method for creating fields that couple to neutral atoms in the same way that electromagnetic fields couple to charged particles. We show that this technique opens the door for a range of neutral atom experiments, including probing the interplay between periodic potentials and quantum Hall effects. Furthermore, we propose, and analyze, seemingly paradoxical geometries which can be engineered through these techniques. For example, we show how to create a ring of sites where an atom continuously reduces its potential energy by moving in a clockwise direction.

  10. Manipulating Neutral Atoms in Chip-Based Magnetic Traps

    NASA Technical Reports Server (NTRS)

    Aveline, David; Thompson, Robert; Lundblad, Nathan; Maleki, Lute; Yu, Nan; Kohel, James

    2009-01-01

    Several techniques for manipulating neutral atoms (more precisely, ultracold clouds of neutral atoms) in chip-based magnetic traps and atomic waveguides have been demonstrated. Such traps and waveguides are promising components of future quantum sensors that would offer sensitivities much greater than those of conventional sensors. Potential applications include gyroscopy and basic research in physical phenomena that involve gravitational and/or electromagnetic fields. The developed techniques make it possible to control atoms with greater versatility and dexterity than were previously possible and, hence, can be expected to contribute to the value of chip-based magnetic traps and atomic waveguides. The basic principle of these techniques is to control gradient magnetic fields with suitable timing so as to alter a trap to exert position-, velocity-, and/or time-dependent forces on atoms in the trap to obtain desired effects. The trap magnetic fields are generated by controlled electric currents flowing in both macroscopic off-chip electromagnet coils and microscopic wires on the surface of the chip. The methods are best explained in terms of examples. Rather than simply allowing atoms to expand freely into an atomic waveguide, one can give them a controllable push by switching on an externally generated or a chip-based gradient magnetic field. This push can increase the speed of the atoms, typically from about 5 to about 20 cm/s. Applying a non-linear magnetic-field gradient exerts different forces on atoms in different positions a phenomenon that one can exploit by introducing a delay between releasing atoms into the waveguide and turning on the magnetic field.

  11. Status of the atomized uranium silicide fuel development at KAERI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, C.K.; Kim, K.H.; Park, H.D.

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder.more » In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.« less

  12. Nano-soldering to single atomic layer

    DOEpatents

    Girit, Caglar O [Berkeley, CA; Zettl, Alexander K [Kensington, CA

    2011-10-11

    A simple technique to solder submicron sized, ohmic contacts to nanostructures has been disclosed. The technique has several advantages over standard electron beam lithography methods, which are complex, costly, and can contaminate samples. To demonstrate the soldering technique graphene, a single atomic layer of carbon, has been contacted, and low- and high-field electronic transport properties have been measured.

  13. 77 FR 42483 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-19

    ... creating artificial nanoscale structures on an atom-by- atom basis using nascent atom manipulation techniques. The instrument will be used to investigate the amount of force required to move one atom on a materials surface while simultaneously measuring local electronic structural changes during atom movement...

  14. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Clark, Gregory W.; Hammerstrom, Anne M.; Youngstrom, Erica E.; Kaminski, Carolyn; Fine, Elizabeth S.; Marx, Laura M.

    2001-01-01

    Polymers such as polyimide Kapton and Teflon FEP (fluorinated ethylene propylene) are commonly used spacecraft materials due to their desirable properties such as flexibility, low density, and in the case of FEP low solar absorptance and high thermal emittance. Polymers on the exterior of spacecraft in the low Earth orbit (LEO) environment are exposed to energetic atomic oxygen. Atomic oxygen erosion of polymers occurs in LEO and is a threat to spacecraft durability. It is therefore important to understand the atomic oxygen erosion yield (E, the volume loss per incident oxygen atom) of polymers being considered in spacecraft design. Because long-term space exposure data is rare and very costly, short-term exposures such as on the shuttle are often relied upon for atomic oxygen erosion determination. The most common technique for determining E is through mass loss measurements. For limited duration exposure experiments, such as shuttle experiments, the atomic oxygen fluence is often so small that mass loss measurements can not produce acceptable uncertainties. Therefore, a recession measurement technique has been developed using selective protection of polymer samples, combined with postflight atomic force microscopy (AFM) analysis, to obtain accurate erosion yields of polymers exposed to low atomic oxygen fluences. This paper discusses the procedures used for this recession depth technique along with relevant characterization issues. In particular, a polymer is salt-sprayed prior to flight, then the salt is washed off postflight and AFM is used to determine the erosion depth from the protected plateau. A small sample was salt-sprayed for AFM erosion depth analysis and flown as part of the Limited Duration Candidate Exposure (LDCE-4,-5) shuttle flight experiment on STS-51. This sample was used to study issues such as use of contact versus non-contact mode imaging for determining recession depth measurements. Error analyses were conducted and the percent probable error in the erosion yield when obtained by the mass loss and recession depth techniques has been compared. The recession depth technique is planned to be used to determine the erosion yield of 42 different polymers in the shuttle flight experiment PEACE (Polymer Erosion And Contamination Experiment) planned to fly in 2002 or 2003.

  15. Density-cluster NMA: A new protein decomposition technique for coarse-grained normal mode analysis.

    PubMed

    Demerdash, Omar N A; Mitchell, Julie C

    2012-07-01

    Normal mode analysis has emerged as a useful technique for investigating protein motions on long time scales. This is largely due to the advent of coarse-graining techniques, particularly Hooke's Law-based potentials and the rotational-translational blocking (RTB) method for reducing the size of the force-constant matrix, the Hessian. Here we present a new method for domain decomposition for use in RTB that is based on hierarchical clustering of atomic density gradients, which we call Density-Cluster RTB (DCRTB). The method reduces the number of degrees of freedom by 85-90% compared with the standard blocking approaches. We compared the normal modes from DCRTB against standard RTB using 1-4 residues in sequence in a single block, with good agreement between the two methods. We also show that Density-Cluster RTB and standard RTB perform well in capturing the experimentally determined direction of conformational change. Significantly, we report superior correlation of DCRTB with B-factors compared with 1-4 residue per block RTB. Finally, we show significant reduction in computational cost for Density-Cluster RTB that is nearly 100-fold for many examples. Copyright © 2012 Wiley Periodicals, Inc.

  16. Mixing properties of the one-atom maser

    NASA Astrophysics Data System (ADS)

    Bruneau, Laurent

    2014-06-01

    We study the relaxation properties of the quantized electromagnetic field in a cavity under repeated interactions with single two-level atoms, so-called one-atom maser. We improve the ergodic results obtained in Bruneau and Pillet (J Stat Phys 134(5-6):1071-1095, 2009) and prove that, whenever the atoms are initially distributed according to the canonical ensemble at temperature , all the invariant states are mixing. Under some non-resonance condition this invariant state is known to be thermal equilibirum at some renormalized temperature and we prove that the mixing is then arbitrarily slow, in other words that there is no lower bound on the relaxation speed.

  17. Holographic Reconstruction of Photoelectron Diffraction and Its Circular Dichroism for Local Structure Probing

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2018-06-01

    The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.

  18. Precision atomic beam density characterization by diode laser absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxley, Paul; Wihbey, Joseph

    2016-09-15

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident lasermore » light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.« less

  19. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    PubMed

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  20. Detecting and locating light atoms from high-resolution STEM images: The quest for a single optimal design.

    PubMed

    Gonnissen, J; De Backer, A; den Dekker, A J; Sijbers, J; Van Aert, S

    2016-11-01

    In the present paper, the optimal detector design is investigated for both detecting and locating light atoms from high resolution scanning transmission electron microscopy (HR STEM) images. The principles of detection theory are used to quantify the probability of error for the detection of light atoms from HR STEM images. To determine the optimal experiment design for locating light atoms, use is made of the so-called Cramér-Rao Lower Bound (CRLB). It is investigated if a single optimal design can be found for both the detection and location problem of light atoms. Furthermore, the incoming electron dose is optimised for both research goals and it is shown that picometre range precision is feasible for the estimation of the atom positions when using an appropriate incoming electron dose under the optimal detector settings to detect light atoms. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. The accuracy of ab initio calculations without ab initio calculations for charged systems: Kriging predictions of atomistic properties for ions in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Di Pasquale, Nicodemo; Davie, Stuart J.; Popelier, Paul L. A.

    2018-06-01

    Using the machine learning method kriging, we predict the energies of atoms in ion-water clusters, consisting of either Cl- or Na+ surrounded by a number of water molecules (i.e., without Na+Cl- interaction). These atomic energies are calculated following the topological energy partitioning method called Interacting Quantum Atoms (IQAs). Kriging predicts atomic properties (in this case IQA energies) by a model that has been trained over a small set of geometries with known property values. The results presented here are part of the development of an advanced type of force field, called FFLUX, which offers quantum mechanical information to molecular dynamics simulations without the limiting computational cost of ab initio calculations. The results reported for the prediction of the IQA components of the energy in the test set exhibit an accuracy of a few kJ/mol, corresponding to an average error of less than 5%, even when a large cluster of water molecules surrounding an ion is considered. Ions represent an important chemical system and this work shows that they can be correctly taken into account in the framework of the FFLUX force field.

  2. Unexpectedly large difference of the electron density at the nucleus in the 4p ^2{P}_{{1}/{2},{3}/{2}} fine-structure doublet of Ca^+

    NASA Astrophysics Data System (ADS)

    Shi, C.; Gebert, F.; Gorges, C.; Kaufmann, S.; Nörtershäuser, W.; Sahoo, B. K.; Surzhykov, A.; Yerokhin, V. A.; Berengut, J. C.; Wolf, F.; Heip, J. C.; Schmidt, P. O.

    2017-01-01

    We measured the isotope shift in the ^2{S}_{{1}/{2}} → ^2{P}_{{3}/{2}} (D2) transition in singly ionized calcium ions using photon recoil spectroscopy. The high accuracy of the technique enables us to compare the difference between the isotope shifts of this transition to the previously measured isotopic shifts of the ^2{S}_{{1}/{2}} → ^2{P}_{{1}/{2}} (D1) line. This so-called splitting isotope shift is extracted and exhibits a clear signature of field shift contributions. From the data, we were able to extract the small difference of the field shift coefficient and mass shifts between the two transitions with high accuracy. This J-dependence is of relativistic origin and can be used to benchmark atomic structure calculations. As a first step, we use several ab initio atomic structure calculation methods to provide more accurate values for the field shift constants and their ratio. Remarkably, the high-accuracy value for the ratio of the field shift constants extracted from the experimental data is larger than all available theoretical predictions.

  3. Close contacts at the interface: Experimental-computational synergies for solving complexity problems

    NASA Astrophysics Data System (ADS)

    Torras, Juan; Zanuy, David; Bertran, Oscar; Alemán, Carlos; Puiggalí, Jordi; Turón, Pau; Revilla-López, Guillem

    2018-02-01

    The study of material science has been long devoted to the disentanglement of bulk structures which mainly entails finding the inner structure of materials. That structure is accountable for a major portion of materials' properties. Yet, as our knowledge of these "backbones" enlarged so did the interest for the materials' boundaries properties which means the properties at the frontier with the surrounding environment that is called interface. The interface is thus to be understood as the sum of the material's surface plus the surrounding environment be it in solid, liquid or gas phase. The study of phenomena at this interface requires both the use of experimental and theoretical techniques and, above all, a wise combination of them in order to shed light over the most intimate details at atomic, molecular and mesostructure levels. Here, we report several cases to be used as proof of concept of the results achieved when studying interface phenomena by combining a myriad of experimental and theoretical tools to overcome the usual limitation regardind atomic detail, size and time scales and systems of complex composition. Real world examples of the combined experimental-theoretical work and new tools, software, is offered to the readers.

  4. Granule size control and targeting in pulsed spray fluid bed granulation.

    PubMed

    Ehlers, Henrik; Liu, Anchang; Räikkönen, Heikki; Hatara, Juha; Antikainen, Osmo; Airaksinen, Sari; Heinämäki, Jyrki; Lou, Honxiang; Yliruusi, Jouko

    2009-07-30

    The primary aim of the study was to investigate the effects of pulsed liquid feed on granule size. The secondary aim was to increase knowledge of this technique in granule size targeting. Pulsed liquid feed refers to the pump changing between on- and off-positions in sequences, called duty cycles. One duty cycle consists of one on- and off-period. The study was performed with a laboratory-scale top-spray fluid bed granulator with duty cycle length and atomization pressure as studied variables. The liquid feed rate, amount and inlet air temperature were constant. The granules were small, indicating that the powder has only undergone ordered mixing, nucleation and early growth. The effect of atomizing pressure on granule size depends on inlet air relative humidity, with premature binder evaporation as a reason. The duty cycle length was of critical importance to the end product attributes, by defining the extent of intermittent drying and rewetting. By varying only the duty cycle length, it was possible to control granule nucleation and growth, with a wider granule size target range in increased relative humidity. The present study confirms that pulsed liquid feed in fluid bed granulation is a useful tool in end product particle size targeting.

  5. Atomic vapor laser isotope separation process

    DOEpatents

    Wyeth, R.W.; Paisner, J.A.; Story, T.

    1990-08-21

    A laser spectroscopy system is utilized in an atomic vapor laser isotope separation process. The system determines spectral components of an atomic vapor utilizing a laser heterodyne technique. 23 figs.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoller, Roger E; Nordlund, Kai; Melerba, L

    The processes that give rise to changes in the microstructure and the physical and mechanical properties of materials exposed to energetic particles are initiated by essentially elastic collisions between atoms in what has been called an atomic displacement cascade. The formation and evolution of this primary radiation damage mechanism are described to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the primary variables cascade energy and irradiation temperature are discussed, along with a range of secondary factors that can influence damage formation.Radiation-inducedmore » changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less

  7. Composite pulses for interferometry in a thermal cold atom cloud

    NASA Astrophysics Data System (ADS)

    Dunning, Alexander; Gregory, Rachel; Bateman, James; Cooper, Nathan; Himsworth, Matthew; Jones, Jonathan A.; Freegarde, Tim

    2014-09-01

    Atom interferometric sensors and quantum information processors must maintain coherence while the evolving quantum wave function is split, transformed, and recombined, but suffer from experimental inhomogeneities and uncertainties in the speeds and paths of these operations. Several error-correction techniques have been proposed to isolate the variable of interest. Here we apply composite pulse methods to velocity-sensitive Raman state manipulation in a freely expanding thermal atom cloud. We compare several established pulse sequences, and follow the state evolution within them. The agreement between measurements and simple predictions shows the underlying coherence of the atom ensemble, and the inversion infidelity in a ˜80μK atom cloud is halved. Composite pulse techniques, especially if tailored for atom interferometric applications, should allow greater interferometer areas, larger atomic samples, and longer interaction times, and hence improve the sensitivity of quantum technologies from inertial sensing and clocks to quantum information processors and tests of fundamental physics.

  8. Uncertainties in Atomic Data and Their Propagation Through Spectral Models. I.

    NASA Technical Reports Server (NTRS)

    Bautista, M. A.; Fivet, V.; Quinet, P.; Dunn, J.; Gull, T. R.; Kallman, T. R.; Mendoza, C.

    2013-01-01

    We present a method for computing uncertainties in spectral models, i.e., level populations, line emissivities, and emission line ratios, based upon the propagation of uncertainties originating from atomic data.We provide analytic expressions, in the form of linear sets of algebraic equations, for the coupled uncertainties among all levels. These equations can be solved efficiently for any set of physical conditions and uncertainties in the atomic data. We illustrate our method applied to spectral models of Oiii and Fe ii and discuss the impact of the uncertainties on atomic systems under different physical conditions. As to intrinsic uncertainties in theoretical atomic data, we propose that these uncertainties can be estimated from the dispersion in the results from various independent calculations. This technique provides excellent results for the uncertainties in A-values of forbidden transitions in [Fe ii]. Key words: atomic data - atomic processes - line: formation - methods: data analysis - molecular data - molecular processes - techniques: spectroscopic

  9. Spectroscopy of Highly Charged Tin Ions for AN Extreme Ultraviolet Light Source for Lithography

    NASA Astrophysics Data System (ADS)

    Torretti, Francesco; Windberger, Alexander; Ubachs, Wim; Hoekstra, Ronnie; Versolato, Oscar; Ryabtsev, Alexander; Borschevsky, Anastasia; Berengut, Julian; Crespo Lopez-Urrutia, Jose

    2017-06-01

    Laser-produced tin plasmas are the prime candidates for the generation of extreme ultraviolet (EUV) light around 13.5 nm in nanolithographic applications. This light is generated primarily by atomic transitions in highly charged tin ions: Sn^{8+}-Sn^{14+}. Due to the electronic configurations of these charge states, thousands of atomic lines emit around 13.5 nm, clustered in a so-called unresolved transition array. As a result, accurate line identification becomes difficult in this regime. Nevertheless, this issue can be circumvented if one turns to the optical: with far fewer atomic states, only tens of transitions take place and the spectra can be resolved with far more ease. We have investigated optical emission lines in an electron-beam-ion-trap (EBIT), where we managed to charge-state resolve the spectra. Based on this technique and on a number of different ab initio techniques for calculating the level structure, the optical spectra could be assigned [1,2]. As a conclusion the assignments of EUV transitions in the literature require corrections. The EUV and optical spectra are measured simultaneously in the controlled conditions of the EBIT as well as in a droplet-based laser-produced plasma source providing information on the contribution of Sn^{q+} charge states to the EUV emission. [1] A. Windberger, F. Torretti, A. Borschevsky, A. Ryabtsev, S. Dobrodey, H. Bekker, E. Eliav, U. Kaldor, W. Ubachs, R. Hoekstra, J.R. Crespo Lopez-Urrutia, O.O. Versolato, Analysis of the fine structure of Sn^{11+} - Sn^{14+} ions by optical spectroscopy in an electron beam ion trap, Phys. Rev. A 94, 012506 (2016). [2] F. Torretti, A. Windberger, A. Ryabtsev, S. Dobrodey, H. Bekker, W. Ubachs, R. Hoekstra, E.V. Kahl, J.C. Berengut, J.R. Crespo Lopez-Urrutia, O.O. Versolato, Optical spectroscopy of complex open 4d-shell ions Sn^{7+} - Sn^{10+}, arXiv:1612.00747

  10. Laser techniques for spectroscopy of core-excited atomic levels

    NASA Technical Reports Server (NTRS)

    Harris, S. E.; Young, J. F.; Falcone, R. W.; Rothenberg, J. E.; Willison, J. R.

    1982-01-01

    We discuss three techniques which allow the use of tunable lasers for high resolution and picosecond time scale spectroscopy of core-excited atomic levels. These are: anti-Stokes absorption spectroscopy, laser induced emission from metastable levels, and laser designation of selected core-excited levels.

  11. Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Bitencourt, Ana Carla P.; Ferreira, Cristiane da S.; Marzuoli, Annalisa; Ragni, Mirco

    2008-11-01

    The mathematical apparatus of quantum-mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinatorial aspects. SU(2) recoupling theory, involving Wigner's 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, nowadays plays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory—and of its extension to other Lie and quantum groups—by using the collective term of 'spin networks'. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper, we list and discuss some aspects of these developments—such as for instance the hyperquantization algorithm—as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.

  12. Barium Tagging n Solid Xenon for nEXO Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Walton, Tim; Chambers, Chris; Craycraft, Adam; Fairbank, William; nEXO Collaboration

    2015-04-01

    nEXO is a next-generation experiment designed to search for neutrinoless double beta decay of the isotope Xe136 in a liquid xenon time projection chamber. Positive observation of this decay would determine the nature of the neutrino to be a Majorana particle. Since the daughter of this decay is barium (Ba136), detecting the presence of Ba136 at a decay site (called ``barium tagging'') would provide strong rejection of backgrounds in the search for this decay. This would involve detecting a single barium ion from within a macroscopic volume of liquid xenon. This technique may be available for a second phase of the nEXO detector and sensitivity beyond the inverted hierarchy to neutrino oscillations. Several methods of barium tagging are being explored by the nEXO collaboration, but here we present a method of trapping the barium ion/atom (it may neutralize) in solid xenon (SXe) at the end of a cold probe, and then detecting the ion/atom by its fluorescence in the SXe. Our group at CSU has been studying the fluorescence of Ba in SXe by laser excitation, in order to ultimately detect a single Ba +/Ba in a SXe sample. We present studies of fluorescence signals, as well as recent results on imaging small numbers of Ba atoms in SXe, in a focused laser region. This work is supported by grants from the National Science Foundation and the Department of Energy.

  13. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    NASA Astrophysics Data System (ADS)

    Thompson, A. P.; Swiler, L. P.; Trott, C. R.; Foiles, S. M.; Tucker, G. J.

    2015-03-01

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.

  14. Use of multiwavelength emission from hollow cathode lamp for measurement of state resolved atom density of metal vapor produced by electron beam evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majumder, A.; Dikshit, B.; Bhatia, M. S.

    2008-09-15

    State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean valuemore » of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data.« less

  15. Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires.

    PubMed

    Zamani, Reza R; Hage, Fredrik S; Lehmann, Sebastian; Ramasse, Quentin M; Dick, Kimberly A

    2018-03-14

    Over the past decade, III-V heterostructure nanowires have attracted a surge of attention for their application in novel semiconductor devices such as tunneling field-effect transistors (TFETs). The functionality of such devices critically depends on the specific atomic arrangement at the semiconductor heterointerfaces. However, most of the currently available characterization techniques lack sufficient spatial resolution to provide local information on the atomic structure and composition of these interfaces. Atomic-resolution spectrum imaging by means of electron energy-loss spectroscopy (EELS) in the scanning transmission electron microscope (STEM) is a powerful technique with the potential to resolve structure and chemical composition with sub-angstrom spatial resolution and to provide localized information about the physical properties of the material at the atomic scale. Here, we demonstrate the use of atomic-resolution EELS to understand the interface atomic arrangement in three-dimensional heterostructures in semiconductor nanowires. We observed that the radial interfaces of GaSb-InAs heterostructure nanowires are atomically abrupt, while the axial interface in contrast consists of an interfacial region where intermixing of the two compounds occurs over an extended spatial region. The local atomic configuration affects the band alignment at the interface and, hence, the charge transport properties of devices such as GaSb-InAs nanowire TFETs. STEM-EELS thus represents a very promising technique for understanding nanowire physical properties, such as differing electrical behavior across the radial and axial heterointerfaces of GaSb-InAs nanowires for TFET applications.

  16. Matter, energy, and heat transfer in a classical ballistic atom pump.

    PubMed

    Byrd, Tommy A; Das, Kunal K; Mitchell, Kevin A; Aubin, Seth; Delos, John B

    2014-11-01

    A ballistic atom pump is a system containing two reservoirs of neutral atoms or molecules and a junction connecting them containing a localized time-varying potential. Atoms move through the pump as independent particles. Under certain conditions, these pumps can create net transport of atoms from one reservoir to the other. While such systems are sometimes called "quantum pumps," they are also models of classical chaotic transport, and their quantum behavior cannot be understood without study of the corresponding classical behavior. Here we examine classically such a pump's effect on energy and temperature in the reservoirs, in addition to net particle transport. We show that the changes in particle number, of energy in each reservoir, and of temperature in each reservoir vary in unexpected ways as the incident particle energy is varied.

  17. The displacement effect of a fluorine atom in CaF2 on the band structure

    NASA Astrophysics Data System (ADS)

    Mir, A.; Zaoui, A.; Bensaid, D.

    2018-05-01

    We obtained the results for each configuration [100], [110] and [111] and each configuration contains two atoms of calcium and four fluorine atoms with lattice type B. This study was made by a code that is based on the DFT called wien2k. The results obtained are in good agreement with the experiment. For CaF2, an important variation of the fluoride ions concentration in CaF2 after displacement has been observed on the map of e-Density. The interpretation of the results is based on the existence of an important number of defects which are created by changing the atomic positions inside of sub lattice.

  18. Fullerenes formation in flames

    NASA Technical Reports Server (NTRS)

    Howard, Jack B.

    1993-01-01

    Fullerenes are composed of carbon atoms arranged in approximately spherical or ellipsoidal cages resembling the geodesic domes designed by Buckminster Fuller, after whom the molecules were named. The approximately spherical fullerene, which resembles a soccer ball and contains sixty atoms (C60), is called buckminsterfullerene. The fullerene containing seventy carbon atoms (C70) is approximately ellipsoidal, similar to a rugby ball. Fullerenes were first detected in 1985, in carbon vapor produced by laser evaporation of graphite. The closed shell structure, which has no edge atoms vulnerable to reaction, was proposed to explain the observed high stability of certain carbon clusters relative to that of others at high temperatures and in the presence of an oxidizing gas.

  19. Photoionization of atoms and molecules. [of hydrogen, helium, and xenon

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.

    1976-01-01

    A literature review on the present state of knowledge in photoionization is presented. Various experimental techniques that have been developed to study photoionization, such as fluorescence and photoelectron spectroscopy, mass spectroscopy, are examined. Various atoms and molecules were chosen to illustrate these techniques, specifically helium and xenon atoms and hydrogen molecules. Specialized photoionization such as in positive and negative ions, excited states, and free radicals is also treated. Absorption cross sections and ionization potentials are also discussed.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnett, J. L.; Britton, R. E.; Abrecht, D. G.

    The acquisition of time-stamped list (TLIST) data provides additional information useful to gamma-spectrometry analysis. A novel technique is described that uses non-linear least-squares fitting and the Levenberg-Marquardt algorithm to simultaneously determine parent-daughter atoms from time sequence measurements of only the daughter radionuclide. This has been demonstrated for the radioactive decay of short-lived radon progeny (214Pb/214Bi, 212Pb/212Bi) described using the Bateman first-order differential equation. The calculated atoms are in excellent agreement with measured atoms, with a difference of 1.3 – 4.8% for parent atoms and 2.4% - 10.4% for daughter atoms. Measurements are also reported with reduced uncertainty. The technique hasmore » potential to redefine gamma-spectrometry analysis.« less

  1. Evaluation of methods for trace-element determination with emphasis on their usability in the clinical routine laboratory.

    PubMed

    Bolann, B J; Rahil-Khazen, R; Henriksen, H; Isrenn, R; Ulvik, R J

    2007-01-01

    Commonly used techniques for trace-element analysis in human biological material are flame atomic absorption spectrometry (FAAS), graphite furnace atomic absorption spectrometry (GFAAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). Elements that form volatile hydrides, first of all mercury, are analysed by hydride generation techniques. In the absorption techniques the samples are vaporized into free, neutral atoms and illuminated by a light source that emits the atomic spectrum of the element under analysis. The absorbance gives a quantitative measure of the concentration of the element. ICP-AES and ICP-MS are multi-element techniques. In ICP-AES the atoms of the sample are excited by, for example, argon plasma at very high temperatures. The emitted light is directed to a detector, and the optical signals are processed to values for the concentrations of the elements. In ICP-MS a mass spectrometer separates and detects ions produced by the ICP, according to their mass-to-charge ratio. Dilution of biological fluids is commonly needed to reduce the effect of the matrix. Digestion using acids and microwave energy in closed vessels at elevated pressure is often used. Matrix and spectral interferences may cause problems. Precautions should be taken against trace-element contamination during collection, storage and processing of samples. For clinical problems requiring the analysis of only one or a few elements, the use of FAAS may be sufficient, unless the higher sensitivity of GFAAS is required. For screening of multiple elements, however, the ICP techniques are preferable.

  2. Resonance Ionization, Mass Spectrometry.

    ERIC Educational Resources Information Center

    Young, J. P.; And Others

    1989-01-01

    Discussed is an analytical technique that uses photons from lasers to resonantly excite an electron from some initial state of a gaseous atom through various excited states of the atom or molecule. Described are the apparatus, some analytical applications, and the precision and accuracy of the technique. Lists 26 references. (CW)

  3. Design and Implementation of Replicated Object Layer

    NASA Technical Reports Server (NTRS)

    Koka, Sudhir

    1996-01-01

    One of the widely used techniques for construction of fault tolerant applications is the replication of resources so that if one copy fails sufficient copies may still remain operational to allow the application to continue to function. This thesis involves the design and implementation of an object oriented framework for replicating data on multiple sites and across different platforms. Our approach, called the Replicated Object Layer (ROL) provides a mechanism for consistent replication of data over dynamic networks. ROL uses the Reliable Multicast Protocol (RMP) as a communication protocol that provides for reliable delivery, serialization and fault tolerance. Besides providing type registration, this layer facilitates distributed atomic transactions on replicated data. A novel algorithm called the RMP Commit Protocol, which commits transactions efficiently in reliable multicast environment is presented. ROL provides recovery procedures to ensure that site and communication failures do not corrupt persistent data, and male the system fault tolerant to network partitions. ROL will facilitate building distributed fault tolerant applications by performing the burdensome details of replica consistency operations, and making it completely transparent to the application.Replicated databases are a major class of applications which could be built on top of ROL.

  4. New target and detection methods: active detectors

    NASA Astrophysics Data System (ADS)

    Mittig, W.; Savajols, H.; Demonchy, C. E.; Giot, L.; Roussel-Chomaz, P.; Wang, H.; Ter-Akopian, G.; Fomichev, A.; Golovkov, M. S.; Stepansov, S.; Wolski, R.; Alamanos, N.; Drouart, A.; Gillibert, A.; Lapoux, V.; Pollacco, E.

    2003-07-01

    The study of nuclei far from stability interacting with simple target nuclei, such as protons, deuterons, 3He and 4He implies the use of inverse kinematics. The very special kinematics, together with the low intensities of the beams calls for special techniques. In july 2002 we tested a new detector, in which the detector gas is the target. This allows in principle a 4π solid angle of the detection, and a big effective target thickness without loss of resolution. The detector developped, called Maya, used isobuthane C4H10 as gas in present tests, and other gases are possible. The multiplexed electronics of more than 1000channels allows the reconstruction of the events occuring between the incoming particle and the detector gas atoms in 3D. Here we were interested in the elastic scattering of 8He on protons for the study of the isobaric analogue states (IAS) of 9He. The beam, in this case, is stopped in the detector. The resonance energy is determined by the place of interaction and the energy of the recoiling proton. The design of the detector is shown, together with some preliminary results are discussed.

  5. Icosahedral quasicrystals as twins of cubic crystals containing large icosahedral clusters of atoms: The 1012-atom primitive cubic structure of Al(6)CuLi(3), the C-phase Al(37)Cu(3)Li(21)Mg(3), and GaMg(2)Zn(3).

    PubMed

    Pauling, L

    1988-06-01

    Single-grain precession x-ray diffraction photographs of Al(6)CuLi(3) have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 A, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the beta-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al(37)Cu(3)Li(21)Mg(3), and to GaMg(2)Zn(3). A theory of icosahedral quasicrystals and amorphous metals is described.

  6. Icosahedral quasicrystals as twins of cubic crystals containing large icosahedral clusters of atoms: The 1012-atom primitive cubic structure of Al6CuLi3, the C-phase Al37Cu3Li21Mg3, and GaMg2Zn3

    PubMed Central

    Pauling, Linus

    1988-01-01

    Single-grain precession x-ray diffraction photographs of Al6CuLi3 have been successfully indexed on the basis of icosahedral twinning of cubic crystals with a 1012-atom primitive cubic unit with edge 25.70 Å, giving support to the proposal that the so-called icosahedral quasicrystals are twins of crystals containing eight large icosahedral clusters in the β-W arrangement. In this compound two of the clusters consist of 104 atoms and six consist of 136 atoms, with 24 atoms shared. The same structure is assigned to the C-phase, Al37Cu3Li21Mg3, and to GaMg2Zn3. A theory of icosahedral quasicrystals and amorphous metals is described. PMID:16593929

  7. Stability characterization of two multi-channel GPS receivers for accurate frequency transfer.

    NASA Astrophysics Data System (ADS)

    Taris, F.; Uhrich, P.; Thomas, C.; Petit, G.; Jiang, Z.

    In recent years, wide-spread use of the GPS common-view technique has led to major improvements, making it possible to compare remote clocks at their full level of performance. For integration times of 1 to 3 days, their frequency differences are consistently measured to about one part in 1014. Recent developments in atomic frequency standards suggest, however, that this performance may no longer be sufficient. The caesium fountain LPTF FO1, built at the BNM-LPTF, Paris, France, shows a short-term white frequency noise characterized by an Allen deviation σy(τ = 1 s) = 5×10-14 and a type B uncertainty of 2×10-15. To compare the frequencies of such highly stable standards would call for GPS common-view results to be averaged over times far exceeding the intervals of their optimal performance. Previous studies have shown the potential of carrier-phase and code measurements from geodetic GPS receivers for clock frequency comparisons. The experiment related here is an attempt to see the stability limit that could be reached using this technique.

  8. Figuration and detection of single molecules

    NASA Astrophysics Data System (ADS)

    Nevels, R.; Welch, G. R.; Cremer, P. S.; Hemmer, P.; Phillips, T.; Scully, S.; Sokolov, A. V.; Svidzinsky, A. A.; Xia, H.; Zheltikov, A.; Scully, M. O.

    2012-08-01

    Recent advances in the description of atoms and molecules based on Dimensional scaling analysis, developed by Dudley Herschbach and co-workers, provided new insights into visualization of molecular structure and chemical bonding. Prof. Herschbach is also a giant in the field of single molecule scattering. We here report on the engineering of molecular detectors. Such systems have a wide range of application from medical diagnostics to the monitoring of chemical, biological and environmental hazards. We discuss ways to identify preselected molecules, in particular, mycotoxin contaminants using coherent laser spectroscopy. Mycotoxin contaminants, e.g. aflatoxin B1 which is present in corn and peanuts, are usually analysed by time-consuming microscopic, chemical and biological assays. We present a new approach that derives from recent experiments in which molecules are prepared by one (or more) femtosecond laser(s) and probed by another set. We call this technique FAST CARS (femto second adaptive spectroscopic technique for coherent anti-Stokes Raman spectroscopy). We propose and analyse ways in which FAST CARS can be used to identify preselected molecules, e.g. aflatoxin, rapidly and economically.

  9. A new technique based on current measurement for nanoscale ferroelectricity assessment: Nano-positive up negative down

    NASA Astrophysics Data System (ADS)

    Martin, Simon; Baboux, Nicolas; Albertini, David; Gautier, Brice

    2017-02-01

    In this paper, we propose a new procedure which aims at measuring the polarisation switching current at the nanoscale on ferroelectric thin films with the atomic force microscope tip used as a top electrode. Our technique is an adaptation of the so-called positive up negative down method commonly operated on large electrodes. The main obstacle that must be overcome to implement such measurement is the enhancement of the signal to noise ratio, in a context where the stray capacitance of the sample/tip/lever/lever holder system generates a dielectric displacement current several orders of magnitude higher than the current to be measured. This problem is solved by the subtraction of the displacement current through a reference capacitance. For the first time, we show an example of nanoscale positive up negative down measurement of the polarisation charge on a PbZrTiO3 thin film and compare the measured value with paraelectric samples. From the comparison with macroscopic measurement, we deduce the effective area of contact between the tip and the sample.

  10. Key technologies and applications of laser cooling and trapping {sup 87}Rb atomic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ru, Ning, E-mail: runing@buaa.edu.cn; Zhang, Li, E-mail: mewan@buaa.edu.cn; Key Laboratory for Metrology, Changcheng Institute of Metrology and Measurement

    2016-06-28

    Atom Interferometry is proved to be a potential method for measuring the acceleration of atoms due to Gravity, we are now building a feasible system of cold atom gravimeter. In this paper development and the important applications of laser cooling and trapping atoms are introduced, some key techniques which are used to obtain {sup 87}Rb cold atoms in our experiments are also discussed.

  11. Atomic oxygen damage characterization by photothermal scanning

    NASA Technical Reports Server (NTRS)

    Williams, A. W.; Wood, N. J.; Zakaria, A. B.

    1993-01-01

    In this paper we use a photothermal imaging technique to characterize the damage caused to an imperfectly coated gold-coated Kapton sample exposed to successively increased fluences of atomic oxygen in a laboratory atomic source.

  12. Optical tuning of electronic valleys (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sie, Edbert J.; Gedik, Nuh

    2017-02-01

    Monolayer transition-metal dichalcogenides such as MoS2 and WS2 are prime examples of atomically thin semiconducting crystals that exhibit remarkable electronic and optical properties. They have a pair of valleys that can serve as a new electronic degree of freedom, and these valleys obey optical selection rules with circularly polarized light. Here, we discuss how ultrafast laser pulses can be used to tune their energy levels in a controllable valley-selective manner. The energy tunability is extremely large, comparable to what would be obtained using a hundred Tesla of magnetic field. We will also show that such valley tunability can be performed while we effectively manipulate the valley selection rules. Finally, we will explore the prospect of using this technique through photoemission spectroscopy to create a new phase of matter called a valley Floquet topological insulator.

  13. Atomic Detail Visualization of Photosynthetic Membranes with GPU-Accelerated Ray Tracing

    PubMed Central

    Vandivort, Kirby L.; Barragan, Angela; Singharoy, Abhishek; Teo, Ivan; Ribeiro, João V.; Isralewitz, Barry; Liu, Bo; Goh, Boon Chong; Phillips, James C.; MacGregor-Chatwin, Craig; Johnson, Matthew P.; Kourkoutis, Lena F.; Hunter, C. Neil

    2016-01-01

    The cellular process responsible for providing energy for most life on Earth, namely photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers. PMID:27274603

  14. New computational tools for H/D determination in macromolecular structures from neutron data.

    PubMed

    Siliqi, Dritan; Caliandro, Rocco; Carrozzini, Benedetta; Cascarano, Giovanni Luca; Mazzone, Annamaria

    2010-11-01

    Two new computational methods dedicated to neutron crystallography, called n-FreeLunch and DNDM-NDM, have been developed and successfully tested. The aim in developing these methods is to determine hydrogen and deuterium positions in macromolecular structures by using information from neutron density maps. Of particular interest is resolving cases in which the geometrically predicted hydrogen or deuterium positions are ambiguous. The methods are an evolution of approaches that are already applied in X-ray crystallography: extrapolation beyond the observed resolution (known as the FreeLunch procedure) and a difference electron-density modification (DEDM) technique combined with the electron-density modification (EDM) tool (known as DEDM-EDM). It is shown that the two methods are complementary to each other and are effective in finding the positions of H and D atoms in neutron density maps.

  15. Atomization of Impinging Droplets on Superheated Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Emerson, Preston; Crockett, Julie; Maynes, Daniel

    2017-11-01

    Water droplets impinging smooth superheated surfaces may be characterized by dynamic vapor bubbles rising to the surface, popping, and causing a spray of tiny droplets to erupt from the droplet. This spray is called secondary atomization. Here, atomization is quantified experimentally for water droplets impinging superheated superhydrophobic surfaces. Smooth hydrophobic and superhydrophobic surfaces with varying rib and post microstructuring were explored. Each surface was placed on an aluminum heating block, and impingement events were captured with a high speed camera at 3000 fps. For consistency among tests, all events were normalized by the maximum atomization found over a range of temperatures on a smooth hydrophobic surface. An estimate of the level of atomization during an impingement event was created by quantifying the volume of fluid present in the atomization spray. Droplet diameter and Weber number were held constant, and atomization was found for a range of temperatures through the lifetime of the impinging droplet. The Leidenfrost temperature was also determined and defined to be the lowest temperature at which atomization ceases to occur. Both atomization and Leidenfrost temperature increase with decreasing pitch (distance between microstructures).

  16. Advanced theory of mind in adolescence: Do age, gender and friendship style play a role?

    PubMed

    Białecka-Pikul, Marta; Kołodziejczyk, Anna; Bosacki, Sandra

    2017-04-01

    The ability to recursively infer the mental states of others to explain their complex behavior in ambiguous social situation may be called Advanced Theory of Mind (aToM). The relations between two components of aToM, cognitive and affective, measured on a behavioral level in 151 Polish 13-year-olds and 174 16-year-olds was examined. The role of age, gender and friendship style and its relations to the cognitive and affective aToM was explored. Cognitive aToM was only weakly to moderately related to affective aToM. Across both age groups females scored higher than males. Males' aToM abilities did not differ according to age, but they scored higher in the cognitive aToM than affective ToM. Also, different aspects of friendship style were significant predictors of both aToM abilities. The implications for two aToM components within a gendered social context were discussed. Copyright © 2017 The Foundation for Professionals in Services for Adolescents. All rights reserved.

  17. Deposition of dopant impurities and pulsed energy drive-in

    DOEpatents

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    2008-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  18. Deposition of dopant impurities and pulsed energy drive-in

    DOEpatents

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    1999-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  19. Deposition of dopant impurities and pulsed energy drive-in

    DOEpatents

    Wickboldt, P.; Carey, P.G.; Smith, P.M.; Ellingboe, A.R.

    1999-06-29

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique is disclosed. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques. 2 figs.

  20. Automated Reflectance Measurement System Designed and Fabricated to Determine the Limits of Atomic Oxygen Treatment of Art Through Contrast Optimization

    NASA Technical Reports Server (NTRS)

    Sechkar, Edward A.; Stueber, Thomas J.; Rutledge, Sharon K.

    2000-01-01

    Atomic oxygen generated in ground-based research facilities has been used to not only test erosion of candidate spacecraft materials but as a noncontact technique for removing organic deposits from the surfaces of artwork. NASA has patented the use of atomic oxygen to remove carbon-based soot contamination from fire-damaged artwork. The process of cleaning soot-damaged paintings with atomic oxygen requires exposures for variable lengths of time, dependent on the condition of a painting. Care must be exercised while cleaning to prevent the removal of pigment. The cleaning process must be stopped as soon as visual inspection or surface reflectance measurements indicate that cleaning is complete. Both techniques rely on optical comparisons of known bright locations against known dark locations on the artwork being cleaned. Difficulties arise with these techniques when either a known bright or dark location cannot be determined readily. Furthermore, dark locations will lighten with excessive exposure to atomic oxygen. Therefore, an automated test instrument to quantitatively characterize cleaning progression was designed and developed at the NASA Glenn Research Center at Lewis Field to determine when atomic oxygen cleaning is complete.

  1. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1982-01-01

    Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.

  2. Study to perform preliminary experiments to evaluate particle generation and characterization techniques for zero-gravity cloud physics experiments

    NASA Technical Reports Server (NTRS)

    Katz, U.

    1982-01-01

    Methods of particle generation and characterization with regard to their applicability for experiments requiring cloud condensation nuclei (CCN) of specified properties were investigated. Since aerosol characterization is a prerequisite to assessing performance of particle generation equipment, techniques for characterizing aerosol were evaluated. Aerosol generation is discussed, and atomizer and photolytic generators including preparation of hydrosols (used with atomizers) and the evaluation of a flight version of an atomizer are studied.

