Sample records for technique increased sensitivity

  1. Feasibility study for rocket ozone measurements in the 50 to 80 km region using a chemiluminescent technique

    NASA Technical Reports Server (NTRS)

    Goodman, P.

    1973-01-01

    A study has been conducted to determine the feasibility of increasing sensitivity for ozone detection. The detection technique employed is the chemiluminescent reaction of ozone with a rhodamine-B impregnated disk. Previously achieved sensitivities are required to be increased by a factor of about 20 to permit measurements at altitudes of 80 km. Sensitivity was increased by using a more sensitive photomultiplier tube, by increasing the gas velocity past the disk, by different disk preparation techniques, and by using reflective coatings in the disk chamber and on the uncoated side of the glass disk. Reflective coatings provided the largest sensitivity increase. The sum of all these changes was a sensitivity increased by an estimated factor of 70, more than sufficient to permit measurement of ambient ozone concentrations at altitudes of 80 km.

  2. Improvements to the YbF electron electric dipole moment experiment

    NASA Astrophysics Data System (ADS)

    Sauer, B. E.; Rabey, I. M.; Devlin, J. A.; Tarbutt, M. R.; Ho, C. J.; Hinds, E. A.

    2017-04-01

    The standard model of particle physics predicts that the permanent electric dipole moment (EDM) of the electron is very nearly zero. Many extensions to the standard model predict an electron EDM just below current experimental limits. We are currently working to improve the sensitivity of the Imperial College YbF experiment. We have implemented combined laser-radiofrequency pumping techniques which both increase the number of molecules which participate in the EDM experiment and also increase the probability of detection. Combined, these techniques give nearly two orders of magnitude increase in the experimental sensitivity. At this enhanced sensitivity magnetic effects which were negligible become important. We have developed a new way to construct the electrodes for electric field plates which minimizes the effect of magnetic Johnson noise. The new YbF experiment is expected to comparable in sensitivity to the most sensitive measurements of the electron EDM to date. We will also discuss laser cooling techniques which promise an even larger increase in sensitivity.

  3. Comparison of spatula and cytobrush cytological techniques in early detection of oral malignant and premalignant lesions: a prospective and blinded study.

    PubMed

    Nanayakkara, P G C L; Dissanayaka, W L; Nanayakkara, B G; Amaratunga, E A P D; Tilakaratne, W M

    2016-04-01

    The use of oral cytology to diagnose malignant and premalignant lesions at an early stage is considered crucial. The aim of this study was to evaluate the diagnoses of the spatula and the cytobrush techniques compared with the gold standard histopathological findings, analysed according to different diagnostic criteria. Cytological smears were obtained from 76 suspicious oral malignant lesions and 116 oral leukoplakia lesions using two techniques: cytobrush plus cell collector and metal spatula. Subsequently, a surgical biopsy was performed on each lesion to achieve a histopathological diagnosis. Evaluation was conducted with respect to three different diagnostic criteria. The sensitivity for diagnosing carcinoma in clinically malignant cases was 89.58% and 60.42% for cytobrush and spatula techniques, respectively. Inclusion of severe dysplastic cases for 'high-risk' lesions increased the sensitivity up to 96.36% and 78.18% for two techniques, respectively. In leukoplakia lesions, malignant and severely dysplastic cells were diagnosed at a sensitivity of 88.89% in the cytobrush and 55.56% in the spatula techniques. Extending the criteria by defining malignant or any dysplastic findings as positive, sensitivity was increased to 98.02% and 89.11% for the spatula and the cytobrush techniques, respectively. Specificity for both techniques increased to 100%. The difference between the diagnoses of histopathology and the spatula cytology was statistically significant (P < 0.01), while no such difference was found with the cytobrush technique (P > 0.1). The cytobrush, unlike the spatula, is a useful screening instrument for early diagnosis of suspicious oral lesions and could therefore contribute to improved oral cancer prognosis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Consistency in the Reporting of Sensitive Behaviors by Adolescent American Indian Women: A Comparison of Interviewing Methods

    ERIC Educational Resources Information Center

    Mullany, Britta; Barlow, Allison; Neault, Nicole; Billy, Trudy; Hastings, Ranelda; Coho-Mescal, Valerie; Lorenzo, Sherilyn; Walkup, John T.

    2013-01-01

    Computer-assisted interviewing techniques have increasingly been used in program and research settings to improve data collection quality and efficiency. Little is known, however, regarding the use of such techniques with American Indian (AI) adolescents in collecting sensitive information. This brief compares the consistency of AI adolescent…

  5. Remote photoacoustic detection of liquid contamination of a surface.

    PubMed

    Perrett, Brian; Harris, Michael; Pearson, Guy N; Willetts, David V; Pitter, Mark C

    2003-08-20

    A method for the remote detection and identification of liquid chemicals at ranges of tens of meters is presented. The technique uses pulsed indirect photoacoustic spectroscopy in the 10-microm wavelength region. Enhanced sensitivity is brought about by three main system developments: (1) increased laser-pulse energy (150 microJ/pulse), leading to increased strength of the generated photoacoustic signal; (2) increased microphone sensitivity and improved directionality by the use of a 60-cm-diameter parabolic dish; and (3) signal processing that allows improved discrimination of the signal from noise levels through prior knowledge of the pulse shape and pulse-repetition frequency. The practical aspects of applying the technique in a field environment are briefly examined, and possible applications of this technique are discussed.

  6. Unified Model Deformation and Flow Transition Measurements

    NASA Technical Reports Server (NTRS)

    Burner, Alpheus W.; Liu, Tianshu; Garg, Sanjay; Bell, James H.; Morgan, Daniel G.

    1999-01-01

    The number of optical techniques that may potentially be used during a given wind tunnel test is continually growing. These include parameter sensitive paints that are sensitive to temperature or pressure, several different types of off-body and on-body flow visualization techniques, optical angle-of-attack (AoA), optical measurement of model deformation, optical techniques for determining density or velocity, and spectroscopic techniques for determining various flow field parameters. Often in the past the various optical techniques were developed independently of each other, with little or no consideration for other techniques that might also be used during a given test. Recently two optical techniques have been increasingly requested for production measurements in NASA wind tunnels. These are the video photogrammetric (or videogrammetric) technique for measuring model deformation known as the video model deformation (VMD) technique, and the parameter sensitive paints for making global pressure and temperature measurements. Considerations for, and initial attempts at, simultaneous measurements with the pressure sensitive paint (PSP) and the videogrammetric techniques have been implemented. Temperature sensitive paint (TSP) has been found to be useful for boundary-layer transition detection since turbulent boundary layers convect heat at higher rates than laminar boundary layers of comparable thickness. Transition is marked by a characteristic surface temperature change wherever there is a difference between model and flow temperatures. Recently, additional capabilities have been implemented in the target-tracking videogrammetric measurement system. These capabilities have permitted practical simultaneous measurements using parameter sensitive paint and video model deformation measurements that led to the first successful unified test with TSP for transition detection in a large production wind tunnel.

  7. Novel techniques for optical sensor using single core multi-layer structures for electric field detection

    NASA Astrophysics Data System (ADS)

    Ali, Amir R.; Kamel, Mohamed A.

    2017-05-01

    This paper studies the effect of the electrostriction force on the single optical dielectric core coated with multi-layers based on whispering gallery mode (WGM). The sensing element is a dielectric core made of polymeric material coated with multi-layers having different dielectric and mechanical properties. The external electric field deforming the sensing element causing shifts in its WGM spectrum. The multi-layer structures will enhance the body and the pressure forces acting on the core of the sensing element. Due to the gradient on the dielectric permittivity; pressure forces at the interface between every two layers will be created. Also, the gradient on Young's modulus will affect the overall stiffness of the optical sensor. In turn the sensitivity of the optical sensor to the electric field will be increased when the materials of each layer selected properly. A mathematical model is used to test the effect for that multi-layer structures. Two layering techniques are considered to increase the sensor's sensitivity; (i) Pressure force enhancement technique; and (ii) Young's modulus reduction technique. In the first technique, Young's modulus is kept constant for all layers, while the dielectric permittivity is varying. In this technique the results will be affected by the value dielectric permittivity of the outer medium surrounding the cavity. If the medium's dielectric permittivity is greater than that of the cavity, then the ascending ordered layers of the cavity will yield the highest sensitivity (the core will have the smallest dielectric permittivity) to the applied electric field and vice versa. In the second technique, Young's modulus is varying along the layers, while the dielectric permittivity has a certain constant value per layer. On the other hand, the descending order will enhance the sensitivity in the second technique. Overall, results show the multi-layer cavity based on these techniques will enhance the sensitivity compared to the typical polymeric optical sensor.

  8. Assay of Radon and Radium in Water: Techniques Developed at SNO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farine, Jacques

    Water assay techniques developed for measuring 222Rn, 226Ra and 224Ra in the SNO detector are presented. Recent upgrades to improve the performance of the techniques and to increase the sensitivity to lower levels are discussed.

  9. Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers: A novel technique for ultratrace gas analysis and high-resolution spectroscopy.

    PubMed

    Hippler, Michael; Mohr, Christian; Keen, Katherine A; McNaghten, Edward D

    2010-07-28

    Cavity-enhanced resonant photoacoustic spectroscopy with optical feedback cw diode lasers (OF-CERPAS) is introduced as a novel technique for ultratrace gas analysis and high-resolution spectroscopy. In the scheme, a single-mode cw diode laser (3 mW, 635 nm) is coupled into a high-finesse linear cavity and stabilized to the cavity by optical feedback. Inside the cavity, a build-up of laser power to at least 2.5 W occurs. Absorbing gas phase species inside the cavity are detected with high sensitivity by the photoacoustic effect using a microphone embedded in the cavity. To increase sensitivity further, coupling into the cavity is modulated at a frequency corresponding to a longitudinal resonance of an organ pipe acoustic resonator (f=1.35 kHz and Q approximately 10). The technique has been characterized by measuring very weak water overtone transitions near 635 nm. Normalized noise-equivalent absorption coefficients are determined as alpha approximately 4.4x10(-9) cm(-1) s(1/2) (1 s integration time) and 2.6x10(-11) cm(-1) s(1/2) W (1 s integration time and 1 W laser power). These sensitivities compare favorably with existing state-of-the-art techniques. As an advantage, OF-CERPAS is a "zero-background" method which increases selectivity and sensitivity, and its sensitivity scales with laser power.

  10. Highly sensitive determination of iron (III) ion based on phenanthroline probe: Surface-enhanced Raman spectroscopy methods

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Ma, Ning; Park, Yeonju; Jin, Sila; Hwang, Hoon; Jiang, Dayu; Jung, Young Mee

    2018-05-01

    In this paper, we introduced Raman spectroscopy techniques that were based on the traditional Fe3 + determination method with phenanthroline as a probe. Interestingly, surface-enhanced Raman spectroscopy (SERS)-based approach exhibited excellent sensitivities to phenanthroline. Different detection mechanisms were observed for the RR and SERS techniques, in which the RR intensity increased with increasing Fe3 + concentration due to the observation of the RR effect of the phenanthroline-Fe2 + complex, whereas the SERS intensity increased with decreasing Fe3 + concentration due to the observation of the SERS effect of the uncomplexed phenanthroline. More importantly, the determination sensitivity was substantially improved in the presence of a SERS-active substrate, giving a detection limit as low as 0.001 μg/mL, which is 20 times lower than the limit of the UV-vis and RR methods. Furthermore, the proposed SERS method was free from other ions interference and can be used quality and sensitivity for the determination of the city tap water.

  11. Sensitivity, accuracy, and precision issues in opto-electronic holography based on fiber optics and high-spatial- and high-digitial-resolution cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Yokum, Jeffrey S.; Pryputniewicz, Ryszard J.

    2002-06-01

    Sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography based on fiber optics and high-spatial and high-digital resolution cameras, are discussed in this paper. It is shown that sensitivity, accuracy, and precision dependent on both, the effective determination of optical phase and the effective characterization of the illumination-observation conditions. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gages, demonstrating the applicability of quantitative optical metrology techniques to satisfy constantly increasing needs for the study and development of emerging technologies.

  12. Synthesis and characterization of Allium cepa L. as photosensitizer of dye-sensitized solar cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutikno, E-mail: smadnasri@yahoo.com; Afrian, Noverdi; Supriadi,

    The synthesis and characterization of Allium cepa L. used as natural pigment for natural dye sensitizer of solar cell has successfully done and anthocyanin is extracted. Anthocynin is color pigment of plant which has characteristic absorption spectrum of photon and excites electrons up to pigment molecules. As the anthocyanin absorbed light increases the excited electrons increase as well. The generated current also increases and it leads to the efficiency increase. The energy conversion efficiency of the cells sensitized with dye of Allium cepa L. was 3,045 x 10{sup −4}%. A simple technique was taken to fabricate dye sensitizer solar cellmore » is spincoating.« less

  13. Eigenvalue Contributon Estimator for Sensitivity Calculations with TSUNAMI-3D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rearden, Bradley T; Williams, Mark L

    2007-01-01

    Since the release of the Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) codes in SCALE [1], the use of sensitivity and uncertainty analysis techniques for criticality safety applications has greatly increased within the user community. In general, sensitivity and uncertainty analysis is transitioning from a technique used only by specialists to a practical tool in routine use. With the desire to use the tool more routinely comes the need to improve the solution methodology to reduce the input and computational burden on the user. This paper reviews the current solution methodology of the Monte Carlo eigenvalue sensitivity analysismore » sequence TSUNAMI-3D, describes an alternative approach, and presents results from both methodologies.« less

  14. Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification.

    PubMed

    Salazar-Serrano, L J; Barrera, D; Amaya, W; Sales, S; Pruneri, V; Capmany, J; Torres, J P

    2015-09-01

    We present a proof-of-concept experiment aimed at increasing the sensitivity of Fiber-Bragg-gratings temperature sensors by making use of a weak-value-amplification scheme. The technique requires only linear optics elements for its implementation and appears as a promising method for increasing the sensitivity than state-of the-art sensors can currently provide. The device implemented here is able to generate a shift of the centroid of the spectrum of a pulse of ∼0.035  nm/°C, a nearly fourfold increase in sensitivity over the same fiber-Bragg-grating system interrogated using standard methods.

  15. Single-tube analysis of DNA methylation with silica superparamagnetic beads.

    PubMed

    Bailey, Vasudev J; Zhang, Yi; Keeley, Brian P; Yin, Chao; Pelosky, Kristen L; Brock, Malcolm; Baylin, Stephen B; Herman, James G; Wang, Tza-Huei

    2010-06-01

    DNA promoter methylation is a signature for the silencing of tumor suppressor genes. Most widely used methods to detect DNA methylation involve 3 separate, independent processes: DNA extraction, bisulfite conversion, and methylation detection via a PCR method, such as methylation-specific PCR (MSP). This method includes many disconnected steps with associated losses of material, potentially reducing the analytical sensitivity required for analysis of challenging clinical samples. Methylation on beads (MOB) is a new technique that integrates DNA extraction, bisulfite conversion, and PCR in a single tube via the use of silica superparamagnetic beads (SSBs) as a common DNA carrier for facilitating cell debris removal and buffer exchange throughout the entire process. In addition, PCR buffer is used to directly elute bisulfite-treated DNA from SSBs for subsequent target amplifications. The diagnostic sensitivity of MOB was evaluated by methylation analysis of the CDKN2A [cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4); also known as p16(INK4a)] promoter in serum DNA of lung cancer patients and compared with that of conventional methods. Methylation analysis consisting of DNA extraction followed by bisulfite conversion and MSP was successfully carried out within 9 h in a single tube. The median pre-PCR DNA yield was 6.61-fold higher with the MOB technique than with conventional techniques. Furthermore, MOB increased the diagnostic sensitivity in our analysis of the CDKN2A promoter in patient serum by successfully detecting methylation in 74% of cancer patients, vs the 45% detection rate obtained with conventional techniques. The MOB technique successfully combined 3 processes into a single tube, thereby allowing ease in handling and an increased detection throughput. The increased pre-PCR yield in MOB allowed efficient, diagnostically sensitive methylation detection.

  16. Raman spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Raman spectroscopy has gained increased use and importance in recent years for accurate and precise detection of physical and chemical properties of food materials, due to the greater specificity and sensitivity of Raman techniques over other analytical techniques. This book chapter presents Raman s...

  17. Polymerase chain displacement reaction.

    PubMed

    Harris, Claire L; Sanchez-Vargas, Irma J; Olson, Ken E; Alphey, Luke; Fu, Guoliang

    2013-02-01

    Quantitative PCR assays are now the standard method for viral diagnostics. These assays must be specific, as well as sensitive, to detect the potentially low starting copy number of viral genomic material. We describe a new technique, polymerase chain displacement reaction (PCDR), which uses multiple nested primers in a rapid, capped, one-tube reaction that increases the sensitivity of normal quantitative PCR (qPCR) assays. Sensitivity was increased by approximately 10-fold in a proof-of-principle test on dengue virus sequence. In PCDR, when extension occurs from the outer primer, it displaces the extension strand produced from the inner primer by utilizing a polymerase that has strand displacement activity. This allows a greater than 2-fold increase of amplification product for each amplification cycle and therefore increased sensitivity and speed over conventional PCR. Increased sensitivity in PCDR would be useful in nucleic acid detection for viral diagnostics.

  18. Evaluation of velocity-sensitized and acceleration-sensitized NCE-MRA for below-knee peripheral arterial disease.

    PubMed

    Shaida, Nadeem; Priest, Andrew N; See, T C; Winterbottom, Andrew P; Graves, Martin J; Lomas, David J

    2017-06-01

    To evaluate the diagnostic performance of velocity- and acceleration-sensitized noncontrast-enhanced magnetic resonance angiography (NCE-MRA) of the infrageniculate arteries using contrast-enhanced MRA (CE-MRA) as a reference standard. Twenty-four patients with symptoms of peripheral arterial disease were recruited. Each patient's infrageniculate arterial tree was examined using a velocity-dependent flow-sensitized dephasing (VEL-FSD) technique, an acceleration-dependent (ACC-FSD) technique, and our conventional CE-MRA technique performed at 1.5T. The images were independently reviewed by two experienced vascular radiologists, who evaluated each vessel segment to assess visibility, diagnostic confidence, venous contamination, and detection of pathology. In all, 432 segments were evaluated by each of the three techniques by each reader in total. Overall diagnostic confidence was rated as moderate or high in 98.5% of segments with CE-MRA, 92.1% with VEL-FSD, and 79.9% with ACC-FSD. No venous contamination was seen in 96% of segments with CE-MRA, 72.2% with VEL-FSD, and 85.8% with ACC-FSD. Per-segment, per-limb, and per-patient sensitivities for detecting significant stenotic disease were 63.4%, 73%, and 92%, respectively, for ACC-FSD, and 65.3%, 87.2%, and 96% for VEL-FSD, and as such no significant statistical change was detected using McNemar's chi-squared test with P-values of 1.00, 0.13, and 0.77 obtained, respectively. Flow-dependent NCE-MRA techniques may have a role to play in evaluation of patients with peripheral vascular disease. Increased sensitivity of a velocity-based technique compared to an acceleration-based technique comes at the expense of greater venous contamination. 2J. Technical Efficacy: Stage 2 J. MAGN. RESON. IMAGING 2017;45:1846-1853. © 2016 International Society for Magnetic Resonance in Medicine.

  19. Collection of ions

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan; Koster, James E.

    2001-01-01

    The apparatus and method provide an improved technique for detecting ions as the area from which ions are attracted to a detector is increased, consequently increasing the number of ions detected. This is achieved by providing the outer electrodes of the detector connected to the electrical potential, together with alternate intermediate electrodes. The other intermediate electrodes and preferably the housing are grounded. The technique renders such detection techniques more sensitive and gives them a lower threshold at which they can function.

  20. Protein purification and analysis: next generation Western blotting techniques.

    PubMed

    Mishra, Manish; Tiwari, Shuchita; Gomes, Aldrin V

    2017-11-01

    Western blotting is one of the most commonly used techniques in molecular biology and proteomics. Since western blotting is a multistep protocol, variations and errors can occur at any step reducing the reliability and reproducibility of this technique. Recent reports suggest that a few key steps, such as the sample preparation method, the amount and source of primary antibody used, as well as the normalization method utilized, are critical for reproducible western blot results. Areas covered: In this review, improvements in different areas of western blotting, including protein transfer and antibody validation, are summarized. The review discusses the most advanced western blotting techniques available and highlights the relationship between next generation western blotting techniques and its clinical relevance. Expert commentary: Over the last decade significant improvements have been made in creating more sensitive, automated, and advanced techniques by optimizing various aspects of the western blot protocol. New methods such as single cell-resolution western blot, capillary electrophoresis, DigiWest, automated microfluid western blotting and microchip electrophoresis have all been developed to reduce potential problems associated with the western blotting technique. Innovative developments in instrumentation and increased sensitivity for western blots offer novel possibilities for increasing the clinical implications of western blot.

  1. Cultural sensitivity and supportive expressive psychotherapy: an integrative approach to treatment.

    PubMed

    White, Tracela M; Gibbons, Mary Beth Connolly; Schamberger, Megan

    2006-01-01

    Cultural sensitivity is a concept that has become increasingly important in psychotherapy research and practice. In response to the growing ethnic minority population and the increased demand for psychological services among minority clients, many therapists and researchers have attempted to identify competencies and guidelines for providing culturally sensitive approaches to treatment. However, many cultural sensitivity concepts are theoretical and have rarely been integrated into an established psychotherapeutic framework. The purpose of this manuscript is to operationalize the concepts of cultural sensitivity into specific therapeutic techniques using a manual-guided Supportive Expressive Psychotherapy approach. Developing these strategies may serve to further assist therapists with the delivery of mental health services to ethnic minority clients.

  2. Anomaly metrics to differentiate threat sources from benign sources in primary vehicle screening.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Israel Dov; Mengesha, Wondwosen

    2011-09-01

    Discrimination of benign sources from threat sources at Port of Entries (POE) is of a great importance in efficient screening of cargo and vehicles using Radiation Portal Monitors (RPM). Currently RPM's ability to distinguish these radiological sources is seriously hampered by the energy resolution of the deployed RPMs. As naturally occurring radioactive materials (NORM) are ubiquitous in commerce, false alarms are problematic as they require additional resources in secondary inspection in addition to impacts on commerce. To increase the sensitivity of such detection systems without increasing false alarm rates, alarm metrics need to incorporate the ability to distinguish benign andmore » threat sources. Principal component analysis (PCA) and clustering technique were implemented in the present study. Such techniques were investigated for their potential to lower false alarm rates and/or increase sensitivity to weaker threat sources without loss of specificity. Results of the investigation demonstrated improved sensitivity and specificity in discriminating benign sources from threat sources.« less

  3. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    NASA Astrophysics Data System (ADS)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in the glucose clamping experiments (characterized by slow, controlled increase of the blood glucose concentration); and (4) the accuracy of glucose concentration monitoring may substantially be improved if optimal dimensions of the probed skin area are used. The results suggest that high-resolution OCT technique has a potential for noninvasive, accurate, and continuous glucose monitoring with high sensitivity.

  4. Studies of MRI relaxivities of gadolinium-labeled dendrons

    NASA Astrophysics Data System (ADS)

    Pan, Hongmu; Daniel, Marie-Christine

    2011-05-01

    In cancer detection, imaging techniques have a great importance in early diagnosis. The more sensitive the imaging technique and the earlier the tumor can be detected. Contrast agents have the capability to increase the sensitivity in imaging techniques such as magnetic resonance imaging (MRI). Until now, gadolinium-based contrast agents are mainly used for MRI, and show good enhancement. But improvement is needed for detection of smaller tumors at the earliest stage possible. The dendrons complexed with Gd(DOTA) were synthesized and evaluated as a new MRI contrast agent. The longitudinal and transverse relaxation effects were tested and compared with commercial drug Magnevist, Gd(DTPA).

  5. Comparative effectiveness of light-microscopic techniques and PCR in detecting Thelohania solenopsae (Microsporidia) infections in red imported fire ants (Solenopsis invicta).

    PubMed

    Milks, Maynard L; Sokolova, Yuliya Y; Isakova, Irina A; Fuxa, James R; Mitchell, Forrest; Snowden, Karen F; Vinson, S Bradleigh

    2004-01-01

    The main goal of this study was to compare the effectiveness of three staining techniques (calcofluor white M2R, Giemsa and modified trichrome), and the polymerase chain reaction (PCR) in detecting the microsporidium Thelohania solenopsae in red imported fire ants (Solenopsis invicta). The effect of the number of ants in a sample on the sensitivity of the staining techniques and the PCR, and the effect of three DNA extraction protocols on the sensitivity of PCR were also examined. In the first protocol, the ants were macerated and the crude homogenate was used immediately in the PCR. In the second protocol, the homogenate was placed on a special membrane (FTA card) that traps DNA, which is subsequently used in the PCR. In the third protocol, the DNA was purified from the homogenate by traditional phenol-chloroform extraction. Except for PCR using FTA cards, the sensitivity (number of samples positive for T. solenopsae) of all detection techniques increased with the number of ants in the sample. Overall, Giemsa was the least sensitive of all detection techniques. Calcofluor was more sensitive than modified trichrome with ants from one site and was equally as sensitive as PCR with crude DNA or a FTA card with ants from both sites. Trichrome staining was equally as sensitive as PCR with a FTA card at both sites, but it was less sensitive than PCR with crude DNA at one site. PCR on FTA cards was less sensitive than PCR with crude DNA for ants from one site but not the other. There was no difference whether crude or phenol-chloroform purified DNA was used as template. In summary, the results of this study show that PCR based on a crude DNA solution is equal to or more sensitive in detecting T. solenopsae than the other detection techniques investigated, and that it can be used as a reliable diagnostic tool for screening field samples of S. invicta for T. solenopsae. Nevertheless, ant smear stained with calcofluor or modified trichrome should be used to buttress findings from PCR.

  6. Fourier transform ion cyclotron resonance mass spectrometry

    NASA Astrophysics Data System (ADS)

    Marshall, Alan G.

    1998-06-01

    As for Fourier transform infrared (FT-IR) interferometry and nuclear magnetic resonance (NMR) spectroscopy, the introduction of pulsed Fourier transform techniques revolutionized ion cyclotron resonance mass spectrometry: increased speed (factor of 10,000), increased sensitivity (factor of 100), increased mass resolution (factor of 10,000-an improvement not shared by the introduction of FT techniques to IR or NMR spectroscopy), increased mass range (factor of 500), and automated operation. FT-ICR mass spectrometry is the most versatile technique for unscrambling and quantifying ion-molecule reaction kinetics and equilibria in the absence of solvent (i.e., the gas phase). In addition, FT-ICR MS has the following analytically important features: speed (~1 second per spectrum); ultrahigh mass resolution and ultrahigh mass accuracy for analysis of mixtures and polymers; attomole sensitivity; MSn with one spectrometer, including two-dimensional FT/FT-ICR/MS; positive and/or negative ions; multiple ion sources (especially MALDI and electrospray); biomolecular molecular weight and sequencing; LC/MS; and single-molecule detection up to 108 Dalton. Here, some basic features and recent developments of FT-ICR mass spectrometry are reviewed, with applications ranging from crude oil to molecular biology.

  7. Online immunoaffinity LC/MS/MS. A general method to increase sensitivity and specificity: How do you do it and what do you need?

    PubMed

    Dufield, Dawn R; Radabaugh, Melissa R

    2012-02-01

    There is an increased emphasis on hyphenated techniques such as immunoaffinity LC/MS/MS (IA-LC/MS/MS) or IA-LC/MRM. These techniques offer competitive advantages with respect to sensitivity and selectivity over traditional LC/MS and are complementary to ligand binding assays (LBA) or ELISA's. However, these techniques are not entirely straightforward and there are several tips and tricks to routine sample analysis. We describe here our methods and procedures for how to perform online IA-LC/MS/MS including a detailed protocol for the preparation of antibody (Ab) enrichment columns. We have included sample trapping and Ab methods. Furthermore, we highlight tips, tricks, minimal and optimal approaches. This technology has been shown to be viable for several applications, species and fluids from small molecules to proteins and biomarkers to PK assays. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Enhanced sensitivity for optical loss measurement in planar thin-films (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yuan, Hua-Kang

    2016-09-01

    An organic-inorganic hybrid material benefits from processing advantages of organics and high refractive indices of inorganics. We focus on a titanium oxide hydrate system combined with common bulk polymers. In particular, we target thin-film structures of a few microns in thickness. Traditional Beer-Lambert approaches for measuring optical losses can only provide an upper limit estimate. This sensitivity is highly limited when considering the low-losses required for mid-range optical applications, on the order of 0.1 cm-1. For intensity based measurements, improving the sensitivity requires an increase in the optical path length. Instead, a new sensitive technique suitable for simple planar thin films is required. A number of systems were modelled to measure optical losses in films of 1 micron thick. The presented techniques utilise evanescent waves and total internal reflection to increase optical path length through the material. It was found that a new way of using prism coupling provides the greatest improvement in sensitivity. In keeping the requirements on the material simple, this method for measuring loss is well suited to any future developments of new materials in thin-film structures.

  9. A comparative study on preprocessing techniques in diabetic retinopathy retinal images: illumination correction and contrast enhancement.

    PubMed

    Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza

    2015-01-01

    To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation.

  10. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis.

    PubMed

    Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas

    2014-03-01

    GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster-Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty-sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights.

  11. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis☆

    PubMed Central

    Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas

    2014-01-01

    GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster–Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty–sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights. PMID:25843987

  12. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis

    NASA Astrophysics Data System (ADS)

    Feizizadeh, Bakhtiar; Jankowski, Piotr; Blaschke, Thomas

    2014-03-01

    GIS multicriteria decision analysis (MCDA) techniques are increasingly used in landslide susceptibility mapping for the prediction of future hazards, land use planning, as well as for hazard preparedness. However, the uncertainties associated with MCDA techniques are inevitable and model outcomes are open to multiple types of uncertainty. In this paper, we present a systematic approach to uncertainty and sensitivity analysis. We access the uncertainty of landslide susceptibility maps produced with GIS-MCDA techniques. A new spatially-explicit approach and Dempster-Shafer Theory (DST) are employed to assess the uncertainties associated with two MCDA techniques, namely Analytical Hierarchical Process (AHP) and Ordered Weighted Averaging (OWA) implemented in GIS. The methodology is composed of three different phases. First, weights are computed to express the relative importance of factors (criteria) for landslide susceptibility. Next, the uncertainty and sensitivity of landslide susceptibility is analyzed as a function of weights using Monte Carlo Simulation and Global Sensitivity Analysis. Finally, the results are validated using a landslide inventory database and by applying DST. The comparisons of the obtained landslide susceptibility maps of both MCDA techniques with known landslides show that the AHP outperforms OWA. However, the OWA-generated landslide susceptibility map shows lower uncertainty than the AHP-generated map. The results demonstrate that further improvement in the accuracy of GIS-based MCDA can be achieved by employing an integrated uncertainty-sensitivity analysis approach, in which the uncertainty of landslide susceptibility model is decomposed and attributed to model's criteria weights.

  13. Evaluation of mobile digital light-emitting diode fluorescence microscopy in Hanoi, Viet Nam.

    PubMed

    Chaisson, L H; Reber, C; Phan, H; Switz, N; Nilsson, L M; Myers, F; Nhung, N V; Luu, L; Pham, T; Vu, C; Nguyen, H; Nguyen, A; Dinh, T; Nahid, P; Fletcher, D A; Cattamanchi, A

    2015-09-01

    Hanoi Lung Hospital, Hanoi, Viet Nam. To compare the accuracy of CellScopeTB, a manually operated mobile digital fluorescence microscope, with conventional microscopy techniques. Patients referred for sputum smear microscopy to the Hanoi Lung Hospital from May to September 2013 were included. Ziehl-Neelsen (ZN) smear microscopy, conventional light-emitting diode (LED) fluorescence microscopy (FM), CellScopeTB-based LED FM and Xpert(®) MTB/RIF were performed on sputum samples. The sensitivity and specificity of microscopy techniques were determined in reference to Xpert results, and differences were compared using McNemar's paired test of proportions. Of 326 patients enrolled, 93 (28.5%) were Xpert-positive for TB. The sensitivity of ZN microscopy, conventional LED FM, and CellScopeTB-based LED FM was respectively 37.6% (95%CI 27.8-48.3), 41.9% (95%CI 31.8-52.6), and 35.5% (95%CI 25.8-46.1). The sensitivity of CellScopeTB was similar to that of conventional LED FM (difference -6.5%, 95%CI -18.2 to 5.3, P = 0.33) and ZN microscopy (difference -2.2%, 95%CI -9.2 to 4.9, P = 0.73). The specificity was >99% for all three techniques. CellScopeTB performed similarly to conventional microscopy techniques in the hands of experienced TB microscopists. However, the sensitivity of all sputum microscopy techniques was low. Options enabled by digital microscopy, such as automated imaging with real-time computerized analysis, should be explored to increase sensitivity.

  14. Influence of annealing time on pH sensitivity of ZnO sensing membrane for EGFET sensor

    NASA Astrophysics Data System (ADS)

    Zulkefle, M. A.; Rahman, R. A.; Yusoff, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-05-01

    Solid-state materials have becomes essential in recent technological advancements. This study also utilized solid-state material but in form of thin films to sense hydrogen ions in solutions. Fabrication of ZnO thin film was done using sol-gel spin coating technique. In an attempt to increase the pH sensitivity of the produced film, prolonging of annealing time was done. It was found that the increase in annealing time from 15 minutes to 30 minutes had managed to improve the sensitivity by 4.35%. The optimum pH sensitivity and linearity obtained in this study is 50.40 mV/pH and 0.9911 respectively.

  15. Higher-eigenmode piezoresponse force microscopy: a path towards increased sensitivity and the elimination of electrostatic artifacts

    NASA Astrophysics Data System (ADS)

    MacDonald, Gordon A.; DelRio, Frank W.; Killgore, Jason P.

    2018-03-01

    Piezoresponse force microscopy (PFM) and related bias-induced strain sensing atomic force microscopy techniques provide unique characterization of material-functionality at the nanoscale. However, these techniques are prone to unwanted artifact signals that influence the vibration amplitude of the detecting cantilever. Here, we show that higher-order contact resonance eigenmodes can be readily excited in PFM. The benefits of using the higher-order eigenmodes include absolute sensitivity enhancement, electrostatic artifact reduction, and lateral versus normal strain decoupling. This approach can significantly increase the proportion of total signal arising from desired strain (as opposed to non-strain artifacts) in measurements with cantilevers exhibiting typical, few N m‑1 spring constants to cantilevers up to 1000× softer than typically used.

  16. Researching Sensitive Issues: A Critical Appraisal of "Draw-and-Write" as a Data Collection Technique in Eliciting Children's Perceptions

    ERIC Educational Resources Information Center

    Sewell, Keira

    2011-01-01

    The draw-and-write technique for collecting data relating to both adult and children's perceptions of their world is receiving increasing attention as one which has status within the field of visual methods. This paper appraises the draw-and-write method and reflects on the methodological lessons learned by using the technique in two studies…

  17. Development of a HIV-1 Virus Detection System Based on Nanotechnology.

    PubMed

    Lee, Jin-Ho; Oh, Byung-Keun; Choi, Jeong-Woo

    2015-04-27

    Development of a sensitive and selective detection system for pathogenic viral agents is essential for medical healthcare from diagnostics to therapeutics. However, conventional detection systems are time consuming, resource-intensive and tedious to perform. Hence, the demand for sensitive and selective detection system for virus are highly increasing. To attain this aim, different aspects and techniques have been applied to develop virus sensor with improved sensitivity and selectivity. Here, among those aspects and techniques, this article reviews HIV virus particle detection systems incorporated with nanotechnology to enhance the sensitivity. This review mainly focused on four different detection system including vertically configured electrical detection based on scanning tunneling microscopy (STM), electrochemical detection based on direct electron transfer in virus, optical detection system based on localized surface plasmon resonance (LSPR) and surface enhanced Raman spectroscopy (SERS) using plasmonic nanoparticle.

  18. Thermoluminescence and optically stimulated luminescence disadvantages of α-Al2O3:C crystal grown by the temperature gradient technique

    NASA Astrophysics Data System (ADS)

    Yang, Xin-Bo; Xu, Jun; Li, Hong-Jun; Bi, Qun-Yu; Cheng, Yan; Su, Liang-Bi; Tang, Qiang

    2010-04-01

    Recently, α-Al2O3:C crystal with highly sensitive thermoluminescence (TL) and optically stimulated luminescence (OSL) has been successfully grown by the temperature gradient technique. This paper investigates the heating rate dependence of TL sensitivity, light-induced fading of TL signals and thermal stability of OSL of α-Al2O3:C crystals. As the heating rate increases, the integral TL response decreases and the dosimetric glow peak shifts to higher temperatures in α-Al2O3:C crystals. Light-induced fading of TL increases with the irradiation dose, and TL response decreases as the exposure time increases, especially in the first 15 minutes. With the increasing intensity of the exposure light, the TL fading of α-Al2O3:C crystal increases sharply. The OSL response of as-grown α-Al2O3:C crystal is quite stable below 373 K and decreases sharply for higher temperatures.

  19. Real-time polarization-sensitive optical coherence tomography data processing with parallel computing

    PubMed Central

    Liu, Gangjun; Zhang, Jun; Yu, Lingfeng; Xie, Tuqiang; Chen, Zhongping

    2010-01-01

    With the increase of the A-line speed of optical coherence tomography (OCT) systems, real-time processing of acquired data has become a bottleneck. The shared-memory parallel computing technique is used to process OCT data in real time. The real-time processing power of a quad-core personal computer (PC) is analyzed. It is shown that the quad-core PC could provide real-time OCT data processing ability of more than 80K A-lines per second. A real-time, fiber-based, swept source polarization-sensitive OCT system with 20K A-line speed is demonstrated with this technique. The real-time 2D and 3D polarization-sensitive imaging of chicken muscle and pig tendon is also demonstrated. PMID:19904337

  20. Using Simulations To Understand Older Adults with Sensory Impairment.

    ERIC Educational Resources Information Center

    Clubok, Miriam

    2000-01-01

    Summarizes two popular models for increasing sensitivity to sensory impairment in the elderly and details a third model used in training human service students and practitioners. Ideas and techniques presented work toward understanding the impact of sensory impairment on the daily life of older adults and to identify coping techniques to improve…

  1. IMRT QA: Selecting gamma criteria based on error detection sensitivity.

    PubMed

    Steers, Jennifer M; Fraass, Benedick A

    2016-04-01

    The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique, and software utilized in a specific clinic. A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose threshold was consistent across all studied combinations of %Diff/DTA. Criteria such as 2%/3 mm and 3%/2 mm with a 50% threshold at 90% pixels passing are shown to be more appropriately sensitive without being overly strict. However, a broadening of the penumbra by as much as 5 mm in the beam configuration was difficult to detect with commonly used criteria, as well as with the previously mentioned criteria utilizing a threshold of 50%. We have introduced the error curve method, an analysis technique which allows the quantitative determination of gamma criteria sensitivity to induced errors. The application of the error curve method using DMLC IMRT plans measured on the ArcCHECK® device demonstrated that large errors can potentially be missed in IMRT QA with commonly used gamma criteria (e.g., 3%/3 mm, threshold = 10%, 90% pixels passing). Additionally, increasing the dose threshold value can offer dramatic increases in error sensitivity. This approach may allow the selection of more meaningful gamma criteria for IMRT QA and is straightforward to apply to other combinations of devices and treatment techniques.

  2. Sensitivity analysis of hydrodynamic stability operators

    NASA Technical Reports Server (NTRS)

    Schmid, Peter J.; Henningson, Dan S.; Khorrami, Mehdi R.; Malik, Mujeeb R.

    1992-01-01

    The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical matrix perturbation techniques as well as the concept of epsilon-pseudoeigenvalues are applied to show that parts of the spectrum are highly sensitive to small perturbations. Applications are drawn from incompressible plane Couette, trailing line vortex flow and compressible Blasius boundary layer flow. Parametric studies indicate a monotonically increasing effect of the Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the non-normality of the operators and their discrete matrix analogs and may be associated with large transient growth of the corresponding initial value problem.

  3. A Comparative Study on Preprocessing Techniques in Diabetic Retinopathy Retinal Images: Illumination Correction and Contrast Enhancement

    PubMed Central

    Rasta, Seyed Hossein; Partovi, Mahsa Eisazadeh; Seyedarabi, Hadi; Javadzadeh, Alireza

    2015-01-01

    To investigate the effect of preprocessing techniques including contrast enhancement and illumination correction on retinal image quality, a comparative study was carried out. We studied and implemented a few illumination correction and contrast enhancement techniques on color retinal images to find out the best technique for optimum image enhancement. To compare and choose the best illumination correction technique we analyzed the corrected red and green components of color retinal images statistically and visually. The two contrast enhancement techniques were analyzed using a vessel segmentation algorithm by calculating the sensitivity and specificity. The statistical evaluation of the illumination correction techniques were carried out by calculating the coefficients of variation. The dividing method using the median filter to estimate background illumination showed the lowest Coefficients of variations in the red component. The quotient and homomorphic filtering methods after the dividing method presented good results based on their low Coefficients of variations. The contrast limited adaptive histogram equalization increased the sensitivity of the vessel segmentation algorithm up to 5% in the same amount of accuracy. The contrast limited adaptive histogram equalization technique has a higher sensitivity than the polynomial transformation operator as a contrast enhancement technique for vessel segmentation. Three techniques including the dividing method using the median filter to estimate background, quotient based and homomorphic filtering were found as the effective illumination correction techniques based on a statistical evaluation. Applying the local contrast enhancement technique, such as CLAHE, for fundus images presented good potentials in enhancing the vasculature segmentation. PMID:25709940

  4. Pharmaceutical Concern and Prioritization Framework for Aquatic Life Effects

    EPA Science Inventory

    Human pharmaceuticals and veterinary drugs are being developed and used at an increasing rate world-wide. This, and increasingly sensitive analytical techniques, have lead to recurrent detection of pharmaceuticals as environmental pollutants. The goal of the present work was to d...

  5. Holograms for laser diode: Single mode optical fiber coupling

    NASA Technical Reports Server (NTRS)

    Fuhr, P. L.

    1982-01-01

    The low coupling efficiency of semiconductor laser emissions into a single mode optical fibers place a severe restriction on their use. Associated with these conventional optical coupling techniques are stringent alignment sensitivities. Using holographic elements, the coupling efficiency may be increased and the alignment sensitivity greatly reduced. Both conventional and computer methods used in the generation of the holographic couplers are described and diagrammed. The reconstruction geometries used are shown to be somewhat restrictive but substantially less rigid than their conventional optical counterparts. Single and double hologram techniques are examined concerning their respective ease of fabrication and relative merits.

  6. Recent approaches in sensitive enantioseparations by CE.

    PubMed

    Sánchez-Hernández, Laura; Castro-Puyana, María; Marina, María Luisa; Crego, Antonio L

    2012-01-01

    The latest strategies and instrumental improvements for enhancing the detection sensitivity in chiral analysis by CE are reviewed in this work. Following the previous reviews by García-Ruiz et al. (Electrophoresis 2006, 27, 195-212) and Sánchez-Hernández et al. (Electrophoresis 2008, 29, 237-251; Electrophoresis 2010, 31, 28-43), this review includes those papers that were published during the period from June 2009 to May 2011. These works describe the use of offline and online sample treatment techniques, online sample preconcentration techniques based on electrophoretic principles, and alternative detection systems to UV-Vis to increase the detection sensitivity. The application of the above-mentioned strategies, either alone or combined, to improve the sensitivity in the enantiomeric analysis of a broad range of samples, such as pharmaceutical, biological, food and environmental samples, enables to decrease the limits of detection up to 10⁻¹² M. The use of microchips to achieve sensitive chiral separations is also discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. New frontiers in science and technology: nuclear techniques in nutrition123

    PubMed Central

    Davidsson, Lena; Tanumihardjo, Sherry

    2011-01-01

    The use of nuclear techniques in nutrition adds value by the increased specificity and sensitivity of measures compared with conventional techniques in a wide range of applications. This article provides a brief overview of well-established stable-isotope techniques to evaluate micronutrient bioavailability and assess human-milk intake in breastfed infants to monitor the transfer of micronutrients from the mother to the infant. Recent developments are highlighted in the use of nuclear techniques to evaluate biological interactions between food, nutrition, and health to move the agenda forward. PMID:21653797

  8. Microbioassay of Antimicrobial Agents

    PubMed Central

    Simon, Harold J.; Yin, E. Jong

    1970-01-01

    A previously described agar-diffusion technique for microbioassay of antimicrobial agents has been modified to increase sensitivity of the technique and to extend the range of antimicrobial agents to which it is applicable. This microtechnique requires only 0.02 ml of an unknown test sample for assay, and is capable of measuring minute concentrations of antibiotics in buffer, serum, and urine. In some cases, up to a 20-fold increase in sensitivity is gained relative to other published standardized methods and the error of this method is less than ±5%. Buffer standard curves have been established for this technique, concurrently with serum standard curves, yielding information on antimicrobial serum-binding and demonstrating linearity of the data points compared to the estimated regression line for the microconcentration ranges covered by this technique. This microassay technique is particularly well suited for pediatric research and for other investigations where sample volumes are small and quantitative accuracy is desired. Dilution of clinical samples to attain concentrations falling with the range of this assay makes the technique readily adaptable and suitable for general clinical pharmacological studies. The microassay technique has been standardized in buffer solutions and in normal human serum pools for the following antimicrobials: ampicillin, methicillin, penicillin G, oxacillin, cloxacillin, dicloxacillin, cephaloglycin, cephalexin, cephaloridine, cephalothin, erythromycin, rifamycin amino methyl piperazine, kanamycin, neomycin, streptomycin, colistin, polymyxin B, doxycycline, minocycline, oxytetracycline, tetracycline, and chloramphenicol. PMID:4986725

  9. Topics in Chemical Instrumentation.

    ERIC Educational Resources Information Center

    Settle, Frank A. Jr., Ed.

    1989-01-01

    Using Fourier transformation methods in nuclear resonance has made possible increased sensitivity in chemical analysis. This article describes data acquisition, data processing, and the frequency spectrum as they relate to this technique. (CW)

  10. Application of differential pulse voltammetry to determine the efficiency of stripping tocopherols from commercial fish oil

    USDA-ARS?s Scientific Manuscript database

    There has been an increase in the use of electrochemical methods for monitoring antioxidant levels in a variety of disciplines due to the sensitivity, low detection limits, ease of use, low cost and rapid analysis time offered by these techniques. One technique that has received specific attention i...

  11. An ultrasonic technique for predicting tensile strength of southern pine lumber

    Treesearch

    D. Rajeshwar; D.A. Bender; D.E. Bray; K.A. McDonald

    1997-01-01

    The goal of this research was to develop nondestructive evaluation (NDE) technology to enhance mechanical stress rating of lumber. An ultrasonic NDE technique was developed that is sensitive to grain angle and edge knots in lumber - two primary determinants of lumber strength. The presence of edge knots increased the acoustic wave travel time and selectively...

  12. On the cross-sensitivity between water vapor mixing ratio and stable isotope measurements of in-situ analyzers

    NASA Astrophysics Data System (ADS)

    Parkes, Stephen; Wang, Lixin; McCabe, Matthew

    2015-04-01

    In recent years there has been an increasing amount of water vapor stable isotope data collected using in-situ instrumentation. A number of papers have characterized the performance of these in-situ analyzers and suggested methods for calibrating raw measurements. The cross-sensitivity of the isotopic measurements on the mixing ratio has been shown to be a major uncertainty and a variety of techniques have been suggested to characterize this inaccuracy. However, most of these are based on relating isotopic ratios to water vapor mixing ratios from in-situ analyzers when the mixing ratio is varied and the isotopic composition kept constant. An additional correction for the span of the isotopic ratio scale is then applied by measuring different isotopic standards. Here we argue that the water vapor cross-sensitivity arises from different instrument responses (span and offset) of the parent H2O isotope and the heavier isotopes, rather than spectral overlap that could cause a true variation in the isotopic ratio with mixing ratio. This is especially relevant for commercial laser optical instruments where absorption lines are well resolved. Thus, the cross-sensitivity determined using more conventional techniques is dependent on the isotopic ratio of the standard used for the characterization, although errors are expected to be small. Consequently, the cross-sensitivity should be determined by characterizing the span and zero offset of each isotope mixing ratio. In fact, this technique makes the span correction for the isotopic ratio redundant. In this work we model the impact of changes in the span and offset of the heavy and light isotopes and illustrate the impact on the cross-sensitivity of the isotopic ratios on water vapor. This clearly shows the importance of determining the zero offset for the two isotopes. The cross-sensitivity of the isotopic ratios on water vapor is then characterized by determining the instrument response for the individual isotopes for a number of different in-situ analyzers that employ different optical methods. We compare this simplified calibration technique to more conventional characterization of both the cross-sensitivity determined in isotopic ratio space and the isotopic ratio span. Utilizing this simplified calibration approach with improved software control can lead to a significant reduction in time spent calibrating in-situ instrumentation or enable an increase in calibration frequency as required to minimize measurement uncertainty.

  13. The Role of 3 Tesla MRA in the Detection of Intracranial Aneurysms

    PubMed Central

    Kapsalaki, Eftychia Z.; Rountas, Christos D.; Fountas, Kostas N.

    2012-01-01

    Intracranial aneurysms constitute a common pathological entity, affecting approximately 1–8% of the general population. Their early detection is essential for their prompt treatment. Digital subtraction angiography is considered the imaging method of choice. However, other noninvasive methodologies such as CTA and MRA have been employed in the investigation of patients with suspected aneurysms. MRA is a noninvasive angiographic modality requiring no radiation exposure. However, its sensitivity and diagnostic accuracy were initially inadequate. Several MRA techniques have been developed for overcoming all these drawbacks and for improving its sensitivity. 3D TOF MRA and contrast-enhanced MRA are the most commonly employed techniques. The introduction of 3 T magnetic field further increased MRA's sensitivity, allowing detection of aneurysms smaller than 3 mm. The development of newer MRA techniques may provide valuable information regarding the flow characteristics of an aneurysm. Meticulous knowledge of MRA's limitations and pitfalls is of paramount importance for avoiding any erroneous interpretation of its findings. PMID:22292121

  14. Surface Modification Enhanced Reflection Intensity of Quartz Crystal Microbalance Sensors upon Molecular Adsorption.

    PubMed

    Kojima, Taisuke

    2018-01-01

    Molecular adsorption on a sensing surface involves molecule-substrate and molecule-molecule interactions. Combining optical systems and a quartz crystal microbalance (QCM) on the same sensing surface allows the quantification of such interactions and reveals the physicochemical properties of the adsorbed molecules. However, low sensitivity of the current reflection-based techniques compared to the QCM technique hinders the quantitative analysis of the adsorption events. Here, a layer-by-layer surface modification of a QCM sensor is studied to increase the optical sensitivity. The intermediate layers of organic-inorganic molecules and metal-metal oxide were explored on a gold (Au) surface of a QCM sensor. First, polyhedral oligomeric silsesquioxane-derivatives that served as the organic-inorganic intermediate layer were synthesized and modified on the Au-QCM surface. Meanwhile, titanium oxide, fabricated by anodic oxidation of titanium, was used as a metal-metal oxide intermediate layer on a titanium-coated QCM surface. The developed technique enabled interrogation of the molecular adsorption owing to the enhanced optical sensitivity.

  15. Using Complementary Acoustic and Optical Techniques for Quantitative Monitoring of Biomolecular Adsorption at Interfaces

    PubMed Central

    Konradi, Rupert; Textor, Marcus; Reimhult, Erik

    2012-01-01

    The great wealth of different surface sensitive techniques used in biosensing, most of which claim to measure adsorbed mass, can at first glance look unnecessary. However, with each technique relying on a different transducer principle there is something to be gained from a comparison. In this tutorial review, different optical and acoustic evanescent techniques are used to illustrate how an understanding of the transducer principle of each technique can be exploited for further interpretation of hydrated and extended polymer and biological films. Some of the most commonly used surface sensitive biosensor techniques (quartz crystal microbalance, optical waveguide spectroscopy and surface plasmon resonance) are briefly described and five case studies are presented to illustrate how different biosensing techniques can and often should be combined. The case studies deal with representative examples of adsorption of protein films, polymer brushes and lipid membranes, and describe e.g., how to deal with strongly vs. weakly hydrated films, large conformational changes and ordered layers of biomolecules. The presented systems and methods are compared to other representative examples from the increasing literature on the subject. PMID:25586027

  16. Research on removing reservoir core water sensitivity using the method of ultrasound-chemical agent for enhanced oil recovery.

    PubMed

    Wang, Zhenjun; Huang, Jiehao

    2018-04-01

    The phenomenon of water sensitivity often occurs in the oil reservoir core during the process of crude oil production, which seriously affects the efficiency of oil extraction. In recent years, near-well ultrasonic processing technology attaches more attention due to its safety and energy efficient. In this paper, the comparison of removing core water sensitivity by ultrasonic wave, chemical injection and ultrasound-chemical combination technique are investigated through experiments. Results show that: lower ultrasonic frequency and higher power can improve the efficiency of core water sensitivity removal; the effects of removing core water sensitivity under ultrasonic treatment get better with increase of core initial permeability; the effect of removing core water sensitivity using ultrasonic treatment won't get better over time. Ultrasonic treatment time should be controlled in a reasonable range; the effect of removing core water sensitivity using chemical agent alone is slightly better than that using ultrasonic treatment, however, chemical injection could be replaced by ultrasonic treatment for removing core water sensitivity from the viewpoint of oil reservoir protection and the sustainable development of oil field; ultrasound-chemical combination technique has the best effect for water sensitivity removal than using ultrasonic treatment or chemical injection alone. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A hybrid optimization approach to the estimation of distributed parameters in two-dimensional confined aquifers

    USGS Publications Warehouse

    Heidari, M.; Ranjithan, S.R.

    1998-01-01

    In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.

  18. Fundamental study of flow field generated by rotorcraft blades using wide-field shadowgraph

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Cho, Y. I.; Back, L. H.

    1985-01-01

    The vortex trajectory and vortex wake generated by helicopter rotors are visualized using a wide-field shadowgraph technique. Use of a retro-reflective Scotchlite screen makes it possible to investigate the flow field generated by full-scale rotors. Tip vortex trajectories are visible in shadowgraphs for a range of tip Mach number of 0.38 to 0.60. The effect of the angle of attack is substantial. At an angle of attack greater than 8 degrees, the visibility of the vortex core is significant even at relatively low tip Mach numbers. The theoretical analysis of the sensitivity is carried out for a rotating blade. This analysis demonstrates that the sensitivity decreases with increasing dimensionless core radius and increases with increasing tip Mach number. The threshold value of the sensitivity is found to be 0.0015, below which the vortex core is not visible and above which it is visible. The effect of the optical path length is also discussed. Based on this investigation, it is concluded that the application of this wide-field shadowgraph technique to a large wind tunnel test should be feasible. In addition, two simultaneous shadowgraph views would allow three-dimensional reconstruction of vortex trajectories.

  19. IMRT QA: Selecting gamma criteria based on error detection sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steers, Jennifer M.; Fraass, Benedick A., E-mail: benedick.fraass@cshs.org

    Purpose: The gamma comparison is widely used to evaluate the agreement between measurements and treatment planning system calculations in patient-specific intensity modulated radiation therapy (IMRT) quality assurance (QA). However, recent publications have raised concerns about the lack of sensitivity when employing commonly used gamma criteria. Understanding the actual sensitivity of a wide range of different gamma criteria may allow the definition of more meaningful gamma criteria and tolerance limits in IMRT QA. We present a method that allows the quantitative determination of gamma criteria sensitivity to induced errors which can be applied to any unique combination of device, delivery technique,more » and software utilized in a specific clinic. Methods: A total of 21 DMLC IMRT QA measurements (ArcCHECK®, Sun Nuclear) were compared to QA plan calculations with induced errors. Three scenarios were studied: MU errors, multi-leaf collimator (MLC) errors, and the sensitivity of the gamma comparison to changes in penumbra width. Gamma comparisons were performed between measurements and error-induced calculations using a wide range of gamma criteria, resulting in a total of over 20 000 gamma comparisons. Gamma passing rates for each error class and case were graphed against error magnitude to create error curves in order to represent the range of missed errors in routine IMRT QA using 36 different gamma criteria. Results: This study demonstrates that systematic errors and case-specific errors can be detected by the error curve analysis. Depending on the location of the error curve peak (e.g., not centered about zero), 3%/3 mm threshold = 10% at 90% pixels passing may miss errors as large as 15% MU errors and ±1 cm random MLC errors for some cases. As the dose threshold parameter was increased for a given %Diff/distance-to-agreement (DTA) setting, error sensitivity was increased by up to a factor of two for select cases. This increased sensitivity with increasing dose threshold was consistent across all studied combinations of %Diff/DTA. Criteria such as 2%/3 mm and 3%/2 mm with a 50% threshold at 90% pixels passing are shown to be more appropriately sensitive without being overly strict. However, a broadening of the penumbra by as much as 5 mm in the beam configuration was difficult to detect with commonly used criteria, as well as with the previously mentioned criteria utilizing a threshold of 50%. Conclusions: We have introduced the error curve method, an analysis technique which allows the quantitative determination of gamma criteria sensitivity to induced errors. The application of the error curve method using DMLC IMRT plans measured on the ArcCHECK® device demonstrated that large errors can potentially be missed in IMRT QA with commonly used gamma criteria (e.g., 3%/3 mm, threshold = 10%, 90% pixels passing). Additionally, increasing the dose threshold value can offer dramatic increases in error sensitivity. This approach may allow the selection of more meaningful gamma criteria for IMRT QA and is straightforward to apply to other combinations of devices and treatment techniques.« less

  20. Layout-aware simulation of soft errors in sub-100 nm integrated circuits

    NASA Astrophysics Data System (ADS)

    Balbekov, A.; Gorbunov, M.; Bobkov, S.

    2016-12-01

    Single Event Transient (SET) caused by charged particle traveling through the sensitive volume of integral circuit (IC) may lead to different errors in digital circuits in some cases. In technologies below 180 nm, a single particle can affect multiple devices causing multiple SET. This fact adds the complexity to fault tolerant devices design, because the schematic design techniques become useless without their layout consideration. The most common layout mitigation technique is a spatial separation of sensitive nodes of hardened circuits. Spatial separation decreases the circuit performance and increases power consumption. Spacing should thus be reasonable and its scaling follows the device dimensions' scaling trend. This paper presents the development of the SET simulation approach comprised of SPICE simulation with "double exponent" current source as SET model. The technique uses layout in GDSII format to locate nearby devices that can be affected by a single particle and that can share the generated charge. The developed software tool automatizes multiple simulations and gathers the produced data to present it as the sensitivity map. The examples of conducted simulations of fault tolerant cells and their sensitivity maps are presented in this paper.

  1. Pterin detection using surface-enhanced Raman spectroscopy incorporating a straightforward silver colloid-based synthesis technique

    NASA Astrophysics Data System (ADS)

    Smyth, Ciarán A.; Mehigan, Sam; Rakovich, Yury P.; Bell, Steven E. J.; McCabe, Eithne M.