  3. Droplet size prediction in the production of drug delivery microsystems by ultrasonic atomization

    PubMed Central

    Dalmoro, Annalisa; d’Amore, Matteo; Barba, Anna Angela

    Microencapsulation processes of drugs or other functional molecules are of great interest in pharmaceutical production fields. Ultrasonic assisted atomization is a new technique to produce microencapsulated systems by mechanical approach. It seems to offer several advantages (low level of mechanical stress in materials, reduced energy request, reduced apparatuses size) with respect to more conventional techniques. In this paper the groundwork of atomization is briefly introduced and correlations to predict droplet size starting from process parameters and material properties are presented. PMID:24251250

  4. X-rays in the Cryo-EM Era: Structural Biology’s Dynamic Future

    PubMed Central

    Shoemaker, Susannah C.; Ando, Nozomi

    2018-01-01

    Over the past several years, single-particle cryo-electron microscopy (cryo-EM) has emerged as a leading method for elucidating macromolecular structures at near-atomic resolution, rivaling even the established technique of X-ray crystallography. Cryo-EM is now able to probe proteins as small as hemoglobin (64 kDa), while avoiding the crystallization bottleneck entirely. The remarkable success of cryo-EM has called into question the continuing relevance of X-ray methods, particularly crystallography. To say that the future of structural biology is either cryo-EM or crystallography, however, would be misguided. Crystallography remains better suited to yield precise atomic coordinates of macromolecules under a few hundred kDa in size, while the ability to probe larger, potentially more disordered assemblies is a distinct advantage of cryo-EM. Likewise, crystallography is better equipped to provide high-resolution dynamic information as a function of time, temperature, pressure, and other perturbations, whereas cryo-EM offers increasing insight into conformational and energy landscapes, particularly as algorithms to deconvolute conformational heterogeneity become more advanced. Ultimately, the future of both techniques depends on how their individual strengths are utilized to tackle questions on the frontiers of structural biology. Structure determination is just one piece of a much larger puzzle: a central challenge of modern structural biology is to relate structural information to biological function. In this perspective, we share insight from several leaders in the field and examine the unique and complementary ways in which X-ray methods and cryo-EM can shape the future of structural biology. PMID:29227642

  5. Column ratio mapping: a processing technique for atomic resolution high-angle annular dark-field (HAADF) images.

    PubMed

    Robb, Paul D; Craven, Alan J

    2008-12-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  6. Combating WMD Journal. Issue 4, Fall/Winter 2009

    DTIC Science & Technology

    2009-01-01

    Little Boy " and " Fat Man ". On 6 August 1945 at 08:15...These newer bombs were more powerful and lighter weight compared to the days of Little Boy and Fat Man . Many early bombs are still in service well...Group, released a Mark I atomic bomb called " Little Boy ". This was the first atomic bomb used against the Empire of Japan, the tar- get:

  7. Breit-Rabi Zeeman states of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Dickson, R. S.; Weil, J. A.

    1991-02-01

    The magnetic field dependence of the isotropic nonrelativistic one-electron atom with nuclear spin-1/2, in its electronic ground state, is reviewed. Attention is called to the little-known fact that a level crossing exists (at field B˜17 T for 1H) between the two members of the upper spin (MS=1/2) doublet. Anisotropy of such a hydrogenic atom, due to the presence of a suitable external electric field (for instance, 1H trapped in crystalline SiO2) causes anticrossing of these levels and causes previously forbidden magnetic-dipole transitions to attain appreciable intensity in that B region.

  8. Supersonic N-Crowdions in a Two-Dimensional Morse Crystal

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. V.; Korznikova, E. A.; Chetverikov, A. P.

    2018-03-01

    An interstitial atom placed in a close-packed atomic row of a crystal is called crowdion. Such defects are highly mobile; they can move along the row, transferring mass and energy. We generalize the concept of a classical supersonic crowdion to an N-crowdion in which not one but N atoms move simultaneously with a high velocity. Using molecular dynamics simulations for a close-packed two-dimensional Morse crystal, we show that N-crowdions transfer mass much more efficiently, because they are capable of covering large distances while having a lower total energy than that of a classical 1-crowdion.

  9. Structural biologists capture detailed image of gene regulator’s fleeting form | Center for Cancer Research

    Cancer.gov

    Using an ultrafast, high-intensity radiation source called an X-ray free-electron laser (XFEL), scientists have captured an atomic-level picture of an RNA structure called a riboswitch as it reorganizes itself to regulate protein production. The structure they visualized has never before been seen, and likely exists for only milliseconds after the riboswitch first encounters

  10. Linear complexions: Confined chemical and structural states at dislocations

    NASA Astrophysics Data System (ADS)

    Kuzmina, M.; Herbig, M.; Ponge, D.; Sandlöbes, S.; Raabe, D.

    2015-09-01

    For 5000 years, metals have been mankind’s most essential materials owing to their ductility and strength. Linear defects called dislocations carry atomic shear steps, enabling their formability. We report chemical and structural states confined at dislocations. In a body-centered cubic Fe-9 atomic percent Mn alloy, we found Mn segregation at dislocation cores during heating, followed by formation of face-centered cubic regions but no further growth. The regions are in equilibrium with the matrix and remain confined to the dislocation cores with coherent interfaces. The phenomenon resembles interface-stabilized structural states called complexions. A cubic meter of strained alloy contains up to a light year of dislocation length, suggesting that linear complexions could provide opportunities to nanostructure alloys via segregation and confined structural states.

  11. Atom Probe Tomography Studies on the Cu(In,Ga)Se2 Grain Boundaries

    PubMed Central

    Cojocaru-Mirédin, Oana; Schwarz, Torsten; Choi, Pyuck-Pa; Herbig, Michael; Wuerz, Roland; Raabe, Dierk

    2013-01-01

    Compared with the existent techniques, atom probe tomography is a unique technique able to chemically characterize the internal interfaces at the nanoscale and in three dimensions. Indeed, APT possesses high sensitivity (in the order of ppm) and high spatial resolution (sub nm). Considerable efforts were done here to prepare an APT tip which contains the desired grain boundary with a known structure. Indeed, site-specific sample preparation using combined focused-ion-beam, electron backscatter diffraction, and transmission electron microscopy is presented in this work. This method allows selected grain boundaries with a known structure and location in Cu(In,Ga)Se2 thin-films to be studied by atom probe tomography. Finally, we discuss the advantages and drawbacks of using the atom probe tomography technique to study the grain boundaries in Cu(In,Ga)Se2 thin-film solar cells. PMID:23629452

  12. A review of demodulation techniques for amplitude-modulation atomic force microscopy

    PubMed Central

    Harcombe, David M; Ragazzon, Michael R P; Moheimani, S O Reza; Fleming, Andrew J

    2017-01-01

    In this review paper, traditional and novel demodulation methods applicable to amplitude-modulation atomic force microscopy are implemented on a widely used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct frequency components. Specifically for modern multifrequency techniques, where higher harmonic and/or higher eigenmode contributions are present in the oscillation signal, the fidelity of the estimates obtained from some demodulation techniques is not guaranteed. To enable a rigorous comparison, the performance metrics tracking bandwidth, implementation complexity and sensitivity to other frequency components are experimentally evaluated for each method. Finally, the significance of an adequate demodulator bandwidth is highlighted during high-speed tapping-mode atomic force microscopy experiments in constant-height mode. PMID:28900596

  13. Trapping hydrogen atoms from a neon-gas matrix: a theoretical simulation.

    PubMed

    Bovino, S; Zhang, P; Kharchenko, V; Dalgarno, A

    2009-08-07

    Hydrogen is of critical importance in atomic and molecular physics and the development of a simple and efficient technique for trapping cold and ultracold hydrogen atoms would be a significant advance. In this study we simulate a recently proposed trap-loading mechanism for trapping hydrogen atoms released from a neon matrix. Accurate ab initio quantum calculations are reported of the neon-hydrogen interaction potential and the energy- and angular-dependent elastic scattering cross sections that control the energy transfer of initially cold atoms are obtained. They are then used to construct the Boltzmann kinetic equation, describing the energy relaxation process. Numerical solutions of the Boltzmann equation predict the time evolution of the hydrogen energy distribution function. Based on the simulations we discuss the prospects of the technique.

  14. Electronic levels and charge distribution near the interface of nickel

    NASA Technical Reports Server (NTRS)

    Waber, J. T.

    1982-01-01

    The energy levels in clusters of nickel atoms were investigated by means of a series of cluster calculations using both the multiple scattering and computational techniques (designated SSO) which avoids the muffin-tin approximation. The point group symmetry of the cluster has significant effect on the energy of levels nominally not occupied. This influences the electron transfer process during chemisorption. The SSO technique permits the approaching atom or molecule plus a small number of nickel atoms to be treated as a cluster. Specifically, molecular levels become more negative in the O atom, as well as in a CO molecule, as the metal atoms are approached. Thus, electron transfer from the nickel and bond formation is facilitated. This result is of importance in understanding chemisorption and catalytic processes.

  15. Determination of tellurium by hydride generation with in situ trapping flame atomic absorption spectrometry

    NASA Astrophysics Data System (ADS)

    Matusiewicz, Henryk; Krawczyk, Magdalena

    2007-03-01

    The analytical performance of coupled hydride generation — integrated atom trap (HG-IAT) atomizer flame atomic absorption spectrometry (FAAS) system was evaluated for determination of Te in reference material (GBW 07302 Stream Sediment), coal fly ash and garlic. Tellurium, using formation of H 2Te vapors, is atomized in air-acetylene flame-heated IAT. A new design HG-IAT-FAAS hyphenated technique that would exceed the operational capabilities of existing arrangements (a water-cooled single silica tube, double-slotted quartz tube or an "integrated trap") was investigated. An improvement in detection limit was achieved compared with using either of the above atom trapping techniques separately. The concentration detection limit, defined as 3 times the blank standard deviation (3 σ), was 0.9 ng mL - 1 for Te. For a 2 min in situ pre-concentration time (sample volume of 2 mL), sensitivity enhancement compared to flame AAS, was 222 fold, using the hydride generation — atom trapping technique. The sensitivity can be further improved by increasing the collection time. The precision, expressed as RSD, was 7.0% ( n = 6) for Te. The designs studied include slotted tube, single silica tube and integrated atom trap-cooled atom traps. The accuracy of the method was verified using a certified reference material (GBW 07302 Stream Sediment) by aqueous standard calibration curves. The measured Te contents of the reference material was in agreement with the information value. The method was successfully applied to the determination of tellurium in coal fly ash and garlic.

  16. 77 FR 52683 - UChicago Argonne, LLC, Notice of Decision on Applications for Duty-Free Entry of Scientific...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... science. This instrument is specialized for creating artificial nanoscale structures on an atom-by-atom basis using nascent atom manipulation techniques. The instrument will be used to investigate the amount of force required to move one atom on a materials surface while simultaneously measuring local...

  17. Interactions of foreign interstitial and substitutional atoms in bcc iron from ab initio calculations

    NASA Astrophysics Data System (ADS)

    You, Y.; Yan, M. F.

    2013-05-01

    C and N atoms are the most frequent foreign interstitial atoms (FIAs), and often incorporated into the surface layers of steels to enhance their properties by thermochemical treatments. Al, Si, Ti, V, Cr, Mn, Co, Ni, Cu, Nb and Mo are the most common alloying elements in steels, also can be called foreign substitutional atoms (FSAs). The FIA and FSA interactions play an important role in the diffusion of C and N atoms, and the microstructures and mechanical properties of surface modified layers. Ab initio calculations based on the density functional theory are carried out to investigate FIA interactions with FSA in ferromagnetic bcc iron. The FIA-FSA interactions are analyzed systematically from five aspects, including interaction energies, density of states (DOS), bond populations, electron density difference maps and local magnetic moments.

  18. Big Bang Day: 5 Particles - 1. The Electron

    ScienceCinema

    None

    2017-12-09

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 1. The Electron Just over a century ago, British physicist J.J. Thompson experimenting with electric currents and charged particles inside empty glass tubes, showed that atoms are divisible into indivisible elementary particles. But how could atoms be built up of these so called "corpuscles"? An exciting 30 year race ensued, to grasp the planetary model of the atom with its orbiting electrons, and the view inside the atom was born. Whilst the number of electrons around the nucleus of an atom determines their the chemistry of all elements, the power of electrons themselves have been harnessed for everyday use: electron beams for welding,cathode ray tubes and radiation therapy.

  19. Enumerating Substituted Benzene Isomers of Tree-Like Chemical Graphs.

    PubMed

    Li, Jinghui; Nagamochi, Hiroshi; Akutsu, Tatsuya

    2018-01-01

    Enumeration of chemical structures is useful for drug design, which is one of the main targets of computational biology and bioinformatics. A chemical graph with no other cycles than benzene rings is called tree-like, and becomes a tree possibly with multiple edges if we contract each benzene ring into a single virtual atom of valence 6. All tree-like chemical graphs with a given tree representation are called the substituted benzene isomers of . When we replace each virtual atom in with a benzene ring to obtain a substituted benzene isomer, distinct isomers of are caused by the difference in arrangements of atom groups around a benzene ring. In this paper, we propose an efficient algorithm that enumerates all substituted benzene isomers of a given tree representation . Our algorithm first counts the number of all the isomers of the tree representation by a dynamic programming method. To enumerate all the isomers, for each , our algorithm then generates the th isomer by backtracking the counting phase of the dynamic programming. We also implemented our algorithm for computational experiments.

  20. Identification of the Structure Model of the Si(111)-(5×2)-Au Surface

    NASA Astrophysics Data System (ADS)

    Shirasawa, Tetsuroh; Voegeli, Wolfgang; Nojima, Takehiro; Iwasawa, Yusaku; Yamaguchi, Yudai; Takahashi, Toshio

    2014-10-01

    The atomic structure of the Si(111)-(5×2)-Au surface, a periodic gold chain on the silicon surface, has been a long-debated issue in surface science. The recent three candidates, the so-called Erwin-Barke-Himpsel (EBH) model [S. C. Erwin, I. Barke, and F. J. Himpsel, Phys. Rev. B 80, 155409 (2009)], the Abukawa-Nishigaya (AN) model [T. Abukawa and Y. Nishigaya, Phys. Rev. Lett. 110, 036102 (2013)], and the Kwon-Kang (KK) model [S. G. Kwon and M. H. Kang, Phys. Rev. Lett. 113, 086101 (2014)] that has one additional Au atom than the EBH model are tested by surface x-ray diffraction data. A two-dimensional Patterson map constructed from the in-plane diffraction intensities rejects the AN model and prefers the KK model over the EBH model. On the basis of the arrangement of Au obtained from the Patterson map, all the reconstructed Si atoms, such as the so-called honeycomb chain structure, are directly imaged out by utilizing a holographic method. The KK model reproduces out-of-plane diffraction data as well.

  1. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  2. The Introduction of Crystallographic Concepts Using Lap-Dissolve Slide Techniques.

    ERIC Educational Resources Information Center

    Bodner, George M.; And Others

    1980-01-01

    Describes a method using lap-dissolve slide techniques with two or more slide projectors focused on a single screen for presenting visual effects that show structural features in extended arrays of atoms, or ions involving up to several hundred atoms. Presents an outline of an introduction to the structures of crystalline solids. (CS)

  3. Speciation of mercury compounds by differential atomization - atomic absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, J.W.; Skelly, E.M.

    This paper describes the dual stage atomization technique which allows speciation of several mercury-containing compounds in aqueous solution and in biological fluids. The technique holds great promise for further speciation studies. Accurate temperature control, expecially at temperatures less than 200/sup 0/C, is needed to separate the extremely volatile mercury halides and simple organomercurials from each other. Studies with mercury salts and EDTA, L-cysteine and dithioxamide demonstrate that this technique may be used to study the extent of complex formation. Investigations of biological fluids indicate that there is a single predominant form of mercury in sweat and a single predominant formmore » of mercury in urine. The mercury compound in urine is more volatile than that in sweat. Both quantitative and qualitative analyses are possible with this technique.« less

  4. Structure determination in 55-atom Li-Na and Na-K nanoalloys.

    PubMed

    Aguado, Andrés; López, José M

    2010-09-07

    The structure of 55-atom Li-Na and Na-K nanoalloys is determined through combined empirical potential (EP) and density functional theory (DFT) calculations. The potential energy surface generated by the EP model is extensively sampled by using the basin hopping technique, and a wide diversity of structural motifs is reoptimized at the DFT level. A composition comparison technique is applied at the DFT level in order to make a final refinement of the global minimum structures. For dilute concentrations of one of the alkali atoms, the structure of the pure metal cluster, namely, a perfect Mackay icosahedron, remains stable, with the minority component atoms entering the host cluster as substitutional impurities. At intermediate concentrations, the nanoalloys adopt instead a core-shell polyicosahedral (p-Ih) packing, where the element with smaller atomic size and larger cohesive energy segregates to the cluster core. The p-Ih structures show a marked prolate deformation, in agreement with the predictions of jelliumlike models. The electronic preference for a prolate cluster shape, which is frustrated in the 55-atom pure clusters due to the icosahedral geometrical shell closing, is therefore realized only in the 55-atom nanoalloys. An analysis of the electronic densities of states suggests that photoelectron spectroscopy would be a sufficiently sensitive technique to assess the structures of nanoalloys with fixed size and varying compositions.

  5. Time-frequency and advanced frequency estimation techniques for the investigation of bat echolocation calls.

    PubMed

    Kopsinis, Yannis; Aboutanios, Elias; Waters, Dean A; McLaughlin, Steve

    2010-02-01

    In this paper, techniques for time-frequency analysis and investigation of bat echolocation calls are studied. Particularly, enhanced resolution techniques are developed and/or used in this specific context for the first time. When compared to traditional time-frequency representation methods, the proposed techniques are more capable of showing previously unseen features in the structure of bat echolocation calls. It should be emphasized that although the study is focused on bat echolocation recordings, the results are more general and applicable to many other types of signal.

  6. Magnetic tweezers for the measurement of twist and torque.

    PubMed

    Lipfert, Jan; Lee, Mina; Ordu, Orkide; Kerssemakers, Jacob W J; Dekker, Nynke H

    2014-05-19

    Single-molecule techniques make it possible to investigate the behavior of individual biological molecules in solution in real time. These techniques include so-called force spectroscopy approaches such as atomic force microscopy, optical tweezers, flow stretching, and magnetic tweezers. Amongst these approaches, magnetic tweezers have distinguished themselves by their ability to apply torque while maintaining a constant stretching force. Here, it is illustrated how such a "conventional" magnetic tweezers experimental configuration can, through a straightforward modification of its field configuration to minimize the magnitude of the transverse field, be adapted to measure the degree of twist in a biological molecule. The resulting configuration is termed the freely-orbiting magnetic tweezers. Additionally, it is shown how further modification of the field configuration can yield a transverse field with a magnitude intermediate between that of the "conventional" magnetic tweezers and the freely-orbiting magnetic tweezers, which makes it possible to directly measure the torque stored in a biological molecule. This configuration is termed the magnetic torque tweezers. The accompanying video explains in detail how the conversion of conventional magnetic tweezers into freely-orbiting magnetic tweezers and magnetic torque tweezers can be accomplished, and demonstrates the use of these techniques. These adaptations maintain all the strengths of conventional magnetic tweezers while greatly expanding the versatility of this powerful instrument.

  7. Genetics Home Reference: CLCN2-related leukoencephalopathy

    MedlinePlus

    ... The CLCN2 gene provides instructions for making a chloride channel called ClC-2. This channel transports negatively charged chlorine atoms (chloride ions) across cell membranes and plays a key ...

  8. Atomically Precise Surface Engineering for Producing Imagers

    NASA Technical Reports Server (NTRS)

    Nikzad, Shouleh (Inventor); Hoenk, Michael E. (Inventor); Greer, Frank (Inventor); Jones, Todd J. (Inventor)

    2015-01-01

    High-quality surface coatings, and techniques combining the atomic precision of molecular beam epitaxy and atomic layer deposition, to fabricate such high-quality surface coatings are provided. The coatings made in accordance with the techniques set forth by the invention are shown to be capable of forming silicon CCD detectors that demonstrate world record detector quantum efficiency (>50%) in the near and far ultraviolet (155 nm-300 nm). The surface engineering approaches used demonstrate the robustness of detector performance that is obtained by achieving atomic level precision at all steps in the coating fabrication process. As proof of concept, the characterization, materials, and exemplary devices produced are presented along with a comparison to other approaches.

  9. Development of a Transportable Gravity Gradiometer Based on Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Yu, N.; Kohel, J. M.; Aveline, D. C.; Kellogg, J. R.; Thompson, R. J.; Maleki, L.

    2007-12-01

    JPL is developing a transportable gravity gradiometer based on light-pulse atom interferometers for NASA's Earth Science Technology Office's Instrument Incubator Program. The inertial sensors in this instrument employ a quantum interference measurement technique, analogous to the precise phase measurements in atomic clocks, which offers increased sensitivity and improved long-term stability over traditional mechanical devices. We report on the implementation of this technique in JPL's gravity gradiometer, and on the current performance of the mobile instrument. We also discuss the prospects for satellite-based gravity field mapping, including high-resolution monitoring of time-varying fields from a single satellite platform and multi-component measurements of the gravitational gradient tensor, using atom interferometer-based instruments.

  10. A new way to measure the composition of the interstellar gas surrounding the heliosphere

    NASA Technical Reports Server (NTRS)

    Gruntman, Michael A.

    1993-01-01

    The composition of neutral gas in the Local Interstellar Medium can be studied by direct, in situ measuring of interstellar neutral atoms penetrating into interplanetary space. A novel experimental approach for in situ atom detection, which has never been used earlier in space, is proposed. The technique is based on the conversion of neutral atoms to negative ions at a specially prepared sensitive surface. Negative ions are subsequently analyzed and detected in an essentially noise-free, multicoincidence mode. It is shown that interstellar hydrogen, deuterium, and oxygen atoms can be measured by the proposed technique. The experiment can be performed from a high-apogee Earth-orbiting satellite or from a deep space probe.

  11. Direct Determination of Nonmetals in Solution with Atomic Spectrometry.

    ERIC Educational Resources Information Center

    McGregor, David A.; And Others

    1988-01-01

    Addresses solution nonmetal determinations on a fundamental level. Characterizes research in this area of chemical instrumentation. Discusses the fundamental limitations of nonmetal atomic spectrometry, the status of nonmetals and atomic spectroscopic techniques, and current directions in solution nonmetal determinations. (CW)

  12. Infrared Detector Research

    DTIC Science & Technology

    1976-08-01

    Bratt, Howard Davis, Frank Renda , Paul Chia, Arthur Lockwood. Bell Telephone Labs Leo F. Johnson, Alfred U. MacRae, Paul Norton. Texas Ins truments Werner...impurities which can "donate" their extra electron not required for bonding with the silicon atoms. When there are more acceptors than donors the material...will be p-type. The extra electrons from the donors can complete the bond missing due to the boron atoms. This process is call compensation. The

  13. Structural biologists capture detailed image of gene regulator’s fleeting form | Center for Cancer Research

    Cancer.gov

    Using an ultrafast, high-intensity radiation source called an X-ray free-electron laser (XFEL), scientists have captured an atomic-level picture of an RNA structure called a riboswitch as it reorganizes itself to regulate protein production. The structure they visualized has never before been seen, and likely exists for only milliseconds after the riboswitch first encounters its activating molecule.  Read more...  

  14. Denoising in digital speckle pattern interferometry using wave atoms.

    PubMed

    Federico, Alejandro; Kaufmann, Guillermo H

    2007-05-15

    We present an effective method for speckle noise removal in digital speckle pattern interferometry, which is based on a wave-atom thresholding technique. Wave atoms are a variant of 2D wavelet packets with a parabolic scaling relation and improve the sparse representation of fringe patterns when compared with traditional expansions. The performance of the denoising method is analyzed by using computer-simulated fringes, and the results are compared with those produced by wavelet and curvelet thresholding techniques. An application of the proposed method to reduce speckle noise in experimental data is also presented.

  15. The role of nickel in radiation damage of ferritic alloys

    DOE PAGES

    Osetsky, Y.; Anento, Napoleon; Serra, Anna; ...

    2014-11-26

    According to modern theory, damage evolution under neutron irradiation depends on the fraction of self-interstitial atoms (SIAs) produced in the form of one-dimensional glissile clusters. These clusters, having a low interaction cross-section with other defects, are absorbed mainly by grain boundaries and dislocations, creating the so-called production bias. It is known empirically that the addition of certain alloying elements influences many radiation effects, including swelling; however, the mechanisms are unknown in many cases. In this study, we report the results of an extensive multi-technique atomistic level modeling study of SIA clusters mobility in body-centered cubic Fe–Ni alloys. We have foundmore » that Ni interacts strongly with the periphery of clusters, affecting their mobility. The total effect is defined by the number of Ni atoms interacting with the cluster at the same time and can be significant, even in low-Ni alloys. Thus a 1 nm (37SIAs) cluster is practically immobile at T < 500 K in the Fe–0.8 at.% Ni alloy. Increasing cluster size and Ni content enhances cluster immobilization. Finally, this effect should have quite broad consequences in void swelling, matrix damage accumulation and radiation induced hardening and the results obtained help to better understand and predict the effects of radiation in Fe–Ni ferritic alloys.« less

  16. Identification of substitutional Li in n-type ZnO and its role as an acceptor

    NASA Astrophysics Data System (ADS)

    Johansen, K. M.; Zubiaga, A.; Makkonen, I.; Tuomisto, F.; Neuvonen, P. T.; Knutsen, K. E.; Monakhov, E. V.; Kuznetsov, A. Yu.; Svensson, B. G.

    2011-06-01

    Monocrystalline n-type zinc oxide (ZnO) samples prepared by different techniques and containing various amounts of lithium (Li) have been studied by positron annihilation spectroscopy (PAS) and secondary ion mass spectrometry. A distinct PAS signature of negatively charged Li atoms occupying a Zn-site (LiZn-), so-called substitutional Li, is identified and thus enables a quantitative determination of the content of LiZn. In hydrothermally grown samples with a total Li concentration of ~2×1017cm-3,LiZn is found to prevail strongly, with only minor influence, by other possible configurations of Li. Also in melt grown samples doped with Li to a total concentration as high as 1.5×1019cm-3, a considerable fraction of the Li atoms (at least 20%) is shown to reside on the Zn-site, but despite the corresponding absolute acceptor concentration of ⩾(2-3)×1018cm-3, the samples did not exhibit any detectable p-type conductivity. The presence of LiZn is demonstrated to account for the systematic difference in positron lifetime of 10-15 ps between Li-rich and Li-lean ZnO materials as found in the literature, but further work is needed to fully elucidate the role of residual hydrogen impurities and intrinsic open volume defects.

  17. Graphene-Like-Graphite as Fast-Chargeable and High-Capacity Anode Materials for Lithium Ion Batteries.

    PubMed

    Cheng, Qian; Okamoto, Yasuharu; Tamura, Noriyuki; Tsuji, Masayoshi; Maruyama, Shunya; Matsuo, Yoshiaki

    2017-11-01

    Here we propose the use of a carbon material called graphene-like-graphite (GLG) as anode material of lithium ion batteries that delivers a high capacity of 608 mAh/g and provides superior rate capability. The morphology and crystal structure of GLG are quite similar to those of graphite, which is currently used as the anode material of lithium ion batteries. Therefore, it is expected to be used in the same manner of conventional graphite materials to fabricate the cells. Based on the data obtained from various spectroscopic techniques, we propose a structural GLG model in which nanopores and pairs of C-O-C units are introduced within the carbon layers stacked with three-dimensional regularity. Three types of highly ionic lithium ions are found in fully charged GLG and stored between its layers. The oxygen atoms introduced within the carbon layers seem to play an important role in accommodating a large amount of lithium ions in GLG. Moreover, the large increase in the interlayer spacing observed for fully charged GLG is ascribed to the migration of oxygen atoms within the carbon layer introduced in the state of C-O-C to the interlayer space maintaining one of the C-O bonds.

  18. Schiff and pseudo-Schiff reagents: the reactions and reagents of Hugo Schiff, including a classification of various kinds of histochemical reagents used to detect aldehydes.

    PubMed

    Dapson, R W

    2016-11-01

    During the 1860's, Hugo Schiff studied many reactions between amines and aldehydes, some of which have been used in histochemistry, at times without credit to Schiff. Much controversy has surrounded the chemical structures and reaction mechanisms of the compounds involved, but modern analytical techniques have clarified the picture. I review these reactions here. I used molecular modeling software to investigate dyes that contain primary amines representing eight chemical families. All dyes were known to perform satisfactorily for detecting aldehydes in tissue sections. The models verified the correct chemical structures at various points in their reactions and also determined how decolorization occurred in those with "leuco" forms. Decolorization in the presence of sulfurous acid can occur by either adduction or reduction depending on the dye. The final condensation product with aldehyde was determined to be either a C-sulfonic acid adduct on the carbonyl carbon atom or an aminal at the same atom. Based on the various outcomes, I have placed the dyes and their reactions into five categories. Because Hugo Schiff studied the reactions between aldehydes and amines with and without various acids or alcohol, it is only proper to call each of them Schiff reactions that used various types of Schiff reagents.

  19. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  20. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Aidan P.; Swiler, Laura P.; Trott, Christian R.

    2015-03-15

    Here, we present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1].more » The SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.« less

  1. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, A.P., E-mail: athomps@sandia.gov; Swiler, L.P., E-mail: lpswile@sandia.gov; Trott, C.R., E-mail: crtrott@sandia.gov

    2015-03-15

    We present a new interatomic potential for solids and liquids called Spectral Neighbor Analysis Potential (SNAP). The SNAP potential has a very general form and uses machine-learning techniques to reproduce the energies, forces, and stress tensors of a large set of small configurations of atoms, which are obtained using high-accuracy quantum electronic structure (QM) calculations. The local environment of each atom is characterized by a set of bispectrum components of the local neighbor density projected onto a basis of hyperspherical harmonics in four dimensions. The bispectrum components are the same bond-orientational order parameters employed by the GAP potential [1]. Themore » SNAP potential, unlike GAP, assumes a linear relationship between atom energy and bispectrum components. The linear SNAP coefficients are determined using weighted least-squares linear regression against the full QM training set. This allows the SNAP potential to be fit in a robust, automated manner to large QM data sets using many bispectrum components. The calculation of the bispectrum components and the SNAP potential are implemented in the LAMMPS parallel molecular dynamics code. We demonstrate that a previously unnoticed symmetry property can be exploited to reduce the computational cost of the force calculations by more than one order of magnitude. We present results for a SNAP potential for tantalum, showing that it accurately reproduces a range of commonly calculated properties of both the crystalline solid and the liquid phases. In addition, unlike simpler existing potentials, SNAP correctly predicts the energy barrier for screw dislocation migration in BCC tantalum.« less

  2. Impact of Stoichiometry on the Structure of van der Waals Layered GeTe/Sb2 Te3 Superlattices Used in Interfacial Phase-Change Memory (iPCM) Devices.

    PubMed

    Kowalczyk, Philippe; Hippert, Françoise; Bernier, Nicolas; Mocuta, Cristian; Sabbione, Chiara; Batista-Pessoa, Walter; Noé, Pierre

    2018-06-01

    Van der Waals layered GeTe/Sb 2 Te 3 superlattices (SLs) have demonstrated outstanding performances for use in resistive memories in so-called interfacial phase-change memory (iPCM) devices. GeTe/Sb 2 Te 3 SLs are made by periodically stacking ultrathin GeTe and Sb 2 Te 3 crystalline layers. The mechanism of the resistance change in iPCM devices is still highly debated. Recent experimental studies on SLs grown by molecular beam epitaxy or pulsed laser deposition indicate that the local structure does not correspond to any of the previously proposed structural models. Here, a new insight is given into the complex structure of prototypical GeTe/Sb 2 Te 3 SLs deposited by magnetron sputtering, which is the used industrial technique for SL growth in iPCM devices. X-ray diffraction analysis shows that the structural quality of the SL depends critically on its stoichiometry. Moreover, high-angle annular dark-field-scanning transmission electron microscopy analysis of the local atomic order in a perfectly stoichiometric SL reveals the absence of GeTe layers, and that Ge atoms intermix with Sb atoms in, for instance, Ge 2 Sb 2 Te 5 blocks. This result shows that an alternative structural model is required to explain the origin of the electrical contrast and the nature of the resistive switching mechanism observed in iPCM devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Linear complexions: Confined chemical and structural states at dislocations.

    PubMed

    Kuzmina, M; Herbig, M; Ponge, D; Sandlöbes, S; Raabe, D

    2015-09-04

    For 5000 years, metals have been mankind's most essential materials owing to their ductility and strength. Linear defects called dislocations carry atomic shear steps, enabling their formability. We report chemical and structural states confined at dislocations. In a body-centered cubic Fe-9 atomic percent Mn alloy, we found Mn segregation at dislocation cores during heating, followed by formation of face-centered cubic regions but no further growth. The regions are in equilibrium with the matrix and remain confined to the dislocation cores with coherent interfaces. The phenomenon resembles interface-stabilized structural states called complexions. A cubic meter of strained alloy contains up to a light year of dislocation length, suggesting that linear complexions could provide opportunities to nanostructure alloys via segregation and confined structural states. Copyright © 2015, American Association for the Advancement of Science.

  4. Big Bang Day: 5 Particles - 1. The Electron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-07

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 1. The Electron Just over a century ago, British physicist J.J. Thompson experimenting with electric currents and charged particles inside empty glass tubes, showed that atoms are divisible into indivisible elementary particles. But how could atoms be built up of these so called "corpuscles"? An exciting 30 year race ensued, to grasp the planetary model of the atom with its orbiting electrons, and the view inside the atom was born.more » Whilst the number of electrons around the nucleus of an atom determines their the chemistry of all elements, the power of electrons themselves have been harnessed for everyday use: electron beams for welding,cathode ray tubes and radiation therapy.« less

  5. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  6. Single atom emission in an optical resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, J.J.; An, K.; Dasari, R.R.

    A single atom coupled to a single mode of a radiation field is a fundamental system for studying the interaction of radiation with matter. The study of such systems has come to be called cavity quantum electrodynamics (QED). Atoms coupled to a single mode of a resonator have been studied experimentally and theoretically in several interesting regimes since this basic system was first considered theoretically by Janes and Cummings. The objective of the present chapter is to provide a theoretical framework and present a unifying picture of the various phenomena which can occur in such a system. 35 refs., 11more » figs.« less

  7. Composition Formulas of Inorganic Compounds in Terms of Cluster Plus Glue Atom Model.

    PubMed

    Ma, Yanping; Dong, Dandan; Wu, Aimin; Dong, Chuang

    2018-01-16

    The present paper attempts to identify the molecule-like structural units in inorganic compounds, by applying the so-called "cluster plus glue atom model". This model, originating from metallic glasses and quasi-crystals, describes any structure in terms of a nearest-neighbor cluster and a few outer-shell glue atoms, expressed in the cluster formula [cluster](glue atoms). Similar to the case for normal molecules where the charge transfer occurs within the molecule to meet the commonly known octet electron rule, the octet state is reached after matching the nearest-neighbor cluster with certain outer-shell glue atoms. These kinds of structural units contain information on local atomic configuration, chemical composition, and electron numbers, just as for normal molecules. It is shown that the formulas of typical inorganic compounds, such as fluorides, oxides, and nitrides, satisfy a similar octet electron rule, with the total number of valence electrons per unit formula being multiples of eight.

  8. Multiple valence superatoms.

    PubMed

    Reveles, J U; Khanna, S N; Roach, P J; Castleman, A W

    2006-12-05

    We recently demonstrated that, in gas phase clusters containing aluminum and iodine atoms, an Al(13) cluster behaves like a halogen atom, whereas an Al(14) cluster exhibits properties analogous to an alkaline earth atom. These observations, together with our findings that Al(13)(-) is inert like a rare gas atom, have reinforced the idea that chosen clusters can exhibit chemical behaviors reminiscent of atoms in the periodic table, offering the exciting prospect of a new dimension of the periodic table formed by cluster elements, called superatoms. As the behavior of clusters can be controlled by size and composition, the superatoms offer the potential to create unique compounds with tailored properties. In this article, we provide evidence of an additional class of superatoms, namely Al(7)(-), that exhibit multiple valences, like some of the elements in the periodic table, and hence have the potential to form stable compounds when combined with other atoms. These findings support the contention that there should be no limitation in finding clusters, which mimic virtually all members of the periodic table.

  9. Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, John E.; Sener, Melih; Vandivort, Kirby L.

    The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. In this paper, we present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. Finally, we describemore » the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.« less

  10. Preparing high-density polymer brushes by mechanically assisted polymer assembly (MAPA)

    NASA Astrophysics Data System (ADS)

    Wu, Tao; Efimenko, Kirill; Genzer, Jan

    2001-03-01

    We introduce a novel method of modifying the surface properties of materials. This technique, called MAPA (="mechanically assisted polymer assembly"), is based on: 1) chemically attaching polymerization initiators to the surface of an elastomeric network that has been previously stretched by a certain length, Δx, and 2) growing end-anchored macromolecules using surface initiated ("grafting from") atom transfer living radical polymerization. After the polymerization, the strain is removed from the substrate, which returns to its original size causing the grafted macromolecules to stretch away from the substrate and form a dense polymer brush. We demonstrate the feasibility of the MAPA method by preparing high-density polymer brushes of poly(acryl amide), PAAm. We show that, as expected, the grafting density of the PAAm brushes can be increased by increasing Δx. We demonstrate that polymer brushes with extremely high grafting densities can be successfully prepared by MAPA.

  11. Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics

    PubMed Central

    Hunter, A.

    2016-01-01

    In this paper, we discuss the formulation, recent developments and findings obtained from a mesoscale mechanics technique called phase field dislocation dynamics (PFDD). We begin by presenting recent advancements made in modelling face-centred cubic materials, such as integration with atomic-scale simulations to account for partial dislocations. We discuss calculations that help in understanding grain size effects on transitions from full to partial dislocation-mediated slip behaviour and deformation twinning. Finally, we present recent extensions of the PFDD framework to alternative crystal structures, such as body-centred cubic metals, and two-phase materials, including free surfaces, voids and bi-metallic crystals. With several examples we demonstrate that the PFDD model is a powerful and versatile method that can bridge the length and time scales between atomistic and continuum-scale methods, providing a much needed understanding of deformation mechanisms in the mesoscale regime. PMID:27002063

  12. Velocity Dependence of the Kinetic Friction of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dietzel, Dirk; Feldmann, Michael; Schirmeisen, Andre

    2010-03-01

    The velocity dependence of interfacial friction is of high interest to unveil the fundamental processes in nanoscopic friction. So far, different forms of velocity dependence have been observed for contacts between friction force microscope (FFM) tips and a substrate surface. In this work we present velocity-dependent friction measurements performed by nanoparticle manipulation of antimony nanoparticles on atomically flat HOPG substrates under UHV conditions. This allows to analyze interfacial friction for very well defined and clean surface contacts. A novel approach to nanoparticle manipulation, the so called 'tip-on-top' technique [1], made it possible to manipulate the same particle many times while varying the velocity. The antimony particles exhibit a qualitatively different velocity dependence on friction in comparison to direct tip-HOPG contacts. A characteristic change in velocity dependence was observed when comparing freshly prepared particles to contaminated specimen, which were exposed to air before the manipulation experiments. [1] Dietzel et al., Appl. Phys. Lett. 95, 53104 (2009)

  13. Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, John E.; Sener, Melih; Vandivort, Kirby L.

    The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. We present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. We describe the techniques that weremore » used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.« less

  14. Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing

    DOE PAGES

    Stone, John E.; Sener, Melih; Vandivort, Kirby L.; ...

    2015-12-12

    The cellular process responsible for providing energy for most life on Earth, namely, photosynthetic light-harvesting, requires the cooperation of hundreds of proteins across an organelle, involving length and time scales spanning several orders of magnitude over quantum and classical regimes. Simulation and visualization of this fundamental energy conversion process pose many unique methodological and computational challenges. In this paper, we present, in two accompanying movies, light-harvesting in the photosynthetic apparatus found in purple bacteria, the so-called chromatophore. The movies are the culmination of three decades of modeling efforts, featuring the collaboration of theoretical, experimental, and computational scientists. Finally, we describemore » the techniques that were used to build, simulate, analyze, and visualize the structures shown in the movies, and we highlight cases where scientific needs spurred the development of new parallel algorithms that efficiently harness GPU accelerators and petascale computers.« less

  15. Neural-network quantum state tomography

    NASA Astrophysics Data System (ADS)

    Torlai, Giacomo; Mazzola, Guglielmo; Carrasquilla, Juan; Troyer, Matthias; Melko, Roger; Carleo, Giuseppe

    2018-05-01

    The experimental realization of increasingly complex synthetic quantum systems calls for the development of general theoretical methods to validate and fully exploit quantum resources. Quantum state tomography (QST) aims to reconstruct the full quantum state from simple measurements, and therefore provides a key tool to obtain reliable analytics1-3. However, exact brute-force approaches to QST place a high demand on computational resources, making them unfeasible for anything except small systems4,5. Here we show how machine learning techniques can be used to perform QST of highly entangled states with more than a hundred qubits, to a high degree of accuracy. We demonstrate that machine learning allows one to reconstruct traditionally challenging many-body quantities—such as the entanglement entropy—from simple, experimentally accessible measurements. This approach can benefit existing and future generations of devices ranging from quantum computers to ultracold-atom quantum simulators6-8.

  16. Semiclassical description of photoionization microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordas, Ch.; Lepine, F.; Nicole, C.

    2003-07-01

    Recently, experiments have been reported where a geometrical interference pattern was observed when photoelectrons ejected in the threshold photoionization of xenon were detected in a velocity-map imaging apparatus [C. Nicole et al., Phys. Rev. Lett. 88, 133001 (2002)]. This technique, called photoionization microscopy, relies on the existence of interferences between various trajectories by which the electron moves from the atom to the plane of observation. Unlike previous predictions relevant to the hydrogenic case, the structure of the interference pattern evolves smoothly with the excess energy above the saddle point and is only weakly affected by the presence of continuum Starkmore » resonances. In this paper, we describe a semiclassical analysis of this process and present numerical simulations in excellent agreement with the experimental results. It is shown that the background contribution dominates in the observations, as opposed to the behavior expected for hydrogenic systems where the interference pattern is qualitatively different on quasidiscrete Stark resonances.« less

  17. Fast Atom Bombardment Mass Spectrometry.

    ERIC Educational Resources Information Center

    Rinehart, Kenneth L., Jr.

    1982-01-01

    Discusses reactions and characteristics of fast atom bombardment (FAB) mass spectroscopy in which samples are ionized in a condensed state by bombardment with xenon or argon atoms, yielding positive/negative secondary ions. Includes applications of FAB to structural problems and considers future developments using the technique. (Author/JN)

  18. If Only We Could Account For Every Atom (LBNL Summer Lecture Series)

    ScienceCinema

    Kisielowski, Christian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Science Division

    2018-02-16

    Christian Kisielowski, an expert in electron microscopy at Lawrence Berkeley National Laboratory, investigates ways to allow studies of single atoms using sophisticated microscopes and imaginative techniques. His goal is to account for every atom in the interior of both simple and complex materials. Find out how he and his colleagues are breaking the barriers to account for every atom.

  19. Additional evidence from x-ray powder diffraction patterns that icosahedral quasi-crystals of intermetallic compounds are twinned cubic crystals

    PubMed Central

    Pauling, Linus

    1988-01-01

    Analysis of the measured values of Q for the weak peaks (small maxima, usually considered to be background fluctuations, “noise”) on the x-ray powder diffraction curves for 17 rapidly quenched alloys leads directly to the conclusion that they are formed by an 820-atom or 1012-atom primitive cubic structure that by icosahedral twinning produces the so-called icosahedral quasi-crystals. PMID:16593948

  20. Thermal Imaging of Flame in Air-assisted Atomizer for Burner System

    NASA Astrophysics Data System (ADS)

    Amirnordin, S. H.; Khalid, Amir; Zailan, M. F.; Fawzi, Mas; Salleh, Hamidon; Zaman, Izzuddin

    2017-08-01

    Infrared thermography was used as a part of non-intrusion technique on the flame temperature analysis. This paper demonstrates the technique to generate the thermal images of flame from the air-assisted atomizer. The multi-circular jet plate acts as a turbulence generator to improve the fuel and air mixing in the atomizer. Three types of multi-circular jet plate geometry were analysed at different equivalence ratio. Thermal infrared imaging using FLIR thermal camera were used to obtain the flame temperature. Multi-circular jet 1 shows the highest flame temperature obtained compared to other plates. It can be concluded that the geometry of the plate influences the combustion, hence affects the flame temperature profile from the air-assisted atomizer.

  1. Simulating superradiance from higher-order-intensity-correlation measurements: Single atoms

    NASA Astrophysics Data System (ADS)

    Wiegner, R.; Oppel, S.; Bhatti, D.; von Zanthier, J.; Agarwal, G. S.

    2015-09-01

    Superradiance typically requires preparation of atoms in highly entangled multiparticle states, the so-called Dicke states. In this paper we discuss an alternative route where we prepare such states from initially uncorrelated atoms by a measurement process. By measuring higher-order intensity-intensity correlations we demonstrate that we can simulate the emission characteristics of Dicke superradiance by starting with atoms in the fully excited state. We describe the essence of the scheme by first investigating two excited atoms. Here we demonstrate how via Hanbury Brown and Twiss type of measurements we can produce Dicke superradiance and subradiance displayed commonly with two atoms in the single excited symmetric and antisymmetric Dicke states, respectively. We thereafter generalize the scheme to arbitrary numbers of atoms and detectors, and explain in detail the mechanism which leads to this result. The approach shows that the Hanbury Brown and Twiss type of intensity interference and the phenomenon of Dicke superradiance can be regarded as two sides of the same coin. We also present a compact result for the characteristic functional which generates all order intensity-intensity correlations.

  2. Dopant Distribution in Atomic Layer Deposited ZnO:Al Films Visualized by Transmission Electron Microscopy and Atom Probe Tomography.

    PubMed

    Wu, Yizhi; Giddings, A Devin; Verheijen, Marcel A; Macco, Bart; Prosa, Ty J; Larson, David J; Roozeboom, Fred; Kessels, Wilhelmus M M

    2018-02-27

    The maximum conductivity achievable in Al-doped ZnO thin films prepared by atomic layer deposition (ALD) is limited by the low doping efficiency of Al. To better understand the limiting factors for the doping efficiency, the three-dimensional distribution of Al atoms in the ZnO host material matrix has been examined on the atomic scale using a combination of high-resolution transmission electron microscopy (TEM) and atom probe tomography (APT). Although the Al distribution in ZnO films prepared by so-called "ALD supercycles" is often presented as atomically flat δ-doped layers, in reality a broadening of the Al-dopant layers is observed with a full-width-half-maximum of ∼2 nm. In addition, an enrichment of the Al at grain boundaries is observed. The low doping efficiency for local Al densities > ∼1 nm -3 can be ascribed to the Al solubility limit in ZnO and to the suppression of the ionization of Al dopants from adjacent Al donors.

  3. Dopant Distribution in Atomic Layer Deposited ZnO:Al Films Visualized by Transmission Electron Microscopy and Atom Probe Tomography

    PubMed Central

    2018-01-01

    The maximum conductivity achievable in Al-doped ZnO thin films prepared by atomic layer deposition (ALD) is limited by the low doping efficiency of Al. To better understand the limiting factors for the doping efficiency, the three-dimensional distribution of Al atoms in the ZnO host material matrix has been examined on the atomic scale using a combination of high-resolution transmission electron microscopy (TEM) and atom probe tomography (APT). Although the Al distribution in ZnO films prepared by so-called “ALD supercycles” is often presented as atomically flat δ-doped layers, in reality a broadening of the Al-dopant layers is observed with a full-width–half-maximum of ∼2 nm. In addition, an enrichment of the Al at grain boundaries is observed. The low doping efficiency for local Al densities > ∼1 nm–3 can be ascribed to the Al solubility limit in ZnO and to the suppression of the ionization of Al dopants from adjacent Al donors. PMID:29515290

  4. Thermometry of ultracold atoms by electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Peters, Thorsten; Wittrock, Benjamin; Blatt, Frank; Halfmann, Thomas; Yatsenko, Leonid P.

    2012-06-01

    We report on systematic numerical and experimental investigations of electromagnetically induced transparency (EIT) to determine temperatures in an ultracold atomic gas. The technique relies on the strong dependence of EIT on atomic motion (i.e., Doppler shifts), when the relevant atomic transitions are driven with counterpropagating probe and control laser beams. Electromagnetically induced transparency permits thermometry with satisfactory precision over a large temperature range, which can be addressed by the appropriate choice of Rabi frequency in the control beam. In contrast to time-of-flight techniques, thermometry by EIT is fast and nondestructive, i.e., essentially it does not affect the ultracold medium. In an experimental demonstration we apply both EIT and time-of-flight measurements to determine temperatures along different symmetry axes of an anisotropic ultracold gas. As an interesting feature we find that the temperatures in the anisotropic atom cloud vary in different directions.

  5. Scattered electrons in microscopy and microanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottensmeyer, F.P.

    The use of scattered electrons alone for direct imaging of biological specimens makes it possible to obtain structural information at atomic and near-atomic spatial resolutions of 0.3 to 0.5 nanometer. While this is not as good as the resolution possible with x-ray crystallography, such an approach provides structural information rapidly on individual macromolecules that have not been, and possibly cannot be, crystallized. Analysis of the spectrum of energies of scattered electrons and imaging of the latter with characteristic energy bands within the spectrum produces a powerful new technique of atomic microanalysis. This technique, which has a spatial resolution of aboutmore » 0.5 nanometer and a minimum detection sensitivity of about 50 atoms of phosphorus, is especially useful for light atom analysis and appears to have applications in molecular biology, cell biology, histology, pathology, botany, and many other fields.« less

  6. Scattered electrons in microscopy and microanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ottensmeyer, F.P.

    The use of scattered electrons alone for direct imaging of biological specimens makes it possible to obtain structural information at atomic and near-atomic spatial resolutions of 0.3 to 0.5 nanometer. While this is not as good as the resolution possible with x-ray crystallography, such an approach provides structural information rapidly on individual macromolecules that have not been, and possibly cannot be, crystallized. Analysis of the spectrum of energies of scattered electrons and imaging of the latter with characteristic energy bands within the spectrum produce a powerful new technique of atomic microanalysis. This technique, which has a spatial resolution of aboutmore » 0.5 nanometer and a minimum detection sensitivity of about 50 atoms of phosphorus, is especially useful for light atom analysis and appears to have applications in molecular biology, cell biology, histology, pathology, botany, and many other fields.« less

  7. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms.

    PubMed

    Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G

    2018-05-30

    Combined quantum mechanical and molecular mechanical (QM/MM) methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM-MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM-MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM-MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  8. Quasi-coarse-grained dynamics: modelling of metallic materials at mesoscales

    NASA Astrophysics Data System (ADS)

    Dongare, Avinash M.

    2014-12-01

    A computationally efficient modelling method called quasi-coarse-grained dynamics (QCGD) is developed to expand the capabilities of molecular dynamics (MD) simulations to model behaviour of metallic materials at the mesoscales. This mesoscale method is based on solving the equations of motion for a chosen set of representative atoms from an atomistic microstructure and using scaling relationships for the atomic-scale interatomic potentials in MD simulations to define the interactions between representative atoms. The scaling relationships retain the atomic-scale degrees of freedom and therefore energetics of the representative atoms as would be predicted in MD simulations. The total energetics of the system is retained by scaling the energetics and the atomic-scale degrees of freedom of these representative atoms to account for the missing atoms in the microstructure. This scaling of the energetics renders improved time steps for the QCGD simulations. The success of the QCGD method is demonstrated by the prediction of the structural energetics, high-temperature thermodynamics, deformation behaviour of interfaces, phase transformation behaviour, plastic deformation behaviour, heat generation during plastic deformation, as well as the wave propagation behaviour, as would be predicted using MD simulations for a reduced number of representative atoms. The reduced number of atoms and the improved time steps enables the modelling of metallic materials at the mesoscale in extreme environments.

  9. Approaching the Limit in Atomic Spectrochemical Analysis.

    ERIC Educational Resources Information Center

    Hieftje, Gary M.

    1982-01-01

    To assess the ability of current analytical methods to approach the single-atom detection level, theoretical and experimentally determined detection levels are presented for several chemical elements. A comparison of these methods shows that the most sensitive atomic spectrochemical technique currently available is based on emission from…

  10. Direct measurements of fluorine atom concentration, gain length and small signal gain in an hydrogen fluoride overtone laser

    NASA Astrophysics Data System (ADS)

    Wisniewski, Charles F.; Hewett, Kevin B.; Manke, Gerald C., II; Randall Truman, C.; Hager, Gordon D.

    2003-03-01

    Experimental techniques have been developed to directly measure the concentration of fluorine atoms, the gain length and the small signal gain in a hydrogen fluoride 5 cm slit nozzle laser. A gas phase titration technique was utilized to measure the fluorine atom concentration using HCl as the titrant. The gain length was measured using a pitot probe to locate the interface of the primary flow with the high Mach number shroud flows. A tunable diode laser was utilized to perform small signal gain measurements on HF overtone ( ν=2→0) transitions.

  11. THEOS-2 Orbit Design: Formation Flying in Equatorial Orbit and Damage Prevention Technique for the South Atlantic Magnetic Anomaly (SAMA)

    NASA Astrophysics Data System (ADS)

    Pimnoo, Ammarin

    2016-07-01

    Geo-Informatics and Space Technology Development Agency (GISTDA) has initiative THEOS-2 project after the THEOS-1 has been operated for more than 7 years which is over the lifetime already. THEOS-2 project requires not only the development of earth observation satellite(s), but also the development of the area-based decision making solution platform comprising of data, application systems, data processing and production system, IT infrastructure improvement and capacity building through development of satellites, engineering model, and infrastructures capable of supporting research in related fields. The developing satellites in THEOS-2 project are THAICHOTE-2 and THAICHOTE-3. This paper focuses the orbit design of THAICHOTE-2 & 3. It discusses the satellite orbit design for the second and third EOS of Thailand. In this paper, both THAICHOTE will be simulated in an equatorial orbit as a formation flying which will be compared the productive to THAICHOTE-1 (THEOS-1). We also consider a serious issue in equatorial orbit design, namely the issue of the geomagnetic field in the area of the eastern coast of South America, called the South Atlantic Magnetic Anomaly (SAMA). The high-energy particles of SAMA comprise a radiation environment which can travel through THAICHOTE-2 & 3 material and deposit kinetic energy. This process causes atomic displacement or leaves a stream of charged atoms in the incident particles' wake. It can cause damage to the satellite including reduction of power generated by solar arrays, failure of sensitive electronics, increased background noise in sensors, and exposure of the satellite devices to radiation. This paper demonstrates the loss of ionizing radiation damage and presents a technique to prevent damage from high-energy particles in the SAMA.

  12. Next-generation acceleration and code optimization for light transport in turbid media using GPUs

    PubMed Central

    Alerstam, Erik; Lo, William Chun Yip; Han, Tianyi David; Rose, Jonathan; Andersson-Engels, Stefan; Lilge, Lothar

    2010-01-01

    A highly optimized Monte Carlo (MC) code package for simulating light transport is developed on the latest graphics processing unit (GPU) built for general-purpose computing from NVIDIA - the Fermi GPU. In biomedical optics, the MC method is the gold standard approach for simulating light transport in biological tissue, both due to its accuracy and its flexibility in modelling realistic, heterogeneous tissue geometry in 3-D. However, the widespread use of MC simulations in inverse problems, such as treatment planning for PDT, is limited by their long computation time. Despite its parallel nature, optimizing MC code on the GPU has been shown to be a challenge, particularly when the sharing of simulation result matrices among many parallel threads demands the frequent use of atomic instructions to access the slow GPU global memory. This paper proposes an optimization scheme that utilizes the fast shared memory to resolve the performance bottleneck caused by atomic access, and discusses numerous other optimization techniques needed to harness the full potential of the GPU. Using these techniques, a widely accepted MC code package in biophotonics, called MCML, was successfully accelerated on a Fermi GPU by approximately 600x compared to a state-of-the-art Intel Core i7 CPU. A skin model consisting of 7 layers was used as the standard simulation geometry. To demonstrate the possibility of GPU cluster computing, the same GPU code was executed on four GPUs, showing a linear improvement in performance with an increasing number of GPUs. The GPU-based MCML code package, named GPU-MCML, is compatible with a wide range of graphics cards and is released as an open-source software in two versions: an optimized version tuned for high performance and a simplified version for beginners (http://code.google.com/p/gpumcml). PMID:21258498

  13. He-Ion Microscopy as a High-Resolution Probe for Complex Quantum Heterostructures in Core-Shell Nanowires.

    PubMed

    Pöpsel, Christian; Becker, Jonathan; Jeon, Nari; Döblinger, Markus; Stettner, Thomas; Gottschalk, Yeanitza Trujillo; Loitsch, Bernhard; Matich, Sonja; Altzschner, Marcus; Holleitner, Alexander W; Finley, Jonathan J; Lauhon, Lincoln J; Koblmüller, Gregor

    2018-06-13

    Core-shell semiconductor nanowires (NW) with internal quantum heterostructures are amongst the most complex nanostructured materials to be explored for assessing the ultimate capabilities of diverse ultrahigh-resolution imaging techniques. To probe the structure and composition of these materials in their native environment with minimal damage and sample preparation calls for high-resolution electron or ion microscopy methods, which have not yet been tested on such classes of ultrasmall quantum nanostructures. Here, we demonstrate that scanning helium ion microscopy (SHeIM) provides a powerful and straightforward method to map quantum heterostructures embedded in complex III-V semiconductor NWs with unique material contrast at ∼1 nm resolution. By probing the cross sections of GaAs-Al(Ga)As core-shell NWs with coaxial GaAs quantum wells as well as short-period GaAs/AlAs superlattice (SL) structures in the shell, the Al-rich and Ga-rich layers are accurately discriminated by their image contrast in excellent agreement with correlated, yet destructive, scanning transmission electron microscopy and atom probe tomography analysis. Most interestingly, quantitative He-ion dose-dependent SHeIM analysis of the ternary AlGaAs shell layers and of compositionally nonuniform GaAs/AlAs SLs reveals distinct alloy composition fluctuations in the form of Al-rich clusters with size distributions between ∼1-10 nm. In the GaAs/AlAs SLs the alloy clustering vanishes with increasing SL-period (>5 nm-GaAs/4 nm-AlAs), providing insights into critical size dimensions for atomic intermixing effects in short-period SLs within a NW geometry. The straightforward SHeIM technique therefore provides unique benefits in imaging the tiniest nanoscale features in topography, structure and composition of a multitude of diverse complex semiconductor nanostructures.

  14. Mapping Conformational Dynamics of Proteins Using Torsional Dynamics Simulations

    PubMed Central

    Gangupomu, Vamshi K.; Wagner, Jeffrey R.; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-01-01

    All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein’s experimentally established conformational substates. Conformational transition of calmodulin from the Ca2+-bound to the Ca2+-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in proteins. PMID:23663843

  15. Mapping conformational dynamics of proteins using torsional dynamics simulations.

    PubMed

    Gangupomu, Vamshi K; Wagner, Jeffrey R; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan

    2013-05-07

    All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein's experimentally established conformational substates. Conformational transition of calmodulin from the Ca(2+)-bound to the Ca(2+)-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in proteins. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Matrix isolation sublimation: An apparatus for producing cryogenic beams of atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sacramento, R. L.; Alves, B. X.; Silva, B. A.

    2015-07-15

    We describe the apparatus to generate cryogenic beams of atoms and molecules based on matrix isolation sublimation. Isolation matrices of Ne and H{sub 2} are hosts for atomic and molecular species which are sublimated into vacuum at cryogenic temperatures. The resulting cryogenic beams are used for high-resolution laser spectroscopy. The technique also aims at loading atomic and molecular traps.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kisielowski, Christian

    Christian Kisielowski, an expert in electron microscopy at Lawrence Berkeley National Laboratory, investigates ways to allow studies of single atoms using sophisticated microscopes and imaginative techniques. His goal is to account for every atom in the interior of both simple and complex materials. Find out how he and his colleagues are breaking the barriers to account for every atom.

  18. Peptide Conformation and Supramolecular Organization in Amylin Fibrils: Constraints from Solid State NMR

    PubMed Central

    Luca, Sorin; Yau, Wai-Ming; Leapman, Richard; Tycko, Robert

    2008-01-01

    The 37-residue amylin peptide, also known as islet amyloid polypeptide, forms fibrils that are the main peptide or protein component of amyloid that develops in the pancreas of type 2 diabetes patients. Amylin also readily forms amyloid fibrils in vitro that are highly polymorphic under typical experimental conditions. We describe a protocol for the preparation of synthetic amylin fibrils that exhibit a single predominant morphology, which we call a striated ribbon, in electron microscope and atomic force microscope images. Solid state nuclear magnetic resonance (NMR) measurements on a series of isotopically labeled samples indicate a single molecular structure within the striated ribbons. We use scanning transmission electron microscopy and several types of one-dimensional and two-dimensional solid state NMR techniques to obtain constraints on the peptide conformation and supramolecular structure in these amylin fibrils, and derive molecular structural models that are consistent with the experimental data. The basic structural unit in amylin striated ribbons, which we call the protofilament, contains four-layers of parallel β-sheets, formed by two symmetric layers of amylin molecules. The molecular structure of amylin protofilaments in striated ribbons closely resembles the protofilament in amyloid fibrils with similar morphology formed by the 40-residue β-amyloid peptide that is associated with Alzheimer's disease. PMID:17979302

  19. Review of Fluorescence-Based Velocimetry Techniques to Study High-Speed Compressible Flows

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Criag; Inman, Jennifer A.; Jones, Stephen B.; Danehy, Paul M.

    2013-01-01

    This paper reviews five laser-induced fluorescence-based velocimetry techniques that have been used to study high-speed compressible flows at NASA Langley Research Center. The techniques discussed in this paper include nitric oxide (NO) molecular tagging velocimetry (MTV), nitrogen dioxide photodissociation (NO2-to-NO) MTV, and NO and atomic oxygen (O-atom) Doppler-shift-based velocimetry. Measurements of both single-component and two-component velocity have been performed using these techniques. This paper details the specific application and experiment for which each technique has been used, the facility in which the experiment was performed, the experimental setup, sample results, and a discussion of the lessons learned from each experiment.

  20. Characterization of Minerals of Geochronological Interest by EPMA and Atom Probe Tomography

    NASA Astrophysics Data System (ADS)

    Snoeyenbos, D.; Jercinovic, M. J.; Reinhard, D. A.; Hombourger, C.

    2012-12-01

    Isotopic and chemical dating techniques for zircon and monazite rely on several assumptions: that initial common Pb is low to nonexistent, that the analyzed domain is chronologically homogeneous, and that any relative migration of radiogenic Pb and its parent isotopes has not exceeded the analyzed domain. Yet, both zircon and monazite commonly contain significant submicron heterogeneities that may challenge these assumptions and can complicate the interpretation of chemical and isotopic data. Compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA have been found to be useful techniques both for the characterization of these heterogeneities, and for quantitative geochronological determinations within the analytical limits of these techniques and the statistics of submicron sampling. Complementary to high-resolution EPMA techniques is Atom Probe Tomography (APT), wherein a specimen with dimensions of a few hundreds of nanometers is field evaporated atom by atom. The original position of each atom is identified, along with its atomic species and isotope. The result is a reconstruction allowing quantitative three-dimensional study of the specimen at the atomic scale, with low detection limits and high mass resolution. With the introduction of laser-induced thermal pulsing to achieve field evaporation, the technique is no longer limited to conductive specimens. There exists the capability to explore the compositional and isotopic structure of insulating materials at sub-nanometer resolution. Minerals of geochronological interest have been studied by an analytical method involving first compositional mapping and submicron quantitative analysis by EPMA and FE-EPMA, and subsequent use of these data to select specific sites for APT specimen extraction by FIB. Examples presented include 1) zircon from the Taconian of New England, USA, containing a fossil resorption front included between an unmodified igneous core, and a subsequent metamorphic overgrowth, with significant redistribution of U, Th, P and Y along microfracture arrays extending into the overgrowth, and 2) Paleoproterozoic monazite in thin bands <1μm wide along cleavage planes within much older (Neoarchean) monazite from the Boothia mainland of the Western Churchill Province, Canada.

  1. Mechanics of low-dimensional carbon nanostructures: Atomistic, continuum, and multi-scale approaches

    NASA Astrophysics Data System (ADS)

    Mahdavi, Arash

    A new multiscale modeling technique called the Consistent Atomic-scale Finite Element (CAFE) method is introduced. Unlike traditional approaches for linking the atomic structure to its equivalent continuum, this method directly connects the atomic degrees of freedom to a reduced set of finite element degrees of freedom without passing through an intermediate homogenized continuum. As a result, there is no need to introduce stress and strain measures at the atomic level. The Tersoff-Brenner interatomic potential is used to calculate the consistent tangent stiffness matrix of the structure. In this finite element formulation, all local and non-local interactions between carbon atoms are taken into account using overlapping finite elements. In addition, a consistent hierarchical finite element modeling technique is developed for adaptively coarsening and refining the mesh over different parts of the model. This process is consistent with the underlying atomic structure and, by refining the mesh to the scale of atomic spacing, molecular dynamic results can be recovered. This method is valid across the scales and can be used to concurrently model atomistic and continuum phenomena so, in contrast with most other multi-scale methods, there is no need to introduce artificial boundaries for coupling atomistic and continuum regions. Effect of the length scale of the nanostructure is also included in the model by building the hierarchy of elements from bottom up using a finite size atom cluster as the building block. To be consistent with the bravais multi-lattice structure of sp2-bonded carbon, two independent displacement fields are used for reducing the order of the model. Sparse structure of the stiffness matrix of these nanostructures is exploited to reduce the memory requirement and to speed up the formation of the system matrices and solution of the equilibrium equations. Applicability of the method is shown with several examples of the nonlinear mechanics of carbon nanotubes and carbon nanocones subject to different loadings and boundary conditions. This finite element technique is also used to study the natural frequencies of low-dimensional carbon nanostructures and comparing the results with those of a homogenized isotropic continuum shell. Conclusion is that, replacing the atomic lattice with an isotropic continuum shell for a graphene sheet does not significantly affect the vibration frequencies while in the case of carbon nanotubes and carbon nanocones there is a significant difference between the natural frequencies of the atomistic model and its continuum counterpart. In the case of the carbon nanotube, continuum model successfully captures the beam bending vibration modes while overestimating frequencies of the modes in which the cross-section undergoes significant deformation. Furthermore, in the case of carbon nanotubes, the continuum shell exhibits a torsional mode which appears to be an artifact resulting from the small nominal thickness typically used in the continuum shell approximation of these nanostructures. Results of this study indicate that isotropic continuum shell models, while simple and useful in static analysis, cannot accurately predict the vibration frequencies of these nanostructures. We have studied the bistable nature of single-walled carbon nanotubes by investigating the change in the tube's energy as it is compressed between flat rigid indenters of various widths. Assuming the nanotube deformed uniformly along its length and modeling the cross-section as an inextensible, non-linear beam we found that tubes with a radius greater than 12 A are bistable and that tubes with a radius greater than 25 A have a lower energy in the collapsed state than in the inflated state. The difference in energy between the collapsed and inflated states decreases nearly linearly with increasing tube radius. While the inflated state remains stable for tubes of all diameters, the energy barrier keeping the tube from collapsing approaches zero as the tube radius increases. We also demonstrate why collapse with a wide indenter may be difficult to observe in narrow tubes. A reduced-order model is developed for the dynamics of the carbon nanotube atomic force microscope probes. Bending behavior of the nanotube probe is modeled using Euler's elastica. A nonlinear moment-curvature relationship is implemeneted to account for the ovalization of the cross section of the nanotube during bending. Van der Waal forces acting between tube and the substrate is integrated over the surface of the tube and used as distributed follower forces acting on the equivalent elastica. Approximating the behavior of the nanotube with an elastica proved to be a very effiecient technique for modeling these nanostructures.

  2. Matching Pursuit with Asymmetric Functions for Signal Decomposition and Parameterization

    PubMed Central

    Spustek, Tomasz; Jedrzejczak, Wiesław Wiktor; Blinowska, Katarzyna Joanna

    2015-01-01

    The method of adaptive approximations by Matching Pursuit makes it possible to decompose signals into basic components (called atoms). The approach relies on fitting, in an iterative way, functions from a large predefined set (called dictionary) to an analyzed signal. Usually, symmetric functions coming from the Gabor family (sine modulated Gaussian) are used. However Gabor functions may not be optimal in describing waveforms present in physiological and medical signals. Many biomedical signals contain asymmetric components, usually with a steep rise and slower decay. For the decomposition of this kind of signal we introduce a dictionary of functions of various degrees of asymmetry – from symmetric Gabor atoms to highly asymmetric waveforms. The application of this enriched dictionary to Otoacoustic Emissions and Steady-State Visually Evoked Potentials demonstrated the advantages of the proposed method. The approach provides more sparse representation, allows for correct determination of the latencies of the components and removes the "energy leakage" effect generated by symmetric waveforms that do not sufficiently match the structures of the analyzed signal. Additionally, we introduced a time-frequency-amplitude distribution that is more adequate for representation of asymmetric atoms than the conventional time-frequency-energy distribution. PMID:26115480

  3. Learning Particle Physics with DIY Play Dough Model

    NASA Astrophysics Data System (ADS)

    Thunyaniti, T.; Toedtanya, K.; Wuttiprom, S.

    2017-09-01

    The scientists once believed an atom was the smallest particle, nothing was smaller than this tiny particle. Later, they discovered an atom which consists of protons, neutrons and electrons, and they believed that these particles cannot be broken into the smaller particles. According to advanced technology, the scientists have discovered these particles are consisted of a smaller particles. The new particles are called quarks leptons and bosons which we called fundamental particle. Atomic structure cannot be observed directly, so it is complicated for studying these particles. To help the students get more understanding of its properties, so the researcher develops the learning pattern of fundamental particles from Play Dough Model for high school to graduate students. Four step of learning are 1) to introduces the concept of the fundamental particles discovery 2) to play the Happy Families game by using fundamental particles cards 3) to design and make their particle in a way that reflects its properties 4) to represents their particles from Play Dough Model. After doing activities, the students had more conceptual understanding and better memorability on fundamental particles. In addition, the students gained collaborative working experience among their friends also.

  4. Spectra of helium clusters with up to six atoms using soft-core potentials

    NASA Astrophysics Data System (ADS)

    Gattobigio, M.; Kievsky, A.; Viviani, M.

    2011-11-01

    In this paper, we investigate small clusters of helium atoms using the hyperspherical harmonic basis. We consider systems with A=2,3,4,5,6 atoms with an interparticle potential which does not present a strong repulsion at short distances. We use an attractive Gaussian potential that reproduces the values of the dimer binding energy, the atom-atom scattering length, and the effective range obtained with one of the widely used He-He interactions, the Aziz and Slaman potential, called LM2M2. In systems with more than two atoms, we consider a repulsive three-body force that, by construction, reproduces the trimer binding energy of the LM2M2 potential. With this model, consisting of the sum of a two- and three-body potential, we have calculated the spectrum of clusters formed by four, five, and six helium atoms. We have found that these systems present two bound states, one deep and one shallow, close to the threshold fixed by the energy of the (A-1)-atom system. Universal relations between the energies of the excited state of the A-atom system and the ground-state energy of the (A-1)-atom system are extracted, as well as the ratio between the ground state of the A-atom system and the ground-state energy of the trimer.

  5. Satellite Charge Control with Lithium Ion Source and Electron Emission

    DTIC Science & Technology

    1990-12-01

    for the spacecraft charge control. C. THERMIONIC ELECTRON EMISSION Electrons may be emitted by surfaces at high temperature in a process, called...data in the high voltage region and 1300 to 1600 °K temperature range may be fitted to the following equation, for a 50 % lithium sample: log01 =logos...in Figure 15, is similar to a high - temperature quartz structure, yet differs from it in that half of the silicon atoms are repiaced by aluminum atoms

  6. Biostack (14-IML-1)

    NASA Technical Reports Server (NTRS)

    Buecker, H.

    1992-01-01

    The Biostack experiments address especially the biological effects of the galactic particles of high atomic number and high energy, called HZE particles. The objective of the experiments is to substantiate the assessment of spaceflight radiation hazards especially regarding these particles.

  7. LOD estimation from DORIS observations

    NASA Astrophysics Data System (ADS)

    Stepanek, Petr; Filler, Vratislav; Buday, Michal; Hugentobler, Urs

    2016-04-01

    The difference between astronomically determined duration of the day and 86400 seconds is called length of day (LOD). The LOD could be also understood as the daily rate of the difference between the Universal Time UT1, based on the Earth rotation, and the International Atomic Time TAI. The LOD is estimated using various Satellite Geodesy techniques as GNSS and SLR, while absolute UT1-TAI difference is precisely determined by VLBI. Contrary to other IERS techniques, the LOD estimation using DORIS (Doppler Orbitography and Radiopositioning Integrated by satellite) measurement did not achieve a geodetic accuracy in the past, reaching the precision at the level of several ms per day. However, recent experiments performed by IDS (International DORIS Service) analysis centre at Geodetic Observatory Pecny show a possibility to reach accuracy around 0.1 ms per day, when not adjusting the cross-track harmonics in the Satellite orbit model. The paper presents the long term LOD series determined from the DORIS solutions. The series are compared with C04 as the reference. Results are discussed in the context of accuracy achieved with GNSS and SLR. Besides the multi-satellite DORIS solutions, also the LOD series from the individual DORIS satellite solutions are analysed.

  8. Field-assisted nanopatterning of metals, metal oxides and metal salts

    NASA Astrophysics Data System (ADS)

    Liu, Jun-Fu; Miller, Glen P.

    2009-02-01

    The tip-based nanofabrication method called field-assisted nanopatterning or FAN has now been extended to the transfer of metals, metal oxides and metal salts onto various receiving substrates including highly ordered pyrolytic graphite, passivated gold and indium-tin oxide. Standard atomic force microscope tips were first dip-coated using suspensions of inorganic compounds in solvent. The films prepared in this manner were non-uniform and contained inorganic nanoparticles. Tip-based nanopatterning on chosen substrates was conducted under high electric field conditions. The same tip was used for both nanofabrication and imaging. Arbitrary patterns were formed with dimensions that ranged from tens of microns to sub-20 nm and were controlled by tuning the tip bias during fabrication. Most tip-based nanopatterning techniques are limited in terms of the type of species that can be deposited and the type of substrates onto which the deposition occurs. With the successful deposition of inorganic species reported here, FAN is demonstrated to be a truly versatile tip-based nanofabrication technique that is useful for the deposition of a wide variety of both organic and inorganic species including small molecules, large molecules and polymers.

  9. International Perspectives on Quality Assurance and New Techniques in Radiation Medicine: Outcomes of an IAEA Conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shortt, Ken; Davidsson, Lena; Hendry, Jolyon

    2008-05-01

    The International Atomic Energy Agency organized an international conference called, 'Quality Assurance and New Techniques in Radiation Medicine' (QANTRM). It dealt with quality assurance (QA) in all aspects of radiation medicine (diagnostic radiology, nuclear medicine, and radiotherapy) at the international level. Participants discussed QA issues pertaining to the implementation of new technologies and the need for education and staff training. The advantage of developing a comprehensive and harmonized approach to QA covering both the technical and the managerial issues was emphasized to ensure the optimization of benefits to patient safety and effectiveness. The necessary coupling between medical radiation imaging andmore » radiotherapy was stressed, particularly for advanced technologies. However, the need for a more systematic approach to the adoption of advanced technologies was underscored by a report on failures in intensity-modulated radiotherapy dosimetry auditing tests in the United States, which could imply inadequate implementation of QA for these new technologies. A plenary session addressed the socioeconomic impact of introducing advanced technologies in resource-limited settings. How shall the dual gaps, one in access to basic medical services and the other in access to high-quality modern technology, be addressed?.« less

  10. Status of the project TRAPSENSOR: Performance of the laser-desorption ion source

    NASA Astrophysics Data System (ADS)

    Cornejo, J. M.; Lorenzo, A.; Renisch, D.; Block, M.; Düllmann, Ch. E.; Rodríguez, D.

    2013-12-01

    Penning traps provide mass measurements on atomic nuclei with the highest accuracy and sensitivity. Depending on the experiment and on the physics goal, a relative mass uncertainty varying from 10-7 to below 10-11 is required. Regarding sensitivity, the use of only one ion for the measurement is crucial, either to perform mass measurements on superheavy elements (SHE), or to reach δm/m≈10-11 in order to contribute to the direct determination of the mass of the electron-antineutrino with accurate mass measurements on specific nuclei. This has motivated the development of a new technique called Quantum Sensor based on a laser-cooled ion stored in a Penning trap, to perform mass measurements using fluorescence photons instead of electronic detection. The device is currently under development at the University of Granada (Spain) within the project TRAPSENSOR. We describe the physics which motivates the construction of this device, the expected performance of the Quantum Sensor compared to that from existing techniques, and briefly present the main components of the project. As a specific aspect of the project, the performance of the laser-desorption ion source utilized to produce calcium, rhenium and osmium ions at different kinetic energies is presented.

  11. International perspectives on quality assurance and new techniques in radiation medicine: outcomes of an IAEA conference.

    PubMed

    Shortt, Ken; Davidsson, Lena; Hendry, Jolyon; Dondi, Maurizio; Andreo, Pedro

    2008-01-01

    The International Atomic Energy Agency organized an international conference called, "Quality Assurance and New Techniques in Radiation Medicine" (QANTRM). It dealt with quality assurance (QA) in all aspects of radiation medicine (diagnostic radiology, nuclear medicine, and radiotherapy) at the international level. Participants discussed QA issues pertaining to the implementation of new technologies and the need for education and staff training. The advantage of developing a comprehensive and harmonized approach to QA covering both the technical and the managerial issues was emphasized to ensure the optimization of benefits to patient safety and effectiveness. The necessary coupling between medical radiation imaging and radiotherapy was stressed, particularly for advanced technologies. However, the need for a more systematic approach to the adoption of advanced technologies was underscored by a report on failures in intensity-modulated radiotherapy dosimetry auditing tests in the United States, which could imply inadequate implementation of QA for these new technologies. A plenary session addressed the socioeconomic impact of introducing advanced technologies in resource-limited settings. How shall the dual gaps, one in access to basic medical services and the other in access to high-quality modern technology, be addressed?

  12. Intelligent Sensors for Atomization Processing of Molten Metals and Alloys

    DTIC Science & Technology

    1988-06-01

    20ff. 12. Hirleman, Dan E. Particle Sizing by Optical , Nonimaging Techniques. Liquid Particle Size Measurement Techniques, ASTM, 1984, pp. 35ff. 13...sensors are based on electric, electromagnetic or optical principles, the latter being most developed in fields obviously related to atomization. Optical ...beams to observe various interference, diffraction, and heterodyning effects, and to observe, with high signal-to-noise ratio, even weak optical

  13. Atomic oxygen effects on thin film space coatings studied by spectroscopic ellipsometry, atomic force microscopy, and laser light scattering

    NASA Technical Reports Server (NTRS)

    Synowicki, R. A.; Hale, Jeffrey S.; Woollam, John A.

    1992-01-01

    The University of Nebraska is currently evaluating Low Earth Orbit (LEO) simulation techniques as well as a variety of thin film protective coatings to withstand atomic oxygen (AO) degradation. Both oxygen plasma ashers and an electron cyclotron resonance (ECR) source are being used for LEO simulation. Thin film coatings are characterized by optical techniques including Variable Angle Spectroscopic Ellipsometry, Optical spectrophotometry, and laser light scatterometry. Atomic Force Microscopy (AFM) is also used to characterize surface morphology. Results on diamondlike carbon (DLC) films show that DLC degrades with simulated AO exposure at a rate comparable to Kapton polyimide. Since DLC is not as susceptible to environmental factors such as moisture absorption, it could potentially provide more accurate measurements of AO fluence on short space flights.

  14. A Eulerian-Lagrangian Model to Simulate Two-Phase/Particulate Flows

    NASA Technical Reports Server (NTRS)

    Apte, S. V.; Mahesh, K.; Lundgren, T.

    2003-01-01

    Figure 1 shows a snapshot of liquid fuel spray coming out of an injector nozzle in a realistic gas-turbine combustor. Here the spray atomization was simulated using a stochastic secondary breakup model (Apte et al. 2003a) with point-particle approximation for the droplets. Very close to the injector, it is observed that the spray density is large and the droplets cannot be treated as point-particles. The volume displaced by the liquid in this region is significant and can alter the gas-phase ow and spray evolution. In order to address this issue, one can compute the dense spray regime by an Eulerian-Lagrangian technique using advanced interface tracking/level-set methods (Sussman et al. 1994; Tryggvason et al. 2001; Herrmann 2003). This, however, is computationally intensive and may not be viable in realistic complex configurations. We therefore plan to develop a methodology based on Eulerian-Lagrangian technique which will allow us to capture the essential features of primary atomization using models to capture interactions between the fluid and droplets and which can be directly applied to the standard atomization models used in practice. The numerical scheme for unstructured grids developed by Mahesh et al. (2003) for incompressible flows is modified to take into account the droplet volume fraction. The numerical framework is directly applicable to realistic combustor geometries. Our main objectives in this work are: Develop a numerical formulation based on Eulerian-Lagrangian techniques with models for interaction terms between the fluid and particles to capture the Kelvin- Helmholtz type instabilities observed during primary atomization. Validate this technique for various two-phase and particulate flows. Assess its applicability to capture primary atomization of liquid jets in conjunction with secondary atomization models.

  15. Atomic-Scale Characterization and Manipulation of Freestanding Graphene Using Adapted Capabilities of a Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Barber, Steven

    Graphene was the first two-dimensional material ever discovered, and it exhibits many unusual phenomena important to both pure and applied physics. To ensure the purest electronic structure, or to study graphene's elastic properties, it is often suspended over holes or trenches in a substrate. The aim of the research presented in this dissertation was to develop methods for characterizing and manipulating freestanding graphene on the atomic scale using a scanning tunneling microscope (STM). Conventional microscopy and spectroscopy techniques must be carefully reconsidered to account for movement of the extremely flexible sample. First, the acquisition of atomic-scale images of freestanding graphene using the STM and the ability to pull the graphene perpendicular to its plane by applying an electrostatic force with the STM tip are demonstrated. The atomic-scale images contained surprisingly large corrugations due to the electrostatic attractive force varying in registry with the local density of states. Meanwhile, a large range of control over the graphene height at a point was obtained by varying the tip bias voltage, and the application to strain engineering of graphene's so-called pseudomagnetic field is examined. Next, the effect of the tunneling current was investigated. With increasing current, the graphene sample moves away from the tip rather than toward it. It was determined that this must be due to local heating by the electric current, causing the graphene to contract because it has a negative coefficient of thermal expansion. Finally, by imaging a very small area, the STM can monitor the height of one location over long time intervals. Results sometimes exhibit periodic behavior, with a frequency and amplitude that depend on the tunneling current. These fluctuations are interpreted as low-frequency flexural phonon modes within elasticity theory. All of these findings set the foundation for employing a STM in the study of freestanding graphene.

  16. Novel Visualization Approaches in Environmental Mineralogy

    NASA Astrophysics Data System (ADS)

    Anderson, C. D.; Lopano, C. L.; Hummer, D. R.; Heaney, P. J.; Post, J. E.; Kubicki, J. D.; Sofo, J. O.

    2006-05-01

    Communicating the complexities of atomic scale reactions between minerals and fluids is fraught with intrinsic challenges. For example, an increasing number of techniques are now available for the interrogation of dynamical processes at the mineral-fluid interface. However, the time-dependent behavior of atomic interactions between a solid and a liquid is often not adequately captured by two-dimensional line drawings or images. At the same time, the necessity for describing these reactions to general audiences is growing more urgent, as funding agencies are amplifying their encouragement to scientists to reach across disciplines and to justify their studies to public audiences. To overcome the shortcomings of traditional graphical representations, the Center for Environmental Kinetics Analysis is creating three-dimensional visualizations of experimental and simulated mineral reactions. These visualizations are then displayed on a stereo 3D projection system called the GeoWall. Made possible (and affordable) by recent improvements in computer and data projector technology, the GeoWall system uses a combination of computer software and hardware, polarizing filters and polarizing glasses, to present visualizations in true 3D. The three-dimensional views greatly improve comprehension of complex multidimensional data, and animations of time series foster better understanding of the underlying processes. The visualizations also offer an effective means to communicate the complexities of environmental mineralogy to colleagues, students and the public. Here we present three different kinds of datasets that demonstrate the effectiveness of the GeoWall in clarifying complex environmental reactions at the atomic scale. First, a time-resolved series of diffraction patterns obtained during the hydrothermal synthesis of metal oxide phases from precursor solutions can be viewed as a surface with interactive controls for peak scaling and color mapping. Second, the results of Rietveld analysis of cation exchange reactions in Mn oxides has provided three-dimensional difference Fourier maps. When stitched together in a temporal series, these offer an animated view of changes in atomic configurations during the process of exchange. Finally, molecular dynamical simulations are visualized as three-dimensional reactions between vibrating atoms in both the solid and the aqueous phases.

  17. Effect of the quantum zero-point atomic motion on the optical and electronic properties of diamond and trans-polyacetylene.

    PubMed

    Cannuccia, Elena; Marini, Andrea

    2011-12-16

    The quantum zero-point motion of the carbon atoms is shown to induce strong effects on the optical and electronic properties of diamond and trans-polyacetylene, a conjugated polymer. By using an ab initio approach, we interpret the subgap states experimentally observed in diamond in terms of entangled electron-phonon states. These states also appear in trans-polyacetylene causing the formation of strong structures in the band structure that even call into question the accuracy of the band theory. This imposes a critical revision of the results obtained for carbon-based nanostructures by assuming the atoms frozen in their equilibrium positions. © 2011 American Physical Society

  18. FAST TRACK COMMUNICATION: Phenomenology of the equivalence principle with light scalars

    NASA Astrophysics Data System (ADS)

    Damour, Thibault; Donoghue, John F.

    2010-10-01

    Light scalar particles with couplings of sub-gravitational strength, which can generically be called 'dilatons', can produce violations of the equivalence principle. However, in order to understand experimental sensitivities one must know the coupling of these scalars to atomic systems. We report here on a study of the required couplings. We give a general Lagrangian with five independent dilaton parameters and calculate the 'dilaton charge' of atomic systems for each of these. Two combinations are particularly important. One is due to the variations in the nuclear binding energy, with a sensitivity scaling with the atomic number as A-1/3. The other is due to electromagnetism. We compare limits on the dilaton parameters from existing experiments.

  19. Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz

    NASA Technical Reports Server (NTRS)

    Gratz, A. J.; Manne, S.; Hansma, P. K.

    1991-01-01

    The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.