    2011-07-01

    Optical techniques toward the realization of sensitive and selective biosensing platforms have received considerable attention in recent times. Techniques based on interferometry, surface plasmon resonance, and waveguides have all proved popular, while spectroscopy in particular offers much potential. Raman spectroscopy is an information-rich technique in which the vibrational frequencies reveal much about the structure of a compound, but it is a weak process and offers poor sensitivity. In response to this problem, surface-enhanced Raman scattering (SERS) has received much attention, due to significant increases in sensitivity instigated by bringing the sample into contact with an enhancing substrate. Here we discuss a facile and rapid technique for the detection of pterins using SERS-active colloidal silver suspensions. Pterins are a family of biological compounds that are employed in nature in color pigmentation and as facilitators in metabolic pathways. In this work, small volumes of xanthopterin, isoxanthopterin, and 7,8-dihydrobiopterin have been examined while adsorbed to silver colloids. Limits of detection have been examined for both xanthopterin and isoxanthopterin using a 10-s exposure to a 12 mW 532 nm laser, which, while showing a trade-off between scan time and signal intensity, still provides the opportunity for the investigation of simultaneous detection of both pterins in solution.

  2. Solid oxide fuel cell simulation and design optimization with numerical adjoint techniques

    NASA Astrophysics Data System (ADS)

    Elliott, Louie C.

    This dissertation reports on the application of numerical optimization techniques as applied to fuel cell simulation and design. Due to the "multi-physics" inherent in a fuel cell, which results in a highly coupled and non-linear behavior, an experimental program to analyze and improve the performance of fuel cells is extremely difficult. This program applies new optimization techniques with computational methods from the field of aerospace engineering to the fuel cell design problem. After an overview of fuel cell history, importance, and classification, a mathematical model of solid oxide fuel cells (SOFC) is presented. The governing equations are discretized and solved with computational fluid dynamics (CFD) techniques including unstructured meshes, non-linear solution methods, numerical derivatives with complex variables, and sensitivity analysis with adjoint methods. Following the validation of the fuel cell model in 2-D and 3-D, the results of the sensitivity analysis are presented. The sensitivity derivative for a cost function with respect to a design variable is found with three increasingly sophisticated techniques: finite difference, direct differentiation, and adjoint. A design cycle is performed using a simple optimization method to improve the value of the implemented cost function. The results from this program could improve fuel cell performance and lessen the world's dependence on fossil fuels.

  3. Development of techniques for the analysis of isoflavones in soy foods and nutraceuticals.

    PubMed

    Dentith, Susan; Lockwood, Brian

    2008-05-01

    For over 20 years, soy isoflavones have been investigated for their ability to prevent a wide range of cancers and cardiovascular problems, and numerous other disease states. This research is underpinned by the ability of researchers to analyse isoflavones in various forms in a range of raw materials and biological fluids. This review summarizes the techniques recently used in their analysis. The speed of high performance liquid chromatography analysis has been improved, allowing analysis of more samples, and increasing the sensitivity of detection techniques allows quantification of isoflavones down to nanomoles per litre levels in biological fluids. The combination of high-performance liquid chromatography with immunoassay has allowed identification and estimation of low-level soy isoflavones. The use of soy isoflavone supplements has shown an increase in their circulating levels in plasma and urine, aiding investigation of their biological effects. The significance of the metabolite equol has spurned research into new areas, and recently the specific enantiomers have been studied. High-performance liquid chromatography, capillary electrophoresis and gas chromatography are widely used with a range of detection systems. Increasingly, immunoassay is being used because of its high sensitivity and low cost.

  4. Characterization of an intraluminal differential frequency-domain photoacoustics system

    NASA Astrophysics Data System (ADS)

    Lashkari, Bahman; Son, Jungik; Liang, Simon; Castelino, Robin; Foster, F. Stuart; Courtney, Brian; Mandelis, Andreas

    2016-03-01

    Cardiovascular related diseases are ranked as the second highest cause of death in Canada. Among the most important cardiovascular diseases is atherosclerosis. Current methods of diagnosis of atherosclerosis consist of angiography, intravascular ultrasound (IVUS) and optical coherence tomography (OCT). None of these methods possesses adequate sensitivity, as the ideal technique should be capable of both depth profiling, as well as functional imaging. An alternative technique is photoacoustics (PA) which can perform deep imaging and spectroscopy. The presented study explores the application of wavelength-modulated differential photoacoustic radar (WM-DPAR) for characterizing arterial vessels. The wavelength-modulated differential photoacoustic technique was shown to be able to substantially increase the dynamic range and sensitivity of hemoglobin oxygenation level detection. In this work the differential PA technique was used with a very high frequency modulation range. To perform spectroscopic PA imaging, at least two wavelengths are required. The selected wavelengths for this work are 1210 nm and 980 nm. 1210 nm corresponds to the maximum optical absorption coefficient of cholesterol and cholesteryl esters which are the main constituents of plaques. Since water, elastin and collagen also have high absorption coefficients at 1210 nm, this wavelength alone cannot provide very high sensitivity and specificity. The additional wavelength, 980 nm corresponds to high absorption coefficient of those constituents of healthy artery tissue. The simultaneous application of the abovementioned wavelengths can provide higher sensitivity and improved specificity in detecting lipids in the arterial vessels.

  5. Molecular breast imaging using a dedicated high-performance instrument

    NASA Astrophysics Data System (ADS)

    O'Connor, Michael K.; Wagenaar, Douglas; Hruska, Carrie B.; Phillips, Stephen; Caravaglia, Gina; Rhodes, Deborah

    2006-08-01

    In women with radiographically dense breasts, the sensitivity of mammography is less than 50%. With the increase in the percent of women with dense breasts, it is important to look at alternative screening techniques for this population. This article reviews the strengths and weaknesses of current imaging techniques and focuses on recent developments in semiconductor-based gamma camera systems that offer significant improvements in image quality over that achievable with single-crystal sodium iodide systems. We have developed a technique known as Molecular Breast Imaging (MBI) using small field of view Cadmium Zinc Telluride (CZT) gamma cameras that permits the breast to be imaged in a similar manner to mammography, using light pain-free compression. Computer simulations and experimental studies have shown that use of low-energy high sensitivity collimation coupled with the excellent energy resolution and intrinsic spatial resolution of CZT detectors provides optimum image quality for the detection of small breast lesions. Preliminary clinical studies with a prototype dual-detector system have demonstrated that Molecular Breast Imaging has a sensitivity of ~90% for the detection of breast tumors less than 10 mm in diameter. By comparison, conventional scintimammography only achieves a sensitivity of 50% in the detection of lesions < 10 mm. Because Molecular Breast Imaging is not affected by breast density, this technique may offer an important adjunct to mammography in the evaluation of women with dense breast parenchyma.

  6. Single-ion quantum lock-in amplifier.

    PubMed

    Kotler, Shlomi; Akerman, Nitzan; Glickman, Yinnon; Keselman, Anna; Ozeri, Roee

    2011-05-05

    Quantum metrology uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict. Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations--modulation, detection and mixing--are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr(+) ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42 Hz Hz(-1/2) (corresponding to a magnetic field measurement sensitivity of 15 pT Hz(-1/2)), obtaining an uncertainty of less than 10 mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spectroscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor. ©2011 Macmillan Publishers Limited. All rights reserved

  7. A Corona Discharge Initiated Electrochemical Electrospray Ionization Technique

    PubMed Central

    Lloyd, John R.; Hess, Sonja

    2009-01-01

    We report here the development of a corona discharge (CD) initiated electrochemical (EC) electrospray ionization (ESI) technique using a standard electrospray ion source. This is a new ionization technique distinct from ESI, electrochemistry inherent to ESI, APCI, and techniques using hydroxyl radicals produced under atmospheric pressure conditions. By maximizing the observable CD at the tip of a stainless steel ESI capillary, efficient electrochemical oxidation of electrochemically active compounds is observed. For electrochemical oxidation to be observed, the ionization potential of the analyte must be lower than Fe. Ferrocene labeled compounds were chosen as the electrochemically active moiety. The electrochemical cell in the ESI source was robust and generated ions with selectivity according to the ionization potential of the analytes and up to zeptomolar sensitivity. Our results indicate that CD initiated electrochemical ionization has the potential to become a powerful technique to increase the dynamic range, sensitivity and selectivity of ESI experiments. Synopsis Using a standard ESI source a corona discharge initiated electrochemical ionization technique was established resulting from the electrochemistry occurring at the CD electrode surface. PMID:19747843

  8. Improvement of mechanical performance for vibratory microgyroscope based on sense mode closed-loop control

    NASA Astrophysics Data System (ADS)

    Xiao, Dingbang; Su, Jianbin; Chen, Zhihua; Hou, Zhanqiang; Wang, Xinghua; Wu, Xuezhong

    2013-04-01

    In order to improve its structural sensitivity, a vibratory microgyroscope is commonly sealed in high vacuum to increase the drive mode quality factor. The sense mode quality factor of the microgyroscope will also increase simultaneously after vacuum sealing, which will lead to a long decay time of free response and even self-oscillation of the sense mode. As a result, the mechanical performance of the microgyroscope will be seriously degraded. In order to solve this problem, a closed-loop control technique is presented to adjust and optimize the sense mode quality factor. A velocity feedback loop was designed to increase the electric damping of the sense mode vibration. A circuit was fabricated based on this technique, and experimental results indicate that the sense mode quality factor of the microgyroscope was adjusted from 8052 to 428. The decay time of the sense mode free response was shortened from 3 to 0.5 s, and the vibration-rejecting ability of the microgyroscope was improved obviously without sensitivity degradation.

  9. Quantitative mass spectrometry methods for pharmaceutical analysis

    PubMed Central

    Loos, Glenn; Van Schepdael, Ann

    2016-01-01

    Quantitative pharmaceutical analysis is nowadays frequently executed using mass spectrometry. Electrospray ionization coupled to a (hybrid) triple quadrupole mass spectrometer is generally used in combination with solid-phase extraction and liquid chromatography. Furthermore, isotopically labelled standards are often used to correct for ion suppression. The challenges in producing sensitive but reliable quantitative data depend on the instrumentation, sample preparation and hyphenated techniques. In this contribution, different approaches to enhance the ionization efficiencies using modified source geometries and improved ion guidance are provided. Furthermore, possibilities to minimize, assess and correct for matrix interferences caused by co-eluting substances are described. With the focus on pharmaceuticals in the environment and bioanalysis, different separation techniques, trends in liquid chromatography and sample preparation methods to minimize matrix effects and increase sensitivity are discussed. Although highly sensitive methods are generally aimed for to provide automated multi-residue analysis, (less sensitive) miniaturized set-ups have a great potential due to their ability for in-field usage. This article is part of the themed issue ‘Quantitative mass spectrometry’. PMID:27644982

  10. Application of positron annihilation lineshape analysis to fatigue damage and thermal embrittlement for nuclear plant materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchida, M.; Ohta, Y.; Nakamura, N.

    1995-08-01

    Positron annihilation (PA) lineshape analysis is sensitive to detect microstructural defects such as vacancies and dislocations. The authors are developing a portable system and applying this technique to nuclear power plant material evaluations; fatigue damage in type 316 stainless steel and SA508 low alloy steel, and thermal embrittlement in duplex stainless steel. The PA technique was found to be sensitive in the early fatigue life (up to 10%), but showed a little sensitivity for later stages of the fatigue life in both type 316 stainless steel and SA508 ferritic steel. Type 316 steel showed a higher PA sensitivity than SA508more » since the initial SA508 microstructure already contained a high dislocation density in the as-received state. The PA parameter increased as a fraction of aging time in CF8M samples aged at 350 C and 400 C, but didn`t change much in CF8 samples.« less

  11. Actinic Flux Calculations: A Model Sensitivity Study

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay A.; Flittner, D.; Ahmad, Z.; Herman, J. R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    calculate direct and diffuse surface irradiance and actinic flux (downwelling (2p) and total (4p)) for the reference model. Sensitivity analysis has shown that the accuracy of the radiative transfer flux calculations for a unit ETS (i.e. atmospheric transmittance) together with a numerical interpolation technique for the constituents' vertical profiles is better than 1% for SZA less than 70(sub o) and wavelengths longer than 310 nm. The differences increase for shorter wavelengths and larger SZA, due to the differences in pseudo-spherical correction techniques and vertical discretetization among the codes. Our sensitivity study includes variation of ozone cross-sections, ETS spectra and the effects of wavelength shifts between vacuum and air scales. We also investigate the effects of aerosols on the spectral flux components in the UV and visible spectral regions. The "aerosol correction factors" (ACFs) were calculated at discrete wavelengths and different SZAs for each flux component (direct, diffuse, reflected) and prescribed IPMMI aerosol parameters. Finally, the sensitivity study was extended to calculation of selected photolysis rates coefficients.

  12. Plasmon-enhanced refractometry using silver nanowire coatings on tilted fibre Bragg gratings.

    PubMed

    Bialiayeu, A; Bottomley, A; Prezgot, D; Ianoul, A; Albert, J

    2012-11-09

    A novel technique for increasing the sensitivity of tilted fibre Bragg grating (TFBG) based refractometers is presented. The TFBG sensor was coated with chemically synthesized silver nanowires ~100 nm in diameter and several micrometres in length. A 3.5-fold increase in sensor sensitivity was obtained relative to the uncoated TFBG sensor. This increase is associated with the excitation of surface plasmons by orthogonally polarized fibre cladding modes at wavelengths near 1.5 μm. Refractometric information is extracted from the sensor via the strong polarization dependence of the grating resonances using a Jones matrix analysis of the transmission spectrum of the fibre.

  13. Effects of time delay and pitch control sensitivity in the flared landing

    NASA Technical Reports Server (NTRS)

    Berthe, C. J.; Chalk, C. R.; Wingarten, N. C.; Grantham, W.

    1986-01-01

    Between December 1985 and January 1986, a flared landing program was conducted, using the USAF Total In-Flight simulator airplane, to examine time delay effects in a formal manner. Results show that as pitch sensitivity is increased, tolerance to time delay decreases. With the proper selection of pitch sensitivity, Level I performance was maintained with time delays ranging from 150 milliseconds to greater than 300 milliseconds. With higher sensitivity, configurations with Level I performance at 150 milliseconds degraded to level 2 at 200 milliseconds. When metrics of time delay and pitch sensitivity effects are applied to enhance previously developed predictive criteria, the result is an improved prediction technique which accounts for significant closed loop items.

  14. Comparison of a modified mid-coronal sectioning technique and Wilson's technique when conducting eye and brain examinations in rabbit teratology studies.

    PubMed

    Ziejewski, Mary K; Solomon, Howard M; Rendemonti, Joyce; Stanislaus, Dinesh

    2015-02-01

    There are two methods used when examining fetal rabbit eyes and brain in teratology studies. One method employs prior fixation before serial sectioning (Wilson's technique) and the other uses fresh tissue (mid-coronal sectioning). We modified the mid-coronal sectioning technique to include removal of eyes and brain for closer examination and to increase the number of structures that can be evaluated and compared it to the Wilson's technique. We found that external examination of the head, in conjunction with either sectioning method, is equally sensitive in identifying developmental defects. We evaluated 40,401 New Zealand White (NZW) and Dutch-Belted (DB) rabbit fetuses for external head alterations, of which 28,538 fetuses were further examined for eye and brain alterations using the modified mid-coronal sectioning method (16,675 fetuses) or Wilson's technique (11,863 fetuses). The fetuses were from vehicle control or drug-treated pregnant rabbits in embryo-fetal development studies conducted to meet international regulatory requirements for the development of new drugs. Both methods detected the more common alterations (microphthalmia and dilated lateral cerebral ventricles) and other less common findings (changes in size and/or shape of eye and brain structures). While both methods are equally sensitive at detecting common and rare developmental defects, the modified mid-coronal sectioning technique eliminates the use of chemicals and concomitant fixation artifacts that occur with the Wilson's technique and allows for examination of 100% intact fetuses thereby increasing potential for detecting eye and brain alterations as these findings occur infrequently in rabbits. © 2015 Wiley Periodicals, Inc.

  15. An Initial Study of the Sensitivity of Aircraft Vortex Spacing System (AVOSS) Spacing Sensitivity to Weather and Configuration Input Parameters

    NASA Technical Reports Server (NTRS)

    Riddick, Stephen E.; Hinton, David A.

    2000-01-01

    A study has been performed on a computer code modeling an aircraft wake vortex spacing system during final approach. This code represents an initial engineering model of a system to calculate reduced approach separation criteria needed to increase airport productivity. This report evaluates model sensitivity toward various weather conditions (crosswind, crosswind variance, turbulent kinetic energy, and thermal gradient), code configurations (approach corridor option, and wake demise definition), and post-processing techniques (rounding of provided spacing values, and controller time variance).

  16. Drug sensitivity testing platforms for gastric cancer diagnostics.

    PubMed

    Lau, Vianne; Wong, Andrea Li-Ann; Ng, Christopher; Mok, Yingting; Lakshmanan, Manikandan; Yan, Benedict

    2016-02-01

    Gastric cancer diagnostics has traditionally been histomorphological and primarily the domain of surgical pathologists. Although there is an increasing usage of molecular and genomic techniques for clinical diagnostics, there is an emerging field of personalised drug sensitivity testing. In this review, we describe the various personalised drug sensitivity testing platforms and discuss the challenges facing clinical adoption of these assays for gastric cancer. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Insulin's acute effects on glomerular filtration rate correlate with insulin sensitivity whereas insulin's acute effects on proximal tubular sodium reabsorption correlation with salt sensitivity in normal subjects.

    PubMed

    ter Maaten, J C; Bakker, S J; Serné, E H; ter Wee, P M; Donker, A J; Gans, R O

    1999-10-01

    Insulin induces sodium retention by increasing distal tubular sodium reabsorption. Opposite effects of insulin to offset insulin-induced sodium retention are supposedly increases in glomerular filtration rate (GFR) and decreases in proximal tubular sodium reabsorption. Defects in these opposing effects could link insulin resistance to blood-pressure elevation and salt sensitivity. We assessed the relationship between the effects of sequential physiological and supraphysiological insulin dosages (50 and 150 mU/kg/h) on renal sodium handling, and insulin sensitivity and salt sensitivity using the euglycaemic clamp technique and clearances of [131I]hippuran, [125I]iothalamate, sodium, and lithium in 20 normal subjects displaying a wide range of insulin sensitivity. Time-control experiments were performed in the same subjects. Salt sensitivity was determined using a diet method. During the successive insulin infusions, GFR increased by 5.9% (P = 0.003) and 10.9% (P<0.001), while fractional sodium excretion decreased by 34 and 50% (both P<0.001). Distal tubular sodium reabsorption increased and proximal tubular sodium reabsorption decreased. Insulin sensitivity correlated with changes in GFR during physiological (r = 0.60, P = 0.005) and supraphysiological (r = 0.58, P = 0.007) hyperinsulinaemia, but not with changes in proximal tubular sodium reabsorption. Salt sensitivity correlated with changes in proximal tubular sodium reabsorption (r = 0.49, P = 0.028), but not in GFR, during physiological hyperinsulinaemia. Neither insulin sensitivity or salt sensitivity correlated with changes in overall fractional sodium excretion. Insulin sensitivity and salt sensitivity correlate with changes in different elements of renal sodium handling, but not with overall sodium excretion, during insulin infusion. The relevance for blood pressure regulation remains to be proved.

  18. Backscatter X-Ray Development for Space Vehicle Thermal Protection Systems

    NASA Astrophysics Data System (ADS)

    Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony

    2011-06-01

    The Backscatter X-Ray (BSX) imaging technique is used for various single sided inspection purposes. Previously developed BSX techniques for spray-on-foam insulation (SOFI) have been used for detecting defects in Space Shuttle External Tank foam insulation. The developed BSX hardware and techniques are currently being enhanced to advance Non-Destructive Evaluation (NDE) methods for future space vehicle applications. Various Thermal Protection System (TPS) materials were inspected using the enhanced BSX imaging techniques, investigating the capability of the method to detect voids and other discontinuities at various locations within each material. Calibration standards were developed for the TPS materials in order to characterize and develop enhanced BSX inspection capabilities. The ability of the BSX technique to detect both manufactured and natural defects was also studied and compared to through-transmission x-ray techniques. The energy of the x-ray, source to object distance, angle of x-ray, focal spot size and x-ray detector configurations were parameters playing a significant role in the sensitivity of the BSX technique to image various materials and defects. The image processing of the results also showed significant increase in the sensitivity of the technique. The experimental results showed BSX to be a viable inspection technique for space vehicle TPS systems.

  19. Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis

    NASA Astrophysics Data System (ADS)

    Wojtas, J.; Tittel, F. K.; Stacewicz, T.; Bielecki, Z.; Lewicki, R.; Mikolajczyk, J.; Nowakowski, M.; Szabra, D.; Stefanski, P.; Tarka, J.

    2014-12-01

    This paper describes two different optoelectronic detection techniques: cavity-enhanced absorption spectroscopy and photoacoustic spectroscopy. These techniques are designed to perform a sensitive analysis of trace gas species in exhaled human breath for medical applications. With such systems, the detection of pathogenic changes at the molecular level can be achieved. The presence of certain gases (biomarkers), at increased concentration levels, indicates numerous human diseases. Diagnosis of a disease in its early stage would significantly increase chances for effective therapy. Non-invasive, real-time measurements, and high sensitivity and selectivity, capable of minimum discomfort for patients, are the main advantages of human breath analysis. At present, monitoring of volatile biomarkers in breath is commonly useful for diagnostic screening, treatment for specific conditions, therapy monitoring, control of exogenous gases (such as bacterial and poisonous emissions), as well as for analysis of metabolic gases.

  20. Specificity and sensitivity of noninvasive measurement of pulmonary vascular protein leak.

    PubMed

    Dauber, I M; Pluss, W T; VanGrondelle, A; Trow, R S; Weil, J V

    1985-08-01

    Noninvasive techniques employing external counting of radiolabeled protein have the potential for measuring pulmonary vascular protein permeability, but their specificity and sensitivity remain unclear. We tested the specificity and sensitivity of a double-radioisotope method by injecting radiolabeled albumin (131I) and erythrocytes (99mTc) into anesthetized dogs and measuring the counts of each isotope for 150 min after injection with an external gamma probe fixed over the lung. We calculated the rate of increase of albumin counts measured by the probe (which reflects the rate at which protein leaks into the extravascular space). To assess permeability we normalized the rate of increase in albumin counts for changes in labeled erythrocyte signal to minimize influence of changes in vascular surface area and thus derived an albumin leak index. We measured the albumin leak index and gravimetric lung water during hydrostatic edema (acutely elevating left atrial pressure by left atrial balloon inflation: mean pulmonary arterial wedge pressure = 22.6 Torr) and in lung injury edema induced by high- (1.0 g/kg) and low-dose (0.25 g/kg) intravenous thiourea. To test specificity we compared hydrostatic and high-dose thiourea edema. The albumin leak index increased nearly fourfold from control after thiourea injury (27.2 +/- 2.3 X 10-4 vs. 7.6 +/- 0.9 X 10-4 min-1) but did not change from control levels after elevating left atrial pressure (8.9 +/- 1.2 X 10-4 min-1) despite comparable increases in gravimetric lung water. To test sensitivity we compared low-dose thiourea with controls. Following low-dose thiourea, the albumin leak index nearly doubled despite the absence of a measurable increase in lung water. We conclude that a noninvasive double radioisotope measurement of pulmonary vascular protein leak, employing external counting techniques and a simplified method of calculation, is specific for lung injury and is also sensitive enough to detect lung injury insufficient to produce detectable pulmonary edema.

  1. Polymerase chain reaction in the detection of tumor cells: new approaches in diagnosis and follow-up of patients with thyroid cancer.

    PubMed

    Bojunga, Jörg; Kusterer, Klaus; Schumm-Draeger, Petra-Maria; Usadel, Klaus-Henning

    2002-12-01

    Thyroid cancers are the most common endocrine malignancies and are being diagnosed with increasing frequency. In addition to other measures, diagnosis is based on fine-needle aspiration cytology examination. Recently, new assays using reverse transcription-polymerase chain reaction (PCR) are being tested to improve sensitivity and specificity of primary diagnosis and detection of recurrent thyroid cancer. In the preoperative diagnosis of thyroid cancer, several tissue- and/or tumor-specific mRNA have been described and in several cases, a higher sensitivity and specificity could be achieved using molecular techniques compared to conventional methods. In the postoperative follow-up of patients with thyroid cancer, conflicting data have been published and the use of PCR techniques revealed several problems of the molecular approach, which are based on some technical as well as biologic limitations. Despite these problems, which are discussed in detail in this review, molecular techniques may nevertheless improve the sensitivity and accuracy of fine-needle aspiration of thyroid nodules, fine-needle aspiration of metastases, and detection of recurrent disease in peripheral blood samples.

  2. Validation of diffuse correlation spectroscopy sensitivity to nicotinamide-induced blood flow elevation in the murine hindlimb using the fluorescent microsphere technique

    NASA Astrophysics Data System (ADS)

    Proctor, Ashley R.; Ramirez, Gabriel A.; Han, Songfeng; Liu, Ziping; Bubel, Tracy M.; Choe, Regine

    2018-03-01

    Nicotinamide has been shown to affect blood flow in both tumor and normal tissues, including skeletal muscle. Intraperitoneal injection of nicotinamide was used as a simple intervention to test the sensitivity of noninvasive diffuse correlation spectroscopy (DCS) to changes in blood flow in the murine left quadriceps femoris skeletal muscle. DCS was then compared with the gold-standard fluorescent microsphere (FM) technique for validation. The nicotinamide dose-response experiment showed that relative blood flow measured by DCS increased following treatment with 500- and 1000-mg / kg nicotinamide. The DCS and FM technique comparison showed that blood flow index measured by DCS was correlated with FM counts quantified by image analysis. The results of this study show that DCS is sensitive to nicotinamide-induced blood flow elevation in the murine left quadriceps femoris. Additionally, the results of the comparison were consistent with similar studies in higher-order animal models, suggesting that mouse models can be effectively employed to investigate the utility of DCS for various blood flow measurement applications.

  3. Evaluation of wheelchair resistive forces during straight and turning trajectories across different wheelchair configurations using free-wheeling coast-down test.

    PubMed

    Lin, Jui-Te; Huang, Morris; Sprigle, Stephen

    2015-01-01

    The purpose of this study was to develop a simple approach to evaluate resistive frictional forces acting on manual wheelchairs (MWCs) during straight and turning maneuvers. Using a dummy-occupied MWC, decelerations were measured via axle-mounted encoders during a coast-down protocol that included straight trajectories and fixed-wheel turns. Eight coast-down trials were conducted to test repeatability and repeated on separate days to evaluate reliability. Without changing the inertia of the MWC system, three tire inflations were chosen to evaluate the sensitivity in discerning deceleration differences using effect sizes. The technique was also deployed to investigate the effect of different MWC masses and weight distributions on resistive forces. Results showed that the proposed coast-down technique had good repeatability and reliability in measuring decelerations and had good sensitivity in discerning differences in tire inflation, especially during turning. The results also indicated that increased loading on drive wheels reduced resistive losses in straight trajectories while increasing resistive losses during turning. During turning trajectories, the presence of tire scrub contributes significantly to the amount of resistive force. Overall, this new coast-down technique demonstrates satisfactory repeatability and sensitivity for detecting deceleration changes during straight and turning trajectories, indicating that it can be used to evaluate resistive loss of different MWC configurations and maneuvers.

  4. Method-independent, Computationally Frugal Convergence Testing for Sensitivity Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Mai, J.; Tolson, B.

    2017-12-01

    The increasing complexity and runtime of environmental models lead to the current situation that the calibration of all model parameters or the estimation of all of their uncertainty is often computationally infeasible. Hence, techniques to determine the sensitivity of model parameters are used to identify most important parameters. All subsequent model calibrations or uncertainty estimation procedures focus then only on these subsets of parameters and are hence less computational demanding. While the examination of the convergence of calibration and uncertainty methods is state-of-the-art, the convergence of the sensitivity methods is usually not checked. If any, bootstrapping of the sensitivity results is used to determine the reliability of the estimated indexes. Bootstrapping, however, might as well become computationally expensive in case of large model outputs and a high number of bootstraps. We, therefore, present a Model Variable Augmentation (MVA) approach to check the convergence of sensitivity indexes without performing any additional model run. This technique is method- and model-independent. It can be applied either during the sensitivity analysis (SA) or afterwards. The latter case enables the checking of already processed sensitivity indexes. To demonstrate the method's independency of the convergence testing method, we applied it to two widely used, global SA methods: the screening method known as Morris method or Elementary Effects (Morris 1991) and the variance-based Sobol' method (Solbol' 1993). The new convergence testing method is first scrutinized using 12 analytical benchmark functions (Cuntz & Mai et al. 2015) where the true indexes of aforementioned three methods are known. This proof of principle shows that the method reliably determines the uncertainty of the SA results when different budgets are used for the SA. The results show that the new frugal method is able to test the convergence and therefore the reliability of SA results in an efficient way. The appealing feature of this new technique is the necessity of no further model evaluation and therefore enables checking of already processed sensitivity results. This is one step towards reliable and transferable, published sensitivity results.

  5. Atom-Based Sensing of Weak Radio Frequency Electric Fields Using Homodyne Readout

    PubMed Central

    Kumar, Santosh; Fan, Haoquan; Kübler, Harald; Sheng, Jiteng; Shaffer, James P.

    2017-01-01

    We utilize a homodyne detection technique to achieve a new sensitivity limit for atom-based, absolute radio-frequency electric field sensing of 5 μV cm−1 Hz−1/2. A Mach-Zehnder interferometer is used for the homodyne detection. With the increased sensitivity, we investigate the dominant dephasing mechanisms that affect the performance of the sensor. In particular, we present data on power broadening, collisional broadening and transit time broadening. Our results are compared to density matrix calculations. We show that photon shot noise in the signal readout is currently a limiting factor. We suggest that new approaches with superior readout with respect to photon shot noise are needed to increase the sensitivity further. PMID:28218308

  6. Improved spatial resolution in PET scanners using sampling techniques

    PubMed Central

    Surti, Suleman; Scheuermann, Ryan; Werner, Matthew E.; Karp, Joel S.

    2009-01-01

    Increased focus towards improved detector spatial resolution in PET has led to the use of smaller crystals in some form of light sharing detector design. In this work we evaluate two sampling techniques that can be applied during calibrations for pixelated detector designs in order to improve the reconstructed spatial resolution. The inter-crystal positioning technique utilizes sub-sampling in the crystal flood map to better sample the Compton scatter events in the detector. The Compton scatter rejection technique, on the other hand, rejects those events that are located further from individual crystal centers in the flood map. We performed Monte Carlo simulations followed by measurements on two whole-body scanners for point source data. The simulations and measurements were performed for scanners using scintillators with Zeff ranging from 46.9 to 63 for LaBr3 and LYSO, respectively. Our results show that near the center of the scanner, inter-crystal positioning technique leads to a gain of about 0.5-mm in reconstructed spatial resolution (FWHM) for both scanner designs. In a small animal LYSO scanner the resolution improves from 1.9-mm to 1.6-mm with the inter-crystal technique. The Compton scatter rejection technique shows higher gains in spatial resolution but at the cost of reduction in scanner sensitivity. The inter-crystal positioning technique represents a modest acquisition software modification for an improvement in spatial resolution, but at a cost of potentially longer data correction and reconstruction times. The Compton scatter rejection technique, while also requiring a modest acquisition software change with no increased data correction and reconstruction times, will be useful in applications where the scanner sensitivity is very high and larger improvements in spatial resolution are desirable. PMID:19779586

  7. Multi-modal approach using Raman spectroscopy and optical coherence tomography for the discrimination of colonic adenocarcinoma from normal colon

    PubMed Central

    Ashok, Praveen C.; Praveen, Bavishna B.; Bellini, Nicola; Riches, Andrew; Dholakia, Kishan; Herrington, C. Simon

    2013-01-01

    We report a multimodal optical approach using both Raman spectroscopy and optical coherence tomography (OCT) in tandem to discriminate between colonic adenocarcinoma and normal colon. Although both of these non-invasive techniques are capable of discriminating between normal and tumour tissues, they are unable individually to provide both the high specificity and high sensitivity required for disease diagnosis. We combine the chemical information derived from Raman spectroscopy with the texture parameters extracted from OCT images. The sensitivity obtained using Raman spectroscopy and OCT individually was 89% and 78% respectively and the specificity was 77% and 74% respectively. Combining the information derived using the two techniques increased both sensitivity and specificity to 94% demonstrating that combining complementary optical information enhances diagnostic accuracy. These data demonstrate that multimodal optical analysis has the potential to achieve accurate non-invasive cancer diagnosis. PMID:24156073

  8. A modified tensionless gingival grafting technique using acellular dermal matrix.

    PubMed

    Taylor, John B; Gerlach, Robert C; Herold, Robert W; Bisch, Frederick C; Dixon, Douglas R

    2010-10-01

    Conventional surgical procedures designed for autogenous tissue material may not be appropriate when using acellular dermal matrix (ADM) for the treatment of gingival recessions. This article describes a new surgical technique that addresses the unique and sensitive aspects of ADM specifically to improve esthetic outcomes and gain increased clinical predictability when treating Miller Class I and II gingival recession defects. In this paper, a root coverage case is described and the specific steps and rationale for this new technique are explained. This technique has been predictable clinically, with results comparable to those achieved using autogenous tissue.

  9. It's Nolan Ryan: A Historiography Teaching Technique.

    ERIC Educational Resources Information Center

    Mackey, Thomas

    1991-01-01

    Presents a plan for teaching historiography through analysis of baseball cards. Explains that students can learn about society, culture, discrimination, and inference. Reports that the lesson increased student interest, motivation, and sensitivity to the importance of historical sources. (DK)

  10. Real-time monitoring of drug-induced changes in the stomach acidity of living rats using improved pH-sensitive nitroxides and low-field EPR techniques

    NASA Astrophysics Data System (ADS)

    Potapenko, Dmitrii I.; Foster, Margaret A.; Lurie, David J.; Kirilyuk, Igor A.; Hutchison, James M. S.; Grigor'ev, Igor A.; Bagryanskaya, Elena G.; Khramtsov, Valery V.

    2006-09-01

    New improved pH-sensitive nitroxides were applied for in vivo studies. An increased stability of the probes towards reduction was achieved by the introduction of the bulky ethyl groups in the vicinity of the paramagnetic N sbnd O fragment. In addition, the range of pH sensitivity of the approach was extended by the synthesis of probes with two ionizable groups, and, therefore, with two p Ka values. Stability towards reduction and spectral characteristics of the three new probes were determined in vitro using 290 MHz radiofrequency (RF)- and X-band electron paramagnetic resonance (EPR), longitudinally detected EPR (LODEPR), and field-cycled dynamic nuclear polarization (FC-DNP) techniques. The newly synthesized probe, 4-[bis(2-hydroxyethyl)amino]-2-pyridine-4-yl-2,5,5-triethyl-2,5-dihydro-1 H-imidazol-oxyl, was found to be the most appropriate for the application in the stomach due to both higher stability and convenient pH sensitivity range from pH 1.8 to 6. LODEPR, FC-DNP and proton-electron double resonance imaging (PEDRI) techniques were used to detect the nitroxide localization and acidity in the rat stomach. Improved probe characteristics allowed us to follow in vivo the drug-induced perturbation in the stomach acidity and its normalization afterwards during 1 h or longer period of time. The results show the applicability of the techniques for monitoring drug pharmacology and disease in the living animals.

  11. Evaluation of the Copan Myco-TB kit for the decontamination of respiratory samples for the detection of Mycobacteria.

    PubMed

    De Geyter, Deborah; Cnudde, Danny; Van der Beken, Mieke; Autaers, Dorien; Piérard, Denis

    2018-04-01

    The purpose of this study was to test a newly developed decontamination and fluidization kit for processing respiratory specimens for the detection of mycobacteria: the Myco-TB procedure (developed by Copan (Brescia, Italy)). This technique was compared with the Zephiran decontamination method in use in our hospital. Respiratory specimens (n = 387: 130 endotracheal/bronchial aspirates, 172 bronchoalveolar lavages and 55 sputa) submitted to the University Hospital of Brussels between January 2016 and March 2017 were included. All samples were divided into two aliquots: one was subjected to the Myco-TB method and one to the Zephiran technique prior to culture. The sensitivities for culture for the Zephiran technique on solid media, the Myco-TB method on solid media and Myco-TB combined with the MGIT™ system were respectively 67%, 87% and 89%. The contamination rates were 22% with both the Zephiran and Myco-TB method on solid media and only 4% with the Myco-TB kit combined with the MGIT™ system. For direct microscopy, the sensitivities of the Zephiran method and the Myco-TB method were equal (40%) when the centrifugation time was 20 min. The Myco-TB decontamination method is easy and rapid to perform. It is more sensitive for culture as compared to the Zephiran method and gives lower contamination levels when combined with the MGIT™ technique. When increasing the centrifugation step to 20 min, the sensitivity of direct microscopy is equal to the Zephiran method.

  12. Multidisciplinary design optimization using multiobjective formulation techniques

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Pagaldipti, Narayanan S.

    1995-01-01

    This report addresses the development of a multidisciplinary optimization procedure using an efficient semi-analytical sensitivity analysis technique and multilevel decomposition for the design of aerospace vehicles. A semi-analytical sensitivity analysis procedure is developed for calculating computational grid sensitivities and aerodynamic design sensitivities. Accuracy and efficiency of the sensitivity analysis procedure is established through comparison of the results with those obtained using a finite difference technique. The developed sensitivity analysis technique are then used within a multidisciplinary optimization procedure for designing aerospace vehicles. The optimization problem, with the integration of aerodynamics and structures, is decomposed into two levels. Optimization is performed for improved aerodynamic performance at the first level and improved structural performance at the second level. Aerodynamic analysis is performed by solving the three-dimensional parabolized Navier Stokes equations. A nonlinear programming technique and an approximate analysis procedure are used for optimization. The proceduredeveloped is applied to design the wing of a high speed aircraft. Results obtained show significant improvements in the aircraft aerodynamic and structural performance when compared to a reference or baseline configuration. The use of the semi-analytical sensitivity technique provides significant computational savings.

  13. Analysis strategies for high-resolution UHF-fMRI data.

    PubMed

    Polimeni, Jonathan R; Renvall, Ville; Zaretskaya, Natalia; Fischl, Bruce

    2018-03-01

    Functional MRI (fMRI) benefits from both increased sensitivity and specificity with increasing magnetic field strength, making it a key application for Ultra-High Field (UHF) MRI scanners. Most UHF-fMRI studies utilize the dramatic increases in sensitivity and specificity to acquire high-resolution data reaching sub-millimeter scales, which enable new classes of experiments to probe the functional organization of the human brain. This review article surveys advanced data analysis strategies developed for high-resolution fMRI at UHF. These include strategies designed to mitigate distortion and artifacts associated with higher fields in ways that attempt to preserve spatial resolution of the fMRI data, as well as recently introduced analysis techniques that are enabled by these extremely high-resolution data. Particular focus is placed on anatomically-informed analyses, including cortical surface-based analysis, which are powerful techniques that can guide each step of the analysis from preprocessing to statistical analysis to interpretation and visualization. New intracortical analysis techniques for laminar and columnar fMRI are also reviewed and discussed. Prospects for single-subject individualized analyses are also presented and discussed. Altogether, there are both specific challenges and opportunities presented by UHF-fMRI, and the use of proper analysis strategies can help these valuable data reach their full potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. High-Throughput, Protein-Targeted Biomolecular Detection Using Frequency-Domain Faraday Rotation Spectroscopy.

    PubMed

    Murdock, Richard J; Putnam, Shawn A; Das, Soumen; Gupta, Ankur; Chase, Elyse D Z; Seal, Sudipta

    2017-03-01

    A clinically relevant magneto-optical technique (fd-FRS, frequency-domain Faraday rotation spectroscopy) for characterizing proteins using antibody-functionalized magnetic nanoparticles (MNPs) is demonstrated. This technique distinguishes between the Faraday rotation of the solvent, iron oxide core, and functionalization layers of polyethylene glycol polymers (spacer) and model antibody-antigen complexes (anti-BSA/BSA, bovine serum albumin). A detection sensitivity of ≈10 pg mL -1 and broad detection range of 10 pg mL -1 ≲ c BSA ≲ 100 µg mL -1 are observed. Combining this technique with predictive analyte binding models quantifies (within an order of magnitude) the number of active binding sites on functionalized MNPs. Comparative enzyme-linked immunosorbent assay (ELISA) studies are conducted, reproducing the manufacturer advertised BSA ELISA detection limits from 1 ng mL -1 ≲ c BSA ≲ 500 ng mL -1 . In addition to the increased sensitivity, broader detection range, and similar specificity, fd-FRS can be conducted in less than ≈30 min, compared to ≈4 h with ELISA. Thus, fd-FRS is shown to be a sensitive optical technique with potential to become an efficient diagnostic in the chemical and biomolecular sciences. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Searches for millisecond pulsations in low-mass X-ray binaries

    NASA Technical Reports Server (NTRS)

    Wood, K. S.; Hertz, P.; Norris, J. P.; Vaughan, B. A.; Michelson, P. F.; Mitsuda, K.; Lewin, W. H. G.; Van Paradijs, J.; Penninx, W.; Van Der Klis, M.

    1991-01-01

    High-sensitivity search techniques for millisecond periods are presented and applied to data from the Japanese satellite Ginga and HEAO 1. The search is optimized for pulsed signals whose period, drift rate, and amplitude conform with what is expected for low-class X-ray binary (LMXB) sources. Consideration is given to how the current understanding of LMXBs guides the search strategy and sets these parameter limits. An optimized one-parameter coherence recovery technique (CRT) developed for recovery of phase coherence is presented. This technique provides a large increase in sensitivity over the method of incoherent summation of Fourier power spectra. The range of spin periods expected from LMXB phenomenology is discussed, the necessary constraints on the application of CRT are described in terms of integration time and orbital parameters, and the residual power unrecovered by the quadratic approximation for realistic cases is estimated.

  16. Broad-Spectrum Molecular Detection of Fungal Nucleic Acids by PCR-Based Amplification Techniques.

    PubMed

    Czurda, Stefan; Lion, Thomas

    2017-01-01

    Over the past decade, the incidence of life-threatening invasive fungal infections has dramatically increased. Infections caused by hitherto rare and emerging fungal pathogens are associated with significant morbidity and mortality among immunocompromised patients. These observations render the coverage of a broad range of clinically relevant fungal pathogens highly important. The so-called panfungal or, perhaps more correctly, broad-range nucleic acid amplification techniques do not only facilitate sensitive detection of all clinically relevant fungal species but are also rapid and can be applied to analyses of any patient specimens. They have therefore become valuable diagnostic tools for sensitive screening of patients at risk of invasive fungal infections. This chapter summarizes the currently available molecular technologies employed in testing of a wide range of fungal pathogens, and provides a detailed workflow for patient screening by broad-spectrum nucleic acid amplification techniques.

  17. Shock Initiation Characteristics of an Aluminized DNAN/RDX Melt-Cast Explosive

    NASA Astrophysics Data System (ADS)

    Cao, Tong-Tang; Zhou, Lin; Zhang, Xiang-Rong; Zhang, Wei; Miao, Fei-Chao

    2017-10-01

    Shock sensitivity is one of the key parameters for newly developed, 2,4-dinitroanisole (DNAN)-based, melt-cast explosives. For this paper, a series of shock initiation experiments were conducted using a one-dimensional Lagrangian system with a manganin piezoresistive pressure gauge technique to evaluate the shock sensitivity of an aluminized DNAN/cyclotrimethylenetrinitramine (RDX) melt-cast explosive. This study fully investigated the effects of particle size distributions in both RDX and aluminum, as well as the RDX's crystal quality on the shock sensitivity of the aluminized DNAN/RDX melt-cast explosive. Ultimately, the shock sensitivity of the aluminized DNAN/RDX melt-cast explosives increases when the particle size decreases in both RDX and aluminum. Additionally, shock sensitivity increases when the RDX's crystal quality decreases. In order to simulate these effects, an Ignition and Growth (I&G) reactive flow model was calibrated. This calibrated I&G model was able to predict the shock initiation characteristics of the aluminized DNAN/RDX melt-cast explosive.

  18. Mindfulness meditation and relaxation training increases time sensitivity.

    PubMed

    Droit-Volet, S; Fanget, M; Dambrun, M

    2015-01-01

    Two experiments examined the effect of mindfulness meditation and relaxation on time perception using a temporal bisection task. In Experiment 1, the participants performed a temporal task before and after exercises of mindfulness meditation or relaxation. In Experiment 2, the procedure was similar than that used in Experiment 1, except that the participants were trained to mediate or relax every day over a period of several weeks. The results showed that mindfulness meditation exercises increased sensitivity to time and lengthened perceived time. However, this temporal improvement with meditation exercises was primarily observed in the experienced meditators. Our results also showed the experienced meditators were less anxious than the novice participants, and that the sensitivity to time increased when the level of anxiety decreased. Our results were explained by the practice of mindfulness technique that had developed individuals' abilities in devoting more attention resources to temporal information processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Brain single-photon emission CT physics principles.

    PubMed

    Accorsi, R

    2008-08-01

    The basic principles of scintigraphy are reviewed and extended to 3D imaging. Single-photon emission computed tomography (SPECT) is a sensitive and specific 3D technique to monitor in vivo functional processes in both clinical and preclinical studies. SPECT/CT systems are becoming increasingly common and can provide accurately registered anatomic information as well. In general, SPECT is affected by low photon-collection efficiency, but in brain imaging, not all of the large FOV of clinical gamma cameras is needed: The use of fan- and cone-beam collimation trades off the unused FOV for increased sensitivity and resolution. The design of dedicated cameras aims at increased angular coverage and resolution by minimizing the distance from the patient. The corrections needed for quantitative imaging are challenging but can take advantage of the relative spatial uniformity of attenuation and scatter. Preclinical systems can provide submillimeter resolution in small animal brain imaging with workable sensitivity.

  20. SNS Emittance Scanner, Increasing Sensitivity and Performance through Noise Mitigation ,Design, Implementation and Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogge, J.

    2006-11-20

    The Spallation Neutron Source (SNS) accelerator systems will deliver a 1.0 GeV, 1.4 MW proton beam to a liquid mercury target for neutron scattering research. The SNS MEBT Emittance Harp consists of 16 X and 16 Y wires, located in close proximity to the RFQ, Source, and MEBT Choppers. Beam Studies for source and LINAC commissioning required an overall increase in sensitivity for halo monitoring and measurement, and at the same time several severe noise sources had to be effectively removed from the harp signals. This paper is an overview of the design approach and techniques used in increasing gainmore » and sensitivity while maintaining a large signal to noise ratio for the emittance scanner device. A brief discussion of the identification of the noise sources, the mechanism for transmission and pick up, how the signals were improved and a summary of results.« less

  1. Characterization of image heterogeneity using 2D Minkowski functionals increases the sensitivity of detection of a targeted MRI contrast agent.

    PubMed

    Canuto, Holly C; McLachlan, Charles; Kettunen, Mikko I; Velic, Marko; Krishnan, Anant S; Neves, Andre' A; de Backer, Maaike; Hu, D-E; Hobson, Michael P; Brindle, Kevin M

    2009-05-01

    A targeted Gd(3+)-based contrast agent has been developed that detects tumor cell death by binding to the phosphatidylserine (PS) exposed on the plasma membrane of dying cells. Although this agent has been used to detect tumor cell death in vivo, the differences in signal intensity between treated and untreated tumors was relatively small. As cell death is often spatially heterogeneous within tumors, we investigated whether an image analysis technique that parameterizes heterogeneity could be used to increase the sensitivity of detection of this targeted contrast agent. Two-dimensional (2D) Minkowski functionals (MFs) provided an automated and reliable method for parameterization of image heterogeneity, which does not require prior assumptions about the number of regions or features in the image, and were shown to increase the sensitivity of detection of the contrast agent as compared to simple signal intensity analysis. (c) 2009 Wiley-Liss, Inc.

  2. A dual-mode generalized likelihood ratio approach to self-reorganizing digital flight control system design

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Analytic techniques have been developed for detecting and identifying abrupt changes in dynamic systems. The GLR technique monitors the output of the Kalman filter and searches for the time that the failure occured, thus allowing it to be sensitive to new data and consequently increasing the chances for fast system recovery following detection of a failure. All failure detections are based on functional redundancy. Performance tests of the F-8 aircraft flight control system and computerized modelling of the technique are presented.

  3. Testing and characterizations of infrared sensor over the temperature range of 2 Kelvin to 300 Kelvin

    NASA Technical Reports Server (NTRS)

    Hansen, R. G.

    1983-01-01

    Various cryogenic techniques were used to evaluate state of the art electro-optic devices. As research, development, and production demands require more sensitive testing techniques, faster test results, and higher production throughput, the emphasis on supporting cryogenic systems increases. The three traditional methods currently utilized in electro-optic device testing are discussed: (1) liquid contaiment dewars; (2) liquid transfer systems; and (3) closed cycle refrigeration systems. Advantages, disadvantages, and the current state of the art of each of these cryogenic techniques is discussed.

  4. Effect of Propellant Composition to the Temperature Sensitivity of Composite Propellant

    NASA Astrophysics Data System (ADS)

    Aziz, Amir; Mamat, Rizalman; Amin, Makeen; Ali, Wan Khairuddin Wan

    2012-09-01

    The propellant composition is one of several parameter that influencing the temperature sensitivity of composite propellant. In this paper, experimental investigation of temperature sensitivity in burning rate of composite propellant was conducted. Four sets of different propellant compositions had been prepared with the combination of ammonium perchlorate (AP) as an oxidizer, aluminum (Al) as fuel and hydroxy-terminated polybutadiene (HTPB) as fuel and binder. For each mixture, HTPB binder was fixed at 15% and cured with isophorone diisocyanate (IPDI). By varying AP and Al, the effect of oxidizer- fuel mixture ratio (O/F) on the whole propellant can be determined. The propellant strands were manufactured using compression molded method and burnt in a strand burner using wire technique over a range of pressure from 1 atm to 31 atm. The results obtained shows that the temperature sensitivity, a, increases with increasing O/F. Propellant p80 which has O/F ratio of 80/20 gives the highest value of temperature sensitivity which is 1.687. The results shows that the propellant composition has significant effect on the temperature sensitivity of composite propellant

  5. Sensitivity enhancement of OD- and OD-CNT-based humidity sensors by high gravity thin film deposition technique

    NASA Astrophysics Data System (ADS)

    Karimov, Kh. S.; Fatima, Noshin; Sulaiman, Khaulah; Mahroof Tahir, M.; Ahmad, Zubair; Mateen, A.

    2015-03-01

    The humidity sensing properties of the thin films of an organic semiconductor material orange dye (OD) and its composite with CNTs deposited at high gravity conditions have been reported. Impedance, phase angle, capacitance and dissipation of the samples were measured at 1 kHz and room temperature conditions. The impedance decreases and capacitance increases with an increase in the humidity level. It was found that the sensitivity of the OD-based thin film samples deposited at high gravity condition is higher than the samples deposited at low gravity condition. The impedances and capacitance sensitivities of the of the samples deposited under high gravity condition are 6.1 times and 1.6 times higher than the films deposited under low gravity condition.

  6. The Right Tool for the Job: Detection of Soil-Transmitted Helminths in Areas Co-endemic for Other Helminths

    PubMed Central

    Periago, Maria V.; Diniz, Renata C.; Pinto, Simone A.; Yakovleva, Anna; Correa-Oliveira, Rodrigo; Diemert, David J.; Bethony, Jeffrey M.

    2015-01-01

    Background Due to the recent increased use of the McMaster (MM) fecal egg counting method for assessing benzimidazole drug efficacy for treating soil-transmitted helminth (STH) infections, the aim of the current study was to determine the operational value of including the MM method alongside the Kato-Katz (KK) fecal thick smear to increase the diagnostic sensitivity when STHs are co-endemic with trematode helminths (e.g., Schistosoma mansoni). Methods A cross-sectional study was conducted in school-aged children aged 4-18 years in the northeastern region of the State of Minas Gerais (Brazil), where Necator americanus, Ascaris lumbricoides, Trichuris trichiura, and S. mansoni are co-endemic. One fecal sample from each participant was collected and transported to the field laboratory for analysis. Coprological diagnosis was performed on each fecal sample by three different methods: Formalin-Ether Sedimentation (FES), KK and the MM technique. The diagnostic sensitivity and negative predictive value (NPV) of each technique was calculated using the combination of all three techniques as the composite standard. In order to determine the agreement between the three techniques Fleiss´ kappa was used. Both the Cure Rate (CR) and the Fecal Egg Count Reduction (FECR) were calculated using the two quantification techniques (i.e., the MM and KK). Results Fecal samples from 1260 children were analyzed. The KK had higher diagnostic sensitivity than the MM for the detection of both A. lumbricoides (KK 97.3%, MM 69.5%) and hookworm (KK 95.1%, MM 80.8%). The CR of a single dose of mebendazole varied significantly between the KK and MM for both A. lumbricoides (p = 0.016) and hookworm (p = 0.000), with lower rates obtained with the KK. On the other hand, the FECR was very similar between both techniques for both A. lumbricoides and hookworm. Conclusion The MM did not add any diagnostic value over the KK in areas where both STHs and trematodes were co-endemic. The lower sensitivity of the MM would have an important impact on the administration of selective school-based treatment in this area since if only the MM were used, 36 (13.9%) children diagnosed with A. lumbricoides would have gone untreated. PMID:26241329

  7. Comparative evaluation of workload estimation techniques in piloting tasks

    NASA Technical Reports Server (NTRS)

    Wierwille, W. W.

    1983-01-01

    Techniques to measure operator workload in a wide range of situations and tasks were examined. The sensitivity and intrusion of a wide variety of workload assessment techniques in simulated piloting tasks were investigated. Four different piloting tasks, psychomotor, perceptual, mediational, and communication aspects of piloting behavior were selected. Techniques to determine relative sensitivity and intrusion were applied. Sensitivity is the relative ability of a workload estimation technique to discriminate statistically significant differences in operator loading. High sensitivity requires discriminable changes in score means as a function of load level and low variation of the scores about the means. Intrusion is an undesirable change in the task for which workload is measured, resulting from the introduction of the workload estimation technique or apparatus.

  8. Polarization mode beating techniques for high-sensitivity intracavity sensing

    NASA Astrophysics Data System (ADS)

    Rosales-Garcia, Andrea

    Several industries, including semiconductor, space, defense, medical, chemical and homeland security, demand precise and accurate measurements in the nanometer and sub-nanometer scale. Optical interferometers have been widely investigated due to its dynamic-range, non-contact and high-precision features. Although commercially available interferometers can have sub-nanometer resolution, the practical accuracy exceeds the nanometer range. The fast development of nanotechnology requires more sensitive, reliable, compact and lower cost alternatives than those in existence. This work demonstrates a compact, versatile, accurate and cost-effective fiber laser sensor based on intracavity polarization mode beating (PMB) techniques for monitoring intracavity phase changes with very high sensitivity. Fiber resonators support two orthogonal polarization modes that can behave as two independent lasing channels within the cavity. The fiber laser incorporates an intracavity polarizing beamsplitter that allows for adjusting independently the polarization modes. The heterodyne detection of the laser output produces a beating (PMB) signal, whose frequency is a function of the phase difference between the polarization modes. The optical phase difference is transferred from the optical frequency to a much lower frequency and thus electronic methods can be used to obtain very precise measurements. Upon changing the pathlength of one mode, changes iu the PMB frequency can be effectively measured. Furthermore, since the polarization nodes share the same cavity, the PMB technique provides a simple means to achieve suppression of common mode noise and laser source instabilities. Frequency changes of the PMB signal are evaluated as a function of displacement, intracavity pressure and air density. Refractive index changes of 10 -9 and sub-nanometer displacement measurements are readily attained. Increased refractive index sensitivity and sub-picometer displacement can be reached owing to the high finesse and resolution of the system. Experimental changes in the refractive index of air as a function of pressure are in good agreement with theoretical predictions. An alternative fiber laser configuration, which incorporates non-reciprocal elements, allows measuring the optical activity of enantiomeric mixtures using PMB techniques. The sensitivity attained through PMB techniques demonstrates a potential method for ultra-sensitive biochemical sensing and explosive detection.

  9. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    PubMed

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David; Šlapeta, Jan

    2017-09-01

    Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic to non-endemic countries without the requirement of a complete cold chain. The commercially-available ELISA displayed poorer sensitivity, even after adjustment of the positive threshold (65-88%), compared to the sensitivity (91-100%) of the new molecular diagnostic workflow. Species-specific assays for sensitive detection of Fasciola spp. enable ante-mortem diagnosis in both human and animal settings. This includes Southeast Asia where there are potentially many undocumented human cases and where post-mortem examination of production animals can be difficult. The new molecular workflow provides a sensitive and quantitative diagnostic approach for the rapid testing of medium to large sample sizes, potentially superseding the traditional sedimentation and FEC technique and enabling surveillance programs in locations where animal and human health funding is limited.

  10. Molecular methods for pathogen detection and quantification

    USDA-ARS?s Scientific Manuscript database

    Ongoing interest in convenient, inexpensive, fast, sensitive and accurate techniques for detecting and/or quantifying the presence of soybean pathogens has resulted in increased usage of molecular tools. The method of extracting a molecular target (usually DNA or RNA) for detection depends wholly up...

  11. When insect endosymbionts and plant endophytes mediate biological control outcomes

    USDA-ARS?s Scientific Manuscript database

    The identification of endosymbionts and endophytes within insect and plant tissues, respectively, has increased exponentially over the past 10-15 years, enabled largely by the proliferation of sensitive molecular techniques and publicly accessible databases of nucleotide sequences. However, the rate...

  12. Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care.

    PubMed

    Cherry, Simon R; Jones, Terry; Karp, Joel S; Qi, Jinyi; Moses, William W; Badawi, Ramsey D

    2018-01-01

    PET is widely considered the most sensitive technique available for noninvasively studying physiology, metabolism, and molecular pathways in the living human being. However, the utility of PET, being a photon-deficient modality, remains constrained by factors including low signal-to-noise ratio, long imaging times, and concerns about radiation dose. Two developments offer the potential to dramatically increase the effective sensitivity of PET. First by increasing the geometric coverage to encompass the entire body, sensitivity can be increased by a factor of about 40 for total-body imaging or a factor of about 4-5 for imaging a single organ such as the brain or heart. The world's first total-body PET/CT scanner is currently under construction to demonstrate how this step change in sensitivity affects the way PET is used both in clinical research and in patient care. Second, there is the future prospect of significant improvements in timing resolution that could lead to further effective sensitivity gains. When combined with total-body PET, this could produce overall sensitivity gains of more than 2 orders of magnitude compared with existing state-of-the-art systems. In this article, we discuss the benefits of increasing body coverage, describe our efforts to develop a first-generation total-body PET/CT scanner, discuss selected application areas for total-body PET, and project the impact of further improvements in time-of-flight PET. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Prostate ultrasound--for urologists only?