  20. Quantitative force measurements using frequency modulation atomic force microscopy—theoretical foundations

    NASA Astrophysics Data System (ADS)

    Sader, John E.; Uchihashi, Takayuki; Higgins, Michael J.; Farrell, Alan; Nakayama, Yoshikazu; Jarvis, Suzanne P.

    2005-03-01

    Use of the atomic force microscope (AFM) in quantitative force measurements inherently requires a theoretical framework enabling conversion of the observed deflection properties of the cantilever to an interaction force. In this paper, the theoretical foundations of using frequency modulation atomic force microscopy (FM-AFM) in quantitative force measurements are examined and rigorously elucidated, with consideration being given to both 'conservative' and 'dissipative' interactions. This includes a detailed discussion of the underlying assumptions involved in such quantitative force measurements, the presentation of globally valid explicit formulae for evaluation of so-called 'conservative' and 'dissipative' forces, discussion of the origin of these forces, and analysis of the applicability of FM-AFM to quantitative force measurements in liquid.

  1. Influence of the dynamic Stark effect on long-term frequency stability of a self-oscillating magnetometer with laser-pumped alkali atoms

    NASA Astrophysics Data System (ADS)

    Baranov, A. A.; Ermak, S. V.; Kulachenkov, N. K.; Petrenko, M. V.; Sagitov, E. A.; Semenov, V. V.

    2017-11-01

    This paper presents the results of investigation Stark shift effect influence on the long-term stability of a dual scheme of quantum magnetometers. Such scheme allows suppressing Stark shift components when a certain pumping light polarization is applied. As a result, long-term stability of a quantum sensor increases. However, when low-frequency (LF) and microwave fields are attached to a single vapor cell a coherence circulation in hyperfine structure of alkali atoms takes place. Physical origin of this effect is associated with the so called “dressed” atom theory, when atom is “dressed” by LF field. It yields in multiphoton absorption and resonance frequency shift. First estimates for this shift based on density matrix evolution formalism are provided in the paper.

  2. From Artificial Atoms to Nanocrystal Molecules: Preparation and Properties of More Complex Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Charina L; Alivisatos, A Paul

    2009-10-20

    Quantum dots, which have found widespread use in fields such as biomedicine, photovoltaics, and electronics, are often called artificial atoms due to their size-dependent physical properties. Here this analogy is extended to consider artificial nanocrystal molecules, formed from well-defined groupings of plasmonically or electronically coupled single nanocrystals. Just as a hydrogen molecule has properties distinct from two uncoupled hydrogen atoms, a key feature of nanocrystal molecules is that they exhibit properties altered from those of the component nanoparticles due to coupling. The nature of the coupling between nanocrystal atoms and its response to vibrations and deformations of the nanocrystal moleculemore » bonds are of particular interest. We discuss synthetic approaches, predicted and observed physical properties, and prospects and challenges toward this new class of materials.« less

  3. Impact-induced concerted mass transport on W surfaces by a voidion mechanism

    NASA Astrophysics Data System (ADS)

    Mazilova, T. I.; Sadanov, E. V.; Voyevodin, V. N.; Ksenofontov, V. A.; Mikhailovskij, I. M.

    2018-03-01

    Using low-temperature field ion microscope techniques, we studied at the atomic level morphological evolution of the W surface through bombardment by a beam of several keV He atoms. This technique allows the direct observation of the results of the high energy He atom impact on the elementary damage stages. The formation of the 〈110〉 and 〈100〉 linear vacancy chains and the high relaxation of the near-neighbors of the surface vacancy clusters were revealed. Performed molecular dynamics simulations shows that a single He atom impact triggers the relaxation process of the linear vacancy chain by a substantial decrease of the distance between atoms at both sides of the chain. The observed inward relaxations in W and Mo are an order of magnitude more than that for a single vacancy. It was revealed a novel highly cooperative impact-induced mass transport mechanism on the stepped surface: the formation and motion of a surface spatially delocalized vacancies (voidions). Surface voidions are extremely mobile: the mean velocity of atoms in voidions equals to a substantial portion of the sound velocity. Successive collective translations of the 〈111〉 lines of atoms in adjacent voidions give rise to a concerted gliding motion of great atomic clusters.

  4. Low Earth Orbital Atomic Oxygen Interactions With Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K.; deGroh, Kim K.

    2004-01-01

    Atomic oxygen is formed in the low Earth orbital environment (LEO) by photo dissociation of diatomic oxygen by short wavelength (< 243 nm) solar radiation which has sufficient energy to break the 5.12 eV O2 diatomic bond in an environment where the mean free path is sufficiently long ( 108 meters) that the probability of reassociation or the formation of ozone (O3) is small. As a consequence, between the altitudes of 180 and 650 km, atomic oxygen is the most abundant species. Spacecraft impact the atomic oxygen resident in LEO with sufficient energy to break hydrocarbon polymer bonds, causing oxidation and thinning of the polymers due to loss of volatile oxidation products. Mitigation techniques, such as the development of materials with improved durability to atomic oxygen attack, as well as atomic oxygen protective coatings, have been employed with varying degrees of success to improve durability of polymers in the LEO environment. Atomic oxygen can also oxidize silicones and silicone contamination to produce non-volatile silica deposits. Such contaminants are present on most LEO missions and can be a threat to performance of optical surfaces. The LEO atomic oxygen environment, its interactions with materials, results of space testing, computational modeling, mitigation techniques, and ground laboratory simulation procedures and issues are presented.

  5. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  6. Determination of Copper by Graphite Furnace Atomic Absorption Spectrophotometry: A Student Exercise in Instrumental Methods of Analysis.

    ERIC Educational Resources Information Center

    Williamson, Mark A.

    1989-01-01

    Discusses a student exercise which requires the optimizing of the charring and atomization temperatures by producing a plot of absorbance versus temperature for each temperature parameter. Notes that although the graphite furnace atomic absorption spectroscopy technique has widespread industrial use, there are no published, structured experiments…

  7. A Simple Demonstration of Atomic and Molecular Orbitals Using Circular Magnets

    ERIC Educational Resources Information Center

    Chakraborty, Maharudra; Mukhopadhyay, Subrata; Das, Ranendu Sekhar

    2014-01-01

    A quite simple and inexpensive technique is described here to represent the approximate shapes of atomic orbitals and the molecular orbitals formed by them following the principles of the linear combination of atomic orbitals (LCAO) method. Molecular orbitals of a few simple molecules can also be pictorially represented. Instructors can employ the…

  8. Quantitative measurement of solvation shells using frequency modulated atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Uchihashi, T.; Higgins, M.; Nakayama, Y.; Sader, J. E.; Jarvis, S. P.

    2005-03-01

    The nanoscale specificity of interaction measurements and additional imaging capability of the atomic force microscope make it an ideal technique for measuring solvation shells in a variety of liquids next to a range of materials. Unfortunately, the widespread use of atomic force microscopy for the measurement of solvation shells has been limited by uncertainties over the dimensions, composition and durability of the tip during the measurements, and problems associated with quantitative force calibration of the most sensitive dynamic measurement techniques. We address both these issues by the combined use of carbon nanotube high aspect ratio probes and quantifying the highly sensitive frequency modulation (FM) detection technique using a recently developed analytical method. Due to the excellent reproducibility of the measurement technique, additional information regarding solvation shell size as a function of proximity to the surface has been obtained for two very different liquids. Further, it has been possible to identify differences between chemical and geometrical effects in the chosen systems.

  9. Determination of tetraalkyllead compounds in gasoline by liquid chromatography-atomic absorption spectrometry

    USGS Publications Warehouse

    Messman, J.D.; Rains, T.C.

    1981-01-01

    A liquid chromatography-atomic absorption spectrometry (LC-AAS) hybrid analytical technique is presented for metal speciation measurements on complex liquid samples. The versatility and inherent metal selectivity of the technique are Illustrated by the rapid determination of five tetraalkyllead compounds in commercial gasoline. Separation of the individual tetraalkyllead species is achieved by reversed-phase liquid chromatography using an acetonitrile/water mobile phase. The effluent from the liquid Chromatograph Is introduced directly into the aspiration uptake capillary of the nebulizer of an air/acetylene flame atomic absorption spectrometer. Spectral interferences due to coeluting hydrocarbon matrix constituents were not observed at the 283.3-nm resonance line of lead used for analysis. Detection limits of this LC-AAS hydrid analytical technique, based on a 20-??L injection, are approximately 10 ng Pb for each tetraalkyllead compound.

  10. Vibration-Induced Droplet Atomization

    NASA Technical Reports Server (NTRS)

    Smith, M. K.; James, A.; Vukasinovic, B.; Glezer, A.

    1999-01-01

    Thermal management is critical to a number of technologies used in a microgravity environment and in Earth-based systems. Examples include electronic cooling, power generation systems, metal forming and extrusion, and HVAC (heating, venting, and air conditioning) systems. One technique that can deliver the large heat fluxes required for many of these technologies is two-phase heat transfer. This type of heat transfer is seen in the boiling or evaporation of a liquid and in the condensation of a vapor. Such processes provide very large heat fluxes with small temperature differences. Our research program is directed toward the development of a new, two-phase heat transfer cell for use in a microgravity environment. In this paper, we consider the main technology used in this cell, a novel technique for the atomization of a liquid called vibration-induced droplet atomization. In this process, a small liquid droplet is placed on a thin metal diaphragm that is made to vibrate by an attached piezoelectric transducer. The vibration induces capillary waves on the free surface of the droplet that grow in amplitude and then begin to eject small secondary droplets from the wave crests. In some situations, this ejection process develops so rapidly that the entire droplet seems to burst into a small cloud of atomized droplets that move away from the diaphragm at speeds of up to 50 cm/s. By incorporating this process into a heat transfer cell, the active atomization and transport of the small liquid droplets could provide a large heat flux capability for the device. Experimental results are presented that document the behavior of the diaphragm and the droplet during the course of a typical bursting event. In addition, a simple mathematical model is presented that qualitatively reproduces all of the essential features we have seen in a burst event. From these two investigations, we have shown that delayed droplet bursting results when the system passes through a resonance condition. This occurs when the initial acceleration of the diaphragm is higher than the critical acceleration and the driving frequency is larger than the initial resonance frequency of the diaphragm-droplet system. We have incorporated this droplet atomization device into a design for a new heat transfer cell for use in a microgravity environment. The cell is essentially a cylindrical container with a hot surface on one end and a cold surface on the other. The vibrating diaphragm is mounted in the center of the cold surface. Heat transfer occurs through droplet evaporation and condensation on the hot and cold ends of the cell. A prototype of this heat transfer cell has been built and tested. It can operate continuously and provides a modest level of heat transfer, about 20 W/sq cm. Our work during the next few years will be to optimize the design of this cell to see if we can produce a device that has significantly better performance than conventional heat exchangers and heat pipes.

  11. Protection of Polymers from the Space Environment by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Lindholm, Ned F.; Zhang, Jianming; Minton, Timothy K.; O'Patchen, Jennifer; George, Steven M.; Groner, Markus D.

    2009-01-01

    Polymers in space may be subjected to a barrage of incident atoms, photons, and/or ions. For example, oxygen atoms can etch and oxidize these materials. Photons may act either alone or in combination with oxygen atoms to degrade polymers and paints and thus limit their usefulness. Colors fade under the intense vacuum ultraviolet (VUV) solar radiation. Ions can lead to the build-up of static charge on polymers. Atomic layer deposition (ALD) techniques can provide coatings that could mitigate many challenges for polymers in space. ALD is a gas-phase technique based on two sequential, self-limiting surface reactions, and it can deposit very uniform, conformal, and pinhole-free films with atomic layer control. We have studied the efficacy of various ALD coatings to protect Kapton® polyimide, FEP Teflon®, and poly(methyl methacrylate) films from atomic-oxygen and VUV attack. Atomic-oxygen and VUV studies were conducted with the use of a laser-breakdown source for hyperthermal O atoms and a D2 lamp as a source of VUV light. These studies used a quartz crystal microbalance (QCM) to monitor mass loss in situ, as well as surface profilometry and scanning electron microscopy to study the surface recession and morphology changes ex situ. Al2O3 ALD coatings applied to polyimide and FEP Teflon® films protected the underlying substrates from O-atom attack, and ZnO coatings protected the poly(methyl methacrylate) substrate from VUV-induced damage.

  12. Atom chip microscopy: A novel probe for strongly correlated materials

    NASA Astrophysics Data System (ADS)

    Kasch, Brian; Naides, Matthew; Turner, Richard; Ray, Ushnish; Lev, Benjamin

    2010-03-01

    Atom chip technology---substrates supporting micron-sized current-carrying wires that create magnetic microtraps near surfaces for thermal or degenerate gases of neutral atoms---will enable single-shot, large area detection of magnetic flux below the 10-7 flux quantum level. By harnessing the extreme sensitivity of Bose-Einstein condensates (BECs) to external perturbations, cryogenic atom chips could provide a magnetic flux detection capability that surpasses all other techniques by a factor of 10^2--10^3. We describe the merits of atom chip microscopy, our Rb BEC and atom chip apparatus, and prospects for imaging strongly correlated condensed matter materials.

  13. Unfavorable regions in the ramachandran plot: Is it really steric hindrance? The interacting quantum atoms perspective

    PubMed Central

    Maxwell, Peter I.

    2017-01-01

    Accurate description of the intrinsic preferences of amino acids is important to consider when developing a biomolecular force field. In this study, we use a modern energy partitioning approach called Interacting Quantum Atoms to inspect the cause of the φ and ψ torsional preferences of three dipeptides (Gly, Val, and Ile). Repeating energy trends at each of the molecular, functional group, and atomic levels are observed across both (1) the three amino acids and (2) the φ/ψ scans in Ramachandran plots. At the molecular level, it is surprisingly electrostatic destabilization that causes the high‐energy regions in the Ramachandran plot, not molecular steric hindrance (related to the intra‐atomic energy). At the functional group and atomic levels, the importance of key peptide atoms (Oi –1, Ci, Ni, Ni +1) and some sidechain hydrogen atoms (Hγ) are identified as responsible for the destabilization seen in the energetically disfavored Ramachandran regions. Consistently, the Oi –1 atoms are particularly important for the explanation of dipeptide intrinsic behavior, where electrostatic and steric destabilization unusually complement one another. The findings suggest that, at least for these dipeptides, it is the peptide group atoms that dominate the intrinsic behavior, more so than the sidechain atoms. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. PMID:28841241

  14. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.

    PubMed

    Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald

    2017-09-12

    We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.

  15. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  16. The shadow map: a general contact definition for capturing the dynamics of biomolecular folding and function.

    PubMed

    Noel, Jeffrey K; Whitford, Paul C; Onuchic, José N

    2012-07-26

    Structure-based models (SBMs) are simplified models of the biomolecular dynamics that arise from funneled energy landscapes. We recently introduced an all-atom SBM that explicitly represents the atomic geometry of a biomolecule. While this initial study showed the robustness of the all-atom SBM Hamiltonian to changes in many of the energetic parameters, an important aspect, which has not been explored previously, is the definition of native interactions. In this study, we propose a general definition for generating atomically grained contact maps called "Shadow". The Shadow algorithm initially considers all atoms within a cutoff distance and then, controlled by a screening parameter, discards the occluded contacts. We show that this choice of contact map is not only well behaved for protein folding, since it produces consistently cooperative folding behavior in SBMs but also desirable for exploring the dynamics of macromolecular assemblies since, it distributes energy similarly between RNAs and proteins despite their disparate internal packing. All-atom structure-based models employing Shadow contact maps provide a general framework for exploring the geometrical features of biomolecules, especially the connections between folding and function.

  17. Non-adiabatic quantum state preparation and quantum state transport in chains of Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Ostmann, Maike; Minář, Jiří; Marcuzzi, Matteo; Levi, Emanuele; Lesanovsky, Igor

    2017-12-01

    Motivated by recent progress in the experimental manipulation of cold atoms in optical lattices, we study three different protocols for non-adiabatic quantum state preparation and state transport in chains of Rydberg atoms. The protocols we discuss are based on the blockade mechanism between atoms which, when excited to a Rydberg state, interact through a van der Waals potential, and rely on single-site addressing. Specifically, we discuss protocols for efficient creation of an antiferromagnetic GHZ state, a class of matrix product states including a so-called Rydberg crystal and for the state transport of a single-qubit quantum state between two ends of a chain of atoms. We identify system parameters allowing for the operation of the protocols on timescales shorter than the lifetime of the Rydberg states while yielding high fidelity output states. We discuss the effect of positional disorder on the resulting states and comment on limitations due to other sources of noise such as radiative decay of the Rydberg states. The proposed protocols provide a testbed for benchmarking the performance of quantum information processing platforms based on Rydberg atoms.

  18. Atomic dynamics and the problem of the structural stability of free clusters of solidified inert gases

    NASA Astrophysics Data System (ADS)

    Verkhovtseva, É. T.; Gospodarev, I. A.; Grishaev, A. V.; Kovalenko, S. I.; Solnyshkin, D. D.; Syrkin, E. S.; Feodos'ev, S. B.

    2003-05-01

    The dependence of the rms amplitudes of atoms in free clusters of solidified inert gases on the cluster size is investigated theoretically and experimentally. Free clusters are produced by homogeneous nucleation in an adiabatically expanding supersonic stream. Electron diffraction is used to measure the rms amplitudes of the atoms; the Jacobi-matrix method is used for theoretical calculations. A series of distinguishing features of the atomic dynamics of microclusters was found. This was necessary to determine the character of the formation and the stability conditions of the crystal structure. It wass shown that for clusters consisting of less than N˜103 atoms, as the cluster size decreases, the rms amplitudes grow much more rapidly than expected from the increase in the specific contribution of the surface. It is also established that an fcc structure of a free cluster, as a rule, contains twinning defects (nuclei of an hcp phase). One reason for the appearance of such defects is the so-called vertex instability (anomalously large oscillation amplitudes) of the atoms in coordination spheres.

  19. An improved model of fission gas atom transport in irradiated uranium dioxide

    NASA Astrophysics Data System (ADS)

    Shea, J. H.

    2018-04-01

    The hitherto standard approach to predicting fission gas release has been a pure diffusion gas atom transport model based upon Fick's law. An additional mechanism has subsequently been identified from experimental data at high burnup and has been summarised in an empirical model that is considered to embody a so-called fuel matrix 'saturation' phenomenon whereby the fuel matrix has become saturated with fission gas so that the continued addition of extra fission gas atoms results in their expulsion from the fuel matrix into the fuel rod plenum. The present paper proposes a different approach by constructing an enhanced fission gas transport law consisting of two components: 1) Fick's law and 2) a so-called drift term. The new transport law can be shown to be effectively identical in its predictions to the 'saturation' approach and is more readily physically justifiable. The method introduces a generalisation of the standard diffusion equation which is dubbed the Drift Diffusion Equation. According to the magnitude of a dimensionless Péclet number, P, the new equation can vary from pure diffusion to pure drift, which latter represents a collective motion of the fission gas atoms through the fuel matrix at a translational velocity. Comparison is made between the saturation and enhanced transport approaches. Because of its dependence on P, the Drift Diffusion Equation is shown to be more effective at managing the transition from one type of limiting transport phenomenon to the other. Thus it can adapt appropriately according to the reactor operation.

  20. Atmospheric Mining in the Outer Solar System: Outer Planet Orbital Transfer and Lander Analyses

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan

    2016-01-01

    High energy propellants for human lunar missions are analyzed, focusing on very advanced ozone and atomic hydrogen. One of the most advanced launch vehicle propulsion systems, such as the Space Shuttle Main Engine (SSME), used hydrogen and oxygen and had a delivered specific impulse of 453 seconds. In the early days of the space program, other propellants (or so called metapropellants) were suggested, including atomic hydrogen and liquid ozone. Theoretical and experimental studies of atomic hydrogen and ozone were conducted beginning in the late 1940s. This propellant research may have provided screenwriters with the idea of an atomic hydrogen-ozone rocket engine in the 1950 movie, Rocketship X-M. This paper presents analyses showing that an atomic hydrogen-ozone rocket engine could produce a specific impulse over a wide range of specific impulse values reaching as high as 1,600 seconds. A series of single stage and multistage rocket vehicle analyses were conducted to find the minimum specific impulse needed to conduct high energy round trip lunar missions.

  1. The HEUN-SCHRÖDINGER Radial Equation for Dh-Atoms

    NASA Astrophysics Data System (ADS)

    Tarasov, V. F.

    This article deals with the connection between Schrödinger's multidimensional equation for DH-atoms (D≥1) and the confluent Heun equation with two auxiliary parameters ν and τ, where |1-ν| = o(1) and τ∈ℚ+, which influence the spectrum of eigenvalues, the Coulomb potential and the radial function. The case τ = ν = 1 and D = 3 corresponds to the "standard" form of Schrödinger's equation for a 3H-atom. With the help of parameter ν, e.g., some "quantum corrections" may be considered. The cases 0<τ<1 and τ>1, but â = (n-l-1)τ≥0 is an integer, change the "geometry" of the electron cloud in the atom, i.e. the so-called "exotic" 3H-like atoms arise, where Kummer's function 1F1(-â c; z) has â zeros and the discrete spectrum depends only on Z/(νn) but not on l and τ. Diagrams of the radial functions hat Pnl(r;τ ,ν ) as n≤3 are given.

  2. Propulsion Estimates for High Energy Lunar Missions Using Future Propellants

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan A.; Bennett, Gary L.

    2016-01-01

    High energy propellants for human lunar missions are analyzed, focusing on very advanced ozone and atomic hydrogen. One of the most advanced launch vehicle propulsion systems, such as the Space Shuttle Main Engine (SSME), used hydrogen and oxygen and had a delivered specific impulse of 453 seconds. In the early days of the space program, other propellants (or so called metapropellants) were suggested, including atomic hydrogen and liquid ozone. Theoretical and experimental studies of atomic hydrogen and ozone were conducted beginning in the late 1940s. This propellant research may have provided screenwriters with the idea of an atomic hydrogen-ozone rocket engine in the 1950 movie, Rocketship X-M. This paper presents analyses showing that an atomic hydrogen-ozone rocket engine could produce a specific impulse over a wide range of specific impulse values reaching as high as 1,600 s. A series of single stage and multistage rocket vehicle analyses were conducted to find the minimum specific impulse needed to conduct high energy round trip lunar missions.

  3. PREFACE: NC-AFM 2003: Proceedings of the 6th International Conference on Non-contact Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Reichling, Michael

    2004-02-01

    Direct nanoscale and atomic resolution imaging is a key issue in nanoscience and nanotechnology. The invention of the dynamic force microscope in the early 1990s was an important step forward in this direction as this instrument provides a universal tool for measuring the topography and many other physical and chemical properties of surfaces at the nanoscale. Operation in the so-called non-contact mode now allows direct atomic resolution imaging of electrically insulating surfaces and nanostructures which has been an unsolved problem during the first decade of nanotechnology. Today, we face a most rapid development of the technique and an extension of its capabilities far beyond imaging; atomically resolved force spectroscopy provides information about local binding properties and researchers now develop sophisticated schemes of force controlled atomic manipulation with the tip of the force microscope. Progress in the field of non-contact force microscopy is discussed at the annually held NC-AFM conferences that are part of a series started in 1998 with a meeting in Osaka, Japan. The 6th International Conference on Non-contact Atomic Force Microscopy took place in Dingle, Ireland, from 31 August to 3 September 2003 and this special issue is a compilation of the original publications of work presented at this meeting. The papers published here well reflect recent achievements, current trends and some of the challenging new directions in non-contact force microscopy that have been discussed during the most stimulating conference days in Dingle. Fundamental aspects of forces and dissipation relevant in imaging and spectroscopy have been covered by experimental and theoretical contributions yielding a more detailed understanding of tip--surface interaction in force microscopy. Novel and improved imaging and spectroscopy techniques have been introduced that either improve the performance of force microscopy or pave the way towards new functionalities and applications. With regard to studies on the specific systems investigated, there was a strong emphasis on oxides and ionics, as well as on organic systems. Following previous pioneering work in uncovering the atomic structure of insulating oxides with force microscopy, it was shown in the meeting that this important class of materials is now accessible for a quantitative atomic scale surface characterization. Single organic molecules and ordered organic layers are building blocks for functional nanostructures currently developed in many laboratories for applications in molecular electronics and sensor technologies. The Dingle conference impressively demonstrated that dynamic force microscopy is ready for its application as an analytical tool for these promising future nanotechnologies. The meeting was a great success scientifically and participants enjoyed the beauty of the conference site. I would like to thank all members of the international steering committee, the programme committee and the co-chairs, J Pethica, A Shluger and G Thornton, for their efforts in preparing the meeting. The members of the local organising committee, J Ballentine-Armstrong, G Cross, S Dunne, S Jarvis and Ö Özer, kept the meeting running smoothly and created a very pleasant atmosphere. The generous financial support from Science Foundation Ireland (SFI), is greatly appreciated; SFI is dramatically raising the profile of Irish science. I would also like to express my sincere gratitude to N Couzin and the journal team from Institute of Physics Publishing for their editorial management and perfect co-operation in the preparation of this special issue.

  4. Accurate atom-mapping computation for biochemical reactions.

    PubMed

    Latendresse, Mario; Malerich, Jeremiah P; Travers, Mike; Karp, Peter D

    2012-11-26

    The complete atom mapping of a chemical reaction is a bijection of the reactant atoms to the product atoms that specifies the terminus of each reactant atom. Atom mapping of biochemical reactions is useful for many applications of systems biology, in particular for metabolic engineering where synthesizing new biochemical pathways has to take into account for the number of carbon atoms from a source compound that are conserved in the synthesis of a target compound. Rapid, accurate computation of the atom mapping(s) of a biochemical reaction remains elusive despite significant work on this topic. In particular, past researchers did not validate the accuracy of mapping algorithms. We introduce a new method for computing atom mappings called the minimum weighted edit-distance (MWED) metric. The metric is based on bond propensity to react and computes biochemically valid atom mappings for a large percentage of biochemical reactions. MWED models can be formulated efficiently as Mixed-Integer Linear Programs (MILPs). We have demonstrated this approach on 7501 reactions of the MetaCyc database for which 87% of the models could be solved in less than 10 s. For 2.1% of the reactions, we found multiple optimal atom mappings. We show that the error rate is 0.9% (22 reactions) by comparing these atom mappings to 2446 atom mappings of the manually curated Kyoto Encyclopedia of Genes and Genomes (KEGG) RPAIR database. To our knowledge, our computational atom-mapping approach is the most accurate and among the fastest published to date. The atom-mapping data will be available in the MetaCyc database later in 2012; the atom-mapping software will be available within the Pathway Tools software later in 2012.

  5. Atomic Oxygen Treatment and Its Effect on a Variety of Artist's Media

    NASA Technical Reports Server (NTRS)

    Miller, Sharon K. R.; Banks, Bruce A.; Waters, Deborah L.

    2005-01-01

    Atomic oxygen treatment has been investigated as an unconventional option for art restoration where conventional methods have not been effective. Exposure of surfaces to atomic oxygen was first performed to investigate the durability of materials in the low Earth orbit environment of space. The use of the ground based environmental simulation chambers, developed for atomic oxygen exposure testing, has been investigated in collaboration with conservators at a variety of institutions, as a method to clean the surfaces of works of art. The atomic oxygen treatment technique has been evaluated as a method to remove soot and char from the surface of oil paint (both varnished and unvarnished), watercolors, acrylic paint, and fabric as well as the removal of graffiti and other marks from surfaces which are too porous to lend themselves to conventional solvent removal techniques. This paper will discuss the treatment of these surfaces giving an example of each and a discussion of the treatment results.

  6. O-atom degradation mechanisms of materials

    NASA Technical Reports Server (NTRS)

    Coulter, Daniel R.; Liang, Ranty H.; Chung, Shirley Y.; Smith, Keri Oda; Gupta, Amitava

    1987-01-01

    The low Earth orbit environment is described and the critical issues relating to oxygen atom degradation are discussed. Some analytic techniques for studying the problem and preliminary results on the underlying degradation mechanisms are presented.

  7. Characterization of dilute species within CVD-grown silicon nanowires doped using trimethylboron: protected lift-out specimen preparation for atom probe tomography.

    PubMed

    Prosa, T J; Alvis, R; Tsakalakos, L; Smentkowski, V S

    2010-08-01

    Three-dimensional quantitative compositional analysis of nanowires is a challenge for standard techniques such as secondary ion mass spectrometry because of specimen size and geometry considerations; however, it is precisely the size and geometry of nanowires that makes them attractive candidates for analysis via atom probe tomography. The resulting boron composition of various trimethylboron vapour-liquid-solid grown silicon nanowires were measured both with time-of-flight secondary ion mass spectrometry and pulsed-laser atom probe tomography. Both characterization techniques yielded similar results for relative composition. Specialized specimen preparation for pulsed-laser atom probe tomography was utilized and is described in detail whereby individual silicon nanowires are first protected, then lifted out, trimmed, and finally wet etched to remove the protective layer for subsequent three-dimensional analysis.

  8. Atomization and vaporization characteristics of airblast fuel injection inside a venturi tube

    NASA Technical Reports Server (NTRS)

    Sun, H.; Chue, T.-H.; Lai, M.-C.; Tacina, R. R.

    1993-01-01

    This paper describes the experimental and numerical characterization of the capillary fuel injection, atomization, dispersion, and vaporization of liquid fuel in a coflowing air stream inside a single venturi tube. The experimental techniques used are all laser-based. Phase Doppler analyzer was used to characterize the atomization and vaporization process. Planar laser-induced fluorescence visualizations give good qualitative picture of the fuel droplet and vapor distribution. Limited quantitative capabilities of the technique are also demonstrated. A modified version of the KIVA-II was used to simulate the entire spray process, including breakup and vaporization. The advantage of venturi nozzle is demonstrated in terms of better atomization, more uniform F/A distribution, and less pressure drop. Multidimensional spray calculations can be used as a design tool only if care is taken for the proper breakup model, and wall impingement process.

  9. Stabilizing Rabi oscillation of a charge qubit via the atomic clock technique

    NASA Astrophysics Data System (ADS)

    Yu, Deshui; Landra, Alessandro; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2018-02-01

    We propose a superconducting circuit-atom hybrid, where the Rabi oscillation of single excess Cooper pair in the island is stabilized via the common atomic clock technique. The noise in the superconducting circuit is mapped onto the voltage source which biases the Cooper-pair box via an inductor and a gate capacitor. The fast fluctuations of the gate charge are significantly suppressed by an inductor-capacitor resonator, leading to a long-relaxation-time Rabi oscillation. More importantly, the residual low-frequency fluctuations are further reduced by using the general feedback-control method, in which the voltage bias is stabilized via continuously measuring the dc-Stark-shift-induced atomic Ramsey signal. The stability and coherence time of the resulting charge-qubit Rabi oscillation are both enhanced. The principal structure of this Cooper-pair-box oscillator is studied in detail.

  10. Treatment of atomic and molecular line blanketing by opacity sampling

    NASA Technical Reports Server (NTRS)

    Johnson, H. R.; Krupp, B. M.

    1976-01-01

    A sampling technique for treating the radiative opacity of large numbers of atomic and molecular lines in cool stellar atmospheres is subjected to several tests. In this opacity sampling (OS) technique, the global opacity is sampled at only a selected set of frequencies, and at each of these frequencies the total monochromatic opacity is obtained by summing the contribution of every relevant atomic and molecular line. In accord with previous results, we find that the structure of atmospheric models is accurately fixed by the use of 1000 frequency points, and 100 frequency points are adequate for many purposes. The effects of atomic and molecular lines are separately studied. A test model computed using the OS method agrees very well with a model having identical atmospheric parameters, but computed with the giant line (opacity distribution function) method.

  11. Accomplishments of the Oak Ridge National Laboratory Seed Money program

    DOE R&D Accomplishments Database

    1986-09-01

    In 1974, a modest program for funding new, innovative research was initiated at ORNL. It was called the "Seed Money" program and has become part of a larger program, called Exploratory R and D, which is being carried out at all DOE national laboratories. This report highlights 12 accomplishments of the Seed Money Program: nickel aluminide, ion implantation, laser annealing, burn meter, Legionnaires' disease, whole-body radiation counter, the ANFLOW system, genetics and molecular biology, high-voltage equipment, microcalorimeter, positron probe, and atom science. (DLC)

  12. Defect-suppressed atomic crystals in an optical lattice.

    PubMed

    Rabl, P; Daley, A J; Fedichev, P O; Cirac, J I; Zoller, P

    2003-09-12

    We present a coherent filtering scheme which dramatically reduces the site occupation number defects for atoms in an optical lattice by transferring a chosen number of atoms to a different internal state via adiabatic passage. With the addition of superlattices it is possible to engineer states with a specific number of atoms per site (atomic crystals), which are required for quantum computation and the realization of models from condensed matter physics, including doping and spatial patterns. The same techniques can be used to measure two-body spatial correlation functions.

  13. Institute for Science and Engineering Simulation (ISES)

    DTIC Science & Technology

    2015-12-18

    performance and other functionalities such as electrical , magnetic, optical, thermal, biological, chemical, and so forth. Structural integrity...transmission electron microscopy (HRSTEM) and three-dimensional atom probe (3DAP) tomography , the true atomic scale structure and change in chemical...atom probe tomography (3DAP) techniques, has permitted characterizing and quantifying the multimodal size distribution of different generations of γ

  14. 40 CFR Appendix C to Part 136 - Inductively Coupled Plasma-Atomic Emission Spectrometric Method for Trace Element Analysis of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch where...

  15. 40 CFR Appendix C to Part 136 - Inductively Coupled Plasma-Atomic Emission Spectrometric Method for Trace Element Analysis of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Inductively Coupled Plasma-Atomic... to Part 136—Inductively Coupled Plasma—Atomic Emission Spectrometric Method for Trace Element... technique. Samples are nebulized and the aerosol that is produced is transported to the plasma torch where...

  16. Isotropic Inelastic Collisions in a Multiterm Atom with Hyperfine Structure

    NASA Astrophysics Data System (ADS)

    Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier

    2015-10-01

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron-atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.

  17. Materials science: Clockwork at the atomic scale

    NASA Astrophysics Data System (ADS)

    Ležaić, Marjana

    2016-05-01

    Design rules for exotic materials known as polar metals have been put into practice in thin films. The findings will motivate studies of how a phenomenon called screening can be manipulated to generate new phases in metals. See Letter p.68

  18. Solution-deposited CIGS thin films for ultra-low-cost photovoltaics

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.; Hersh, Peter; Stanbery, Billy J.

    2010-09-01

    We describe the production of photovoltaic modules with high-quality large-grain copper indium gallium selenide (CIGS) thin films obtained with the unique combination of low-cost ink-based precursors and a reactive transfer printing method. The proprietary metal-organic inks contain a variety of soluble Cu-, In- and Ga- multinary selenide materials; they are called metal-organic decomposition (MOD) precursors, as they are designed to decompose into the desired precursors. Reactive transfer is a two-stage process that produces CIGS through the chemical reaction between two separate precursor films, one deposited on the substrate and the other on a printing plate in the first stage. In the second stage, these precursors are rapidly reacted together under pressure in the presence of heat. The use of two independent thin films provides the benefits of independent composition and flexible deposition technique optimization, and eliminates pre-reaction prior to the synthesis of CIGS. In a few minutes, the process produces high quality CIGS films, with large grains on the order of several microns, and preferred crystallographic orientation, as confirmed by compositional and structural analysis by XRF, SIMS, SEM and XRD. Cell efficiencies of 14% and module efficiencies of 12% were achieved using this method. The atmospheric deposition processes include slot die extrusion coating, ultrasonic atomization spraying, pneumatic atomization spraying, inkjet printing, direct writing, and screen printing, and provide low capital equipment cost, low thermal budget, and high throughput.

  19. Cell segmentation in phase contrast microscopy images via semi-supervised classification over optics-related features.

    PubMed

    Su, Hang; Yin, Zhaozheng; Huh, Seungil; Kanade, Takeo

    2013-10-01

    Phase-contrast microscopy is one of the most common and convenient imaging modalities to observe long-term multi-cellular processes, which generates images by the interference of lights passing through transparent specimens and background medium with different retarded phases. Despite many years of study, computer-aided phase contrast microscopy analysis on cell behavior is challenged by image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose (1) a phase contrast microscopy image restoration method that produces phase retardation features, which are intrinsic features of phase contrast microscopy, and (2) a semi-supervised learning based algorithm for cell segmentation, which is a fundamental task for various cell behavior analysis. Specifically, the image formation process of phase contrast microscopy images is first computationally modeled with a dictionary of diffraction patterns; as a result, each pixel of a phase contrast microscopy image is represented by a linear combination of the bases, which we call phase retardation features. Images are then partitioned into phase-homogeneous atoms by clustering neighboring pixels with similar phase retardation features. Consequently, cell segmentation is performed via a semi-supervised classification technique over the phase-homogeneous atoms. Experiments demonstrate that the proposed approach produces quality segmentation of individual cells and outperforms previous approaches. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. High-resolution high-speed dynamic mechanical spectroscopy of cells and other soft materials with the help of atomic force microscopy.

    PubMed

    Dokukin, M; Sokolov, I

    2015-07-28

    Dynamic mechanical spectroscopy (DMS), which allows measuring frequency-dependent viscoelastic properties, is important to study soft materials, tissues, biomaterials, polymers. However, the existing DMS techniques (nanoindentation) have limited resolution when used on soft materials, preventing them from being used to study mechanics at the nanoscale. The nanoindenters are not capable of measuring cells, nanointerfaces of composite materials. Here we present a highly accurate DMS modality, which is a combination of three different methods: quantitative nanoindentation (nanoDMA), gentle force and fast response of atomic force microscopy (AFM), and Fourier transform (FT) spectroscopy. This new spectroscopy (which we suggest to call FT-nanoDMA) is fast and sensitive enough to allow DMS imaging of nanointerfaces, single cells, while attaining about 100x improvements on polymers in both spatial (to 10-70 nm) and temporal resolution (to 0.7 s/pixel) compared to the current art. Multiple frequencies are measured simultaneously. The use of 10 frequencies are demonstrated here (up to 300 Hz which is a rather relevant range for biological materials and polymers, in both ambient conditions and liquid). The method is quantitatively verified on known polymers and demonstrated on cells and polymers blends. Analysis shows that FT-nanoDMA is highly quantitative. The FT-nanoDMA spectroscopy can easily be implemented in the existing AFMs.

  1. An Integrated Spin-Labeling/Computational-Modeling Approach for Mapping Global Structures of Nucleic Acids.

    PubMed

    Tangprasertchai, Narin S; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S; Qin, Peter Z

    2015-01-01

    The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve "correct" all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements. © 2015 Elsevier Inc. All rights reserved.

  2. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images.

    PubMed

    Yothers, Mitchell P; Browder, Aaron E; Bumm, Lloyd A

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  3. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images

    NASA Astrophysics Data System (ADS)

    Yothers, Mitchell P.; Browder, Aaron E.; Bumm, Lloyd A.

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  4. An Integrated Spin-Labeling/Computational-Modeling Approach for Mapping Global Structures of Nucleic Acids

    PubMed Central

    Tangprasertchai, Narin S.; Zhang, Xiaojun; Ding, Yuan; Tham, Kenneth; Rohs, Remo; Haworth, Ian S.; Qin, Peter Z.

    2015-01-01

    The technique of site-directed spin labeling (SDSL) provides unique information on biomolecules by monitoring the behavior of a stable radical tag (i.e., spin label) using electron paramagnetic resonance (EPR) spectroscopy. In this chapter, we describe an approach in which SDSL is integrated with computational modeling to map conformations of nucleic acids. This approach builds upon a SDSL tool kit previously developed and validated, which includes three components: (i) a nucleotide-independent nitroxide probe, designated as R5, which can be efficiently attached at defined sites within arbitrary nucleic acid sequences; (ii) inter-R5 distances in the nanometer range, measured via pulsed EPR; and (iii) an efficient program, called NASNOX, that computes inter-R5 distances on given nucleic acid structures. Following a general framework of data mining, our approach uses multiple sets of measured inter-R5 distances to retrieve “correct” all-atom models from a large ensemble of models. The pool of models can be generated independently without relying on the inter-R5 distances, thus allowing a large degree of flexibility in integrating the SDSL-measured distances with a modeling approach best suited for the specific system under investigation. As such, the integrative experimental/computational approach described here represents a hybrid method for determining all-atom models based on experimentally-derived distance measurements. PMID:26477260

  5. High-resolution high-speed dynamic mechanical spectroscopy of cells and other soft materials with the help of atomic force microscopy

    PubMed Central

    Dokukin, M.; Sokolov, I.

    2015-01-01

    Dynamic mechanical spectroscopy (DMS), which allows measuring frequency-dependent viscoelastic properties, is important to study soft materials, tissues, biomaterials, polymers. However, the existing DMS techniques (nanoindentation) have limited resolution when used on soft materials, preventing them from being used to study mechanics at the nanoscale. The nanoindenters are not capable of measuring cells, nanointerfaces of composite materials. Here we present a highly accurate DMS modality, which is a combination of three different methods: quantitative nanoindentation (nanoDMA), gentle force and fast response of atomic force microscopy (AFM), and Fourier transform (FT) spectroscopy. This new spectroscopy (which we suggest to call FT-nanoDMA) is fast and sensitive enough to allow DMS imaging of nanointerfaces, single cells, while attaining about 100x improvements on polymers in both spatial (to 10–70 nm) and temporal resolution (to 0.7s/pixel) compared to the current art. Multiple frequencies are measured simultaneously. The use of 10 frequencies are demonstrated here (up to 300 Hz which is a rather relevant range for biological materials and polymers, in both ambient conditions and liquid). The method is quantitatively verified on known polymers and demonstrated on cells and polymers blends. Analysis shows that FT-nanoDMA is highly quantitative. The FT-nanoDMA spectroscopy can easily be implemented in the existing AFMs. PMID:26218346

  6. Implementation of a quantum metamaterial using superconducting qubits.

    PubMed

    Macha, Pascal; Oelsner, Gregor; Reiner, Jan-Michael; Marthaler, Michael; André, Stephan; Schön, Gerd; Hübner, Uwe; Meyer, Hans-Georg; Il'ichev, Evgeni; Ustinov, Alexey V

    2014-10-14

    The key issue for the implementation of a metamaterial is to demonstrate the existence of collective modes corresponding to coherent oscillations of the meta-atoms. Atoms of natural materials interact with electromagnetic fields as quantum two-level systems. Artificial quantum two-level systems can be made, for example, using superconducting nonlinear resonators cooled down to their ground state. Here we perform an experiment in which 20 of these quantum meta-atoms, so-called flux qubits, are embedded into a microwave resonator. We observe the dispersive shift of the resonator frequency imposed by the qubit metamaterial and the collective resonant coupling of eight qubits. The realized prototype represents a mesoscopic limit of naturally occurring spin ensembles and as such we demonstrate the AC-Zeeman shift of a resonant qubit ensemble. The studied system constitutes the implementation of a basic quantum metamaterial in the sense that many artificial atoms are coupled collectively to the quantized mode of a photon field.

  7. Plasmon excitations in doped square-lattice atomic clusters

    NASA Astrophysics Data System (ADS)

    Wang, Yaxin; Yu, Ya-Bin

    2017-12-01

    Employing the tight-binding model, we theoretically study the properties of the plasmon excitations in doped square-lattice atomic clusters. The results show that the dopant atoms would blur the absorption spectra, and give rise to extra plasmon resonant peaks as reported in the literature; however, our calculated external-field induced oscillating charge density shows that no obvious evidences indicate the so-called local mode of plasmon appearing in two-dimensional-doped atomic clusters, but the dopants may change the symmetry of the charge distribution. Furthermore, we show that the disorder of the energy level due to dopant makes the absorption spectrum has a red- or blue-shift, which depends on the position of impurities; disorder of hopping due to dopant makes a blue- or red-shift, a larger (smaller) hopping gives a blue-shift (red-shift); and a larger (smaller) host-dopant and dopant-dopant intersite coulomb repulsion induces a blue-shift (red-shift).

  8. Big Bang Day : The Great Big Particle Adventure - 1. Atom

    ScienceCinema

    None

    2017-12-09

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. The notion of atoms dates back to Greek philosophers who sought a natural mechanical explanation of the Universe, as opposed to a divine one. The existence what we call chemical atoms, the constituents of all we see around us, wasn't proved until a hundred years ago, but almost simultaneously it was realised these weren't the indivisible constituents the Greeks envisaged. Much of the story of physics since then has been the ever-deeper probing of matter until, at the end of the 20th century, a complete list of fundamental ingredients had been identified, apart from one, the much discussed Higgs particle. In this programme, Ben finds out why this last particle is so pivotal, not just to atomic theory, but to our very existence - and how hopeful the scientists are of proving its existence.

  9. Atomistic material behavior at extreme pressures

    DOE PAGES

    Beland, Laurent K.; Osetskiy, Yury N.; Stoller, Roger E.

    2016-08-05

    Computer simulations are routinely performed to model the response of materials to extreme environments, such as neutron (or ion) irradiation. The latter involves high-energy collisions from which a recoiling atom creates a so-called atomic displacement cascade. These cascades involve coordinated motion of atoms in the form of supersonic shockwaves. These shockwaves are characterized by local atomic pressures >15 GPa and interatomic distances <2 Å. Similar pressures and interatomic distances are observed in other extreme environment, including short-pulse laser ablation, high-impact ballistic collisions and diamond anvil cells. Displacement cascade simulations using four different force fields, with initial kinetic energies ranging frommore » 1 to 40 keV, show that there is a direct relationship between these high-pressure states and stable defect production. An important shortcoming in the modeling of interatomic interactions at these short distances, which in turn determines final defect production, is brought to light.« less

  10. Chemical experiments with superheavy elements.

    PubMed

    Türler, Andreas

    2010-01-01

    Unnoticed by many chemists, the Periodic Table of the Elements has been extended significantly in the last couple of years and the 7th period has very recently been completed with eka-Rn (element 118) currently being the heaviest element whose synthesis has been reported. These 'superheavy' elements (also called transactinides with atomic number > or = 104 (Rf)) have been artificially synthesized in fusion reactions at accelerators in minute quantities of a few single atoms. In addition, all isotopes of the transactinide elements are radioactive and decay with rather short half-lives. Nevertheless, it has been possible in some cases to investigate experimentally chemical properties of transactinide elements and even synthesize simple compounds. The experimental investigation of superheavy elements is especially intriguing, since theoretical calculations predict significant deviations from periodic trends due to the influence of strong relativistic effects. In this contribution first experiments with hassium (Hs, atomic number 108), copernicium (Cn, atomic number 112) and element 114 (eka-Pb) are reviewed.

  11. Superradiant effects on pulse propagation in resonant media. [atomic excitations/coherent radiation - operators (mathematics)/matrices (mathematics)

    NASA Technical Reports Server (NTRS)

    Lee, C.

    1975-01-01

    Adopting the so-called genealogical construction, the eigenstates of collective operators can be expressed corresponding to a specified mode for an N-atom system in terms of those for an (N-1)-atom system. Matrix element of a collective operator of an arbitrary mode is presented which can be written as the product of an m-dependent factor and an m-independent reduced matrix element (RME). A set of recursion formulas for the RME was obtained. A graphical representation of the RME on the branching diagram for binary irreducible representations of permutation groups was then introduced. This gave a simple and systematic way of calculating the RME. Results show explicitly the geometry dependence of superradiance and the relative importance of r-conserving and r-nonconserving processes and clears up the chief difficulty encounted in the problem of N two-level atoms, spread over large regions, interacting with a multimode radiation field.

  12. How do we know what is ‘inside the atom’?—Simulating scattering experiments in the classroom

    NASA Astrophysics Data System (ADS)

    Cunningham, E. S.

    2017-07-01

    The idea of the indivisible atom, held since the time of the ancient Greeks, was smashed just over 100 years ago. Ernest Rutherford and his team of scientists in the UK used scattering experiments to discover that atoms have a very dense and extremely small central nucleus that contains more than 99.9% of the mass of an atom and is ten thousand times smaller than an atom. Then just over 50 years ago three physicists in America: Jerome Friedman, Henry Kendall and Richard Taylor carried out scattering experiments in California, that revealed the internal structure of nucleons—later called quarks. This workshop, developed by the Public Engagement team at the Science and Technology Facilities Council, takes secondary school students through these historic discoveries and the present day scattering experiments still changing the world of science.

  13. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  14. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  15. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  16. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  17. 40 CFR 63.994 - Halogen scrubbers and other halogen reduction devices.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... halogen scrubber or other halogen reduction technique used to reduce the vent stream halogen atom mass... subpart shall determine the halogen atom mass emission rate prior to the combustion device according to...

  18. Ultraviolet electroluminescence from nitrogen-doped ZnO-based heterojuntion light-emitting diodes prepared by remote plasma in situ atomic layer-doping technique.

    PubMed

    Chien, Jui-Fen; Liao, Hua-Yang; Yu, Sheng-Fu; Lin, Ray-Ming; Shiojiri, Makoto; Shyue, Jing-Jong; Chen, Miin-Jang

    2013-01-23

    Remote plasma in situ atomic layer doping technique was applied to prepare an n-type nitrogen-doped ZnO (n-ZnO:N) layer upon p-type magnesium-doped GaN (p-GaN:Mg) to fabricate the n-ZnO:N/p-GaN:Mg heterojuntion light-emitting diodes. The room-temperature electroluminescence exhibits a dominant ultraviolet peak at λ ≈ 370 nm from ZnO band-edge emission and suppressed luminescence from GaN, as a result of the decrease in electron concentration in ZnO and reduced electron injection from n-ZnO:N to p-GaN:Mg because of the nitrogen incorporation. The result indicates that the in situ atomic layer doping technique is an effective approach to tailoring the electrical properties of materials in device applications.

  19. Surface conversion techniques for low energy neutral atom imagers

    NASA Technical Reports Server (NTRS)

    Quinn, J. M.

    1995-01-01

    This investigation has focused on development of key technology elements for low energy neutral atom imaging. More specifically, we have investigated the conversion of low energy neutral atoms to negatively charged ions upon reflection from specially prepared surfaces. This 'surface conversion' technique appears to offer a unique capability of detecting, and thus imaging, neutral atoms at energies of 0.01 - 1 keV with high enough efficiencies to make practical its application to low energy neutral atom imaging in space. Such imaging offers the opportunity to obtain the first instantaneous global maps of macroscopic plasma features and their temporal variation. Through previous in situ plasma measurements, we have a statistical picture of large scale morphology and local measurements of dynamic processes. However, with in situ techniques it is impossible to characterize or understand many of the global plasma transport and energization processes. A series of global plasma images would greatly advance our understanding of these processes and would provide the context for interpreting previous and future in situ measurements. Fast neutral atoms, created from ions that are neutralized in collisions with exospheric neutrals, offer the means for remotely imaging plasma populations. Energy and mass analysis of these neutrals provides critical information about the source plasma distribution. The flux of neutral atoms available for imaging depends upon a convolution of the ambient plasma distribution with the charge exchange cross section for the background neutral population. Some of the highest signals are at relatively low energies (well below 1 keV). This energy range also includes some of the most important plasma populations to be imaged, for example the base of the cleft ion fountain.

  20. Atom-chip-based quantum gravimetry for the precise determination of absolute gravity

    NASA Astrophysics Data System (ADS)

    Abend, Sven; Schubert, Christian; Ertmer, Wolfgang; Rasel, Ernst

    2017-04-01

    We present a novel technique for the precise measurement of absolute local gravity with a quantum gravimeter based on an atom chip. Atom interferometry utilizes the interference of matter waves interrogated by laser light to read out inertial forces. Today's generation of these devices typically operate with test mass samples, that consists of ensembles of laser cooled atoms. Their performance is limited by the velocity spread and finite-size of the test masses that impose systematic uncertainties at the level of a few μGal [1]. Rather than laser cooled atoms we employ quantum degenerate ensembles, so called Bose-Einstein condensates [2], as ultra-sensitive probes for gravity. These sources offer unique properties that will allow to overcome the current limitations in the next generation of sensors. Furthermore, atom-chip technology offers the possibility to generate Bose-Einstein condensates in a fast and reliable way. We present a lab-based prototype that uses the atom chip itself to retro-reflect the interrogation laser and thus serves as inertial reference inside the vacuum [3]. With this setup, it is possible to demonstrate all necessary steps to measure gravity, including the preparation of the source, spanning an interferometer as well as the detection of the output signal. All steps are pursued on a baseline of 1 cm right below the atom chip and to analyze relevant systematic effects. In the framework of the center of excellence geoQ a next generation device is under construction at the Institut für Quantenoptik, that will target for in-field measurements. This device will feature a state-of-the-art atom-chip source with a high-flux of ultra-cold atoms at a repetition rate of 1-2 Hz [4]. The device will be characterized in cooperation with the Müller group at the Institut für Erdmessung the sensor and finally employed in a campaign to measure the Fennoscandian uplift at the level of 1 μGal. The presented work is supported by the CRC 1227 DQ-mat, the CRC 1128 geo-Q, the RTG 1729, the QUEST-LFS, by the German Space Agency (DLR) with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557. [1] A. Peters et al., Nature 400, 849, 1999; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016; V. Schkolnik et al., Appl. Phys. B 120, 311-316 (2015). [2] K. B. Davis et al., Phys. Rev. Lett. 74, 5202, 1995; M. H. Anderson et al., Science 269, 198, 1995; C. C. Bradley et al., Phys. Rev. Lett. 75, 1687, 1995. [3] S. Abend et al., Phys. Rev. Lett. 117, 203003, 2016. [4] J. Rudolph et al., New J. Phys. 17, 065001, 2015.

  1. Periodic Landau-Zener problem in long-range migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oksengendler, B. L.; Turaeva, N. N.

    From studies of radiation effects in semiconductors at low temperatures, it is known that an interstitial atom migrates over a distance of up to 1000 A (Watkins effect). The interpretation of this effect is based on the inversion of potential energy curves of an interstitial atom in semiconductors when it changes its charge. At low temperatures, a cascade of radiationless transitions can occur between the ground and excited states of a relocalized electron, which leads to the coherent tunneling of the interstitial atom through the lattice. The description of this effect using the scattering matrix S leads to the dispersionmore » law and to an equation for the effective mass of such a quasiparticle called an inversion.« less

  2. A Fifth Force: Generalized through Superconductors

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1999-01-01

    The connection between the Biefield-Brown Effect, the recent repeat of the 1902 Trouton-Noble (TN) experiments, and the gravity shielding experiments was explored. This connection is visualized through high capacitive electron concentrations. From this connection, a theory is proposed that connects mass energy to gravity and a fifth force. The theory called the Gravi-Atomic Energy theory presents two new terms: Gravi-atomic energy and quantum vacuum pressure (QVP). Gravi-atomic energy is defined as the radiated mass energy, which acts on vacuum energy to create a QVP about a mass, resulting in gravity and the fifth force. The QVP emission from a superconductor was discussed followed by the description of a test for QVP from a superconductor using a Cavendish balance.

  3. Electron impact ionization in plasma technologies; studies on atomic boron and BN molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, Foram M., E-mail: foram29@gmail.com; Joshipura, K. N., E-mail: knjoshipura22@gmail.com; Chaudhari, Asha S., E-mail: ashaschaudhari@gmail.com

    2016-05-06

    Electron impact ionization plays important role in plasma technologies. Relevant cross sections on atomic boron are required to understand the erosion processes in fusion experiments. Boronization of plasma exposed surfaces of tokomaks has proved to be an effective way to produce very pure fusion plasmas. This paper reports comprehensive theoretical investigations on electron scattering with atomic Boron and Boron Nitride in solid phases. Presently we determine total ionization cross-section Q{sub ion} and the summed-electronic excitation cross section ΣQ{sub exc} in a standard quantum mechanical formalism called SCOP and CSP-ic methods. Our calculated cross sections are examined as functions of incidentmore » electron energy along with available comparisons.« less

  4. Atom-chip-based interferometry with Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Gebbe, Martina; Abend, Sven; Gersemann, Matthias; Ahlers, Holger; Muentinga, Hauke; Herrmann, Sven; Laemmerzahl, Claus; Ertmer, Wolfgang; Rasel, Ernst M.; Quantus Collaboration

    2017-04-01

    Due to their small spatial and momentum width ultracold Bose-Einstein condensates (BEC) or even delta-kick collimated (DKC) atomic ensembles are very well suited for high precision atom interferometry and measure, for example, inertial forces with high accuracy. We generate such an ensemble in a miniaturized atom-chip setup, where BEC generation and DKC can be performed in a fast and reliable way. Using the chip as a retroreflector we have realized the first atom-chip-based gravimeter. All atom-optical operations including detection take place inside a volume of a one centimeter cube. In order to investigate new geometries we studied symmetric double Bragg diffraction as well as the coherent acceleration of atoms with Bloch oscillations. By combining both techniques we developed a novel relaunch mechanism, which we use to span a fountain geometry within our gravimeter. The relaunch increases the free fall time and, thus, enhances the device's sensitivity. Additionally, we employ these techniques to implement symmetric scalable large momentum beam splitters. This work is supported by the CRC 1128 geo-Q and the DLR with funds provided by the Federal Ministry of Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant No. DLR 50WM1552-1557 (QUANTUS-IV-Fallturm).

  5. First Measurement of the Atomic Electric Dipole Moment of (225)Ra.

    PubMed

    Parker, R H; Dietrich, M R; Kalita, M R; Lemke, N D; Bailey, K G; Bishof, M; Greene, J P; Holt, R J; Korsch, W; Lu, Z-T; Mueller, P; O'Connor, T P; Singh, J T

    2015-06-12

    The radioactive radium-225 ((225)Ra) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, (225)Ra is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of (225)Ra atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of |d((225)Ra)|<5.0×10(-22)  e cm (95% confidence).

  6. Atomic Layer Deposition of Silicon Nitride Thin Films: A Review of Recent Progress, Challenges, and Outlooks

    PubMed Central

    Meng, Xin; Byun, Young-Chul; Kim, Harrison S.; Lee, Joy S.; Lucero, Antonio T.; Cheng, Lanxia; Kim, Jiyoung

    2016-01-01

    With the continued miniaturization of devices in the semiconductor industry, atomic layer deposition (ALD) of silicon nitride thin films (SiNx) has attracted great interest due to the inherent benefits of this process compared to other silicon nitride thin film deposition techniques. These benefits include not only high conformality and atomic-scale thickness control, but also low deposition temperatures. Over the past 20 years, recognition of the remarkable features of SiNx ALD, reinforced by experimental and theoretical investigations of the underlying surface reaction mechanism, has contributed to the development and widespread use of ALD SiNx thin films in both laboratory studies and industrial applications. Such recognition has spurred ever-increasing opportunities for the applications of the SiNx ALD technique in various arenas. Nevertheless, this technique still faces a number of challenges, which should be addressed through a collaborative effort between academia and industry. It is expected that the SiNx ALD will be further perceived as an indispensable technique for scaling next-generation ultra-large-scale integration (ULSI) technology. In this review, the authors examine the current research progress, challenges and future prospects of the SiNx ALD technique. PMID:28774125

  7. Three axis vector atomic magnetometer utilizing polarimetric technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Swarupananda, E-mail: spradhan@barc.gov.in, E-mail: pradhans75@gmail.com

    2016-09-15

    The three axis vector magnetic field measurement based on the interaction of a single elliptically polarized light beam with an atomic system is described. The magnetic field direction dependent atomic responses are extracted by the polarimetric detection in combination with laser frequency modulation and magnetic field modulation techniques. The magnetometer geometry offers additional critical requirements like compact size and large dynamic range for space application. Further, the three axis magnetic field is measured using only the reflected signal (one polarization component) from the polarimeter and thus can be easily expanded to make spatial array of detectors and/or high sensitivity fieldmore » gradient measurement as required for biomedical application.« less

  8. Comparing Laser Interferometry and Atom Interferometry Approaches to Space-Based Gravitational-Wave Measurement

    NASA Technical Reports Server (NTRS)

    Baker, John; Thorpe, Ira

    2012-01-01

    Thoroughly studied classic space-based gravitational-wave missions concepts such as the Laser Interferometer Space Antenna (LISA) are based on laser-interferometry techniques. Ongoing developments in atom-interferometry techniques have spurred recently proposed alternative mission concepts. These different approaches can be understood on a common footing. We present an comparative analysis of how each type of instrument responds to some of the noise sources which may limiting gravitational-wave mission concepts. Sensitivity to laser frequency instability is essentially the same for either approach. Spacecraft acceleration reference stability sensitivities are different, allowing smaller spacecraft separations in the atom interferometry approach, but acceleration noise requirements are nonetheless similar. Each approach has distinct additional measurement noise issues.

  9. Microstructures and properties of rapidly solidified alloys

    NASA Technical Reports Server (NTRS)

    Shechtman, D.; Horowitz, E.

    1984-01-01

    The microstructure and properties of rapidly solidified aluminum alloys were researched. The effects of powder and flake chemistry and morphology and alternative consolidation processing parameters are being conducted. Samples of the powders being utilized were obtained for comprehensive metallurgical characterization. Seven aluminum alloys in the form of thin foils were studied by a variety of techniques including optical metallography, scanning electron microscope, and transmission electron microscope. Details of the microstructural characteristics are presented along with a discussion of the solidification process. A better understanding of the microstructure of the rapidly solidified aluminum alloys prepared by a variety of techniques such as roller quenching, the vacuum atomized procedure, ultrasonically atomized in inert atmospheres, and atomized in flue gas was provided.

  10. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution.

    PubMed

    Yücelen, Emrah; Lazić, Ivan; Bosch, Eric G T

    2018-02-08

    Using state of the art scanning transmission electron microscopy (STEM) it is nowadays possible to directly image single atomic columns at sub-Å resolution. In standard (high angle) annular dark field STEM ((HA)ADF-STEM), however, light elements are usually invisible when imaged together with heavier elements in one image. Here we demonstrate the capability of the recently introduced Integrated Differential Phase Contrast STEM (iDPC-STEM) technique to image both light and heavy atoms in a thin sample at sub-Å resolution. We use the technique to resolve both the Gallium and Nitrogen dumbbells in a GaN crystal in [[Formula: see text

  11. Challenging the ‘Big G’ measurement with atoms and light

    NASA Astrophysics Data System (ADS)

    Rosi, Gabriele

    2016-10-01

    The measurement of the Newtonian gravity constant G is a formidable task. Starting from the first determination made by Henry Cavendish in 1798, several attempts have been made in order to improve knowledge of its value. Nevertheless, despite these efforts, its uncertainty has decreased only by a factor of ten per century. Cold atom interferometry represents a conceptually different technique to challenge the G measurement, a feature that is crucial in order to identify discrepancies among previous measurements. In this review paper, after a short introduction on the traditional measurement techniques, I will describe and discuss past and ongoing G determination based on atom interferometry, highlighting for each of them the most significant aspects.

  12. Exploration geochemical technique for the determination of preconcentrated organometallic halides by ICP-AES

    USGS Publications Warehouse

    Motooka, J.M.

    1988-01-01

    An atomic absorption extraction technique which is widely used in geochemical exploration for the determination of Ag, As, Au, Bi, Cd, Cu, Mo, Pb, Sb, and Zn has been modified and adapted to a simultaneous inductively coupled plasma-atomic emission instrument. the experimental and operating parameters are described for the preconcentration of the metals into their organometallic halides and for the determination of the metals. Lower limits of determination are equal to or improved over those for flame atomic absorption (except Au) and ICP results are very similar to the accepted AA values, with precision for the ICP data in excess of that necessary for exploration purposes.

  13. Surface Characterization.

    ERIC Educational Resources Information Center

    Fulghum, J. E.; And Others

    1989-01-01

    This review is divided into the following analytical methods: ion spectroscopy, electron spectroscopy, scanning tunneling microscopy, atomic force microscopy, optical spectroscopy, desorption techniques, and X-ray techniques. (MVL)

  14. Data needs for X-ray astronomy satellites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kallman, T.

    I review the current status of atomic data for X-ray astronomy satellites. This includes some of the astrophysical issues which can be addressed, current modeling and analysis techniques, computational tools, the limitations imposed by currently available atomic data, and the validity of standard assumptions. I also discuss the future: challenges associated with future missions and goals for atomic data collection.

  15. Site-resolved imaging of a bosonic Mott insulator using ytterbium atoms

    NASA Astrophysics Data System (ADS)

    Miranda, Martin; Inoue, Ryotaro; Tambo, Naoki; Kozuma, Mikio

    2017-10-01

    We demonstrate site-resolved imaging of a strongly correlated quantum system without relying on laser cooling techniques during fluorescence imaging. We observe the formation of Mott shells in the insulating regime and realize thermometry in an atomic cloud. This work proves the feasibility of the noncooled approach and opens the door to extending the detection technology to new atomic species.

  16. Atomic scale structure and chemistry of interfaces by Z-contrast imaging and electron energy loss spectroscopy in the stem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGibbon, M.M.; Browning, N.D.; Chisholm, M.F.

    The macroscopic properties of many materials are controlled by the structure and chemistry at grain boundaries. A basic understanding of the structure-property relationship requires a technique which probes both composition and chemical bonding on an atomic scale. High-resolution Z-contrast imaging in the scanning transmission electron microscope (STEM) forms an incoherent image in which changes in atomic structure and composition across an interface can be interpreted directly without the need for preconceived atomic structure models. Since the Z-contrast image is formed by electrons scattered through high angles, parallel detection electron energy loss spectroscopy (PEELS) can be used simultaneously to provide complementarymore » chemical information on an atomic scale. The fine structure in the PEEL spectra can be used to investigate the local electronic structure and the nature of the bonding across the interface. In this paper we use the complimentary techniques of high resolution Z-contrast imaging and PEELS to investigate the atomic structure and chemistry of a 25{degree} symmetric tilt boundary in a bicrystal of the electroceramic SrTiO{sub 3}.« less

  17. Insights into thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks and their suppressed reaction with atomically thin AlO{sub x} interlayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Shingo, E-mail: Shingo-Ogawa@trc.toray.co.jp; Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871; Asahara, Ryohei

    2015-12-21

    The thermal diffusion of germanium and oxygen atoms in HfO{sub 2}/GeO{sub 2}/Ge gate stacks was comprehensively evaluated by x-ray photoelectron spectroscopy and secondary ion mass spectrometry combined with an isotopic labeling technique. It was found that {sup 18}O-tracers composing the GeO{sub 2} underlayers diffuse within the HfO{sub 2} overlayers based on Fick's law with the low activation energy of about 0.5 eV. Although out-diffusion of the germanium atoms through HfO{sub 2} also proceeded at the low temperatures of around 200 °C, the diffusing germanium atoms preferentially segregated on the HfO{sub 2} surfaces, and the reaction was further enhanced at high temperatures withmore » the assistance of GeO desorption. A technique to insert atomically thin AlO{sub x} interlayers between the HfO{sub 2} and GeO{sub 2} layers was proven to effectively suppress both of these independent germanium and oxygen intermixing reactions in the gate stacks.« less

  18. Extracting elastic properties of an atomically thin interfacial layer by time-domain analysis of femtosecond acoustics

    NASA Astrophysics Data System (ADS)

    Chen, H.-Y.; Huang, Y.-R.; Shih, H.-Y.; Chen, M.-J.; Sheu, J.-K.; Sun, C.-K.

    2017-11-01

    Modern devices adopting denser designs and complex 3D structures have created much more interfaces than before, where atomically thin interfacial layers could form. However, fundamental information such as the elastic property of the interfacial layers is hard to measure. The elastic property of the interfacial layer is of great importance in both thermal management and nano-engineering of modern devices. Appropriate techniques to probe the elastic properties of interfacial layers as thin as only several atoms are thus critically needed. In this work, we demonstrated the feasibility of utilizing the time-resolved femtosecond acoustics technique to extract the elastic properties and mass density of a 1.85-nm-thick interfacial layer, with the aid of transmission electron microscopy. We believe that this femtosecond acoustics approach will provide a strategy to measure the absolute elastic properties of atomically thin interfacial layers.

  19. Singular Atom Optics with Spinor BECs

    NASA Astrophysics Data System (ADS)

    Schultz, Justin T.; Hansen, Azure; Bigelow, Nicholas P.

    2015-05-01

    We create and study singular spin textures in pseudo-spin-1/2 BECs. A series of two-photon Raman interactions allows us to not only engineer the spinor wavefunction but also perform the equivalent of atomic polarimetry on the BEC. Adapting techniques from optical polarimetry, we can image two-dimensional maps of the atomic Stokes parameters, thereby fully reconstructing the atomic wavefunction. In a spin-1/2 system, we can represent the local spin superposition with ellipses in a Cartesian basis. The patterns that emerge from the major axes of the ellipses provide fingerprints of the singularities that enable us to classify them as lemons, stars, saddles, or spirals similar to classification schemes for singularities in singular optics, condensed matter, and liquid crystals. These techniques may facilitate the study of geometric Gouy phases in matter waves as well as provide an avenue for utilizing topological structures as quantum gates.

  20. Veselago lensing with ultracold atoms in an optical lattice.

    PubMed

    Leder, Martin; Grossert, Christopher; Weitz, Martin

    2014-01-01

    Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. Here we demonstrate Veselago lensing for matter waves, using ultracold atoms in an optical lattice. A relativistic, that is, photon-like, dispersion relation for rubidium atoms is realized with a bichromatic optical lattice potential. We rely on a Raman π-pulse technique to transfer atoms between two different branches of the dispersion relation, resulting in a focusing that is completely analogous to the effect described by Veselago for light waves. Future prospects of the demonstrated effects include novel sub-de Broglie wavelength imaging applications.

  1. Feedback control of persistent-current oscillation based on the atomic-clock technique

    NASA Astrophysics Data System (ADS)

    Yu, Deshui; Dumke, Rainer

    2018-05-01

    We propose a scheme of stabilizing the persistent-current Rabi oscillation based on the flux qubit-resonator-atom hybrid structure. The low-Q L C resonator weakly interacts with the flux qubit and maps the persistent-current Rabi oscillation of the flux qubit onto the intraresonator electric field. This oscillating electric field is further coupled to a Rydberg-Rydberg transition of the 87Rb atoms. The Rabi-frequency fluctuation of the flux qubit is deduced from measuring the atomic population via the fluorescence detection and stabilized by feedback controlling the external flux bias. Our numerical simulation indicates that the feedback-control method can efficiently suppress the background fluctuations in the flux qubit, especially in the low-frequency limit. This technique may be extensively applicable to different types of superconducting circuits, paving a way to long-term-coherence superconducting quantum information processing.

  2. Three Reading Comprehension Strategies: TELLS, Story Mapping, and QARs.

    ERIC Educational Resources Information Center

    Sorrell, Adrian L.

    1990-01-01

    Three reading comprehension strategies are presented to assist learning-disabled students: an advance organizer technique called "TELLS Fact or Fiction" used before reading a passage, a schema-based technique called "Story Mapping" used while reading, and a postreading method of categorizing questions called…

  3. Atom-by-atom assembly of defect-free one-dimensional cold atom arrays.

    PubMed

    Endres, Manuel; Bernien, Hannes; Keesling, Alexander; Levine, Harry; Anschuetz, Eric R; Krajenbrink, Alexandre; Senko, Crystal; Vuletic, Vladan; Greiner, Markus; Lukin, Mikhail D

    2016-11-25

    The realization of large-scale fully controllable quantum systems is an exciting frontier in modern physical science. We use atom-by-atom assembly to implement a platform for the deterministic preparation of regular one-dimensional arrays of individually controlled cold atoms. In our approach, a measurement and feedback procedure eliminates the entropy associated with probabilistic trap occupation and results in defect-free arrays of more than 50 atoms in less than 400 milliseconds. The technique is based on fast, real-time control of 100 optical tweezers, which we use to arrange atoms in desired geometric patterns and to maintain these configurations by replacing lost atoms with surplus atoms from a reservoir. This bottom-up approach may enable controlled engineering of scalable many-body systems for quantum information processing, quantum simulations, and precision measurements. Copyright © 2016, American Association for the Advancement of Science.

  4. Unfavorable regions in the ramachandran plot: Is it really steric hindrance? The interacting quantum atoms perspective.

    PubMed

    Maxwell, Peter I; Popelier, Paul L A

    2017-11-05

    Accurate description of the intrinsic preferences of amino acids is important to consider when developing a biomolecular force field. In this study, we use a modern energy partitioning approach called Interacting Quantum Atoms to inspect the cause of the φ and ψ torsional preferences of three dipeptides (Gly, Val, and Ile). Repeating energy trends at each of the molecular, functional group, and atomic levels are observed across both (1) the three amino acids and (2) the φ/ψ scans in Ramachandran plots. At the molecular level, it is surprisingly electrostatic destabilization that causes the high-energy regions in the Ramachandran plot, not molecular steric hindrance (related to the intra-atomic energy). At the functional group and atomic levels, the importance of key peptide atoms (O i -1 , C i , N i , N i +1 ) and some sidechain hydrogen atoms (H γ ) are identified as responsible for the destabilization seen in the energetically disfavored Ramachandran regions. Consistently, the O i -1 atoms are particularly important for the explanation of dipeptide intrinsic behavior, where electrostatic and steric destabilization unusually complement one another. The findings suggest that, at least for these dipeptides, it is the peptide group atoms that dominate the intrinsic behavior, more so than the sidechain atoms. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc. © 2017 The Authors. Journal of Computational Chemistry Published by Wiley Periodicals, Inc.

  5. Electronegativity determination of individual surface atoms by atomic force microscopy.

    PubMed

    Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki

    2017-04-26

    Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale.

  6. Electronegativity determination of individual surface atoms by atomic force microscopy

    PubMed Central

    Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki

    2017-01-01

    Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale. PMID:28443645

  7. Flameless Atomic Absorption Spectroscopy: Effects of Nitrates and Sulfates.

    DTIC Science & Technology

    1980-05-01

    ATTACHED DDJ~P 1413 EDITION 01 INO, 6 5 IabSoLEr J UjN!LbAa~ A- i SELU 0 IONOF I tG 651 J Flameless Atomic Absorption Spectroscopy: Effects of Nitrates...analytical techniques, flameless atomic absorption is subject to matrix or interference effects. Upon heating, nitrate and sulfate salts decompose to...Eklund and J.E. Smith, Anal Chem, 51, 1205 (1979) R.H. Eklund and J.A. Holcombe, Anal Chim. Acta, 109, 97 (1979) FLAMELESS ATOMIC ABSORPTION

  8. Dynamic polarizability of tungsten atoms reconstructed from fast electrical explosion of fine wires in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.

    For nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms are surrounded by low-density fast expanding plasma corona. Here, a novel integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. This data was previously unavailable for tungsten atoms. Furthermore, an extremely high melting temperature and significant pre-melt electronic emission make these measurements particularly complicated for this refractory metal.

  9. Dynamic polarizability of tungsten atoms reconstructed from fast electrical explosion of fine wires in vacuum

    DOE PAGES

    Sarkisov, G. S.; Rosenthal, S. E.; Struve, K. W.

    2016-10-12

    For nanosecond electrical explosion of fine metal wires in vacuum generates calibrated, radially expanded gas cylinders of metal atoms are surrounded by low-density fast expanding plasma corona. Here, a novel integrated-phase technique, based on laser interferometry, provides the dynamic dipole polarizability of metal atoms. This data was previously unavailable for tungsten atoms. Furthermore, an extremely high melting temperature and significant pre-melt electronic emission make these measurements particularly complicated for this refractory metal.

  10. Photon-photon entanglement with a single trapped atom.

    PubMed

    Weber, B; Specht, H P; Müller, T; Bochmann, J; Mücke, M; Moehring, D L; Rempe, G

    2009-01-23

    An experiment is performed where a single rubidium atom trapped within a high-finesse optical cavity emits two independently triggered entangled photons. The entanglement is mediated by the atom and is characterized both by a Bell inequality violation of S=2.5, as well as full quantum-state tomography, resulting in a fidelity exceeding F=90%. The combination of cavity-QED and trapped atom techniques makes our protocol inherently deterministic--an essential step for the generation of scalable entanglement between the nodes of a distributed quantum network.

  11. Influence of Atomic Oxygen Exposure on Friction Behavior of 321 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Yang, J.; Ye, Z.; Dong, S.; Zhang, L.; Zhang, Z.

    Atomic oxygen (AO) exposure testing has been conducted on a 321 stainless steel rolled 1 mm thick sheet to simulate the effect of AO environment on steel in low Earth orbit (LEO). An atomic oxygen exposure facility was employed to carry out AO experiments with the fluence up to ~1021 atom/cm2. The AO exposed specimens were evaluated in air at room temperature using a nanoindenter and a tribological system. The exposed surfaces were analyzed usign XPS technique.

  12. Measurement of gadolinium retention: current status and review from an applied radiation physics perspective.

    PubMed

    Gräfe, James L; McNeill, Fiona E

    2018-06-28

    This article briefly reviews the main measurement techniques for the non-invasive detection of residual gadolinium (Gd) in those exposed to gadolinium-based contrast agents (GBCAs). Approach and Main results: The current status of in vivo Gd measurement is discussed and is put into the context of concerns within the radiology community. The main techniques are based on applied atomic/nuclear medicine utilizing the characteristic atomic and nuclear spectroscopic signature of Gd. The main emission energies are in the 40-200 keV region and require spectroscopic detectors with good energy resolution. The two main techniques, prompt gamma neutron activation analysis and x-ray fluorescence, provide adequate detection limits for in vivo measurement, whilst delivering a low effective radiation dose on the order of a few µSv. Gadolinium is being detected in measureable quantities in people with healthy renal function who have received FDA approved GBCAs. The applied atomic/nuclear medicine techniques discussed in this review will be useful in determining the significance of this retention, and will help on advising future administration protocols.

  13. Advantage of spatial map ion imaging in the study of large molecule photodissociation

    NASA Astrophysics Data System (ADS)

    Lee, Chin; Lin, Yen-Cheng; Lee, Shih-Huang; Lee, Yin-Yu; Tseng, Chien-Ming; Lee, Yuan-Tseh; Ni, Chi-Kung

    2017-07-01

    The original ion imaging technique has low velocity resolution, and currently, photodissociation is mostly investigated using velocity map ion imaging. However, separating signals from the background (resulting from undissociated excited parent molecules) is difficult when velocity map ion imaging is used for the photodissociation of large molecules (number of atoms ≥ 10). In this study, we used the photodissociation of phenol at the S1 band origin as an example to demonstrate how our multimass ion imaging technique, based on modified spatial map ion imaging, can overcome this difficulty. The photofragment translational energy distribution obtained when multimass ion imaging was used differed considerably from that obtained when velocity map ion imaging and Rydberg atom tagging were used. We used conventional translational spectroscopy as a second method to further confirm the experimental results, and we conclude that data should be interpreted carefully when velocity map ion imaging or Rydberg atom tagging is used in the photodissociation of large molecules. Finally, we propose a modified velocity map ion imaging technique without the disadvantages of the current velocity map ion imaging technique.

  14. Atomic-scale mapping of electronic structures across heterointerfaces by cross-sectional scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Chiu, Ya-Ping; Huang, Bo-Chao; Shih, Min-Chuan; Huang, Po-Cheng; Chen, Chun-Wei

    2015-09-01

    Interfacial science has received much attention recently based on the development of state-of-the-art analytical tools that can create and manipulate the charge, spin, orbital, and lattice degrees of freedom at interfaces. Motivated by the importance of nanoscale interfacial science that governs device operation, we present a technique to probe the electronic characteristics of heterointerfaces with atomic resolution. In this work, the interfacial characteristics of heteroepitaxial structures are investigated and the fundamental mechanisms that pertain in these systems are elucidated through cross-sectional scanning tunneling microscopy (XSTM). The XSTM technique is employed here to directly observe epitaxial interfacial structures and probe local electronic properties with atomic-level capability. Scanning tunneling microscopy and spectroscopy experiments with atomic precision provide insight into the origin and spatial distribution of electronic properties across heterointerfaces. The first part of this report provides a brief description of the cleavage technique and spectroscopy analysis in XSTM measurements. The second part addresses interfacial electronic structures of several model heterostructures in current condensed matter research using XSTM. Topics to be discussed include high-κ‘s/III-V’s semiconductors, polymer heterojunctions, and complex oxide heterostructures, which are all material systems whose investigation using this technique is expected to benefit the research community. Finally, practical aspects and perspectives of using XSTM in interface science are presented.

  15. Observation of entanglement of a single photon with a trapped atom.

    PubMed

    Volz, Jürgen; Weber, Markus; Schlenk, Daniel; Rosenfeld, Wenjamin; Vrana, Johannes; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald

    2006-01-27

    We report the observation of entanglement between a single trapped atom and a single photon at a wavelength suitable for low-loss communication over large distances, thereby achieving a crucial step towards long range quantum networks. To verify the entanglement, we introduce a single atom state analysis. This technique is used for full state tomography of the atom-photon qubit pair. The detection efficiency and the entanglement fidelity are high enough to allow in a next step the generation of entangled atoms at large distances, ready for a final loophole-free Bell experiment.

  16. Experiments with bosonic atoms for quantum gas assembly

    NASA Astrophysics Data System (ADS)

    Brown, Mark; Lin, Yiheng; Lester, Brian; Kaufman, Adam; Ball, Randall; Brossard, Ludovic; Isaev, Leonid; Thiele, Tobias; Lewis-Swan, Robert; Schymik, Kai-Niklas; Rey, Ana Maria; Regal, Cindy

    2017-04-01

    Quantum gas assembly is a promising platform for preparing and observing neutral atom systems on the single-atom level. We have developed a toolbox that includes ground-state laser cooling, high-fidelity loading techniques, addressable spin control, and dynamic spatial control and coupling of atoms. Already, this platform has enabled us to pursue a number of experiments studying entanglement and interference of pairs of bosonic atoms. We discuss our recent work in probabilistically entangling neutral atoms via interference, measurement, and post-selection as well as our future pursuits of interesting spin-motion dynamics of larger arrays of atoms. This work was supported by the David and Lucile Packard Foundation, National Science Foundation Physics Frontier Centers, and the National Defense Science and Engineering Graduate Fellowships program.

  17. Predicting activity approach based on new atoms similarity kernel function.

    PubMed

    Abu El-Atta, Ahmed H; Moussa, M I; Hassanien, Aboul Ella

    2015-07-01

    Drug design is a high cost and long term process. To reduce time and costs for drugs discoveries, new techniques are needed. Chemoinformatics field implements the informational techniques and computer science like machine learning and graph theory to discover the chemical compounds properties, such as toxicity or biological activity. This is done through analyzing their molecular structure (molecular graph). To overcome this problem there is an increasing need for algorithms to analyze and classify graph data to predict the activity of molecules. Kernels methods provide a powerful framework which combines machine learning with graph theory techniques. These kernels methods have led to impressive performance results in many several chemoinformatics problems like biological activity prediction. This paper presents a new approach based on kernel functions to solve activity prediction problem for chemical compounds. First we encode all atoms depending on their neighbors then we use these codes to find a relationship between those atoms each other. Then we use relation between different atoms to find similarity between chemical compounds. The proposed approach was compared with many other classification methods and the results show competitive accuracy with these methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Strategies for alignment and e-beam contact to buried atomic-precision devices in Si

    NASA Astrophysics Data System (ADS)

    Wyrick, Jonathan; Namboodiri, Pradeep; Wang, Xiqiao; Murray, Roy; Hagmann, Joseph; Li, Kai; Stewart, Michael; Richter, Curt; Silver, Richard

    STM based hydrogen lithography has proven to be a viable route to fabrication of atomic-precision electronic devices. The strength of this technique is the ability to control the lateral placement of phosphorus atoms in a single atomic layer of Si with sub-nanometer resolution. However, because of limitations in the rate at which a scanning probe can pattern a device, as well as the ultimate size of contacts that can be fabricated (on the order of a micron in length), making electrical contact to STM fabricated devices encased in Si is nontrivial. One commonly implemented solution to this challenge is to choose the exact location on a Si surface where a device is to be patterned by STM and to design fiducials to aid in navigating the probe to that predetermined location. We present results from an alternate strategy for contacting buried devices based on performing the STM lithography fabrication first, and determination of the buried structure location after the fact using topographically identifiable STM fabricated fiducials. AFM, scanning capacitance, and peak force Kelvin microscopy as well as optical microscopy techniques are evaluated as a means for device relocation and to quantify the comparative accuracy of these techniques.

  19. Laser continuum source atomic absorption spectroscopy: Measuring the ground state with nanosecond resolution in laser-induced plasmas

    NASA Astrophysics Data System (ADS)

    Merten, Jonathan; Johnson, Bruce

    2018-01-01

    A new dual-beam atomic absorption technique is applied to laser-induced plasmas. The technique uses an optical parametric oscillator pseudocontinuum, producing emission that is both wider than the absorption line profile, but narrow enough to allow the use of an echelle spectrograph without order sorting. The dual-beam-in space implementation makes the technique immune to nonspecific attenuation of the probe beam and the structure of the pseudocontinuum. The potential for plasma diagnostics is demonstrated with spatially and temporally resolved measurements of magnesium metastable and lithium ground state optical depths in a laser-induced plasma under reduced pressure conditions. The lithium measurements further demonstrate the technique's potential for isotope ratio measurements.

  20. Ultrafast photophysics of transition metal complexes.

    PubMed

    Chergui, Majed

    2015-03-17

    The properties of transition metal complexes are interesting not only for their potential applications in solar energy conversion, OLEDs, molecular electronics, biology, photochemistry, etc. but also for their fascinating photophysical properties that call for a rethinking of fundamental concepts. With the advent of ultrafast spectroscopy over 25 years ago and, more particularly, with improvements in the past 10-15 years, a new area of study was opened that has led to insightful observations of the intramolecular relaxation processes such as internal conversion (IC), intersystem crossing (ISC), and intramolecular vibrational redistribution (IVR). Indeed, ultrafast optical spectroscopic tools, such as fluorescence up-conversion, show that in many cases, intramolecular relaxation processes can be extremely fast and even shorter than time scales of vibrations. In addition, more and more examples are appearing showing that ultrafast ISC rates do not scale with the magnitude of the metal spin-orbit coupling constant, that is, that there is no heavy-atom effect on ultrafast time scales. It appears that the structural dynamics of the system and the density of states play a crucial role therein. While optical spectroscopy delivers an insightful picture of electronic relaxation processes involving valence orbitals, the photophysics of metal complexes involves excitations that may be centered on the metal (called metal-centered or MC) or the ligand (called ligand-centered or LC) or involve a transition from one to the other or vice versa (called MLCT or LMCT). These excitations call for an element-specific probe of the photophysics, which is achieved by X-ray absorption spectroscopy. In this case, transitions from core orbitals to valence orbitals or higher allow probing the electronic structure changes induced by the optical excitation of the valence orbitals, while also delivering information about the geometrical rearrangement of the neighbor atoms around the atom of interest. With the emergence of new instruments such as X-ray free electron lasers (XFELs), it is now possible to perform ultrafast laser pump/X-ray emission probe experiments. In this case, one probes the density of occupied states. These core-level spectroscopies and other emerging ones, such as photoelectron spectroscopy of solutions, are delivering a hitherto unseen degree of detail into the photophysics of metal-based molecular complexes. In this Account, we will give examples of applications of the various methods listed above to address specific photophysical processes.