    PubMed

    Frauscher, Ferdinand; Gradl, Johann; Pallwein, Leo

    2005-11-23

    The value of ultrasound (US) in the diagnosis of prostate cancer has dramatically increased in the past decade. This is mainly related to the increasing incidence of prostate cancer, the most common cancer in men and one of the most important causes of death from cancer in men. The value of conventional gray-scale US for prostate cancer detection has been extensively investigated, and has shown a low sensitivity and specificity. Therefore conventional gray-scale US is mainly used by urologists for guiding systematic prostate biopsies. With the development of new US techniques, such as color and power Doppler US, and the introduction of US contrast agents, the role of US for prostate cancer detection has dramatically changed. Advances in US techniques were introduced to further increase the value of US contrast agents. Although most of these developments in US techniques, which use the interaction of the contrast agent with the transmitted US waves, are very sensitive for the detection of microbubbles, they are mostly unexplored, in particular for prostate applications. Early reports of contrast-enhanced US investigations of blood flow of the prostate have shown that contrast-enhanced US adds important information to the conventional gray-scale US technique. Furthermore, elastography or 'strain imaging' seems to have great potential in prostate cancer detection. Since these new advances in US are very sophisticated and need a long learning curve, radiologists, who are overall better trained with these new US techniques, will play a more important role in prostate cancer diagnosis. Current trends show that these new US techniques may allow for targeted biopsies and therefore replace the current 'gold standard' for prostate cancer detection--the systematic biopsy. Consequently the use of these new US techniques for the detection and clinical staging of prostate cancer is promising. However, future clinical trials will be needed to determine if the promise of these new US advances of the prostate evolves into clinical application. International Cancer Imaging Society.

  14. Application of a sensitivity analysis technique to high-order digital flight control systems

    NASA Technical Reports Server (NTRS)

    Paduano, James D.; Downing, David R.

    1987-01-01

    A sensitivity analysis technique for multiloop flight control systems is studied. This technique uses the scaled singular values of the return difference matrix as a measure of the relative stability of a control system. It then uses the gradients of these singular values with respect to system and controller parameters to judge sensitivity. The sensitivity analysis technique is first reviewed; then it is extended to include digital systems, through the derivation of singular-value gradient equations. Gradients with respect to parameters which do not appear explicitly as control-system matrix elements are also derived, so that high-order systems can be studied. A complete review of the integrated technique is given by way of a simple example: the inverted pendulum problem. The technique is then demonstrated on the X-29 control laws. Results show linear models of real systems can be analyzed by this sensitivity technique, if it is applied with care. A computer program called SVA was written to accomplish the singular-value sensitivity analysis techniques. Thus computational methods and considerations form an integral part of many of the discussions. A user's guide to the program is included. The SVA is a fully public domain program, running on the NASA/Dryden Elxsi computer.

  15. Biological sensing with surface-enhanced Raman spectroscopy (SERS) using a facile and rapid silver colloid-based synthesis technique

    NASA Astrophysics Data System (ADS)

    Smyth, C.; Mehigan, S.; Rakovich, Y. P.; Bell, S. E. J.; McCabe, E. M.

    2011-03-01

    Optical techniques towards the realisation of sensitive and selective biosensing platforms have received a considerable amount of attention in recent times. Techniques based on interferometry, surface plasmon resonance, field-effect transistors and waveguides have all proved popular, and in particular, spectroscopy offers a large range of options. Raman spectroscopy has always been viewed as an information rich technique in which the vibrational frequencies reveal a lot about the structure of a compound. The issue with Raman spectroscopy has traditionally been that its rather low cross section leads to poor limits-of-detection. In response to this problem, Surface-enhanced Raman Scattering (SERS), which increases sensitivity by bringing the sample in contact with many types of enhanceing substrates, has been developed. Here we discuss a facile and rapid technique for the detection of pterins using colloidal silver suspensions. Pteridine compounds are a family of biochemicals, heterocyclic in structure, and employed in nature as components of colour pigmentation and also as facilitators for many metabolic pathways, particularly those relating to the amino acid hydroxylases. In this work, xanthopterin, isoxanthopterin and 7,8- dihydrobiopterin have been examined whilst absorbed to SERS-active silver colloids. SERS, while far more sensitive than regular Raman spectroscopy, has its own issues relating to the reproducibility of substrates. In order to obtain quantitative data for the pteridine compounds mentioned above, exploratory studies of methods for introducing an internal standard for normalisation of the signals have been carried out.e

  16. Multiple Myeloma Minimal Residual Disease.

    PubMed

    Paiva, Bruno; García-Sanz, Ramón; San Miguel, Jesús F

    Assessment of minimal residual disease (MRD) is becoming standard diagnostic care for potentially curable neoplasms such as some acute leukemias as well as chronic myeloid and lymphocytic leukemia. Although multiple myeloma (MM) remains as an incurable disease, around half of the patients achieve complete remission (CR), and recent data suggests increasing rates of curability with "total-therapy-like" programs. This landscape is likely to be improved with the advent of new antibodies and small molecules. Therefore, conventional serological and morphological techniques have become suboptimal for sensitive evaluation of highly effective treatment strategies. Although, existing data suggests that MRD could be used as a biomarker to evaluate treatment efficacy, help on therapeutic decisions, and act as surrogate for overall survival, the role of MRD in MM is still a matter of extensive debate. Here, we review the different levels of remission used to define depth of response in MM and their clinical significance, as well as the prognostic value and unique characteristics of MRD detection using immunophenotypic, molecular, and imaging techniques. Key facts The higher efficacy of new treatment strategies for MM demand the incorporation of highly sensitive techniques to monitor treatment efficacy MRD could be used as a more potent surrogate biomarker for survival than standard CR We need to understand the pros and cons of the different MRD techniques The time has come to incorporate highly sensitive, cost-effective, readily available, and standardized MRD techniques into clinical trials to assess its role in therapeutic decisions.

  17. Traffic-Sensitive Live Migration of Virtual Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, Umesh; Keahey, Kate

    2015-01-01

    In this paper we address the problem of network contention between the migration traffic and the VM application traffic for the live migration of co-located Virtual Machines (VMs). When VMs are migrated with pre-copy, they run at the source host during the migration. Therefore the VM applications with predominantly outbound traffic contend with the outgoing migration traffic at the source host. Similarly, during post-copy migration, the VMs run at the destination host. Therefore the VM applications with predominantly inbound traffic contend with the incoming migration traffic at the destination host. Such a contention increases the total migration time of themore » VMs and degrades the performance of VM application. Here, we propose traffic-sensitive live VM migration technique to reduce the contention of migration traffic with the VM application traffic. It uses a combination of pre-copy and post-copy techniques for the migration of the co-located VMs, instead of relying upon any single pre-determined technique for the migration of all the VMs. We base the selection of migration techniques on VMs' network traffic profiles so that the direction of migration traffic complements the direction of the most VM application traffic. We have implemented a prototype of traffic-sensitive migration on the KVM/QEMU platform. In the evaluation, we compare traffic-sensitive migration against the approaches that use only pre-copy or only post-copy for VM migration. We show that our approach minimizes the network contention for migration, thus reducing the total migration time and the application degradation.« less

  18. Method-independent, Computationally Frugal Convergence Testing for Sensitivity Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Mai, Juliane; Tolson, Bryan

    2017-04-01

    The increasing complexity and runtime of environmental models lead to the current situation that the calibration of all model parameters or the estimation of all of their uncertainty is often computationally infeasible. Hence, techniques to determine the sensitivity of model parameters are used to identify most important parameters or model processes. All subsequent model calibrations or uncertainty estimation procedures focus then only on these subsets of parameters and are hence less computational demanding. While the examination of the convergence of calibration and uncertainty methods is state-of-the-art, the convergence of the sensitivity methods is usually not checked. If any, bootstrapping of the sensitivity results is used to determine the reliability of the estimated indexes. Bootstrapping, however, might as well become computationally expensive in case of large model outputs and a high number of bootstraps. We, therefore, present a Model Variable Augmentation (MVA) approach to check the convergence of sensitivity indexes without performing any additional model run. This technique is method- and model-independent. It can be applied either during the sensitivity analysis (SA) or afterwards. The latter case enables the checking of already processed sensitivity indexes. To demonstrate the method independency of the convergence testing method, we applied it to three widely used, global SA methods: the screening method known as Morris method or Elementary Effects (Morris 1991, Campolongo et al., 2000), the variance-based Sobol' method (Solbol' 1993, Saltelli et al. 2010) and a derivative-based method known as Parameter Importance index (Goehler et al. 2013). The new convergence testing method is first scrutinized using 12 analytical benchmark functions (Cuntz & Mai et al. 2015) where the true indexes of aforementioned three methods are known. This proof of principle shows that the method reliably determines the uncertainty of the SA results when different budgets are used for the SA. Subsequently, we focus on the model-independency by testing the frugal method using the hydrologic model mHM (www.ufz.de/mhm) with about 50 model parameters. The results show that the new frugal method is able to test the convergence and therefore the reliability of SA results in an efficient way. The appealing feature of this new technique is the necessity of no further model evaluation and therefore enables checking of already processed (and published) sensitivity results. This is one step towards reliable and transferable, published sensitivity results.

  19. [Analysis of genomic DNA methylation level in radish under cadmium stress by methylation-sensitive amplified polymorphism technique].

    PubMed

    Yang, Jin-Lan; Liu, Li-Wang; Gong, Yi-Qin; Huang, Dan-Qiong; Wang, Feng; He, Ling-Li

    2007-06-01

    The level of cytosine methylation induced by cadmium in radish (Raphanus sativus L.) genome was analysed using the technique of methylation-sensitive amplified polymorphism (MSAP). The MSAP ratios in radish seedling exposed to cadmium chloride at the concentration of 50, 250 and 500 mg/L were 37%, 43% and 51%, respectively, and the control was 34%; the full methylation levels (C(m)CGG in double strands) were at 23%, 25% and 27%, respectively, while the control was 22%. The level of increase in MSAP and full methylation indicated that de novo methylation occurred in some 5'-CCGG sites under Cd stress. There was significant positive correlation between increase of total DNA methylation level and CdCl(2) concentration. Four types of MSAP patterns: de novo methylation, de-methylation, atypical pattern and no changes of methylation pattern were identified among CdCl(2) treatments and the control. DNA methylation alteration in plants treated with CdCl(2) was mainly through de novo methylation.

  20. The Gaussian atmospheric transport model and its sensitivity to the joint frequency distribution and parametric variability.

    PubMed

    Hamby, D M

    2002-01-01

    Reconstructed meteorological data are often used in some form of long-term wind trajectory models for estimating the historical impacts of atmospheric emissions. Meteorological data for the straight-line Gaussian plume model are put into a joint frequency distribution, a three-dimensional array describing atmospheric wind direction, speed, and stability. Methods using the Gaussian model and joint frequency distribution inputs provide reasonable estimates of downwind concentration and have been shown to be accurate to within a factor of four. We have used multiple joint frequency distributions and probabilistic techniques to assess the Gaussian plume model and determine concentration-estimate uncertainty and model sensitivity. We examine the straight-line Gaussian model while calculating both sector-averaged and annual-averaged relative concentrations at various downwind distances. The sector-average concentration model was found to be most sensitive to wind speed, followed by horizontal dispersion (sigmaZ), the importance of which increases as stability increases. The Gaussian model is not sensitive to stack height uncertainty. Precision of the frequency data appears to be most important to meteorological inputs when calculations are made for near-field receptors, increasing as stack height increases.

  1. Poisson and negative binomial item count techniques for surveys with sensitive question.

    PubMed

    Tian, Guo-Liang; Tang, Man-Lai; Wu, Qin; Liu, Yin

    2017-04-01

    Although the item count technique is useful in surveys with sensitive questions, privacy of those respondents who possess the sensitive characteristic of interest may not be well protected due to a defect in its original design. In this article, we propose two new survey designs (namely the Poisson item count technique and negative binomial item count technique) which replace several independent Bernoulli random variables required by the original item count technique with a single Poisson or negative binomial random variable, respectively. The proposed models not only provide closed form variance estimate and confidence interval within [0, 1] for the sensitive proportion, but also simplify the survey design of the original item count technique. Most importantly, the new designs do not leak respondents' privacy. Empirical results show that the proposed techniques perform satisfactorily in the sense that it yields accurate parameter estimate and confidence interval.

  2. Biological water quality monitoring using chemiluminescent and bioluminescent techniques

    NASA Technical Reports Server (NTRS)

    Thomas, R. R.

    1978-01-01

    Automated chemiluminescence and bioluminescence sensors were developed for the continuous monitoring of microbial levels in water supplies. The optimal chemical procedures were determined for the chemiluminescence system to achieve maximum sensitivity. By using hydrogen peroxide, reaction rate differentiation, ethylene diamine tetraacetic acid (EDTA), and carbon monoxide pretreatments, factors which cause interference were eliminated and specificity of the reaction for living and dead bacteria was greatly increased. By employing existing technology with some modifications, a sensitive and specific bioluminescent system was developed.

  3. Fecal Molecular Markers for Colorectal Cancer Screening

    PubMed Central

    Kanthan, Rani; Senger, Jenna-Lynn; Kanthan, Selliah Chandra

    2012-01-01

    Despite multiple screening techniques, including colonoscopy, flexible sigmoidoscopy, radiological imaging, and fecal occult blood testing, colorectal cancer remains a leading cause of death. As these techniques improve, their sensitivity to detect malignant lesions is increasing; however, detection of precursor lesions remains problematic and has generated a lack of general acceptance for their widespread usage. Early detection by an accurate, noninvasive, cost-effective, simple-to-use screening technique is central to decreasing the incidence and mortality of this disease. Recent advances in the development of molecular markers in faecal specimens are encouraging for its use as a screening tool. Genetic mutations and epigenetic alterations that result from the carcinogenetic process can be detected by coprocytobiology in the colonocytes exfoliated from the lesion into the fecal matter. These markers have shown promising sensitivity and specificity in the detection of both malignant and premalignant lesions and are gaining popularity as a noninvasive technique that is representative of the entire colon. In this paper, we summarize the genetic and epigenetic fecal molecular markers that have been identified as potential targets in the screening of colorectal cancer. PMID:22969796

  4. Elevation of naloxone-sensitive /sup 3/H-dihydromorphine binding in hippocampal formation of genetically epilepsy-prone rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, D.D.; Mills, S.A.; Jobe, P.C.

    1988-01-01

    /sup 3/H-Dihydromorphine (DHM) binding sites were measured in the brain of non-epileptic control and GEPR rats using in vitro autoradiographic techniques. The number of naloxone-sensitive /sup 3/H-DHM binding sites was increased 38-57% in the pyramidal cell layer of ventral hippocampal CA/sub 3/ and CA/sub 1/ of GEPR-3 and GEPR-9 rats compared to non-epileptic controls. No significant differences in /sup 3/H-DHM binding were observed in dorsal hippocampal formation, lateral entorhinal cortex, lateral geniculate or cerebellum. The results suggest that an increase in the number of opioid receptors in ventral hippocampus of GEPR rats may be one factor contributing to the enhancedmore » sensitivity of GEPR-9 rats to the proconvulsant effects of morphine.« less

  5. Development of a sensitive GC-C-IRMS method for the analysis of androgens.

    PubMed

    Polet, Michael; Van Gansbeke, Wim; Deventer, Koen; Van Eenoo, Peter

    2013-02-01

    The administration of anabolic steroids is one of the most important issues in doping control and is detectable through a change in the carbon isotopic composition of testosterone and/or its metabolites. Gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS), however, remains a very laborious and expensive technique and substantial amounts of urine are needed to meet the sensitivity requirements of the IRMS. This can be problematic because only a limited amount of urine is available for anti-doping analysis on a broad spectrum of substances. In this work we introduce a new type of injection that increases the sensitivity of GC-C-IRMS by a factor of 13 and reduces the limit of detection, simply by using solvent vent injections instead of splitless injection. This drastically reduces the amount of urine required. On top of that, by only changing the injection technique, the detection parameters of the IRMS are not affected and there is no loss in linearity. Copyright © 2012 John Wiley & Sons, Ltd.

  6. Computational aspects of sensitivity calculations in linear transient structural analysis. Ph.D. Thesis - Virginia Polytechnic Inst. and State Univ.

    NASA Technical Reports Server (NTRS)

    Greene, William H.

    1990-01-01

    A study was performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal of the study was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semi-analytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models. In several cases this fixed mode approach resulted in very poor approximations of the stress sensitivities. Almost all of the original modes were required for an accurate sensitivity and for small numbers of modes, the accuracy was extremely poor. To overcome this poor accuracy, two semi-analytical techniques were developed. The first technique accounts for the change in eigenvectors through approximate eigenvector derivatives. The second technique applies the mode acceleration method of transient analysis to the sensitivity calculations. Both result in accurate values of the stress sensitivities with a small number of modes and much lower computational costs than if the vibration modes were recalculated and then used in an overall finite difference method.

  7. Advanced materials for improving biosensing performances of propagating and localized plasmonic transducers

    NASA Astrophysics Data System (ADS)

    Manera, M. G.; Colombelli, A.; Convertino, A.; Rella, S.; De Lorenzis, E.; Taurino, A.; Malitesta, C.; Rella, R.

    2015-05-01

    Among all transduction methodologies reported in the field of solid state optical chemical sensors, the attention has been focused onto the optical sensing characterization by using propagating and localized surface plasmon resonance (SPR) techniques. The research in this field is always oriented in the improvement of the sensing features in terms of sensitivity and limits of detection. To this purpose different strategies have been proposed to realize advanced materials for high sensitive plasmonic devices. In this work nanostructured silica nanowires decorated by gold nanoparticles and active magneto-plasmonic transductors are considered as new biosensing transductors useful to increase the performance of sensitive devices.

  8. Ultrasonic signal enhancement by resonator techniques

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1973-01-01

    Ultrasonic resonators increase experimental sensitivity to acoustic dispersion and changes in attenuation. Experimental sensitivity enhancement line shapes are presented which were obtained by modulating the acoustic properties of a CdS resonator with a light beam. Small changes in light level are made to produce almost pure absorptive or dispersive changes in the resonator signal. This effect is due to the coupling of the ultrasonic wave to the CdS conductivity which is proportional to incident light intensity. The resonator conductivity is adjusted in this manner to obtain both dispersive and absorptive sensitivity enhancement line shapes. The data presented verify previous thoretical calculations based on a propagating wave model.

  9. Protein detection system

    DOEpatents

    Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA

    2009-05-05

    The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.

  10. Subchronic sleep restriction causes tissue-specific insulin resistance.

    PubMed

    Rao, Madhu N; Neylan, Thomas C; Grunfeld, Carl; Mulligan, Kathleen; Schambelan, Morris; Schwarz, Jean-Marc

    2015-04-01

    Short sleep duration is associated with an increased risk of type 2 diabetes. Subchronic sleep restriction (SR) causes insulin resistance, but the mechanisms and roles of specific tissues are unclear. The purpose of this article was to determine whether subchronic SR altered (1) hepatic insulin sensitivity, (2) peripheral insulin sensitivity, and (3) substrate utilization. This was a randomized crossover study in which 14 subjects underwent 2 admissions separated by a washout period. Each admission had 2 acclimatization nights followed by 5 nights of either SR (4 hours time in bed) or normal sleep (8 hours time in bed). MAIN OUTCOME MEASURE/METHODS: Insulin sensitivity (measured by hyperinsulinemic-euglycemic clamp) and hepatic insulin sensitivity (measured by stable isotope techniques) were measured. In addition, we assayed stress hormone (24-hour urine free cortisol, metanephrine, and normetanephrine), nonesterified fatty acid (NEFA), and β-hydroxybutyrate (β-OH butyrate) levels. Resting energy expenditure (REE) and respiratory quotient (RQ) were measured by indirect calorimetry. Compared to normal sleep, whole-body insulin sensitivity decreased by 25% (P = .008) with SR and peripheral insulin sensitivity decreased by 29% (P = .003). Whereas hepatic insulin sensitivity (endogenous glucose production) did not change significantly, percent gluconeogenesis increased (P = .03). Stress hormones increased modestly (cortisol by 21%, P = .04; metanephrine by 8%, P = .014; normetanephrine by 18%, P = .002). Fasting NEFA and β-OH butyrate levels increased substantially (62% and 55%, respectively). REE did not change (P = 0.98), but RQ decreased (0.81 ± .02 vs 0.75 ± 0.02, P = .045). Subchronic SR causes unique metabolic disturbances characterized by peripheral, but not hepatic, insulin resistance; this was associated with a robust increase in fasting NEFA levels (indicative of increased lipolysis), decreased RQ, and increased β-OH butyrate levels (indicative of whole-body and hepatic fat oxidation, respectively). We postulate that elevated NEFA levels are partially responsible for the decrease in peripheral sensitivity and modulation of hepatic metabolism (ie, increase in gluconeogenesis without increase in endogenous glucose production). Elevated cortisol and metanephrine levels may contribute to insulin resistance by increasing lipolysis and NEFA levels.

  11. Directed Hidden-Code Extractor for Environment-Sensitive Malwares

    NASA Astrophysics Data System (ADS)

    Jia, Chunfu; Wang, Zhi; Lu, Kai; Liu, Xinhai; Liu, Xin

    Malware writers often use packing technique to hide malicious payload. A number of dynamic unpacking tools are.designed in order to identify and extract the hidden code in the packed malware. However, such unpacking methods.are all based on a highly controlled environment that is vulnerable to various anti-unpacking techniques. If execution.environment is suspicious, malwares may stay inactive for a long time or stop execution immediately to evade.detection. In this paper, we proposed a novel approach that automatically reasons about the environment requirements.imposed by malware, then directs a unpacking tool to change the controlled environment to extract the hide code at.the new environment. The experimental results show that our approach significantly increases the resilience of the.traditional unpacking tools to environment-sensitive malware.

  12. A study of the stress wave factor technique for nondestructive evaluation of composite materials

    NASA Technical Reports Server (NTRS)

    Sarrafzadeh-Khoee, A.; Kiernan, M. T.; Duke, J. C., Jr.; Henneke, E. G., II

    1986-01-01

    The acousto-ultrasonic method of nondestructive evaluation is an extremely sensitive means of assessing material response. Efforts continue to complete the understanding of this method. In order to achieve the full sensitivity of the technique, extreme care must be taken in its performance. This report provides an update of the efforts to advance the understanding of this method and to increase its application to the nondestructive evaluation of composite materials. Included are descriptions of a novel optical system that is capable of measuring in-plane and out-of-plane displacements, an IBM PC-based data acquisition system, an extensive data analysis software package, the azimuthal variation of acousto-ultrasonic behavior in graphite/epoxy laminates, and preliminary examination of processing variation in graphite-aluminum tubes.

  13. Three Averaging Techniques for Reduction of Antenna Temperature Variance Measured by a Dicke Mode, C-Band Radiometer

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.; Lawrence, Roland W.

    2000-01-01

    As new radiometer technologies provide the possibility of greatly improved spatial resolution, their performance must also be evaluated in terms of expected sensitivity and absolute accuracy. As aperture size increases, the sensitivity of a Dicke mode radiometer can be maintained or improved by application of any or all of three digital averaging techniques: antenna data averaging with a greater than 50% antenna duty cycle, reference data averaging, and gain averaging. An experimental, noise-injection, benchtop radiometer at C-band showed a 68.5% reduction in Delta-T after all three averaging methods had been applied simultaneously. For any one antenna integration time, the optimum 34.8% reduction in Delta-T was realized by using an 83.3% antenna/reference duty cycle.

  14. Emergency OSL/TL dosimetry with integrated circuits from mobile phones

    NASA Astrophysics Data System (ADS)

    Sholom, S.; McKeever, S. W. S.

    2014-09-01

    Integrated circuits (ICs) from several mobile phones were studied as possible emergency dosimeters using optically stimulated luminescence (OSL) and thermoluminescence (TL) techniques. Measurement protocols were developed for ICs that take into consideration the effect of sensitization of the samples with increasing dose as well as fading of the signals after sample exposure. It was found that the OSL technique has a higher sensitivity with ICs when compared to TL, while the TL signals were characterized by better stability with time after exposure. Values of minimum measurable doses were found to be in the range between a few tens of mGy and several tens of mGy for the tested samples. It was concluded that ICs from mobile phones could be used for emergency dose reconstruction.

  15. Long range surface plasmon resonance (LRSPR) based highly sensitive refractive index sensor using Kretschmann prism coupling arrangement

    NASA Astrophysics Data System (ADS)

    Paliwal, Ayushi; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2016-04-01

    Long range surface plasmon resonance (LRSPR) when exploited for sensing purpose exhibit less losses in comparison to the sensors based on conventional SPR technique leading to the development of highly sensitive refractive index sensor. In order to excite long range surface plasmon (LRSP) mode, a high refractive index prism is used as coupler and a thin metal layer is sandwiched between a dielectric having similar refractive index with that of another semi-infinite dielectric. LRSP mode has been excited in symmetric configuration where metal (Au) layer is sandwiched between the two similar refractive index dielectrics (LiF thin film and a fixed concentration of sugar solution) for realization of a refractive index sensor. When the concentration of sugar solution is slightly increased from 30% to 40%, the LRSPR angle increases from 64.6° to 67.9° and the sensor is found to be highly sensitive with sensitivity of 0.0911 °/(mg/dl).

  16. Associations of serum adiponectin with skeletal muscle morphology and insulin sensitivity.

    PubMed

    Ingelsson, Erik; Arnlöv, Johan; Zethelius, Björn; Vasan, Ramachandran S; Flyvbjerg, Allan; Frystyk, Jan; Berne, Christian; Hänni, Arvo; Lind, Lars; Sundström, Johan

    2009-03-01

    Skeletal muscle morphology and function are strongly associated with insulin sensitivity. The objective of the study was to test the hypothesis that circulating adiponectin is associated with skeletal muscle morphology and that adiponectin mediates the relation of muscle morphology to insulin sensitivity. This was a cross-sectional investigation of 461 men aged 71 yr, participants of the community-based Uppsala Longitudinal Study of Adult Men study. Measures included serum adiponectin, insulin sensitivity measured with euglycemic insulin clamp technique, and capillary density and muscle fiber composition determined from vastus lateralis muscle biopsies. In multivariable linear regression models (adjusting for age, physical activity, fasting glucose, and pharmacological treatment for diabetes), serum adiponectin levels rose with increasing capillary density (beta, 0.30 per 50 capillaries per square millimeter increase; P = 0.041) and higher proportion of type I muscle fibers (beta, 0.27 per 10% increase; P = 0.036) but declined with a higher proportion of type IIb fibers (beta, -0.39 per 10% increase; P = 0.014). Using bootstrap methods to examine the potential role of adiponectin in associations between muscle morphology and insulin sensitivity and the associations of capillary density (beta difference, 0.041; 95% confidence interval 0.001, 0.085) and proportion of type IIb muscle fibers (beta difference, -0.053; 95% confidence interval -0.107, -0.002) with insulin sensitivity were significantly attenuated when adiponectin was included in the models. Circulating adiponectin concentrations were higher with increasing skeletal muscle capillary density and in individuals with higher proportion of slow oxidative muscle fibers. Furthermore, our results indicate that adiponectin could be a partial mediator of the relations between skeletal muscle morphology and insulin sensitivity.

  17. Recent neuroimaging techniques in mild traumatic brain injury.

    PubMed

    Belanger, Heather G; Vanderploeg, Rodney D; Curtiss, Glenn; Warden, Deborah L

    2007-01-01

    Mild traumatic brain injury (TBI) is characterized by acute physiological changes that result in at least some acute cognitive difficulties and typically resolve by 3 months postinjury. Because the majority of mild TBI patients have normal structural magnetic resonance imaging (MRI)/computed tomography (CT) scans, there is increasing attention directed at finding objective physiological correlates of persistent cognitive and neuropsychiatric symptoms through experimental neuroimaging techniques. The authors review studies utilizing these techniques in patients with mild TBI; these techniques may provide more sensitive assessment of structural and functional abnormalities following mild TBI. Particular promise is evident with fMRI, PET, and SPECT scanning, as demonstrated by associations between brain activation and clinical outcomes.

  18. Measurement of the line-of-sight velocity of high-altitude barium clouds A technique

    NASA Technical Reports Server (NTRS)

    Mende, S. B.; Harris, S. E.

    1982-01-01

    It is demonstrated that for maximizing the scientific output of future ionospheric and magnetospheric ion cloud release experiments a new type of instrument is required which will measure the line-of-sight velocity of the ion cloud by the Doppler technique. A simple instrument was constructed using a 5-cm diam solid Fabry-Perot etalon coupled to a low-light-level integrating TV camera. It was demonstrated that the system has both the sensitivity and spectral resolution for detection of ion clouds and measurement of their line-of-sight Doppler velocity. The tests consisted of (1) a field experiment using a rocket barium cloud release to check sensitivity, and (2) laboratory experiments to show the spectral resolving capabilities of the system. The instrument was found to be operational if the source was brighter than approximately 1 kR, and it had a wavelength resolution much better than 0.2 A, which corresponds to approximately 12 km/sec or in the case of barium ion an acceleration potential of 100 V. The instrument is rugged and, therefore, simple to use in field experiments or on flight instruments. The sensitivity limit of the instrument can be increased by increasing the size of the etalon.

  19. Sensitized and heavy atom induced production of acenaphthylene triplet: A laser flash photolysis study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samanta, A.; Fessenden, R.W.

    1989-07-27

    The triplet state of acenaphthylene has been examined by nanosecond laser flash photolysis using sensitization and heavy atom perturbation techniques. Although acenaphthylene does not form any observable triplet upon direct flash excitation, a transient with microsecond lifetime ({lambda}{sub max} = 315 nm) is observable when a solution of the sample is excited by sensitizers (benzophenone, thioxanthone, benzil). This transient is ascribed to the triplet of acenaphthylene on the basis of its quenching behavior toward oxygen, ferrocene, azulene, and {beta}-carotene. Quantitative data concerning the triplet-triplet absorption and quenching constants are presented. The triplet energy is estimated to lie between 46 andmore » 47 kcal/mol. The triplet can also be produced by direct excitation in solvents containing heavy atoms (ethyl bromide, ethyl iodide). The triplet yield is found to increase with an increase of the amount of the heavy atom containing solvent. No saturation limit is obtained. These facts together with the effect of heavy atoms on the T{sub 1} {yields} S{sub 0} process allow the differing behavior of ethyl bromide and ethyl iodide on the photodimerization process of acenaphthylene to be explained. Triplet-state parameters (extinction coefficient and triplet yield) have been estimated in these solvents by the energy-transfer technique and actinometry.« less

  20. Sensitivity control of optical fiber biosensors utilizing turnaround point long period gratings with self-assembled polymer coatings

    NASA Astrophysics Data System (ADS)

    Gifford, Erika; Wang, Z.; Ramachandran, S.; Heflin, J. R.

    2007-09-01

    Ionic self-assembled multilayers (ISAMs) adsorbed on long period fiber gratings (LPGs) can serve as an inexpensive, robust, portable, biosensor platform. The ISAM technique is a layer-by-layer deposition technique that creates thin films on the nanoscale level. The combination of ISAMs with LPGs yields exceptional sensitivity of the optical fiber transmission spectrum. We have shown theoretically that the resonant wavelength shift for a thin-film coated LPG can be caused by the variation of the film's refractive index and/or the variation of the thickness of the film. We have experimentally demonstrated that the deposition of nm-thick ISAM films on LPGs induces shifts in the resonant wavelength of > 1.6 nm per nm of thin film. It has also been shown that the sensitivity of the LPG to the thickness of the ISAM film increases with increased film thickness. We have further demonstrated that ISAM-coated LPGs can function effectively as biosensors by using the biotin-streptavidin system and by using the Bacillus anthracis (Anthrax) antibody- PA (Protective Antigen) system. Experiments have been successfully performed in both air and solution, which illustrates the versatility of the biosensor. The results confirm that ISAM-LPGs yield a reusable, thermally-stable, and robust platform for designing and building efficient optical biosensors.

  1. Techniques to Improve Ultrasound-Switchable Fluorescence Imaging

    NASA Astrophysics Data System (ADS)

    Kandukuri, Jayanth

    Novel approaches to the improvement of ultrasound-switchable fluorescence (USF) imaging--a relatively new imaging modality that combines ultrasound and optical imaging techniques--have been proposed for early cancer detection. In USF, a high-intensity focused ultrasound (HIFU) beam is used to induce temperature rise within its acoustic focal region due to which a thermo-sensitive USF contrast agent undergoes a switch in its state by increasing the output of fluorescence photons. By using an increase in fluorescence, one can isolate and quantify the fluorescence properties within the ultrasonic focal area. Therefore, USF is able to provide fluorescence contrast while maintaining ultrasound resolution in tissue. The major challenge of the conventional USF technique is its low axial resolution and its sensitivity (i.e. its signal-to-noise ratio (SNR)). This work focuses on investigating and developing a novel USF system design that can improve the resolution and SNR of USF imaging for biological applications. This work can be divided into two major parts: characterizing the performance of a high-intensity focused ultrasound transducer; and improving the axial resolution and sensitivity of the USF technique. Preliminary investigation was conducted by using an IR camera setup to detect temperature variation and thereby study the performance of the high-intensity focused ultrasound transducer to quantify different parameters of ultrasound-induced temperature focal size (UTFS). Investigations are conducted for the purpose of high-resolution imaging with an emphasis on HIFU-induced thermal focus size, short duration of HIFU-induced temperature increase (to avoid thermal diffusion or conduction), and control of HIFU-induced temperature increase within a few degrees Celsius. Next, the focus was shifted to improving the sensitivity of the ultrasound-switchable fluorescence-imaging technique. In this study, the USF signal is encoded with the modulation frequency of the ultrasound by modulating the induced temperature. Later, two approaches were adopted to modify the USF design to improve the resolution of the conventional USF imaging technique. The first approach aims to improve the axial resolution of conventional USF technique, which involves changing the USF system to adopt a dual-HIFU transducer arrangement (in which the transducers are 90 degree with respect to each other) for use as the heating source. The overlapped region of the two crossed foci (OR-TCF) of the dual-HIFU transducer module is expected to have small thermal size along both lateral and axial directions; thus, it could improve the axial resolution of the USF imaging technique. The second approach aims to demonstrate the improvement of resolution via a single-element HIFU transducer with a high frequency (15 MHz). The high frequency of the ultrasound transducer would have smaller acoustic lateral and axial size and should therefore have smaller thermal size. Thus, both approaches should be able to reduce the focal region of heating and thereby improve the resolution of the USF imaging. Results show that the driving power and exposure time of the HIFU transducer significantly influence the ultrasound-induced temperature focal size (UTFS). Interestingly, a nonlinear acoustic effect was observed at certain variations of the ultrasound exposure power while satisfying the thermal confinement within UTFS. This has been shown to reduce UTFS beyond the acoustic diffraction limit, while the ultrasound-induced thermal energy, which is confined within the focal volume, can induce a desired peak-temperature increase of a few degrees. On other hand, after encoding the HIFU exposure and therefore the detected USF signal with a modulation frequency, the SNR (sensitivity) and full width at half maximum (FWHM) along the lateral direction of the USF image was calculated to be 114 and 0.95 mm for a micro-tube with an inner diameter of 0.31 mm (ID), respectively. In comparison, they are 95 and 1.1 mm when using a non-modulated conventional USF imaging technique. In the case of improving the axial resolution of USF imaging for a similar target size, the dual-HIFU USF design was able to achieve 1.07 and 1.5 mm along lateral (x ) and axial (z) directions, respectively. Adopting the second approach of using single 15 MHz HIFU transducer for USF imaging, the axial resolution was calculated to be 0.67+/-0.02 mm and 1.71+/-0.24 mm along lateral (x) and axial (z) directions, respectively. Thus, high-resolution ultrasound-switchable fluorescence with good sensitivity can be designed for biomedical applications.

  2. Laboratory technology and cosmochemistry

    PubMed Central

    Zinner, Ernst K.; Moynier, Frederic; Stroud, Rhonda M.

    2011-01-01

    Recent developments in analytical instrumentation have led to revolutionary discoveries in cosmochemistry. Instrumental advances have been made along two lines: (i) increase in spatial resolution and sensitivity of detection, allowing for the study of increasingly smaller samples, and (ii) increase in the precision of isotopic analysis that allows more precise dating, the study of isotopic heterogeneity in the Solar System, and other studies. A variety of instrumental techniques are discussed, and important examples of discoveries are listed. Instrumental techniques and instruments include the ion microprobe, laser ablation gas MS, Auger EM, resonance ionization MS, accelerator MS, transmission EM, focused ion-beam microscopy, atom probe tomography, X-ray absorption near-edge structure/electron loss near-edge spectroscopy, Raman microprobe, NMR spectroscopy, and inductively coupled plasma MS. PMID:21498689

  3. Radioimmunoassays and 2-site immunoradiometric "sandwich" assays: basic principles.

    PubMed

    Rodbard, D

    1988-10-01

    The "sandwich" or noncompetitive reagent-excess, 2-site immunoradiometric assay (2-site IRMA), ELISA, USERIA, and related techniques, have several advantages compared with the traditional or competitive radioimmunoassays. IRMAs can provide improved sensitivity and specificity. However, IRMAs present some practical problems with nonspecific binding, increased consumption of antibody, biphasic dose response curve, (high dose hook effect), and may require special techniques for dose response curve analysis. We anticipate considerable growth in the popularity and importance of 2-site IRMA.

  4. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples

    PubMed Central

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David

    2017-01-01

    Background Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. Methodology/Principal findings A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74–0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic to non-endemic countries without the requirement of a complete cold chain. The commercially-available ELISA displayed poorer sensitivity, even after adjustment of the positive threshold (65–88%), compared to the sensitivity (91–100%) of the new molecular diagnostic workflow. Conclusions/Significance Species-specific assays for sensitive detection of Fasciola spp. enable ante-mortem diagnosis in both human and animal settings. This includes Southeast Asia where there are potentially many undocumented human cases and where post-mortem examination of production animals can be difficult. The new molecular workflow provides a sensitive and quantitative diagnostic approach for the rapid testing of medium to large sample sizes, potentially superseding the traditional sedimentation and FEC technique and enabling surveillance programs in locations where animal and human health funding is limited. PMID:28915255

  5. Structural and spectroscopic changes to natural nontronite induced by experimental impacts between 10 and 40 GPa

    NASA Astrophysics Data System (ADS)

    Friedlander, Lonia R.; Glotch, Timothy D.; Bish, David L.; Dyar, M. Darby; Sharp, Thomas G.; Sklute, Elizabeth C.; Michalski, Joseph R.

    2015-05-01

    Many phyllosilicate deposits remotely detected on Mars occur within bombarded terrains. Shock metamorphism from meteor impacts alters mineral structures, producing changed mineral spectra. Thus, impacts have likely affected the spectra of remotely sensed Martian phyllosilicates. We present spectral analysis results for a natural nontronite sample before and after laboratory-generated impacts over five peak pressures between 10 and 40 GPa. We conducted a suite of spectroscopic analyses to characterize the sample's impact-induced structural and spectral changes. Nontronite becomes increasingly disordered with increasing peak impact pressure. Every infrared spectroscopic technique used showed evidence of structural changes at shock pressures above ~25 GPa. Reflectance spectroscopy in the visible near-infrared region is primarily sensitive to the vibrations of metal-OH and interlayer H2O groups in the nontronite octahedral sheet. Midinfrared (MIR) spectroscopic techniques are sensitive to the vibrations of silicon and oxygen in the nontronite tetrahedral sheet. Because the tetrahedral and octahedral sheets of nontronite deform differently, impact-driven structural deformation may contribute to differences in phyllosilicate detection between remote sensing techniques sensitive to different parts of the nontronite structure. Observed spectroscopic changes also indicated that the sample's octahedral and tetrahedral sheets were structurally deformed but not completely dehydroxylated. This finding is an important distinction from previous studies of thermally altered phyllosilicates in which dehydroxylation follows dehydration in a stepwise progression preceding structural deformation. Impact alteration may thus complicate mineral-specific identifications based on the location of OH-group bands in remotely detected spectra. This is a key implication for Martian remote sensing arising from our results.

  6. Economic Evaluation of Frequent Home Nocturnal Hemodialysis Based on a Randomized Controlled Trial

    PubMed Central

    Tonelli, Marcello; Pauly, Robert; Walsh, Michael; Culleton, Bruce; So, Helen; Hemmelgarn, Brenda; Manns, Braden

    2014-01-01

    Provider and patient enthusiasm for frequent home nocturnal hemodialysis (FHNHD) has been renewed; however, the cost-effectiveness of this technique is unknown. We performed a cost-utility analysis of FHNHD compared with conventional hemodialysis (CvHD; 4 hours three times per week) from a health payer perspective over a lifetime horizon using patient information from the Alberta NHD randomized controlled trial. Costs, including training costs, were obtained using microcosting and administrative data (CAN$2012). We determined the incremental cost per quality-adjusted life year (QALY) gained. Robustness was assessed using scenario, sensitivity, and probabilistic sensitivity analyses. Compared with CvHD (61% in-center, 14% satellite, and 25% home dialysis), FHNHD led to incremental cost savings (−$6700) and an additional 0.38 QALYs. In sensitivity analyses, when the annual probability of technique failure with FHNHD increased from 7.6% (reference case) to ≥19%, FHNHD became unattractive (>$75,000/QALY). The cost/QALY gained became $13,000 if average training time for FHNHD increased from 3.7 to 6 weeks. In scenarios with alternate comparator modalities, FHNHD remained dominant compared with in-center CvHD; cost/QALYs gained were $18,500, $198,000, and $423,000 compared with satellite CvHD, home CvHD, and peritoneal dialysis, respectively. In summary, FHNHD is attractive compared with in-center CvHD in this cohort. However, the attractiveness of FHNHD varies by technique failure rate, training time, and dialysis modalities from which patients are drawn, and these variables should be considered when establishing FHNHD programs. PMID:24231665

  7. Improved detection of endoparasite DNA in soil sample PCR by the use of anti-inhibitory substances.

    PubMed

    Krämer, F; Vollrath, T; Schnieder, T; Epe, C

    2002-09-26

    Although there have been numerous microbial examinations of soil for the presence of human pathogenic developmental parasite stages of Ancylostoma caninum and Toxocara canis, molecular techniques (e.g. DNA extraction, purification and subsequent PCR) have scarcely been applied. Here, DNA preparations of soil samples artificially contaminated with genomic DNA or parasite eggs were examined by PCR. A. caninum and T. canis-specific primers based on the ITS-2 sequence were used for amplification. After the sheer DNA preparation a high content of PCR-interfering substances was still detectable. Subsequently, two different inhibitors of PCR-interfering agents (GeneReleaser, Bioventures Inc. and Maximator, Connex GmbH) were compared in PCR. Both substances increased PCR sensitivity greatly. However, comparison of the increase in sensitivity achieved with the two compounds demonstrated the superiority of Maximator, which enhanced sensitivity to the point of permitting positive detection of a single A. caninum egg and three T. canis eggs in a soil sample. This degree of sensitivity could not be achieved with GeneReleaser for either parasite Furthermore, Maximator not only increased sensitivity; it also cost less, required less time and had a lower risk of contamination. Future applications of molecular methods in epidemiological examinations of soil samples are discussed/elaborated.

  8. A Multimodal Imaging Protocol, (123)I/(99)Tc-Sestamibi, SPECT, and SPECT/CT, in Primary Hyperparathyroidism Adds Limited Benefit for Preoperative Localization.

    PubMed

    Lee, Grace S; McKenzie, Travis J; Mullan, Brian P; Farley, David R; Thompson, Geoffrey B; Richards, Melanie L

    2016-03-01

    Focused parathyroidectomy in primary hyperparathyroidism (1°HPT) is possible with accurate preoperative localization and intraoperative PTH monitoring (IOPTH). The added benefit of multimodal imaging techniques for operative success is unknown. Patients with 1°HPT, who underwent parathyroidectomy in 2012-2014 at a single institution, were retrospectively reviewed. Only the patients who underwent the standardized multimodal imaging workup consisting of (123)I/(99)Tc-sestamibi subtraction scintigraphy, SPECT, and SPECT/CT were assessed. Of 360 patients who were identified, a curative operation was performed in 96%, using pre-operative imaging and IOPTH. Imaging analysis showed that (123)I/(99)Tc-sestamibi had a sensitivity of 86% (95% CI 82-90%), positive predictive value (PPV) 93%, and accuracy 81%, based on correct lateralization. SPECT had a sensitivity of 77% (95% CI 72-82%), PPV 92% and accuracy 72%. SPECT/CT had a sensitivity of 75% (95% CI 70-80%), PPV of 94%, and accuracy 71%. There were 3 of 45 (7%) patients with negative sestamibi imaging that had an accurate SPECT and SPECT/CT. Of 312 patients (87%) with positive uptake on sestamibi (93% true positive, 7% false positive), concordant findings were present in 86% SPECT and 84% SPECT/CT. In cases where imaging modalities were discordant, but at least one method was true-positive, (123)I/(99)Tc-sestamibi was significantly better than both SPECT and SPECT/CT (p < 0.001). The inclusion of SPECT and SPECT/CT in 1°HPT imaging protocol increases patient cost up to 2.4-fold. (123)I/(99)Tc-sestamibi subtraction imaging is highly sensitive for preoperative localization in 1°HPT. SPECT and SPECT/CT are commonly concordant with (123)I/(99)Tc-sestamibi and rarely increase the sensitivity. Routine inclusion of multimodality imaging technique adds minimal clinical benefit but increases cost to patient in high-volume setting.

  9. Sensitive Carbohydrate Detection using Surface Enhanced Raman Tagging

    PubMed Central

    Vangala, Karthikeshwar; Yanney, Michael; Hsiao, Cheng-Te; Wu, Wells W.; Shen, Rong-Fong; Zou, Sige; Sygula, Andrzej; Zhang, Dongmao

    2010-01-01

    Glycomic analysis is an increasingly important field in biological and biomedical research as glycosylation is one of the most important protein post-translational modifications. We have developed a new technique to detect carbohydrates using surface enhanced Raman spectroscopy (SERS) by designing and applying a Rhodamine B derivative as the SERS tag. Using a reductive amination reaction, the Rhodamine-based tag (RT) was successfully conjugated to three model carbohydrates (glucose, lactose and glucuronic acid). SERS detection limits obtained with 632 nm HeNe laser were ~1 nM in concentration for all the RT-carbohydrate conjugates and ~10 fmol in total sample consumption. The dynamic range of the SERS method is about 4 orders of magnitude, spanning from 1 nM to 5 µM. Ratiometric SERS quantification using isotope-substituted SERS internal references also allows comparative quantifications of carbohydrates labeled with RT and deuterium/hydrogen substituted RT tags, respectively. In addition to enhancing the SERS detection of the tagged carbohydrates, the Rhodamine tagging facilitates fluorescence and mass spectrometric detection of carbohydrates. Current fluorescence sensitivity of RT-carbohydrates is ~ 3 nM in concentration while the mass spectrometry (MS) sensitivity is about 1 fmol that was achieved with linear ion trap electrospray ionization (ESI)-MS instrument. Potential applications that take advantage of the high SERS, fluorescence and MS sensitivity of this SERS tagging strategy are discussed for practical glycomic analysis where carbohydrates may be quantified with a fluorescence and SERS technique, and then identified with ESI-MS techniques. PMID:21082777

  10. Intraocular straylight and contrast sensitivity after contralateral wavefront-guided LASIK and wavefront-guided PRK for myopia.

    PubMed

    Barreto, Jackson; Barboni, Mirella T S; Feitosa-Santana, Claudia; Sato, João R; Bechara, Samir J; Ventura, Dora F; Alves, Milton Ruiz

    2010-08-01

    To compare intraocular straylight measurements and contrast sensitivity after wavefront-guided LASIK (WFG LASIK) in one eye and wavefront-guided photorefractive keratectomy (WFG PRK) in the fellow eye for myopia and myopic astigmatism correction. A prospective, randomized study of 22 eyes of 11 patients who underwent simultaneous WFG LASIK and WFG PRK (contralateral eye). Both groups were treated with the NIDEK Advanced Vision Excimer Laser System, and a microkeratome was used for flap creation in the WFG LASIK group. High and low contrast visual acuity, wavefront analysis, contrast sensitivity, and retinal straylight measurements were performed preoperatively and at 3, 6, and 12 months postoperatively. A third-generation straylight meter, C-Quant (Oculus Optikgeräte GmbH), was used for measuring intraocular straylight. Twelve months postoperatively, mean uncorrected distance visual acuity was -0.06 +/- 0.07 logMAR in the WFG LASIK group and -0.10 +/- 0.10 logMAR in the WFG PRK group. Mean preoperative intraocular straylight was 0.94 +/- 0.12 logs for the WFG LASIK group and 0.96 +/- 0.11 logs for the WFG PRK group. After 12 months, the mean straylight value was 1.01 +/- 0.1 log s for the WFG LASIK group and 0.97 +/- 0.12 log s for the WFG PRK group. No difference was found between techniques after 12 months (P = .306). No significant difference in photopic and mesopic contrast sensitivity between groups was noted. Intraocular straylight showed no statistically significant increase 1 year after WFG LASIK and WFG PRK. Higher order aberrations increased significantly after surgery for both groups. Nevertheless, WFG LASIK and WFG PRK yielded excellent visual acuity and contrast sensitivity performance without significant differences between techniques.

  11. Point-contact sensors: New prospects for a nanoscale-sensitive technique

    NASA Astrophysics Data System (ADS)

    Kamarchuk, G. V.; Pospelov, A. P.; Yeremenko, A. V.; Faulques, E. C.; Yanson, I. K.

    2006-11-01

    Point contacts have been discovered to present excellent and unprecedented characteristics when used as gas sensors. A novel concept has been tested successfully and opens the way to useful applications. Copper point contacts were investigated in gas media such as NOx, HCl, H2S and human breath. They reveal high sensitivity to these gases: the measured signal increases by 2-3 orders of magnitude upon gas exposure. Sensor parameters are fully restored when gas action ceases. Stable reproducibility of experimental results was observed after several exposure cycles onto the investigated point contacts.

  12. Sensitivity of Crustaceans to Substrate-Borne Vibration.

    PubMed

    Roberts, Louise; Breithaupt, Thomas

    2016-01-01

    There is increasing interest in the responsiveness of crustaceans to vibrations, especially in the context of marine developments where techniques such as pile driving create strong vibrations that are readily transmitted through the seabed. Experiments were undertaken under controlled conditions to investigate the sensitivity of unconditioned crustaceans to substrate-borne vibration. The subjects were exposed to a range of frequencies and amplitudes using the staircase method of presentation to determine the thresholds of response. Behavior varied according to the strength of the stimuli and included bursts of movement and rapid bouts of movement.

  13. Efficient light harvesting with micropatterned 3D pyramidal photoanodes in dye-sensitized solar cells.

    PubMed

    Wooh, Sanghyuk; Yoon, Hyunsik; Jung, Jae-Hyun; Lee, Yong-Gun; Koh, Jai Hyun; Lee, Byoungho; Kang, Yong Soo; Char, Kookheon

    2013-06-11

    3D TiO2 photoanodes in dye-sensitized solar cells (DSCs) are fabricated by the soft lithographic technique for efficient light trapping. An extended strategy to the construction of randomized pyramid structure is developed by the conventional wet-etching of a silicon wafer for low-cost fabrication. Moreover, the futher enhancement of light absorption resulting in photocurrent increase is achieved by combining the 3D photoanode with a conventional scattering layer. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Investigation of vacuum pumping on the dose response of the MAGAS normoxic polymer gel dosimeter.

    PubMed

    Venning, A J; Mather, M L; Baldock, C

    2005-06-01

    The effect of vacuum pumping on the dose response of the MAGAS polymer gel dosimeter has been investigated. A delay of several days post-manufacture before irradiation was previously necessary due to the slow oxygen scavenging of ascorbic acid. The MAGAS polymer gel dosimeter was vacuum pumped before gelation to remove dissolved oxygen. The MAGAS polymer gel dosimeter was poured into glass screw-top vials, which were irradiated at various times, post-manufacture to a range of doses. Magnetic resonance imaging techniques were used to determine the R2-dose response and R2-dose sensitivity of the MAGAS polymer gel. The results were compared with a control batch of MAGAS polymer gel that was not vacuum pumped. It was shown that vacuum pumping on the MAGAS polymer gel solution immediately prior to sealing in glass screw-top vials initially increases the R2-dose response and R2-dose sensitivity of the dosimeter. An increase in the R2-dose response and R2-dose sensitivity was observed with increasing time between manufacture and irradiation. Over the range of post-manufacture irradiation times investigated, the greatest R2-dose response and R2-dose sensitivity occurred at 96 hours.

  15. Use of pump current modulation of diode laser for increased sensitivity of detection of 13СO2 in human exhaled breath

    NASA Astrophysics Data System (ADS)

    Kireev, S. V.; Kondrashov, A. A.; Shnyrev, S. L.; Safagaraev, A. P.

    2018-03-01

    This paper reports that the use of a lock-in detection technique, when the pump current modulation of a diode laser is operating near the wavelength of 2 µm, allows the improvement of the sensitivity of the online detection of 13СO2 in expired air by more than three orders of magnitude. The sensitivity of the 13СO2 detected in the paper is 60 ppb with an error of 13СO2 concentration measured in the exhaled breath at the level of 2.9% for an optical path length of 60 cm.

  16. DEER Sensitivity between Iron Centers and Nitroxides in Heme-Containing Proteins Improves Dramatically Using Broadband, High-Field EPR

    PubMed Central

    2016-01-01

    This work demonstrates the feasibility of making sensitive nanometer distance measurements between Fe(III) heme centers and nitroxide spin labels in proteins using the double electron–electron resonance (DEER) pulsed EPR technique at 94 GHz. Techniques to measure accurately long distances in many classes of heme proteins using DEER are currently strongly limited by sensitivity. In this paper we demonstrate sensitivity gains of more than 30 times compared with previous lower frequency (X-band) DEER measurements on both human neuroglobin and sperm whale myoglobin. This is achieved by taking advantage of recent instrumental advances, employing wideband excitation techniques based on composite pulses and exploiting more favorable relaxation properties of low-spin Fe(III) in high magnetic fields. This gain in sensitivity potentially allows the DEER technique to be routinely used as a sensitive probe of structure and conformation in the large number of heme and many other metalloproteins. PMID:27035368

  17. Data Fusion in Wind Tunnel Testing; Combined Pressure Paint and Model Deformation Measurements (Invited)

    NASA Technical Reports Server (NTRS)

    Bell, James H.; Burner, Alpheus W.

    2004-01-01

    As the benefit-to-cost ratio of advanced optical techniques for wind tunnel measurements such as Video Model Deformation (VMD), Pressure-Sensitive Paint (PSP), and others increases, these techniques are being used more and more often in large-scale production type facilities. Further benefits might be achieved if multiple optical techniques could be deployed in a wind tunnel test simultaneously. The present study discusses the problems and benefits of combining VMD and PSP systems. The desirable attributes of useful optical techniques for wind tunnels, including the ability to accommodate the myriad optical techniques available today, are discussed. The VMD and PSP techniques are briefly reviewed. Commonalties and differences between the two techniques are discussed. Recent wind tunnel experiences and problems when combining PSP and VMD are presented, as are suggestions for future developments in combined PSP and deformation measurements.

  18. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk

    2016-05-15

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicabilitymore » in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.« less

  19. Quantifying Insulin Sensitivity and Entero-Insular Responsiveness to Hyper- and Hypoglycemia in Ferrets

    PubMed Central

    Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J.; Ode, Katie Larson; Philipson, Louis H.; Engelhardt, John F.; Norris, Andrew W.

    2014-01-01

    Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5–6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes. PMID:24594704

  20. Quantifying insulin sensitivity and entero-insular responsiveness to hyper- and hypoglycemia in ferrets.

    PubMed

    Sui, Hongshu; Yi, Yaling; Yao, Jianrong; Liang, Bo; Sun, Xingshen; Hu, Shanming; Uc, Aliye; Nelson, Deborah J; Ode, Katie Larson; Philipson, Louis H; Engelhardt, John F; Norris, Andrew W

    2014-01-01

    Ferrets are an important emerging model of cystic fibrosis related diabetes. However, there is little documented experience in the use of advanced techniques to quantify aspects of diabetes pathophysiology in the ferret. Glycemic clamps are the gold standard technique to assess both insulin sensitivity and insulin secretion in humans and animal models of diabetes. We therefore sought to develop techniques for glycemic clamps in ferrets. To assess insulin sensitivity, we performed euglycemic hyperinsulinemic clamps in 5-6 week old ferrets in the anesthetized and conscious states. To assess insulin secretion, we performed hyperglycemic clamps in conscious ferrets. To evaluate responsiveness of ferret islet and entero-insular hormones to low glucose, a portion of the hyperglycemic clamps were followed by a hypoglycemic clamp. The euglycemic hyperinsulinemic clamps demonstrated insulin responsiveness in ferrets similar to that previously observed in humans and rats. The anesthetic isoflurane induced marked insulin resistance, whereas lipid emulsion induced mild insulin resistance. In conscious ferrets, glucose appearance was largely suppressed at 4 mU/kg/min insulin infusion, whereas glucose disposal was progressively increased at 4 and 20 mU/kg/min insulin. Hyperglycemic clamp induced first phase insulin secretion. Hypoglycemia induced a rapid diminishment of insulin, as well as a rise in glucagon and pancreatic polypeptide levels. The incretins GLP-1 and GIP were affected minimally by hyperglycemic and hypoglycemic clamp. These techniques will prove useful in better defining the pathophysiology in ferrets with cystic fibrosis related diabetes.

  1. Ion Monitoring

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore

    2003-11-18

    The apparatus and method provide a technique for significantly reducing capacitance effects in detector electrodes arising due to movement of the instrument relative to the item/location being monitored in ion detection based techniques. The capacitance variations are rendered less significant by placing an electrically conducting element between the detector electrodes and the monitored location/item. Improved sensitivity and reduced noise signals arise as a result. The technique also provides apparatus and method suitable for monitoring elongate items which are unsuited to complete enclosure in one go within a chamber. The items are monitored part by part as the pass through the instrument, so increasing the range of items or locations which can be successfully monitored.

  2. Detection of irradiated spices using photo-stimulated luminescence technique (PSL)

    NASA Astrophysics Data System (ADS)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon; Abdullah, Wan Saffiey Wan

    2014-09-01

    Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSL signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices.

  3. High performance dye-sensitized solar cells using graphene modified fluorine-doped tin oxide glass by Langmuir–Blodgett technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roh, Ki-Min; Jo, Eun-Hee; Chang, Hankwon

    Since the introduction of dye-sensitized solar cells (DSSCs) with low fabrication cost and high power conversion efficiency, extensive studies have been carried out to improve the charge transfer rate and performance of DSSCs. In this paper, we present DSSCs that use surface modified fluorine-doped tin oxide (FTO) substrates with reduced graphene oxide (r-GO) sheets prepared using the Langmuir–Blodgett (LB) technique to decrease the charge recombination at the TiO{sub 2}/FTO interface. R-GO sheets were excellently attached on FTO surface without physical deformations such as wrinkles; effects of the surface coverage of r-GO on the DSSC performance were also investigated. By usingmore » graphene modified FTO substrates, the resistance at the interface of TiO{sub 2}/FTO was reduced and the power conversion efficiency was increased to 8.44%. - Graphical abstract: DSSCs with graphene modified FTO glass were fabricated with the Langmuir Blodgett technique. GO sheets were transferred to FTO at various surface pressures in order to change the surface density of graphene and the highest power conversion efficiency of the DSSC was 8.44%. - Highlights: • By LB technique, r-GO sheets were coated on FTO without physical deformation. • DSSCs were fabricated with, r-GO modified FTO substrates. • With surface modification by r-GO, the interface resistance of DSSC decreased. • Maximum PCE of the DSSC was increased up to 8.44%.« less

  4. Strength Exercise Improves Muscle Mass and Hepatic Insulin Sensitivity in Obese Youth

    PubMed Central

    van der Heijden, Gert-Jan; Wang, Zhiyue J.; Chu, Zili; Toffolo, Gianna; Manesso, Erica; Sauer, Pieter J.J.; Sunehag, Agneta L.