  1. Speckle reduction in optical coherence tomography images based on wave atoms

    PubMed Central

    Du, Yongzhao; Liu, Gangjun; Feng, Guoying; Chen, Zhongping

    2014-01-01

    Abstract. Optical coherence tomography (OCT) is an emerging noninvasive imaging technique, which is based on low-coherence interferometry. OCT images suffer from speckle noise, which reduces image contrast. A shrinkage filter based on wave atoms transform is proposed for speckle reduction in OCT images. Wave atoms transform is a new multiscale geometric analysis tool that offers sparser expansion and better representation for images containing oscillatory patterns and textures than other traditional transforms, such as wavelet and curvelet transforms. Cycle spinning-based technology is introduced to avoid visual artifacts, such as Gibbs-like phenomenon, and to develop a translation invariant wave atoms denoising scheme. The speckle suppression degree in the denoised images is controlled by an adjustable parameter that determines the threshold in the wave atoms domain. The experimental results show that the proposed method can effectively remove the speckle noise and improve the OCT image quality. The signal-to-noise ratio, contrast-to-noise ratio, average equivalent number of looks, and cross-correlation (XCOR) values are obtained, and the results are also compared with the wavelet and curvelet thresholding techniques. PMID:24825507

  2. Complementary Characterization of Cu(In,Ga)Se₂ Thin-Film Photovoltaic Cells Using Secondary Ion Mass Spectrometry, Auger Electron Spectroscopy, and Atom Probe Tomography.

    PubMed

    Jang, Yun Jung; Lee, Jihye; Jeong, Jeung-Hyun; Lee, Kang-Bong; Kim, Donghwan; Lee, Yeonhee

    2018-05-01

    To enhance the conversion performance of solar cells, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is required. In this study, we determined the average concentration of the major elements (Cu, In, Ga, and Se) in fabricated Cu(In,Ga)Se2 (CIGS) thin films, using inductively coupled plasma atomic emission spectroscopy, X-ray fluorescence, and wavelengthdispersive electron probe microanalysis. Depth profiling results for CIGS thin films with different cell efficiencies were obtained using secondary ion mass spectrometry and Auger electron spectroscopy to compare the atomic concentrations. Atom probe tomography, a characterization technique with sub-nanometer resolution, was used to obtain three-dimensional elemental mapping and the compositional distribution at the grain boundaries (GBs). GBs are identified by Na increment accompanied by Cu depletion and In enrichment. Segregation of Na atoms along the GB had a beneficial effect on cell performance. Comparative analyses of different CIGS absorber layers using various analytical techniques provide us with understanding of the compositional distributions and structures of high efficiency CIGS thin films in solar cells.

  3. Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method

    NASA Astrophysics Data System (ADS)

    Sun, Pei; Fang, Z. Zak; Zhang, Ying; Xia, Yang

    2017-12-01

    Commercial spherical Ti powders for additive manufacturing applications are produced today by melt-atomization methods at relatively high costs. A meltless production method, called granulation-sintering-deoxygenation (GSD), was developed recently to produce spherical Ti alloy powder at a significantly reduced cost. In this new process, fine hydrogenated Ti particles are agglomerated to form spherical granules, which are then sintered to dense spherical particles. After sintering, the solid fully dense spherical Ti alloy particles are deoxygenated using novel low-temperature deoxygenation processes with either Mg or Ca. This technical communication presents results of 3D printing using GSD powder and the selective laser melting (SLM) technique. The results showed that tensile properties of parts fabricated from spherical GSD Ti-6Al-4V powder by SLM are comparable with typical mill-annealed Ti-6Al-4V. The characteristics of 3D printed Ti-6Al-4V from GSD powder are also compared with that of commercial materials.

  4. Interfacial diffusion aided deformation during nanoindentation

    DOE PAGES

    Samanta, Amit; E., Weinan

    2015-07-06

    Nanoindentation is commonly used to quantify the mechanical response of material surfaces. Despite its widespread use, a detailed understanding of the deformation mechanisms responsible for plasticity during these experiments has remained elusive. Nanoindentation measurements often show stress values close to a material’s ideal strength which suggests that dislocation nucleation and subsequent dislocation activity dominates the deformation. However, low strain-rate exponents and small activation volumes have also been reported which indicates high temperature sensitivity of the deformation processes. Using an order parameter aided temperature accelerated sampling technique called adiabatic free energy dynamics [J. B. Abrams and M. E. Tuckerman, J. Phys.more » Chem. B, 112, 15742 (2008)], and molecular dynamics we have probed the diffusive mode of deformation during nanoindentation. Localized processes such as surface vacancy and ad-atom pair formation, vacancy diffusion are found to play an important role during indentation. Furthermore, our analysis suggests a change in the dominant deformation mode from dislocation mediated plasticity to diffusional flow at high temperatures, slow indentation rates and small indenter tip radii.« less

  5. System-independent characterization of materials using dual-energy computed tomography

    DOE PAGES

    Azevedo, Stephen G.; Martz, Jr., Harry E.; Aufderheide, III, Maurice B.; ...

    2016-02-01

    In this study, we present a new decomposition approach for dual-energy computed tomography (DECT) called SIRZ that provides precise and accurate material description, independent of the scanner, over diagnostic energy ranges (30 to 200 keV). System independence is achieved by explicitly including a scanner-specific spectral description in the decomposition method, and a new X-ray-relevant feature space. The feature space consists of electron density, ρ e, and a new effective atomic number, Z e, which is based on published X-ray cross sections. Reference materials are used in conjunction with the system spectral response so that additional beam-hardening correction is not necessary.more » The technique is tested against other methods on DECT data of known specimens scanned by diverse spectra and systems. Uncertainties in accuracy and precision are less than 3% and 2% respectively for the (ρ e, Z e) results compared to prior methods that are inaccurate and imprecise (over 9%).« less

  6. Matter-wave diffraction approaching limits predicted by Feynman path integrals for multipath interference

    NASA Astrophysics Data System (ADS)

    Barnea, A. Ronny; Cheshnovsky, Ori; Even, Uzi

    2018-02-01

    Interference experiments have been paramount in our understanding of quantum mechanics and are frequently the basis of testing the superposition principle in the framework of quantum theory. In recent years, several studies have challenged the nature of wave-function interference from the perspective of Born's rule—namely, the manifestation of so-called high-order interference terms in a superposition generated by diffraction of the wave functions. Here we present an experimental test of multipath interference in the diffraction of metastable helium atoms, with large-number counting statistics, comparable to photon-based experiments. We use a variation of the original triple-slit experiment and accurate single-event counting techniques to provide a new experimental bound of 2.9 ×10-5 on the statistical deviation from the commonly approximated null third-order interference term in Born's rule for matter waves. Our value is on the order of the maximal contribution predicted for multipath trajectories by Feynman path integrals.

  7. Sam Goudsmit--His Physics and His Statesmanship

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2010-03-01

    Sam Goudsmit was already a famous theoretical physicist in his thirties, mainly because of his co-discovery of electron spin with George Uhlenbeck while both were students of Paul Ehrenfest in Holland in 1925. He and Uhlenbeck continued their thriving careers at the University of Michigan. Goudsmit's style as a physicist was always to make as close a connection between theory and experiment as possible. Thus, for example, his development with his student Robert Bacher of the technique called ``fractional parentage'' used fruitfully in both atomic and nuclear physics to compute energy levels of unknown states in terms of know ones. He also delved deeply into problems related to determinations of nuclear spins and moments. Partly because of his service as scientific leader of the Alsos project at the end of WWII he became a leading statesman of science. I will describe some of his achievements both as a physicist and as a statesman, prior to his becoming Editor in Chief of the American Physical Society.

  8. Electronically transparent graphene replicas of diatoms: a new technique for the investigation of frustule morphology

    PubMed Central

    Pan, Zhengwei; Lerch, Sarah J. L.; Xu, Liang; Li, Xufan; Chuang, Yen-Jun; Howe, Jane Y.; Mahurin, Shannon M.; Dai, Sheng; Hildebrand, Mark

    2014-01-01

    The morphogenesis of the silica cell walls (called frustules) of unicellular algae known as diatoms is one of the most intriguing mysteries of the diatoms. To study frustule morphogenesis, optical, electron and atomic force microscopy has been extensively used to reveal the frustule morphology. However, since silica frustules are opaque, past observations were limited to outer and fracture surfaces, restricting observations of interior structures. Here we show that opaque silica frustules can be converted into electronically transparent graphene replicas, fabricated using chemical vapor deposition of methane. Chemical vapor deposition creates a continuous graphene coating preserving the frustule's shape and fine, complicated internal features. Subsequent dissolution of the silica with hydrofluoric acid yields a free-standing replica of the internal and external native frustule morphologies. Electron microscopy renders these graphene replicas highly transparent, revealing previously unobserved, complex, three-dimensional, interior frustule structures, which lend new insights into the investigation of frustule morphogenesis. PMID:25135739

  9. A system for measuring thermal activation energy levels in silicon by thermally stimulated capacitance

    NASA Technical Reports Server (NTRS)

    Cockrum, R. H.

    1982-01-01

    One method being used to determine energy level(s) and electrical activity of impurities in silicon is described. The method is called capacitance transient spectroscopy (CTS). It can be classified into three basic categories: the thermally stimulated capacitance method, the voltage-stimulated capacitance method, and the light-stimulated capacitance method; the first two categories are discussed. From the total change in capacitance and the time constant of the capacitance response, emission rates, energy levels, and trap concentrations can be determined. A major advantage of using CTS is its ability to detect the presence of electrically active impurities that are invisible to other techniques, such as Zeeman effect atomic absorption, and the ability to detect more than one electrically active impurity in a sample. Examples of detection of majority and minority carrier traps from gold donor and acceptor centers in silicon using the capacitance transient spectrometer are given to illustrate the method and its sensitivity.

  10. Controlling stray electric fields on an atom chip for experiments on Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Davtyan, D.; Machluf, S.; Soudijn, M. L.; Naber, J. B.; van Druten, N. J.; van Linden van den Heuvell, H. B.; Spreeuw, R. J. C.

    2018-02-01

    Experiments handling Rydberg atoms near surfaces must necessarily deal with the high sensitivity of Rydberg atoms to (stray) electric fields that typically emanate from adsorbates on the surface. We demonstrate a method to modify and reduce the stray electric field by changing the adsorbate distribution. We use one of the Rydberg excitation lasers to locally affect the adsorbed dipole distribution. By adjusting the averaged exposure time we change the strength (with the minimal value less than 0.2 V /cm at 78 μ m from the chip) and even the sign of the perpendicular field component. This technique is a useful tool for experiments handling Rydberg atoms near surfaces, including atom chips.

  11. Disentangling atomic-layer-specific x-ray absorption spectra by Auger electron diffraction spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsui, Fumihiko; Matsushita, Tomohiro; Kato, Yukako; Hashimoto, Mie; Daimon, Hiroshi

    2009-11-01

    In order to investigate the electronic and magnetic structures of each atomic layer at subsurface, we have proposed a new method, Auger electron diffraction spectroscopy, which is the combination of x-ray absorption spectroscopy (XAS) and Auger electron diffraction (AED) techniques. We have measured a series of Ni LMM AED patterns of the Ni film grown on Cu(001) surface for various thicknesses. Then we deduced a set of atomic-layer-specific AED patterns in a numerical way. Furthermore, we developed an algorithm to disentangle XANES spectra from different atomic layers using these atomic-layer-specific AED patterns. Surface and subsurface core level shift were determined for each atomic layer.

  12. First Measurement of the Atomic Electric Dipole Moment of Ra 225

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, R. H.; Dietrich, M. R.; Kalita, M. R.

    The radioactive radium-225 (Ra-225) atom is a favorable case to search for a permanent electric dipole moment. Because of its strong nuclear octupole deformation and large atomic mass, Ra-225 is particularly sensitive to interactions in the nuclear medium that violate both time-reversal symmetry and parity. We have developed a cold-atom technique to study the spin precession of Ra-225 atoms held in an optical dipole trap, and demonstrated the principle of this method by completing the first measurement of its atomic electric dipole moment, reaching an upper limit of vertical bar d(Ra-225)vertical bar < 5.0 x 10(-22) e cm (95% confidence).

  13. Precise measurements of the atomic masses of silicon-28, phosphorus-31, sulfur-32, krypton-84,86, xenon-129,132,136, and the dipole moment of PH+ using single-ion and two-ion Penning trap techniques

    NASA Astrophysics Data System (ADS)

    Redshaw, Matthew

    This dissertation describes high precision measurements of atomic masses by measuring the cyclotron frequency of ions trapped singly, or in pairs, in a precision, cryogenic Penning trap. By building on techniques developed at MIT for measuring the cyclotron frequency of single trapped ions, the atomic masses of 84,86Kr, and 129,132,136Xe have been measured to less than a part in 1010 fractional precision. By developing a new technique for measuring the cyclotron frequency ratio of a pair of simultaneously trapped ions, the atomic masses of 28Si, 31P and 32S have been measured to 2 or 3 parts in 10 11. This new technique has also been used to measure the dipole moment of PH+. During the course of these measurements, two significant, but previously unsuspected sources of systematic error were discovered, characterized and eliminated. Extensive tests for other sources of systematic error were performed and are described in detail. The mass measurements presented here provide a significant increase in precision over previous values for these masses, by factors of 3 to 700. The results have a broad range of physics applications: The mass of 136 Xe is important for searches for neutrinoless double-beta-decay; the mass of 28Si is relevant to the re-definition of the artifact kilogram in terms of an atomic mass standard; the masses of 84,86Kr, and 129,132,136Xe provide convenient reference masses for less precise mass spectrometers in diverse fields such as nuclear physics and chemistry; and the dipole moment of PH+ provides a test of molecular structure calculations.

  14. Efficient grid-based techniques for density functional theory

    NASA Astrophysics Data System (ADS)

    Rodriguez-Hernandez, Juan Ignacio

    Understanding the chemical and physical properties of molecules and materials at a fundamental level often requires quantum-mechanical models for these substance's electronic structure. This type of many body quantum mechanics calculation is computationally demanding, hindering its application to substances with more than a few hundreds atoms. The supreme goal of many researches in quantum chemistry---and the topic of this dissertation---is to develop more efficient computational algorithms for electronic structure calculations. In particular, this dissertation develops two new numerical integration techniques for computing molecular and atomic properties within conventional Kohn-Sham-Density Functional Theory (KS-DFT) of molecular electronic structure. The first of these grid-based techniques is based on the transformed sparse grid construction. In this construction, a sparse grid is generated in the unit cube and then mapped to real space according to the pro-molecular density using the conditional distribution transformation. The transformed sparse grid was implemented in program deMon2k, where it is used as the numerical integrator for the exchange-correlation energy and potential in the KS-DFT procedure. We tested our grid by computing ground state energies, equilibrium geometries, and atomization energies. The accuracy on these test calculations shows that our grid is more efficient than some previous integration methods: our grids use fewer points to obtain the same accuracy. The transformed sparse grids were also tested for integrating, interpolating and differentiating in different dimensions (n = 1,2,3,6). The second technique is a grid-based method for computing atomic properties within QTAIM. It was also implemented in deMon2k. The performance of the method was tested by computing QTAIM atomic energies, charges, dipole moments, and quadrupole moments. For medium accuracy, our method is the fastest one we know of.

  15. On the Use of Line Depth Ratios to Measure Starspot Properties on Magnetically Active Stars

    NASA Astrophysics Data System (ADS)

    O'Neal, Douglas

    2006-07-01

    Photometric and spectroscopic techniques have proven to be effective ways to measure the properties of dark, cool starspots on magnetically active stars. Recently, a technique was introduced using atomic line depth ratios (LDRs) to measure starspot properties. Carefully reproducing this technique using a new set of spectroscopic observations of active stars, we find that the LDR technique encounters difficulties, specifically by overestimating spot temperatures (because the atomic lines blend with titanium oxide absorption in cooler spots) and by not tightly constraining the filling factor of spots. While the use of LDRs for active star studies has great promise, we believe that these concerns need to be addressed before the technique is more widely applied. This paper includes data taken at McDonald Observatory of the University of Texas at Austin.

  16. A Method for Finding Metabolic Pathways Using Atomic Group Tracking.

    PubMed

    Huang, Yiran; Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi

    2017-01-01

    A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways.

  17. Virtual interface substructure synthesis method for normal mode analysis of super-large molecular complexes at atomic resolution.

    PubMed

    Chen, Xuehui; Sun, Yunxiang; An, Xiongbo; Ming, Dengming

    2011-10-14

    Normal mode analysis of large biomolecular complexes at atomic resolution remains challenging in computational structure biology due to the requirement of large amount of memory space and central processing unit time. In this paper, we present a method called virtual interface substructure synthesis method or VISSM to calculate approximate normal modes of large biomolecular complexes at atomic resolution. VISSM introduces the subunit interfaces as independent substructures that join contacting molecules so as to keep the integrity of the system. Compared with other approximate methods, VISSM delivers atomic modes with no need of a coarse-graining-then-projection procedure. The method was examined for 54 protein-complexes with the conventional all-atom normal mode analysis using CHARMM simulation program and the overlap of the first 100 low-frequency modes is greater than 0.7 for 49 complexes, indicating its accuracy and reliability. We then applied VISSM to the satellite panicum mosaic virus (SPMV, 78,300 atoms) and to F-actin filament structures of up to 39-mer, 228,813 atoms and found that VISSM calculations capture functionally important conformational changes accessible to these structures at atomic resolution. Our results support the idea that the dynamics of a large biomolecular complex might be understood based on the motions of its component subunits and the way in which subunits bind one another. © 2011 American Institute of Physics

  18. ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo

    2015-10-10

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction ismore » described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.« less

  19. A Method for Finding Metabolic Pathways Using Atomic Group Tracking

    PubMed Central

    Zhong, Cheng; Lin, Hai Xiang; Wang, Jianyi

    2017-01-01

    A fundamental computational problem in metabolic engineering is to find pathways between compounds. Pathfinding methods using atom tracking have been widely used to find biochemically relevant pathways. However, these methods require the user to define the atoms to be tracked. This may lead to failing to predict the pathways that do not conserve the user-defined atoms. In this work, we propose a pathfinding method called AGPathFinder to find biochemically relevant metabolic pathways between two given compounds. In AGPathFinder, we find alternative pathways by tracking the movement of atomic groups through metabolic networks and use combined information of reaction thermodynamics and compound similarity to guide the search towards more feasible pathways and better performance. The experimental results show that atomic group tracking enables our method to find pathways without the need of defining the atoms to be tracked, avoid hub metabolites, and obtain biochemically meaningful pathways. Our results also demonstrate that atomic group tracking, when incorporated with combined information of reaction thermodynamics and compound similarity, improves the quality of the found pathways. In most cases, the average compound inclusion accuracy and reaction inclusion accuracy for the top resulting pathways of our method are around 0.90 and 0.70, respectively, which are better than those of the existing methods. Additionally, AGPathFinder provides the information of thermodynamic feasibility and compound similarity for the resulting pathways. PMID:28068354

  20. A hybrid system of a membrane oscillator coupled to ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kampschulte, Tobias

    2015-05-01

    The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.

  1. Mechanical gate control for atom-by-atom cluster assembly with scanning probe microscopy.

    PubMed

    Sugimoto, Yoshiaki; Yurtsever, Ayhan; Hirayama, Naoki; Abe, Masayuki; Morita, Seizo

    2014-07-11

    Nanoclusters supported on substrates are of great importance in physics and chemistry as well as in technical applications, such as single-electron transistors and nanocatalysts. The properties of nanoclusters differ significantly from those of either the constituent atoms or the bulk solid, and are highly sensitive to size and chemical composition. Here we propose a novel atom gating technique to assemble various atom clusters composed of a defined number of atoms at room temperature. The present gating operation is based on the transfer of single diffusing atoms among nanospaces governed by gates, which can be opened in response to the chemical interaction force with a scanning probe microscope tip. This method provides an alternative way to create pre-designed atom clusters with different chemical compositions and to evaluate their chemical stabilities, thus enabling investigation into the influence that a single dopant atom incorporated into the host clusters has on a given cluster stability.

  2. Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Sun, Shuhui; Zhang, Gaixia; Gauquelin, Nicolas; Chen, Ning; Zhou, Jigang; Yang, Songlan; Chen, Weifeng; Meng, Xiangbo; Geng, Dongsheng; Banis, Mohammad N.; Li, Ruying; Ye, Siyu; Knights, Shanna; Botton, Gianluigi A.; Sham, Tsun-Kong; Sun, Xueliang

    2013-05-01

    Platinum-nanoparticle-based catalysts are widely used in many important chemical processes and automobile industries. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their use efficiency, however, very challenging. Here we report a practical synthesis for isolated single Pt atoms anchored to graphene nanosheet using the atomic layer deposition (ALD) technique. ALD offers the capability of precise control of catalyst size span from single atom, subnanometer cluster to nanoparticle. The single-atom catalysts exhibit significantly improved catalytic activity (up to 10 times) over that of the state-of-the-art commercial Pt/C catalyst. X-ray absorption fine structure (XAFS) analyses reveal that the low-coordination and partially unoccupied densities of states of 5d orbital of Pt atoms are responsible for the excellent performance. This work is anticipated to form the basis for the exploration of a next generation of highly efficient single-atom catalysts for various applications.

  3. Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition

    PubMed Central

    Sun, Shuhui; Zhang, Gaixia; Gauquelin, Nicolas; Chen, Ning; Zhou, Jigang; Yang, Songlan; Chen, Weifeng; Meng, Xiangbo; Geng, Dongsheng; Banis, Mohammad N.; Li, Ruying; Ye, Siyu; Knights, Shanna; Botton, Gianluigi A.; Sham, Tsun-Kong; Sun, Xueliang

    2013-01-01

    Platinum-nanoparticle-based catalysts are widely used in many important chemical processes and automobile industries. Downsizing catalyst nanoparticles to single atoms is highly desirable to maximize their use efficiency, however, very challenging. Here we report a practical synthesis for isolated single Pt atoms anchored to graphene nanosheet using the atomic layer deposition (ALD) technique. ALD offers the capability of precise control of catalyst size span from single atom, subnanometer cluster to nanoparticle. The single-atom catalysts exhibit significantly improved catalytic activity (up to 10 times) over that of the state-of-the-art commercial Pt/C catalyst. X-ray absorption fine structure (XAFS) analyses reveal that the low-coordination and partially unoccupied densities of states of 5d orbital of Pt atoms are responsible for the excellent performance. This work is anticipated to form the basis for the exploration of a next generation of highly efficient single-atom catalysts for various applications.

  4. Definitions of Frequency and Timing Terms, Satellite Navigation and Timing Systems, and the Behavior and Analyses of Precision Crystal and Atomic Frequency Standards and their Characteristics

    DTIC Science & Technology

    2009-05-01

    time transfer techniques has largely been due to the improvement in frequency standards. In this document, an effort was made to provide substantial...of RCC Document 214-94, contains definitions of frequency and timing terms, time transfer techniques and analysis, and behavior of crystal and atomic...Characteristics, May 2009 viii TTG Telecommunications and Timing Group TWSTFT Two-Way Satellite Time and Frequency Transfer U.S. United States USNO

  5. Soldering to a single atomic layer

    NASA Astrophysics Data System (ADS)

    Girit, ćaǧlar Ö.; Zettl, A.

    2007-11-01

    The standard technique to make electrical contact to nanostructures is electron beam lithography. This method has several drawbacks including complexity, cost, and sample contamination. We present a simple technique to cleanly solder submicron sized, Ohmic contacts to nanostructures. To demonstrate, we contact graphene, a single atomic layer of carbon, and investigate low- and high-bias electronic transport. We set lower bounds on the current carrying capacity of graphene. A simple model allows us to obtain device characteristics such as mobility, minimum conductance, and contact resistance.

  6. Soldering to a single atomic layer

    NASA Astrophysics Data System (ADS)

    Girit, Caglar; Zettl, Alex

    2008-03-01

    The standard technique to make electrical contact to nanostructures is electron beam lithography. This method has several drawbacks including complexity, cost, and sample contamination. We present a simple technique to cleanly solder submicron sized, Ohmic contacts to nanostructures. To demonstrate, we contact graphene, a single atomic layer of carbon, and investigate low- and high-bias electronic transport. We set lower bounds on the current carrying capacity of graphene. A simple model allows us to obtain device characteristics such as mobility, minimum conductance, and contact resistance.

  7. Atomic temporal interval relations in branching time: calculation and application

    NASA Astrophysics Data System (ADS)

    Anger, Frank D.; Ladkin, Peter B.; Rodriguez, Rita V.

    1991-03-01

    A practical method of reasoning about intervals in a branching-time model which is dense, unbounded, future-branching, without rejoining branches is presented. The discussion is based on heuristic constraint- propagation techniques using the relation algebra of binary temporal relations among the intervals over the branching-time model. This technique has been applied with success to models of intervals over linear time by Allen and others, and is of cubic-time complexity. To extend it to branding-time models, it is necessary to calculate compositions of the relations; thus, the table of compositions for the 'atomic' relations is computed, enabling the rapid determination of the composition of arbitrary relations, expressed as disjunctions or unions of the atomic relations.

  8. Atom Transfer Radical Polymerization of Functionalized Vinyl Monomers Using Perylene as a Visible Light Photocatalyst

    PubMed Central

    Theriot, Jordan C.; Ryan, Matthew D.; French, Tracy A.; Pearson, Ryan M.; Miyake, Garret M.

    2016-01-01

    A standardized technique for atom transfer radical polymerization of vinyl monomers using perylene as a visible-light photocatalyst is presented. The procedure is performed under an inert atmosphere using air- and water-exclusion techniques. The outcome of the polymerization is affected by the ratios of monomer, initiator, and catalyst used as well as the reaction concentration, solvent, and nature of the light source. Temporal control over the polymerization can be exercised by turning the visible light source off and on. Low dispersities of the resultant polymers as well as the ability to chain-extend to form block copolymers suggest control over the polymerization, while chain end-group analysis provides evidence supporting an atom-transfer radical polymerization mechanism. PMID:27166728

  9. Current role of ICP-MS in clinical toxicology and forensic toxicology: a metallic profile.

    PubMed

    Goullé, Jean-Pierre; Saussereau, Elodie; Mahieu, Loïc; Guerbet, Michel

    2014-08-01

    As metal/metalloid exposure is inevitable owing to its omnipresence, it may exert toxicity in humans. Recent advances in metal/metalloid analysis have been made moving from flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry to the multi-elemental inductively coupled plasma (ICP) techniques as ICP atomic emission spectrometry and ICP-MS. ICP-MS has now emerged as a major technique in inorganic analytical chemistry owing to its flexibility, high sensitivity and good reproducibility. This in depth review explores the ICP-MS metallic profile in human toxicology. It is now routinely used and of great importance, in clinical toxicology and forensic toxicology to explore biological matrices, specifically whole blood, plasma, urine, hair, nail, biopsy samples and tissues.

  10. Frozen lattice and absorptive model for high angle annular dark field scanning transmission electron microscopy: A comparison study in terms of integrated intensity and atomic column position measurement.

    PubMed

    Alania, M; Lobato, I; Van Aert, S

    2018-01-01

    In this paper, both the frozen lattice (FL) and the absorptive potential (AP) approximation models are compared in terms of the integrated intensity and the precision with which atomic columns can be located from an image acquired using high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM). The comparison is made for atoms of Cu, Ag, and Au. The integrated intensity is computed for both an isolated atomic column and an atomic column inside an FCC structure. The precision has been computed using the so-called Cramér-Rao Lower Bound (CRLB), which provides a theoretical lower bound on the variance with which parameters can be estimated. It is shown that the AP model results into accurate measurements for the integrated intensity only for small detector ranges under relatively low angles and for small thicknesses. In terms of the attainable precision, both methods show similar results indicating picometer range precision under realistic experimental conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Automated extraction of single H atoms with STM: tip state dependency

    NASA Astrophysics Data System (ADS)

    Møller, Morten; Jarvis, Samuel P.; Guérinet, Laurent; Sharp, Peter; Woolley, Richard; Rahe, Philipp; Moriarty, Philip

    2017-02-01

    The atomistic structure of the tip apex plays a crucial role in performing reliable atomic-scale surface and adsorbate manipulation using scanning probe techniques. We have developed an automated extraction routine for controlled removal of single hydrogen atoms from the H:Si(100) surface. The set of atomic extraction protocols detect a variety of desorption events during scanning tunneling microscope (STM)-induced modification of the hydrogen-passivated surface. The influence of the tip state on the probability for hydrogen removal was examined by comparing the desorption efficiency for various classifications of STM topographs (rows, dimers, atoms, etc). We find that dimer-row-resolving tip apices extract hydrogen atoms most readily and reliably (and with least spurious desorption), while tip states which provide atomic resolution counter-intuitively have a lower probability for single H atom removal.

  12. Phonon-based scalable platform for chip-scale quantum computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinke, Charles M.; El-Kady, Ihab

    Here, we present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton,more » may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.« less

  13. Phonon-based scalable platform for chip-scale quantum computing

    DOE PAGES

    Reinke, Charles M.; El-Kady, Ihab

    2016-12-19

    Here, we present a scalable phonon-based quantum computer on a phononic crystal platform. Practical schemes involve selective placement of a single acceptor atom in the peak of the strain field in a high-Q phononic crystal cavity that enables coupling of the phonon modes to the energy levels of the atom. We show theoretical optimization of the cavity design and coupling waveguide, along with estimated performance figures of the coupled system. A qubit can be created by entangling a phonon at the resonance frequency of the cavity with the atom states. Qubits based on this half-sound, half-matter quasi-particle, called a phoniton,more » may outcompete other quantum architectures in terms of combined emission rate, coherence lifetime, and fabrication demands.« less

  14. Application of Dirac's Generalized Hamiltonian Dynamics to Atomic and Molecular Systems

    NASA Astrophysics Data System (ADS)

    Uzer, Turgay

    2002-10-01

    Incorporating electronic degrees of freedom into classical treatments of atoms and molecules is a challenging problem from both the practical and fundamental points of view. Because it goes to the heart of classical-quantal correspondence, there are now a number of prescriptions which differ by the extent of quantal information that they include. We reach back to Dirac for inspiration, who, half a century ago, designed a so-called Generalized Hamiltonian Dynamics (GHD) with applications to field theory in mind. Physically, the GHD is a purely classical formalism for systems with constraints; it incorporates the constraints into the Hamiltonian. We apply the GHD to atomic and molecular physics by choosing integrals of motion as the constraints. We show that this purely classical formalism allows the derivation of energies of non-radiating states.

  15. Resonance and intercombination lines in Mg-like ions of atomic numbers Z = 13 – 92

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, Juan A.; Trabert, Elmar

    2015-02-05

    While prominent lines of various Na-like ions have been measured with an accuracy of better than 100 ppm and corroborate equally accurate calculations, there have been remarkably large discrepancies between calculations for Mg-like ions of high atomic number. We present ab initio calculations using the multireference Moller-Plesset approach for Mg-like ions of atomic numbers Z = 13-92 and compare the results with other calculations of this isoelectronic sequence as well as with experimental data. Our results come very close to experiment (typically 100 ppm) over a wide range. Furthermore, data at high values of Z are sparse, which calls formore » further accurate measurements in this range where relativistic and QED effects are large.« less

  16. The Saga of Light-Matter Interaction and Magneto-optical Effects Applications to Atomic Magnetometry, Laser-cooled Atoms, Atomic Clocks, Geomagnetism, and Plant Bio-magnetism

    NASA Astrophysics Data System (ADS)

    Corsini, Eric P.

    The quest to expand the limited sensorial domain, in particular to bridge the inability to gauge magnetic fields near and far, has driven the fabrication of remedial tools. The interaction of ferromagnetic material with a magnetic field had been the only available technique to gauge that field for several millennium. The advent of electricity and associated classical phenomena captured in the four Maxwell equations, were a step forward. In the early 1900s, the model of quantum mechanics provided a two-way leap forward. One came from the newly understood interaction of light and matter, and more specifically the three-way coupling of photons, atoms' angular momenta, and magnetic field, which are the foundations of atomic magnetometry. The other came from magnetically sensitive quantum effects in a fabricated energy-ladder form of matter cooled to a temperature below that of the energy steps; these quantum effects gave rise to the superconducting quantum interference device (SQUID). Research using atomic magnetometers and SQUIDs has resulted in thousands of publications, text books, and conferences. The current status in each field is well described in Refs. [48,49,38,42] and all references therein. In this work we develop and investigate techniques and applications pertaining to atomic magnetometry. [Full text: eric.corsini gmail.com].

  17. Patterned growth of p-type MoS 2 atomic layers using sol-gel as precursor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wei; Lin, Junhao; Feng, Wei

    2D layered MoS 2 has drawn intense attention for its applications in flexible electronic, optoelectronic, and spintronic devices. Most of the MoS 2 atomic layers grown by conventional chemical vapor deposition techniques are n-type due to the abundant sulfur vacancies. Facile production of MoS 2 atomic layers with p-type behavior, however, remains challenging. Here, a novel one-step growth has been developed to attain p-type MoS 2 layers in large scale by using Mo-containing sol–gel, including 1% tungsten (W). Atomic-resolution electron microscopy characterization reveals that small tungsten oxide clusters are commonly present on the as-grown MoS 2 film due to themore » incomplete reduction of W precursor at the reaction temperature. These omnipresent small tungsten oxide clusters contribute to the p-type behavior, as verified by density functional theory calculations, while preserving the crystallinity of the MoS 2 atomic layers. The Mo containing sol–gel precursor is compatible with the soft-lithography techniques, which enables patterned growth of p-type MoS 2 atomic layers into regular arrays with different shapes, holding great promise for highly integrated device applications. Lastly, an atomically thin p–n junction is fabricated by the as-prepared MoS 2, which shows strong rectifying behavior.« less

  18. Patterned growth of p-type MoS 2 atomic layers using sol-gel as precursor

    DOE PAGES

    Zheng, Wei; Lin, Junhao; Feng, Wei; ...

    2016-07-19

    2D layered MoS 2 has drawn intense attention for its applications in flexible electronic, optoelectronic, and spintronic devices. Most of the MoS 2 atomic layers grown by conventional chemical vapor deposition techniques are n-type due to the abundant sulfur vacancies. Facile production of MoS 2 atomic layers with p-type behavior, however, remains challenging. Here, a novel one-step growth has been developed to attain p-type MoS 2 layers in large scale by using Mo-containing sol–gel, including 1% tungsten (W). Atomic-resolution electron microscopy characterization reveals that small tungsten oxide clusters are commonly present on the as-grown MoS 2 film due to themore » incomplete reduction of W precursor at the reaction temperature. These omnipresent small tungsten oxide clusters contribute to the p-type behavior, as verified by density functional theory calculations, while preserving the crystallinity of the MoS 2 atomic layers. The Mo containing sol–gel precursor is compatible with the soft-lithography techniques, which enables patterned growth of p-type MoS 2 atomic layers into regular arrays with different shapes, holding great promise for highly integrated device applications. Lastly, an atomically thin p–n junction is fabricated by the as-prepared MoS 2, which shows strong rectifying behavior.« less

  19. Analysis of the substrate influence on the ordering of epitaxial molecular layers: The special case of point-on-line coincidence

    NASA Astrophysics Data System (ADS)

    Mannsfeld, S. C.; Fritz, T.

    2004-02-01

    The physical structure of organic-inorganic heteroepitaxial thin films is usually governed by a fine balance between weak molecule-molecule interactions and a weakly laterally varying molecule-substrate interaction potential. Therefore, in order to investigate the energetics of such a layer system one has to consider large molecular domains. So far, layer potential calculations for large domains of organic thin films on crystalline substrates were difficult to perform concerning the computational effort which stems from the vast number of atoms which have to be included. Here, we present a technique which enables the calculation of the molecule-substrate interaction potential for large molecular domains by utilizing potential energy grid files. This technique allows the investigation of the substrate influence in systems prepared by organic molecular beam epitaxy (OMBE), like 3,4,9,10-perylenetetracarboxylicdianhydride on highly oriented pyrolytic graphite. For this system the so-called point-on-line coincidence was proposed, a growth mode which has been controversially discussed in literature. Furthermore, we are able to provide evidence for a general energetic advantage of such point-on-line coincident domain orientations over arbitrarily oriented domains which substantiates that energetically favorable lattice structures in OMBE systems are not restricted to commensurate unit cells or coincident super cells.

  20. Novel MRF fluid for ultra-low roughness optical surfaces

    NASA Astrophysics Data System (ADS)

    Dumas, Paul; McFee, Charles

    2014-08-01

    Over the past few years there have been an increasing number of applications calling for ultra-low roughness (ULR) surfaces. A critical demand has been driven by EUV optics, EUV photomasks, X-Ray, and high energy laser applications. Achieving ULR results on complex shapes like aspheres and X-Ray mirrors is extremely challenging with conventional polishing techniques. To achieve both tight figure and roughness specifications, substrates typically undergo iterative global and local polishing processes. Typically the local polishing process corrects the figure or flatness but cannot achieve the required surface roughness, whereas the global polishing process produces the required roughness but degrades the figure. Magnetorheological Finishing (MRF) is a local polishing technique based on a magnetically-sensitive fluid that removes material through a shearing mechanism with minimal normal load, thus removing sub-surface damage. The lowest surface roughness produced by current MRF is close to 3 Å RMS. A new ULR MR fluid uses a nano-based cerium as the abrasive in a proprietary aqueous solution, the combination of which reliably produces under 1.5Å RMS roughness on Fused Silica as measured by atomic force microscopy. In addition to the highly convergent figure correction achieved with MRF, we show results of our novel MR fluid achieving <1.5Å RMS roughness on fused silica and other materials.

  1. Accelerated path integral methods for atomistic simulations at ultra-low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uhl, Felix, E-mail: felix.uhl@rub.de; Marx, Dominik; Ceriotti, Michele

    2016-08-07

    Path integral methods provide a rigorous and systematically convergent framework to include the quantum mechanical nature of atomic nuclei in the evaluation of the equilibrium properties of molecules, liquids, or solids at finite temperature. Such nuclear quantum effects are often significant for light nuclei already at room temperature, but become crucial at cryogenic temperatures such as those provided by superfluid helium as a solvent. Unfortunately, the cost of converged path integral simulations increases significantly upon lowering the temperature so that the computational burden of simulating matter at the typical superfluid helium temperatures becomes prohibitive. Here we investigate how accelerated pathmore » integral techniques based on colored noise generalized Langevin equations, in particular the so-called path integral generalized Langevin equation thermostat (PIGLET) variant, perform in this extreme quantum regime using as an example the quasi-rigid methane molecule and its highly fluxional protonated cousin, CH{sub 5}{sup +}. We show that the PIGLET technique gives a speedup of two orders of magnitude in the evaluation of structural observables and quantum kinetic energy at ultralow temperatures. Moreover, we computed the spatial spread of the quantum nuclei in CH{sub 4} to illustrate the limits of using such colored noise thermostats close to the many body quantum ground state.« less

  2. Nanothermodynamics of iron clusters: Small clusters, icosahedral and fcc-cuboctahedral structures

    NASA Astrophysics Data System (ADS)

    Angelié, C.; Soudan, J.-M.

    2017-05-01

    The study of the thermodynamics and structures of iron clusters has been carried on, focusing on small clusters and initial icosahedral and fcc-cuboctahedral structures. Two combined tools are used. First, energy intervals are explored by the Monte Carlo algorithm, called σ-mapping, detailed in the work of Soudan et al. [J. Chem. Phys. 135, 144109 (2011), Paper I]. In its flat histogram version, it provides the classical density of states, gp(Ep), in terms of the potential energy of the system. Second, the iron system is described by a potential which is called "corrected EAM" (cEAM), explained in the work of Basire et al. [J. Chem. Phys. 141, 104304 (2014), Paper II]. Small clusters from 3 to 12 atoms in their ground state have been compared first with published Density Functional Theory (DFT) calculations, giving a complete agreement of geometries. The series of 13, 55, 147, and 309 atom icosahedrons is shown to be the most stable form for the cEAM potential. However, the 147 atom cluster has a special behaviour, since decreasing the energy from the liquid zone leads to the irreversible trapping of the cluster in a reproducible amorphous state, 7.38 eV higher in energy than the icosahedron. This behaviour is not observed at the higher size of 309 atoms. The heat capacity of the 55, 147, and 309 atom clusters revealed a pronounced peak in the solid zone, related to a solid-solid transition, prior to the melting peak. The corresponding series of 13, 55, and 147 atom cuboctahedrons has been compared, underscoring the unstability towards the icosahedral structure. This unstability occurs clearly in several steps for the 147 atom cluster, with a sudden transformation at a transition state. This illustrates the concerted icosahedron-cuboctahedron transformation of Buckminster Fuller-Mackay, which is calculated for the cEAM potential. Two other clusters of initial fcc structures with 24 and 38 atoms have been studied, as well as a 302 atom cluster. Each one relaxes towards a more stable structure without regularity. The 38 atom cluster exhibits a nearly glassy relaxation, through a cascade of six metastable states of long life. This behaviour, as that of the 147 atom cluster towards the amorphous state, shows that difficulties to reach ergodicity in the lower half of the solid zone are related to particular features of the potential energy landscape, and not necessarily to a too large size of the system. Comparisons of the cEAM iron system with published results about Lennard-Jones systems and DFT calculations are made. The results of the previous clusters have been combined with that of Paper II to plot the cohesive energy Ec and the melting temperature Tm in terms of the cluster atom number Nat. The Nat -1 /3 linear dependence of the melting temperature (Pawlow law) is observed again for Nat > 150. In contrast, for Nat < 150, the curve diverges strongly from the Pawlow law, giving it an overall V-shape, with a linear increase of Tm when Nat goes from 55 to 13 atoms. Surprisingly, the 38 atom cluster is anomalously below the overall curve.

  3. Paramagnetic and Diamagnetic Materials

    ERIC Educational Resources Information Center

    Thompson, Frank

    2011-01-01

    Paramagnetic and diamagnetic materials are now generally known as the "Cinderella" materials of the magnetic world. However, susceptibility measurements made on these materials in the past have revealed many details about the molecular bonding and the atomic structure of the so-called "transition" elements. Indeed, the magnetic moment of neodymium…

  4. Plutonium Recycle: The Fateful Step

    ERIC Educational Resources Information Center

    Speth, J. Gustave; And Others

    1974-01-01

    Calls attention to the fact that if the Atomic Energy Commission proceeds with its plans to authorize the nuclear power industry to use plutonium as a fuel in commercial nuclear reactors around the country, this will result in a dramatic escalation in the risks posed by nuclear power. (PEB)

  5. Acquisition Systems Protection Planning the Manhatten Project: A Case Study

    DTIC Science & Technology

    1994-06-03

    This study examines the counterintelligence and security programs of the Manhattan Project , the United States acquisition of the atomic bomb, using...assessment methodology and counterintelligence techniques and procedures. Acquisition systems, Program protection, Manhattan Project , Atomic bomb, Technology protection, Counterintelligence, Security.