    2010-01-01

    Introduction Data are limited on the metabolic effects of resistance exercise (strength training) in adolescents. Purpose The objective of this study was to determine whether a controlled resistance exercise program without dietary intervention or weight loss, reduces body fat accumulation, increases lean body mass, and improves insulin sensitivity and glucose metabolism in sedentary obese Hispanic adolescents. Methods Twelve obese adolescents (15.5±0.5y; 35.3 ±0.8kg/m2;40.8±1.5% body fat), completed a 12 wk resistance exercise program (2×1h/wk, exercising all major muscle groups). At baseline and completion of the program, body composition was measured by DXA, abdominal fat distribution by Magnetic Resonance Imaging, hepatic and intramyocellular fat by Magnetic Resonance Spectroscopy, peripheral insulin sensitivity by the Stable Labeled IV Glucose Tolerance Test and hepatic insulin sensitivity by the Hepatic Insulin Sensitivity Index =1000/(GPR*fasting insulin). Glucose production rate (GPR), gluconeogenesis and glycogenolysis were quantified using Stable Isotope-Gas Chromatography/Mass Spectrometry techniques. Results All participants were normoglycemic. The exercise program resulted in significant strength gain in both upper and lower body muscle groups. Body weight increased from 97.0±3.8 to 99.6±4.2 kg (p<0.01). The major part (~80%) was accounted for by increased lean body mass (55.7±2.8 to 57.9±3.0 kg; p≤0.01).Total, visceral, hepatic and intramyocellular fat content remained unchanged. Hepatic insulin sensitivity increased by 24±9% (p<0.05), while peripheral insulin sensitivity did not change significantly. GPR decreased by 8±1% (p<0.01) due to a 12±5% decrease in glycogenolysis (p<0.05). Conclusion We conclude that a controlled resistance exercise program without weight loss increases strength and lean body mass, improves hepatic insulin sensitivity and decreases GPR without affecting total fat mass or visceral, hepatic and intramyocellular fat content. PMID:20351587

  5. The comet assay: Reflections on its development, evolution and applications.

    PubMed

    Singh, Narendra P

    2016-01-01

    The study of DNA damage and its repair is critical to our understanding of human aging and cancer. This review reflects on the development of a simple technique, now known as the comet assay, to study the accumulation of DNA damage and its repair. It describes my journey into aging research and the need for a method that sensitively quantifies DNA damage on a cell-by-cell basis and on a day-by-day basis. My inspirations, obstacles and successes on the path to developing this assay and improving its reliability and sensitivity are discussed. Recent modifications, applications, and the process of standardizing the technique are also described. What was once untried and unknown has become a technique used around the world for understanding and monitoring DNA damage. The comet assay's use has grown exponentially in the new millennium, as emphasis on studying biological phenomena at the single-cell level has increased. I and others have applied the technique across cell types (including germ cells) and species (including bacteria). As it enters new realms and gains clinical relevance, the comet assay may very well illuminate human aging and its prevention. Copyright © 2016. Published by Elsevier B.V.

  6. Two methods for increased specificity and sensitivity in loop-mediated isothermal amplification

    USDA-ARS?s Scientific Manuscript database

    The technique of loop-mediated isothermal amplification (LAMP) utilizes 4 (or 6) primers targeting 6 (or 8) regions within a fairly small segment of a genome for amplification, with concentration higher than that used in traditional PCR methods. The high concentrations of primers used leads to an in...

  7. Revolving Eddy-Current Probe Detects Cracks Near Rivets

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Wincheski, Buzz; Fulton, James P.; Nath, Shridhar; Simpson, John

    1995-01-01

    Scanning eddy-current probe in circular pattern increases sensitivity with which probe indicates fatigue cracks and other defects in metal surfaces in vicinity of rivets. Technique devised to facilitate inspection of riveted joints in aircraft. Eddy-current probe in question described in "Electro-magnetic Flaw Detector Is Easier To Use" (LAR-15046).

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harmon, S; Jeraj, R; Galavis, P

    Purpose: Sensitivity of PET-derived texture features to reconstruction methods has been reported for features extracted from axial planes; however, studies often utilize three dimensional techniques. This work aims to quantify the impact of multi-plane (3D) vs. single-plane (2D) feature extraction on radiomics-based analysis, including sensitivity to reconstruction parameters and potential loss of spatial information. Methods: Twenty-three patients with solid tumors underwent [{sup 18}F]FDG PET/CT scans under identical protocols. PET data were reconstructed using five sets of reconstruction parameters. Tumors were segmented using an automatic, in-house algorithm robust to reconstruction variations. 50 texture features were extracted using two Methods: 2D patchesmore » along axial planes and 3D patches. For each method, sensitivity of features to reconstruction parameters was calculated as percent difference relative to the average value across reconstructions. Correlations between feature values were compared when using 2D and 3D extraction. Results: 21/50 features showed significantly different sensitivity to reconstruction parameters when extracted in 2D vs 3D (wilcoxon α<0.05), assessed by overall range of variation, Rangevar(%). Eleven showed greater sensitivity to reconstruction in 2D extraction, primarily first-order and co-occurrence features (average Rangevar increase 83%). The remaining ten showed higher variation in 3D extraction (average Range{sub var}increase 27%), mainly co-occurence and greylevel run-length features. Correlation of feature value extracted in 2D and feature value extracted in 3D was poor (R<0.5) in 12/50 features, including eight co-occurrence features. Feature-to-feature correlations in 2D were marginally higher than 3D, ∣R∣>0.8 in 16% and 13% of all feature combinations, respectively. Larger sensitivity to reconstruction parameters were seen for inter-feature correlation in 2D(σ=6%) than 3D (σ<1%) extraction. Conclusion: Sensitivity and correlation of various texture features were shown to significantly differ between 2D and 3D extraction. Additionally, inter-feature correlations were more sensitive to reconstruction variation using single-plane extraction. This work highlights a need for standardized feature extraction/selection techniques in radiomics.« less

  9. High prevalence of bovine cysticercosis found during evaluation of different post-mortem detection techniques in Belgian slaughterhouses.

    PubMed

    Jansen, Famke; Dorny, Pierre; Berkvens, Dirk; Van Hul, Anke; Van den Broeck, Nick; Makay, Caroline; Praet, Nicolas; Eichenberger, Ramon Marc; Deplazes, Peter; Gabriël, Sarah

    2017-09-15

    Bovine cysticercosis (BCC), caused by the helminth Taenia saginata, is currently diagnosed solely by official meat inspection (MI) based on macroscopic detection of viable cysticerci or typical lesions of degenerated larvae. MI has a known low sensitivity (<16%), leading to a large proportion of infected cattle carcasses entering the human food chain and posing a risk to public health. Prevalence in Belgium based on MI results is estimated at around 0.22%. Due to the low sensitivity of MI, alternative techniques to detect BCC should be considered. This study evaluates MI, MI with additional incisions in the heart, specific antibody detection against excretory/secretory (E/S) in the Ab-ELISA and circulating antigens in the B158/B60 Ag-ELISA on 715 (101 MI-positive and 614 MI-negative) samples collected from carcasses at slaughterhouses in Belgium. Full dissection of the predilection sites was considered the reference test. During the study, mostly carcasses with (very) light infections were detected containing predominantly degenerated or calcified cysticerci and only few viable cysticerci. Dissection of the predilection sites detected 144 (23%) additional infections in the 614 MI-negative carcasses. When sequentially performing first the dissection of the predilection sites, followed by the Ag-ELISA and the Ab-ELISA, an additional 36% of MI-negative carcasses were found positive for BCC, resulting in a prevalence very much higher than the above mentioned 0.22%. The B158/B60 Ag-ELISA showed a sensitivity of 40% for the detection of carcasses containing viable cysticerci and a specificity of 100%, and detected 70 positive carcasses of which only 14 had been identified as positive during MI. If Ag-ELISA were implemented as a detection technique for BCC in the slaughterhouses, many infected carcasses would still not be detected due to the sensitivity of 40%. But as sensitivity increases with increasing number of cysticerci in the carcass, the infected carcasses passing inspection will be the ones containing only a few viable cysticerci and thus posing a smaller food safety problem. Ag-ELISA is preferred over the ES Ab-ELISA in this study, which had a sensitivity of 13.3% and a specificity of 91.7% in a population with overall low infection burdens. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Partial discharge testing under direct voltage conditions

    NASA Technical Reports Server (NTRS)

    Bever, R. S.; Westrom, J. L.

    1982-01-01

    DC partial discharge (PD) (corona) testing is performed using a multichannel analyzer for pulse storing, and data is collected during increase of voltage and at quiescent voltage levels. Thus high voltage ceramic disk capacitors were evaluated by obtaining PD data interspersed during an accelerated life test. Increased PD activity was found early in samples that later failed catastrophically. By this technique, trends of insulation behavior are revealed sensitively and nondestructively in high voltage dc components.

  11. Accuracy of polimerase chain reaction for the diagnosis of pleural tuberculosis.

    PubMed

    Trajman, Anete; da Silva Santos Kleiz de Oliveira, Elen Fabricia; Bastos, Mayara Lisboa; Belo Neto, Epaminondas; Silva, Edgar Manoel; da Silva Lourenço, Maria Cristina; Kritski, Afrânio; Oliveira, Martha Maria

    2014-06-01

    Polymerase chain reaction (PCR)-based techniques to detect Mycobacterium tuberculosis DNA in respiratory specimens have been increasingly used to diagnose pulmonary tuberculosis. Their use in non-respiratory specimens to diagnose extrapulmonary tuberculosis is, however, controversial. In this study, we estimated the accuracy of three in-country commercialized PCR-based diagnostic techniques in pleural fluid samples for the diagnosis of pleural tuberculosis. Patients underwent thoracenthesis for diagnosis purposes; pleural fluid aliquots were frozen and subsequently submitted to two real time PCR tests (COBAS(®)TAQMAN(®)MTB and Xpert(®)MTB/Rif) and one conventional PCR test (Detect-TB(®)). Two different reference standards were considered: probable tuberculosis (based on clinical grounds) and confirmed tuberculosis (bacteriologically or histologically). Ninety-three patients were included, of whom 65 with pleural tuberculosis, 35 of them confirmed. Sensitivities were 29% for COBAS(®)TAQMAN(®)MTB, 3% for Xpert(®)MTB/Rif and 3% for Detect-TB(®); specificities were 86%, 100% and 97% respectively, considering confirmed tuberculosis. Considering all cases, sensitivities were 16%, 3% and 2%, and specificities, 86%, 100%, and 97%. Compared to the 95% sensitivity of adenosine deaminase, the most sensitive test for pleural tuberculosis, the sensitivities of the three PCR-based tests were very low. We conclude that at present, there is no major place for such tests in routine clinical use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Endoscopic transpapillary brush cytology and forceps biopsy in patients with hilar cholangiocarcinoma.

    PubMed

    Weber, Andreas; von Weyhern, Claus; Fend, Falko; Schneider, Jochen; Neu, Bruno; Meining, Alexander; Weidenbach, Hans; Schmid, Roland M; Prinz, Christian

    2008-02-21

    To evaluate the sensitivity of brush cytology and forceps biopsy in a homogeneous patient group with hilar cholangiocarcinoma. Brush cytology and forceps biopsy were routinely performed in patients with suspected malignant biliary strictures. Fifty-eight consecutive patients undergoing endoscopic retrograde cholangio-pancreatography (ERCP) including forceps biopsy and brush cytology in patients with hilar cholangiocarcinoma between 1995-2005. Positive results for malignancy were obtained in 24/58 patients (41.4%) by brush cytology and in 31/58 patients (53.4%) by forceps biopsy. The combination of both techniques brush cytology and forceps biopsy resulted only in a minor increase in diagnostic sensitivity to 60.3% (35/58 patients). In 20/58 patients (34.5%), diagnosis were obtained by both positive cytology and positive histology, in 11/58 (19%) by positive histology (negative cytology) and only 4/58 patients (6.9%) were confirmed by positive cytology (negative histology). Brush cytology and forceps biopsy have only limited sensitivity for the diagnosis of malignant hilar tumors. In our eyes, additional diagnostic techniques should be evaluated and should become routine in patients with negative cytological and histological findings.

  13. The role of rapid antigen testing for influenza in the era of molecular diagnostics.

    PubMed

    Dale, Suzanne E

    2010-08-01

    Rapid antigen testing for influenza has been both maligned and revered since its conception. Microbiologists have long lamented the lack of sensitivity of commercial rapid influenza detection tests (RIDTs), whereas many clinicians have eschewed their utility by emphasizing the value of definitely diagnosing influenza at the patient's bedside. RIDTs, although quick and easy to perform, are widely accepted as being less sensitive than traditional culture techniques and newer molecular methods, including reverse-transcription polymerase chain reaction (RT-PCR). Moreover, the performance characteristics of RIDTs vary widely, and their applications as clinical diagnostic tools are not well understood. In contrast, traditional techniques are time consuming and require significant expertise to perform. Often, the delay in diagnosing influenza through these methods has little impact on patient care. The benefits of achieving a diagnosis of influenza at the point of care are numerous and include increased access to appropriate antivirals, appropriate patient cohorting for infection control purposes, and better resource utilization. Therefore, it behooves the microbiology community to communicate these issues to clinicians and to work to improve the sensitivity of RIDTs.

  14. A Survey of Shape Parameterization Techniques

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.

    1999-01-01

    This paper provides a survey of shape parameterization techniques for multidisciplinary optimization and highlights some emerging ideas. The survey focuses on the suitability of available techniques for complex configurations, with suitability criteria based on the efficiency, effectiveness, ease of implementation, and availability of analytical sensitivities for geometry and grids. The paper also contains a section on field grid regeneration, grid deformation, and sensitivity analysis techniques.

  15. Engineering Gd-loaded nanoparticles to enhance MRI sensitivity via T1 shortening

    NASA Astrophysics Data System (ADS)

    Bruckman, Michael A.; Yu, Xin; Steinmetz, Nicole F.

    2013-11-01

    Magnetic resonance imaging (MRI) is a noninvasive imaging technique capable of obtaining high-resolution anatomical images of the body. Major drawbacks of MRI are the low contrast agent sensitivity and inability to distinguish healthy tissue from diseased tissue, making early detection challenging. To address this technological hurdle, paramagnetic contrast agents have been developed to increase the longitudinal relaxivity, leading to an increased signal-to-noise ratio. This review focuses on methods and principles that enabled the design and engineering of nanoparticles to deliver contrast agents with enhanced ionic relaxivities. Different engineering strategies and nanoparticle platforms will be compared in terms of their manufacturability, biocompatibility properties, and their overall potential to make an impact in clinical MR imaging.

  16. First real-time detection of surface dust in a tokamak.

    PubMed

    Skinner, C H; Rais, B; Roquemore, A L; Kugel, H W; Marsala, R; Provost, T

    2010-10-01

    The first real-time detection of surface dust inside a tokamak was made using an electrostatic dust detector. A fine grid of interlocking circuit traces was installed in the NSTX vessel and biased to 50 V. Impinging dust particles created a temporary short circuit and the resulting current pulse was recorded by counting electronics. The techniques used to increase the detector sensitivity by a factor of ×10,000 to match NSTX dust levels while suppressing electrical pickup are presented. The results were validated by comparison to laboratory measurements, by the null signal from a covered detector that was only sensitive to pickup, and by the dramatic increase in signal when Li particles were introduced for wall conditioning purposes.

  17. Determination of ABO blood grouping and Rhesus factor from tooth material.

    PubMed

    Kumar, Pooja Vijay; Vanishree, M; Anila, K; Hunasgi, Santosh; Suryadevra, Sri Sujan; Kardalkar, Swetha

    2016-01-01

    The aim of the study was to determine blood groups and Rhesus factor from dentin and pulp using absorption-elution (AE) technique in different time periods at 0, 3, 6, 9 and 12 months, respectively. A total of 150 cases, 30 patients each at 0, 3, 6, 9 and 12 months were included in the study. The samples consisted of males and females with age ranging 13-60 years. Patient's blood group was checked and was considered as "control." The dentin and pulp of extracted teeth were tested for the presence of ABO/Rh antigen, at respective time periods by AE technique. Data were analyzed in proportion. For comparison, Chi-square test or Fisher's exact test was used for the small sample. Blood group antigens of ABO and Rh factor were detected in dentin and pulp up to 12 months. For both ABO and Rh factor, dentin and pulp showed 100% sensitivity for the samples tested at 0 month and showed a gradual decrease in the sensitivity as time period increased. The sensitivity of pulp was better than dentin for both the blood grouping systems and ABO blood group antigens were better detected than Rh antigens. In dentin and pulp, the antigens of ABO and Rh factor were detected up to 12 months but showed a progressive decrease in the antigenicity as the time period increased. When compared the results obtained of dentin and pulp in ABO and Rh factor grouping showed similar results with no statistical significance. The sensitivity of ABO blood grouping was better than Rh factor blood grouping and showed a statistically significant result.

  18. Cytochrome c conformations resolved by the photon counting histogram: Watching the alkaline transition with single-molecule sensitivity

    PubMed Central

    Perroud, Thomas D.; Bokoch, Michael P.; Zare, Richard N.

    2005-01-01

    We apply the photon counting histogram (PCH) model, a fluorescence technique with single-molecule sensitivity, to study pH-induced conformational changes of cytochrome c. PCH is able to distinguish different protein conformations based on the brightness of a fluorophore sensitive to its local environment. We label cytochrome c through its single free cysteine with tetramethylrhodamine-5-maleimide (TMR), a fluorophore with specific brightnesses that we associate with specific protein conformations. Ensemble measurements demonstrate two different fluorescence responses with increasing pH: (i) a decrease in fluorescence intensity caused by the alkaline transition of cytochrome c (pH 7.0–9.5), and (ii) an increase in intensity when the protein unfolds (pH 9.5–10.8). The magnitudes of these two responses depend strongly on the molar ratio of TMR used to label cytochrome c. Using PCH we determine that this effect arises from the proportion of a nonfunctional conformation in the sample, which can be differentiated from the functional conformation. We further determine the causes of each ensemble fluorescence response: (i) during the alkaline transition, the fluorophore enters a dark state and discrete conformations are observed, and (ii) as cytochrome c unfolds, the fluorophore incrementally brightens, but discrete conformations are no longer resolved. Moreover, we also show that functional TMR-cytochrome c undergoes a response of identical magnitude regardless of the proportion of nonfunctional protein in the sample. As expected for a technique with single-molecule sensitivity, we demonstrate that PCH can directly observe the most relevant conformation, unlike ensemble fluorometry. PMID:16314563

  19. Information loss and reconstruction in diffuse fluorescence tomography

    PubMed Central

    Bonfert-Taylor, Petra; Leblond, Frederic; Holt, Robert W.; Tichauer, Kenneth; Pogue, Brian W.; Taylor, Edward C.

    2012-01-01

    This paper is a theoretical exploration of spatial resolution in diffuse fluorescence tomography. It is demonstrated that, given a fixed imaging geometry, one cannot—relative to standard techniques such as Tikhonov regularization and truncated singular value decomposition—improve the spatial resolution of the optical reconstructions via increasing the node density of the mesh considered for modeling light transport. Using techniques from linear algebra, it is shown that, as one increases the number of nodes beyond the number of measurements, information is lost by the forward model. It is demonstrated that this information cannot be recovered using various common reconstruction techniques. Evidence is provided showing that this phenomenon is related to the smoothing properties of the elliptic forward model that is used in the diffusion approximation to light transport in tissue. This argues for reconstruction techniques that are sensitive to boundaries, such as L1-reconstruction and the use of priors, as well as the natural approach of building a measurement geometry that reflects the desired image resolution. PMID:22472763

  20. High-Resolution Graphene Films for Electrochemical Sensing via Inkjet Maskless Lithography.

    PubMed

    Hondred, John A; Stromberg, Loreen R; Mosher, Curtis L; Claussen, Jonathan C

    2017-10-24

    Solution-phase printing of nanomaterial-based graphene inks are rapidly gaining interest for fabrication of flexible electronics. However, scalable manufacturing techniques for high-resolution printed graphene circuits are still lacking. Here, we report a patterning technique [i.e., inkjet maskless lithography (IML)] to form high-resolution, flexible, graphene films (line widths down to 20 μm) that significantly exceed the current inkjet printing resolution of graphene (line widths ∼60 μm). IML uses an inkjet printed polymer lacquer as a sacrificial pattern, viscous spin-coated graphene, and a subsequent graphene lift-off to pattern films without the need for prefabricated stencils, templates, or cleanroom technology (e.g., photolithography). Laser annealing is employed to increase conductivity on thermally sensitive, flexible substrates [polyethylene terephthalate (PET)]. Laser annealing and subsequent platinum nanoparticle deposition substantially increases the electroactive nature of graphene as illustrated by electrochemical hydrogen peroxide (H 2 O 2 ) sensing [rapid response (5 s), broad linear sensing range (0.1-550 μm), high sensitivity (0.21 μM/μA), and low detection limit (0.21 μM)]. Moreover, high-resolution, complex graphene circuits [i.e., interdigitated electrodes (IDE) with varying finger width and spacing] were created with IML and characterized via potassium chloride (KCl) electrochemical impedance spectroscopy (EIS). Results indicated that sensitivity directly correlates to electrode feature size as the IDE with the smallest finger width and spacing (50 and 50 μm) displayed the largest response to changes in KCl concentration (∼21 kΩ). These results indicate that the developed IML patterning technique is well-suited for rapid, solution-phase graphene film prototyping on flexible substrates for numerous applications including electrochemical sensing.

  1. Evaluation of ultra-low background materials for uranium and thorium using ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, E. W.; Overman, N. R.; LaFerriere, B. D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation andmore » can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. This paper discusses how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.« less

  2. Evaluation of Ultra-Low Background Materials for Uranium and Thorium Using ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoppe, Eric W.; Overman, Nicole R.; LaFerriere, Brian D.

    2013-08-08

    An increasing number of physics experiments require low background materials for their construction. The presence of Uranium and Thorium and their progeny in these materials present a variety of unwanted background sources for these experiments. The sensitivity of the experiments continues to drive the necessary levels of detection ever lower as well. This requirement for greater sensitivity has rendered direct radioassay impractical in many cases requiring large quantities of material, frequently many kilograms, and prolonged counting times, often months. Other assay techniques have been employed such as Neutron Activation Analysis but this requires access to expensive facilities and instrumentation andmore » can be further complicated and delayed by the formation of unwanted radionuclides. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) is a useful tool and recent advancements have increased the sensitivity particularly in the elemental high mass range of U and Th. Unlike direct radioassay, ICP-MS is a destructive technique since it requires the sample to be in liquid form which is aspirated into a high temperature plasma. But it benefits in that it usually requires a very small sample, typically about a gram. Here we will discuss how a variety of low background materials such as copper, polymers, and fused silica are made amenable to ICP-MS assay and how the arduous task of maintaining low backgrounds of U and Th is achieved.« less

  3. The Applications of Gold Nanoparticle-Initialed Chemiluminescence in Biomedical Detection

    NASA Astrophysics Data System (ADS)

    Liu, Zezhong; Zhao, Furong; Gao, Shandian; Shao, Junjun; Chang, Huiyun

    2016-10-01

    Chemiluminescence technique as a novel detection method has gained much attention in recent years owning to the merits of high sensitivity, wider linear ranges, and low background signal. Similarly, nanotechnology especially for gold nanoparticles has emerged as detection tools due to their unique physical and chemical properties. Recently, it has become increasingly popular to couple gold nanoparticles with chemiluminescence technique in biological agents' detection. In this review, we describe the superiority of both chemiluminescence and gold nanoparticles and conclude the different applications of gold nanoparticle-initialed chemiluminescence in biomedical detection.

  4. Rational molecular engineering of cyclopentadithiophene-bridged D-A-π-A sensitizers combining high photovoltaic efficiency with rapid dye adsorption

    PubMed Central

    Chai, Qipeng; Li, Wenqin; Liu, Jingchuan; Geng, Zhiyuan; Tian, He; Zhu, Wei-hong

    2015-01-01

    Dye-sensitized solar cell (DSSC) is considered as a feasible route to the clean and renewable energy conversion technique. The commercial application requires further enhancements on photovoltaic efficiency and simplification on the device fabrication. For avoiding the unpreferable trade-off between photocurrent (JSC) and photovoltage (VOC), here we report the molecular engineering and comprehensive photovoltaic characterization of three cyclopentadithiophene-bridged D-A-π-A motif sensitizers with a change in donor group. We make a careful choice on the donor and conjugation bridge for synergistically increasing JSC and VOC. Comparing with the reference dye WS-2, the photovoltaic efficiency with the single component dye of WS-51 increases by 18%, among one of the rare examples in pure metal-free organic dyes exceeding 10% in combination with traditional iodine redox couples. Moreover, WS-51 exhibits several prominent merits on potentially scale-up industrial application: i) facile synthetic route to target molecule, ii) simple dipping procedure without requirement of co-sensitization, and iii) rapid dye adsorption capability. PMID:26066974

  5. Nondestructive evaluation of fatigue damage on low alloy steel by magnetomechanical acoustic emission technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiraasawa, T.; Saito, K.; Komura, I.

    1995-08-01

    A modified magnetomechanical acoustic emission (MAE) technique, denoted Pulse-MAE, in which the magnetization by current pulse was adopted, was newly developed and its applicability was assessed for the nondestructive detection and evaluation of fatigue damage in reactor pressure vessel steel SFVV2 and SA508 class2. MAE signals were measured with both conventional MAE and Pulse-MAE technique for fatigue damaged specimens having several damage fractions, and peak voltage ratio Vp/Vo, where Vp and Vo were the peak voltage for damaged and undamaged specimen respectively, was chosen as a measure. Vp/Vo was found to increase monotonously at the early stage of fatigue processmore » and the rate of increase in Vp/Vo during the fatigue process was larger in Pulse-MAE than conventional MAE. Therefore, Pulse-MAE technique proved to have higher sensitivity for the detection of fatigue damage compared with the conventional MAE and to have the potential of a practical technique for nondestructive detection and evaluation of fatigue damage in actual components.« less

  6. Capillary electrophoresis in two-dimensional separation systems: Techniques and applications.

    PubMed

    Kohl, Felix J; Sánchez-Hernández, Laura; Neusüß, Christian

    2015-01-01

    The analysis of complex samples requires powerful separation techniques. Here, 2D chromatographic separation techniques (e.g. LC-LC, GC-GC) are increasingly applied in many fields. Electrophoretic separation techniques show a different selectivity in comparison to LC and GC and very high separation efficiency. Thus, 2D separation systems containing at least one CE-based separation technique are an interesting alternative featuring potentially a high degree of orthogonality. However, the generally small volumes and strong electrical fields in CE require special coupling techniques. These technical developments are reviewed in this work, discussing benefits and drawbacks of offline and online systems. Emphasis is placed on the design of the systems, their coupling, and the detector used. Moreover, the employment of strategies to improve peak capacity, resolution, or sensitivity is highlighted. Various applications of 2D separations with CE are summarized. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Evaluation of three imaging techniques for the detection of vertical root fractures in the absence and presence of gutta-percha root fillings.

    PubMed

    Khedmat, S; Rouhi, N; Drage, N; Shokouhinejad, N; Nekoofar, M H

    2012-11-01

    To compare the accuracy of digital radiography (DR), multidetector computed tomography (MDCT) and cone beam computed tomography (CBCT) in detecting vertical root fractures (VRF) in the absence and presence of gutta-percha root filling. The root canals of 100 extracted human single-rooted teeth were prepared and randomly divided into four groups: two experimental groups with artificially fractured root and two intact groups as controls. In one experimental and one control group, a size 40, 0.04 taper gutta-percha cone was inserted in the root canals. Then DR, MDCT and CBCT were performed and the images evaluated. Statistical analyses of sensitivity, specificity and accuracy of each imaging technique in the presence and absence of gutta-percha were calculated and compared. In the absence of gutta-percha, the specificity of DR, MDCT and CBCT was similar. CBCT was the most accurate and sensitive imaging technique (P < 0 .05). In the presence of gutta-percha, the accuracy of MDCT was higher than the other imaging techniques (P < 0.05). The sensitivity of CBCT and MDCT was significantly higher than that of DR (P < 0.05), whereas CBCT was the least specific technique. Under the conditions of this ex vivo study, CBCT was the most sensitive imaging technique in detecting vertical root fracture. The presence of gutta-percha reduced the accuracy, sensitivity and specificity of CBCT but not MDCT. The sensitivity of DR was reduced in the presence of gutta-percha. The use of MDCT as an alternative technique may be recommended when VRF are suspected in root filled teeth. However, as the radiation dose of MDCT is higher than CBCT, the technique could be considered at variance with the principles of ALARA. © 2012 International Endodontic Journal.

  8. Computer-assisted expert case definition in electronic health records.

    PubMed

    Walker, Alexander M; Zhou, Xiaofeng; Ananthakrishnan, Ashwin N; Weiss, Lisa S; Shen, Rongjun; Sobel, Rachel E; Bate, Andrew; Reynolds, Robert F

    2016-02-01

    To describe how computer-assisted presentation of case data can lead experts to infer machine-implementable rules for case definition in electronic health records. As an illustration the technique has been applied to obtain a definition of acute liver dysfunction (ALD) in persons with inflammatory bowel disease (IBD). The technique consists of repeatedly sampling new batches of case candidates from an enriched pool of persons meeting presumed minimal inclusion criteria, classifying the candidates by a machine-implementable candidate rule and by a human expert, and then updating the rule so that it captures new distinctions introduced by the expert. Iteration continues until an update results in an acceptably small number of changes to form a final case definition. The technique was applied to structured data and terms derived by natural language processing from text records in 29,336 adults with IBD. Over three rounds the technique led to rules with increasing predictive value, as the experts identified exceptions, and increasing sensitivity, as the experts identified missing inclusion criteria. In the final rule inclusion and exclusion terms were often keyed to an ALD onset date. When compared against clinical review in an independent test round, the derived final case definition had a sensitivity of 92% and a positive predictive value of 79%. An iterative technique of machine-supported expert review can yield a case definition that accommodates available data, incorporates pre-existing medical knowledge, is transparent and is open to continuous improvement. The expert updates to rules may be informative in themselves. In this limited setting, the final case definition for ALD performed better than previous, published attempts using expert definitions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. 18F-FDG-PET/CT Angiography for the Diagnosis of Infective Endocarditis.

    PubMed

    Roque, A; Pizzi, M N; Cuéllar-Calàbria, H; Aguadé-Bruix, S

    2017-02-01

    This article reviews the current imaging role of 18 F-fluordeoxyglucose positron emission computed tomography ( 18 F-FDG-PET/CT) combined with cardiac CT angiography (CTA) in infective endocarditis and discusses the strengths and limitations of this technique. The diagnosis of infective endocarditis affecting prosthetic valves and intracardiac devices is challenging because echocardiography and, therefore, the modified Duke criteria have well-recognized limitations in this clinical scenario. The high sensitivity of 18 F-FDG-PET/CT for the detection of infection associated with the accurate definition of structural damage by gated cardiac CTA in a combined technique (PET/CTA) has provided a significant increase in diagnostic sensitivity for the detection of IE. PET/CTA has proven to be a useful diagnostic tool in patients with suspected infective endocarditis. The additional information provided by this technique improves diagnostic performance in prosthetic valve endocarditis when it is used in combination with the Duke criteria. The findings obtained in PET/CTA studies have been included as a major criterion in the recently updated diagnostic algorithm in infective endocarditis guidelines.

  10. Probing the interaction between nanoparticles and lipid membranes by quartz crystal microbalance with dissipation monitoring

    NASA Astrophysics Data System (ADS)

    Yousefi, Nariman; Tufenkji, Nathalie

    2016-12-01

    There is increasing interest in using quartz crystal microbalance with dissipation monitoring (QCM-D) to investigate the interaction of nanoparticles (NPs) with model surfaces. The high sensitivity, ease of use and the ability to monitor interactions in real-time has made it a popular technique for colloid chemists, biologists, bioengineers and biophysicists. QCM-D has been recently used to probe the interaction of NPs with supported lipid bilayers (SLBs) as model cell membranes. The interaction of NPs with SLBs is highly influenced by the quality of the lipid bilayers. Unlike many surface sensitive techniques, using QCM-D, the quality of SLBs can be assessed in real-time, hence QCM-D studies on SLB-NP interactions are less prone to the artefacts arising from bilayers that are not well formed. The ease of use and commercial availability of a wide range of sensor surfaces also have made QCM-D a versatile tool for studying NP interactions with lipid bilayers. In this review, we summarize the state-of-the-art on QCM-D based techniques for probing the interactions of NPs with lipid bilayers.

  11. Laser Ablation Surface-Enhanced Raman Spectroscopy (LA-SERS) for the Characterization of Organic Colorants in Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Londero, Pablo

    The characterization of artistic practice throughout history often requires measurements of material composition with microscopic resolution, either due to the fine detail of the material composition or to the amount of sample available. This problem is exacerbated for the detection of organic colorants, which are often embedded in a complex matrix (e.g. oil, natural fibers) and in low concentration due to their high tinting strength. Surface-Enhanced Raman Spectroscopy (SERS) is increasingly used in detection of organic colorants in cultural heritage due to its high sensitivity and inherent preferential sensitivity to small organic molecules. This talk will discuss recent results from a new SERS measurement technique, in which laser ablation is used as a micro-sampling method onto a SERS-active film to characterize art samples with microscopic precision and sensitivity comparable to many mass spectrometry measurements. Furthermore, the nature of the sampling method provides built-in benefits to other SERS-based techniques, such as more quantitative characterization of mixtures, improved sensitivity to some analytes, and reduced background interference. Examples will be shown for measurements of reference materials and art objects, including a restored 16th-century dish and a Renaissance fresco, The Incredulity of San Thomas, by Luca Signorelli. Supported by the National Science Foundation (NSF-CHE-1402750).

  12. Backscattered electron simulations to evaluate sensitivity against electron dosage of buried semiconductor features

    NASA Astrophysics Data System (ADS)

    Mukhtar, Maseeh; Thiel, Bradley

    2018-03-01

    In fabrication, overlay measurements of semiconductor device patterns have conventionally been performed using optical methods. Beginning with image-based techniques using box-in-box to the more recent diffraction-based overlay (DBO). Alternatively, use of SEM overlay is under consideration for in-device overlay. Two main application spaces are measurement features from multiple mask levels on the same surface and buried features. Modern CD-SEMs are adept at measuring overlay for cases where all features are on the surface. In order to measure overlay of buried features, HV-SEM is needed. Gate-to-fin and BEOL overlay are important use cases for this technique. A JMONSEL simulation exercise was performed for these two cases using 10 nm line/space gratings of graduated increase in depth of burial. Backscattered energy loss results of these simulations were used to calculate the sensitivity measurements of buried features versus electron dosage for an array of electron beam voltages.

  13. Outside-the-(Cavity-prep)-Box Thinking

    PubMed Central

    Thompson, V.P.; Watson, T.F.; Marshall, G.W.; Blackman, B.R.K.; Stansbury, J.W.; Schadler, L.S.; Pearson, R.A.; Libanori, R.

    2013-01-01

    Direct placement restorative materials must interface with tooth structures that are often compromised by caries or trauma. The material must seal the interface while providing sufficient strength and wear resistance to assure function of the tooth for, ideally, the lifetime of the patient. Needed are direct restorative materials that are less technique-sensitive than current resin-based composite systems while having improved properties. The ideal material could be successfully used in areas of the world with limited infrastructure. Advances in our understanding of the interface between the restoration adhesive system and the stages of carious dentin can be used to promote remineralization. Application of fracture mechanics to adhesion at the tooth-restoration interface can provide insights for improvement. Research in polymer systems suggests alternatives to current composite resin matrix systems to overcome technique sensitivity, while advances in nano- and mesoparticle reinforcement and alignment in composite systems can increase material strength, toughness, and wear resistance, foreshadowing dental application. PMID:24129814

  14. Monitoring Neural Activity with Bioluminescence during Natural Behavior

    PubMed Central

    Naumann, Eva A.; Kampff, Adam R.; Prober, David A.; Schier, Alexander F.; Engert, Florian

    2010-01-01

    Existing techniques for monitoring neural activity in awake, freely behaving vertebrates are invasive and difficult to target to genetically identified neurons. Here we describe the use of bioluminescence to non-invasively monitor the activity of genetically specified neurons in freely behaving zebrafish. Transgenic fish expressing the Ca2+-sensitive photoprotein GFP-apoAequorin (GA) in most neurons generated large and fast bioluminescent signals related to neural activity, neuroluminescence, that could be recorded continuously for many days. To test the limits of this technique, GA was specifically targeted to the hypocretin-positive neurons of the hypothalamus. We found that neuroluminescence generated by this group of ~20 neurons was associated with periods of increased locomotor activity and identified two classes of neural activity corresponding to distinct swim latencies. Thus, our neuroluminescence assay can report, with high temporal resolution and sensitivity, the activity of small subsets of neurons during unrestrained behavior. PMID:20305645

  15. Verification, Validation and Sensitivity Studies in Computational Biomechanics

    PubMed Central

    Anderson, Andrew E.; Ellis, Benjamin J.; Weiss, Jeffrey A.

    2012-01-01

    Computational techniques and software for the analysis of problems in mechanics have naturally moved from their origins in the traditional engineering disciplines to the study of cell, tissue and organ biomechanics. Increasingly complex models have been developed to describe and predict the mechanical behavior of such biological systems. While the availability of advanced computational tools has led to exciting research advances in the field, the utility of these models is often the subject of criticism due to inadequate model verification and validation. The objective of this review is to present the concepts of verification, validation and sensitivity studies with regard to the construction, analysis and interpretation of models in computational biomechanics. Specific examples from the field are discussed. It is hoped that this review will serve as a guide to the use of verification and validation principles in the field of computational biomechanics, thereby improving the peer acceptance of studies that use computational modeling techniques. PMID:17558646

  16. Refractory metals for ARPS AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svedberg, R.C.; Sievers, R.C.

    1998-07-01

    Alkali Metal Thermal-to-Electric Converter (AMTEC) cells for the Advanced Radioisotope Power Systems (ARPS) program are being developed with refractory metals and alloys as the basic structural materials. AMTEC cell efficiency increases with cell operating temperature. For space applications, long term reliability and high efficiency are essential and refractory metals were selected because of their high temperature strength, low vapor pressure, and compatibility with sodium. However, refractory metals are sensitive to oxygen, nitrogen and hydrogen contamination and refractory metal cells cannot be processed in air. Because of this sensitivity, new manufacturing and processing techniques are being developed. In addition to structuralmore » elements, development of other refractory metal components for the AMTEC cells, such as the artery and evaporator wicks, pinchoff tubes and feedthroughs are required. Changes in cell fabrication techniques and processing procedures being implemented to manufacture refractory metal cells are discussed.« less

  17. On the comprehensibility and perceived privacy protection of indirect questioning techniques.

    PubMed

    Hoffmann, Adrian; Waubert de Puiseau, Berenike; Schmidt, Alexander F; Musch, Jochen

    2017-08-01

    On surveys that assess sensitive personal attributes, indirect questioning aims at increasing respondents' willingness to answer truthfully by protecting confidentiality. However, the assumption that subjects understand questioning procedures fully and trust them to protect their privacy is rarely tested. In a scenario-based design, we compared four indirect questioning procedures in terms of their comprehensibility and perceived privacy protection. All indirect questioning techniques were found to be less comprehensible by respondents than a conventional direct question used for comparison. Less-educated respondents experienced more difficulties when confronted with any indirect questioning technique. Regardless of education, the crosswise model was found to be the most comprehensible among the four indirect methods. Indirect questioning in general was perceived to increase privacy protection in comparison to a direct question. Unexpectedly, comprehension and perceived privacy protection did not correlate. We recommend assessing these factors separately in future evaluations of indirect questioning.

  18. Detection of Gunshot Residues Using Mass Spectrometry

    PubMed Central

    Blanes, Lucas; Cole, Nerida; Doble, Philip; Roux, Claude

    2014-01-01

    In recent years, forensic scientists have become increasingly interested in the detection and interpretation of organic gunshot residues (OGSR) due to the increasing use of lead- and heavy metal-free ammunition. This has also been prompted by the identification of gunshot residue- (GSR-) like particles in environmental and occupational samples. Various techniques have been investigated for their ability to detect OGSR. Mass spectrometry (MS) coupled to a chromatographic system is a powerful tool due to its high selectivity and sensitivity. Further, modern MS instruments can detect and identify a number of explosives and additives which may require different ionization techniques. Finally, MS has been applied to the analysis of both OGSR and inorganic gunshot residue (IGSR), although the “gold standard” for analysis is scanning electron microscopy with energy dispersive X-ray microscopy (SEM-EDX). This review presents an overview of the technical attributes of currently available MS and ionization techniques and their reported applications to GSR analysis. PMID:24977168

  19. Detection of irradiated spices using photo-stimulated luminescence technique (PSL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramli, Ros Anita Ahmad; Yasir, Muhamad Samudi; Othman, Zainon

    2014-09-03

    Photo-stimulated luminescence (PSL) technique was applied to detect irradiated black pepper (Piper nigrum), cinnamon (Cinnamomum verum) and turmeric (Curcuma longa) after dark storage for 1 day, 3 and 6 months. Using screening and calibrated PSL, all samples were correctly discriminated between non-irradiated and spices irradiated with doses 1, 5 and 10 kGy. The PSL photon counts (PCs) of irradiated spices increased with increasing dose, with turmeric showing highest sensitivity index to irradiation compared to black pepper and cinnamon. The differences in response are possibly attributed to the varying quantity and quality of silicate minerals present in each spice sample. PSLmore » signals of all irradiated samples reduced after 3 and 6 months storage. The results of this study provide a useful database on the applicability of PSL technique for the detection of Malaysian irradiated spices.« less

  20. The sensitivity of Bacillus subtilis to diverse antimicrobial compounds is influenced by Abh.

    PubMed

    Murray, Ewan J; Stanley-Wall, Nicola R

    2010-12-01

    Abh is a transition state regulator of Bacillus subtilis that controls biofilm formation and the production of several diverse antimicrobial compounds. Using a high-throughput non-biased technique, we show for the first time that Abh influences the sensitivity of B. subtilis to diverse antimicrobial compounds. Following up on these findings with a combination of classical genetics and antibiotic susceptibility assays, we demonstrate that Abh influences cellular processes such as the remodelling of the cell wall. We present data demonstrating that the extracytoplasmic function sigma factor σ(X) controls resistance to β-lactam antibiotics by activating abh transcription. Downstream from Abh, activation of slrR expression by Abh is responsible for controlling the sensitivity of B. subtilis to such antibiotics due to the role that SlrR plays in regulating autolysin biosynthesis. The abh mutant additionally exhibits increased resistance to aminoglycoside antimicrobials. We confirm that aminoglycoside killing of B. subtilis is likely to be caused by oxidative damage but rule out the possibility that the increased resistance of the abh mutant to aminoglycosides is due to a general increase in resistance to oxidative stress.

  1. Experimental study on the sensitive depth of backwards detected light in turbid media.

    PubMed

    Zhang, Yunyao; Huang, Liqing; Zhang, Ning; Tian, Heng; Zhu, Jingping

    2018-05-28

    In the recent past, optical spectroscopy and imaging methods for biomedical diagnosis and target enhancing have been widely researched. The challenge to improve the performance of these methods is to know the sensitive depth of the backwards detected light well. Former research mainly employed a Monte Carlo method to run simulations to statistically describe the light sensitive depth. An experimental method for investigating the sensitive depth was developed and is presented here. An absorption plate was employed to remove all the light that may have travelled deeper than the plate, leaving only the light which cannot reach the plate. By measuring the received backwards light intensity and the depth between the probe and the plate, the light intensity distribution along the depth dimension can be achieved. The depth with the maximum light intensity was recorded as the sensitive depth. The experimental results showed that the maximum light intensity was nearly the same in a short depth range. It could be deduced that the sensitive depth was a range, rather than a single depth. This sensitive depth range as well as its central depth increased consistently with the increasing source-detection distance. Relationships between sensitive depth and optical properties were also investigated. It also showed that the reduced scattering coefficient affects the central sensitive depth and the range of the sensitive depth more than the absorption coefficient, so they cannot be simply added as reduced distinct coefficients to describe the sensitive depth. This study provides an efficient method for investigation of sensitive depth. It may facilitate the development of spectroscopy and imaging techniques for biomedical diagnosis and underwater imaging.

  2. Computational Aspects of Sensitivity Calculations in Linear Transient Structural Analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Greene, William H.

    1989-01-01

    A study has been performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semianalytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models.

  3. Development of a sensitivity analysis technique for multiloop flight control systems

    NASA Technical Reports Server (NTRS)

    Vaillard, A. H.; Paduano, J.; Downing, D. R.

    1985-01-01

    This report presents the development and application of a sensitivity analysis technique for multiloop flight control systems. This analysis yields very useful information on the sensitivity of the relative-stability criteria of the control system, with variations or uncertainties in the system and controller elements. The sensitivity analysis technique developed is based on the computation of the singular values and singular-value gradients of a feedback-control system. The method is applicable to single-input/single-output as well as multiloop continuous-control systems. Application to sampled-data systems is also explored. The sensitivity analysis technique was applied to a continuous yaw/roll damper stability augmentation system of a typical business jet, and the results show that the analysis is very useful in determining the system elements which have the largest effect on the relative stability of the closed-loop system. As a secondary product of the research reported here, the relative stability criteria based on the concept of singular values were explored.

  4. Diagnosis of deep endometriosis: clinical examination, ultrasonography, magnetic resonance imaging, and other techniques.

    PubMed

    Bazot, Marc; Daraï, Emile

    2017-12-01

    The aim of the present review was to evaluate the contribution of clinical examination and imaging techniques, mainly transvaginal sonography and magnetic resonance imaging (MRI) to diagnose deep infiltrating (DE) locations using prisma statement recommendations. Clinical examination has a relative low sensitivity and specificity to diagnose DE. Independently of DE locations, for all transvaginal sonography techniques a pooled sensitivity and specificity of 79% and 94% are observed approaching criteria for a triage test. Whatever the protocol and MRI devices, the pooled sensitivity and specificity for pelvic endometriosis diagnosis were 94% and 77%, respectively. For rectosigmoid endometriosis, pooled sensitivity and specificity of MRI were 92% and 96%, respectively fulfilling criteria of replacement test. In conclusion, advances in imaging techniques offer high sensitivity and specificity to diagnose DE with at least triage value and for rectosigmoid endometriosis replacement value imposing a revision of the concept of laparoscopy as the gold standard. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  5. [Theoretical foundations of protein chips and their possible use in medical research and diagnostics].

    PubMed

    Spisák, Sándor; Molnár, Béla; Galamb, Orsolya; Sipos, Ferenc; Tulassay, Zsolt

    2007-08-12

    The confirmation of mRNA expression studies by protein chips is of high recent interest due to the widespread application of expression arrays. In this review the advantages, technical limitations, application fields and the first results of the protein arrays is described. The bottlenecks of the increasing protein array applications are the fast decomposition of proteins, the problem with aspecific binding and the lack of amplification techniques. Today glass slide based printed, SELDI (MS) based, electrophoresis based and tissue microarray based technologies are available. The advantage of the glass slide based chips are the simplicity of their application, and relatively low cost. The SELDI based protein chip technique is applicable to minute amounts of starting material (<1 microg) but it is the most expensive one. The electrophoresis based techniques are still under intensive development. The tissue microarrays can be used for the parallel testing of the sensitivity and specificity of single antibodies on a broad range of histological specimens on a single slide. Protein chips were successfully used for serum tumor marker detection, cancer research, cell physiology studies and for the verification of mRNA expression studies. Protein chips are envisioned to be available for routine diagnostic applications if the ongoing technology development will be successful in increase in sensitivity, specificity, costs reduction and for the reduction of the necessary sample volume.

  6. Impact of changing from staining to culture techniques on detection rates of Campylobacter spp. in routine stool samples in Chile.

    PubMed

    Porte, Lorena; Varela, Carmen; Haecker, Thomas; Morales, Sara; Weitzel, Thomas

    2016-05-13

    Campylobacter is a leading cause of bacterial gastroenteritis, but sensitive diagnostic methods such as culture are expensive and often not available in resource limited settings. Therefore, direct staining techniques have been developed as a practical and economical alternative. We analyzed the impact of replacing Campylobacter staining with culture for routine stool examinations in a private hospital in Chile. From January to April 2014, a total of 750 consecutive stool samples were examined in parallel by Hucker stain and Campylobacter culture. Isolation rates of Campylobacter were determined and the performance of staining was evaluated against culture as the gold standard. Besides, isolation rates of Campylobacter and other enteric pathogens were compared to those of past years. Campylobacter was isolated by culture in 46 of 750 (6.1 %) stool samples. Direct staining only identified three samples as Campylobacter positive and reached sensitivity and specificity values of 6.5 and 100 %, respectively. In comparison to staining-based detection rates of previous years, we observed a significant increase of Campylobacter cases in our patients. Direct staining technique for Campylobacter had a very low sensitivity compared to culture. Staining methods might lead to a high rate of false negative results and an underestimation of the importance of campylobacteriosis. With the inclusion of Campylobacter culture, this pathogen became a leading cause of intestinal infection in our patient population.

  7. Oxygen flux as an indicator of physiological stress in fathead minnow (Pimephales promelas) embryos: a real-time biomonitoring system of water quality.

    PubMed

    Sanchez, Brian C; Ochoa-Acuña, Hugo; Porterfield, D Marshall; Sepúlveda, María S

    2008-09-15

    The detection of harmful chemicals and biological agents in real time is a critical need for protecting freshwater ecosystems. We studied the real-time effects of five environmental contaminants with differing modes of action (atrazine, cadmium chloride, pentachlorophenol, malathion, and potassium cyanide) on respiratory oxygen consumption in 2-day postfertilization fathead minnow (Pimephales promelas) eggs. Our objective was to assess the sensitivity of fathead minnow eggs using the self-referencing micro-optrode technique to detect instantaneous changes in oxygen consumption after brief exposures to low concentrations of contaminants. Oxygen consumption data indicated that the technique is indeed sensitive enough to reliably detect physiological alterations induced by four of the five contaminants. After 2 h of exposure, we identified significant increases in oxygen consumption upon exposure to pentachlorophenol (100 and 1000 microg/L), cadmium chloride (0.0002 and 0.002 microg/L), and atrazine (150 microg/L). In contrast, we observed a significant decrease in oxygen flux after exposuresto potassium cyanide (44 and 66 microg/L) and atrazine (1500 microg/L). No effects were detected after exposures to malathion (200 and 340 microg/L). Our work is the first step in development of a new technique for physiologically coupled biomonitoring as a sensitive and reliable tool for the detection of environmental toxicants.

  8. One-pot ultrasonic-assisted method for preparation of Ag/AgCl sensitized ZnO nanostructures as visible-light-driven photocatalysts

    NASA Astrophysics Data System (ADS)

    Naghizadeh-Alamdari, Sara; Habibi-Yangjeh, Aziz; Pirhashemi, Mahsa

    2015-02-01

    Ultrasonic-assisted method was applied for preparation of Ag/AgCl sensitized ZnO nanostructures by one-pot procedure in water without using any post preparation treatments. The resultant nanocomposites were characterized by XRD, EDX, SEM, DRS, XPS, BET, and PL techniques. In the nanocomposites, ZnO and AgCl have wurtzite hexagonal and cubic crystalline phases, respectively and their surface morphologies remarkably change with increasing mole fraction of silver chloride. The EDX and XPS techniques show that the prepared samples are extremely pure. Ability of the nanocomposites for absorption of visible-light irradiation enhanced with increasing AgCl content. Photocatalytic examination of the nanocomposites was carried out using aqueous solution of methylene blue under visible-light irradiation. The degradation rate constant on the nancomposite rapidly increases with mole fraction of silver chloride up to 0.237. Enhancing activity of the nanocomposite was attributed to its ability for absorbing visible light and separation of electron-hole pairs. Furthermore, influence of ultrasonic irradiation time, calcination temperature, catalyst weight, pH of solution, and scavengers of reactive species on the degradation activity was investigated and the results were discussed. Finally, the photocatalyst has good activity after five successive cycles.

  9. Improvement of a PCR test to diagnose infection by Mansonella ozzardi.

    PubMed

    Vera, Luana Janaína Souza; Basano, Sergio de Almeida; Camargo, Juliana de Souza Almeida Aranha; França, Andonai Krauze de; Ferreira, Ricardo de Godoi Mattos; Casseb, Almeida Andrade; Medeiros, Jansen Fernandes; Fontes, Gilberto; Camargo, Luís Marcelo Aranha

    2011-01-01

    Mansonelliasis is caused by Mansonella ozzardi. It is widespread in the Amazon region, with a high prevalence. The common exam of thick blood smears stained with Giemsa shows low efficacy levels and has been an obstacle to diagnosing individuals with low blood parasitemia. In order to increase diagnosis efficacy, the PCR technique was improved. PCR demonstrated the best performance, with sensitivity and negative predictive values (NPV) of 100%, followed by blood filtration through membrane filters, which showed a sensitivity of 88.9% and a NPV of 84.6%, when compared to thick blood smears.

  10. Elemental Analysis in Biological Matrices Using ICP-MS.

    PubMed

    Hansen, Matthew N; Clogston, Jeffrey D

    2018-01-01

    The increasing exploration of metallic nanoparticles for use as cancer therapeutic agents necessitates a sensitive technique to track the clearance and distribution of the material once introduced into a living system. Inductively coupled plasma mass spectrometry (ICP-MS) provides a sensitive and selective tool for tracking the distribution of metal components from these nanotherapeutics. This chapter presents a standardized method for processing biological matrices, ensuring complete homogenization of tissues, and outlines the preparation of appropriate standards and controls. The method described herein utilized gold nanoparticle-treated samples; however, the method can easily be applied to the analysis of other metals.

  11. Temperature sensitivity of soil organic carbon decomposition increased with mean carbon residence time: Field incubation and data assimilation.

    PubMed

    Zhou, Xuhui; Xu, Xia; Zhou, Guiyao; Luo, Yiqi

    2018-02-01

    Temperature sensitivity of soil organic carbon (SOC) decomposition is one of the major uncertainties in predicting climate-carbon (C) cycle feedback. Results from previous studies are highly contradictory with old soil C decomposition being more, similarly, or less sensitive to temperature than decomposition of young fractions. The contradictory results are partly from difficulties in distinguishing old from young SOC and their changes over time in the experiments with or without isotopic techniques. In this study, we have conducted a long-term field incubation experiment with deep soil collars (0-70 cm in depth, 10 cm in diameter of PVC tubes) for excluding root C input to examine apparent temperature sensitivity of SOC decomposition under ambient and warming treatments from 2002 to 2008. The data from the experiment were infused into a multi-pool soil C model to estimate intrinsic temperature sensitivity of SOC decomposition and C residence times of three SOC fractions (i.e., active, slow, and passive) using a data assimilation (DA) technique. As active SOC with the short C residence time was progressively depleted in the deep soil collars under both ambient and warming treatments, the residences times of the whole SOC became longer over time. Concomitantly, the estimated apparent and intrinsic temperature sensitivity of SOC decomposition also became gradually higher over time as more than 50% of active SOC was depleted. Thus, the temperature sensitivity of soil C decomposition in deep soil collars was positively correlated with the mean C residence times. However, the regression slope of the temperature sensitivity against the residence time was lower under the warming treatment than under ambient temperature, indicating that other processes also regulated temperature sensitivity of SOC decomposition. These results indicate that old SOC decomposition is more sensitive to temperature than young components, making the old C more vulnerable to future warmer climate. © 2017 John Wiley & Sons Ltd.

  12. Morphology-Driven Control of Metabolite Selectivity Using Nanostructure-Initiator Mass Spectrometry

    DOE PAGES

    Gao, Jian; Louie, Katherine B.; Steinke, Philipp; ...

    2017-05-26

    Nanostructure-initiator mass spectrometry (NIMS) is a laser desorption/ionization analysis technique based on the vaporization of a nanostructure-trapped liquid "initiator" phase. Here we report an intriguing relationship between NIMS surface morphology and analyte selectivity. Scanning electron microscopy and spectroscopic ellipsometry were used to characterize the surface morphologies of a series of NIMS substrates generated by anodic electrochemical etching. Mass spectrometry imaging was applied to compare NIMS sensitivity of these various surfaces toward the analysis of diverse analytes. The porosity of NIMS surfaces was found to increase linearly with etching time where the pore size ranged from 4 to 12 nm withmore » corresponding porosities estimated to be 7-70%. Surface morphology was found to significantly and selectively alter NIMS sensitivity. The small molecule ( < 2k Da) sensitivity was found to increase with increased porosity, whereas low porosity had the highest sensitivity for the largest molecules examined. Estimation of molecular sizes showed that this transition occurs when the pore size is < 3× the maximum of molecular dimensions. While the origins of selectivity are unclear, increased signal from small molecules with increased surface area is consistent with a surface area restructuring-driven desorption/ionization process where signal intensity increases with porosity. In contrast, large molecules show highest signal for the low-porosity and small-pore-size surfaces. We attribute this to strong interactions between the initiator-coated pore structures and large molecules that hinder desorption/ionization by trapping large molecules. This finding may enable us to design NIMS surfaces with increased specificity to molecules of interest.« less

  13. Current trends in explosive detection techniques.

    PubMed

    Caygill, J Sarah; Davis, Frank; Higson, Seamus P J

    2012-01-15

    The detection of explosives and explosive-related compounds has become a heightened priority in recent years for homeland security and counter-terrorism applications. There has been a huge increase in research within this area-through both the development of new, innovative detection approaches and the improvement of existing techniques. Developments for miniaturisation, portability, field-ruggedisation and improvements in stand-off distances, selectivity and sensitivity have been necessary to develop and improve techniques. This review provides a consolidation of information relating to recent advances in explosive detection techniques without being limited to one specific research area or explosive type. The focus of this review will be towards advances in the last 5 years, with the reader being referred to earlier reviews where appropriate. Copyright © 2011. Published by Elsevier B.V.

  14. Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis.

    PubMed

    Ferhan, Abdul Rahim; Jackman, Joshua A; Cho, Nam-Joon

    2016-12-20

    The combination of label-free, surface-sensitive measurement techniques based on different physical principles enables detailed characterization of biomacromolecular interactions at solid-liquid interfaces. To date, most combined measurement systems have involved experimental techniques with similar probing volumes, whereas the potential of utilizing techniques with different surface sensitivities remains largely unexplored, especially for data interpretation. Herein, we report a combined measurement approach that integrates a conventional quartz crystal microbalance-dissipation (QCM-D) setup with a reflection-mode localized surface plasmon (LSPR) sensor. Using this platform, we investigate vesicle adsorption on a titanium oxide-coated sensing substrate along with the amphipathic, α-helical (AH) peptide-induced structural transformation of surface-adsorbed lipid vesicles into a supported lipid bilayer (SLB) as a model biomacromolecular interaction. While the QCM-D and LSPR signals both detected mass uptake arising from vesicle adsorption, tracking the AH peptide-induced structural transformation revealed more complex measurement responses based on the different surface sensitivities of the two techniques. In particular, the LSPR signal recorded an increase in optical mass near the sensor surface which indicated SLB formation, whereas the QCM-D signals detected a significant loss in net acoustic mass due to excess lipid and coupled solvent leaving the probing volume. Importantly, these measurement capabilities allowed us to temporally distinguish the process of SLB formation at the sensor surface from the overall structural transformation process. Looking forward, these label-free measurement capabilities to simultaneously probe adsorbates at multiple length scales will provide new insights into complex biomacromolecular interactions.