  6. Trace Element Analysis of Biological Samples.

    ERIC Educational Resources Information Center

    Veillon, Claude

    1986-01-01

    Reviews background of atomic absorption spectrometry techniques. Discusses problems encountered and precautions to be taken in determining trace elements in the parts-per-billion concentration range and below. Concentrates on determining chromium in biological samples by graphite furnace atomic absorption. Considers other elements, matrices, and…

  7. Classical And Quantum Rainbow Scattering From Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winter, H.; Schueller, A.; Busch, M.

    2011-06-01

    The structure of clean and adsorbate covered surfaces as well as of ultrathin films can be investigated by grazing scattering of fast atoms. We present two recent experimental techniques which allow one to study the structure of ordered arrangements of surface atoms in detail. (1) Rainbow scattering under axial surface channeling conditions, and (2) fast atom diffraction. Our examples demonstrate the attractive features of grazing fast atom scattering as a powerful analytical tool in studies on the structure of surfaces. We will concentrate our discussion on the structure of ultrathin silica films on a Mo(112) surface and of adsorbed oxygenmore » atoms on a Fe(110) surface.« less

  8. Computational code in atomic and nuclear quantum optics: Advanced computing multiphoton resonance parameters for atoms in a strong laser field

    NASA Astrophysics Data System (ADS)

    Glushkov, A. V.; Gurskaya, M. Yu; Ignatenko, A. V.; Smirnov, A. V.; Serga, I. N.; Svinarenko, A. A.; Ternovsky, E. V.

    2017-10-01

    The consistent relativistic energy approach to the finite Fermi-systems (atoms and nuclei) in a strong realistic laser field is presented and applied to computing the multiphoton resonances parameters in some atoms and nuclei. The approach is based on the Gell-Mann and Low S-matrix formalism, multiphoton resonance lines moments technique and advanced Ivanov-Ivanova algorithm of calculating the Green’s function of the Dirac equation. The data for multiphoton resonance width and shift for the Cs atom and the 57Fe nucleus in dependence upon the laser intensity are listed.

  9. Modern trends in increasing the quality of the steels intended for cutting and metal-working tools: I. Improvement of granule metallurgy processes

    NASA Astrophysics Data System (ADS)

    Belyanchikov, L. N.

    2008-12-01

    The following new technological processes for producing fine gas-atomized powders of tool and high-speed steels with a low content of nonmetallic inclusions are considered: the process designed by Böhler Uddeholm Powder Technology (Austria) and processes involving a heated gas. In the former process, a metal is poured from a ladle with electroslag heating, and the atomizing unit consists of three injectors. A new process of producing tools from fine powders by three-dimensional printing, i.e., so-called 3D-printing, is described.

  10. Growing Cutting-edge X-ray Optics

    ScienceCinema

    Conley, Ray

    2018-03-02

    Ever imagined that an Xbox controller could help open a window into a world spanning just one billionth of a meter? Brookhaven Lab's Ray Conley grows cutting-edge optics called multilayer Laue lenses (MLL) one atomic layer at a time to focus high-energy x-rays to within a single nanometer. To achieve this focusing feat, Ray uses a massive, custom-built atomic deposition device, an array of computers, and a trusty Xbox controller. These lenses will be deployed at the Lab's National Synchrotron Light Source II, due to begin shining super-bright light on pressing scientific puzzles in 2015.

  11. Extended atmospheres of outer planet satellites and comets

    NASA Technical Reports Server (NTRS)

    Smyth, W. H.; Combi, M. R.

    1985-01-01

    Collisions between neutral hydrogen atoms in the interstellar medium and those in the so-called Titan hydrogen torus may provide an additional lifetime sink for atoms in the Saturn environment. Progress toward re-sorting the Voyager UVS scans of neutral hydrogen in the Saturn system to enable both a factor of two increase in the amount of data to be analyzed as well as to help identify near-Titan hydrogen is discussed. Progress toward development of the cometary carbon and oxygen models is also discussed and a preliminary model run for the H2O source of cometary oxygen is presented.

  12. Stellar and laboratory XUV/EUV line ratios in Fe XVIII and Fe XIX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Traebert, E.; Beiersdorfer, P.; Clementson, J.

    2012-05-25

    A so-called XUV excess has been suspected with the relative fluxes of Fe XVIII and Fe XIX lines observed in the XUV and EUV ranges of the spectrum of the star Capella as observed by the Chandra spacecraft, even after correction for interstellar absorption. This excess becomes apparent in the comparison of the observations with simulations of stellar spectra obtained using collisional-radiative models that employ, for example, the Atomic Plasma Emission Code (APEC) or the Flexible Atomic Code (FAC). We have addressed this problem by laboratory studies using the Livermore electron beam ion trap (EBIT).

  13. Use of a Smartphone as a Colorimetric Analyzer in Paper-based Devices for Sensitive and Selective Determination of Mercury in Water Samples.

    PubMed

    Jarujamrus, Purim; Meelapsom, Rattapol; Pencharee, Somkid; Obma, Apinya; Amatatongchai, Maliwan; Ditcharoen, Nadh; Chairam, Sanoe; Tamuang, Suparb

    2018-01-01

    A smartphone application, called CAnal, was developed as a colorimetric analyzer in paper-based devices for sensitive and selective determination of mercury(II) in water samples. Measurement on the double layer of a microfluidic paper-based analytical device (μPAD) fabricated by alkyl ketene dimer (AKD)-inkjet printing technique with special design doped with unmodified silver nanoparticles (AgNPs) onto the detection zones was performed by monitoring the gray intensity in the blue channel of AgNPs, which disintegrated when exposed to mercury(II) on μPAD. Under the optimized conditions, the developed approach showed high sensitivity, low limit of detection (0.003 mg L -1 , 3SD blank/slope of the calibration curve), small sample volume uptake (two times of 2 μL), and short analysis time. The linearity range of this technique ranged from 0.01 to 10 mg L -1 (r 2 = 0.993). Furthermore, practical analysis of various water samples was also demonstrated to have acceptable performance that was in agreement with the data from cold vapor atomic absorption spectrophotometry (CV-AAS), a conventional method. The proposed technique allows for a rapid, simple (instant report of the final mercury(II) concentration in water samples via smartphone display), sensitive, selective, and on-site analysis with high sample throughput (48 samples h -1 , n = 3) of trace mercury(II) in water samples, which is suitable for end users who are unskilled in analyzing mercury(II) in water samples.

  14. An Introduction to Atomic Layer Deposition with Thermal Applications

    NASA Technical Reports Server (NTRS)

    Dwivedi, Vivek H.

    2015-01-01

    Atomic Layer Deposition (ALD) is a cost effective nano-manufacturing technique that allows for the conformal coating of substrates with atomic control in a benign temperature and pressure environment. Through the introduction of paired precursor gases thin films can be deposited on a myriad of substrates ranging from glass, polymers, aerogels, and metals to high aspect ratio geometries. This talk will focus on the utilization of ALD for engineering applications.

  15. Fast Atomic-Scale Chemical Imaging of Crystalline Materials and Dynamic Phase Transformations.

    PubMed

    Lu, Ping; Yuan, Ren Liang; Ihlefeld, Jon F; Spoerke, Erik David; Pan, Wei; Zuo, Jian Min

    2016-04-13

    Atomic-scale phenomena fundamentally influence materials form and function that makes the ability to locally probe and study these processes critical to advancing our understanding and development of materials. Atomic-scale chemical imaging by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) is a powerful approach to investigate solid crystal structures. Inefficient X-ray emission and collection, however, require long acquisition times (typically hundreds of seconds), making the technique incompatible with electron-beam sensitive materials and study of dynamic material phenomena. Here we describe an atomic-scale STEM-EDS chemical imaging technique that decreases the acquisition time to as little as one second, a reduction of more than 100 times. We demonstrate this new approach using LaAlO3 single crystal and study dynamic phase transformation in beam-sensitive Li[Li0.2Ni0.2Mn0.6]O2 (LNMO) lithium ion battery cathode material. By capturing a series of time-lapsed chemical maps, we show for the first time clear atomic-scale evidence of preferred Ni-mobility in LNMO transformation, revealing new kinetic mechanisms. These examples highlight the potential of this approach toward temporal, atomic-scale mapping of crystal structure and chemistry for investigating dynamic material phenomena.

  16. Molecular Dynamics Study of Poly And Monocrystalline CdS/CdTe Junctions and Cu Doped Znte Back Contacts for Solar Cell Applications

    NASA Astrophysics Data System (ADS)

    Aguirre, Rodolfo, II

    Cadmium telluride (CdTe) is a material used to make solar cells because it absorbs the sunlight very efficiently and converts it into electricity. However, CdTe modules suffer from degradation of 1% over a period of 1 year. Improvements on the efficiency and stability can be achieved by designing better materials at the atomic scale. Experimental techniques to study materials at the atomic scale, such as Atomic Probe Tomography (APT) and Transmission Electron Microscope (TEM) are expensive and time consuming. On the other hand, Molecular Dynamics (MD) offers an inexpensive and fast computer simulation technique to study the growth evolution of materials with atomic scale resolution. In combination with advance characterization software, MD simulations provide atomistic visualization, defect analysis, structure maps, 3-D atomistic view, and composition profiles. MD simulations help to design better quality materials by predicting material behavior at the atomic scale. In this work, a new MD method to study several phenomena such as polycrystalline growth of CdTe-based materials, interdiffusion of atoms at interfaces, and deposition of a copper doped ZnTe back contact is established. Results are compared with experimental data found in the literature and experiments performed and shown to be in remarkably good agreement.

  17. Recovery of a Charred Painting Using Atomic Oxygen Treatment

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Chichernea, Virgil A.

    1999-01-01

    A noncontact method is described which uses atomic oxygen to remove soot and char from the surface of a painting. The atomic oxygen was generated by the dissociation of oxygen in low pressure air using radio frequency energy. The treatment, which is an oxidation process, allows control of the amount of material to be removed. The effectiveness of char removal from half of a fire-damaged oil painting was studied using reflected light measurements from selected areas of the painting and by visual and photographic observation. The atomic oxygen was able to effectively remove char and soot from the treated half of the painting. The remaining loosely bound pigment was lightly sprayed with a mist to replace the binder and then varnish was reapplied. Caution should he used when treating an untested paint medium using atomic oxygen. A representative edge or corner should he tested first in order to determine if the process would be safe for the pigments present. As more testing occurs, a greater knowledge base will be developed as to what types of paints and varnishes can or cannot be treated using this technique. With the proper precautions, atomic oxygen treatment does appear to be a technique with great potential for allowing very charred, previously unrestorable art to be salvaged.

  18. Single-atom trapping and transport in DMD-controlled optical tweezers

    NASA Astrophysics Data System (ADS)

    Stuart, Dustin; Kuhn, Axel

    2018-02-01

    We demonstrate the trapping and manipulation of single neutral atoms in reconfigurable arrays of optical tweezers. Our approach offers unparalleled speed by using a Texas instruments digital micro-mirror device as a holographic amplitude modulator with a frame rate of 20 000 per second. We show the trapping of static arrays of up to 20 atoms, as well as transport of individually selected atoms over a distance of 25 μm with laser cooling and 4 μm without. We discuss the limitations of the technique and the scope for technical improvements.

  19. Entanglement of atomic qubits using an optical frequency comb.

    PubMed

    Hayes, D; Matsukevich, D N; Maunz, P; Hucul, D; Quraishi, Q; Olmschenk, S; Campbell, W; Mizrahi, J; Senko, C; Monroe, C

    2010-04-09

    We demonstrate the use of an optical frequency comb to coherently control and entangle atomic qubits. A train of off-resonant ultrafast laser pulses is used to efficiently and coherently transfer population between electronic and vibrational states of trapped atomic ions and implement an entangling quantum logic gate with high fidelity. This technique can be extended to the high field regime where operations can be performed faster than the trap frequency. This general approach can be applied to more complex quantum systems, such as large collections of interacting atoms or molecules.

  20. Temperature-modulated annealing of c-plane sapphire for long-range-ordered atomic steps

    NASA Astrophysics Data System (ADS)

    Yatsui, Takashi; Kuribara, Kazunori; Sekitani, Tsuyoshi; Someya, Takao; Yoshimoto, Mamoru

    2016-03-01

    High-quality single-crystalline sapphire is used to prepare various semiconductors because of its thermal stability. Here, we applied the tempering technique, which is well known in the production of chocolate, to prepare a sapphire substrate. Surprisingly, we successfully realised millimetre-range ordering of the atomic step of the sapphire substrate. We also obtained a sapphire atomic step with nanometre-scale uniformity in the terrace width and atomic-step height. Such sapphire substrates will find applications in the preparation of various semiconductors and devices.

  1. Beta Atomic Contacts: Identifying Critical Specific Contacts in Protein Binding Interfaces

    PubMed Central

    Liu, Qian; Kwoh, Chee Keong; Hoi, Steven C. H.

    2013-01-01

    Specific binding between proteins plays a crucial role in molecular functions and biological processes. Protein binding interfaces and their atomic contacts are typically defined by simple criteria, such as distance-based definitions that only use some threshold of spatial distance in previous studies. These definitions neglect the nearby atomic organization of contact atoms, and thus detect predominant contacts which are interrupted by other atoms. It is questionable whether such kinds of interrupted contacts are as important as other contacts in protein binding. To tackle this challenge, we propose a new definition called beta (β) atomic contacts. Our definition, founded on the β-skeletons in computational geometry, requires that there is no other atom in the contact spheres defined by two contact atoms; this sphere is similar to the van der Waals spheres of atoms. The statistical analysis on a large dataset shows that β contacts are only a small fraction of conventional distance-based contacts. To empirically quantify the importance of β contacts, we design βACV, an SVM classifier with β contacts as input, to classify homodimers from crystal packing. We found that our βACV is able to achieve the state-of-the-art classification performance superior to SVM classifiers with distance-based contacts as input. Our βACV also outperforms several existing methods when being evaluated on several datasets in previous works. The promising empirical performance suggests that β contacts can truly identify critical specific contacts in protein binding interfaces. β contacts thus provide a new model for more precise description of atomic organization in protein quaternary structures than distance-based contacts. PMID:23630569

  2. Report on the 18th International Conference on X-ray and Inner-Shell Processes (X99).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gemmell, D. S.; Physics

    2000-01-01

    The 18th conference of the series served as a forum for discussing fundamental issues in the field of x-ray and inner-shell processes and their application in various disciplines of science and technology. Special emphasis was given to the opportunities offered by modern synchrotron x-ray sources. The program included plenary talks, progress reports and poster presentations relating to new developments in the field of x-ray and inner-shell processes. The range of topics included: X-ray interactions with atoms, molecules, clusters, surfaces and solids; Decay processes for inner-shell vacancies; X-ray absorption and emission spectroscopy - Photoionization processes; Phenomena associated with highly charged ionsmore » and collisions with energetic particles; Electron-spin and -momentum spectroscopy; X-ray scattering and spectroscopy in the study of magnetic systems; Applications in materials science, biology, geosciences, and other disciplines; Elastic and inelastic x-ray scattering processes in atoms and molecules; Threshold phenomena (post-collision interaction, resonant Raman processes, etc.); Nuclear absorption and scattering of x-rays; 'Fourth-generation' x-ray sources; Processes exploiting the polarization and coherence properties of x-ray beams; Developments in experimental techniques (x-ray optics, temporal techniques, detectors); Microscopy, spectromicroscopy, and various imaging techniques; Non-linear processes and x-ray lasers; Ionization and excitation induced by charged particles and by x-rays; and Exotic atoms (including 'hollow' atoms and atoms that contain 'exotic' particles).« less

  3. Atomic Oxygen Treatment for Non-Contact Removal of Organic Protective Coatings from Painting Surfaces

    NASA Technical Reports Server (NTRS)

    Rutledge, Sharon K.; Banks, Bruce A.; Cales, Michael

    1994-01-01

    Current techniques for removal of varnish (lacquer) and other organic protective coatings from paintings involve contact with the surface. This contact can remove pigment, or alter the shape and location of paint on the canvas surface. A thermal energy atomic oxygen plasma, developed to simulate the space environment in low Earth orbit, easily removes these organic materials. Uniform removal of organic protective coatings from the surfaces of paintings is accomplished through chemical reaction. Atomic oxygen will not react with oxides so that most paint pigments will not be affected by the reaction. For paintings containing organic pigments, the exposure can be carefully timed so that the removal stops just short of the pigment. Color samples of Alizarin Crimson, Sap Green, and Zinc White coated with Damar lacquer were exposed to atomic oxygen. The lacquer was easily removed from all of the samples. Additionally, no noticeable change in appearance was observed after the lacquer was reapplied. The same observations were made on a painted canvas test sample obtained from the Cleveland Museum of Art. Scanning electron microscope photographs showed a slight microscopic texturing of the vehicle after exposure. However, there was no removal or disturbance of the paint pigment on the surface. It appears that noncontact cleaning using atomic oxygen may provide a viable alternative to other cleaning techniques. It is especially attractive in cases where the organic protective surface cannot be acceptably or safely removed by conventional techniques.

  4. Materials selection for long life in low earth orbit - A critical evaluation of atomic oxygen testing with thermal atom systems

    NASA Technical Reports Server (NTRS)

    Koontz, S. L.; Albyn, K.; Leger, L.

    1990-01-01

    The use of thermal atom test methods as a materials selection and screening technique for low-earth orbit (LEO) spacecraft is critically evaluated. The chemistry and physics of thermal atom environments are compared with the LEO environment. The relative reactivities of a number of materials determined in thermal atom environments are compared with those observed in LEO and in high-quality LEO simulations. Reaction efficiencies (cu cm/atom) measured in a new type of thermal atom apparatus are one-thousandth to one ten-thousandth those observed in LEO, and many materials showing nearly identical reactivities in LEO show relative reactivities differing by as much as a factor of eight in thermal atom systems. A simple phenomenological kinetic model for the reaction of oxygen atoms with organic materials can be used to explain the differences in reactivity in different environments. Certain speciic thermal atom test environments can be used as reliable materials screening tools.

  5. Observation of dynamic atom-atom correlation in liquid helium in real space.

    PubMed

    Dmowski, W; Diallo, S O; Lokshin, K; Ehlers, G; Ferré, G; Boronat, J; Egami, T

    2017-05-04

    Liquid 4 He becomes superfluid and flows without resistance below temperature 2.17 K. Superfluidity has been a subject of intense studies and notable advances were made in elucidating the phenomenon by experiment and theory. Nevertheless, details of the microscopic state, including dynamic atom-atom correlations in the superfluid state, are not fully understood. Here using a technique of neutron dynamic pair-density function (DPDF) analysis we show that 4 He atoms in the Bose-Einstein condensate have environment significantly different from uncondensed atoms, with the interatomic distance larger than the average by about 10%, whereas the average structure changes little through the superfluid transition. DPDF peak not seen in the snap-shot pair-density function is found at 2.3 Å, and is interpreted in terms of atomic tunnelling. The real space picture of dynamic atom-atom correlations presented here reveal characteristics of atomic dynamics not recognized so far, compelling yet another look at the phenomenon.

  6. Experiment and the Nature of Quantum Reality.

    ERIC Educational Resources Information Center

    Corwin, T. Mike; Wachowiak, Dale

    1984-01-01

    Although the Einstein-Podolsky-Rosen experiment was originally a hypothetical situation, John Bell was able to apply a version of their argument to an experiment that could actually be done. This experiment (called "Bell's Inequality") and a hypothetical experiment analogous to the one Bell proposed at the atomic level are described. (JN)

  7. Molecular Dynamics Simulations of Chemical Reactions for Use in Education

    ERIC Educational Resources Information Center

    Qian Xie; Tinker, Robert

    2006-01-01

    One of the simulation engines of an open-source program called the Molecular Workbench, which can simulate thermodynamics of chemical reactions, is described. This type of real-time, interactive simulation and visualization of chemical reactions at the atomic scale could help students understand the connections between chemical reaction equations…

  8. Modeling Organochlorine Compounds and the σ-Hole Effect Using a Polarizable Multipole Force Field

    PubMed Central

    2015-01-01

    The charge distribution of halogen atoms on organochlorine compounds can be highly anisotropic and even display a so-called σ-hole, which leads to strong halogen bonds with electron donors. In this paper, we have systematically investigated a series of chloromethanes with one to four chloro substituents using a polarizable multipole-based molecular mechanics model. The atomic multipoles accurately reproduced the ab initio electrostatic potential around chloromethanes, including CCl4, which has a prominent σ-hole on the Cl atom. The van der Waals parameters for Cl were fitted to the experimental density and heat of vaporization. The calculated hydration free energy, solvent reaction fields, and interaction energies of several homo- and heterodimer of chloromethanes are in good agreement with experimental and ab initio data. This study suggests that sophisticated electrostatic models, such as polarizable atomic multipoles, are needed for accurate description of electrostatics in organochlorine compounds and halogen bonds, although further improvement is necessary for better transferability. PMID:24484473

  9. Big Bang Day : The Great Big Particle Adventure - 1. Atom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-08

    In this series, comedian and physicist Ben Miller asks the CERN scientists what they hope to find. The notion of atoms dates back to Greek philosophers who sought a natural mechanical explanation of the Universe, as opposed to a divine one. The existence what we call chemical atoms, the constituents of all we see around us, wasn't proved until a hundred years ago, but almost simultaneously it was realised these weren't the indivisible constituents the Greeks envisaged. Much of the story of physics since then has been the ever-deeper probing of matter until, at the end of the 20th century,more » a complete list of fundamental ingredients had been identified, apart from one, the much discussed Higgs particle. In this programme, Ben finds out why this last particle is so pivotal, not just to atomic theory, but to our very existence - and how hopeful the scientists are of proving its existence.« less

  10. Atom Probe Tomographic Analysis of Biological Systems Enabled by Advanced Specimen Preparation Approaches

    NASA Astrophysics Data System (ADS)

    Perea, D. E.; Evans, J. E.

    2017-12-01

    The ability to image biointerfaces over nanometer to micrometer length scales is fundamental to correlating biological composition and structure to physiological function, and is aided by a multimodal approach using advanced complementary microscopic and spectroscopic characterization techniques. Atom Probe Tomography (APT) is a rapidly expanding technique for atomic-scale three-dimensional structural and chemical analysis. However, the regular application of APT to soft biological materials is lacking in large part due to difficulties in specimen preparation and inabilities to yield meaningful tomographic reconstructions that produce atomic scale compositional distributions as no other technique currently can. Here we describe the atomic-scale tomographic analysis of biological materials using APT that is facilitated by an advanced focused ion beam based approach. A novel specimen preparation strategy is used in the analysis of horse spleen ferritin protein embedded in an organic polymer resin which provides chemical contrast to distinguish the inorganic-organic interface of the ferrihydrite mineral core and protein shell of the ferritin protein. One-dimensional composition profiles directly reveal an enhanced concentration of P and Na at the surface of the ferrihydrite mineral core. We will also describe the development of a unique multifunctional environmental transfer hub allowing controlled cryogenic transfer of specimens under vacuum pressure conditions between an Atom Probe and cryo-FIB/SEM. The utility of the environmental transfer hub is demonstrated through the acquisition of previously unavailable mass spectral analysis of an intact organometallic molecule made possible via controlled cryogenic transfer. The results demonstrate a viable application of APT analysis to study complex biological organic/inorganic interfaces relevant to energy and the environment. References D.E. Perea et al. An environmental transfer hub for multimodal atom probe tomography, Adv. Struct. Chem. Imag, 2017, 3:12 The research was performed at the Environmental Molecular Sciences Laboratory; a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research located at Pacific Northwest National Laboratory.

  11. Tomography of a Probe Potential Using Atomic Sensors on Graphene.

    PubMed

    Wyrick, Jonathan; Natterer, Fabian D; Zhao, Yue; Watanabe, Kenji; Taniguchi, Takashi; Cullen, William G; Zhitenev, Nikolai B; Stroscio, Joseph A

    2016-12-27

    Our ability to access and explore the quantum world has been greatly advanced by the power of atomic manipulation and local spectroscopy with scanning tunneling and atomic force microscopes, where the key technique is the use of atomically sharp probe tips to interact with an underlying substrate. Here we employ atomic manipulation to modify and quantify the interaction between the probe and the system under study that can strongly affect any measurement in low charge density systems, such as graphene. We transfer Co atoms from a graphene surface onto a probe tip to change and control the probe's physical structure, enabling us to modify the induced potential at a graphene surface. We utilize single Co atoms on a graphene field-effect device as atomic scale sensors to quantitatively map the modified potential exerted by the scanning probe over the whole relevant spatial and energy range.

  12. Radical Chemistry and Charge Manipulation with an Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Gross, Leo

    The fuctionalization of tips by atomic manipulation dramatically increased the resolution of atomic force microscopy (AFM). The combination of high-resolution AFM with atomic manipulation now offers the unprecedented possibility to custom-design individual molecules by making and breaking bonds with the tip of the microscope and directly characterizing the products on the atomic scale. We recently applied this technique to generate and study reaction intermediates and to investigate chemical reactions trigged by atomic manipulation. We formed diradicals by dissociating halogen atoms and then reversibly triggered ring-opening and -closing reactions via atomic manipulation, allowing us to switch and control the molecule's reactivity, magnetic and optical properties. Additional information about charge states and charge distributions can be obtained by Kelvin probe force spectroscopy. On multilayer insulating films we investigated single-electron attachment, detachment and transfer between individual molecules. EU ERC AMSEL (682144), EU project PAMS (610446).

  13. A Simple Approach for the Calculation of Energy Levels of Light Atoms

    ERIC Educational Resources Information Center

    Woodyard, Jack R., Sr.

    1972-01-01

    Describes a method for direct calculation of energy levels by using elementary techniques. Describes the limitations of the approach but also claims that with a minimum amount of labor a student can get greater understanding of atomic physics problems. (PS)

  14. DETERMINATION OF TOTAL MERCURY IN FISH TISSUES USING PYROLYSIS ATOMIC ABSORPTION SPECTROMETRY WITH GOLD AMALGAMATION

    EPA Science Inventory

    A simple and rapid procedure for measuring total mercury in fish tissues is evaluated and
    compared with conventional techniques. Using an automated instrument incorporating combustion, preconcentration by amalgamation with gold, and atomic absorption spectrometry (AAS), mill...

  15. Field Ion Microscopy and Atom Probe Tomography of Metamorphic Magnetite Crystals

    NASA Technical Reports Server (NTRS)

    Kuhlman, K.; Martens, R. L.; Kelly, T. F.; Evans, N. D.; Miller, M. K.

    2001-01-01

    Magnetite has been analysed using Field Ion Microscopy (FIM) and Atom Probe Tomography (APT), highly attractive techniques for the nanoanalysis of geological materials despite the difficulties inherent in analyzing semiconducting and insulating materials. Additional information is contained in the original extended abstract.

  16. New atom probe approaches to studying segregation in nanocrystalline materials.

    PubMed

    Samudrala, S K; Felfer, P J; Araullo-Peters, V J; Cao, Y; Liao, X Z; Cairney, J M

    2013-09-01

    Atom probe is a technique that is highly suited to the study of nanocrystalline materials. It can provide accurate atomic-scale information about the composition of grain boundaries in three dimensions. In this paper we have analysed the microstructure of a nanocrystalline super-duplex stainless steel prepared by high pressure torsion (HPT). Not all of the grain boundaries in this alloy display obvious segregation, making visualisation of the microstructure challenging. In addition, the grain boundaries present in the atom probe data acquired from this alloy have complex shapes that are curved at the scale of the dataset and the interfacial excess varies considerably over the boundaries, making the accurate characterisation of the distribution of solute challenging using existing analysis techniques. In this paper we present two new data treatment methods that allow the visualisation of boundaries with little or no segregation, the delineation of boundaries for further analysis and the quantitative analysis of Gibbsian interfacial excess at boundaries, including the capability of excess mapping. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Methyl sulfonyl polychlorinated biphenyls and 2,2-bis(4-chlorophenyl)-1,1-dichlorethene in gray seal tissues determined by gas chromatography with electron capture detection and atomic emission detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janak, K.; Becker, G.; Colmisjoe, A.

    1998-06-01

    The presence of 24 methyl sulfonyl polychlorinated biphenyl (PCB) congeners (MeSO{sub 2}-CBs) and 3-methyl sulfonyl 2,2-bis(4-chlorophenyl)-1,1-dichlorethene (DDE) (MeSO{sub 2}-DDE), metabolites of PCB and DDE, in blubber, lung, and liver of gray seals has been determined by using atomic emission detection (AED) and electron capture detection (ECD). Selective accumulation of aryl methyl sulfones in blubber, liver, and lung tissue was also investigated. For the liver samples, a substantial and highly specific retention of PCB methyl sulfones was observed. The atomic emission technique significantly improved the determination of measured solutes compared with ECD. Atomic emission detection was also valuable for the monitoringmore » of the prefractionation and to decrease the requirements of sample clean-up. Comparing both detection techniques showed a good correlation between the results of the AED sulfur-selective line and ECD.« less

  18. Precise Measurements of the Masses of Cs, Rb and Na A New Route to the Fine Structure Constant

    NASA Astrophysics Data System (ADS)

    Rainville, Simon; Bradley, Michael P.; Porto, James V.; Thompson, James K.; Pritchard, David E.

    2001-01-01

    We report new values for the atomic masses of the alkali 133Cs, 87Rb, 85Rb, and 23Na with uncertainties ≤ 0.2 ppb. These results, obtained using Penning trap single ion mass spectrometry, are typically two orders of magnitude more accurate than previously measured values. Combined with values of h/m atom from atom interferometry measurements and accurate wavelength measurements for different atoms, these values will lead to new ppb-level determinations of the molar Planck constant N A h and the fine structure constant α. This route to α is based on simple physics. It can potentially achieve the several ppb level of accuracy needed to test the QED determination of α extracted from measurements of the electron g factor. We also demonstrate an electronic cooling technique that cools our detector and ion below the 4 K ambient temperature. This technique improves by about a factor of three our ability to measure the ion's axial motion.

  19. A portable microevaporator for low temperature single atom studies by scanning tunneling and dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Rust, H.-P.; König, T.; Simon, G. H.; Nowicki, M.; Simic-Milosevic, V.; Thielsch, G.; Heyde, M.; Freund, H.-J.

    2009-11-01

    Here, we present a microevaporator setup for single adatom deposition at low temperature, which is a prerequisite for most single atom studies with scanning probe techniques. The construction of the microevaporator is based on the tungsten filament of a modified halogen lamp, covered with the required adsorbate. Very stable evaporation conditions were obtained, which were controlled by the filament current. The installation of this microevaporator on a manipulator enabled its transportation directly to the sample at the microscope kept at 5 K. In this way, the controlled deposition of Li onto Ag(100), Li, Pd, and Au onto MgO/Ag(001) as well as Au onto alumina/NiAl(110) at low temperature has been performed. The obtained images recorded after the deposition show the presence of single Li/Au atoms on the sample surfaces as a prove for successful dispersion of single atoms onto the sample surface using this technique.

  20. Sampling and analysis techniques for monitoring serum for trace elements.

    PubMed

    Ericson, S P; McHalsky, M L; Rabinow, B E; Kronholm, K G; Arceo, C S; Weltzer, J A; Ayd, S W

    1986-07-01

    We describe techniques for controlling contamination in the sampling and analysis of human serum for trace metals. The relatively simple procedures do not require clean-room conditions. The atomic absorption and atomic emission methods used have been applied in studying zinc, copper, chromium, manganese, molybdenum, selenium, and aluminum concentrations. Values obtained for a group of 16 normal subjects agree with the most reliable values reported in the literature, obtained by much more elaborate techniques. All of these metals can be measured in 3 to 4 mL of serum. The methods may prove especially useful in monitoring concentrations of essential trace elements in blood of patients being maintained on total parenteral nutrition.

  1. Time-resolved brightness measurements by streaking

    NASA Astrophysics Data System (ADS)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  2. A Review of Recent Developments in X-Ray Diagnostics for Turbulent and Optically Dense Rocket Sprays

    NASA Technical Reports Server (NTRS)

    Radke, Christopher; Halls, Benjamin; Kastengren, Alan; Meyer, Terrence

    2017-01-01

    Highly efficient mixing and atomization of fuel and oxidizers is an important factor in many propulsion and power generating applications. To better quantify breakup and mixing in atomizing sprays, several diagnostic techniques have been developed to collect droplet information and spray statistics. Several optical based techniques, such as Ballistic Imaging and SLIPI have previously demonstrated qualitative measurements in optically dense sprays, however these techniques have produced limited quantitative information in the near injector region. To complement to these advances, a recent wave of developments utilizing synchrotron based x-rays have been successful been implemented facilitating the collection of quantitative measurements in optically dense sprays.

  3. Frustration-guided motion planning reveals conformational transitions in proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budday, Dominik; Fonseca, Rasmus; Leyendecker, Sigrid

    Proteins exist as conformational ensembles, exchanging between substates to perform their function. Advances in experimental techniques yield unprecedented access to structural snapshots of their conformational landscape. However, computationally modeling how proteins use collective motions to transition between substates is challenging owing to a rugged landscape and large energy barriers. Here in this paper, we present a new, robotics-inspired motion planning procedure called dCCRRT that navigates the rugged landscape between substates by introducing dynamic, interatomic constraints to modulate frustration. The constraints balance non-native contacts and flexibility, and instantaneously redirect the motion towards sterically favorable conformations. On a test set of eightmore » proteins determined in two conformations separated by, on average, 7.5Å root mean square deviation (RMSD), our pathways reduced the Cα atom RMSD to the goal conformation by 78%, outperforming peer methods. Additionally, we then applied dCC-RRT to examine how collective, small-scale motions of four side-chains in the active site of cyclophilin A propagate through the protein. dCC-RRT uncovered a spatially contiguous network of residues linked by steric interactions and collective motion connecting the active site to a recently proposed, non-canonical capsid binding site 25Å away, rationalizing NMR and multi-temperature crystallography experiments. In all, dCC-RRT can reveal detailed, all-atom molecular mechanisms for small and large amplitude motions.Source code and binaries are freely available at https://github.com/ExcitedStates/KGS/.« less

  4. Frustration-guided motion planning reveals conformational transitions in proteins.

    PubMed

    Budday, Dominik; Fonseca, Rasmus; Leyendecker, Sigrid; van den Bedem, Henry

    2017-10-01

    Proteins exist as conformational ensembles, exchanging between substates to perform their function. Advances in experimental techniques yield unprecedented access to structural snapshots of their conformational landscape. However, computationally modeling how proteins use collective motions to transition between substates is challenging owing to a rugged landscape and large energy barriers. Here, we present a new, robotics-inspired motion planning procedure called dCC-RRT that navigates the rugged landscape between substates by introducing dynamic, interatomic constraints to modulate frustration. The constraints balance non-native contacts and flexibility, and instantaneously redirect the motion towards sterically favorable conformations. On a test set of eight proteins determined in two conformations separated by, on average, 7.5 Å root mean square deviation (RMSD), our pathways reduced the Cα atom RMSD to the goal conformation by 78%, outperforming peer methods. We then applied dCC-RRT to examine how collective, small-scale motions of four side-chains in the active site of cyclophilin A propagate through the protein. dCC-RRT uncovered a spatially contiguous network of residues linked by steric interactions and collective motion connecting the active site to a recently proposed, non-canonical capsid binding site 25 Å away, rationalizing NMR and multi-temperature crystallography experiments. In all, dCC-RRT can reveal detailed, all-atom molecular mechanisms for small and large amplitude motions. Source code and binaries are freely available at https://github.com/ExcitedStates/KGS/. © 2017 Wiley Periodicals, Inc.

  5. Frustration-guided motion planning reveals conformational transitions in proteins

    DOE PAGES

    Budday, Dominik; Fonseca, Rasmus; Leyendecker, Sigrid; ...

    2017-07-12

    Proteins exist as conformational ensembles, exchanging between substates to perform their function. Advances in experimental techniques yield unprecedented access to structural snapshots of their conformational landscape. However, computationally modeling how proteins use collective motions to transition between substates is challenging owing to a rugged landscape and large energy barriers. Here in this paper, we present a new, robotics-inspired motion planning procedure called dCCRRT that navigates the rugged landscape between substates by introducing dynamic, interatomic constraints to modulate frustration. The constraints balance non-native contacts and flexibility, and instantaneously redirect the motion towards sterically favorable conformations. On a test set of eightmore » proteins determined in two conformations separated by, on average, 7.5Å root mean square deviation (RMSD), our pathways reduced the Cα atom RMSD to the goal conformation by 78%, outperforming peer methods. Additionally, we then applied dCC-RRT to examine how collective, small-scale motions of four side-chains in the active site of cyclophilin A propagate through the protein. dCC-RRT uncovered a spatially contiguous network of residues linked by steric interactions and collective motion connecting the active site to a recently proposed, non-canonical capsid binding site 25Å away, rationalizing NMR and multi-temperature crystallography experiments. In all, dCC-RRT can reveal detailed, all-atom molecular mechanisms for small and large amplitude motions.Source code and binaries are freely available at https://github.com/ExcitedStates/KGS/.« less

  6. Atomic spectrometry methods for wine analysis: a critical evaluation and discussion of recent applications.

    PubMed

    Grindlay, Guillermo; Mora, Juan; Gras, Luis; de Loos-Vollebregt, Margaretha T C

    2011-04-08

    The analysis of wine is of great importance since wine components strongly determine its stability, organoleptic or nutrition characteristics. In addition, wine analysis is also important to prevent fraud and to assess toxicological issues. Among the different analytical techniques described in the literature, atomic spectrometry has been traditionally employed for elemental wine analysis due to its simplicity and good analytical figures of merit. The scope of this review is to summarize the main advantages and drawbacks of various atomic spectrometry techniques for elemental wine analysis. Special attention is paid to interferences (i.e. matrix effects) affecting the analysis as well as the strategies available to mitigate them. Finally, latest studies about wine speciation are briefly discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Spectroscopic imaging, diffraction, and holography with x-ray photoemission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-02-01

    X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less

  8. The Pharmacokinetics of Atomized Lidocaine Administered via the Trachea: A Randomized Trial.

    PubMed

    Takaenoki, Yumiko; Masui, Kenichi; Oda, Yutaka; Kazama, Tomiei

    2016-07-01

    Under emergent conditions, endotracheal drug administration may be an effective method of delivering emergency drugs. A common technique is to administer these drugs using a nonatomized spray. Atomized drug delivery may be an attractive alternative to nonatomized delivery because atomized particles are small, cover a large surface area, and may better adhere to endotracheal membrane resulting in more effective drug absorption. In this study, we compared the pharmacokinetic profile of lidocaine administered into the trachea using an atomized or a nonatomized technique. Twenty patients were anesthetized using propofol and remifentanil. Ten minutes after rocuronium was administered, patients received 4% lidocaine (2 mg/kg) intratracheally over 2 seconds before tracheal intubation. Ten patients received atomized lidocaine using a mucosal atomization device, and the other 10 patients received nonatomized lidocaine using a traditional spray tube. Arterial lidocaine plasma concentrations were measured before; at 1, 3, 5, 7, 10, 15, 20, 30, 45, and 60 minutes; and then every 60 minutes after the administration of lidocaine until the end of the operation. We developed a pharmacokinetic model to examine whether bioavailability or absorption rate was different between atomized versus nonatomized lidocaine administration. The total body clearance was fixed at a published value to determine the bioavailability. Peak plasma concentrations were larger using the mucosal atomization device (median [range]: 1.9 [1.4-3.2] μg/mL) than the spray tube (1.1 [0.6-2.0] μg/mL; P = 0.0021). Our pharmacokinetic model estimated a difference of bioavailability between the atomized and the nonatomized lidocaine (0.801 and 0.559 respectively, P = 0.0005), whereas our model estimated no difference in the absorption rate constant (0.00688/min). Our results suggest that when using atomized delivery of lidocaine, less drug is required to achieve a near equivalent plasma lidocaine concentration. Atomized drug administration may be a more efficient method for endotracheal drug administration.

  9. A new systematic and quantitative approach to characterization of surface nanostructures using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Al-Mousa, Amjed A.

    Thin films are essential constituents of modern electronic devices and have a multitude of applications in such devices. The impact of the surface morphology of thin films on the device characteristics where these films are used has generated substantial attention to advanced film characterization techniques. In this work, we present a new approach to characterize surface nanostructures of thin films by focusing on isolating nanostructures and extracting quantitative information, such as the shape and size of the structures. This methodology is applicable to any Scanning Probe Microscopy (SPM) data, such as Atomic Force Microscopy (AFM) data which we are presenting here. The methodology starts by compensating the AFM data for some specific classes of measurement artifacts. After that, the methodology employs two distinct techniques. The first, which we call the overlay technique, proceeds by systematically processing the raster data that constitute the scanning probe image in both vertical and horizontal directions. It then proceeds by classifying points in each direction separately. Finally, the results from both the horizontal and the vertical subsets are overlaid, where a final decision on each surface point is made. The second technique, based on fuzzy logic, relies on a Fuzzy Inference Engine (FIE) to classify the surface points. Once classified, these points are clustered into surface structures. The latter technique also includes a mechanism which can consistently distinguish crowded surfaces from those with sparsely distributed structures and then tune the fuzzy technique system uniquely for that surface. Both techniques have been applied to characterize organic semiconductor thin films of pentacene on different substrates. Also, we present a case study to demonstrate the effectiveness of our methodology to identify quantitatively particle sizes of two specimens of gold nanoparticles of different nominal dimensions dispersed on a mica surface. A comparison with other techniques like: thresholding, watershed and edge detection is presented next. Finally, we present a systematic study of the fuzzy logic technique by experimenting with synthetic data. These results are discussed and compared along with the challenges of the two techniques.

  10. Optimization technique for problems with an inequality constraint

    NASA Technical Reports Server (NTRS)

    Russell, K. J.

    1972-01-01

    General technique uses a modified version of an existing technique termed the pattern search technique. New procedure called the parallel move strategy permits pattern search technique to be used with problems involving a constraint.

  11. Dose limited reliability of quantitative annular dark field scanning transmission electron microscopy for nano-particle atom-counting.

    PubMed

    De Backer, A; Martinez, G T; MacArthur, K E; Jones, L; Béché, A; Nellist, P D; Van Aert, S

    2015-04-01

    Quantitative annular dark field scanning transmission electron microscopy (ADF STEM) has become a powerful technique to characterise nano-particles on an atomic scale. Because of their limited size and beam sensitivity, the atomic structure of such particles may become extremely challenging to determine. Therefore keeping the incoming electron dose to a minimum is important. However, this may reduce the reliability of quantitative ADF STEM which will here be demonstrated for nano-particle atom-counting. Based on experimental ADF STEM images of a real industrial catalyst, we discuss the limits for counting the number of atoms in a projected atomic column with single atom sensitivity. We diagnose these limits by combining a thorough statistical method and detailed image simulations. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. An environmental transfer hub for multimodal atom probe tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perea, Daniel E.; Gerstl, Stephan S. A.; Chin, Jackson

    Environmental control during transfer between instruments is required for specimens sensitive to air or thermal exposure to prevent morphological or chemical changes. Atom Probe Tomography is an expanding technique but commercial instruments remain limited to loading under ambient conditions. Here we describe a multifunctional environmental transfer hub allowing controlled cryogenic, atmospheric and vacuum transfer between an Atom Probe and other instruments containing separate chambers to allow downstream time-resolved in-situ studies.