  15. Methylation-sensitive amplified polymorphism (MSAP) marker to investigate drought-stress response in Montepulciano and Sangiovese grape cultivars.

    PubMed

    Albertini, Emidio; Marconi, Gianpiero

    2014-01-01

    Methylation-sensitive amplified polymorphism (MSAP) is a technique developed for assessing the extent and pattern of cytosine methylation and has been applied to genomes of several species (Arabidopsis, grape, maize, tomato, and pepper). The technique relies on the use of isoschizomers that differ in their sensitivity to methylation.

  16. Self-Reported Alcohol Consumption and Sexual Behavior in Males and Females: Using the Unmatched-Count Technique to Examine Reporting Practices of Socially Sensitive Subjects in a Sample of University Students

    ERIC Educational Resources Information Center

    Walsh, Jeffrey A.; Braithwaite, Jeremy

    2008-01-01

    This work, drawing on the literature on alcohol consumption, sexual behavior, and researching sensitive topics, tests the efficacy of the unmatched-count technique (UCT) in establishing higher rates of truthful self-reporting when compared to traditional survey techniques. Traditional techniques grossly underestimate the scope of problems…

  17. Glucagon sensitivity and clearance in type 1 diabetes: insights from in vivo and in silico experiments.

    PubMed

    Hinshaw, Ling; Mallad, Ashwini; Dalla Man, Chiara; Basu, Rita; Cobelli, Claudio; Carter, Rickey E; Kudva, Yogish C; Basu, Ananda

    2015-09-01

    Glucagon use in artificial pancreas for type 1 diabetes (T1D) is being explored for prevention and rescue from hypoglycemia. However, the relationship between glucagon stimulation of endogenous glucose production (EGP) viz., hepatic glucagon sensitivity, and prevailing glucose concentrations has not been examined. To test the hypothesis that glucagon sensitivity is increased at hypoglycemia vs. euglycemia, we studied 29 subjects with T1D randomized to a hypoglycemia or euglycemia clamp. Each subject was studied at three glucagon doses at euglycemia or hypoglycemia, with EGP measured by isotope dilution technique. The peak EGP increments and the integrated EGP response increased with increasing glucagon dose during euglycemia and hypoglycemia. However, the difference in dose response based on glycemia was not significant despite higher catecholamine concentrations in the hypoglycemia group. Knowledge of glucagon's effects on EGP was used to develop an in silico glucagon action model. The model-derived output fitted the obtained data at both euglycemia and hypoglycemia for all glucagon doses tested. Glucagon clearance did not differ between glucagon doses studied in both groups. Therefore, the glucagon controller of a dual hormone control system may not need to adjust glucagon sensitivity, and hence glucagon dosing, based on glucose concentrations during euglycemia and hypoglycemia. Copyright © 2015 the American Physiological Society.

  18. Machine learning models in breast cancer survival prediction.

    PubMed

    Montazeri, Mitra; Montazeri, Mohadeseh; Montazeri, Mahdieh; Beigzadeh, Amin

    2016-01-01

    Breast cancer is one of the most common cancers with a high mortality rate among women. With the early diagnosis of breast cancer survival will increase from 56% to more than 86%. Therefore, an accurate and reliable system is necessary for the early diagnosis of this cancer. The proposed model is the combination of rules and different machine learning techniques. Machine learning models can help physicians to reduce the number of false decisions. They try to exploit patterns and relationships among a large number of cases and predict the outcome of a disease using historical cases stored in datasets. The objective of this study is to propose a rule-based classification method with machine learning techniques for the prediction of different types of Breast cancer survival. We use a dataset with eight attributes that include the records of 900 patients in which 876 patients (97.3%) and 24 (2.7%) patients were females and males respectively. Naive Bayes (NB), Trees Random Forest (TRF), 1-Nearest Neighbor (1NN), AdaBoost (AD), Support Vector Machine (SVM), RBF Network (RBFN), and Multilayer Perceptron (MLP) machine learning techniques with 10-cross fold technique were used with the proposed model for the prediction of breast cancer survival. The performance of machine learning techniques were evaluated with accuracy, precision, sensitivity, specificity, and area under ROC curve. Out of 900 patients, 803 patients and 97 patients were alive and dead, respectively. In this study, Trees Random Forest (TRF) technique showed better results in comparison to other techniques (NB, 1NN, AD, SVM and RBFN, MLP). The accuracy, sensitivity and the area under ROC curve of TRF are 96%, 96%, 93%, respectively. However, 1NN machine learning technique provided poor performance (accuracy 91%, sensitivity 91% and area under ROC curve 78%). This study demonstrates that Trees Random Forest model (TRF) which is a rule-based classification model was the best model with the highest level of accuracy. Therefore, this model is recommended as a useful tool for breast cancer survival prediction as well as medical decision making.

  19. Characterization and discrimination of human breast cancer and normal breast tissues using resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Binlin; Smith, Jason; Zhang, Lin; Gao, Xin; Alfano, Robert R.

    2018-02-01

    Worldwide breast cancer incidence has increased by more than twenty percent in the past decade. It is also known that in that time, mortality due to the affliction has increased by fourteen percent. Using optical-based diagnostic techniques, such as Raman spectroscopy, has been explored in order to increase diagnostic accuracy in a more objective way along with significantly decreasing diagnostic wait-times. In this study, Raman spectroscopy with 532-nm excitation was used in order to incite resonance effects to enhance Stokes Raman scattering from unique biomolecular vibrational modes. Seventy-two Raman spectra (41 cancerous, 31 normal) were collected from nine breast tissue samples by performing a ten-spectra average using a 500-ms acquisition time at each acquisition location. The raw spectral data was subsequently prepared for analysis with background correction and normalization. The spectral data in the Raman Shift range of 750- 2000 cm-1 was used for analysis since the detector has highest sensitivity around in this range. The matrix decomposition technique nonnegative matrix factorization (NMF) was then performed on this processed data. The resulting leave-oneout cross-validation using two selective feature components resulted in sensitivity, specificity and accuracy of 92.6%, 100% and 96.0% respectively. The performance of NMF was also compared to that using principal component analysis (PCA), and NMF was shown be to be superior to PCA in this study. This study shows that coupling the resonance Raman spectroscopy technique with subsequent NMF decomposition method shows potential for high characterization accuracy in breast cancer detection.

  20. Pressure- and Temperature-Sensitive Paint at 0.3-m Transonic Cryogenic Tunnel

    NASA Technical Reports Server (NTRS)

    Watkins, A. Neal; Leighty, Bradley D.; Lipford, William E.; Goodman, Kyle Z.

    2015-01-01

    Recently both Pressure- and Temperature-Sensitive Paint experiments were conducted at cryogenic conditions in the 0.3-m Transonic Cryogenic Tunnel at NASA Langley Research Center. This represented a re-introduction of the techniques to the facility after more than a decade, and provided a means to upgrade the measurements using newer technology as well as demonstrate that the techniques were still viable in the facility. Temperature-Sensitive Paint was employed on a laminar airfoil for transition detection and Pressure-Sensitive Paint was employed on a supercritical airfoil. This report will detail the techniques and their unique challenges that need to be overcome in cryogenic environments. In addition, several optimization strategies will also be discussed.

  1. Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation.

    PubMed

    Sudhagar, P; Asokan, K; Jung, June Hyuk; Lee, Yong-Gun; Park, Suil; Kang, Yong Soo

    2011-12-01

    A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm(-2)) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm(-2)). When SHI irradiation of oxygen ions of fluence 1 × 10(13) ions/cm(2) was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs.

  2. Efficient Performance of Electrostatic Spray-Deposited TiO2 Blocking Layers in Dye-Sensitized Solar Cells after Swift Heavy Ion Beam Irradiation

    PubMed Central

    2011-01-01

    A compact TiO2 layer (~1.1 μm) prepared by electrostatic spray deposition (ESD) and swift heavy ion beam (SHI) irradiation using oxygen ions onto a fluorinated tin oxide (FTO) conducting substrate showed enhancement of photovoltaic performance in dye-sensitized solar cells (DSSCs). The short circuit current density (Jsc = 12.2 mA cm-2) of DSSCs was found to increase significantly when an ESD technique was applied for fabrication of the TiO2 blocking layer, compared to a conventional spin-coated layer (Jsc = 8.9 mA cm-2). When SHI irradiation of oxygen ions of fluence 1 × 1013 ions/cm2 was carried out on the ESD TiO2, it was found that the energy conversion efficiency improved mainly due to the increase in open circuit voltage of DSSCs. This increased energy conversion efficiency seems to be associated with improved electronic energy transfer by increasing the densification of the blocking layer and improving the adhesion between the blocking layer and the FTO substrate. The adhesion results from instantaneous local melting of the TiO2 particles. An increase in the electron transport from the blocking layer may also retard the electron recombination process due to the oxidized species present in the electrolyte. These findings from novel treatments using ESD and SHI irradiation techniques may provide a new tool to improve the photovoltaic performance of DSSCs. PMID:27502653

  3. Oxidation-state sensitive imaging of cerium dioxide by atomic-resolution low-angle annular dark field scanning transmission electron microscopy.

    PubMed

    Johnston-Peck, Aaron C; Winterstein, Jonathan P; Roberts, Alan D; DuChene, Joseph S; Qian, Kun; Sweeny, Brendan C; Wei, Wei David; Sharma, Renu; Stach, Eric A; Herzing, Andrew A

    2016-03-01

    Low-angle annular dark field (LAADF) scanning transmission electron microscopy (STEM) imaging is presented as a method that is sensitive to the oxidation state of cerium ions in CeO2 nanoparticles. This relationship was validated through electron energy loss spectroscopy (EELS), in situ measurements, as well as multislice image simulations. Static displacements caused by the increased ionic radius of Ce(3+) influence the electron channeling process and increase electron scattering to low angles while reducing scatter to high angles. This process manifests itself by reducing the high-angle annular dark field (HAADF) signal intensity while increasing the LAADF signal intensity in close proximity to Ce(3+) ions. This technique can supplement STEM-EELS and in so doing, relax the experimental challenges associated with acquiring oxidation state information at high spatial resolutions. Published by Elsevier B.V.

  4. Optical fiber strain sensor for application in intelligent intruder detection systems

    NASA Astrophysics Data System (ADS)

    Stańczyk, Tomasz; Tenderenda, Tadeusz; Szostkiewicz, Lukasz; Bienkowska, Beata; Kunicki, Daniel; Murawski, Michal; Mergo, Pawel; Nasilowski, Tomasz

    2017-10-01

    Nowadays technology allows to create highly effective Intruder Detection Systems (IDS), that are able to detect the presence of an intruder within a defined area. In such systems the best performance can be achieved by combining different detection techniques in one system. One group of devices that can be applied in an IDS, are devices based on Fiber Optic Sensors (FOS). The FOS benefits from numerous advantages of optical fibers like: small size, light weight or high sensitivity. In this work we present a novel Microstructured Optical Fiber (MOF) characterized by increased strain sensitivity dedicated to distributed acoustic sensing for intelligent intruder detection systems. By designing the MOF with large air holes in close proximity to a fiber core, we increased the effective refractive index sensitivity to longitudinal strain. The presented fiber can be easily integrated in a floor system in order to detect any movement in the investigated area. We believe that sensors, based on the presented MOF, due to its numerous advantages, can find application in intelligent IDS.

  5. Binary pressure-sensitive paint measurements using miniaturised, colour, machine vision cameras

    NASA Astrophysics Data System (ADS)

    Quinn, Mark Kenneth

    2018-05-01

    Recent advances in machine vision technology and capability have led to machine vision cameras becoming applicable for scientific imaging. This study aims to demonstrate the applicability of machine vision colour cameras for the measurement of dual-component pressure-sensitive paint (PSP). The presence of a second luminophore component in the PSP mixture significantly reduces its inherent temperature sensitivity, increasing its applicability at low speeds. All of the devices tested are smaller than the cooled CCD cameras traditionally used and most are of significantly lower cost, thereby increasing the accessibility of such technology and techniques. Comparisons between three machine vision cameras, a three CCD camera, and a commercially available specialist PSP camera are made on a range of parameters, and a detailed PSP calibration is conducted in a static calibration chamber. The findings demonstrate that colour machine vision cameras can be used for quantitative, dual-component, pressure measurements. These results give rise to the possibility of performing on-board dual-component PSP measurements in wind tunnels or on real flight/road vehicles.

  6. Reducing Spatial Uncertainty Through Attentional Cueing Improves Contrast Sensitivity in Regions of the Visual Field With Glaucomatous Defects

    PubMed Central

    Phu, Jack; Kalloniatis, Michael; Khuu, Sieu K.

    2018-01-01

    Purpose Current clinical perimetric test paradigms present stimuli randomly to various locations across the visual field (VF), inherently introducing spatial uncertainty, which reduces contrast sensitivity. In the present study, we determined the extent to which spatial uncertainty affects contrast sensitivity in glaucoma patients by minimizing spatial uncertainty through attentional cueing. Methods Six patients with open-angle glaucoma and six healthy subjects underwent laboratory-based psychophysical testing to measure contrast sensitivity at preselected locations at two eccentricities (9.5° and 17.5°) with two stimulus sizes (Goldmann sizes III and V) under different cueing conditions: 1, 2, 4, or 8 points verbally cued. Method of Constant Stimuli and a single-interval forced-choice procedure were used to generate frequency of seeing (FOS) curves at locations with and without VF defects. Results At locations with VF defects, cueing minimizes spatial uncertainty and improves sensitivity under all conditions. The effect of cueing was maximal when one point was cued, and rapidly diminished when more points were cued (no change to baseline with 8 points cued). The slope of the FOS curve steepened with reduced spatial uncertainty. Locations with normal sensitivity in glaucomatous eyes had similar performance to that of healthy subjects. There was a systematic increase in uncertainty with the depth of VF loss. Conclusions Sensitivity measurements across the VF are negatively affected by spatial uncertainty, which increases with greater VF loss. Minimizing uncertainty can improve sensitivity at locations of deficit. Translational Relevance Current perimetric techniques introduce spatial uncertainty and may therefore underestimate sensitivity in regions of VF loss. PMID:29600116

  7. Dimethylsulfide model calibration and parametric sensitivity analysis for the Greenland Sea

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Gabric, Albert J.; Zeng, Meifang; Xi, Jiaojiao; Jiang, Limei; Zhao, Li

    2017-09-01

    Sea-to-air fluxes of marine biogenic aerosols have the potential to modify cloud microphysics and regional radiative budgets, and thus moderate Earth's warming. Polar regions play a critical role in the evolution of global climate. In this work, we use a well-established biogeochemical model to simulate the DMS flux from the Greenland Sea (20°W-10°E and 70°N-80°N) for the period 2003-2004. Parameter sensitivity analysis is employed to identify the most sensitive parameters in the model. A genetic algorithm (GA) technique is used for DMS model parameter calibration. Data from phase 5 of the Coupled Model Intercomparison Project (CMIP5) are used to drive the DMS model under 4 × CO2 conditions. DMS flux under quadrupled CO2 levels increases more than 300% compared with late 20th century levels (1 × CO2). Reasons for the increase in DMS flux include changes in the ocean state-namely an increase in sea surface temperature (SST) and loss of sea ice-and an increase in DMS transfer velocity, especially in spring and summer. Such a large increase in DMS flux could slow the rate of warming in the Arctic via radiative budget changes associated with DMS-derived aerosols.

  8. Experience of the JPL Exploratory Data Analysis Team at validating HIRS2/MSU cloud parameters

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph; Haskins, Robert D.; Granger-Gallegos, Stephanie; Pursch, Andrew; Delgenio, Anthony

    1992-01-01

    Validation of the HIRS2/MSU cloud parameters began with the cloud/climate feedback problem. The derived effective cloud amount is less sensitive to surface temperature for higher clouds. This occurs because as the cloud elevation increases, the difference between surface temperature and cloud temperature increases, so only a small change in cloud amount is needed to effect a large change in radiance at the detector. By validating the cloud parameters it is meant 'developing a quantitative sense for the physical meaning of the measured parameters', by: (1) identifying the assumptions involved in deriving parameters from the measured radiances, (2) testing the input data and derived parameters for statistical error, sensitivity, and internal consistency, and (3) comparing with similar parameters obtained from other sources using other techniques.

  9. Laser ablation surface-enhanced Raman microspectroscopy.

    PubMed

    Londero, Pablo S; Lombardi, John R; Leona, Marco

    2013-06-04

    Improved identification of trace organic compounds in complex matrixes is critical for a variety of fields such as material science, heritage science, and forensics. Surface-enhanced Raman scattering (SERS) is a vibrational spectroscopy technique that can attain single-molecule sensitivity and has been shown to complement mass spectrometry, but lacks widespread application without a robust method that utilizes the effect. We demonstrate a new, highly sensitive, and widely applicable approach to SERS analysis based on laser ablation in the presence of a tailored plasmonic substrate. We analyze several challenging compounds, including non-water-soluble pigments and dyed leather from an ancient Egyptian chariot, achieving sensitivity as high as 120 amol for a 1:1 signal-to-noise ratio and 5 μm spatial resolution. This represents orders of magnitude improvement in spatial resolution and sensitivity compared to those of other SERS approaches intended for widespread application, greatly increasing the applicability of SERS.

  10. An Externally Dispersed Interferometer for Sensitive Doppler Extrasolar Planet Searches

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Erskine, David J.; Rushford, Mike

    2002-09-01

    A new kind of instrument for sensitive Doppler extrasolar planet searches, called an externally dispersed interferometer, is described in this paper. It is a combination of an optical Michelson-type interferometer and an intermediate-resolution grating spectrometer. The interferometer measures Doppler radial velocity (RV) variations of starlight through the phase shifts of moiré fringes, created by multiplication of the interferometer fringes with stellar absorption lines. The intermediate-resolution spectrograph disperses the moiré fringes into thousands of parallel-wavelength channels. This increases the instrument bandwidth and fringe visibility by preventing fringe cross-talk between neighboring spectral lines. This results in a net increase in the signal-to-noise ratio over an interferometer used alone with broadband light. Compared to current echelle spectrometers for extrasolar planet searches, this instrument offers two unique instrument properties: a simple, stable, well-defined sinusoidal instrument response function (point-spread function) and magnification of Doppler motion through moiré fringe techniques. Since instrument noise is chiefly limited by the ability to characterize the instrument response, this new technique provides unprecedented low instrumental noise in an economical compact apparatus, enabling higher precision for Doppler RV measurements. In practice, the moiré magnification can be 5-10 times depending on the interferometer comb angle. This instrument has better sensitivity for smaller Doppler shifts than echelle spectrometers. The instrument can be designed with much lower spectral resolving power without losing Doppler sensitivity and optimized for higher throughput than echelle spectrometers to allow a potential survey for planets around fainter stars than current magnitude limits. Lab-based experiments with a prototype instrument with a spectral resolution of R~20,000 demonstrated ~0.7 m s-1 precision for short-term RV measurements. A fiber-fed version of the prototype with R~5600 was tested with starlight at the Lick 1 m telescope and demonstrated ~7 m s-1 RV precision at 340 Å bandwidth. The increased velocity noise is attributed to the lower spectral resolution, lower fringe visibility, and uncontrolled instrument environment.

  11. A fast method for detecting Cryptosporidium parvum oocysts in real world samples

    NASA Astrophysics Data System (ADS)

    Stewart, Shona; McClelland, Lindy; Maier, John

    2005-04-01

    Contamination of drinking water with pathogenic microorganisms such as Cryptosporidium has become an increasing concern in recent years. Cryptosporidium oocysts are particularly problematic, as infections caused by this organism can be life threatening in immunocompromised patients. Current methods for monitoring and analyzing water are often laborious and require experts to conduct. In addition, many of the techniques require very specific reagents to be employed. These factors add considerable cost and time to the analytical process. Raman spectroscopy provides specific molecular information on samples, and offers advantages of speed, sensitivity and low cost over current methods of water monitoring. Raman spectroscopy is an optical method that has demonstrated the capability to identify and differentiate microorganisms at the species and strain levels. In addition, this technique has exhibited sensitivities down to the single organism detection limit. We have employed Raman spectroscopy and Raman Chemical Imaging, in conjunction with chemometric techniques, to detect small numbers of oocysts in the presence of interferents derived from real-world water samples. Our investigations have also indicated that Raman Chemical Imaging may provide chemical and physiological information about an oocyst sample which complements information provided by the traditional methods. This work provides evidence that Raman imaging is a useful technique for consideration in the water quality industry.

  12. Sn-doped ZnO nanopetal networks for efficient photocatalytic degradation of dye and gas sensing applications

    NASA Astrophysics Data System (ADS)

    Bhatia, Sonik; Verma, Neha; Bedi, R. K.

    2017-06-01

    Nowadays, tremendous increase in environmental issue is an alarming threat to the ecosystem. This paper reports, rapid synthesis and characterization for tin doped ZnO nanoparticles prepared by simple combustion method and doctor blade technique. The prepared nanoparticles were characterized by several techniques in terms of their morphological, structural, compositional, optical, photocatalytic and gas sensing properties. These detailed characterization confirmed that all the synthesized nanoparticles are well crystalline and having good optoelectronic properties. Herein, different concentrations of Sn (0.5 at. wt%, 1.0 at. wt%, 2.0 at. wt%, 3.0 at. wt%) were used as dopants (SZ1-SZ4). The morphology of synthesized technique confirmed that the petal-shaped nanoparticles has high surface area and are well crystalline. In order to develop smart and functional nano-device, the prepared powder was coated on glass substrate by doctor blade technique and fabricated device was sensed for ethanol and acetone gas at different operating temperatures (300-500̊C). It is noteworthy that morphology of the nanoparticles of the sensitive layer is maintained after different concentration of Sn. High sensitivity is the main cause of high surface area and tin doping. PL intensity near 598 nm of SZ3 is greater than other Sn-doped ZnO which indicates more oxygen vacancies of SZ3 is responsible for enhanced gas sensitivity and photocatalytic activity. The sensing performance showed 5% volume of ethanol and acetone and gases could be detected with sensitivity of 86.80% and 84.40% respectively. The mechanism for the improvement in the sensing properties can be explained with the surface adsorption theory. Sn-ZnO was used as photocatalyst for degradation of DR-31 dye. Optimum concentration of prepared nanoparticles (2.0 at. wt%) exhibits complete degradation of dye only in 60 min under UV irradiation.

  13. Coherent Anti-Stokes Raman Scattering Spectroscopy of Single Molecules in Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunney Xie, Wei Min, Chris Freudiger, Sijia Lu

    2012-01-18

    During this funding period, we have developed two breakthrough techniques. The first is stimulated Raman scattering microscopy, providing label-free chemical contrast for chemical and biomedical imaging based on vibrational spectroscopy. Spontaneous Raman microscopy provides specific vibrational signatures of chemical bonds, but is often hindered by low sensitivity. We developed a three-dimensional multiphoton vibrational imaging technique based on stimulated Raman scattering (SRS). The sensitivity of SRS imaging is significantly greater than that of spontaneous Raman microscopy, which is achieved by implementing high-frequency (megahertz) phase-sensitive detection. SRS microscopy has a major advantage over previous coherent Raman techniques in that it offers background-freemore » and readily interpretable chemical contrast. We demonstrated a variety of biomedical applications, such as differentiating distributions of omega-3 fatty acids and saturated lipids in living cells, imaging of brain and skin tissues based on intrinsic lipid contrast, and monitoring drug delivery through the epidermis. This technology offers exciting prospect for medical imaging. The second technology we developed is stimulated emission microscopy. Many chromophores, such as haemoglobin and cytochromes, absorb but have undetectable fluorescence because the spontaneous emission is dominated by their fast non-radiative decay. Yet the detection of their absorption is difficult under a microscope. We use stimulated emission, which competes effectively with the nonradiative decay, to make the chromophores detectable, as a new contrast mechanism for optical microscopy. We demonstrate a variety of applications of stimulated emission microscopy, such as visualizing chromoproteins, non-fluorescent variants of the green fluorescent protein, monitoring lacZ gene expression with a chromogenic reporter, mapping transdermal drug distribu- tions without histological sectioning, and label-free microvascular imaging based on endogenous contrast of haemoglobin. For all these applications, sensitivity is orders of magnitude higher than for spontaneous emission or absorption contrast, permitting nonfluorescent reporters for molecular imaging. Although we did not accomplish the original goal of detecting single-molecule by CARS, our quest for high sensitivity of nonlinear optical microscopy paid off in providing the two brand new enabling technologies. Both techniques were greatly benefited from the use of high frequency modulation for microscopy, which led to orders of magnitude increase in sensitivity. Extensive efforts have been made on optics and electronics to accomplish these breakthroughs.« less

  14. Adaptive gain, equalization, and wavelength stabilization techniques for silicon photonic microring resonator-based optical receivers

    NASA Astrophysics Data System (ADS)

    Palermo, Samuel; Chiang, Patrick; Yu, Kunzhi; Bai, Rui; Li, Cheng; Chen, Chin-Hui; Fiorentino, Marco; Beausoleil, Ray; Li, Hao; Shafik, Ayman; Titriku, Alex

    2016-03-01

    Interconnect architectures based on high-Q silicon photonic microring resonator devices offer a promising solution to address the dramatic increase in datacenter I/O bandwidth demands due to their ability to realize wavelength-division multiplexing (WDM) in a compact and energy efficient manner. However, challenges exist in realizing efficient receivers for these systems due to varying per-channel link budgets, sensitivity requirements, and ring resonance wavelength shifts. This paper reports on adaptive optical receiver design techniques which address these issues and have been demonstrated in two hybrid-integrated prototypes based on microring drop filters and waveguide photodetectors implemented in a 130nm SOI process and high-speed optical front-ends designed in 65nm CMOS. A 10Gb/s powerscalable architecture employs supply voltage scaling of a three inverter-stage transimpedance amplifier (TIA) that is adapted with an eye-monitor control loop to yield the necessary sensitivity for a given channel. As reduction of TIA input-referred noise is more critical at higher data rates, a 25Gb/s design utilizes a large input-stage feedback resistor TIA cascaded with a continuous-time linear equalizer (CTLE) that compensates for the increased input pole. When tested with a waveguide Ge PD with 0.45A/W responsivity, this topology achieves 25Gb/s operation with -8.2dBm sensitivity at a BER=10-12. In order to address microring drop filters sensitivity to fabrication tolerances and thermal variations, efficient wavelength-stabilization control loops are necessary. A peak-power-based monitoring loop which locks the drop filter to the input wavelength, while achieving compatibility with the high-speed TIA offset-correction feedback loop is implemented with a 0.7nm tuning range at 43μW/GHz efficiency.

  15. Determination of ABO blood grouping and Rhesus factor from tooth material

    PubMed Central

    Kumar, Pooja Vijay; Vanishree, M; Anila, K; Hunasgi, Santosh; Suryadevra, Sri Sujan; Kardalkar, Swetha

    2016-01-01

    Objective: The aim of the study was to determine blood groups and Rhesus factor from dentin and pulp using absorption-elution (AE) technique in different time periods at 0, 3, 6, 9 and 12 months, respectively. Materials and Methods: A total of 150 cases, 30 patients each at 0, 3, 6, 9 and 12 months were included in the study. The samples consisted of males and females with age ranging 13–60 years. Patient's blood group was checked and was considered as “control.” The dentin and pulp of extracted teeth were tested for the presence of ABO/Rh antigen, at respective time periods by AE technique. Statistical Analysis: Data were analyzed in proportion. For comparison, Chi-square test or Fisher's exact test was used for the small sample. Results: Blood group antigens of ABO and Rh factor were detected in dentin and pulp up to 12 months. For both ABO and Rh factor, dentin and pulp showed 100% sensitivity for the samples tested at 0 month and showed a gradual decrease in the sensitivity as time period increased. The sensitivity of pulp was better than dentin for both the blood grouping systems and ABO blood group antigens were better detected than Rh antigens. Conclusion: In dentin and pulp, the antigens of ABO and Rh factor were detected up to 12 months but showed a progressive decrease in the antigenicity as the time period increased. When compared the results obtained of dentin and pulp in ABO and Rh factor grouping showed similar results with no statistical significance. The sensitivity of ABO blood grouping was better than Rh factor blood grouping and showed a statistically significant result. PMID:27721625

  16. Computer simulation of the last support phase of the long jump.

    PubMed

    Chow, John W; Hay, James G

    2005-01-01

    The purpose was to examine the interacting roles played by the approach velocity, the explosive strength (represented by vertical ground reaction force [VGRF]), and the change in angular momentum about a transverse axis through the jumper's center of mass (deltaHzz) during the last support phase of the long jump, using a computer simulation technique. A two-dimensional inverted-pendulum-plus-foot segment model was developed to simulate the last support phase. Using a reference jump derived from a jump performance reported in the literature, the effects of varying individual parameters were studied using sensitivity analyses. In each sensitivity analysis, the kinematic characteristics of the longest jumps with the deltaHzz considered and not considered when the parameter of interest was altered were noted. A sensitivity analysis examining the influence of altering both approach velocity and VGRF at the same time was also conducted. The major findings were that 1) the jump distance was more sensitive to changes in approach velocity (e.g., a 10% increase yielded a 10.0% increase in jump distance) than to changes in the VGRF (e.g., a 10% increase yielded a 7.2% increase in jump distance); 2) the relatively large change in jump distance when both the approach velocity and VGRF were altered (e.g., a 10% increase in both parameters yielded a 20.4% increase in jump distance), suggesting that these two parameters are not independent factors in determining the jump distance; and 3) the jump distance was overestimated if the deltaHzz was not considered in the analysis.

  17. Flexible three-dimensional electrochemical glucose sensor with improved sensitivity realized in hybrid polymer microelectromechanical systems technique.

    PubMed

    Patel, Jasbir N; Gray, Bonnie L; Kaminska, Bozena; Gates, Byron D

    2011-09-01

    Continuous glucose monitoring for patients with diabetes is of paramount importance to avoid severe health conditions resulting from hypoglycemia or hyperglycemia. Most available methods require an invasive setup and a health care professional. Handheld devices available on the market also require finger pricking for every measurement and do not provide continuous monitoring. Hence, continuous glucose monitoring from human tears using a glucose sensor embedded in a contact lens has been considered as a suitable option. However, the glucose concentration in human tears is very low in comparison with the blood glucose level (1/10-1/40 concentration). We propose a sensor that solves the sensitivity problem in a new way, is flexible, and is constructed onto the oxygen permeable contact lens material. To achieve such sensitivity while maintaining a small sensor footprint suitable for placement in a contact lens, we increased the active electrode area by using three-dimensional (3-D) electrode micropatterning. Fully flexible 3-D electrodes were realized utilizing ordered arrays of pillars with different shapes and heights. We successfully fabricated square and cylindrical pillars with different height (50, 100, and 200 μm) and uniform metal coverage to realize sensor electrodes. The increased surface area produces high amperometric current that increases sensor sensitivity up to 300% using 200 μm tall square pillars. The sensitivity improvement closely follows the improvement in the surface area of the electrode. The proposed flexible glucose sensors with 3-D microstructure electrodes are more sensitive to lower glucose concentrations and generate higher current signal than conventional glucose sensors. © 2011 Diabetes Technology Society.

  18. Prolonged incubation and stacked film exposure improve sensitivity in western blotting.

    PubMed

    Luo, Haitao; Rankin, Gary O; Straley, Shannon; Chen, Yi Charlie

    2011-01-01

    Western blotting is a basic technique for protein detection. For proteins of less abundance or antibodies of poorer quality, an increased sensitivity is often desired. Although it is commonly known that higher concentrations of antibodies and prolonged film exposure times will help improve sensitivity in western blots, both measures come with their own risks, and it is often unclear to which extent these measures should be applied. We conducted time-course studies to investigate protein-antibody interactions and primary antibody-secondary antibody interactions in western blotting. We also propose a protocol of stacked film exposure and have tested it in standard curves and cancer cell samples. Our study found that protein-primary antibody interactions and primary antibody-secondary antibody interactions could take a longer time than commonly used "one hour" or "overnight", and in some cases longer than 48h, to reach its maximum binding. We also show that the modified protocol of stacked film exposure works well for both standard curves and biological samples, reaching a maximum sensitivity in western blots without blurring target signals or increasing backgrounds. In addition to regular optimization of antibody concentrations and film exposure time, a prolonged incubation with antibodies and stacked film exposure will also help improve sensitivity and reduce background in western blotting. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Transparent, Flexible, Conformal Capacitive Pressure Sensors with Nanoparticles.

    PubMed

    Kim, Hyeohn; Kim, Gwangmook; Kim, Taehoon; Lee, Sangwoo; Kang, Donyoung; Hwang, Min-Soo; Chae, Youngcheol; Kang, Shinill; Lee, Hyungsuk; Park, Hong-Gyu; Shim, Wooyoung

    2018-02-01

    The fundamental challenge in designing transparent pressure sensors is the ideal combination of high optical transparency and high pressure sensitivity. Satisfying these competing demands is commonly achieved by a compromise between the transparency and usage of a patterned dielectric surface, which increases pressure sensitivity, but decreases transparency. Herein, a design strategy for fabricating high-transparency and high-sensitivity capacitive pressure sensors is proposed, which relies on the multiple states of nanoparticle dispersity resulting in enhanced surface roughness and light transmittance. We utilize two nanoparticle dispersion states on a surface: (i) homogeneous dispersion, where each nanoparticle (≈500 nm) with a size comparable to the visible light wavelength has low light scattering; and (ii) heterogeneous dispersion, where aggregated nanoparticles form a micrometer-sized feature, increasing pressure sensitivity. This approach is experimentally verified using a nanoparticle-dispersed polymer composite, which has high pressure sensitivity (1.0 kPa -1 ), and demonstrates excellent transparency (>95%). We demonstrate that the integration of nanoparticle-dispersed capacitor elements into an array readily yields a real-time pressure monitoring application and a fully functional touch device capable of acting as a pressure sensor-based input device, thereby opening up new avenues to establish processing techniques that are effective on the nanoscale yet applicable to macroscopic processing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Stand-off detection of trace explosives by infrared photothermal imaging

    NASA Astrophysics Data System (ADS)

    Papantonakis, Michael R.; Kendziora, Chris; Furstenberg, Robert; Stepnowski, Stanley V.; Rake, Matthew; Stepnowski, Jennifer; McGill, R. Andrew

    2009-05-01

    We have developed a technique for the stand-off detection of trace explosives using infrared photothermal imaging. In this approach, infrared quantum cascade lasers tuned to strong vibrational absorption bands of the explosive particles illuminate a surface of interest, preferentially heating the explosives material. An infrared focal plane array is used to image the surface and detect a small increase in the thermal intensity upon laser illumination. We have demonstrated the technique using TNT and RDX residues at several meters of stand-off distance under laboratory conditions, while operating the lasers below the eye-safe intensity limit. Sensitivity to explosives traces as small as a single grain (~100 ng) of TNT has been demonstrated using an uncooled bolometer array. We show the viability of this approach on a variety of surfaces which transmit, reflect or absorb the infrared laser light and have a range of thermal conductivities. By varying the incident wavelength slightly, we demonstrate selectivity between TNT and RDX. Using a sequence of lasers at different wavelengths, we increase both sensitivity and selectivity while reducing the false alarm rate. At higher energy levels we also show it is possible to generate vapor from solid materials with inherently low vapor pressures.

  1. Intergranular Corrosion Behavior of Low-Nickel and 304 Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Bansod, Ankur V.; Patil, Awanikumar P.; Moon, Abhijeet P.; Khobragade, Nilay N.

    2016-09-01

    Intergranular corrosion (IGC) susceptibility for Cr-Mn austenitic stainless steel and 304 austenitic stainless steel (ASS) was estimated using electrochemical techniques. Optical and SEM microscopy studies were carried out to investigate the nature of IGC at 700 °C with increasing time (15, 30, 60, 180, 360, 720, 1440 min) according to ASTM standard 262 A. Quantitative analysis was performed to estimate the degree of sensitization (DOS) using double loop electrochemical potentiokinetic reactivation (DLEPR) and EIS technique. DLEPR results indicated that with the increase in thermal aging duration, DOS becomes more severe for both types of stainless steel. The DOS for Cr-Mn ASS was found to be higher (65.12% for 1440 min) than that of the AISI 304 ASS (23% for 1440 min). The higher degree of sensitization resulted in lowering of electrical charge capacitance resistance. Chronoamperometry studies were carried out at a passive potential of 0.4 V versus SCE and was observed to have a higher anodic dissolution of the passive film of Cr-Mn ASS. EDS studies show the formation of chromium carbide precipitates in the vicinity of the grain boundary. The higher Mn content was also observed for Cr-Mn ASS at the grain boundary.

  2. Structural design using equilibrium programming formulations

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    1995-01-01

    Solutions to increasingly larger structural optimization problems are desired. However, computational resources are strained to meet this need. New methods will be required to solve increasingly larger problems. The present approaches to solving large-scale problems involve approximations for the constraints of structural optimization problems and/or decomposition of the problem into multiple subproblems that can be solved in parallel. An area of game theory, equilibrium programming (also known as noncooperative game theory), can be used to unify these existing approaches from a theoretical point of view (considering the existence and optimality of solutions), and be used as a framework for the development of new methods for solving large-scale optimization problems. Equilibrium programming theory is described, and existing design techniques such as fully stressed design and constraint approximations are shown to fit within its framework. Two new structural design formulations are also derived. The first new formulation is another approximation technique which is a general updating scheme for the sensitivity derivatives of design constraints. The second new formulation uses a substructure-based decomposition of the structure for analysis and sensitivity calculations. Significant computational benefits of the new formulations compared with a conventional method are demonstrated.

  3. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, E. H., E-mail: martineh@ornl.gov; Caughman, J. B. O.; Isler, R. C.

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H{sub δ} spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  4. Single Cell Spectroscopy: Noninvasive Measures of Small-Scale Structure and Function

    PubMed Central

    Mousoulis, Charilaos; Xu, Xin; Reiter, David A.; Neu, Corey P.

    2013-01-01

    The advancement of spectroscopy methods attained through increases in sensitivity, and often with the coupling of complementary techniques, has enabled real-time structure and function measurements of single cells. The purpose of this review is to illustrate, in light of advances, the strengths and the weaknesses of these methods. Included also is an assessment of the impact of the experimental setup and conditions of each method on cellular function and integrity. A particular emphasis is placed on noninvasive and nondestructive techniques for achieving single cell detection, including nuclear magnetic resonance, in addition to physical, optical, and vibrational methods. PMID:23886910

  5. Applications of asynoptic space - Time Fourier transform methods to scanning satellite measurements

    NASA Technical Reports Server (NTRS)

    Lait, Leslie R.; Stanford, John L.

    1988-01-01

    A method proposed by Salby (1982) for computing the zonal space-time Fourier transform of asynoptically acquired satellite data is discussed. The method and its relationship to other techniques are briefly described, and possible problems in applying it to real data are outlined. Examples of results obtained using this technique are given which demonstrate its sensitivity to small-amplitude signals. A number of waves are found which have previously been observed as well as two not heretofore reported. A possible extension of the method which could increase temporal and longitudinal resolution is described.

  6. Applications of Doppler-free saturation spectroscopy for edge physics studies (invited).

    PubMed

    Martin, E H; Zafar, A; Caughman, J B O; Isler, R C; Bell, G L

    2016-11-01

    Doppler-free saturation spectroscopy provides a very powerful method to obtain detailed information about the electronic structure of the atom through measurement of the spectral line profile. This is achieved through a significant decrease in the Doppler broadening and essentially an elimination of the instrument broadening inherent to passive spectroscopic techniques. In this paper we present the technique and associated physics of Doppler-free saturation spectroscopy in addition to how one selects the appropriate transition. Simulations of H δ spectra are presented to illustrate the increased sensitivity to both electric field and electron density measurements.

  7. Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley watershed of California.

    PubMed

    Ficklin, Darren L; Luo, Yuzhou; Luedeling, Eike; Gatzke, Sarah E; Zhang, Minghua

    2010-01-01

    The Soil and Water Assessment Tool (SWAT) was used to assess the impact of climate change on sediment, nitrate, phosphorus and pesticide (diazinon and chlorpyrifos) runoff in the San Joaquin watershed in California. This study used modeling techniques that include variations of CO(2), temperature, and precipitation to quantify these responses. Precipitation had a greater impact on agricultural runoff compared to changes in either CO(2) concentration or temperature. Increase of precipitation by +/-10% and +/-20% generally changed agricultural runoff proportionally. Solely increasing CO(2) concentration resulted in an increase in nitrate, phosphorus, and chlorpyrifos yield by 4.2, 7.8, and 6.4%, respectively, and a decrease in sediment and diazinon yield by 6.3 and 5.3%, respectively, in comparison to the present-day reference scenario. Only increasing temperature reduced yields of all agricultural runoff components. The results suggest that agricultural runoff in the San Joaquin watershed is sensitive to precipitation, temperature, and CO(2) concentration changes.

  8. Use of a sensitive EnVision +-based detection system for Western blotting: avoidance of streptavidin binding to endogenous biotin and biotin-containing proteins in kidney and other tissues.

    PubMed

    Banks, Rosamonde E; Craven, Rachel A; Harnden, Patricia A; Selby, Peter J

    2003-04-01

    Western blotting remains a central technique in confirming identities of proteins, their quantitation and analysis of various isoforms. The biotin-avidin/streptavidin system is often used as an amplification step to increase sensitivity but in some tissues such as kidney, "nonspecific" interactions may be a problem due to high levels of endogenous biotin-containing proteins. The EnVision system, developed for immunohistochemical applications, relies on binding of a polymeric conjugate consisting of up to 100 peroxidase molecules and 20 secondary antibody molecules linked directly to an activated dextran backbone, to the primary antibody. This study demonstrates that it is also a viable and sensitive alternative detection system in Western blotting applications.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, Adrienne M.; Ulrich, Timothy J. II; Menlove, Howard O.

    Objective is to investigate the use of Passive Neutron Albedo Reactivity (PNAR) and Self-Interrogation Neutron Resonance Densitometry (SINRD) to quantify fissile content in FUGEN spent fuel assemblies (FAs). Methodology used is: (1) Detector was designed using fission chambers (FCs); (2) Optimized design via MCNPX simulations; and (3) Plan to build and field test instrument in FY13. Significance was to improve safeguards verification of spent fuel assemblies in water and increase sensitivity to partial defects. MCNPX simulations were performed to optimize the design of the SINRD+PNAR detector. PNAR ratio was less sensitive to FA positioning than SINRD and SINRD ratio wasmore » more sensitive to Pu fissile mass than PNAR. Significance was that the integration of these techniques can be used to improve verification of spent fuel assemblies in water.« less

  10. Endoscopic transpapillary brush cytology and forceps biopsy in patients with hilar cholangiocarcinoma

    PubMed Central

    Weber, Andreas; von Weyhern, Claus; Fend, Falko; Schneider, Jochen; Neu, Bruno; Meining, Alexander; Weidenbach, Hans; Schmid, Roland M; Prinz, Christian

    2008-01-01

    AIM: To evaluate the sensitivity of brush cytology and forceps biopsy in a homogeneous patient group with hilar cholangiocarcinoma. METHODS: Brush cytology and forceps biopsy were routinely performed in patients with suspected malignant biliary strictures. Fifty-eight consecutive patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) including forceps biopsy and brush cytology in patients with hilar cholangiocarcinoma between 1995-2005. RESULTS: Positive results for malignancy were obtained in 24/58 patients (41.4%) by brush cytology and in 31/58 patients (53.4%) by forceps biopsy. The combination of both techniques brush cytology and forceps biopsy resulted only in a minor increase in diagnostic sensitivity to 60.3% (35/58 patients). In 20/58 patients (34.5%), diagnosis were obtained by both positive cytology and positive histology, in 11/58 (19%) by positive histology (negative cytology) and only 4/58 patients (6.9%) were confirmed by positive cytology (negative histology). CONCLUSION: Brush cytology and forceps biopsy have only limited sensitivity for the diagnosis of malignant hilar tumors. In our eyes, additional diagnostic techniques should be evaluated and should become routine in patients with negative cytological and histological findings. PMID:18286693

  11. Fast perfusion measurements in rat skeletal muscle at rest and during exercise with single-voxel FAIR (flow-sensitive alternating inversion recovery).

    PubMed

    Pohmann, Rolf; Künnecke, Basil; Fingerle, Jürgen; von Kienlin, Markus

    2006-01-01

    Non-invasive measurement of perfusion in skeletal muscle by in vivo magnetic resonance remains a challenge due to its low level and the correspondingly low signal-to-noise ratio. To enable accurate, quantitative, and time-resolved perfusion measurements in the leg muscle, a technique with a high sensitivity is required. By combining a flow-sensitive alternating inversion recovery (FAIR)-sequence with a single-voxel readout, we have developed a new technique to measure the perfusion in the rat gastrocnemius muscle at rest, yielding an average value of 19.4 +/- 4.8 mL/100 g/min (n = 22). In additional experiments, perfusion changes were elicited by acute ischemia and reperfusion or by exercise induced by electrical, noninvasive muscle stimulation with varying duration and intensity. The perfusion time courses during these manipulations were measured with a temporal resolution of 2.2 min, showing increases in perfusion of a factor of up to 2.5. In a direct comparison, the results agreed closely with values found with microsphere measurements in the same animals. The quantitative and noninvasive method can significantly facilitate the investigation of atherosclerotic diseases and the examination of drug efficacy.

  12. Approaching attometer laser vibrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rembe, Christian; Kadner, Lisa; Giesen, Moritz

    2014-05-27

    The heterodyne two-beam interferometer has been proven to be the optimal solution for laser-Doppler vibrometry regarding accuracy and signal robustness. The theoretical resolution limit for a two-beam interferometer of laser class 3R (up to 5 mW visible measurement-light) is in the regime of a few femtometer per square-root Hertz and well suited to study vibrations in microstructures. However, some new applications of RF-MEM resonators, nanostructures, and surface-nano-defect detection require resolutions beyond that limit. The resolution depends only on the noise and the sensor sensitivity to specimen displacements. The noise is already defined in nowadays systems by the quantum nature ofmore » light for a properly designed optical sensor and more light would lead to an inacceptable influence like heating of a very tiny structure. Thus, noise can only be improved by squeezed-light techniques which require a negligible loss of measurement light which is impossible for almost all technical measurement tasks. Thus, improving the sensitivity is the only possible path which could make attometer laser vibrometry possible. Decreasing the measurement wavelength would increase the sensitivity but would also increase the photon shot noise. In this paper, we discuss an approach to increase the sensitivity by assembling an additional mirror between interferometer and specimen to form an optical cavity. A detailed theoretical analysis of this setup is presented and we derive the resolution limit, discuss the main contributions to the uncertainty budget, and show a first experiment proving the sensitivity amplification of our approach.« less

  13. Development of a highly sensitive immunochromatographic detection kit for H5 influenza virus hemagglutinin using silver amplification.

    PubMed

    Wada, Atsuhiko; Sakoda, Yoshihiro; Oyamada, Takayoshi; Kida, Hiroshi

    2011-12-01

    H5N1, a highly pathogenic avian influenza virus (HPAIV), has become a serious epizootic threat to the poultry population in Asia. In addition, significant numbers of human cases of HPAIV infection have been reported to date. To prevent the spread of HPAIV among humans and to allow for timely medical intervention, a rapid and high sensitive method is needed to detect and subtype the causative HPAIVs. In the present study, a silver amplification technique used in photographic development was combined with immunochromatography technologies and a highly sensitive and rapid diagnostic test to detect the hemagglutinin of H5 influenza viruses was developed. The sensitivity of the test kit was increased 500 times by silver amplification. The sensitivity of the method was more than 10 times higher than those of conventional rapid influenza diagnostic tests, which detect viral nucleoproteins. The diagnostic system developed in the present study can therefore provide rapid and highly sensitive results and will be useful for diagnosis of H5 HPAIV infection in humans and animals. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. FEAST: sensitive local alignment with multiple rates of evolution.

    PubMed

    Hudek, Alexander K; Brown, Daniel G

    2011-01-01

    We present a pairwise local aligner, FEAST, which uses two new techniques: a sensitive extension algorithm for identifying homologous subsequences, and a descriptive probabilistic alignment model. We also present a new procedure for training alignment parameters and apply it to the human and mouse genomes, producing a better parameter set for these sequences. Our extension algorithm identifies homologous subsequences by considering all evolutionary histories. It has higher maximum sensitivity than Viterbi extensions, and better balances specificity. We model alignments with several submodels, each with unique statistical properties, describing strongly similar and weakly similar regions of homologous DNA. Training parameters using two submodels produces superior alignments, even when we align with only the parameters from the weaker submodel. Our extension algorithm combined with our new parameter set achieves sensitivity 0.59 on synthetic tests. In contrast, LASTZ with default settings achieves sensitivity 0.35 with the same false positive rate. Using the weak submodel as parameters for LASTZ increases its sensitivity to 0.59 with high error. FEAST is available at http://monod.uwaterloo.ca/feast/.

  15. Comparison of five methods of malaria detection in the outpatient setting.

    PubMed

    Lema, O E; Carter, J Y; Nagelkerke, N; Wangai, M W; Kitenge, P; Gikunda, S M; Arube, P A; Munafu, C G; Materu, S F; Adhiambo, C A; Mukunza, H K

    1999-02-01

    In eastern Africa where 90% of the malaria is due to Plasmodium falciparum, the accuracy of malaria diagnosis at the outpatient level is becoming increasingly important due to problems of drug resistance and use of alternative, costly antimalarial drugs. The quantitative buffy coat (QBC) technique, acridine orange staining with an interference filter system, and the ParaSight-F test have been introduced as alternative methods to conventional microscopy for the diagnosis of malaria. Two hundred thirteen outpatients were tested using these alternative methods and conventional microscopy by five experienced technologists; two were randomly allocated to read the results of each test. Paired results showed the highest level of agreement with the ParaSight-F test (99%), followed by Field stain (92%). The results of the QBC technique showed the least agreement (73%). Using conventional microscopy as the reference standard, the ParaSight-F test had a sensitivity range of 90-92% and a specificity of 99%, staining with acridine orange had a sensitivity range of 77-96% and a specificity range of 81-98% and the QBC technique had a sensitivity range of 88-98% and a specificity range of 58-90%. All microscopic tests showed lower sensitivities (as low as 20% using staining with acridine orange) in detecting low parasitemias (< or = 320/microl) than the ParaSight-F test (70%). Due to the high cost of the ParaSight-F test, Field-stained blood films remain the most appropriate method for diagnosis of P. falciparum in eastern Africa. The ParaSight-F test may be used in situations where no trained microscopists are available, or where malaria is strongly suspected and the results of microscopy are negative.

  16. Searching for stochastic gravitational waves using data from the two colocated LIGO Hanford detectors

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deleeuw, E.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dietz, A.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, D.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, D. Nanda; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J. J.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martini, G.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Postiglione, F.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, P. J.; Veitch, J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2015-01-01

    Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a colocated detector pair is more sensitive to a gravitational-wave background than a noncolocated detector pair. However, colocated detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of colocated detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40-460 Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460-1000 Hz, these techniques are sufficient to set a 95% confidence level upper limit on the gravitational-wave energy density of Ω (f )<7.7 ×1 0-4(f /900 Hz )3 , which improves on the previous upper limit by a factor of ˜180 . In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.

  17. Searching for Stochastic Gravitational Waves Using Data from the Two Co-Located LIGO Hanford Detectors

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; hide

    2014-01-01

    Searches for a stochastic gravitational-wave background (SGWB) using terrestrial detectors typically involve cross-correlating data from pairs of detectors. The sensitivity of such cross-correlation analyses depends, among other things, on the separation between the two detectors: the smaller the separation, the better the sensitivity. Hence, a co-located detector pair is more sensitive to a gravitational-wave background than a nonco- located detector pair. However, co-located detectors are also expected to suffer from correlated noise from instrumental and environmental effects that could contaminate the measurement of the background. Hence, methods to identify and mitigate the effects of correlated noise are necessary to achieve the potential increase in sensitivity of co-located detectors. Here we report on the first SGWB analysis using the two LIGO Hanford detectors and address the complications arising from correlated environmental noise. We apply correlated noise identification and mitigation techniques to data taken by the two LIGO Hanford detectors, H1 and H2, during LIGO's fifth science run. At low frequencies, 40-460Hz, we are unable to sufficiently mitigate the correlated noise to a level where we may confidently measure or bound the stochastic gravitational-wave signal. However, at high frequencies, 460 - 1000Hz, these techniques are sufficient to set a 95% confidence level (C.L.) upper limit on the gravitational-wave energy density of Omega(f) < 7.7 × 10(exp -4)(f/900Hz)(sup 3), which improves on the previous upper limit by a factor of approx. 180. In doing so, we demonstrate techniques that will be useful for future searches using advanced detectors, where correlated noise (e.g., from global magnetic fields) may affect even widely separated detectors.

  18. Comparative study between cytotoxicity and flowcytometry crossmatches before and after renal transplantation.

    PubMed

    Abdel Rahman, Afaf S; Fahim, Nehal M A; El Sayed, Abeer A; El Hady, Soha A R; Ahmad, Yasser S

    2005-01-01

    Renal transplantation, in most countries, is based on human leukocyte antigen (HLA) matching of the donor kidney with the recipient. Traditional human leukocyte antigen matching is based on defining human leukocyte antigen specificities by antibodies utilizing cytotoxicity crossmatch techniques. Newer techniques have emerged, which challenge the accuracy of serological typing and crossmatching. We compared the results of the standard complement-dependent cytotoxicity crossmatch (CDCXM) with the anti-human globulin augmented cytotoxicity (AHG-CDC), and Flowcytometry crossmatch (FCXM) for the detection of anti-HLA antibodies in 150 pre-transplant patients. The development of post-transplantation sensitization was screened utilizing these three techniques within two weeks post-operative and correlated with rejection episodes. Comparison between the results of CDCXM and AHG-CDC in 150 recipients, revealed no significant correlation (P>0.05). When comparing these results with that of FCXM in 50 recipients a significant correlation was shown (P<0.05). Relative to CDCXM, the sensitivity of AHG-CDC was 100%, specificity 97.4%, positive predictive value 92.3%, and negative predictive value 100%. On the other hand, the sensitivity of FCXM was 100%, specificity 76.3%, positive predictive value 57.1%, and negative predictive value 100%. According to the results of CDCXM, AHG-CDC, and FCXM, no difference was detected between pre- and posttransplant anti-HLA sensitization within two weeks after the operation. Patients with negative cytotoxicity crossmatch (CDCXM and AHG-CDC) and positive FCXM may have an increased risk of early graft loss and may represent a relative contraindication to transplantation. Given the important theoretical advantages of FCXM over the CDC XM, further testing of the clinical relevance is warranted.

  19. Detection of HLA Antibodies in Organ Transplant Recipients – Triumphs and Challenges of the Solid Phase Bead Assay

    PubMed Central

    Tait, Brian D.

    2016-01-01

    This review outlines the development of human leukocyte antigen (HLA) antibody detection assays and their use in organ transplantation in both antibody screening and crossmatching. The development of sensitive solid phase assays such as the enzyme-linked immunosorbent assay technique, and in particular the bead-based technology has revolutionized this field over the last 10–15 years. This revolution however has created a new paradigm in clinical decision making with respect to the detection of low level pretransplant HLA sensitization and its clinical relevance. The relative sensitivities of the assays used are discussed and the relevance of conflicting inter-assay results. Each assay has its advantages and disadvantages and these are discussed. Over the last decade, the bead-based assay utilizing the Luminex® fluorocytometer instrument has become established as the “gold standard” for HLA antibody testing. However, there are still unresolved issues surrounding this technique, such as the presence of denatured HLA molecules on the beads which reveal cryptic epitopes and the issue of appropriate fluorescence cut off values for positivity. The assay has been modified to detect complement binding (CB) in addition to non-complement binding (NCB) HLA antibodies although the clinical relevance of the CB and NCB IgG isotypes is not fully resolved. The increase sensitivity of the Luminex® bead assay over the complement-dependent cytotoxicity crossmatch has permitted the concept of the “virtual crossmatch” whereby the crossmatch is predicted to a high degree of accuracy based on the HLA antibody specificities detected by the solid phase assay. Dialog between clinicians and laboratory staff on an individual patient basis is essential for correct clinical decision making based on HLA antibody results obtained by the various techniques. PMID:28018342

  20. [Rapid measurement of trace mercury in aqueous solutions with optical-electrical dual pulse LIBS technique].

    PubMed

    Zhang, Qian; Xiong, Wei; Chen, Yu-Qi; Li, Run-Hua

    2011-02-01

    A wood slice was used as absorber to transfer liquid sample to solid sample in order to solve the problems existing in directly analyzing aqueous solutions with laser-induced breakdown spectroscopy (LIBS). An optical-electrical dual pulse LIBS (OEDP-LIBS) technique was first used to enhance atomic emission of mercury in laser-induced plasma. The calibration curves of mercury were obtained by typical single pulse LIBS and OEDP-LIBS techniques. The limit of detection (LOD) of mercury in these two techniques reaches 2.4 and 0.3 mg x L(-1), respectively. Under current experimental conditions, the time-integrated a tomic emission of mercury at 253.65 nm was enhanced 50 times and the LOD of mercury was improved by one order, if comparing OEDP-LIBS to single pulse LIBS. The required time for a whole analysis process is less than 5 minutes. As the atomic emission of mercury decays slowly while increasing the delay time between electrical pulse and laser pulse, increasing the electrical pulse width can further enhance the time integrated intensity of mercury emission and improve the detection sensitivity of mercury by OEDP-LIBS technique.

  1. UTI diagnosis and antibiogram using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kastanos, Evdokia; Kyriakides, Alexandros; Hadjigeorgiou, Katerina; Pitris, Constantinos

    2009-07-01

    Urinary tract infection diagnosis and antibiogram require a 48 hour waiting period using conventional methods. This results in ineffective treatments, increased costs and most importantly in increased resistance to antibiotics. In this work, a novel method for classifying bacteria and determining their sensitivity to an antibiotic using Raman spectroscopy is described. Raman spectra of three species of gram negative Enterobacteria, most commonly responsible for urinary tract infections, were collected. The study included 25 samples each of E.coli, Klebsiella p. and Proteus spp. A novel algorithm based on spectral ratios followed by discriminant analysis resulted in classification with over 94% accuracy. Sensitivity and specificity for the three types of bacteria ranged from 88-100%. For the development of an antibiogram, bacterial samples were treated with the antibiotic ciprofloxacin to which they were all sensitive. Sensitivity to the antibiotic was evident after analysis of the Raman signatures of bacteria treated or not treated with this antibiotic as early as two hours after exposure. This technique can lead to the development of new technology for urinary tract infection diagnosis and antibiogram with same day results, bypassing urine cultures and avoiding all undesirable consequences of current practice.

  2. Urinary tract infection diagnosis and response to antibiotics using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Kastanos, Evdokia; Kyriakides, Alexandros; Hadjigeorgiou, Katerina; Pitris, Constantinos

    2009-02-01

    Urinary tract infection diagnosis and antibiogram require a 48 hour waiting period using conventional methods. This results in ineffective treatments, increased costs and most importantly in increased resistance to antibiotics. In this work, a novel method for classifying bacteria and determining their sensitivity to an antibiotic using Raman spectroscopy is described. Raman spectra of three species of gram negative Enterobacteria, most commonly responsible for urinary tract infections, were collected. The study included 25 samples each of E.coli, Klebsiella p. and Proteus spp. A novel algorithm based on spectral ratios followed by discriminant analysis resulted in classification with over 94% accuracy. Sensitivity and specificity for the three types of bacteria ranged from 88-100%. For the development of an antibiogram, bacterial samples were treated with the antibiotic ciprofloxacin to which they were all sensitive. Sensitivity to the antibiotic was evident after analysis of the Raman signatures of bacteria treated or not treated with this antibiotic as early as two hours after exposure. This technique can lead to the development of new technology for urinary tract infection diagnosis and antibiogram with same day results, bypassing urine cultures and avoiding all undesirable consequences of current practice.

  3. Assessment of medial coronoid disease in 180 canine lame elbow joints: a sensitivity and specificity comparison of radiographic, computed tomographic and arthroscopic findings.

    PubMed

    Villamonte-Chevalier, A; van Bree, H; Broeckx, Bjg; Dingemanse, W; Soler, M; Van Ryssen, B; Gielen, I

    2015-09-25

    Diagnostic imaging is essential to assess the lame patient; lesions of the elbow joint have traditionally been evaluated radiographically, however computed tomography (CT) has been suggested as a useful technique to diagnose various elbow pathologies. The primary objective of this study was to determine the sensitivity and specificity of CT to assess medial coronoid disease (MCD), using arthroscopy as gold standard. The secondary objective was to ascertain the radiographic sensitivity and specificity for MCD compared with CT. For this study 180 elbow joints were assessed, of which 141 had been examined with radiography, CT and arthroscopy; and 39 joints, had radiographic and CT assessment. Sensitivity and specificity were calculated for CT and radiographic findings using available statistical software. Sensitivity and specificity of CT using arthroscopy as gold standard resulted in high values for sensitivity (100 %) and specificity (93 %) for the assessment of MCD. For the radiographic evaluation, a sensitivity of 98 % and specificity of 64 - 69 % using CT as the technique of reference, were found. These results suggest that in case of doubt during radiographic assessment, CT could be used as a non-invasive technique to assess the presence of MCD. Based on the high sensitivity and specificity obtained in this study it has been considered that CT, rather than arthroscopy, is the preferred noninvasive technique to assess MCD lesions of the canine elbow joint.

  4. Tellurium nano-structure based NO gas sensor.

    PubMed

    Kumar, Vivek; Sen, Shashwati; Sharma, M; Muthe, K P; Jagannath; Gaur, N K; Gupta, S K

    2009-09-01

    Tellurium nanotubes were grown on bare and silver/gold nanoparticle (nucleation centers) deposited silicon substrates by vacuum deposition technique at a substrate temperature of 100 degrees C under high vacuum conditions. Silver and gold nanoparticles prepared on (111) oriented silicon substrates were found to act as nucleation centers for growth of Tellurium nanostructures. Density of nanotubes was found to increase while their diameter reduced when grown using metallic nanoparticle template. These Te nanostructures were investigated for their gas sensitivity. Tellurium nanotubes on Ag templates showed better response to NO in comparison to H2S and NH3 gases. Selectivity in response to NO was improved in comparison to Te thin film sensors reported earlier. The gas sensing mechanism was investigated using Raman and X-ray photoelectron spectroscopy techniques. The interaction of NO is seen to yield increased adsorption of oxygen that in turn increases hole density and conductivity in the material.

  5. Sampled-Data Techniques Applied to a Digital Controller for an Altitude Autopilot

    NASA Technical Reports Server (NTRS)

    Schmidt, Stanley F.; Harper, Eleanor V.

    1959-01-01

    Sampled-data theory, using the Z transformation, is applied to the design of a digital controller for an aircraft-altitude autopilot. Particular attention is focused on the sensitivity of the design to parameter variations and the abruptness of the response, that is, the normal acceleration required to carry out a transient maneuver. Consideration of these two characteristics of the system has shown that the finite settling time design method produces an unacceptable system, primarily because of the high sensitivity of the response to parameter variations, although abruptness can be controlled by increasing the sampling period. Also demonstrated is the importance of having well-damped poles or zeros if cancellation is attempted in the design methods. A different method of smoothing the response and obtaining a design which is not excessively sensitive is proposed, and examples are carried through to demonstrate the validity of the procedure. This method is based on design concepts of continuous systems, and it is shown that if no pole-zero cancellations are allowed in the design, one can obtain a response which is not too abrupt, is relatively insensitive to parameter variations, and is not sensitive to practical limits on control-surface rate. This particular design also has the simplest possible pulse transfer function for the digital controller. Simulation techniques and root loci are used for the verification of the design philosophy.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giantsoudi, D; Adams, J; MacDonald, S

    Purpose: In proton radiation therapy of posterior fossa tumors, to spare other sensitive structures, the preferred beam geometry results in placing the treatment field distal edge within or just beyond the brainstem, including in at least partially in the treatment volume. Concerns for brainstem toxicity are increased and a controversy exists as to weather the beam’s distal edge should be placed within the brainstem or beyond it, to avoid elevated linear energy transfer (LET) and relative biological effectiveness (RBE) within the brainstem. The dosimetric efficacy of these techniques was examined, accounting for LET- and dose-dependent variable RBE distributions. Methods: Threemore » treatment planning techniques were applied in six ependymoma cases: (a) three-field dose-sparing, with beams’ distal edge within the brainstem; (b) three-field LET-sparing, using same beam directions as (a) but extended field ranges beyond the brainstem; (c) two-posterior-oblique LET-sparing, with extended ranges as (b). Monte Carlo calculated dose, LET and RBE-weighted dose distributions were compared. Results: Lower LET values in the brainstem were accompanied by higher median dose: 53.7 Gy[RBE] and 54.3 Gy[RBE] for techniques (b) and (c) versus 52.1 Gy[RBE] for (a). Accounting for variable RBE, a 15% increase of the brainstem volume receiving at least 60 Gy[RBE] was observed for technique (c) versus (a). Maximum variable-RBE-weighted brainstem dose was comparable for all techniques. Conclusion: Extending the treatment beam range beyond the brainstem, significantly increased its volume receiving high dose radiation, even when accounting for the decreased LET values. The dosimetric benefits of techniques limiting the brainstem dose may outweigh the impact of LET reduction achieved through this technique, especially since clinical consequences of increased LET at the end of range have not been proven yet.« less

  7. Atypical presentation of multiple evanescent white dot syndrome (MEWDS).

    PubMed

    Yenerel, Nursal Melda; Kucumen, Beril; Gorgun, Ebru; Dinc, Umut Asli

    2008-01-01

    To present fundus autofluorescence (FAF), indocyanine green angiography (ICGA), and microperimetry (MP) findings of a patient with multiple evanescent white dot syndrome (MEWDS). Observational case report. A 30-year-old woman with blurry vision was referred for evaluation. Fundus examination revealed only foveal granularity. FAF showed hyperautofluorescent spots, although they were not visible clinically. On ICGA, matching areas were hypofluorescent. Microperimetry revealed mean sensitivity decrease. The resolution of the symptoms was followed by disappearance of these spots in FAF and ICGA and increase of mean macular sensitivity in MP. FAF is a noninvasive imaging technique that might help in the differential diagnosis of chorioretinal pathologies.

  8. Quantitative Glycomics Strategies*

    PubMed Central

    Mechref, Yehia; Hu, Yunli; Desantos-Garcia, Janie L.; Hussein, Ahmed; Tang, Haixu

    2013-01-01

    The correlations between protein glycosylation and many biological processes and diseases are increasing the demand for quantitative glycomics strategies enabling sensitive monitoring of changes in the abundance and structure of glycans. This is currently attained through multiple strategies employing several analytical techniques such as capillary electrophoresis, liquid chromatography, and mass spectrometry. The detection and quantification of glycans often involve labeling with ionic and/or hydrophobic reagents. This step is needed in order to enhance detection in spectroscopic and mass spectrometric measurements. Recently, labeling with stable isotopic reagents has also been presented as a very viable strategy enabling relative quantitation. The different strategies available for reliable and sensitive quantitative glycomics are herein described and discussed. PMID:23325767

  9. The Role of PCR in the Diagnosis of Candida Vulvovaginitis-a New Gold Standard?

    PubMed

    Sobel, J D; Akins, Robert A

    2015-06-01

    PCR is recognized as a reliable technique for detection of all types of microorganisms. Being highly objective and reproducible also sensitive and specific, PCR is now widely used for sexually transmitted infection (STI) diagnosis. Potential, however, exists for detecting non-pathogens, and not identifying a pathogenic state decreases specificity or clinical significance. PCR Candida tests of vaginal specimens are now widely available and frequently used offering a modest to moderate increase in sensitivity and are likely to replace traditional culture and DNA homology testing. Nevertheless, there remain considerable gaps in our knowledge regarding the usefulness and applications of these expensive tests.

  10. Barium Tagging from nEXO Using Resonance Ionization Spectroscopy

    NASA Astrophysics Data System (ADS)

    Twelker, K.; Kravitz, S.

    nEXO is a 5-ton liquid enriched-xenon time projection chamber (TPC) to search for neutrinoless double-beta decay, designed to have the sensitivity to completely probe the inverted mass hierarchy of Majorana neutrinos. The detector will accommodate-as a background reduction technique-a system to recover and identify the barium decay product. This upgrade will allow a background-free measurement of neutrinoless double-beta decay and increase the half-life sensitivity of the experiment by at least one order of magnitude. Ongoing research and development includes a system to test barium extraction from liquid xenon using surface adsorption and Resonance Ionization Spectroscopy (RIS).

  11. Quantitative analysis of cell-free DNA in ovarian cancer.

    PubMed

    Shao, Xuefeng; He, Yan; Ji, Min; Chen, Xiaofang; Qi, Jing; Shi, Wei; Hao, Tianbo; Ju, Shaoqing

    2015-12-01

    The aim of the present study was to investigate the association between cell-free DNA (cf-DNA) levels and clinicopathological characteristics of patients with ovarian cancer using a branched DNA (bDNA) technique, and to determine the value of quantitative cf-DNA detection in assisting with the diagnosis of ovarian cancer. Serum specimens were collected from 36 patients with ovarian cancer on days 1, 3 and 7 following surgery, and additional serum samples were also collected from 22 benign ovarian tumor cases, and 19 healthy, non-cancerous ovaries. bDNA techniques were used to detect serum cf-DNA concentrations. All data were analyzed using SPSS version 18.0. The cf-DNA levels were significantly increased in the ovarian cancer group compared with those of the benign ovarian tumor group and healthy ovarian group (P<0.01). Furthermore, cf-DNA levels were significantly increased in stage III and IV ovarian cancer compared with those of stages I and II (P<0.01). In addition, cf-DNA levels were significantly increased on the first day post-surgery (P<0.01), and subsequently demonstrated a gradual decrease. In the ovarian cancer group, the area under the receiver operating characteristic curve of cf-DNA and the sensitivity were 0.917 and 88.9%, respectively, which was higher than those of cancer antigen 125 (0.724, 75%) and human epididymis protein 4 (0.743, 80.6%). There was a correlation between the levels of serum cf-DNA and the occurrence and development of ovarian cancer in the patients evaluated. bDNA techniques possessed higher sensitivity and specificity than other methods for the detection of serum cf-DNA in patients exhibiting ovarian cancer, and bDNA techniques are more useful for detecting cf-DNA than other factors. Thus, the present study demonstrated the potential value for the use of bDNA as an adjuvant diagnostic method for ovarian cancer.

  12. The role of noise sensitivity in the noise-response relation: A comparison of three international airport studies

    NASA Astrophysics Data System (ADS)

    van Kamp, Irene; Job, R. F. Soames; Hatfield, Julie; Haines, Mary; Stellato, Rebecca K.; Stansfeld, Stephen A.

    2004-12-01

    In order to examine the role of noise sensitivity in response to environmental noise, this paper presents detailed comparisons of socio-acoustic studies conducted around international airports in Amsterdam, Sydney, and London. Earlier findings that noise sensitivity moderates the effect of noise on annoyance were examined to see if they could be replicated in each of the datasets, independent of the technique of measuring noise sensitivity. The relation between exposure to aircraft noise and noise annoyance was studied separately for groups of individuals with low, medium, and high noise sensitivity, with statistical adjustment for relevant confounders. Results support the previous findings that noise sensitivity is an independent predictor of annoyance and adds to the prediction of noise annoyance afforded by noise exposure level by up to 26% of explained variance. There is no evidence of a moderating effect, whereby the covariation between noise exposure level and annoyance is weak for people who score at the extreme high or low end of the sensitivity scale, and strong for people who score in the middle of the sensitivity scale. Generally, noise sensitivity appears to increase annoyance independently of the level of noise exposure after adjustment for relevant confounders. These findings were consistent across the three datasets. .

  13. The best practice for preparation of samples from FTA®cards for diagnosis of blood borne infections using African trypanosomes as a model system.

    PubMed

    Ahmed, Heba A; MacLeod, Ewan T; Hide, Geoff; Welburn, Susan C; Picozzi, Kim

    2011-05-07

    Diagnosis of blood borne infectious diseases relies primarily on the detection of the causative agent in the blood sample. Molecular techniques offer sensitive and specific tools for this although considerable difficulties exist when using these approaches in the field environment. In large scale epidemiological studies, FTA®cards are becoming increasingly popular for the rapid collection and archiving of a large number of samples. However, there are some difficulties in the downstream processing of these cards which is essential for the accurate diagnosis of infection. Here we describe recommendations for the best practice approach for sample processing from FTA®cards for the molecular diagnosis of trypanosomiasis using PCR. A comparison of five techniques was made. Detection from directly applied whole blood was less sensitive (35.6%) than whole blood which was subsequently eluted from the cards using Chelex®100 (56.4%). Better apparent sensitivity was achieved when blood was lysed prior to application on the FTA cards (73.3%) although this was not significant. This did not improve with subsequent elution using Chelex®100 (73.3%) and was not significantly different from direct DNA extraction from blood in the field (68.3%). Based on these results, the degree of effort required for each of these techniques and the difficulty of DNA extraction under field conditions, we recommend that blood is transferred onto FTA cards whole followed by elution in Chelex®100 as the best approach.

  14. Detection of Methylated Circulating DNA as Noninvasive Biomarkers for Breast Cancer Diagnosis

    PubMed Central

    Cheuk, Isabella Wai Yin; Shin, Vivian Yvonne

    2017-01-01

    Internationally, breast cancer is the most common female cancer, and is induced by a combination of environmental, genetic, and epigenetic risk factors. Despite the advancement of imaging techniques, invasive sampling of breast epithelial cells is the only definitive diagnostic procedure for patients with breast cancer. To date, molecular biomarkers with high sensitivity and specificity for the screening and early detection of breast cancer are lacking. Recent evidence suggests that the detection of methylated circulating cell-free DNA in the peripheral blood of patients with cancer may be a promising quantitative and noninvasive method for cancer diagnosis. Methylation detection based on a multi-gene panel, rather than on the methylation status of a single gene, may be used to increase the sensitivity and specificity of breast cancer screening. In this review, the results of 14 relevant studies, investigating the efficacy of cell-free DNA methylation screening for breast cancer diagnosis, have been summarized. The genetic risk factors for breast cancer, the methods used for breast cancer detection, and the techniques and limitations related to the detection of cell-free DNA methylation status, have also been reviewed and discussed. From this review, we conclude that the analysis of peripheral blood or other samples to detect differentially methylated cell-free DNA is a promising technique for use in clinical settings, and may improve the sensitivity of screening for both, early detection and disease relapse, and thus improve the future prognosis of patients with breast cancer. PMID:28382090

  15. Molecular analysis of dolphin morbillivirus: A new sensitive detection method based on nested RT-PCR.

    PubMed

    Centelleghe, Cinzia; Beffagna, Giorgia; Zanetti, Rossella; Zappulli, Valentina; Di Guardo, Giovanni; Mazzariol, Sandro

    2016-09-01

    Cetacean Morbillivirus (CeMV) has been identified as the most pathogenic virus for cetaceans. Over the past three decades, this RNA virus has caused several outbreaks of lethal disease in odontocetes and mysticetes worldwide. Isolation and identification of CeMV RNA is very challenging in whales because of the poor preservation status frequently shown by tissues from stranded animals. Nested reverse transcription polymerase chain reaction (nested RT-PCR) is used instead of conventional RT-PCR when it is necessary to increase the sensitivity and the specificity of the reaction. This study describes a new nested RT-PCR technique useful to amplify small amounts of the cDNA copy of Cetacean morbillivirus (CeMV) when it is present in scant quantity in whales' biological specimens. This technique was used to analyze different tissues (lung, brain, spleen and other lymphoid tissues) from one under human care seal and seven cetaceans stranded along the Italian coastline between October 2011 and September 2015. A well-characterized, 200 base pair (bp) fragment of the dolphin Morbillivirus (DMV) haemagglutinin (H) gene, obtained by nested RT-PCR, was sequenced and used to confirm DMV positivity in all the eight marine mammals under study. In conclusion, this nested RT-PCR protocol can represent a sensitive detection method to identify CeMV-positive, poorly preserved tissue samples. Furthermore, this is also a rather inexpensive molecular technique, relatively easy to apply. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Advanced optical smoke meters for jet engine exhaust measurement

    NASA Technical Reports Server (NTRS)

    Pitz, R. W.

    1986-01-01

    Smoke meters with increased sensitivity, improved accuracy, and rapid response are needed to measure the smoke levels emitted by modern jet engines. The standard soiled tape meter in current use is based on filtering, which yields long term averages and is insensitive to low smoke levels. Two new optical smoke meter techniques that promise to overcome these difficulties have been experimentally evaluated: modulated transmission (MODTRAN) and photothermal deflection spectroscopy (PDS). Both techniques are based on light absorption by smoke, which is closely related to smoke density. They are variations on direct transmission measurements which produce a modulated signal that can be easily measured with phase sensitive detection. The MODTRAN and PDS techniques were tested on low levels of smoke and diluted samples of NO2 in nitrogen, simulating light adsorption due to smoke. The results are evaluated against a set of ideal smoke meter criteria that include a desired smoke measurement range of 0.1 to 12 mg cu.m. (smoke numbers of 1 to 50) and a frequency response of 1 per second. The MODTRAN instrument is found to be inaccurate for smoke levels below 3 mg/cu.m. and is able to make a only about once every 20 seconds because of its large sample cell. The PDS instrument meets nearly all the characteristics of an ideal smoke meter: it has excellent sensitivity over a range of smoke levels from 0.1 to 20 mg/cu.m. (smoke numbers of 1 to 60) and good frequency response (1 per second).

  17. Recent Advances in Bioprinting and Applications for Biosensing

    PubMed Central

    Dias, Andrew D.; Kingsley, David M.; Corr, David T.

    2014-01-01

    Future biosensing applications will require high performance, including real-time monitoring of physiological events, incorporation of biosensors into feedback-based devices, detection of toxins, and advanced diagnostics. Such functionality will necessitate biosensors with increased sensitivity, specificity, and throughput, as well as the ability to simultaneously detect multiple analytes. While these demands have yet to be fully realized, recent advances in biofabrication may allow sensors to achieve the high spatial sensitivity required, and bring us closer to achieving devices with these capabilities. To this end, we review recent advances in biofabrication techniques that may enable cutting-edge biosensors. In particular, we focus on bioprinting techniques (e.g., microcontact printing, inkjet printing, and laser direct-write) that may prove pivotal to biosensor fabrication and scaling. Recent biosensors have employed these fabrication techniques with success, and further development may enable higher performance, including multiplexing multiple analytes or cell types within a single biosensor. We also review recent advances in 3D bioprinting, and explore their potential to create biosensors with live cells encapsulated in 3D microenvironments. Such advances in biofabrication will expand biosensor utility and availability, with impact realized in many interdisciplinary fields, as well as in the clinic. PMID:25587413

  18. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH).

    PubMed

    Ohmido, Nobuko; Fukui, Kiichi; Kinoshita, Toshiro

    2010-01-01

    Fluorescence in situ hybridization (FISH) is an effective method for the physical mapping of genes and repetitive DNA sequences on chromosomes. Physical mapping of unique nucleotide sequences on specific rice chromosome regions was performed using a combination of chromosome identification and highly sensitive FISH. Increases in the detection sensitivity of smaller DNA sequences and improvements in spatial resolution have ushered in a new phase in FISH technology. Thus, it is now possible to perform in situ hybridization on somatic chromosomes, pachytene chromosomes, and even on extended DNA fibers (EDFs). Pachytene-FISH allows the integration of genetic linkage maps and quantitative chromosome maps. Visualization methods using FISH can reveal the spatial organization of the centromere, heterochromatin/euchromatin, and the terminal structures of rice chromosomes. Furthermore, EDF-FISH and the DNA combing technique can resolve a spatial distance of 1 kb between adjacent DNA sequences, and the detection of even a 300-bp target is now feasible. The copy numbers of various repetitive sequences and the sizes of various DNA molecules were quantitatively measured using the molecular combing technique. This review describes the significance of these advances in molecular cytology in rice and discusses future applications in plant studies using visualization techniques.

  19. New imaging systems in nuclear medicine. Final report, January 1, 1993--December 31, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    The aim of this program has been to improve the performance of positron emission tomography (PET) to achieve high resolution with high sensitivity. Towards this aim, the authors have carried out the following studies: (1) explored new techniques for detection of annihilation radiation including new detector materials and system geometries, specific areas that they have studied include--exploration of factors related to resolution and sensitivity of PET instrumentation including geometry, detection materials and coding, and the exploration of technique to improve the image quality by use of depth of interaction and increased sampling; (2) complete much of the final testing ofmore » PCR-II, an analog-coded cylindrical positron tomograph, developed and constructed during the current funding period; (3) developed the design of a positron microtomograph with mm resolution for quantitative studies in small animals, a single slice version of this device has been designed and studied by use of computer simulation; (4) continued and expanded the program of biological studies in animal models. Current studies have included imaging of animal models of Parkinson`s and Huntington`s disease and cancer. These studies have included new radiopharmaceuticals and techniques involving molecular biology.« less

  20. Probing the Interaction between Nanoparticles and Lipid Membranes by Quartz Crystal Microbalance with Dissipation Monitoring

    PubMed Central

    Yousefi, Nariman; Tufenkji, Nathalie

    2016-01-01

    There is increasing interest in using quartz crystal microbalance with dissipation monitoring (QCM-D) to investigate the interaction of nanoparticles (NPs) with model surfaces. The high sensitivity, ease of use and the ability to monitor interactions in real-time has made it a popular technique for colloid chemists, biologists, bioengineers, and biophysicists. QCM-D has been recently used to probe the interaction of NPs with supported lipid bilayers (SLBs) as model cell membranes. The interaction of NPs with SLBs is highly influenced by the quality of the lipid bilayers. Unlike many surface sensitive techniques, by using QCM-D, the quality of SLBs can be assessed in real-time, hence QCM-D studies on SLB-NP interactions are less prone to the artifacts arising from bilayers that are not well formed. The ease of use and commercial availability of a wide range of sensor surfaces also have made QCM-D a versatile tool for studying NP interactions with lipid bilayers. In this review, we summarize the state-of-the-art on QCM-D based techniques for probing the interactions of NPs with lipid bilayers. PMID:27995125

  1. Role of microextraction sampling procedures in forensic toxicology.

    PubMed

    Barroso, Mário; Moreno, Ivo; da Fonseca, Beatriz; Queiroz, João António; Gallardo, Eugenia

    2012-07-01

    The last two decades have provided analysts with more sensitive technology, enabling scientists from all analytical fields to see what they were not able to see just a few years ago. This increased sensitivity has allowed drug detection at very low concentrations and testing in unconventional samples (e.g., hair, oral fluid and sweat), where despite having low analyte concentrations has also led to a reduction in sample size. Along with this reduction, and as a result of the use of excessive amounts of potentially toxic organic solvents (with the subsequent environmental pollution and costs associated with their proper disposal), there has been a growing tendency to use miniaturized sampling techniques. Those sampling procedures allow reducing organic solvent consumption to a minimum and at the same time provide a rapid, simple and cost-effective approach. In addition, it is possible to get at least some degree of automation when using these techniques, which will enhance sample throughput. Those miniaturized sample preparation techniques may be roughly categorized in solid-phase and liquid-phase microextraction, depending on the nature of the analyte. This paper reviews recently published literature on the use of microextraction sampling procedures, with a special focus on the field of forensic toxicology.

  2. Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material.

    PubMed

    Srisawasdi, Thanida; Petcharoen, Karat; Sirivat, Anuvat; Jamieson, Alexander M

    2015-11-01

    Pure silk fibroin (SF) hydrogel and polycarbazole/silk fibroin (SF/PCZ) hydrogels were fabricated by solvent casting technique to evaluate electromechanical responses, dielectric properties, and cantilever deflection properties as functions of electric field strength, SF concentration, glutaraldehyde concentration, and PCZ concentration in the blends. Electromechanical properties were characterized in oscillatory shear mode at electric field strengths ranging from 0 to 600V/mm and at a temperature of 27°C. For both the pristine SF and SF/PCZ hydrogels, the storage modulus response (ΔG') and the storage modulus sensitivity (ΔG'/G'0) increased dramatically with increasing electric field strength. The pristine hydrogel possessed the highest storage modulus sensitivity value of 5.87, a relatively high value when compared with other previously studied electroactive polymers. With the addition of conductive PCZ in SF hydrogel, the storage modulus sensitivity and the relative dielectric constant decreased; the conductive polymer thus provided the softening effect under electric field. In the deflection response, the dielectrophoresis force and deflection distance increased monotonically with electric field strength, where the pure SF hydrogel showed the highest deflection distance and dielectrophoresis force. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Permalloy-Based Thin Film Structures: Magnetic Properties and the Giant Magnetoimpedance Effect in the Temperature Range Important for Biomedical Applications

    PubMed Central

    Chlenova, Anna A.; Moiseev, Alexey A.; Derevyanko, Mikhail S.; Semirov, Aleksandr V.; Lepalovsky, Vladimir N.

    2017-01-01

    Permalloy-based thin film structures are excellent materials for sensor applications. Temperature dependencies of the magnetic properties and giant magneto-impedance (GMI) were studied for Fe19Ni81-based multilayered structures obtained by the ion-plasma sputtering technique. Selected temperature interval of 25 °C to 50 °C corresponds to the temperature range of functionality of many devices, including magnetic biosensors. A (Cu/FeNi)5/Cu/(Cu/FeNi)5 multilayered structure with well-defined traverse magnetic anisotropy showed an increase in the GMI ratio for the total impedance and its real part with temperature increased. The maximum of the GMI of the total impedance ratio ΔZ/Z = 56% was observed at a frequency of 80 MHz, with a sensitivity of 18%/Oe, and the maximum GMI of the real part ΔR/R = 170% at a frequency of 10 MHz, with a sensitivity of 46%/Oe. As the magnetization and direct current electrical resistance vary very little with the temperature, the most probable mechanism of the unexpected increase of the GMI sensitivity is the stress relaxation mechanism associated with magnetoelastic anisotropy. PMID:28817084

  4. [Contrast of Z-Pinch X-Ray Yield Measure Technique].

    PubMed

    Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi

    2015-03-01

    Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.

  5. Comparing the incomparable? A systematic review of competing techniques for converting descriptive measures of health status into QALY-weights.

    PubMed

    Mortimer, Duncan; Segal, Leonie

    2008-01-01

    Algorithms for converting descriptive measures of health status into quality-adjusted life year (QALY)--weights are now widely available, and their application in economic evaluation is increasingly commonplace. The objective of this study is to describe and compare existing conversion algorithms and to highlight issues bearing on the derivation and interpretation of the QALY-weights so obtained. Systematic review of algorithms for converting descriptive measures of health status into QALY-weights. The review identified a substantial body of literature comprising 46 derivation studies and 16 studies that provided evidence or commentary on the validity of conversion algorithms. Conversion algorithms were derived using 1 of 4 techniques: 1) transfer to utility regression, 2) response mapping, 3) effect size translation, and 4) "revaluing" outcome measures using preference-based scaling techniques. Although these techniques differ in their methodological/theoretical tradition, data requirements, and ease of derivation and application, the available evidence suggests that the sensitivity and validity of derived QALY-weights may be more dependent on the coverage and sensitivity of measures and the disease area/patient group under evaluation than on the technique used in derivation. Despite the recent proliferation of conversion algorithms, a number of questions bearing on the derivation and interpretation of derived QALY-weights remain unresolved. These unresolved issues suggest directions for future research in this area. In the meantime, analysts seeking guidance in selecting derived QALY-weights should consider the validity and feasibility of each conversion algorithm in the disease area and patient group under evaluation rather than restricting their choice to weights from a particular derivation technique.

  6. Efficacy of 67 gallium ECT imaging in lymphoma, infection, and lung carcinoma: A comparison with planar imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harwood, S.J.; Anderson, M.W.; Klein, R.C.

    1984-01-01

    Emission computed tomography (ECT) studies were performed on a GE 400 A/T camera and ADAC computers (system 3 and system 3300). Thirty-three sets of ECT and planar images were obtained in 20 patients over a six month period. Imaging was performed 48 hours after the intravenous administration of 5 mc of Gallium 67 citrate. No bowel preparation was employed. Comparison is made of the initial nuclear medicine report derived from planar and ECT imaging aided by clinical knowledge versus the consensus opinion of two nuclear medicine physicians reading the planar images along with minimal clinical information. The lymphoma series consistsmore » of 18 scans in 10 patients. There were 5 scans in which a false negative planar interpretation was changed to a true positive ECT interpretation. Sensitivity of planar imaging for lymphoma was 58% which rose to 100% with addition of ECT information. There were no false positives by either technique. There were 5 sets of scans in 5 lung carcinoma patients. Sensitivity of the planar images was 60% because of 2 false negative results. Sensitivity of the ECT technique was 100%. There were no false positives. The infection series consists of 10 scans in 5 patients. Sensitivity of ECT was 100%, sensitivity of planar was 66%. There was 1 false positive planar. For the total series the accuracy of planar imaging was 69% and the predictive value of a negative planar interpretation was 44%. Corresponding values for ECT imaging were 100%. The authors' experience demonstrates significant increase in sensitivity without loss of specificity resulting from the use of Emission Computed Tomography in both chest and abdomen in patients with lymphoma, infection, and lung cancer.« less

  7. Sonoelastographic evaluation with the determination of compressibility ratio for symmetrical prostatic regions in the diagnosis of clinically significant prostate cancer

    PubMed Central

    Słapa, Rafał Z.; Jakubowski, Wiesław S.; Migda, Bartosz; Dmowski, Tadeusz

    2014-01-01

    Aim Sonoelastography is a technique that assesses tissue hardness/compressibility. Utility and sensitivity of the method in prostate cancer diagnostics were assessed compared to the current gold standard in prostate cancer diagnostics i.e. systematic biopsy. Material and methods The study involved 84 patients suspected of prostate cancer based on elevated PSA levels or abnormal per rectal examination findings. Sonoelastography was used to evaluate the prostate gland. In the case of regions with hardness two-fold greater than that of symmetric prostate area (strain ratio >2), targeted biopsy was used; which was followed by an ultrasound-guided 8- or 10-core systematic biopsy (regardless of sonoelastography-indicated sites) as a reference point. Results The mean age of patients was 69 years. PSA serum levels ranged between 1.02 and 885 ng/dl. The mean prostate volume was 62 ml (19–149 ml). Prostate cancer was found in 39 out of 84 individuals. Statistically significant differences in strain ratios between cancers and benign lesions were shown. Sonoelastography guided biopsy revealed 30 lesions – overall sensitivity 77% (sensitivity of the method – 81%). Sonoelastographic sensitivity increased depending on cancer stage according to the Gleason grading system: 6–60%, 7–75%, 8–83%, 9/10–100%. The estimated sensitivity of systematic biopsy was 92%. Conclusions Sonoelastography shows higher diagnostic sensitivity in prostate cancer diagnostics compared to conventional imaging techniques, i.e. grey-scale TRUS, Doppler ultrasound. It allows to reduce the number of collected tissue cores, and thus limit the incidence of complications as well as the costs involved. Sonoelastography using the determination of compressibility ratio for symmetrical prostatic regions may prove useful in the detection of clinically significant prostate cancer. PMID:26674065

  8. Development of a reverse transcription polymerase chain reaction method for yellow fever virus detection.

    PubMed

    Méndez, María C; Domingo, Cristina; Tenorio, Antonio; Pardo, Lissethe C; Rey, Gloria J; Méndez, Jairo A

    2013-09-01

    Yellow fever is considered a re-emerging disease and is endemic in tropical regions of Africa and South America. At present, there are no standardized or commercialized kits available for yellow fever virus detection. Therefore, diagnosis must be made by time-consuming routine techniques, and sometimes, the virus or its proteins are not detected. Furthermore, co-circulation with other flaviviruses, including dengue virus, increases the difficulty of diagnosis. To develop a specific reverse transcriptase-polymerase chain reaction (RT-PCR) and nested PCR-based assay to improve the detection and diagnosis of yellow fever virus using both serum and fresh tissue samples. RT-PCR primers were designed to amplify a short fragment of all yellow fever virus genotypes reported. A second set of primers was used in a nested PCR to increase sensitivity. Thirty-three clinical samples were tested with the standardized reaction. The expected amplicon was obtained in 25 out of 33 samples analyzed using this approach, and 2 more samples tested positive after a subsequent nested PCR approach. This improved technique not only ensures the specific detection of a wide range of yellow fever virus genotypes but also may increase the sensitivity of detection by introducing a second round of amplification, allowing a rapid differential diagnosis between dengue and yellow fever infection, which is required for effective surveillance and opportune epidemiologic measures.

  9. Time-Distance Analysis of Deep Solar Convection

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Hanasoge, S. M.

    2011-01-01

    Recently it was shown by Hanasoge, Duvall, and DeRosa (2010) that the upper limit to convective flows for spherical harmonic degrees l

  10. Analytical techniques for steroid estrogens in water samples - A review.

    PubMed

    Fang, Ting Yien; Praveena, Sarva Mangala; deBurbure, Claire; Aris, Ahmad Zaharin; Ismail, Sharifah Norkhadijah Syed; Rasdi, Irniza

    2016-12-01

    In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. The interaction of intracellular Mg2+ and pH on Cl- fluxes associated with intracellular pH regulation in barnacle muscle fibers

    PubMed Central

    1988-01-01

    The intracellular dialysis technique was used to measure unidirectional Cl- fluxes and net acid extrusion by single muscle fibers from the giant barnacle. Decreasing pHi below normal levels of 7.35 stimulated both Cl- efflux and influx. These increases of Cl- fluxes were blocked by disulfonic acid stilbene derivatives such as SITS and DIDS. The SITS- sensitive Cl- efflux was sharply dependent upon pHi, increasing approximately 20-fold as pHi was decreased from 7.35 to 6.7. Under conditions of normal intracellular Mg2+ concentration, the apparent pKa for the activation of Cl- efflux was 7.0. We found that raising [Mg2+]i, but not [Mg2+]o, had a pronounced inhibitory effect on both SITS-sensitive unidirectional Cl- fluxes as well as on SITS-sensitive net acid extrusion. Increasing [Mg2+]i shifted the apparent pKa of Cl- efflux to a more acid value without affecting the maximal flux that could be attained. This relation between pHi and [Mg2+]i on SITS- sensitive Cl- efflux is consistent with a competition between H ions and Mg ions. We conclude that the SITS-inhibitable Cl- fluxes are mediated by the pHi-regulatory transport mechanism and that changes of intracellular Mg2+ levels can modify the activity of the pHi regulator/anion transporter. PMID:3392519

  12. Alternative magnetic flux leakage modalities for pipeline inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katragadda, G.; Lord, W.; Sun, Y.S.

    1996-05-01

    Increasing quality consciousness is placing higher demands on the accuracy and reliability of inspection systems used in defect detection and characterization. Nondestructive testing techniques often rely on using multi-transducer approaches to obtain greater defect sensitivity. This paper investigates the possibility of taking advantage of alternative modalities associated with the standard magnetic flux leakage tool to obtain additional defect information, while still using a single excitation source.

  13. Development of image analysis techniques as a tool to detect and quantify morphological changes in anaerobic sludge: I. Application to a granulation process.

    PubMed

    Araya-Kroff, P; Amaral, A L; Neves, L; Ferreira, E C; Pons, M-N; Mota, M; Alves, M M

    2004-07-20

    Image analysis techniques were developed and applied to quantify the process of anaerobic granulation in an expanded granular sludge blanket reactor (EGSB) fed with a synthetic substrate based on glucose [60-30% COD (chemical oxygen demand)] and volatile fatty acids (40-70% COD) over 376 days. In a first operation period that lasted 177 days, the aggregation of dispersed sludge was quantitatively monitored through the recognition and quantification of aggregates and filaments. A parameter defined as the ratio between the filaments' length and the aggregates projected area (LfA) has proven to be sensitive to detect changes in the aggregation status of the anaerobic sludge. The aggregation time-defined as the moment when a balance between filaments' length and aggregates' size was established-was recognized through the LfA. The percentage of projected area of aggregates within three size ranges (0.01-0.1 mm, 0.1-1 mm, and >1 mm, equivalent diameter) reflected the granular size spectrum during the aggregation process. When sudden increases on the upflow velocity and on the organic loading rate were applied to the previously formed granules, the developed image analysis techniques revealed to be good indicators of granular sludge stability, since they were sensitive to detected filaments release, fragmentation, and erosion that usually leads to washout. The specific methanogenic activities in the presence of acetate, propionate, butyrate, and H(2)/CO(2) increased along the operation, particularly relevant was the sudden increase in the specific hydrogenophilic activity, immediately after the moment recognized as aggregation time. Copyright 2004 Wiley Periodicals, Inc.

  14. SELECTIVE TRACE ENRICHMENT BY IMMUNOAFFINITY CAPILLARY ELECTROCHROMATOGRAPHY ON-LINE WITH CAPILLARY ZONE ELECTROPHORESIS - LASER-INDUCED FLUORESCENCE

    EPA Science Inventory

    Limited by the lack of a sensitive, universal detector, many capillary-based liquid-phase separation techniques might benefit from techniques that overcome modest concentration sensitivity by preconcentrating large injection volumes. The work presented employs selective solid-ph...

  15. Increasing productivity for the analysis of trace contaminants in food by gas chromatography-mass spectrometry using automated liner exchange, backflushing and heart-cutting.

    PubMed

    David, Frank; Tienpont, Bart; Devos, Christophe; Lerch, Oliver; Sandra, Pat

    2013-10-25

    Laboratories focusing on residue analysis in food are continuously seeking to increase sample throughput by minimizing sample preparation. Generic sample extraction methods such as QuEChERS lack selectivity and consequently extracts are not free from non-volatile material that contaminates the analytical system. Co-extracted matrix constituents interfere with target analytes, even if highly sensitive and selective GC-MS/MS is used. A number of GC approaches are described that can be used to increase laboratory productivity. These techniques include automated inlet liner exchange and column backflushing for preservation of the performance of the analytical system and heart-cutting two-dimensional GC for increasing sensitivity and selectivity. The application of these tools is illustrated by the analysis of pesticides in vegetables and fruits, PCBs in milk powder and coplanar PCBs in fish. It is demonstrated that considerable increase in productivity can be achieved by decreasing instrument down-time, while analytical performance is equal or better compared to conventional trace contaminant analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Results from the MACHO Galactic Pixel Lensing Search

    NASA Astrophysics Data System (ADS)

    Drake, Andrew J.; Minniti, Dante; Alcock, Charles; Allsman, Robyn A.; Alves, David; Axelrod, Tim S.; Becker, Andrew C.; Bennett, David; Cook, Kem H.; Freeman, Ken C.; Griest, Kim; Lehner, Matt; Marshall, Stuart; Peterson, Bruce; Pratt, Mark; Quinn, Peter; Rodgers, Alex; Stubbs, Chris; Sutherland, Will; Tomaney, Austin; Vandehei, Thor; Welch, Doug L.

    The MACHO, EROS, OGLE and AGAPE collaborations have been studying nature of the galactic halo for a number of years using microlensing events. The MACHO group undertakes observations of the LMC, SMC and Galactic Bulge monitoring the light curves of millions of stars to detect microlensing. Most of these fields are crowded to the extent that all the monitored stars are blended. Such crowding makes the performance of accurate photometry difficult. We apply the new technique of Difference Image Analysis (DIA) on archival data to improve the photometry and increase both the detection sensitivity and effective search area. The application of this technique also allows us to detect so called `pixel lensing' events. These are microlensing events where the source star is only detectable during lensing. The detection of these events will allow us to make a large increase in the number of detected microlensing events. We present a light curve demonstrating the detection of a pixel lensing event with this technique.

  17. Non-randomized response model for sensitive survey with noncompliance.

    PubMed

    Wu, Qin; Tang, Man-Lai

    2016-12-01

    Collecting representative data on sensitive issues has long been problematic and challenging in public health prevalence investigation (e.g. non-suicidal self-injury), medical research (e.g. drug habits), social issue studies (e.g. history of child abuse), and their interdisciplinary studies (e.g. premarital sexual intercourse). Alternative data collection techniques that can be adopted to study sensitive questions validly become more important and necessary. As an alternative to the famous Warner randomized response model, non-randomized response triangular model has recently been developed to encourage participants to provide truthful responses in surveys involving sensitive questions. Unfortunately, both randomized and non-randomized response models could underestimate the proportion of subjects with the sensitive characteristic as some respondents do not believe that these techniques can protect their anonymity. As a result, some authors hypothesized that lack of trust and noncompliance should be highest among those who have the most to lose and the least to use for the anonymity provided by using these techniques. Some researchers noticed the existence of noncompliance and proposed new models to measure noncompliance in order to get reliable information. However, all proposed methods were based on randomized response models which require randomizing devices, restrict the survey to only face-to-face interview and are lack of reproductivity. Taking the noncompliance into consideration, we introduce new non-randomized response techniques in which no covariate is required. Asymptotic properties of the proposed estimates for sensitive characteristic as well as noncompliance probabilities are developed. Our proposed techniques are empirically shown to yield accurate estimates for both sensitive and noncompliance probabilities. A real example about premarital sex among university students is used to demonstrate our methodologies. © The Author(s) 2014.

  18. Evaluation performance of diagnostic methods of intestinal parasitosis in school age children in Ethiopia.

    PubMed

    Yimer, Mulat; Hailu, Tadesse; Mulu, Wondemagegn; Abera, Bayeh

    2015-12-26

    Although the sensitivity of Wet mount technique is questionable, it is the major diagnostic technique for routine diagnosis of intestinal parasitosis in Ethiopia. Therefore, the aim of this study was the evaluation performance of diagnostic methods of intestinal parasitosis in school age children in Ethiopia. A cross sectional study was conducted from May to June 2013. Single stool sample was processed for direct, Formol ether concentration (FEC) and Kato Katz methods. The sensitivity and negative predictive value (NPV) of diagnostic tests were calculated in terms of the "Gold" standard method (the combined result of the three methods altogether). A total of 422 school age children were participated in this study. The prevalence of intestinal parasites was high (74.6%) with Kato Katz technique. The sensitivity of Wet mount, FEC and Kato Katz tests against the Gold standard test was 48.9, 63.1 and 93.7%, respectively. Kato Katz technique revealed a better NPV 80.4 (80.1-80.6) as compared to the Wet mount (33.7%) and FEC techniques (41.3%). In this study, the Kato Katz technique outperformed the other two methods but the true values for sensitivity, specificity and diagnostic values are not known. Moreover, it is labor intensive and not easily accessible. Hence, it is preferable to use FEC technique to complement the Wet mount test.

  19. A three-wavelength multi-channel brain functional imager based on digital lock-in photon-counting technique

    NASA Astrophysics Data System (ADS)

    Ding, Xuemei; Wang, Bingyuan; Liu, Dongyuan; Zhang, Yao; He, Jie; Zhao, Huijuan; Gao, Feng

    2018-02-01

    During the past two decades there has been a dramatic rise in the use of functional near-infrared spectroscopy (fNIRS) as a neuroimaging technique in cognitive neuroscience research. Diffuse optical tomography (DOT) and optical topography (OT) can be employed as the optical imaging techniques for brain activity investigation. However, most current imagers with analogue detection are limited by sensitivity and dynamic range. Although photon-counting detection can significantly improve detection sensitivity, the intrinsic nature of sequential excitations reduces temporal resolution. To improve temporal resolution, sensitivity and dynamic range, we develop a multi-channel continuous-wave (CW) system for brain functional imaging based on a novel lock-in photon-counting technique. The system consists of 60 Light-emitting device (LED) sources at three wavelengths of 660nm, 780nm and 830nm, which are modulated by current-stabilized square-wave signals at different frequencies, and 12 photomultiplier tubes (PMT) based on lock-in photon-counting technique. This design combines the ultra-high sensitivity of the photon-counting technique with the parallelism of the digital lock-in technique. We can therefore acquire the diffused light intensity for all the source-detector pairs (SD-pairs) in parallel. The performance assessments of the system are conducted using phantom experiments, and demonstrate its excellent measurement linearity, negligible inter-channel crosstalk, strong noise robustness and high temporal resolution.

  20. MT+, integrating magnetotellurics to determine earth structure, physical state, and processes

    USGS Publications Warehouse

    Bedrosian, P.A.

    2007-01-01

    As one of the few deep-earth imaging techniques, magnetotellurics provides information on both the structure and physical state of the crust and upper mantle. Magnetotellurics is sensitive to electrical conductivity, which varies within the earth by many orders of magnitude and is modified by a range of earth processes. As with all geophysical techniques, magnetotellurics has a non-unique inverse problem and has limitations in resolution and sensitivity. As such, an integrated approach, either via the joint interpretation of independent geophysical models, or through the simultaneous inversion of independent data sets is valuable, and at times essential to an accurate interpretation. Magnetotelluric data and models are increasingly integrated with geological, geophysical and geochemical information. This review considers recent studies that illustrate the ways in which such information is combined, from qualitative comparisons to statistical correlation studies to multi-property inversions. Also emphasized are the range of problems addressed by these integrated approaches, and their value in elucidating earth structure, physical state, and processes. ?? Springer Science+Business Media B.V. 2007.

  1. Measurement of Fracture Aperture Fields Using Ttransmitted Light: An Evaluation of Measurement Errors and their Influence on Simulations of Flow and Transport through a Single Fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detwiler, Russell L.; Glass, Robert J.; Pringle, Scott E.

    Understanding of single and multi-phase flow and transport in fractures can be greatly enhanced through experimentation in transparent systems (analogs or replicas) where light transmission techniques yield quantitative measurements of aperture, solute concentration, and phase saturation fields. Here we quanti@ aperture field measurement error and demonstrate the influence of this error on the results of flow and transport simulations (hypothesized experimental results) through saturated and partially saturated fractures. find that precision and accuracy can be balanced to greatly improve the technique and We present a measurement protocol to obtain a minimum error field. Simulation results show an increased sensitivity tomore » error as we move from flow to transport and from saturated to partially saturated conditions. Significant sensitivity under partially saturated conditions results in differences in channeling and multiple-peaked breakthrough curves. These results emphasize the critical importance of defining and minimizing error for studies of flow and transpoti in single fractures.« less

  2. Sensitive coating for water vapors detection based on thermally sputtered calcein thin films.

    PubMed

    Kruglenko, I; Shirshov, Yu; Burlachenko, J; Savchenko, A; Kravchenko, S; Manera, M G; Rella, R

    2010-09-15

    In this paper the adsorption properties of thermally sputtered calcein thin films towards water and other polar molecules vapors are studied by different characterization techniques: quartz crystal microbalance, surface plasmon resonance and visible spectroscopy. Sensitivity of calcein thin films to water vapors resulted much higher as compared with those of a number of dyes whose structure was close to that of calcein. All types of sensors with calcein coatings have demonstrated linear concentration dependences in the wide range of water vapor pressure from low concentrations up to 27,000 ppm (close to saturation). At higher concentrations of water vapor all sensors demonstrate the abrupt increase of the response (up to two orders). A theoretical model is advanced explaining the adsorption properties of calcein thin films taking into account their chemical structure and peculiarities of molecular packing. The possibility of application of thermally sputtered calcein films in sensing technique is discussed. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  3. Medium-energy heavy-ion single-event-burnout imaging of power MOSFETs

    NASA Astrophysics Data System (ADS)

    Musseau, O.; Torres, A.; Campbell, A. B.; Knudson, A. R.; Buchner, S.; Fischer, B.; Schlogl, M.; Briand, P.

    1999-12-01

    We present the first experimental determination of the SEB sensitive area in a power MOSFET irradiated with a high-LET heavy-ion microbeam. We used a spectroscopy technique to perform coincident measurements of the charge collected in both source and drain junctions together, with a nondestructive technique (current limitation). The resulting charge collection images are related to the physical structure of the individual cells. These experimental data reveal the complex 3-dimensional behavior of a real structure, which can not easily be simulated using available tools. As the drain voltage is increased, the onset of burnout is reached, characterized by a sudden change in the charge collection image. "Hot spots" are observed where the collected charge reaches its maximum value. Those spots, due to burnout triggering events, correspond to areas where the silicon is degraded through thermal effects along a single ion track. This direct observation of SEB sensitive areas as applications for, either device hardening, by modifying doping profiles or layout of the cells, or for code calibration and device simulation.

  4. Shear wave pulse compression for dynamic elastography using phase-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Mai; Song, Shaozhen; Arnal, Bastien; Wong, Emily Y.; Huang, Zhihong; Wang, Ruikang K.; O'Donnell, Matthew

    2014-01-01

    Assessing the biomechanical properties of soft tissue provides clinically valuable information to supplement conventional structural imaging. In the previous studies, we introduced a dynamic elastography technique based on phase-sensitive optical coherence tomography (PhS-OCT) to characterize submillimetric structures such as skin layers or ocular tissues. Here, we propose to implement a pulse compression technique for shear wave elastography. We performed shear wave pulse compression in tissue-mimicking phantoms. Using a mechanical actuator to generate broadband frequency-modulated vibrations (1 to 5 kHz), induced displacements were detected at an equivalent frame rate of 47 kHz using a PhS-OCT. The recorded signal was digitally compressed to a broadband pulse. Stiffness maps were then reconstructed from spatially localized estimates of the local shear wave speed. We demonstrate that a simple pulse compression scheme can increase shear wave detection signal-to-noise ratio (>12 dB gain) and reduce artifacts in reconstructing stiffness maps of heterogeneous media.

  5. Photo-vibrational sensing of trace chemicals and explosives by long-distance differential laser Doppler vibrometer

    NASA Astrophysics Data System (ADS)

    Fu, Yu; Liu, Huan; Hu, Qi; Xie, Jiecheng

    2017-05-01

    Photoacoustic/photothermal spectroscopy is an established technique for trace detection of chemicals and explosives. Normally high-sensitive microphone or PZT sensor is used to detect the signal in photoacoustic cell. In recent years, laser Doppler vibrometer (LDV) is proposed to remote-sense photoacoustic signal on various substrates. It is a highsensitivity sensor with a displacement resolution of <10pm. In this research, the photoacoustic effect of various chemicals and explosives is excited by a quantum cascade laser (QCL) at their absorbance peak. A home-developed differential LDV at 1550nm wavelength is applied to detect the vibration signal at 100m. A differential configuration is applied to minimize the environment factors, such as environment noise and vibration, air turbulence, etc. and increase the detection sensitivity. The photo-vibrational signal of chemicals and explosives on different substrates are detected. The results show the potential of the proposed technique on detection of trace chemicals and explosives at long standoff distance.

  6. Large-area PSPMT based gamma-ray imager with edge reclamation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziock, K-P; Nakae, L

    2000-09-21

    We describe a coded aperture, gamma-ray imager which uses a CsI(Na) scintillator coupled to an Hamamatsu R3292 position-sensitive photomultiplier tube (PSPMT) as the position-sensitive detector. We have modified the normal resistor divider readout of the PSPMT to allow use of nearly the full 10 cm diameter active area of the PSPMT with a single scintillator crystal one centimeter thick. This is a significant performance improvement over that obtained with the standard readout technique where the linearity and position resolution start to degrade at radii as small as 3.5 cm with a crystal 0.75 crn thick. This represents a recovery ofmore » over 60% of the PSPMT active area. The performance increase allows the construction of an imager with a field of view 20 resolution elements in diameter with useful quantum efficiency from 60-700 keV. In this paper we describe the readout technique, its implementation in a coded aperture imager and the performance of that imager.« less

  7. Error analysis applied to several inversion techniques used for the retrieval of middle atmospheric constituents from limb-scanning MM-wave spectroscopic measurements

    NASA Technical Reports Server (NTRS)

    Puliafito, E.; Bevilacqua, R.; Olivero, J.; Degenhardt, W.

    1992-01-01

    The formal retrieval error analysis of Rodgers (1990) allows the quantitative determination of such retrieval properties as measurement error sensitivity, resolution, and inversion bias. This technique was applied to five numerical inversion techniques and two nonlinear iterative techniques used for the retrieval of middle atmospheric constituent concentrations from limb-scanning millimeter-wave spectroscopic measurements. It is found that the iterative methods have better vertical resolution, but are slightly more sensitive to measurement error than constrained matrix methods. The iterative methods converge to the exact solution, whereas two of the matrix methods under consideration have an explicit constraint, the sensitivity of the solution to the a priori profile. Tradeoffs of these retrieval characteristics are presented.

  8. Clinical Comparison of At-Home and In-Office Dental Bleaching Procedures: A Randomized Trial of a Split-Mouth Design.

    PubMed

    Machado, Lucas Silveira; Anchieta, Rodolfo Bruniera; dos Santos, Paulo Henrique; Briso, André Luiz; Tovar, Nick; Janal, Malvin N; Coelho, Paulo Guilherme; Sundfeld, Renato Herman

    2016-01-01

    The objective of this split-mouth clinical study was to compare a combination of in-office and at-home dental bleaching with at-home bleaching alone. Two applications of in-office bleaching were performed, with one appointment per week, using 38% hydrogen peroxide. At-home bleaching was performed with or without in-office bleaching using 10% carbamide peroxide in a custom-made tray every night for 2 weeks. The factor studied was the bleaching technique on two levels: Technique 1 (in-office bleaching combined with home bleaching) and Technique 2 (home bleaching only). The response variables were color change, dental sensitivity, morphology, and surface roughness. The maxillary right and left hemiarches of the participants were submitted to in-office placebo treatment and in-office bleaching, respectively (Phase 1), and at-home bleaching (Phase 2) treatment was performed on both hemiarches, characterizing a split-mouth design. Enamel surface changes and roughness were analyzed with scanning electron microscopy and optical interferometry using epoxy replicas. No statistically significant differences were observed between the bleaching techniques for either the visual or the digital analyses. There was a significant difference in dental sensitivity when both dental bleaching techniques were used, with in-office bleaching producing the highest levels of dental sensitivity after the baseline. Microscopic analysis of the morphology and roughness of the enamel surface showed no significant changes between the bleaching techniques. The two techniques produced similar results in color change, and the combination technique produced the highest levels of sensitivity. Neither technique promoted changes in morphology or surface roughness of enamel.

  9. Thinning increases climatic resilience of red pine

    USGS Publications Warehouse

    Magruder, Matthew; Chhin, Sophan; Palik, Brian; Bradford, John B.

    2013-01-01

    Forest management techniques such as intermediate stand-tending practices (e.g., thinning) can promote climatic resiliency in forest stands by moderating tree competition. Residual trees gain increased access to environmental resources (i.e., soil moisture, light), which in turn has the potential to buffer trees from stressful climatic conditions. The influences of climate (temperature and precipitation) and forest management (thinning method and intensity) on the productivity of red pine (Pinus resinosa Ait.) in Michigan were examined to assess whether repeated thinning treatments were able to increase climatic resiliency (i.e., maintaining productivity and reduced sensitivity to climatic stress). The cumulative productivity of each thinning treatment was determined, and it was found that thinning from below to a residual basal area of 14 m2·ha−1 produced the largest average tree size but also the second lowest overall biomass per acre. On the other hand, the uncut control and the thinning from above to a residual basal area of 28 m2·ha−1 produced the smallest average tree size but also the greatest overall biomass per acre. Dendrochronological methods were used to quantify sensitivity of annual radial growth to monthly and seasonal climatic factors for each thinning treatment type. Climatic sensitivity was influenced by thinning method (i.e., thinning from below decreased sensitivity to climatic stress more than thinning from above) and by thinning intensity (i.e., more intense thinning led to a lower climatic sensitivity). Overall, thinning from below to a residual basal area of 21 m2·ha−1 represented a potentially beneficial compromise to maximize tree size, biomass per acre, and reduced sensitivity to climatic stress, and, thus, the highest level of climatic resilience.

  10. Recent Advances in the Measurement of Arsenic, Cadmium, and Mercury in Rice and Other Foods

    PubMed Central

    Punshon, Tracy

    2015-01-01

    Trace element analysis of foods is of increasing importance because of raised consumer awareness and the need to evaluate and establish regulatory guidelines for toxic trace metals and metalloids. This paper reviews recent advances in the analysis of trace elements in food, including challenges, state-of-the art methods, and use of spatially resolved techniques for localizing the distribution of As and Hg within rice grains. Total elemental analysis of foods is relatively well-established but the push for ever lower detection limits requires that methods be robust from potential matrix interferences which can be particularly severe for food. Inductively coupled plasma mass spectrometry (ICP-MS) is the method of choice, allowing for multi-element and highly sensitive analyses. For arsenic, speciation analysis is necessary because the inorganic forms are more likely to be subject to regulatory limits. Chromatographic techniques coupled to ICP-MS are most often used for arsenic speciation and a range of methods now exist for a variety of different arsenic species in different food matrices. Speciation and spatial analysis of foods, especially rice, can also be achieved with synchrotron techniques. Sensitive analytical techniques and methodological advances provide robust methods for the assessment of several metals in animal and plant-based foods, in particular for arsenic, cadmium and mercury in rice and arsenic speciation in foodstuffs. PMID:25938012

  11. Detection of cow's milk proteins and minor components in human milk using proteomics techniques.

    PubMed

    Coscia, A; Orrù, S; Di Nicola, P; Giuliani, F; Varalda, A; Peila, C; Fabris, C; Conti, A; Bertino, E

    2012-10-01

    Cow's milk proteins (CMPs) are the best characterized food allergens. The aim of this study was to investigate cow's milk allergens in human colostrum of term and preterm newborns' mothers, and other minor protein components by proteomics techniques, more sensitive than other techniques used in the past. Sixty-two term and 11 preterm colostrum samples were collected, subjected to a treatment able to increase the concentration of the most diluted proteins and simultaneously to reduce the concentration of the proteins present at high concentration (Proteominer Treatment), and subsequently subjected to the steps of proteomic techniques. The most relevant finding in this study was the detection of the intact bovine alpha-S1-casein in human colostrum, then bovine alpha-1-casein could be considered the cow's milk allergen that is readily secreted in human milk and could be a cause of sensitization to cow's milk in exclusively breastfed predisposed infants. Another interesting result was the detection, at very low concentrations, of proteins previously not described in human milk (galectin-7, the different isoforms of the 14-3-3 protein and the serum amyloid P-component), probably involved in the regulation of the normal cell growth, in the pro-apoptotic function and in the regulation of tissue homeostasis. Further investigations are needed to understand if these families of proteins have specific biological activity in human milk.

  12. Singularity-sensitive gauge-based radar rainfall adjustment methods for urban hydrological applications

    NASA Astrophysics Data System (ADS)

    Wang, L.-P.; Ochoa-Rodríguez, S.; Onof, C.; Willems, P.