  13. Shedding Synchrotron Light on a Puzzle of Glasses

    ScienceCinema

    Chumakov, Aleksandr [European Synchrotron Radiation Facility, Grenoble, France

    2017-12-09

    Vibrational dynamics of glasses remains a point of controversial discussions. In particular, the density of vibrational states (DOS) reveals an excess of states above the Debye model called "boson peak." Despite the fact that this universal feature for all glasses has been known for more than 35 years, the nature of the boson peak is still not understood. The application of nuclear inelastic scattering via synchrotron radiation perhaps provides a clearer, more consistent picture of the subject. The distinguishing features of nuclear inelastic scattering relative to, e.g., neutron inelastic scattering, are ideal momentum integration and exact scaling of the DOS in absolute units. This allows for reliable comparison to data from other techniques such as Brillouin light scattering. Another strong point is ideal isotope selectivity: the DOS is measured for a single isotope with a specific low-energy nuclear transition. This allows for special "design" of an experiment to study, for instance, the dynamics of only center-of-mass motions. Recently, we have investigated the transformation of the DOS as a function of several key parameters such as temperature, cooling rate, and density. In all cases the transformation of the DOS is sufficiently well described by a transformation of the continuous medium, in particular, by changes of the macroscopic density and the sound velocity. These results suggest a collective sound-like nature of vibrational dynamics in glasses and cast doubts on microscopic models of glass dynamics. Further insight can be obtained in combined studies of glass with nuclear inelastic and inelastic neutron scattering. Applying two techniques, we have measured the energy dependence of the characteristic correlation length of atomic motions. The data do not reveal localization of atomic vibrations at the energy of the boson peak. Once again, the results suggest that special features of glass dynamics are related to extended motions and not to local models.

  14. The structure and properties of a nickel-base superalloy produced by osprey atomization-deposition

    NASA Astrophysics Data System (ADS)

    Bricknell, Rodger H.

    1986-04-01

    The production of a nickel-base superalloy, René* 80, by the Osprey atomization-deposition process has been investigated. Dense (>99 pct) material with a fine-grained equiaxed microstructure was deposited using either argon or nitrogen as the atomizing gas. Defects present in the material included a chill region at the collector plate interface, entrapped recirculated particles, porosity, and ceramic particles from the melting and dispensing system. In contrast to other rapid solidification techniques, low oxygen pick-ups are noted in the current technique. Tensile strengths above those displayed by castings are found in both nitrogen and argon atomized material, and in both the as-deposited and heat treated conditions. In addition, no profound mid-temperature ductility loss is displayed by this low oxygen material, in contrast to results on other rapidly solidified material with high oxygen contents. These results are explained in terms of oxygen embrittlement. In view of the excellent properties measured, the attractive economics of the process, and the fact that fine control of the gas/metal flow ratio is shown to be unnecessary, it is concluded that atomization-deposition presents an attractive potential production route for advanced alloys.

  15. Hydrogen Ordering in Hexagonal Intermetallic AB5 Type Compounds

    NASA Astrophysics Data System (ADS)

    Sikora, W.; Kuna, A.

    2008-04-01

    Intermetallic compounds AB5 type (A = rare-earth atoms, B = transition metal) are known to store reversibly large amounts of hydrogen and as that are discussed in this work. It was shown that the alloy cycling stability can be significantly improved by employing the so-called non-stoichiometric compounds AB5+x and that is why analysis of change of structure turned out to be interesting. A tendency for ordering of hydrogen atoms is one of the most intriguing problems for the unsaturated hydrides. The symmetry analysis method in the frame of the theory of space group and their representation gives opportunity to find all possible transformations of the parent structure. In this work symmetry analysis method was applied for AB5+x structure type (P6/mmm parent symmetry space group). There were investigated all possible ordering types and accompanying atom displacements in positions 1a, 2c, 3g (fully occupied in stoichiometric compounds AB5), in positions 2e, 6l (where atom B could appear in non-stoichiometric compounds) and also 4h, 6m, 6k, 12n, 12o, which could be partly occupied by hydrogen as a result of hydrides. An analysis was carried out of all possible structures of lower symmetry, following from P6/mmm for we k=(0, 0, 0). Also the way of getting the structure described by the P63mc space group with double cell along the z-axiswe k=(0, 0, 0.5), as it is suggested in the work of Latroche et al. is discussed by the symmetry analysis. The analysis was obtained by computer program MODY. The program calculates the so-called basis vectors of irreducible representations of a given symmetry group, which can be used for calculation of possible ordering modes.

  16. The life of a meander bend: Connecting shape and dynamics via analysis of a numerical model

    NASA Astrophysics Data System (ADS)

    Schwenk, Jon; Lanzoni, Stefano; Foufoula-Georgiou, Efi

    2015-04-01

    Analysis of bend-scale meandering river dynamics is a problem of theoretical and practical interest. This work introduces a method for extracting and analyzing the history of individual meander bends from inception until cutoff (called "atoms") by tracking backward through time the set of two cutoff nodes in numerical meander migration models. Application of this method to a simplified yet physically based model provides access to previously unavailable bend-scale meander dynamics over long times and at high temporal resolutions. We find that before cutoffs, the intrinsic model dynamics invariably simulate a prototypical cutoff atom shape we dub simple. Once perturbations from cutoffs occur, two other archetypal cutoff planform shapes emerge called long and round that are distinguished by a stretching along their long and perpendicular axes, respectively. Three measures of meander migration—growth rate, average migration rate, and centroid migration rate—are introduced to capture the dynamic lives of individual bends and reveal that similar cutoff atom geometries share similar dynamic histories. Specifically, through the lens of the three shape types, simples are seen to have the highest growth and average migration rates, followed by rounds, and finally longs. Using the maximum average migration rate as a metric describing an atom's dynamic past, we show a strong connection between it and two metrics of cutoff geometry. This result suggests both that early formative dynamics may be inferred from static cutoff planforms and that there exists a critical period early in a meander bend's life when its dynamic trajectory is most sensitive to cutoff perturbations. An example of how these results could be applied to Mississippi River oxbow lakes with unknown historic dynamics is shown. The results characterize the underlying model and provide a framework for comparisons against more complex models and observed dynamics.

  17. Atomic Absorption Spectroscopy. The Present and the Future.

    ERIC Educational Resources Information Center

    Slavin, Walter

    1982-01-01

    The status of current techniques and methods of atomic absorption (AA) spectroscopy (flame, hybrid, and furnace AA) is discussed, including limitations. Technological opportunities and how they may be used in AA are also discussed, focusing on automation, microprocessors, continuum AA, hybrid analyses, and others. (Author/JN)

  18. Planar regions of GaAs (001) prepared by Ga droplet motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Changxi, E-mail: changxi.zheng@monash.edu; Tang, Wen-Xin; Jesson, David E., E-mail: jessonDE@cardiff.ac.uk

    2016-07-15

    The authors describe a simple method for obtaining planar regions of GaAs (001) suitable for surface science studies. The technique, which requires no buffer layer growth, atomic hydrogen source, or the introduction of As flux, employs controllable Ga droplet motion to create planar trail regions during Langmuir evaporation. Low-energy electron microscopy/diffraction techniques are applied to monitor the droplet motion and characterize the morphology and the surface reconstruction. It is found that the planar regions exhibit atomic flatness at the level of a high-quality buffer layer.

  19. Containerless high temperature property measurements by atomic fluorescence

    NASA Technical Reports Server (NTRS)

    Schiffman, R. A.; Walker, C. A.

    1984-01-01

    Laser induced fluorescence (LIF) techniques for containerless study of high temperature processes and material properties was studied. Gas jet and electromagnetic levitation and electromagnetic and laser heating techniques are used with LIF in earth-based containerless high temperature experiments. Included are the development of an apparatus and its use in the studies of (1) chemical reactions on Al2O3, molybdenum, tungsten and LaB6 specimens, (2) methods for noncontact specimen temperature measurement, (3) levitation jet properties and (4) radiative lifetime and collisional energy transfer rates for electronically excited atoms.

  20. Electric Dipole Moment Measurements with Rare Isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chupp, Timothy

    The origin of matter is one of the deepest questions addressed by science and remains a mystery because our understanding of the Big Bang suggests that equal amounts of matter as antimatter would be created and annihilate leaving nothing from which stars, galaxies, planets and ultimately life as we know it was created. We know this is not the case in the universe, and so the explanation that the laws of physics can distinguish the difference of moving forward and backward in time and provide mechanisms that produce more matter that antimatter so that a little bit was left over.more » These same laws of physics affect our world today and would very slightly change the shape of an atom, stretching is along the direction of the spin of its nucleus. This subtle shape change has been searched in many systems - the neutron, atoms and molecules, but has not yet been detected, even as the motivation is strengthened by our understanding of their structure. We therefore look to new systems that have special features that make these effects stand out. Rare isotopes provide one possibility and specific radon atoms are our choice. We have developed techniques to make these measurements with short-lived radioactive atoms, studied the nuclei to provide deeper understanding of how these affect arise in such atoms (including radium) and developed new laser-based techniques to measure and control the magnetic fields necessary to perform these exquisitely sensitive measurements. In this work we have shown that radioactive radon atoms can be produced and transported to an apparatus that lines up the spins of the atoms. We have also shown that the nuclei of nearby radium are pear shaped and that the radon nuclei likely oscillate from one pear shape to its mirror reflection. We have also used the techniques which control nuclear spin to study the magnetic environment in a magnetically shielded room, which has the smallest magnetic field in a large volume in the universe. Measuring magnetic fields and detecting noble atoms' shapes using lasers will provide new techniques for these measurements and impact a broad range of applications including measurements of the neutron EDM. Harvesting rare isotopes at the future FRIB facility at Michigan State University will provide much stronger sources of the isotopes of radon and radium for future-generation experiments and also provide new isotopes for applications including medicine.« less

  1. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. II. Four-atom systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jun; Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu

    2013-11-28

    A rigorous, general, and simple method to fit global and permutation invariant potential energy surfaces (PESs) using neural networks (NNs) is discussed. This so-called permutation invariant polynomial neural network (PIP-NN) method imposes permutation symmetry by using in its input a set of symmetry functions based on PIPs. For systems with more than three atoms, it is shown that the number of symmetry functions in the input vector needs to be larger than the number of internal coordinates in order to include both the primary and secondary invariant polynomials. This PIP-NN method is successfully demonstrated in three atom-triatomic reactive systems, resultingmore » in full-dimensional global PESs with average errors on the order of meV. These PESs are used in full-dimensional quantum dynamical calculations.« less

  2. Displacement Cascade Damage Production in Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai

    Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as wellmore » as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less

  3. Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens [Fast Atomic-Scale Chemical Imaging of Crystalline Materials by STEM Energy-Dispersive X-ray Spectroscopy Achieved with Thin Specimens].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Ping; Yuan, Renliang; Zuo, Jian Min

    Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less

  4. Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens [Fast Atomic-Scale Chemical Imaging of Crystalline Materials by STEM Energy-Dispersive X-ray Spectroscopy Achieved with Thin Specimens].

    DOE PAGES

    Lu, Ping; Yuan, Renliang; Zuo, Jian Min

    2017-02-23

    Abstract Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm 2with the acquisition time of ~2 s or less. Here we report the details of this method, and, inmore » particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO 3in [001] projection for 200 keV electrons.« less

  5. Estimating Atomic Contributions to Hydration and Binding Using Free Energy Perturbation.

    PubMed

    Irwin, Benedict W J; Huggins, David J

    2018-06-12

    We present a general method called atom-wise free energy perturbation (AFEP), which extends a conventional molecular dynamics free energy perturbation (FEP) simulation to give the contribution to a free energy change from each atom. AFEP is derived from an expansion of the Zwanzig equation used in the exponential averaging method by defining that the system total energy can be partitioned into contributions from each atom. A partitioning method is assumed and used to group terms in the expansion to correspond to individual atoms. AFEP is applied to six example free energy changes to demonstrate the method. Firstly, the hydration free energies of methane, methanol, methylamine, methanethiol, and caffeine in water. AFEP highlights the atoms in the molecules that interact favorably or unfavorably with water. Finally AFEP is applied to the binding free energy of human immunodeficiency virus type 1 protease to lopinavir, and AFEP reveals the contribution of each atom to the binding free energy, indicating candidate areas of the molecule to improve to produce a more strongly binding inhibitor. FEP gives a single value for the free energy change and is already a very useful method. AFEP gives a free energy change for each "part" of the system being simulated, where part can mean individual atoms, chemical groups, amino acids, or larger partitions depending on what the user is trying to measure. This method should have various applications in molecular dynamics studies of physical, chemical, or biochemical phenomena, specifically in the field of computational drug discovery.

  6. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Auer, Bruce M.; Gebauer, Linda; Edwards, Jonathan L.

    1993-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented.

  7. Synergistic effects of ultraviolet radiation, thermal cycling and atomic oxygen on altered and coated Kapton surfaces

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Bruckner, Eric J.; Rodriguez, Elvin

    1992-01-01

    The photovoltaic (PV) power system for Space Station Freedom (SSF) uses solar array blankets which provide structural support for the solar cells and house the electrical interconnections. In the low earth orbital (LEO) environment where SSF will be located, surfaces will be exposed to potentially damaging environmental conditions including solar ultraviolet (UV) radiation, thermal cycling, and atomic oxygen. It is necessary to use ground based tests to determine how these environmental conditions would affect the mass loss and optical properties of candidate SSF blanket materials. Silicone containing, silicone coated, and SiO(x) coated polyimide film materials were exposed to simulated LEO environmental conditions to determine their durability and whether the environmental conditions of UV, thermal cycling and oxygen atoms act synergistically on these materials. A candidate PV blanket material called AOR Kapton, a polysiloxane polyimide cast from a solution mixture, shows an improvement in durability to oxygen atoms erosion after exposure to UV radiation or thermal cycling combined with UV radiation. This may indicate that the environmental conditions react synergistically with this material, and the damage predicted by exposure to atomic oxygen alone is more severe than that which would occur in LEO where atomic oxygen, thermal cycling and UV radiation are present together.

  8. Likelihood of atom-atom contacts in crystal structures of halogenated organic compounds.

    PubMed

    Jelsch, Christian; Soudani, Sarra; Ben Nasr, Cherif

    2015-05-01

    The likelihood of occurrence of intermolecular contacts in crystals of halogenated organic compounds has been analysed statistically using tools based on the Hirshfeld surface. Several families of small halogenated molecules (containing organic F, Cl, Br or I atoms) were analysed, based on chemical composition and aromatic or aliphatic character. The behaviour of crystal contacts was also probed for molecules containing O or N. So-called halogen bonding (a halogen making short interactions with O or N, or a π interaction with C) is generally disfavoured, except when H is scarce on the molecular surface. Similarly, halogen⋯halogen contacts are more rare than expected, except for molecules that are poor in H. In general, the H atom is found to be the preferred partner of organic halogen atoms in crystal structures. On the other hand, C⋯C interactions in parallel π-stacking have a high propensity to occur in halogenated aromatic molecules. The behaviour of the four different halogen species (F, Cl, Br, I) is compared in several chemical composition contexts. The analysis tool can be refined by distinguishing several types for a given chemical species, such as H atoms bound to O or C. Such distinction shows, for instance, that C-H⋯Cl and O-H⋯O are the preferred interactions in compounds containing both O and Cl.

  9. Synergistic effects of ultraviolet radiation, thermal cycling, and atomic oxygen on altered and coated Kapton surfaces

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; Bruckner, Eric J.; Rodriguez, Elvin

    1992-01-01

    The photovoltaic (PV) power system for Space Station Freedom (SSF) uses solar array blankets which provide structural support for the solar cells and house the electrical interconnections. In the low Earth orbital (LEO) environment where SSF will be located, surfaces will be exposed to potentially damaging environmental conditions including solar ultraviolet (UV) radiation, thermal cycling, and atomic oxygen. It is necessary to use ground based tests to determine how these environmental conditions would affect the mass loss and optical properties of candidate SSF blanket materials. Silicone containing, silicone coated, and SiO(x) coated polyimide film materials were exposed to simulated LEO environmental conditions to determine there durability and whether the environmental conditions of UV, thermal cycling and oxygen atoms act synergistically on these materials. A candidate PV blanket material called AOR Kapton, a polysiloxane polyimide cast from a solution mixture, shows an improvement in durability to oxygen atoms erosion after exposure to UV radiation or thermal cycling combined with UV radiation. This may indicate that the environmental conditions react synergistically with this material, and the damage predicted by exposure to atomic oxygen alone is more severe than that which would occur in LEO where atomic oxygen, thermal cycling and UV radiation are present together.

  10. Alignment relaxation of Ne*(2pi [J = 1]) atoms in He-Ne* glow discharges

    NASA Astrophysics Data System (ADS)

    Bahrim, Cristian; Khadilkar, Vaibhav; Matsukuma, Hiraku; Hasuo, Masahiro

    2009-11-01

    Alignment relaxation of the Ne*(2p5 3p; 2pi [J = 1]) atoms (where i = 2, 5, 7 or 10) induced by collisions with He atoms in glow discharges at 77 K < T < 1,000 K are reported. Close-coupling many-channel quantum calculations using a model potential for the Ne*(2p5 3p) - He system are compared with measurements of the alignment relaxation using the LIFS technique and the Hanle effect. The addition of the dipole polarization potential of the Ne*(2pi [J = 1]) atoms to the spin-orbit coupling and the electrostatic interaction between Ne* and He atoms leads to good agreement between theory and experiment.

  11. Sensing Atomic Motion from the Zero Point to Room Temperature with Ultrafast Atom Interferometry.

    PubMed

    Johnson, K G; Neyenhuis, B; Mizrahi, J; Wong-Campos, J D; Monroe, C

    2015-11-20

    We sense the motion of a trapped atomic ion using a sequence of state-dependent ultrafast momentum kicks. We use this atom interferometer to characterize a nearly pure quantum state with n=1 phonon and accurately measure thermal states ranging from near the zero-point energy to n[over ¯]~10^{4}, with the possibility of extending at least 100 times higher in energy. The complete energy range of this method spans from the ground state to far outside of the Lamb-Dicke regime, where atomic motion is greater than the optical wavelength. Apart from thermometry, these interferometric techniques are useful for characterizing ultrafast entangling gates between multiple trapped ions.

  12. Effect of Destined High-Pressure Torsion on the Structure and Mechanical Properties of Rare Earth-Based Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Zhao, W.; Cheng, H.; Jiang, X.; Wu, M. L.; Li, G.

    2018-03-01

    Changes in the atomic structure and mechanical properties of rare earth-based metallic glasses caused by destined high-pressure torsion (HPT) were studied by X-ray diffraction synchrotron radiation and nanoindentation. Results showed that destined HPT improved nanohardness and wear resistance, which indicated the significant contributions of this technique. The diffraction patterns showed that the contents of pairs between solvent and solute atoms with a large negative mixing enthalpy increased, whereas those of pairs between solvent atoms and between solute atoms decreased after destined HPT. Thus, the process was improved by increasing the proportion of high-intensity pairs between solvent and solute atoms.

  13. From Single Atoms to Nanoparticles — Spectroscopy on the Atomic Level

    NASA Astrophysics Data System (ADS)

    Nilius, Niklas

    2003-12-01

    The scanning tunneling microscope is not only a well-established tool for a topographic characterization of the sample surface on the atomic scale. It also provides a variety of spectroscopic techniques to examine electronic, magnetic, vibrational and optical properties of a localized system. The following presentation gives an overview, how scanning tunneling spectroscopy, inelastic electron tunneling spectroscopy and photon emission spectroscopy with the STM can be employed to investigate spatially confined metal systems and their interaction with molecular gases. The experiments were performed on single Pd and Au atoms, mono-atomic chains and individual Ag clusters on a NiAl support and a Al2O3 thin film.

  14. Imaging powders with the atomic force microscope: from biominerals to commercial materials.

    PubMed

    Friedbacher, G; Hansma, P K; Ramli, E; Stucky, G D

    1991-09-13

    Atomically resolved images of pressed powder samples have been obtained with the atomic force microscope (AFM). The technique was successful in resolving the particle, domain, and atomic structure of pismo clam (Tivela stultorum) and sea urchin (Strongylocentrotus purpuratus) shells and of commercially available calcium carbonate (CaCO(3)) and strontium carbonate (SrCO(3)) powders. Grinding and subsequent pressing of the shells did not destroy the microstructure of these materials. The atomic-resolution imaging capabilities of AFM can be applied to polycrystalline samples by means of pressing powders with a grain size as small as 50 micrometers. These results illustrate that the AFM is a promising tool for material science and the study of biomineralization.

  15. Advances in the mechanical modeling of filamentous actin and its cross-linked networks on multiple scales.

    PubMed

    Unterberger, Michael J; Holzapfel, Gerhard A

    2014-11-01

    The protein actin is a part of the cytoskeleton and, therefore, responsible for the mechanical properties of the cells. Starting with the single molecule up to the final structure, actin creates a hierarchical structure of several levels exhibiting a remarkable behavior. The hierarchy spans several length scales and limitations in computational power; therefore, there is a call for different mechanical modeling approaches for the different scales. On the molecular level, we may consider each atom in molecular dynamics simulations. Actin forms filaments by combining the molecules into a double helix. In a model, we replace molecular subdomains using coarse-graining methods, allowing the investigation of larger systems of several atoms. These models on the nanoscale inform continuum mechanical models of large filaments, which are based on worm-like chain models for polymers. Assemblies of actin filaments are connected with cross-linker proteins. Models with discrete filaments, so-called Mikado models, allow us to investigate the dependence of the properties of networks on the parameters of the constituents. Microstructurally motivated continuum models of the networks provide insights into larger systems containing cross-linked actin networks. Modeling of such systems helps to gain insight into the processes on such small scales. On the other hand, they call for verification and hence trigger the improvement of established experiments and the development of new methods.

  16. Antimisting kerosene atomization and flammability

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Petersen, R. A.; Toaz, R. D.; Jakub, A.; Sarohia, V.

    1982-01-01

    Various parameters found to affect the flammability of antimisting kerosene (Jet A + polymer additive) are investigated. Digital image processing was integrated into a technique for measurement of fuel spray characteristics. This technique was developed to avoid many of the error sources inherent to other spray assessment techniques and was applied to the study of engine fuel nozzle atomization performance with Jet A and antimisting fuel. Aircraft accident fuel spill and ignition dynamics were modeled in a steady state simulator allowing flammability to be measured as a function of airspeed, fuel flow rate, fuel jet Reynolds number and polymer concentration. The digital imaging technique was employed to measure spray characteristics in this simulation and these results were related to flammability test results. Scaling relationships were investigated through correlation of experimental results with characteristic dimensions spanning more than two orders of magnitude.

  17. Quantum coherent tractor beam effect for atoms trapped near a nanowaveguide

    PubMed Central

    Sadgrove, Mark; Wimberger, Sandro; Nic Chormaic, Síle

    2016-01-01

    We propose several schemes to realize a tractor beam effect for ultracold atoms in the vicinity of a few-mode nanowaveguide. Atoms trapped near the waveguide are transported in a direction opposite to the guided mode propagation direction. We analyse three specific examples for ultracold 23Na atoms trapped near a specific nanowaveguide (i.e. an optical nanofibre): (i) a conveyor belt-type tractor beam effect, (ii) an accelerator tractor beam effect, and (iii) a quantum coherent tractor beam effect, all of which can effectively pull atoms along the nanofibre toward the light source. This technique provides a new tool for controlling the motion of particles near nanowaveguides with potential applications in the study of particle transport and binding as well as atom interferometry. PMID:27440516

  18. Quantized thermal transport in single-atom junctions

    NASA Astrophysics Data System (ADS)

    Cui, Longji; Jeong, Wonho; Hur, Sunghoon; Matt, Manuel; Klöckner, Jan C.; Pauly, Fabian; Nielaba, Peter; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2017-03-01

    Thermal transport in individual atomic junctions and chains is of great fundamental interest because of the distinctive quantum effects expected to arise in them. By using novel, custom-fabricated, picowatt-resolution calorimetric scanning probes, we measured the thermal conductance of gold and platinum metallic wires down to single-atom junctions. Our work reveals that the thermal conductance of gold single-atom junctions is quantized at room temperature and shows that the Wiedemann-Franz law relating thermal and electrical conductance is satisfied even in single-atom contacts. Furthermore, we quantitatively explain our experimental results within the Landauer framework for quantum thermal transport. The experimental techniques reported here will enable thermal transport studies in atomic and molecular chains, which will be key to investigating numerous fundamental issues that thus far have remained experimentally inaccessible.

  19. Cadmium, copper, lead, and zinc determination in precipitation: A comparison of inductively coupled plasma atomic emission spectrometry and graphite furnace atomization atomic absorption spectrometry

    USGS Publications Warehouse

    Reddy, M.M.; Benefiel, M.A.; Claassen, H.C.

    1987-01-01

    Selected trace element analysis for cadmium, copper, lead, and zinc in precipitation samples by inductively coupled plasma atomic emission Spectrometry (ICP) and by atomic absorption spectrometry with graphite furnace atomization (AAGF) have been evaluated. This task was conducted in conjunction with a longterm study of precipitation chemistry at high altitude sites located in remote areas of the southwestern United States. Coefficients of variation and recovery values were determined for a standard reference water sample for all metals examined for both techniques. At concentration levels less than 10 micrograms per liter AAGF analyses exhibited better precision and accuracy than ICP. Both methods appear to offer the potential for cost-effective analysis of trace metal ions in precipitation. ?? 1987 Springer-Verlag.

  20. In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals.

    PubMed

    Han, Xiaodong; Wang, Lihua; Yue, Yonghai; Zhang, Ze

    2015-04-01

    In this review, we briefly introduce our in situ atomic-scale mechanical experimental technique (ASMET) for transmission electron microscopy (TEM), which can observe the atomic-scale deformation dynamics of materials. This in situ mechanical testing technique allows the deformation of TEM samples through a simultaneous double-tilt function, making atomic-scale mechanical microscopy feasible. This methodology is generally applicable to thin films, nanowires (NWs), tubes and regular TEM samples to allow investigation of the dynamics of mechanically stressed samples at the atomic scale. We show several examples of this technique applied to Pt and Cu single/polycrystalline specimens. The in situ atomic-scale observation revealed that when the feature size of these materials approaches the nano-scale, they often exhibit "unusual" deformation behaviours compared to their bulk counterparts. For example, in Cu single-crystalline NWs, the elastic-plastic transition is size-dependent. An ultra-large elastic strain of 7.2%, which approaches the theoretical elasticity limit, can be achieved as the diameter of the NWs decreases to ∼6 nm. The crossover plasticity transition from full dislocations to partial dislocations and twins was also discovered as the diameter of the single-crystalline Cu NWs decreased. For Pt nanocrystals (NC), the long-standing uncertainties of atomic-scale plastic deformation mechanisms in NC materials (grain size G less than 15 nm) were clarified. For larger grains with G<∼10 nm, we frequently observed movements and interactions of cross-grain full dislocations. For G between 6 and 10 nm, stacking faults resulting from partial dislocations become more frequent. For G<∼6 nm, the plasticity mechanism transforms from a mode of cross-grain dislocation to a collective grain rotation mechanism. This grain rotation process is mediated by grain boundary (GB) dislocations with the assistance of GB diffusion and shuffling. These in situ atomic-scale images provide a direct demonstration that grain rotation, through the evolution of the misorientation angle between neighbouring grains, can be quantitatively assessed by the dislocation content within the grain boundaries. In combination with the revolutionary Cs-corrected sub-angstrom imaging technologies developed by Urban et al., the opportunities for experimental mechanics at the atomic scale are emerging. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Large atom number Bose-Einstein condensate machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streed, Erik W.; Chikkatur, Ananth P.; Gustavson, Todd L.

    2006-02-15

    We describe experimental setups for producing large Bose-Einstein condensates of {sup 23}Na and {sup 87}Rb. In both, a high-flux thermal atomic beam is decelerated by a Zeeman slower and is then captured and cooled in a magneto-optical trap. The atoms are then transferred into a cloverleaf-style Ioffe-Pritchard magnetic trap and cooled to quantum degeneracy with radio-frequency-induced forced evaporation. Typical condensates contain 20x10{sup 6} atoms. We discuss the similarities and differences between the techniques used for producing large {sup 87}Rb and {sup 23}Na condensates in the context of nearly identical setups.

  2. LIFS atomic hydrogen density measurements at the URAGAN-3M facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Volkov, E.D.; Zhmurin, P.N.; Letuchii, A.N.

    1994-12-31

    Molecular and atomic hydrogen behavior within a plasma column of the URAGAN-3M facility was numerically simulated for a low density regime ({bar n}{sub e} {approx_equal} 2 x 10{sup 12} cm{sup {minus}3}). Local density of hydrogen atoms in the axial region was measured by Laser-Induced Fluorescence Spectroscopy technique. A good agreement of the measurements and simulations was observed. In the regime under investigation the results of hydrogen density spectroscopic measurements were found to be greatly affected by dissociative population of hydrogen atom excited states. 2 refs., 3 figs.

  3. Matterwave interferometric velocimetry of cold Rb atoms

    NASA Astrophysics Data System (ADS)

    Carey, Max; Belal, Mohammad; Himsworth, Matthew; Bateman, James; Freegarde, Tim

    2018-03-01

    We consider the matterwave interferometric measurement of atomic velocities, which forms a building block for all matterwave inertial measurements. A theoretical analysis, addressing both the laboratory and atomic frames and accounting for residual Doppler sensitivity in the beamsplitter and recombiner pulses, is followed by an experimental demonstration, with measurements of the velocity distribution within a 20 ?K cloud of rubidium atoms. Our experiments use Raman transitions between the long-lived ground hyperfine states, and allow quadrature measurements that yield the full complex interferometer signal and hence discriminate between positive and negative velocities. The technique is most suitable for measurement of colder samples.

  4. Matterwave interferometric velocimetry of cold Rb atoms

    NASA Astrophysics Data System (ADS)

    Carey, Max; Belal, Mohammad; Himsworth, Matthew; Bateman, James; Freegarde, Tim

    2018-02-01

    We consider the matterwave interferometric measurement of atomic velocities, which forms a building block for all matterwave inertial measurements. A theoretical analysis, addressing both the laboratory and atomic frames and accounting for residual Doppler sensitivity in the beamsplitter and recombiner pulses, is followed by an experimental demonstration, with measurements of the velocity distribution within a 20 $\\mu$K cloud of rubidium atoms. Our experiments use Raman transitions between the long-lived ground hyperfine states, and allow quadrature measurements that yield the full complex interferometer signal and hence discriminate between positive and negative velocities. The technique is most suitable for measurement of colder samples.

  5. Making Mn substitutional impurities in InAs using a scanning tunneling microscope.

    PubMed

    Song, Young Jae; Erwin, Steven C; Rutter, Gregory M; First, Phillip N; Zhitenev, Nikolai B; Stroscio, Joseph A

    2009-12-01

    We describe in detail an atom-by-atom exchange manipulation technique using a scanning tunneling microscope probe. As-deposited Mn adatoms (Mn(ad)) are exchanged one-by-one with surface In atoms (In(su)) to create a Mn surface-substitutional (Mn(In)) and an exchanged In adatom (In(ad)) by an electron tunneling induced reaction Mn(ad) + In(su) --> Mn(In) + In(ad) on the InAs(110) surface. In combination with density-functional theory and high resolution scanning tunneling microscopy imaging, we have identified the reaction pathway for the Mn and In atom exchange.

  6. Production and detection of atomic hexadecapole at Earth's magnetic field.

    PubMed

    Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D

    2008-07-21

    Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.

  7. Dynamical Casimir-Polder force on a partially dressed atom near a conducting wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messina, Riccardo; Vasile, Ruggero; Passante, Roberto

    2010-12-15

    We study the time evolution of the Casimir-Polder force acting on a neutral atom in front of a perfectly conducting plate, when the system starts its unitary evolution from a partially dressed state. We solve the Heisenberg equations for both atomic and field quantum operators, exploiting a series expansion with respect to the electric charge and an iterative technique. After discussing the behavior of the time-dependent force on an initially partially dressed atom, we analyze a possible experimental scheme to prepare the partially dressed state and the observability of this new dynamical effect.

  8. Hydrogen positions in single nanocrystals revealed by electron diffraction

    NASA Astrophysics Data System (ADS)

    Palatinus, L.; Brázda, P.; Boullay, P.; Perez, O.; Klementová, M.; Petit, S.; Eigner, V.; Zaarour, M.; Mintova, S.

    2017-01-01

    The localization of hydrogen atoms is an essential part of crystal structure analysis, but it is difficult because of their small scattering power. We report the direct localization of hydrogen atoms in nanocrystalline materials, achieved using the recently developed approach of dynamical refinement of precession electron diffraction tomography data. We used this method to locate hydrogen atoms in both an organic (paracetamol) and an inorganic (framework cobalt aluminophosphate) material. The results demonstrate that the technique can reliably reveal fine structural details, including the positions of hydrogen atoms in single crystals with micro- to nanosized dimensions.

  9. Conductive Atomic Force Microscopy | Materials Science | NREL

    Science.gov Websites

    electrical measurement techniques is the high spatial resolution. For example, C-AFM measurements on : High-resolution image of a sample semiconductor device; the image shows white puff-like clusters on a dark background and was obtained using atomic force microscopy. Bottom: High-resolution image of the

  10. SIMULTANEOUS DETERMINATION OF ORGANOTIN, ORGANOLEAD, AND ORGANOMERCURY COMPOUNDS IN ENVIRONMENTAL SAMPLES USING CAPILLARY GAS CHROMATOGRAPHY WITH ATOMIC EMISSION DETECTION

    EPA Science Inventory

    As part of a continuing evaluation of new analytical and sample preparation techniques conducted by the US Environmental Protection Agency (EPA), the use of capillary gas chromatography with atomic emission detection (GC-AED) for the simultaneous determination of organotin, organ...

  11. Investigation and Development of Advanced Surface Microanalysis Techniques and Methods

    DTIC Science & Technology

    1983-04-01

    descriminates against isobars since each of the isobaric species will have a different atomic number or Z and, therefore, will be stripped of its...allow descrimination between two elements at the same mass but which have different atomic numbers. Multiply-charged ions are not produced during the

  12. Phase modulation for reduced vibration sensitivity in laser-cooled clocks in space

    NASA Technical Reports Server (NTRS)

    Klipstein, W.; Dick, G.; Jefferts, S.; Walls, F.

    2001-01-01

    The standard interrogation technique in atomic beam clocks is square-wave frequency modulation (SWFM), which suffers a first order sensitivity to vibrations as changes in the transit time of the atoms translates to perceived frequency errors. Square-wave phase modulation (SWPM) interrogation eliminates sensitivity to this noise.

  13. Photoelectron spectroscopy of heavy atoms and molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, M.G.

    1979-07-01

    The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target.

  14. Unique atom hyper-kagome order in Na4Ir3O8 and in low-symmetry spinel modifications.

    PubMed

    Talanov, V M; Shirokov, V B; Talanov, M V

    2015-05-01

    Group-theoretical and thermodynamic methods of the Landau theory of phase transitions are used to investigate the hyper-kagome atomic order in structures of ordered spinels and a spinel-like Na4Ir3O8 crystal. The formation of an atom hyper-kagome sublattice in Na4Ir3O8 is described theoretically on the basis of the archetype (hypothetical parent structure/phase) concept. The archetype structure of Na4Ir3O8 has a spinel-like structure (space group Fd\\bar 3m) and composition [Na1/2Ir3/2](16d)[Na3/2](16c)O(32e)4. The critical order parameter which induces hypothetical phase transition has been stated. It is shown that the derived structure of Na4Ir3O8 is formed as a result of the displacements of Na, Ir and O atoms, and ordering of Na, Ir and O atoms, ordering dxy, dxz, dyz orbitals as well. Ordering of all atoms takes place according to the type 1:3. Ir and Na atoms form an intriguing atom order: a network of corner-shared Ir triangles called a hyper-kagome lattice. The Ir atoms form nanoclusters which are named decagons. The existence of hyper-kagome lattices in six types of ordered spinel structures is predicted theoretically. The structure mechanisms of the formation of the predicted hyper-kagome atom order in some ordered spinel phases are established. For a number of cases typical diagrams of possible crystal phase states are built in the framework of the Landau theory of phase transitions. Thermodynamical conditions of hyper-kagome order formation are discussed by means of these diagrams. The proposed theory is in accordance with experimental data.

  15. Continuum ionization transition probabilities of atomic oxygen

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Petrosky, V. E.

    1974-01-01

    The technique of photoelectron spectroscopy was employed in the investigation. Atomic oxygen was produced in a microwave discharge operating at a power of 40 W and at a pressure of approximately 20 mtorr. The photoelectron spectrum of the oxygen with and without the discharge is shown. The atomic states can be clearly seen. In connection with the measurement of the probability for transitions into the various ionic states, the analyzer collection efficiency was determined as a function of electron energy.

  16. Fast Atomic-Scale Elemental Mapping of Crystalline Materials by STEM Energy-Dispersive X-Ray Spectroscopy Achieved with Thin Specimens.

    PubMed

    Lu, Ping; Yuan, Renliang; Zuo, Jian Min

    2017-02-01

    Elemental mapping at the atomic-scale by scanning transmission electron microscopy (STEM) using energy-dispersive X-ray spectroscopy (EDS) provides a powerful real-space approach to chemical characterization of crystal structures. However, applications of this powerful technique have been limited by inefficient X-ray emission and collection, which require long acquisition times. Recently, using a lattice-vector translation method, we have shown that rapid atomic-scale elemental mapping using STEM-EDS can be achieved. This method provides atomic-scale elemental maps averaged over crystal areas of ~few 10 nm2 with the acquisition time of ~2 s or less. Here we report the details of this method, and, in particular, investigate the experimental conditions necessary for achieving it. It shows, that in addition to usual conditions required for atomic-scale imaging, a thin specimen is essential for the technique to be successful. Phenomenological modeling shows that the localization of X-ray signals to atomic columns is a key reason. The effect of specimen thickness on the signal delocalization is studied by multislice image simulations. The results show that the X-ray localization can be achieved by choosing a thin specimen, and the thickness of less than about 22 nm is preferred for SrTiO3 in [001] projection for 200 keV electrons.

  17. The use of atomic spectroscopy in the pharmaceutical industry for the determination of trace elements in pharmaceuticals.

    PubMed

    Lewen, Nancy

    2011-06-25

    The subject of the analysis of various elements, including metals and metalloids, in the pharmaceutical industry has seen increasing importance in the last 10-15 years, as modern analytical instrumentation has afforded analysts with the opportunity to provide element-specific, accurate and meaningful information related to pharmaceutical products. Armed with toxicological data, compendial and regulatory agencies have revisited traditional approaches to the testing of pharmaceuticals for metals and metalloids, and analysts have begun to employ the techniques of atomic spectroscopy, such as flame- and graphite furnace atomic absorption spectroscopy (FAAS, Flame AA or FAA and GFAAS), inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma-mass spectrometry (ICP-MS), to meet their analytical needs. Newer techniques, such as laser-induced breakdown spectroscopy (LIBS) and Laser Ablation ICP-MS (LAICP-MS) are also beginning to see wider applications in the analysis of elements in the pharmaceutical industry.This article will provide a perspective regarding the various applications of atomic spectroscopy in the analysis of metals and metalloids in drug products, active pharmaceutical ingredients (API's), raw materials and intermediates. The application of atomic spectroscopy in the analysis of metals and metalloids in clinical samples, nutraceutical, metabolism and pharmacokinetic samples will not be addressed in this work. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Watching the Real-time Evolution of a Laser Modified Atom Using Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Shivaram, Niranjan; Timmers, Henry; Tong, Xiao-Min; Sandhu, Arvinder

    2011-10-01

    In the presence of even moderately strong laser fields, atomic states are heavily modified and develop rich structure. Such a laser dressed atom can be described using the Floquet theory in which the laser dressed states called Floquet states are composed of different Fourier components. In this work we use XUV attosecond pulses to excite a He atom from its ground state to near-infrared (NIR) laser dressed Floquet states, which are ionized by the dressing laser field. Quantum interferences between Fourier components of these Floquet states lead to oscillations in He ion yield as a function of time-delay between the XUV and NIR pulses. From the ion yield signal we measure the quantum phase difference between transition matrix elements to two different Fourier components as a function of both time-delay (instantaneous NIR intensity) and NIR pulse peak intensity. These measurements along with information from time-dependent Schrodinger equation simulations enable us to observe the real-time evolution of the laser modified atom as the dominant Floquet state mediating the ionization changes from the 5p Floquet state to the 2p Floquet state with increasing NIR intensity.

  19. Overview of the MISSE 7 Polymers and Zenith Polymers Experiments After 1.5 Years of Space Exposure

    NASA Technical Reports Server (NTRS)

    Yi, Grace T.; de Groh, Kim K.; Banks, Bruce A.; Haloua, Athena; Imka, Emily C.; Mitchell, Gianna G.

    2013-01-01

    As part of the Materials International Space Station Experiment 7 (MISSE 7), two experiments called the Polymers Experiment and the Zenith Polymers Experiment were flown on the exterior of the International Space Station (ISS) and exposed to the low Earth orbit (LEO) space environment for 1.5 years. The Polymers Experiment contained 47 samples, which were flown in a ram or wake flight orientation. The objectives of the Polymers Experiment were to determine the LEO atomic oxygen erosion yield (Ey, volume loss per incident oxygen atoms, given in cu cm/atom) of the polymers, and to determine if atomic oxygen erosion of high and low ash containing polymers is dependent on fluence. The Zenith Polymers Experiment was flown in a zenith flight orientation. The primary objective of the Zenith Polymers Experiment was to determine the effect of solar exposure on the erosion of fluoropolymers. Kapton H (DuPont, Wilmington, DE) was flown in each experiment for atomic oxygen fluence determination. This paper provides an introduction to both the MISSE 7 Polymers Experiment and the MISSE 7 Zenith Polymers Experiment, and provides initial erosion yield results.

  20. Nuclear shadows on silvered walls: Atomic Bomb Cinema, from 1935 to 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, J.F.

    1991-01-01

    The cinema and the atomic bomb are two of the most significant technological innovations of the past-century - their influence on culture has provoked tremendous political, academic, and popular debate. The point at which these two technologies intersect is what the author calls Atomic Bomb Cinema.' Since 1945 almost six hundred films with images of nuclear weapons have been released in the US, and they have been virtually ignored by everyone but the film going public. This study shows how Bomb films' use recurring themes and formal structures, and therefore must be treated as a coherent body of films; identifiesmore » historical, mythological, and contemporary motifs; and analyzes these films from two points of view: interdisciplinary (history, politics, economics, sociology, and aesthetics) and cross-cultural (American, Japanese, British, and Australian). The most important element of Atomic Bomb Cinema is the Apocalyptic Imagination; film makers use it to structure their narratives and explore a wide range of ideological issues. In contrast to commonly held beliefs, Atomic Bomb Cinema is undeniably part of a process that helps people to understand the threat of nuclear war. In this instance, the cinema is one cultural institution that contributes to a healthy society.« less

Top