    2015-09-01

    Gauge-based radar rainfall adjustment techniques have been widely used to improve the applicability of radar rainfall estimates to large-scale hydrological modelling. However, their use for urban hydrological applications is limited as they were mostly developed based upon Gaussian approximations and therefore tend to smooth off so-called "singularities" (features of a non-Gaussian field) that can be observed in the fine-scale rainfall structure. Overlooking the singularities could be critical, given that their distribution is highly consistent with that of local extreme magnitudes. This deficiency may cause large errors in the subsequent urban hydrological modelling. To address this limitation and improve the applicability of adjustment techniques at urban scales, a method is proposed herein which incorporates a local singularity analysis into existing adjustment techniques and allows the preservation of the singularity structures throughout the adjustment process. In this paper the proposed singularity analysis is incorporated into the Bayesian merging technique and the performance of the resulting singularity-sensitive method is compared with that of the original Bayesian (non singularity-sensitive) technique and the commonly used mean field bias adjustment. This test is conducted using as case study four storm events observed in the Portobello catchment (53 km2) (Edinburgh, UK) during 2011 and for which radar estimates, dense rain gauge and sewer flow records, as well as a recently calibrated urban drainage model were available. The results suggest that, in general, the proposed singularity-sensitive method can effectively preserve the non-normality in local rainfall structure, while retaining the ability of the original adjustment techniques to generate nearly unbiased estimates. Moreover, the ability of the singularity-sensitive technique to preserve the non-normality in rainfall estimates often leads to better reproduction of the urban drainage system's dynamics, particularly of peak runoff flows.

  13. Optimizing the use of a skin prick test device on children.

    PubMed

    Buyuktiryaki, Betul; Sahiner, Umit Murat; Karabulut, Erdem; Cavkaytar, Ozlem; Tuncer, Ayfer; Sekerel, Bulent Enis

    2013-01-01

    Studies comparing skin prick test (SPT) devices have revealed varying results in performance and there is little known about their use on children. We performed 2 complementary studies to test the sensitivity, reproducibility and acceptability of commercially available SPT devices (Stallerpoint, Antony, France) using different application techniques. In the first part, histamine/saline was put on as a drop by use of a vial (V), and in the second part it was transferred from a well with the aid of the test device (W). The techniques were as follows: apply vertical pressure (Stallerpoint-VP or Stallerpoint-WP), apply vertical pressure with 90° clockwise rotation (Stallerpoint-VC or Stallerpoint-WC) and apply vertical pressure with 90° clockwise and counter-clockwise rotations (Stallerpoint-VCC or Stallerpoint-WCC). For comparison, ALK Lancet was used with a technique of 'drop and apply vertical pressure'. In the first part, sensitivities of the Stallerpoint-VC (96.6%), Stallerpoint-VCC (95.5%) and ALK Lancet (93.2%) techniques were superior (p < 0.001) to the other Stallerpoint-VP and Stallerpoint-WP techniques (76.1 and 46.6%). Intrapatient coefficient of variation (CV) values were 15.0, 18.9, 15.4, 22.4 and 48.5%, respectively. Interpatient CV ranged between 22.8 and 55.1%. In the second part, the Stallerpoint-WC (98.8%), WCC (97.5%) and ALK Lancet (98.8%) techniques yielded high sensitivities, whereas the sensitivity of Stallerpoint-WP (28.7%) was very low. There were false-positive reactions in the Stallerpoint-VCC and WCC techniques. In children, the SPT technique was found to be as important as the testing device. Stallerpoint-VC and WC techniques are reliable, tolerable and comparable with the ALK Lancet technique. Copyright © 2013 S. Karger AG, Basel.

  14. Wide Panel Testing Technique for Evaluating Repair Weld Strengths

    NASA Technical Reports Server (NTRS)

    Rogers, Patrick R.; Bynum, Julian E.; Shah, Sandeep R.

    1998-01-01

    This paper describes a new tensile testing technique for evaluating the overall effect of a repair weld on the strength of a welded joint. Previously, repair weld strengths have been evaluated using one-inch width tensile specimens, but this technique does not capture all of the effects that result from a repair. The new technique involves testing of "wide panel" tensile specimens which contain the full length of a repair weld within a longer initial weld, allowing the specimen to capture the combined effects of residual stresses, local strength degradation, and load redistribution around a repair. The development of strains in the repair area of standard aluminum alloy specimens and new high-performance aluminum-lithium alloy specimens was observed and evaluated using photoelastic material. The results of this evaluation show an increased sensitivity to repair welding residual stresses in the aluminum-lithium alloy specimens.

  15. Screening for trace explosives by AccuTOF™-DART®: an in-depth validation study.

    PubMed

    Sisco, Edward; Dake, Jeffrey; Bridge, Candice

    2013-10-10

    Ambient ionization mass spectrometry is finding increasing utility as a rapid analysis technique in a number of fields. In forensic science specifically, analysis of many types of samples, including drugs, explosives, inks, bank dye, and lotions, has been shown to be possible using these techniques [1]. This paper focuses on one type of ambient ionization mass spectrometry, Direct Analysis in Real Time Mass Spectrometry (DART-MS or DART), and its viability as a screening tool for trace explosives analysis. In order to assess viability, a validation study was completed which focused on the analysis of trace amounts of nitro and peroxide based explosives. Topics which were studied, and are discussed, include method optimization, reproducibility, sensitivity, development of a search library, discrimination of mixtures, and blind sampling. Advantages and disadvantages of this technique over other similar screening techniques are also discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Spectroscopic vector analysis for fast pattern quality monitoring

    NASA Astrophysics Data System (ADS)

    Sohn, Younghoon; Ryu, Sungyoon; Lee, Chihoon; Yang, Yusin

    2018-03-01

    In semiconductor industry, fast and effective measurement of pattern variation has been key challenge for assuring massproduct quality. Pattern measurement techniques such as conventional CD-SEMs or Optical CDs have been extensively used, but these techniques are increasingly limited in terms of measurement throughput and time spent in modeling. In this paper we propose time effective pattern monitoring method through the direct spectrum-based approach. In this technique, a wavelength band sensitive to a specific pattern change is selected from spectroscopic ellipsometry signal scattered by pattern to be measured, and the amplitude and phase variation in the wavelength band are analyzed as a measurement index of the pattern change. This pattern change measurement technique is applied to several process steps and verified its applicability. Due to its fast and simple analysis, the methods can be adapted to the massive process variation monitoring maximizing measurement throughput.

  17. Statin Intake Is Associated With Decreased Insulin Sensitivity During Cardiac Surgery

    PubMed Central

    Sato, Hiroaki; Carvalho, George; Sato, Tamaki; Hatzakorzian, Roupen; Lattermann, Ralph; Codere-Maruyama, Takumi; Matsukawa, Takashi; Schricker, Thomas

    2012-01-01

    OBJECTIVE Surgical trauma impairs intraoperative insulin sensitivity and is associated with postoperative adverse events. Recently, preprocedural statin therapy is recommended for patients with coronary artery disease. However, statin therapy is reported to increase insulin resistance and the risk of new-onset diabetes. Thus, we investigated the association between preoperative statin therapy and intraoperative insulin sensitivity in nondiabetic, dyslipidemic patients undergoing coronary artery bypass grafting. RESEARCH DESIGN AND METHODS In this prospective, nonrandomized trial, patients taking lipophilic statins were assigned to the statin group and hypercholesterolemic patients not receiving any statins were allocated to the control group. Insulin sensitivity was assessed by the hyperinsulinemic-normoglycemic clamp technique during surgery. The mean, SD of blood glucose, and the coefficient of variation (CV) after surgery were calculated for each patient. The association between statin use and intraoperative insulin sensitivity was tested by multiple regression analysis. RESULTS We studied 120 patients. In both groups, insulin sensitivity gradually decreased during surgery with values being on average ∼20% lower in the statin than in the control group. In the statin group, the mean blood glucose in the intensive care unit was higher than in the control group (153 ± 20 vs. 140 ± 20 mg/dL; P < 0.001). The oscillation of blood glucose was larger in the statin group (SD, P < 0.001; CV, P = 0.001). Multiple regression analysis showed that statin use was independently associated with intraoperative insulin sensitivity (β = −0.16; P = 0.03). CONCLUSIONS Preoperative use of lipophilic statins is associated with increased insulin resistance during cardiac surgery in nondiabetic, dyslipidemic patients. PMID:22829524

  18. Recent advances in micro-scale and nano-scale high-performance liquid-phase chromatography for proteome research.

    PubMed

    Tao, Dingyin; Zhang, Lihua; Shan, Yichu; Liang, Zhen; Zhang, Yukui

    2011-01-01

    High-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS-MS) is regarded as one of the most powerful techniques for separation and identification of proteins. Recently, much effort has been made to improve the separation capacity, detection sensitivity, and analysis throughput of micro- and nano-HPLC, by increasing column length, reducing column internal diameter, and using integrated techniques. Development of HPLC columns has also been rapid, as a result of the use of submicrometer packing materials and monolithic columns. All these innovations result in clearly improved performance of micro- and nano-HPLC for proteome research.

  19. Characterization of electrochemically deposited polypyrrole using magnetoelastic material transduction elements

    NASA Technical Reports Server (NTRS)

    Ersoz, Arzu; Ball, J. Christopher; Grimes, Craig A.; Bachas, Leonidas G.

    2002-01-01

    Magnetoelastic alloy films have been used as a working electrode in an electrochemical cell. This material allows magnetic interrogation of electrochemical deposition. This technique was used to monitor the electrochemical deposition of polypyrrole by multisweep (CV) and potentiostatic methods. Since the determination of the mass-sensitive magnetoelastic film's resonance frequency is based on magnetic transduction, an inherent advantage of this method is that it requires no electrical connections other than the working lead of the potentiostat. Increases in pyrrole deposition correlated with a decrease in the peak resonance frequency of the magnetoelastic alloy. This technique provides a novel approach by which one can monitor electrochemical processes.

  20. In vivo detection of cucurbit[6]uril, a hyperpolarized xenon contrast agent for a xenon magnetic resonance imaging biosensor

    PubMed Central

    Hane, Francis T.; Li, Tao; Smylie, Peter; Pellizzari, Raiili M.; Plata, Jennifer A.; DeBoef, Brenton; Albert, Mitchell S.

    2017-01-01

    The Hyperpolarized gas Chemical Exchange Saturation Transfer (HyperCEST) Magnetic Resonance (MR) technique has the potential to increase the sensitivity of a hyperpolarized xenon-129 MRI contrast agent. Signal enhancement is accomplished by selectively depolarizing the xenon within a cage molecule which, upon exchange, reduces the signal in the dissolved phase pool. Herein we demonstrate the in vivo detection of the cucurbit[6]uril (CB6) contrast agent within the vasculature of a living rat. Our work may be used as a stepping stone towards using the HyperCEST technique as a molecular imaging modality. PMID:28106110

  1. Single-Molecule Bioelectronics

    PubMed Central

    Rosenstein, Jacob K.; Lemay, Serge G.; Shepard, Kenneth L.

    2014-01-01

    Experimental techniques which interface single biomolecules directly with microelectronic systems are increasingly being used in a wide range of powerful applications, from fundamental studies of biomolecules to ultra-sensitive assays. Here we review several technologies which can perform electronic measurements of single molecules in solution: ion channels, nanopore sensors, carbon nanotube field-effect transistors, electron tunneling gaps, and redox cycling. We discuss the shared features among these techniques that enable them to resolve individual molecules, and discuss their limitations. Recordings from each of these methods all rely on similar electronic instrumentation, and we discuss the relevant circuit implementations and potential for scaling these single-molecule bioelectronic interfaces to high-throughput arrayed sensing platforms. PMID:25529538

  2. Influence of annealing on X-ray radiation sensing properties of TiO2 thin film

    NASA Astrophysics Data System (ADS)

    Sarma, M. P.; Kalita, J. M.; Wary, G.

    2018-03-01

    A recent study shows that the titanium dioxide (TiO2) thin film synthesised by a chemical bath deposition technique is a very useful material for the X-ray radiation sensor. In this work, we reported the influence of annealing on the X-ray radiation detection sensitivity of the TiO2 film. The films were annealed at 333 K, 363 K, 393 K, 473 K, and 573 K for 1 hour. Structural analyses showed that the microstrain and dislocation density decreased whereas the average crystallite size increased with annealing. The band gap of the films also decreased from 3.26 eV to 3.10 eV after annealing. The I-V characteristics record under the dark condition and under the X-ray irradiation showed that the conductivity increased with annealing. The influence of annealing on the detection sensitivity was negligible if the bias voltage applied across the films was low (within 0.2 V‒1.0 V). At higher bias voltage (>1.0 V), the contribution of electrons excited by X-ray became less significant which affected the detection sensitivity.

  3. A High Sensitivity Preamplifier for Quartz Tuning Forks in QEPAS (Quartz Enhanced PhotoAcoustic Spectroscopy) Applications

    PubMed Central

    Starecki, Tomasz

    2017-01-01

    All the preamplifiers dedicated for Quartz Enhanced PhotoAcoustic Spectroscopy (QEPAS) applications that have so far been reported in the literature have been based on operational amplifiers working in transimpedance configurations. Taking into consideration that QEPAS sensors are based on quartz tuning forks, and that quartz has a relatively high voltage constant and relatively low charge constant, it seems that a transimpedance amplifier is not an optimal solution. This paper describes the design of a quartz QEPAS sensor preamplifier, implemented with voltage amplifier configuration. Discussion of an electrical model of the circuit and preliminary measurements are presented. Both theoretical analysis and experiments show that use of the voltage configuration allows for a substantial increase of the output signal in comparison to the transimpedance circuit with the same tuning fork working in identical conditions. Assuming that the sensitivity of the QEPAS technique depends directly on the properties of the preamplifier, use of the voltage amplifier configuration should result in an increase of QEPAS sensitivity by one to two orders of magnitude. PMID:29099765

  4. A High Sensitivity Preamplifier for Quartz Tuning Forks in QEPAS (Quartz Enhanced PhotoAcoustic Spectroscopy) Applications.

    PubMed

    Starecki, Tomasz; Wieczorek, Piotr Z

    2017-11-03

    All the preamplifiers dedicated for Quartz Enhanced PhotoAcoustic Spectroscopy (QEPAS) applications that have so far been reported in the literature have been based on operational amplifiers working in transimpedance configurations. Taking into consideration that QEPAS sensors are based on quartz tuning forks, and that quartz has a relatively high voltage constant and relatively low charge constant, it seems that a transimpedance amplifier is not an optimal solution. This paper describes the design of a quartz QEPAS sensor preamplifier, implemented with voltage amplifier configuration. Discussion of an electrical model of the circuit and preliminary measurements are presented. Both theoretical analysis and experiments show that use of the voltage configuration allows for a substantial increase of the output signal in comparison to the transimpedance circuit with the same tuning fork working in identical conditions. Assuming that the sensitivity of the QEPAS technique depends directly on the properties of the preamplifier, use of the voltage amplifier configuration should result in an increase of QEPAS sensitivity by one to two orders of magnitude.

  5. Antitumoral activity and toxicity of PEG-coated and PEG-folate-coated pH-sensitive liposomes containing ¹⁵⁹Gd-DTPA-BMA in Ehrlich tumor bearing mice.

    PubMed

    Soares, Daniel Crístian Ferreira; Cardoso, Valbert Nascimento; de Barros, André Luís Branco; de Souza, Cristina Maria; Cassali, Geovanni Dantas; de Oliveira, Mônica Cristina; Ramaldes, Gilson Andrade

    2012-01-23

    In the present study, PEG-coated pH-sensitive and PEG-folate-coated pH-sensitive liposomes containing the ¹⁵⁹Gd-DTPA-BMA were prepared and radiolabeled through neutron activation technique, aiming to study the in vivo antitumoral activity and toxicity on mice bearing a previously-developed solid Ehrlich tumor. The treatment efficacy was verified through tumoral volume increase and histomorphometry studies. The toxicity of formulations was investigated through animal weight variations, as well as hematological and biochemical tests. The results showed that after 31 days of treatment, animals treated with radioactive formulations had a lower increase in tumor volume and a significantly higher percentage of necrosis compared with controls revealed by histomorphometry studies. Furthermore, mice treated with radioactive formulations exhibited lower weight gain without significant hematological or biochemical changes, except for toxicity to hepatocytes which requires more detailed studies. From the results obtained to date, we believe that the radioactive formulations can be considered potential therapeutic agents for cancer. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esfahani, M. Nasr; Yilmaz, M.; Sonne, M. R.

    The trend towards nanomechanical resonator sensors with increasing sensitivity raises the need to address challenges encountered in the modeling of their mechanical behavior. Selecting the best approach in mechanical response modeling amongst the various potential computational solid mechanics methods is subject to controversy. A guideline for the selection of the appropriate approach for a specific set of geometry and mechanical properties is needed. In this study, geometrical limitations in frequency response modeling of flexural nanomechanical resonators are investigated. Deviation of Euler and Timoshenko beam theories from numerical techniques including finite element modeling and Surface Cauchy-Born technique are studied. The resultsmore » provide a limit beyond which surface energy contribution dominates the mechanical behavior. Using the Surface Cauchy-Born technique as the reference, a maximum error on the order of 50 % is reported for high-aspect ratio resonators.« less

  7. The propagation of Lamb waves in multilayered plates: phase-velocity measurement

    NASA Astrophysics Data System (ADS)

    Grondel, Sébastien; Assaad, Jamal; Delebarre, Christophe; Blanquet, Pierrick; Moulin, Emmanuel

    1999-05-01

    Owing to the dispersive nature and complexity of the Lamb waves generated in a composite plate, the measurement of the phase velocities by using classical methods is complicated. This paper describes a measurement method based upon the spectrum-analysis technique, which allows one to overcome these problems. The technique consists of using the fast Fourier transform to compute the spatial power-density spectrum. Additionally, weighted functions are used to increase the probability of detecting the various propagation modes. Experimental Lamb-wave dispersion curves of multilayered plates are successfully compared with the analytical ones. This technique is expected to be a useful way to design composite parts integrating ultrasonic transducers in the field of health monitoring. Indeed, Lamb waves and particularly their velocities are very sensitive to defects.

  8. Phase sensitive optical coherence microscopy for photothermal imaging of gold nanorods

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Podoleanu, Adrian G.; Dobre, George

    2018-03-01

    We describe a swept source based phase sensitive optical coherence microscopy (OCM) system for photothermal imaging of gold nanorods (GNR). The phase sensitive OCM system employed in the study has a displacement sensitivity of 0.17 nm to vibrations at single frequencies below 250 Hz. We demonstrate the generation of phase maps and confocal phase images. By displaying the difference between successive confocal phase images, we perform the confocal photothermal imaging of accumulated GNRs behind a glass coverslip and behind the scattering media separately. Compared with two-photon luminescence (TPL) detection techniques reported in literature, the technique in this study has the advantage of a simplified experimental setup and provides a more efficient method for imaging the aggregation of GNR. However, the repeatability performance of this technique suffers due to jitter noise from the swept laser source.

  9. A stochastic model to determine the economic value of changing diagnostic test characteristics for identification of cattle for treatment of bovine respiratory disease.

    PubMed

    Theurer, M E; White, B J; Larson, R L; Schroeder, T C

    2015-03-01

    Bovine respiratory disease is an economically important syndrome in the beef industry, and diagnostic accuracy is important for optimal disease management. The objective of this study was to determine whether improving diagnostic sensitivity or specificity was of greater economic value at varied levels of respiratory disease prevalence by using Monte Carlo simulation. Existing literature was used to populate model distributions of published sensitivity, specificity, and performance (ADG, carcass weight, yield grade, quality grade, and mortality risk) differences among calves based on clinical respiratory disease status. Data from multiple cattle feeding operations were used to generate true ranges of respiratory disease prevalence and associated mortality. Input variables were combined into a single model that calculated estimated net returns for animals by diagnostic category (true positive, false positive, false negative, and true negative) based on the prevalence, sensitivity, and specificity for each iteration. Net returns for each diagnostic category were multiplied by the proportion of animals in each diagnostic category to determine group profitability. Apparent prevalence was categorized into low (<15%) and high (≥15%) groups. For both apparent prevalence categories, increasing specificity created more rapid, positive change in net returns than increasing sensitivity. Improvement of diagnostic specificity, perhaps through a confirmatory test interpreted in series or pen-level diagnostics, can increase diagnostic value more than improving sensitivity. Mortality risk was the primary driver for net returns. The results from this study are important for determining future research priorities to analyze diagnostic techniques for bovine respiratory disease and provide a novel way for modeling diagnostic tests.

  10. Sensitivity analysis of a model of CO2 exchange in tundra ecosystems by the adjoint method

    NASA Technical Reports Server (NTRS)

    Waelbroek, C.; Louis, J.-F.

    1995-01-01

    A model of net primary production (NPP), decomposition, and nitrogen cycling in tundra ecosystems has been developed. The adjoint technique is used to study the sensitivity of the computed annual net CO2 flux to perturbation in initial conditions, climatic inputs, and model's main parameters describing current seasonal CO2 exchange in wet sedge tundra at Barrow, Alaska. The results show that net CO2 flux is most sensitive to parameters characterizing litter chemical composition and more sensitive to decomposition parameters than to NPP parameters. This underlines the fact that in nutrient-limited ecosystems, decomposition drives net CO2 exchange by controlling mineralization of main nutrients. The results also indicate that the short-term (1 year) response of wet sedge tundra to CO2-induced warming is a significant increase in CO2 emission, creating a positive feedback to atmosphreic CO2 accumulation. However, a cloudiness increase during the same year can severely alter this response and lead to either a slight decrease or a strong increase in emitted CO2, depending on its exact timing. These results demonstrate that the adjoint method is well suited to study systems encountering regime changes, as a single run of the adjoint model provides sensitivities of the net CO2 flux to perturbations in all parameters and variables at any time of the year. Moreover, it is shown that large errors due to the presence of thresholds can be avoided by first delimiting the range of applicability of the adjoint results.

  11. A Sensitivity Analysis of Circular Error Probable Approximation Techniques

    DTIC Science & Technology

    1992-03-01

    SENSITIVITY ANALYSIS OF CIRCULAR ERROR PROBABLE APPROXIMATION TECHNIQUES THESIS Presented to the Faculty of the School of Engineering of the Air Force...programming skills. Major Paul Auclair patiently advised me in this endeavor, and Major Andy Howell added numerous insightful contributions. I thank my...techniques. The two ret(st accuratec techniiques require numerical integration and can take several hours to run ov a personal comlputer [2:1-2,4-6]. Some

  12. High sensitive volumetric imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography

    NASA Astrophysics Data System (ADS)

    Zhi, Zhongwei; Jung, Yeongri; Jia, Yali; An, Lin; Wang, Ruikang K.

    2011-03-01

    We present a non-invasive, label-free imaging technique called Ultrahigh Sensitive Optical Microangiography (UHSOMAG) for high sensitive volumetric imaging of renal microcirculation. The UHS-OMAG imaging system is based on spectral domain optical coherence tomography (SD-OCT), which uses a 47000 A-line scan rate CCD camera to perform an imaging speed of 150 frames per second that takes only ~7 seconds to acquire a 3D image. The technique, capable of measuring slow blood flow down to 4 um/s, is sensitive enough to image capillary networks, such as peritubular capillaries and glomerulus within renal cortex. We show superior performance of UHS-OMAG in providing depthresolved volumetric images of rich renal microcirculation. We monitored the dynamics of renal microvasculature during renal ischemia and reperfusion. Obvious reduction of renal microvascular density due to renal ischemia was visualized and quantitatively analyzed. This technique can be helpful for the assessment of chronic kidney disease (CKD) which relates to abnormal microvasculature.

  13. Stiffness mapping prostate biopsy samples using a tactile sensor.

    PubMed

    Peng, Qiyu; Omata, Sadao; Peehl, Donna M; Constantinou, Chris E

    2011-01-01

    Previous studies have demonstrated that the stiffness of cancerous cells reflects their pathological stage and progression rates, with increased cancerous cell stiffness associated with increased aggressiveness. Therefore, the elasticity of the cancerous cells has the potential to be used as an indicator of the cancer's aggressiveness. However, the sensitivity and resolution of current palpation and imaging techniques are not sufficient to detect small cancerous tissues. In previous studies, we developed a tactile-based device to map with high resolution the stiffness of a tissue section. The purpose of this study is to evaluate this device using different tissues (BPH, Cancer and PZ) collected from human prostates. The preliminary results show that the tactile device is sensitive enough to tell the differences of the stiffness of different tissues. The results also disclosed the factors (humidity, temperature and tissue degradation) which could dramatically affect the results of stiffness mapping. The tactile technology described in this paper has the potential to help disclose the underlying mechanical mechanisms that lead to increased stiffness in prostate tumors.

  14. Parameterization and Sensitivity Analysis of a Complex Simulation Model for Mosquito Population Dynamics, Dengue Transmission, and Their Control

    PubMed Central

    Ellis, Alicia M.; Garcia, Andres J.; Focks, Dana A.; Morrison, Amy C.; Scott, Thomas W.

    2011-01-01

    Models can be useful tools for understanding the dynamics and control of mosquito-borne disease. More detailed models may be more realistic and better suited for understanding local disease dynamics; however, evaluating model suitability, accuracy, and performance becomes increasingly difficult with greater model complexity. Sensitivity analysis is a technique that permits exploration of complex models by evaluating the sensitivity of the model to changes in parameters. Here, we present results of sensitivity analyses of two interrelated complex simulation models of mosquito population dynamics and dengue transmission. We found that dengue transmission may be influenced most by survival in each life stage of the mosquito, mosquito biting behavior, and duration of the infectious period in humans. The importance of these biological processes for vector-borne disease models and the overwhelming lack of knowledge about them make acquisition of relevant field data on these biological processes a top research priority. PMID:21813844

  15. Response of GaAs charge storage devices to transient ionizing radiation

    NASA Astrophysics Data System (ADS)

    Hetherington, D. L.; Klem, J. F.; Hughes, R. C.; Weaver, H. T.

    Charge storage devices in which non-equilibrium depletion regions represent stored charge are sensitive to ionizing radiation. This results since the radiation generates electron-hole pairs that neutralize excess ionized dopant charge. Silicon structures, such as dynamic RAM or CCD cells are particularly sensitive to radiation since carrier diffusion lengths in this material are often much longer than the depletion width, allowing collection of significant quantities of charge from quasi-neutral sections of the device. For GaAs the situation is somewhat different in that minority carrier diffusion lengths are shorter than in silicon, and although mobilities are higher, we expect a reduction of radiation sensitivity as suggested by observations of reduced quantum efficiency in GaAs solar cells. Dynamic memory cells in GaAs have potential increased retention times. In this paper, we report the response of a novel GaAs dynamic memory element to transient ionizing radiation. The charge readout technique is nondestructive over a reasonable applied voltage range and is more sensitive to stored charge than a simple capacitor.

  16. Development and testing of an electrochemical methane sensor

    DOE PAGES

    Sekhar, Praveen K.; Kysar, Jesse; Brosha, Eric Lanich; ...

    2016-01-12

    In this article, the development of an electrochemical methane sensor is presented. The mixed potential based sensor is based on tin doped indium oxide (ITO) and platinum electrodes and yttria-stabilized zirconia (YSZ) electrolyte. The sensor was fabricated using the inexpensive tape-cast method. The sensor responded to methane with a response time of 15 s. The staircase response to methane indicated a 44 mV sensor response to 100 ppm of methane. The sensor response indicated a log-linear relationship with the methane concentration. Upon 500 h of sensor testing, a 5% reduction in methane sensitivity was observed. The cross-sensitivity study on themore » sensor indicated minimal interference to NO, NO 2, and CO 2. To improve the sensitivity to methane, a signal conditioning method referred to as the pulsed discharge technique (PDT) was applied. Finally, a fourfold increase in methane sensitivity was observed when the sensor was subjected to PDT. Future studies include the miniaturization of the sensor with integrated heater design.« less

  17. Activatable thermo-sensitive ICG encapsulated pluronic nanocapsules for temperature sensitive fluorescence tomography

    NASA Astrophysics Data System (ADS)

    Kwong, Tiffany C.; Nouizi, Farouk; Sampathkumaran, Uma; Zhu, Yue; Alam, Maksudul M.; Gulsen, Gultekin

    2015-03-01

    Fluorescent tomography has been hindered by poor tissue penetration and weak signal which results in poor spatial resolution and quantification accuracy. Recently, it has been reported that activatable temperature responsive fluorescent probes which respond to focused ultrasound heating can improve the resolution and quantification of fluorescent tomography in deep tissue. This has lead to a new imaging modality, "Temperature-modulated fluorescent tomography." This technique relies on activatable thermo-sensitive fluorescent nanocapsules for whose fluorescence quantum efficiency is temperature dependent. Within a 4-5° C temperature range, the fluorescent signal increase more than 10-fold. In this molecular probe, Indocyanine Green (ICG) is encapsulated inside the core of a thermo-reversible pluronic micelle. Here we show the fluorescence response and temperature range of the nanocapsules which have been optimized for a higher temperature range to be used for in vivo animal imaging. We report on the feasibility of these temperature-sensitive reversible nanocapsules for in vivo applications by studying the pharmacokinetics in a subcutaneous mouse tumor model in vivo.

  18. Development and testing of an electrochemical methane sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sekhar, Praveen K.; Kysar, Jesse; Brosha, Eric Lanich

    In this article, the development of an electrochemical methane sensor is presented. The mixed potential based sensor is based on tin doped indium oxide (ITO) and platinum electrodes and yttria-stabilized zirconia (YSZ) electrolyte. The sensor was fabricated using the inexpensive tape-cast method. The sensor responded to methane with a response time of 15 s. The staircase response to methane indicated a 44 mV sensor response to 100 ppm of methane. The sensor response indicated a log-linear relationship with the methane concentration. Upon 500 h of sensor testing, a 5% reduction in methane sensitivity was observed. The cross-sensitivity study on themore » sensor indicated minimal interference to NO, NO 2, and CO 2. To improve the sensitivity to methane, a signal conditioning method referred to as the pulsed discharge technique (PDT) was applied. Finally, a fourfold increase in methane sensitivity was observed when the sensor was subjected to PDT. Future studies include the miniaturization of the sensor with integrated heater design.« less

  19. Recombinant antibodies and their use in biosensors.

    PubMed

    Zeng, Xiangqun; Shen, Zhihong; Mernaugh, Ray

    2012-04-01

    Inexpensive, noninvasive immunoassays can be used to quickly detect disease in humans. Immunoassay sensitivity and specificity are decidedly dependent upon high-affinity, antigen-specific antibodies. Antibodies are produced biologically. As such, antibody quality and suitability for use in immunoassays cannot be readily determined or controlled by human intervention. However, the process through which high-quality antibodies can be obtained has been shortened and streamlined by use of genetic engineering and recombinant antibody techniques. Antibodies that traditionally take several months or more to produce when animals are used can now be developed in a few weeks as recombinant antibodies produced in bacteria, yeast, or other cell types. Typically most immunoassays use two or more antibodies or antibody fragments to detect antigens that are indicators of disease. However, a label-free biosensor, for example, a quartz-crystal microbalance (QCM) needs one antibody only. As such, the cost and time needed to design and develop an immunoassay can be substantially reduced if recombinant antibodies and biosensors are used rather than traditional antibody and assay (e.g. enzyme-linked immunosorbant assay, ELISA) methods. Unlike traditional antibodies, recombinant antibodies can be genetically engineered to self-assemble on biosensor surfaces, at high density, and correctly oriented to enhance antigen-binding activity and to increase assay sensitivity, specificity, and stability. Additionally, biosensor surface chemistry and physical and electronic properties can be modified to further increase immunoassay performance above and beyond that obtained by use of traditional methods. This review describes some of the techniques investigators have used to develop highly specific and sensitive, recombinant antibody-based biosensors for detection of antigens in simple or complex biological samples.

  20. Resonant fiber optic gyro based on a sinusoidal wave modulation and square wave demodulation technique.

    PubMed

    Wang, Linglan; Yan, Yuchao; Ma, Huilian; Jin, Zhonghe

    2016-04-20

    New developments are made in the resonant fiber optic gyro (RFOG), which is an optical sensor for the measurement of rotation rate. The digital signal processing system based on the phase modulation technique is capable of detecting the weak frequency difference induced by the Sagnac effect and suppressing the reciprocal noise in the circuit, which determines the detection sensitivity of the RFOG. A new technique based on the sinusoidal wave modulation and square wave demodulation is implemented, and the demodulation curve of the system is simulated and measured. Compared with the past technique using sinusoidal modulation and demodulation, it increases the slope of the demodulation curve by a factor of 1.56, improves the spectrum efficiency of the modulated signal, and reduces the occupancy of the field-programmable gate array resource. On the basis of this new phase modulation technique, the loop is successfully locked and achieves a short-term bias stability of 1.08°/h, which is improved by a factor of 1.47.

  1. [Female genital surgery, G-spot amplification techniques--state of the science].

    PubMed

    Bachelet, J-T; Mojallal, A; Boucher, F

    2014-10-01

    The G-spot amplification is a process of "functional" intimate surgery consisting of a temporary physical increase of the size and sensitivity of the G-spot with a filler injected into the septum between the bladder and the vagina's anterior wall, in order to increase the frequency and importance of female orgasm during vaginal penetration. This surgical technique is based on the existence of an eponymous anatomical area described by Dr Gräfenberg in 1950, responsible upon stimulation of systematic orgasm different from the clitoral orgasm, referring to the vaginal orgasm as described by Freud in 1905. The purpose of this article is to review the scientific basis of the G-spot, whose very existence is currently a debated topic, and to discuss the role of G-spot amplification surgery. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  2. Characterization of emission microscopy and liquid crystal thermography in IC fault localization

    NASA Astrophysics Data System (ADS)

    Lau, C. K.; Sim, K. S.

    2013-05-01

    This paper characterizes two fault localization techniques - Emission Microscopy (EMMI) and Liquid Crystal Thermography (LCT) by using integrated circuit (IC) leakage failures. The majority of today's semiconductor failures do not reveal a clear visual defect on the die surface and therefore require fault localization tools to identify the fault location. Among the various fault localization tools, liquid crystal thermography and frontside emission microscopy are commonly used in most semiconductor failure analysis laboratories. Many people misunderstand that both techniques are the same and both are detecting hot spot in chip failing with short or leakage. As a result, analysts tend to use only LCT since this technique involves very simple test setup compared to EMMI. The omission of EMMI as the alternative technique in fault localization always leads to incomplete analysis when LCT fails to localize any hot spot on a failing chip. Therefore, this research was established to characterize and compare both the techniques in terms of their sensitivity in detecting the fault location in common semiconductor failures. A new method was also proposed as an alternative technique i.e. the backside LCT technique. The research observed that both techniques have successfully detected the defect locations resulted from the leakage failures. LCT wass observed more sensitive than EMMI in the frontside analysis approach. On the other hand, EMMI performed better in the backside analysis approach. LCT was more sensitive in localizing ESD defect location and EMMI was more sensitive in detecting non ESD defect location. Backside LCT was proven to work as effectively as the frontside LCT and was ready to serve as an alternative technique to the backside EMMI. The research confirmed that LCT detects heat generation and EMMI detects photon emission (recombination radiation). The analysis results also suggested that both techniques complementing each other in the IC fault localization. It is necessary for a failure analyst to use both techniques when one of the techniques produces no result.

  3. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science

    NASA Astrophysics Data System (ADS)

    Fikiet, Marisia A.; Khandasammy, Shelby R.; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K.

    2018-05-01

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics.

  4. Parametric amplification in a resonant sensing array

    NASA Astrophysics Data System (ADS)

    Yie, Zi; Miller, Nicholas J.; Shaw, Steven W.; Turner, Kimberly L.

    2012-03-01

    We demonstrate parametric amplification of a multidegree of freedom resonant mass sensing array via an applied base motion containing the appropriate frequency content and phases. Applying parametric forcing in this manner is simple and aligns naturally with the vibrational properties of the sensing structure. Using this technique, we observe an increase in the quality factors of the coupled array resonances, which provides an effective means of improving device sensitivity.

  5. Translations on Eastern Europe, Scientific Affairs, No. 562

    DTIC Science & Technology

    1977-10-28

    remodeling and mod- ernization of the institute’s facilities resulted in an increase in the reactor’s neutron flux and power output capacity and...research technique involving the use of the experimental reactor is neutron activation analysis. Using this method it is possible to produce...artificial radioactivity through the bombardment of non-active substances with neutrons . This is one of the most sensitive methods of chemical analysis

  6. Remote detection of electronic devices

    DOEpatents

    Judd, Stephen L [Los Alamos, NM; Fortgang, Clifford M [Los Alamos, NM; Guenther, David C [Los Alamos, NM

    2012-09-25

    An apparatus and method for detecting solid-state electronic devices are described. Non-linear junction detection techniques are combined with spread-spectrum encoding and cross correlation to increase the range and sensitivity of the non-linear junction detection and to permit the determination of the distances of the detected electronics. Nonlinear elements are detected by transmitting a signal at a chosen frequency and detecting higher harmonic signals that are returned from responding devices.

  7. Impacts of Sampling and Handling Procedures on DNA- and RNA-based Microbial Characterization and Quantification of Groundwater and Saturated Soil

    DTIC Science & Technology

    2012-07-01

    use of molecular biological techniques (MBTs) has allowed microbial ecologists and environmental engineers to determine microbial community...metabolic genes). The most common approaches used in bioremediation research are those based on the polymerase chain reaction (PCR) amplification of... bioremediation . Because of its sensitivity compared to direct hybridization/probing, PCR is increasingly used to analyze groundwater samples and soil samples

  8. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase.

    PubMed

    Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N; Stearns, Richard; Vlahos, Harry; Ellson, Richard; Sweet, Robert M; Soares, Alexei S

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals. © 2015 Society for Laboratory Automation and Screening.

  9. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ericson, Daniel L.; Yin, Xingyu; Scalia, Alexander

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were usedmore » to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals.« less

  10. Method for improving the angular resolution of a neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  11. Aging of Non-Visual Spectral Sensitivity to Light in Humans: Compensatory Mechanisms?

    PubMed Central

    Najjar, Raymond P.; Chiquet, Christophe; Teikari, Petteri; Cornut, Pierre-Loïc; Claustrat, Bruno; Denis, Philippe; Gronfier, Claude

    2014-01-01

    The deterioration of sleep in the older population is a prevalent feature that contributes to a decrease in quality of life. Inappropriate entrainment of the circadian clock by light is considered to contribute to the alteration of sleep structure and circadian rhythms in the elderly. The present study investigates the effects of aging on non-visual spectral sensitivity to light and tests the hypothesis that circadian disturbances are related to a decreased light transmittance. In a within-subject design, eight aged and five young subjects were exposed at night to 60 minute monochromatic light stimulations at 9 different wavelengths (420–620 nm). Individual sensitivity spectra were derived from measures of melatonin suppression. Lens density was assessed using a validated psychophysical technique. Although lens transmittance was decreased for short wavelength light in the older participants, melatonin suppression was not reduced. Peak of non-visual sensitivity was, however, shifted to longer wavelengths in the aged participants (494 nm) compared to young (484 nm). Our results indicate that increased lens filtering does not necessarily lead to a decreased non-visual sensitivity to light. The lack of age-related decrease in non-visual sensitivity to light may involve as yet undefined adaptive mechanisms. PMID:24465738

  12. Anxiety Sensitivity and Nicotine Replacement Therapy Side Effects: Examining the Role of Emotion Dysregulation Among Treatment-Seeking Smokers.

    PubMed

    Zvolensky, Michael J; Paulus, Daniel J; Garey, Lorra; Raines, Amanda M; Businelle, Michael; Shankman, Stewart A; Manning, Kara; Goodwin, Renee D; Schmidt, Norman B

    2017-11-01

    Nicotine replacement therapy (NRT) significantly increases the likelihood of quit success at least over the short term, yet some smokers prematurely discontinue use. NRT side effects are often cited as the primary reason for medication discontinuation. The current study examined a theoretical pathway by which two smoking-related emotional vulnerabilities (anxiety sensitivity and emotion dysregulation) were related to the number of NRT (nicotine patch) side effects reported 1 week following a scheduled quit attempt. It was hypothesized that anxiety sensitivity would have an indirect effect on NRT side effects through emotion dysregulation. A total of 179 treatment-seeking, adult daily smokers with elevated anxiety sensitivity (47.5% male; M age = 39.73 years, SD = 13.87) were enrolled in a smoking cessation trial. Covariate-adjusted analyses provided support for the hypothesized pathway, such that emotion dysregulation explained the association between anxiety sensitivity and NRT side effects (b = 0.02, SE = 0.01, 95% CI [0.002, 0.03]; completely standardized estimate = .15). The findings underscore the importance of developing cessation treatments that incorporate techniques to enhance emotion regulation, particularly among smokers higher in anxiety sensitivity, to decrease the risk of NRT side effects.

  13. Cultural sensitivity in public health: defined and demystified.

    PubMed

    Resnicow, K; Baranowski, T; Ahluwalia, J S; Braithwaite, R L

    1999-01-01

    There is consensus that health promotion programs should be culturally sensitive (CS). Yet, despite the ubiquitous nature of CS within public health research and practice, there has been surprisingly little attention given to defining CS or delineating a framework for developing culturally sensitive programs and practitioners. This paper describes a model for understanding CS from a public health perspective; describes a process for applying this model in the development of health promotion and disease prevention interventions; and highlights research priorities. Cultural sensitivity is defined by two dimensions: surface and deep structures. Surface structure involves matching intervention materials and messages to observable, "superficial" characteristics of a target population. This may involve using people, places, language, music, food, locations, and clothing familiar to, and preferred by, the target audience. Surface structure refers to how well interventions fit within a specific culture. Deep structure involves incorporating the cultural, social, historical, environmental and psychological forces that influence the target health behavior in the proposed target population. Whereas surface structure generally increases the "receptivity" or "acceptance" of messages, deep structure conveys salience. Techniques, borrowed from social marketing and health communication theory, for developing culturally sensitive interventions are described. Research is needed to determine the effectiveness of culturally sensitive programs.

  14. [Improvement of effectivity of photo disinfection of water from bacterial contaminants in the presence of heterogeneous sensitizers based on phthalocyanines grafted to aminopropyl silicagel].

    PubMed

    Maksimkina, T N; Artemova, T Z; Kuznetsova, N A; Sinitsyna, O O; Gipp, E K; Zagaĭnova, A V; Butorina, N N; Iuzhakova, O A; Krasniak, A V

    2012-01-01

    The possibility of using 12 heterogeneous sensitizers (HS) based on phthalocyanines covalently grafted to aminopropyl silicagel for disinfection of water from bacteria has been studied. For reliable water quality control the technique of performing bacteriological analysis in the presence of HS beads in the sample has been elaborated. The conditions increasing the efficiency of photo disinfection in the presence of HS were studied. Algorithm for estimation of photo disinfectant effect of HS against bacteria was substantiated. Obtained data confirm the perspective of further studies on the substantiation of the possibility of the application of HS for water disinfection.

  15. Construction of the prototype of an optical system for measurement of small wavefront distortion of laser radiation in optical elements: proposal for the ISTC project

    NASA Astrophysics Data System (ADS)

    Potemkin, A.; Malshakov, Anatoly; Makarov, Alexandr; Krotov, V. A.; Kulikov, Stanislav M.; Sukharev, Stanislav A.

    1999-07-01

    Technique testing of quality the transparent component of optical devices with application of self-focusing effect is offered. In measurement of small wavefront distortions a method of comparison of laser beam parameters before and after passage of a tested optical element is used. With the purpose of increase of sensitivity it is offered for overcoming negative diffraction action to use self-focusing effect of probe beam. Application of self-focusing effect allows to reach sensitivity no less than (lambda) /600 and in future up to (lambda) /3000. On simple samples experimental checks of a method are made.

  16. Mechanical and Electronic Approaches to Improve the Sensitivity of Microcantilever Sensors

    PubMed Central

    Mutyala, Madhu Santosh Ku; Bandhanadham, Deepika; Pan, Liu; Pendyala, Vijaya Rohini; Ji, Hai-Feng

    2010-01-01

    Advances in the field of Micro Electro Mechanical Systems (MEMS) and their uses now offer unique opportunities in the design of ultrasensitive analytical tools. The analytical community continues to search for cost-effective, reliable, and even portable analytical techniques that can give reliable and fast response results for a variety of chemicals and biomolecules. Microcantilevers (MCLs) have emerged as a unique platform for label-free biosensor or bioassay. Several electronic designs, including piezoresistive, piezoelectric, and capacitive approaches, have been applied to measure the bending or frequency change of the MCLs upon exposure to chemicals. This review summarizes mechanical, fabrication, and electronics approaches to increase the sensitivity of microcantilever (MCL) sensors. PMID:20975987

  17. Highly sensitive detection of human papillomavirus type 16 DNA using time-resolved fluorescence microscopy and long lifetime probes

    NASA Astrophysics Data System (ADS)

    Wang, Xue F.; Periasamy, Ammasi; Wodnicki, Pawel; Siadat-Pajouh, M.; Herman, Brian

    1995-04-01

    We have been interested in the role of Human Papillomavirus (HPV) in cervical cancer and its diagnosis; to that end we have been developing microscopic imaging and fluorescent in situ hybridization (FISH) techniques to genotype and quantitate the amount of HPV present at a single cell level in cervical PAP smears. However, we have found that low levels of HPV DNA are difficult to detect accurately because theoretically obtainable sensitivity is never achieved due to nonspecific autofluorescence, fixative induced fluorescence of cells and tissues, and autofluorescence of the optical components in the microscopic system. In addition, the absorption stains used for PAP smears are intensely autofluorescent. Autofluorescence is a rapidly decaying process with lifetimes in the range of 1-100 nsec, whereas phosphorescence and delayed fluorescence have lifetimes in the range of 1 microsecond(s) ec-10 msec. The ability to discriminate between specific fluorescence and autofluorescence in the time-domain has improved the sensitivity of diagnostic test such that they perform comparably to, or even more sensitive than radioisotopic assays. We have developed a novel time-resolved fluorescence microscope to improve the sensitivity of detection of specific molecules of interest in slide based specimens. This time-resolved fluorescence microscope is based on our recently developed fluorescence lifetime imaging microscopy (FILM) in conjunction with the use of long lifetime fluorescent labels. By using fluorescence in situ hybridization and the long lifetime probe (europium), we have demonstrated the utility of this technique for detection of HPV DNA in cervicovaginal cells. Our results indicate that the use of time-resolved fluorescence microscopy and long lifetime probes increases the sensitivity of detection by removing autofluorescence and will thus lead to improved early diagnosis of cervical cancer. Since the highly sensitive detection of DNA in clinical samples using fluorescence in situ hybridization image is useful for the diagnosis of many other type of diseases, the system we have developed should find numerous applications for the diagnosis of disease states.

  18. Radiation microscope for SEE testing using GeV ions.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doyle, Barney Lee; Knapp, James Arthur; Rossi, Paolo

    2009-09-01

    Radiation Effects Microscopy is an extremely useful technique in failure analysis of electronic parts used in radiation environment. It also provides much needed support for development of radiation hard components used in spacecraft and nuclear weapons. As the IC manufacturing technology progresses, more and more overlayers are used; therefore, the sensitive region of the part is getting farther and farther from the surface. The thickness of these overlayers is so large today that the traditional microbeams, which are used for REM are unable to reach the sensitive regions. As a result, higher ion beam energies have to be used (>more » GeV), which are available only at cyclotrons. Since it is extremely complicated to focus these GeV ion beams, a new method has to be developed to perform REM at cyclotrons. We developed a new technique, Ion Photon Emission Microscopy, where instead of focusing the ion beam we use secondary photons emitted from a fluorescence layer on top of the devices being tested to determine the position of the ion hit. By recording this position information in coincidence with an SEE signal we will be able to indentify radiation sensitive regions of modern electronic parts, which will increase the efficiency of radiation hard circuits.« less

  19. Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells.

    PubMed

    Vega-Poot, Alberto G; Macías-Montero, Manuel; Idígoras, Jesus; Borrás, Ana; Barranco, Angel; Gonzalez-Elipe, Agustín R; Lizama-Tzec, Francisco I; Oskam, Gerko; Anta, Juan A

    2014-04-14

    ZnO is an attractive material for applications in dye-sensitized solar cells and related devices. This material has excellent electron-transport properties in the bulk but its electron diffusion coefficient is much smaller in mesoporous films. In this work the electron-transport properties of two different kinds of dye-sensitized ZnO nanostructures are investigated by small-perturbation electrochemical techniques. For nanoparticulate ZnO photoanodes prepared via a wet-chemistry technique, the diffusion coefficient is found to reproduce the typical behavior predicted by the multiple-trapping and the hopping models, with an exponential increase with respect to the applied bias. In contrast, in ZnO nanostructured thin films of controlled texture and crystallinity prepared via a plasma chemical vapor deposition method, the diffusion coefficient is found to be independent of the electrochemical bias. This observation suggests a different transport mechanism not controlled by trapping and electron accumulation. In spite of the quite different transport features, the recombination kinetics, the electron-collection efficiency and the photoconversion efficiency are very similar for both kinds of photoanodes, an observation that indicates that surface properties rather than electron transport is the main efficiency-determining factor in solar cells based on ZnO nanostructured photoanodes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Determination of fluorine concentrations using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry to analyze fluoride precipitates.

    NASA Astrophysics Data System (ADS)

    Lee, H. A.; Lee, J.; Kwon, E.; Kim, D.; Yoon, H. O.

    2015-12-01

    In recent times, fluorine has been receiving increasing attention due to the possibility for chemical (HF) leakage accidents and its high toxicity to human and environment. In this respect, a novel approach for the determination of fluorine concentrations in water samples using wavelength dispersive X-ray fluorescence (WDXRF) spectrometry was investigated in this study. The main disadvantage of WDXRF technique for fluorine analysis is low analytical sensitivity for light elements with atomic number (Z) less than 15. To overcome this problem, we employed the precipitation reaction which fluoride is reacted with cation such as Al3+ and/or Ca2+ prior to WDXRF analysis because of their high analytical sensitivity. The cation was added in fluoride solutions to form precipitate (AlF3 and/or CaF2) and then the solution was filtered through Whatman filter. After drying at 60 °C for 5 min, the filter was coated with X-ray film and directly analyzed using WDXRF spectrometry. Consequently, we analyzed the cation on filter and subsequently fluorine concentration was calculated inversely based on chemical form of precipitate. This method can improve the analytical sensitivity of WDXRF technique for fluorine analysis and be applicable to various elements that can make precipitate.

  1. Parallel magnetic resonance imaging using coils with localized sensitivities.

    PubMed

    Goldfarb, James W; Holland, Agnes E

    2004-09-01

    The purpose of this study was to present clinical examples and illustrate the inefficiencies of a conventional reconstruction using a commercially available phased array coil with localized sensitivities. Five patients were imaged at 1.5 T using a cardiac-synchronized gadolinium-enhanced acquisition and a commercially available four-element phased array coil. Four unique sets of images were reconstructed from the acquired k-space data: (a) sum-of-squares image using four elements of the coil; localized sum-of-squares images from the (b) anterior coils and (c) posterior coils and a (c) local reconstruction. Images were analyzed for artifacts and usable field-of-view. Conventional image reconstruction produced images with fold-over artifacts in all cases spanning a portion of the image (mean 90 mm; range 36-126 mm). The local reconstruction removed fold-over artifacts and resulted in an effective increase in the field-of-view (mean 50%; range 20-70%). Commercially available phased array coils do not always have overlapping sensitivities. Fold-over artifacts can be removed using an alternate reconstruction method. When assessing the advantages of parallel imaging techniques, gains achieved using techniques such as SENSE and SMASH should be gauged against the acquisition time of the localized method rather than the conventional sum-of-squares method.

  2. Dual-hologram shearing interference technique with regulated sensitivity

    NASA Astrophysics Data System (ADS)

    Toker, Gregory R.; Levin, Daniel

    1998-06-01

    A novel optical diagnostic technique,namely, a dual hologram shearing interferometry with regulated sensitivity, is proposed for visualization and measuring the density gradients of compressible flows in wind tunnels. It has advantages over conventional shearing interferometry in both accuracy and sensitivity. The method is especially useful for strong turbulent or unsteady regions of the flows including shock flows. The interferometer proved to be insensitive to mechanical vibrations and allowed to record holograms during the noisy wind tunnel run. The proposed approach was demonstrated by its application to a supersonic flow over spherically blunted and sharp nose cone/cylinder models. It is believed that the technique will become an effective tool for receiving optical data in many flow facilities.

  3. Source localization of brain activity using helium-free interferometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dammers, Jürgen, E-mail: J.Dammers@fz-juelich.de; Chocholacs, Harald; Eich, Eberhard

    2014-05-26

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localizationmore » of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.« less

  4. A refined electrofishing technique for collecting Silver Carp: Implications for management

    USGS Publications Warehouse

    Bouska, Wesley W.; Glover, David C.; Bouska, Kristen; Garvey, James E.

    2017-01-01

    Detecting nuisance species at low abundance or in newly established areas is critical to developing pest management strategies. Due to their sensitivity to disturbance and erratic jumping behavior, Silver Carp Hypophthalmichthys molitrix can be difficult to collect with traditional sampling methods. We compared catch per unit effort (CPUE) of all species from a Long Term Resource Monitoring (LTRM) electrofishing protocol to an experimental electrofishing technique designed to minimize Silver Carp evasion through tactical boat maneuvering and selective application of power. Differences in CPUE between electrofishing methods were detected for 2 of 41 species collected across 2 years of sampling at 20 sites along the Illinois River. The mean catch rate of Silver Carp using the experimental technique was 2.2 times the mean catch rate of the LTRM electrofishing technique; the increased capture efficiency at low relative abundance emphasizes the utility of this method for early detection. The experimental electrofishing also collected slightly larger Silver Carp (mean: 510.7 mm TL versus 495.2 mm TL), and nearly four times as many Silver Carp independently jumped into the boat during experimental transects. Novel sampling approaches, such as the experimental electrofishing technique used in this study, should be considered to increase probability of detection for aquatic nuisance species.

  5. Evaluation of Polymerase Chain Reaction (PCR) with Slit Skin Smear Examination (SSS) to Confirm Clinical Diagnosis of Leprosy in Eastern Nepal

    PubMed Central

    Rai, Keshav; Bhattarai, Narayan Raj; Agarwal, Sudha; Khanal, Basudha

    2016-01-01

    Background Detection of Mycobacterium leprae in slit skin smear (SSS) is a gold standard technique for the leprosy diagnosis. Over recent years, molecular diagnosis by using PCR has been increasingly used as an alternative for its diagnosis due to its higher sensitivity. This study was carried out for comparative evaluation of PCR and SSS microscopy in a cohort of new leprosy cases diagnosed in B. P. Koirala Institute of health Sciences, Dharan, Nepal. Methodology/Principal Findings In this prospective crossectional study, 50 new clinically diagnosed cases of leprosy were included. DNA was extracted from SSS and PCR was carried out to amplify 129 bp sequence of M. leprae repetitive element. Sensitivity of SSS and PCR was 18% and 72% respectively. Improvement of 54% case detection by PCR clearly showed its advantage over SSS. Furthermore, PCR could confirm the leprosy diagnosis in 66% of AFB negative cases indicating its superiority over SSS. In the paucibacillary (PB) patients, whose BI was zero; sensitivity of PCR was 44%, whereas it was 78% in the multibacillary patients. Conclusions/Significance Our study showed PCR to be more sensitive than SSS microscopy in diagnosing leprosy. Moreover, it explored the characteristic feature of PCR which detected higher level of early stage(PB) cases tested negative by SSS. Being an expensive technique, PCR may not be feasible in all the cases, however, it would be useful in diagnosis of early cases of leprosy as opposed to SSS. PMID:28027305

  6. Evaluation of Polymerase Chain Reaction (PCR) with Slit Skin Smear Examination (SSS) to Confirm Clinical Diagnosis of Leprosy in Eastern Nepal.

    PubMed

    Siwakoti, Shraddha; Rai, Keshav; Bhattarai, Narayan Raj; Agarwal, Sudha; Khanal, Basudha

    2016-12-01

    Detection of Mycobacterium leprae in slit skin smear (SSS) is a gold standard technique for the leprosy diagnosis. Over recent years, molecular diagnosis by using PCR has been increasingly used as an alternative for its diagnosis due to its higher sensitivity. This study was carried out for comparative evaluation of PCR and SSS microscopy in a cohort of new leprosy cases diagnosed in B. P. Koirala Institute of health Sciences, Dharan, Nepal. In this prospective crossectional study, 50 new clinically diagnosed cases of leprosy were included. DNA was extracted from SSS and PCR was carried out to amplify 129 bp sequence of M. leprae repetitive element. Sensitivity of SSS and PCR was 18% and 72% respectively. Improvement of 54% case detection by PCR clearly showed its advantage over SSS. Furthermore, PCR could confirm the leprosy diagnosis in 66% of AFB negative cases indicating its superiority over SSS. In the paucibacillary (PB) patients, whose BI was zero; sensitivity of PCR was 44%, whereas it was 78% in the multibacillary patients. Our study showed PCR to be more sensitive than SSS microscopy in diagnosing leprosy. Moreover, it explored the characteristic feature of PCR which detected higher level of early stage(PB) cases tested negative by SSS. Being an expensive technique, PCR may not be feasible in all the cases, however, it would be useful in diagnosis of early cases of leprosy as opposed to SSS.

  7. Nanophotonics of biomaterials and inorganic nanostructures

    NASA Astrophysics Data System (ADS)

    Petrik, P.; Agocs, E.; Kalas, B.; Fodor, B.; Lohner, T.; Nador, J.; Saftics, A.; Kurunczi, S.; Novotny, T.; Perez-Feró, E.; Nagy, R.; Hamori, A.; Horvath, R.; Hózer, Z.; Fried, M.

    2017-01-01

    Optical methods have been used for the sensitive characterization of surfaces and thin films for more than a century. The first ellipsometric measurement was conducted on metal surfaces by Paul Drude in 1889. The word ‘ellipsometer’ was first used by Rothen in a study of antigen-antibody interactions on polished metal surfaces in 1945. The ‘bible’ of ellipsometry has been published in the second half of the ‘70s. The publications in the topic of ellipsometry started to increase rapidly by the end of the ‘80s, together with concepts like surface plasmon resonance, later new topics like photonic crystals emerged. These techniques find applications in many fields, including sensorics or photovoltaics. In optical sensorics, the highest sensitivities were achieved by waveguide interferometry and plasmon resonance configurations. The instrumentation of ellipsometry is also being developed intensively towards higher sensitivity and performance by combinations with plasmonics, scatterometry, imaging or waveguide methods, utilizing the high sensitivity, high speed, non-destructive nature and mapping capabilities. Not only the instrumentation but also the methods of evaluation show a significant development, which leads to the characterization of structures with increasing complexity, including photonic, porous or metal surfaces. This article discusses a selection of interesting applications of photonics in the Centre for Energy Research of the Hungarian Academy of Sciences.

  8. Immobilization techniques to avoid enzyme loss from oxidase-based biosensors: a one-year study.

    PubMed

    House, Jody L; Anderson, Ellen M; Ward, W Kenneth

    2007-01-01

    Continuous amperometric sensors that measure glucose or lactate require a stable sensitivity, and glutaraldehyde crosslinking has been used widely to avoid enzyme loss. Nonetheless, little data is published on the effectiveness of enzyme immobilization with glutaraldehyde. A combination of electrochemical testing and spectrophotometric assays was used to study the relationship between enzyme shedding and the fabrication procedure. In addition, we studied the relationship between the glutaraldehyde concentration and sensor performance over a period of one year. The enzyme immobilization process by glutaraldehyde crosslinking to glucose oxidase appears to require at least 24-hours at room temperature to reach completion. In addition, excess free glucose oxidase can be removed by soaking sensors in purified water for 20 minutes. Even with the addition of these steps, however, it appears that there is some free glucose oxidase entrapped within the enzyme layer which contributes to a decline in sensitivity over time. Although it reduces the ultimate sensitivity (probably via a change in the enzyme's natural conformation), glutaraldehyde concentration in the enzyme layer can be increased in order to minimize this instability. After exposure of oxidase enzymes to glutaraldehyde, effective crosslinking requires a rinse step and a 24-hour incubation step. In order to minimize the loss of sensor sensitivity over time, the glutaraldehyde concentration can be increased.

  9. Rapid determination of surfactant critical micelle concentration in aqueous solutions using fiber-optic refractive index sensing.

    PubMed

    Tan, Chun Hua; Huang, Zhen Jian; Huang, Xu Guang

    2010-06-01

    We describe a simple and rapid method for determining the critical micelle concentration (CMC) of surfactants from fiber-optic measurements of refractive index. The refractive index of an aqueous surfactant solution was monitored as the surfactant concentration was increased using an automated dispensing system. On reaching the surfactant's CMC value, an abrupt change was observed in the rate of increase of the refractive index with increasing concentration. The measurement system provides rapid semiautomatic data collection and analysis, increasing the precision, sensitivity, and range of applicability of the technique while substantially decreasing the amount of manual intervention required. Measurements of CMC for sodium dodecyl sulfate (8.10mM), cetyltrimethylammonium chloride (1.58mM), and Triton X-100 (0.21mM) were in excellent agreement with values previously reported in the literature. The method is applicable to cationic, anionic, and nonionic surfactants, and it offers a facile, in situ, and sensitive means of detecting micelle formation over a broad range of CMC values larger than 10(-1)mM. Copyright 2010 Elsevier Inc. All rights reserved.

  10. The art of spacecraft design: A multidisciplinary challenge

    NASA Technical Reports Server (NTRS)

    Abdi, F.; Ide, H.; Levine, M.; Austel, L.

    1989-01-01

    Actual design turn-around time has become shorter due to the use of optimization techniques which have been introduced into the design process. It seems that what, how and when to use these optimization techniques may be the key factor for future aircraft engineering operations. Another important aspect of this technique is that complex physical phenomena can be modeled by a simple mathematical equation. The new powerful multilevel methodology reduces time-consuming analysis significantly while maintaining the coupling effects. This simultaneous analysis method stems from the implicit function theorem and system sensitivity derivatives of input variables. Use of the Taylor's series expansion and finite differencing technique for sensitivity derivatives in each discipline makes this approach unique for screening dominant variables from nondominant variables. In this study, the current Computational Fluid Dynamics (CFD) aerodynamic and sensitivity derivative/optimization techniques are applied for a simple cone-type forebody of a high-speed vehicle configuration to understand basic aerodynamic/structure interaction in a hypersonic flight condition.

  11. Sensitive Technique For Detecting Alignment Of Seed Laser

    NASA Technical Reports Server (NTRS)

    Barnes, Norman P.

    1994-01-01

    Frequency response near resonance measured. Improved technique for detection and quantification of alignment of injection-seeding laser with associated power-oscillator laser proposed. Particularly useful in indicating alignment at spectral purity greater than 98 percent because it becomes more sensitive as perfect alignment approached. In addition, implemented relatively easily, without turning on power-oscillator laser.

  12. Geochemistry of biomolecules

    NASA Technical Reports Server (NTRS)

    Bonner, J.

    1976-01-01

    A highly sensitive fluorometric technique is developed for the determination of biological and geo-organic compounds in ancient sediments and extraterrestrial samples. This technique is used to establish chemical evidence for fossil pigments in an extraterrestrial sample. Also developed is a highly sensitive and specific fluorometric method for the determination of total primary amine nitrogen in soil samples.

  13. Spectral domain phase microscopy: a new tool for measuring cellular dynamics and cytoplasmic flow

    NASA Astrophysics Data System (ADS)

    McDowell, Emily J.; Choma, Michael A.; Ellerbee, Audrey K.; Izatt, Joseph A.

    2005-03-01

    Broadband interferometry is an attractive technique for the detection of cellular motions because it provides depth-resolved interferometric phase information via coherence gating. Here a phase sensitive technique called spectral domain phase microscopy (SDPM) is presented. SDPM is a functional extension of spectral domain optical coherence tomography that allows for the detection of cellular motions and dynamics with nanometer-scale sensitivity. This sensitivity is made possible by the inherent phase stability of spectral domain OCT combined with common-path interferometry. The theory that underlies this technique is presented, the sensitivity of the technique is demonstrated by the measurement of the thermal expansion coefficient of borosilicate glass, and the response of an Amoeba proteus to puncture of its cell membrane is measured. We also exploit the phase stability of SDPM to perform Doppler flow imaging of cytoplasmic streaming in A. proteus. We show reversal of cytoplasmic flow in response to stimuli, and we show that the cytoplasmic flow is laminar (i.e. parabolic) in nature. We are currently investigating the use of SDPM in a variety of different cell types.

  14. Cost minimization analysis for combinations of sampling techniques in bronchoscopy of endobronchial lesions.

    PubMed

    Roth, Kjetil; Hardie, Jon Andrew; Andreassen, Alf Henrik; Leh, Friedemann; Eagan, Tomas Mikal Lind

    2009-06-01

    The choice of sampling techniques in bronchoscopy with sampling from a visible lesion will depend on the expected diagnostic yields and the costs of the sampling techniques. The aim of this study was to determine the most economical combination of sampling techniques when approaching endobronchial visible lesions. A cost minimization analysis was performed. All bronchoscopies from 2003 and 2004 at Haukeland university hospital, Bergen, Norway, were reviewed retrospectively for diagnostic yields. 162 patients with endobronchial disease were included. Potential sampling techniques used were biopsy, brushing, endobronchial needle aspiration (EBNA) and washings. Costs were estimated based on registration of equipment costs and personnel costs. Sensitivity analyses were performed to determine threshold values. The combination of biopsy, brushing and EBNA was the most economical strategy with an average cost of Euro 893 (95% CI: 657, 1336). The cost of brushing had to be below Euro 83 and it had to increase the diagnostic yield more than 2.2%, for biopsy and brushing to be more economical than biopsy alone. The combination of biopsy, brushing and EBNA was more economical than biopsy and brushing when the cost of EBNA was below Euro 205 and the increase in diagnostic yield was above 5.2%. In the current study setting, biopsy, brushing and EBNA was the most economical combination of sampling techniques for endobronchial visible lesions.

  15. Control of stochastic sensitivity in a stabilization problem for gas discharge system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashkirtseva, Irina

    2015-11-30

    We consider a nonlinear dynamic stochastic system with control. A problem of stochastic sensitivity synthesis of the equilibrium is studied. A mathematical technique of the solution of this problem is discussed. This technique is applied to the problem of the stabilization of the operating mode for the stochastic gas discharge system. We construct a feedback regulator that reduces the stochastic sensitivity of the equilibrium, suppresses large-amplitude oscillations, and provides a proper operation of this engineering device.

  16. The best practice for preparation of samples from FTA®cards for diagnosis of blood borne infections using African trypanosomes as a model system

    PubMed Central

    2011-01-01

    Background Diagnosis of blood borne infectious diseases relies primarily on the detection of the causative agent in the blood sample. Molecular techniques offer sensitive and specific tools for this although considerable difficulties exist when using these approaches in the field environment. In large scale epidemiological studies, FTA®cards are becoming increasingly popular for the rapid collection and archiving of a large number of samples. However, there are some difficulties in the downstream processing of these cards which is essential for the accurate diagnosis of infection. Here we describe recommendations for the best practice approach for sample processing from FTA®cards for the molecular diagnosis of trypanosomiasis using PCR. Results A comparison of five techniques was made. Detection from directly applied whole blood was less sensitive (35.6%) than whole blood which was subsequently eluted from the cards using Chelex®100 (56.4%). Better apparent sensitivity was achieved when blood was lysed prior to application on the FTA cards (73.3%) although this was not significant. This did not improve with subsequent elution using Chelex®100 (73.3%) and was not significantly different from direct DNA extraction from blood in the field (68.3%). Conclusions Based on these results, the degree of effort required for each of these techniques and the difficulty of DNA extraction under field conditions, we recommend that blood is transferred onto FTA cards whole followed by elution in Chelex®100 as the best approach. PMID:21548975

  17. In vivo tumor identification of colorectal liver metastases with diffuse reflectance and fluorescence spectroscopy.

    PubMed

    Tanis, Erik; Evers, Danny J; Spliethoff, Jarich W; Pully, Vishnu V; Kuhlmann, Koert; van Coevorden, Frits; Hendriks, Benno H W; Sanders, Joyce; Prevoo, Warner; Ruers, Theo J M

    2016-11-01

    Over the last decade, an increasing effort has been put towards the implementation of optical guidance techniques to aid surgeons during cancer surgery. Diffuse reflectance spectroscopy (DRS) and fluorescence spectroscopy (FS) are two of these new techniques. The objective of this study is to investigate whether in vivo optical spectroscopy is able to accurately discriminate colorectal liver metastases (CRLM) from normal liver tissue in vivo. DRS and FS were incorporated at the tip of a needle and were used for in vivo tissue differentiation during resection of CRLM. Measurements were taken in and around the tumor lesions and measurement sites were marked and correlated to histology (i.e., normal liver tissue or tumor tissue). Patients with and without neoadjuvant systemic chemotherapy were included into the study. Four hundred and eighty-four measurements were taken in and near 19 liver lesions prior to resection. Overall sensitivity and specificity for DRS was 95% and 92%, respectively. Bile was the most discriminative parameter. The addition of FS did not improve the overall accuracy. Sensitivity and specificity was not hampered by neo-adjuvant chemotherapy; sensitivity and specificity after neo-adjuvant chemotherapy were 92% and 100%, respectively. We have successfully integrated spectroscopy technology into a disposable 15 Gauge optical needle and we have shown that DRS and FS can accurately discriminate CRLM from normal liver tissue in the in vivo setting regardless of whether the patient was pre-treated with systemic therapy. This technique makes in vivo guidance accessible for common surgical practice. Lasers Surg. Med. 48:820-827, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Ecosystem effects and the management of petroleum-contaminated soils on subantarctic islands.

    PubMed

    Errington, Ingrid; King, Catherine K; Wilkins, Daniel; Spedding, Tim; Hose, Grant C

    2018-03-01

    Human activity in the Polar Regions has resulted in petroleum contamination of soils. In this context, subantarctic islands are a unique management challenge for climatic, biological and logistical reasons. In this review we identify the main abiotic factors affecting petroleum-contaminated soils in the subantarctic environment, the primary effects of such contamination on biota, and lessons learned with regards to remediation techniques in this region. The sensitivity of biota to contamination depends on organism life stage, on soil properties, and on the degree of contaminant weathering. Initial studies using species endemic to subantarctic islands suggest that for fresh diesel fuel, sensitivities may range between 103 and 20 000 mg total petroleum hydrocarbons (TPH) kg -1 soil. Diesel that has undergone a short period of weathering is generally more toxic, with sensitivities ranging between 52 and 13 000 mg TPH kg -1 soil for an earthworm and a grass respectively (based on EC 20 and IC 50 values). A sufficient body of data from which to develop remediation targets for existing spills in the region does not yet exist for the region, but there has been a recent increase in research attention to address this data gap. A range of remediation methods have also now been trialled, and techniques such as in-ground aeration and nutrient addition have achieved some success. Passive management techniques such as permeable reactive barriers and phytoremediation are in preliminary stages of investigation for the region and show promise, not least because they cause less collateral disturbance than other methods. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields.

    PubMed

    Hahn, David W; Omenetto, Nicoló

    2012-04-01

    The first part of this two-part review focused on the fundamental and diagnostics aspects of laser-induced plasmas, only touching briefly upon concepts such as sensitivity and detection limits and largely omitting any discussion of the vast panorama of the practical applications of the technique. Clearly a true LIBS community has emerged, which promises to quicken the pace of LIBS developments, applications, and implementations. With this second part, a more applied flavor is taken, and its intended goal is summarizing the current state-of-the-art of analytical LIBS, providing a contemporary snapshot of LIBS applications, and highlighting new directions in laser-induced breakdown spectroscopy, such as novel approaches, instrumental developments, and advanced use of chemometric tools. More specifically, we discuss instrumental and analytical approaches (e.g., double- and multi-pulse LIBS to improve the sensitivity), calibration-free approaches, hyphenated approaches in which techniques such as Raman and fluorescence are coupled with LIBS to increase sensitivity and information power, resonantly enhanced LIBS approaches, signal processing and optimization (e.g., signal-to-noise analysis), and finally applications. An attempt is made to provide an updated view of the role played by LIBS in the various fields, with emphasis on applications considered to be unique. We finally try to assess where LIBS is going as an analytical field, where in our opinion it should go, and what should still be done for consolidating the technique as a mature method of chemical analysis. © 2012 Society for Applied Spectroscopy

  20. New Uses for Sensitivity Analysis: How Different Movement Tasks Effect Limb Model Parameter Sensitivity

    NASA Technical Reports Server (NTRS)

    Winters, J. M.; Stark, L.

    1984-01-01

    Original results for a newly developed eight-order nonlinear limb antagonistic muscle model of elbow flexion and extension are presented. A wider variety of sensitivity analysis techniques are used and a systematic protocol is established that shows how the different methods can be used efficiently to complement one another for maximum insight into model sensitivity. It is explicitly shown how the sensitivity of output behaviors to model parameters is a function of the controller input sequence, i.e., of the movement task. When the task is changed (for instance, from an input sequence that results in the usual fast movement task to a slower movement that may also involve external loading, etc.) the set of parameters with high sensitivity will in general also change. Such task-specific use of sensitivity analysis techniques identifies the set of parameters most important for a given task, and even suggests task-specific model reduction possibilities.

  1. Ethanol Microsensors with a Readout Circuit Manufactured Using the CMOS-MEMS Technique

    PubMed Central

    Yang, Ming-Zhi; Dai, Ching-Liang

    2015-01-01

    The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro-mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm. PMID:25594598

  2. Ethanol microsensors with a readout circuit manufactured using the CMOS-MEMS technique.

    PubMed

    Yang, Ming-Zhi; Dai, Ching-Liang

    2015-01-14

    The design and fabrication of an ethanol microsensor integrated with a readout circuit on-a-chip using the complementary metal oxide semiconductor (CMOS)-microelectro -mechanical system (MEMS) technique are investigated. The ethanol sensor is made up of a heater, a sensitive film and interdigitated electrodes. The sensitive film is tin dioxide that is prepared by the sol-gel method. The heater is located under the interdigitated electrodes, and the sensitive film is coated on the interdigitated electrodes. The sensitive film needs a working temperature of 220 °C. The heater is employed to provide the working temperature of sensitive film. The sensor generates a change in capacitance when the sensitive film senses ethanol gas. A readout circuit is used to convert the capacitance variation of the sensor into the output frequency. Experiments show that the sensitivity of the ethanol sensor is 0.9 MHz/ppm.

  3. Confocal imaging of transmembrane voltage by SEER of di-8-ANEPPS

    PubMed Central

    Manno, Carlo; Figueroa, Lourdes; Fitts, Robert

    2013-01-01

    Imaging, optical mapping, and optical multisite recording of transmembrane potential (Vm) are essential for studying excitable cells and systems. The naphthylstyryl voltage-sensitive dyes, including di-8-ANEPPS, shift both their fluorescence excitation and emission spectra upon changes in Vm. Accordingly, they have been used for monitoring Vm in nonratioing and both emission and excitation ratioing modes. Their changes in fluorescence are usually much less than 10% per 100 mV. Conventional ratioing increases sensitivity to between 3 and 15% per 100 mV. Low sensitivity limits the value of these dyes, especially when imaged with low light systems like confocal scanners. Here we demonstrate the improvement afforded by shifted excitation and emission ratioing (SEER) as applied to imaging membrane potential in flexor digitorum brevis muscle fibers of adult mice. SEER—the ratioing of two images of fluorescence, obtained with different excitation wavelengths in different emission bands—was implemented in two commercial confocal systems. A conventional pinhole scanner, affording optimal setting of emission bands but less than ideal excitation wavelengths, achieved a sensitivity of up to 27% per 100 mV, nearly doubling the value found by conventional ratioing of the same data. A better pair of excitation lights should increase the sensitivity further, to 35% per 100 mV. The maximum acquisition rate with this system was 1 kHz. A fast “slit scanner” increased the effective rate to 8 kHz, but sensitivity was lower. In its high-sensitivity implementation, the technique demonstrated progressive deterioration of action potentials upon fatiguing tetani induced by stimulation patterns at >40 Hz, thereby identifying action potential decay as a contributor to fatigue onset. Using the fast implementation, we could image for the first time an action potential simultaneously at multiple locations along the t-tubule system. These images resolved the radially varying lag associated with propagation at a finite velocity. PMID:23440278

  4. Confocal imaging of transmembrane voltage by SEER of di-8-ANEPPS.

    PubMed

    Manno, Carlo; Figueroa, Lourdes; Fitts, Robert; Ríos, Eduardo

    2013-03-01

    Imaging, optical mapping, and optical multisite recording of transmembrane potential (V(m)) are essential for studying excitable cells and systems. The naphthylstyryl voltage-sensitive dyes, including di-8-ANEPPS, shift both their fluorescence excitation and emission spectra upon changes in V(m). Accordingly, they have been used for monitoring V(m) in nonratioing and both emission and excitation ratioing modes. Their changes in fluorescence are usually much less than 10% per 100 mV. Conventional ratioing increases sensitivity to between 3 and 15% per 100 mV. Low sensitivity limits the value of these dyes, especially when imaged with low light systems like confocal scanners. Here we demonstrate the improvement afforded by shifted excitation and emission ratioing (SEER) as applied to imaging membrane potential in flexor digitorum brevis muscle fibers of adult mice. SEER--the ratioing of two images of fluorescence, obtained with different excitation wavelengths in different emission bands-was implemented in two commercial confocal systems. A conventional pinhole scanner, affording optimal setting of emission bands but less than ideal excitation wavelengths, achieved a sensitivity of up to 27% per 100 mV, nearly doubling the value found by conventional ratioing of the same data. A better pair of excitation lights should increase the sensitivity further, to 35% per 100 mV. The maximum acquisition rate with this system was 1 kHz. A fast "slit scanner" increased the effective rate to 8 kHz, but sensitivity was lower. In its high-sensitivity implementation, the technique demonstrated progressive deterioration of action potentials upon fatiguing tetani induced by stimulation patterns at >40 Hz, thereby identifying action potential decay as a contributor to fatigue onset. Using the fast implementation, we could image for the first time an action potential simultaneously at multiple locations along the t-tubule system. These images resolved the radially varying lag associated with propagation at a finite velocity.

  5. Ion-Exclusion Chromatography for Analyzing Organics in Water

    NASA Technical Reports Server (NTRS)

    Sauer, Richard; Rutz, Jeffrey A.; Schultz, John R.

    2006-01-01

    A liquid-chromatography technique has been developed for use in the quantitative analysis of urea (and of other nonvolatile organic compounds typically found with urea) dissolved in water. The technique involves the use of a column that contains an ion-exclusion resin; heretofore, this column has been sold for use in analyzing monosaccharides and food softeners, but not for analyzing water supplies. The prior technique commonly used to analyze water for urea content has been one of high-performance liquid chromatography (HPLC), with reliance on hydrophobic interactions between analytes in a water sample and long-chain alkyl groups bonded to an HPLC column. The prior technique has proven inadequate because of a strong tendency toward co-elution of urea with other compounds. Co-elution often causes the urea and other compounds to be crowded into a narrow region of the chromatogram (see left part of figure), thereby giving rise to low chromatographic resolution and misidentification of compounds. It is possible to quantitate urea or another analyte via ultraviolet- and visible-light absorbance measurements, but in order to perform such measurements, it is necessary to dilute the sample, causing a significant loss of sensitivity. The ion-exclusion resin used in the improved technique is sulfonated polystyrene in the calcium form. Whereas the alkyl-chain column used in the prior technique separates compounds on the basis of polarity only, the ion-exclusion-resin column used in the improved technique separates compounds on the basis of both molecular size and electric charge. As a result, the degree of separation is increased: instead of being crowded together into a single chromatographic peak only about 1 to 2 minutes wide as in the prior technique, the chromatographic peaks of different compounds are now separated from each other and spread out over a range about 33 minutes wide (see right part of figure), and the urea peak can readily be distinguished from the other peaks. Although the analysis takes more time in the improved technique, this disadvantage is offset by two important advantages: Sensitivity is increased. The minimum concentration of urea that can be measured is reduced (to between 1/5 and 1/3 of that of the prior technique) because it is not necessary to dilute the sample. The separation of peaks facilitates the identification and quantitation of the various compounds. The resolution of the compounds other than urea makes it possible to identify those compounds by use of mass spectrometry.

  6. Headspace analysis of volatile organic compounds from ethanolic systems by direct APCI-MS

    NASA Astrophysics Data System (ADS)

    Aznar, Margarita; Tsachaki, Maroussa; Linforth, Robert S. T.; Ferreira, Vicente; Taylor, Andrew J.

    2004-12-01

    Measuring the dynamic release of aroma compounds from ethanolic solutions by direct gas phase mass spectrometry (MS) techniques is an important technique for flavor chemists but presents technical difficulties as the changing ethanol concentration in the source makes quantitative measurements impossible. The effect of adding ethanol into the source via the sweep gas (0-565 [mu]L ethanol/L N2), to act as the proton transfer reagent ion and thereby control ionization was studied. With increasing concentrations of ethanol in the source, the water ions were replaced by ethanol ions above 3.2 [mu]L/L. The effect of source ethanol on the ionization of eleven aroma compounds was then measured. Some compounds showed reduced signal (10-40%), others increased signal (150-400%) when ionized via ethanol reagent ions compared to water reagent ions. Noise also increased in most cases so there was no overall increase in sensitivity. Providing the ethanol concentration in the source was >6.5 [mu]L/L N2 and maintained at a fixed value, ionization was consistent and quantitative. The technique was successfully applied to measure the partition of the test volatile compounds from aqueous and 12% ethanol solutions at equilibrium. Ethanolic solutions decreased the partition coefficient of most of the aroma compounds, as a function of hydrophobicity.

  7. Development of at-wavelength metrology for x-ray optics at the ALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yashchuk, Valeriy V.; Goldberg, Kenneth A.; Yuan, Sheng

    2010-07-09

    The comprehensive realization of the exciting advantages of new third- and forth-generation synchrotron radiation light sources requires concomitant development of reflecting and diffractive x-ray optics capable of micro- and nano-focusing, brightness preservation, and super high resolution. The fabrication, tuning, and alignment of the optics are impossible without adequate metrology instrumentation, methods, and techniques. While the accuracy of ex situ optical metrology at the Advanced Light Source (ALS) has reached a state-of-the-art level, wavefront control on beamlines is often limited by environmental and systematic alignment factors, and inadequate in situ feedback. At ALS beamline 5.3.1, we are developing broadly applicable, high-accuracy,more » in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of tests with increasing accuracy and sensitivity. Geometric Hartmann tests, performed with a scanning illuminated sub-aperture determine the wavefront slope across the full mirror aperture. Shearing interferometry techniques use coherent illumination and provide higher sensitivity wavefront measurements. Combining these techniques with high precision optical metrology and experimental methods will enable us to provide in situ setting and alignment of bendable x-ray optics to realize diffraction-limited, sub 50 nm focusing at beamlines. We describe here details of the metrology beamline endstation, the x-ray beam diagnostic system, and original experimental techniques that have already allowed us to precisely set a bendable KB mirror to achieve a focused spot size of 150 nm.« less

  8. Validation of different techniques for the diagnosis of ventilator-associated pneumonia. Comparison with immediate postmortem pulmonary biopsy.

    PubMed

    Torres, A; el-Ebiary, M; Padró, L; Gonzalez, J; de la Bellacasa, J P; Ramirez, J; Xaubet, A; Ferrer, M; Rodriguez-Roisin, R

    1994-02-01

    To assess the accuracy of clinical parameters for the diagnosis of ventilator-associated (VA) pneumonia, as well as the diagnostic value of several invasive techniques, such as protected specimen brush (PSB), bronchoalveolar lavage (BAL), fiberoptic bronchial aspirates (FBAS), and percutaneous lung needle aspiration (PLNA), we compared the results of these techniques with the histopathology of immediate postmortem pulmonary biopsies, considered the "gold standard" reference test. We studied 30 mechanically ventilated patients (age 52 +/- 21 yr; mechanical ventilation period 9 +/- 7 days) who died in an intensive care unit. All patients received prior antibiotic treatment. The following procedures were performed immediately after death: bilateral PSB, BAL, FBAS, and PLNA, as well as bilateral minithoracotomies to obtain pulmonary biopsies as close as possible to the area sampled with the other techniques. According to the histopathology 18 patients had pneumonia and 12 did not. The presence of fever (sensitivity 55%, specificity 58%), purulent secretions (sensitivity 83%, specificity 33%), and chest radiograph infiltrates (sensitivity 78%, specificity 42%) could not differentiate in all instances presence from absence of pneumonia. Quantitative bacterial cultures of lung biopsies using 10(3) cfu/g as a cutoff point had low sensitivity (40%) and low specificity (45%) and could not differentiate the histologic absence or presence of pneumonia. Considering the histopathology of pulmonary biopsies as a gold standard, we found the following sensitivities for PSB, BAL, FBAS, and PLNA: 36, 50, 44, and 25%. The specificities were 50, 45, 48, and 79%, respectively. The sensitivities and specificities of different invasive techniques are much lower than those reported in clinical studies.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Spectral domain polarization-sensitive optical coherence tomography at 850 nm

    NASA Astrophysics Data System (ADS)

    Cense, Barry; Chen, Teresa C.; Mujat, Mircea; Joo, Chulmin; Akkin, Taner; Park, B. H.; Pierce, Mark C.; Yun, Andy; Bouma, Brett E.; Tearney, Guillermo J.; de Boer, Johannes F.

    2005-04-01

    Spectral-Domain Polarization-Sensitive Optical Coherence Tomography (SD-PS-OCT) is a technique developed to measure the thickness and birefringence of the nerve fiber layer in vivo as a tool for the early diagnosis of glaucoma. A clinical SD-PS-OCT system was developed and scans were made around the optic nerve head (ONH) using ten concentric circles of increasing diameter. One healthy volunteer was imaged. Retinal nerve fiber layer thickness and birefringence information was extracted from the data. Polarization-sensitive OCT images were acquired at video rate (29 frames per second (fps), 1000 A-lines / frame) and at 7 fps (1000 A-lines / frame). The last setting improved the signal to noise ratio by approximately 6 dB. Birefringence measurements on the healthy volunteer gave similar results as earlier reported values that were obtained with a time-domain setup. The measurement time was reduced from more than a minute to less than a second.

  10. Highly-sensitive and large-dynamic diffuse optical tomography system for breast tumor detection

    NASA Astrophysics Data System (ADS)

    Du, Wenwen; Zhang, Limin; Yin, Guoyan; Zhang, Yanqi; Zhao, Huijuan; Gao, Feng

    2018-02-01

    Diffuse optical tomography (DOT) as a new functional imaging has important clinical applications in many aspects such as benign and malignant breast tumor detection, tumor staging and so on. For quantitative detection of breast tumor, a three-wavelength continuous-wave DOT prototype system combined the ultra-high sensitivity of the photon-counting detection and the measurement parallelism of the lock-in technique was developed to provide high temporal resolution, high sensitivity, large dynamic detection range and signal-to-noise ratio. Additionally, a CT-analogous scanning mode was proposed to cost-effectively increase the detection data. To evaluate the feasibility of the system, a series of assessments were conducted. The results demonstrate that the system can obtain high linearity, stability and negligible inter-wavelength crosstalk. The preliminary phantom experiments show the absorption coefficient is able to be successfully reconstructed, indicating that the system is one of the ideal platforms for optical breast tumor detection.

  11. Leveraging zinc interstitials and oxygen vacancies for sensitive biomolecule detection through selective surface functionalization

    NASA Astrophysics Data System (ADS)

    Radha Shanmugam, Nandhinee; Muthukumar, Sriram; Chaudhry, Shajee; Prasad, Shalini

    2015-03-01

    In this study, functionally engineered EIS technique was implemented to investigate the influence of surface functionalization on sensitivity of biomolecule detection using nanostructured ZnO platform. Organic molecules with thiol and carboxylic functional groups were chosen to control biomolecule immobilization on zinc and oxygen-terminated 2D planar and 1D nanostructured ZnO surfaces. The amount of functionalization and its influence on charge perturbations at the ZnO-electrolyte interface were studied using fluorescence and EIS measurements. We observed the dependence of charge transfer on both the polarity of platform and concentration of cross-linker molecules. Such selectively modified surfaces were used for detection of cortisol, a major stress indicator. Results demonstrated preferential binding of thiol groups to Zn terminations and thus leveraging ZnO interstitials increases the sensitivity of detection over larger dynamic range with detection limit at 10fg/mL.

  12. Development of Multiobjective Optimization Techniques for Sonic Boom Minimization

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Rajadas, John Narayan; Pagaldipti, Naryanan S.

    1996-01-01

    A discrete, semi-analytical sensitivity analysis procedure has been developed for calculating aerodynamic design sensitivities. The sensitivities of the flow variables and the grid coordinates are numerically calculated using direct differentiation of the respective discretized governing equations. The sensitivity analysis techniques are adapted within a parabolized Navier Stokes equations solver. Aerodynamic design sensitivities for high speed wing-body configurations are calculated using the semi-analytical sensitivity analysis procedures. Representative results obtained compare well with those obtained using the finite difference approach and establish the computational efficiency and accuracy of the semi-analytical procedures. Multidisciplinary design optimization procedures have been developed for aerospace applications namely, gas turbine blades and high speed wing-body configurations. In complex applications, the coupled optimization problems are decomposed into sublevels using multilevel decomposition techniques. In cases with multiple objective functions, formal multiobjective formulation such as the Kreisselmeier-Steinhauser function approach and the modified global criteria approach have been used. Nonlinear programming techniques for continuous design variables and a hybrid optimization technique, based on a simulated annealing algorithm, for discrete design variables have been used for solving the optimization problems. The optimization procedure for gas turbine blades improves the aerodynamic and heat transfer characteristics of the blades. The two-dimensional, blade-to-blade aerodynamic analysis is performed using a panel code. The blade heat transfer analysis is performed using an in-house developed finite element procedure. The optimization procedure yields blade shapes with significantly improved velocity and temperature distributions. The multidisciplinary design optimization procedures for high speed wing-body configurations simultaneously improve the aerodynamic, the sonic boom and the structural characteristics of the aircraft. The flow solution is obtained using a comprehensive parabolized Navier Stokes solver. Sonic boom analysis is performed using an extrapolation procedure. The aircraft wing load carrying member is modeled as either an isotropic or a composite box beam. The isotropic box beam is analyzed using thin wall theory. The composite box beam is analyzed using a finite element procedure. The developed optimization procedures yield significant improvements in all the performance criteria and provide interesting design trade-offs. The semi-analytical sensitivity analysis techniques offer significant computational savings and allow the use of comprehensive analysis procedures within design optimization studies.

  13. Reduced basis technique for evaluating the sensitivity coefficients of the nonlinear tire response

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Tanner, John A.; Peters, Jeanne M.

    1992-01-01

    An efficient reduced-basis technique is proposed for calculating the sensitivity of nonlinear tire response to variations in the design variables. The tire is modeled using a 2-D, moderate rotation, laminated anisotropic shell theory, including the effects of variation in material and geometric parameters. The vector of structural response and its first-order and second-order sensitivity coefficients are each expressed as a linear combination of a small number of basis vectors. The effectiveness of the basis vectors used in approximating the sensitivity coefficients is demonstrated by a numerical example involving the Space Shuttle nose-gear tire, which is subjected to uniform inflation pressure.

  14. Integrated analytical techniques with high sensitivity for studying brain translocation and potential impairment induced by intranasally instilled copper nanoparticles.

    PubMed

    Bai, Ru; Zhang, Lili; Liu, Ying; Li, Bai; Wang, Liming; Wang, Peng; Autrup, Herman; Beer, Christiane; Chen, Chunying

    2014-04-07

    Health impacts of inhalation exposure to engineered nanomaterials have attracted increasing attention. In this paper, integrated analytical techniques with high sensitivity were used to study the brain translocation and potential impairment induced by intranasally instilled copper nanoparticles (CuNPs). Mice were exposed to CuNPs in three doses (1, 10, 40 mg/kg bw). The body weight of mice decreased significantly in the 10 and 40 mg/kg group (p<0.05) but recovered slightly within exposure duration. Inductively coupled plasma mass spectrometry (ICP-MS) analysis showed that CuNPs could enter the brain. Altered distribution of some important metal elements was observed by synchrotron radiation X-ray fluorescence (SRXRF). H&E staining and immunohistochemical analysis showed that CuNPs produced damages to nerve cells and astrocyte might be the one of the potential targets of CuNPs. The changes of neurotransmitter levels in different brain regions demonstrate that the dysfunction occurred in exposed groups. These data indicated that CuNPs could enter the brain after nasal inhalation and induced damages to the central nervous system (CNS). Integration of effective analytical techniques for systematic investigations is a promising direction to better understand the biological activities of nanomaterials. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Investigation of Thermal Interface Materials Using Phase-Sensitive Transient Thermoreflectance Technique: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, X.; King, C.; DeVoto, D.

    2014-08-01

    With increasing power density in electronics packages/modules, thermal resistances at multiple interfaces are a bottleneck to efficient heat removal from the package. In this work, the performance of thermal interface materials such as grease, thermoplastic adhesives and diffusion-bonded interfaces are characterized using the phase-sensitive transient thermoreflectance technique. A multi-layer heat conduction model was constructed and theoretical solutions were derived to obtain the relation between phase lag and the thermal/physical properties. This technique enables simultaneous extraction of the contact resistance and bulk thermal conductivity of the TIMs. With the measurements, the bulk thermal conductivity of Dow TC-5022 thermal grease (70 tomore » 75 um bondline thickness) was 3 to 5 W/(m-K) and the contact resistance was 5 to 10 mm2-K/W. For the Btech thermoplastic material (45 to 80 μm bondline thickness), the bulk thermal conductivity was 20 to 50 W/(m-K) and the contact resistance was 2 to 5 mm2-K/W. Measurements were also conducted to quantify the thermal performance of diffusion-bonded interface for power electronics applications. Results with the diffusion-bonded sample showed that the interfacial thermal resistance is more than one order of magnitude lower than those of traditional TIMs, suggesting potential pathways to efficient thermal management.« less

  16. Detecting Weak Spectral Lines in Interferometric Data through Matched Filtering

    NASA Astrophysics Data System (ADS)

    Loomis, Ryan A.; Öberg, Karin I.; Andrews, Sean M.; Walsh, Catherine; Czekala, Ian; Huang, Jane; Rosenfeld, Katherine A.

    2018-04-01

    Modern radio interferometers enable observations of spectral lines with unprecedented spatial resolution and sensitivity. In spite of these technical advances, many lines of interest are still at best weakly detected and therefore necessitate detection and analysis techniques specialized for the low signal-to-noise ratio (S/N) regime. Matched filters can leverage knowledge of the source structure and kinematics to increase sensitivity of spectral line observations. Application of the filter in the native Fourier domain improves S/N while simultaneously avoiding the computational cost and ambiguities associated with imaging, making matched filtering a fast and robust method for weak spectral line detection. We demonstrate how an approximate matched filter can be constructed from a previously observed line or from a model of the source, and we show how this filter can be used to robustly infer a detection significance for weak spectral lines. When applied to ALMA Cycle 2 observations of CH3OH in the protoplanetary disk around TW Hya, the technique yields a ≈53% S/N boost over aperture-based spectral extraction methods, and we show that an even higher boost will be achieved for observations at higher spatial resolution. A Python-based open-source implementation of this technique is available under the MIT license at http://github.com/AstroChem/VISIBLE.

  17. Performance Enhancement of MC-CDMA System through Novel Sensitive Bit Algorithm Aided Turbo Multi User Detection

    PubMed Central

    Kumaravel, Rasadurai; Narayanaswamy, Kumaratharan

    2015-01-01

    Multi carrier code division multiple access (MC-CDMA) system is a promising multi carrier modulation (MCM) technique for high data rate wireless communication over frequency selective fading channels. MC-CDMA system is a combination of code division multiple access (CDMA) and orthogonal frequency division multiplexing (OFDM). The OFDM parts reduce multipath fading and inter symbol interference (ISI) and the CDMA part increases spectrum utilization. Advantages of this technique are its robustness in case of multipath propagation and improve security with the minimize ISI. Nevertheless, due to the loss of orthogonality at the receiver in a mobile environment, the multiple access interference (MAI) appears. The MAI is one of the factors that degrade the bit error rate (BER) performance of MC-CDMA system. The multiuser detection (MUD) and turbo coding are the two dominant techniques for enhancing the performance of the MC-CDMA systems in terms of BER as a solution of overcome to MAI effects. In this paper a low complexity iterative soft sensitive bits algorithm (SBA) aided logarithmic-Maximum a-Posteriori algorithm (Log MAP) based turbo MUD is proposed. Simulation results show that the proposed method provides better BER performance with low complexity decoding, by mitigating the detrimental effects of MAI. PMID:25714917

  18. Capsule implosion optimization during the indirect-drive National Ignition Campaign

    NASA Astrophysics Data System (ADS)

    Landen, O. L.; Edwards, J.; Haan, S. W.; Robey, H. F.; Milovich, J.; Spears, B. K.; Weber, S. V.; Clark, D. S.; Lindl, J. D.; MacGowan, B. J.; Moses, E. I.; Atherton, J.; Amendt, P. A.; Boehly, T. R.; Bradley, D. K.; Braun, D. G.; Callahan, D. A.; Celliers, P. M.; Collins, G. W.; Dewald, E. L.; Divol, L.; Frenje, J. A.; Glenzer, S. H.; Hamza, A.; Hammel, B. A.; Hicks, D. G.; Hoffman, N.; Izumi, N.; Jones, O. S.; Kilkenny, J. D.; Kirkwood, R. K.; Kline, J. L.; Kyrala, G. A.; Marinak, M. M.; Meezan, N.; Meyerhofer, D. D.; Michel, P.; Munro, D. H.; Olson, R. E.; Nikroo, A.; Regan, S. P.; Suter, L. J.; Thomas, C. A.; Wilson, D. C.

    2011-05-01

    Capsule performance optimization campaigns will be conducted at the National Ignition Facility [G. H. Miller, E. I. Moses, and C. R. Wuest, Nucl. Fusion 44, 228 (2004)] to substantially increase the probability of ignition. The campaigns will experimentally correct for residual uncertainties in the implosion and hohlraum physics used in our radiation-hydrodynamic computational models using a variety of ignition capsule surrogates before proceeding to cryogenic-layered implosions and ignition experiments. The quantitative goals and technique options and down selections for the tuning campaigns are first explained. The computationally derived sensitivities to key laser and target parameters are compared to simple analytic models to gain further insight into the physics of the tuning techniques. The results of the validation of the tuning techniques at the OMEGA facility [J. M. Soures et al., Phys. Plasmas 3, 2108 (1996)] under scaled hohlraum and capsule conditions relevant to the ignition design are shown to meet the required sensitivity and accuracy. A roll-up of all expected random and systematic uncertainties in setting the key ignition laser and target parameters due to residual measurement, calibration, cross-coupling, surrogacy, and scale-up errors has been derived that meets the required budget. Finally, we show how the tuning precision will be improved after a number of shots and iterations to meet an acceptable level of residual uncertainty.

  19. High-throughput electrical characterization for robust overlay lithography control

    NASA Astrophysics Data System (ADS)

    Devender, Devender; Shen, Xumin; Duggan, Mark; Singh, Sunil; Rullan, Jonathan; Choo, Jae; Mehta, Sohan; Tang, Teck Jung; Reidy, Sean; Holt, Jonathan; Kim, Hyung Woo; Fox, Robert; Sohn, D. K.

    2017-03-01

    Realizing sensitive, high throughput and robust overlay measurement is a challenge in current 14nm and advanced upcoming nodes with transition to 300mm and upcoming 450mm semiconductor manufacturing, where slight deviation in overlay has significant impact on reliability and yield1). Exponentially increasing number of critical masks in multi-patterning lithoetch, litho-etch (LELE) and subsequent LELELE semiconductor processes require even tighter overlay specification2). Here, we discuss limitations of current image- and diffraction- based overlay measurement techniques to meet these stringent processing requirements due to sensitivity, throughput and low contrast3). We demonstrate a new electrical measurement based technique where resistance is measured for a macro with intentional misalignment between two layers. Overlay is quantified by a parabolic fitting model to resistance where minima and inflection points are extracted to characterize overlay control and process window, respectively. Analyses using transmission electron microscopy show good correlation between actual overlay performance and overlay obtained from fitting. Additionally, excellent correlation of overlay from electrical measurements to existing image- and diffraction- based techniques is found. We also discuss challenges of integrating electrical measurement based approach in semiconductor manufacturing from Back End of Line (BEOL) perspective. Our findings open up a new pathway for accessing simultaneous overlay as well as process window and margins from a robust, high throughput and electrical measurement approach.

  20. Novel technique for ST-T interval characterization in patients with acute myocardial ischemia.

    PubMed

    Correa, Raúl; Arini, Pedro David; Correa, Lorena Sabrina; Valentinuzzi, Max; Laciar, Eric

    2014-07-01

    The novel signal processing techniques have allowed and improved the use of vectorcardiography (VCG) to diagnose and characterize myocardial ischemia. Herein, we studied vectorcardiographic dynamic changes of ventricular repolarization in 80 patients before (control) and during Percutaneous Transluminal Coronary Angioplasty (PTCA). We propose four vectorcardiographic ST-T parameters, i.e., (a) ST Vector Magnitude Area (aSTVM); (b) T-wave Vector Magnitude Area (aTVM); (c) ST-T Vector Magnitude Difference (ST-TVD), and (d) T-wave Vector Magnitude Difference (TVD). For comparison, the conventional ST-Change Vector Magnitude (STCVM) and Spatial Ventricular Gradient (SVG) were also calculated. Our results indicate that several vectorcardiographic parameters show significant differences (p-value<0.05) before starting and during PTCA. Statistical minute-by-minute PTCA comparison against the control situation showed that ischemic monitoring reached a sensitivity=90.5% and a specificity=92.6% at the 5th minute of the PTCA, when aSTVM and ST-TVD were used as classifiers. We conclude that the sensitivity and specificity for acute ischemia monitoring could be increased with the use of only two vectorcardiographic parameters. Hence, the proposed technique based on vectorcardiography could be used in addition to the conventional ST-T analysis for better monitoring of ischemic patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The simulation of magnetic resonance elastography through atherosclerosis.

    PubMed

    Thomas-Seale, L E J; Hollis, L; Klatt, D; Sack, I; Roberts, N; Pankaj, P; Hoskins, P R

    2016-06-14

    The clinical diagnosis of atherosclerosis via the measurement of stenosis size is widely acknowledged as an imperfect criterion. The vulnerability of an atherosclerotic plaque to rupture is associated with its mechanical properties. The potential to image these mechanical properties using magnetic resonance elastography (MRE) was investigated through synthetic datasets. An image of the steady state wave propagation, equivalent to the first harmonic, can be extracted directly from finite element analysis. Inversion of this displacement data yields a map of the shear modulus, known as an elastogram. The variation of plaque composition, stenosis size, Gaussian noise, filter thresholds and excitation frequency were explored. A decreasing mean shear modulus with an increasing lipid composition was identified through all stenosis sizes. However the inversion algorithm showed sensitivity to parameter variation leading to artefacts which disrupted both the elastograms and quantitative trends. As noise was increased up to a realistic level, the contrast was maintained between the fully fibrous and lipid plaques but lost between the interim compositions. Although incorporating a Butterworth filter improved the performance of the algorithm, restrictive filter thresholds resulted in a reduction of the sensitivity of the algorithm to composition and noise variation. Increasing the excitation frequency improved the techniques ability to image the magnitude of the shear modulus and identify a contrast between compositions. In conclusion, whilst the technique has the potential to image the shear modulus of atherosclerotic plaques, future research will require the integration of a heterogeneous inversion algorithm. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Platelet impedance adhesiometry: A novel technique for the measurement of platelet adhesion and spreading.

    PubMed

    Polgár, L; Soós, P; Lajkó, E; Láng, O; Merkely, B; Kőhidai, L

    2018-06-01

    Thrombogenesis plays an important role in today's morbidity and mortality. Antithrombotics are among the most frequently prescribed drugs. Thorough knowledge of platelet function is needed for optimal clinical care. Platelet adhesion is a separate subprocess of platelet thrombus formation; still, no well-standardized technique for the isolated measurement of platelet adhesion exists. Impedimetry is one of the most reliable, state-of-art techniques to analyze cell adhesion, proliferation, viability, and cytotoxicity. We propose impedimetry as a feasible novel method for the isolated measurement of 2 significant platelet functions: adhesion and spreading. Laboratory reference platelet agonists (epinephrine, ADP, and collagen) were applied to characterize platelet functions by impedimetry using the xCELLigence SP system. Platelet samples were obtained from 20 healthy patients under no drug therapy. Standard laboratory parameters and clinical patient history were also analyzed. Epinephrine and ADP increased platelet adhesion in a concentration-dependent manner, while collagen tended to have a negative effect. Serum sodium and calcium levels and age had a negative correlation with platelet adhesion induced by epinephrine and ADP, while increased immunoreactivity connected with allergic diseases was associated with increased platelet adhesion induced by epinephrine and ADP. ADP increased platelet spreading in a concentration-dependent manner. Impedimetry proved to be a useful and sensitive method for the qualitative and quantitated measurement of platelet adhesion, even differentiating between subgroups of a healthy population. This novel technique is offered as an important method in the further investigation of platelet function. © 2018 John Wiley & Sons Ltd.

  3. Phase sensitive spectral domain interferometry for label free biomolecular interaction analysis and biosensing applications

    NASA Astrophysics Data System (ADS)

    Chirvi, Sajal

    Biomolecular interaction analysis (BIA) plays vital role in wide variety of fields, which include biomedical research, pharmaceutical industry, medical diagnostics, and biotechnology industry. Study and quantification of interactions between natural biomolecules (proteins, enzymes, DNA) and artificially synthesized molecules (drugs) is routinely done using various labeled and label-free BIA techniques. Labeled BIA (Chemiluminescence, Fluorescence, Radioactive) techniques suffer from steric hindrance of labels on interaction site, difficulty of attaching labels to molecules, higher cost and time of assay development. Label free techniques with real time detection capabilities have demonstrated advantages over traditional labeled techniques. The gold standard for label free BIA is surface Plasmon resonance (SPR) that detects and quantifies the changes in refractive index of the ligand-analyte complex molecule with high sensitivity. Although SPR is a highly sensitive BIA technique, it requires custom-made sensor chips and is not well suited for highly multiplexed BIA required in high throughput applications. Moreover implementation of SPR on various biosensing platforms is limited. In this research work spectral domain phase sensitive interferometry (SD-PSI) has been developed for label-free BIA and biosensing applications to address limitations of SPR and other label free techniques. One distinct advantage of SD-PSI compared to other label-free techniques is that it does not require use of custom fabricated biosensor substrates. Laboratory grade, off-the-shelf glass or plastic substrates of suitable thickness with proper surface functionalization are used as biosensor chips. SD-PSI is tested on four separate BIA and biosensing platforms, which include multi-well plate, flow cell, fiber probe with integrated optics and fiber tip biosensor. Sensitivity of 33 ng/ml for anti-IgG is achieved using multi-well platform. Principle of coherence multiplexing for multi-channel label-free biosensing applications is introduced. Simultaneous interrogation of multiple biosensors is achievable with a single spectral domain phase sensitive interferometer by coding the individual sensograms in coherence-multiplexed channels. Experimental results demonstrating multiplexed quantitative biomolecular interaction analysis of antibodies binding to antigen coated functionalized biosensor chip surfaces on different platforms are presented.

  4. Imaging work-up for screening of paraganglioma and pheochromocytoma in SDHx mutation carriers: a multicenter prospective study from the PGL.EVA Investigators.

    PubMed

    Gimenez-Roqueplo, Anne-Paule; Caumont-Prim, Aurore; Houzard, Claire; Hignette, Chantal; Hernigou, Anne; Halimi, Philippe; Niccoli, Patricia; Leboulleux, Sophie; Amar, Laurence; Borson-Chazot, Françoise; Cardot-Bauters, Catherine; Delemer, Brigitte; Chabolle, Frédéric; Coupier, Isabelle; Libé, Rossella; Peitzsch, Mirko; Peyrard, Séverine; Tenenbaum, Florence; Plouin, Pierre-François; Chatellier, Gilles; Rohmer, Vincent

    2013-01-01

    Recommendations have not been established concerning imaging to screen SDHx mutation carriers for paraganglioma and pheochromocytoma. Our objective was to compare the performance of gadolinium-enhanced magnetic resonance angiography, contrast-enhanced computed tomography, and [(123)I]metaiodo-benzylguanidine and somatostatin receptor scintigraphies for detecting head and neck and thoracic-abdominal-pelvic paragangliomas in SDHx mutation carriers. We conducted a prospective, multicenter study from June 2005 to December 2009 at 23 French medical centers. A total of 238 index cases or relatives carrying mutations in SDHD, SDHB, or SDHC genes were included. Images obtained by each technique were analyzed blind, without knowledge of results from other tests, first in each local center and then centrally. We evaluated sensitivity, specificity, and likelihood ratios for individual and combinations of tests, the gold standard being the consensus of an expert committee. Two hundred two tumors were diagnosed in 96 subjects. At local assessment, the sensitivity of anatomical imaging for detecting all tumors was higher (85.7%) than that of both scintigraphic techniques (42.7% for [(123)I]metaiodo-benzylguanidine and 69.5% for somatostatin receptor scintigraphy), except for thoracic localizations where somatostatin receptor scintigraphy was more sensitive (61.5 vs. 46.2% for anatomical imaging and 30.8% for [(123)I]metaiodo-benzylguanidine scintigraphy). The best diagnostic performance during local assessment was obtained by combining anatomical imaging tests and somatostatin receptor scintigraphy (sensitivity 91.7%). Central assessment significantly increased the sensitivity (98.6%) of tests in combination. In routine practice, the imaging work-up for screening SDHx mutation carriers should include thoraco-abdomino-pelvic computed tomography, head and neck magnetic angiography, and somatostatin receptor scintigraphy. Expert centralized image assessment is recommended.

  5. Voxel-based morphometry and automated lobar volumetry: The trade-off between spatial scale and statistical correction

    PubMed Central

    Voormolen, Eduard H.J.; Wei, Corie; Chow, Eva W.C.; Bassett, Anne S.; Mikulis, David J.; Crawley, Adrian P.

    2011-01-01

    Voxel-based morphometry (VBM) and automated lobar region of interest (ROI) volumetry are comprehensive and fast methods to detect differences in overall brain anatomy on magnetic resonance images. However, VBM and automated lobar ROI volumetry have detected dissimilar gray matter differences within identical image sets in our own experience and in previous reports. To gain more insight into how diverging results arise and to attempt to establish whether one method is superior to the other, we investigated how differences in spatial scale and in the need to statistically correct for multiple spatial comparisons influence the relative sensitivity of either technique to group differences in gray matter volumes. We assessed the performance of both techniques on a small dataset containing simulated gray matter deficits and additionally on a dataset of 22q11-deletion syndrome patients with schizophrenia (22q11DS-SZ) vs. matched controls. VBM was more sensitive to simulated focal deficits compared to automated ROI volumetry, and could detect global cortical deficits equally well. Moreover, theoretical calculations of VBM and ROI detection sensitivities to focal deficits showed that at increasing ROI size, ROI volumetry suffers more from loss in sensitivity than VBM. Furthermore, VBM and automated ROI found corresponding GM deficits in 22q11DS-SZ patients, except in the parietal lobe. Here, automated lobar ROI volumetry found a significant deficit only after a smaller subregion of interest was employed. Thus, sensitivity to focal differences is impaired relatively more by averaging over larger volumes in automated ROI methods than by the correction for multiple comparisons in VBM. These findings indicate that VBM is to be preferred over automated lobar-scale ROI volumetry for assessing gray matter volume differences between groups. PMID:19619660

  6. Limited Qualities Evaluation of Longitudinal Flight Control Systems Designed Using Multiobjective Control Design Techniques (HAVE INFINITY II)

    DTIC Science & Technology

    1998-06-01

    analytical phase of this research. Finally, the mixed H2/H-Infinity method optimally tradeoff the different benefits offered by the separate H2 and H...potential benefits of the multiobjective design techniques used. Due to the HAVE INFINITY I test results, AFIT made the decision to continue the...sensitivity and complimentary sensitivity weighting, and a mixed H2/H-Infinity design that compromised the benefits of both design techniques optimally. The

  7. Highly sensitive detection of human IgG using a novel bio-barcode assay combined with DNA chip technology

    NASA Astrophysics Data System (ADS)

    Liu, Zhenbao; Zhou, Bo; Wang, Haiqing; Lu, Feng; Liu, Tianjun; Song, Cunxian; Leng, Xigang

    2013-09-01

    A simple and ultrasensitive detection of human IgG based on signal amplification using a novel bio-barcode assay and DNA chip technology was developed. The sensing platform was a sandwich system made up of antibody-modified magnetic microparticles (Ab-MMPs)/human IgG/Cy3-labeled single-stranded DNA and antibody-modified gold nanoparticles (Cy3-ssDNA-Ab-AuNPs). The MMPs (2.5 μm in diameter) modified with mouse anti-human IgG monoclonal-antibodies could capture human IgG and further be separated and enriched via a magnetic field. The AuNPs (13 nm in diameter) conjugated with goat anti-human IgG polyclonal-antibodies and Cy3-ssDNA could further combine with the human IgG/Ab-MMP complex. The Cy3-ssDNA on AuNPs was then released by TCEP to hybridize with the DNA chip, thus generating a detectable signal by the fluorescence intensity of Cy3. In order to improve detection sensitivity, a three-level cascaded signal amplification was developed: (1) The MMP enrichment as the first-level; (2) Large quantities of Cy3-ssDNA on AuNPs as the second-level; (3) The Cy3-ssDNA conjugate with DNA chip as the third-level. The highly sensitive technique showed an increased response of the fluorescence intensity to the increased concentration of human IgG through a detection range from 1 pg mL-1 to 10 ng mL-1. This sensing technique could not only improve the detection sensitivity for the low concentration of human IgG but also present a robust and efficient signal amplification model. The detection method has good stability, specificity, and reproducibility and could be applied in the detection of human IgG in the real samples.

  8. Mass spectrometry techniques in the survey of steroid metabolites as potential disease biomarkers: a review.

    PubMed

    Gouveia, Maria João; Brindley, Paul J; Santos, Lúcio Lara; Correia da Costa, José Manuel; Gomes, Paula; Vale, Nuno

    2013-09-01

    Mass spectrometric approaches have been fundamental to the identification of metabolites associated with steroid hormones, yet this topic has not been reviewed in depth in recent years. To this end, and given the increasing relevance of liquid chromatography-mass spectrometry (LC-MS) studies on steroid hormones and their metabolites, the present review addresses this subject. This review provides a timely summary of the use of various mass spectrometry-based analytical techniques during the evaluation of steroidal biomarkers in a range of human disease settings. The sensitivity and specificity of these technologies are clearly providing valuable new insights into breast cancer and cardiovascular disease. We aim to contribute to an enhanced understanding of steroid metabolism and how it can be profiled by LC-MS techniques. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  9. Fiber Bragg grating sensor interrogators on chip: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Marin, Yisbel; Nannipieri, Tiziano; Oton, Claudio J.; Di Pasquale, Fabrizio

    2017-04-01

    In this paper we present an overview of the current efforts towards integration of Fiber Bragg Grating (FBG) sensor interrogators. Different photonic integration platforms will be discussed, including monolithic planar lightwave circuit technology, silicon on insulator (SOI), indium phosphide (InP) and gallium arsenide (GaAs) material platforms. Also various possible techniques for wavelength metering and methods for FBG multiplexing will be discussed and compared in terms of resolution, dynamic performance, multiplexing capabilities and reliability. The use of linear filters, array waveguide gratings (AWG) as multiple linear filters and AWG based centroid signal processing techniques will be addressed as well as interrogation techniques based on tunable micro-ring resonators and Mach-Zehnder interferometers (MZI) for phase sensitive detection. The paper will also discuss the challenges and perspectives of photonic integration to address the increasing requirements of several industrial applications.

  10. Towards optical brain imaging: getting light through a bone

    NASA Astrophysics Data System (ADS)

    Thompson, J. V.; Hokr, B. H.; Nodurft, D. T.; Yakovlev, V. V.

    2018-06-01

    Optical imaging and detection in biological samples is severely limited by scattering effects. In particular, optical techniques for measuring conditions beneath the skull and within the bone marrow hold significant promise when it comes to speed, sensitivity and specificity. However, the strong optical scattering due to bone hinders the realization of these methods. In this article, we propose a technique to enhance the transmittance of light through bone. This is achieved by injecting light below the top surface of the bone and utilizing multiple scattering to increase transmittance. This technique suggests that enhancements of 2-6 times may be realized by injection of light 1 mm below the surface of the bone. By enhancing the transmittance of light through bone, we will greatly improve our ability to utilize optical methods to better understand and diagnose conditions within biological media.

  11. The noninvasive mouse ear swelling assay. I. Refinements for detecting weak contact sensitizers.

    PubMed

    Thorne, P S; Hawk, C; Kaliszewski, S D; Guiney, P D

    1991-11-01

    The noninvasive mouse ear swelling assay (MESA) is a model for delayed-type hypersensitivity that holds promise as a testing protocol for allergic contact dermatitis (ACD). The MESA employs only topical sensitization on the abdomen and does not use injections, adjuvants, anesthesia, occlusion, or disruption of the stratum corneum. Five days after induction, the ears are challenged topically and ear swelling measurements taken at 24, 48, and 72 hr indicate the extent of ACD. In this study, refinements of the assay were explored in BALB/cBy mice using dinitrofluorobenzene (DNFB) and dinitrochlorobenzene (DNCB). A complete dose-response curve was developed for DNFB and the dose which sensitized half the mice in a group (SD50, 0.001%, w/v) was used to test noninvasive enhancement protocols. Several triple-dose protocols tested produced no increase in responsiveness and daily dosing showed a trend toward tolerance induction yielding 20% positive responses. Dietary vitamin A supplementation produced a dramatic enhancement of the responses: ear thickness increase was doubled and the SD50 sensitized 94 to 100% of the mice in the vitamin A groups. We conclude that the MESA allowed identification of ACD potency for known sensitizers at very low concentrations which do not produce ACD with other techniques. The importance of dose-response studies for avoiding the high-dose reduced-response region was also shown. Based on the observation that the vitamin A-augmented MESA was considerably more sensitive than with regular feed, a companion study (P.S. Thorne. C. Hawk, S.D. Kaliszewski, P.D. Guiney, Fundam. Appl. Tox. 17, 807-820, 1991) presents tests of the enhancements to the MESA developed in this work, using weak sensitizers and complex mixtures.

  12. Favorable effects of carotid endarterectomy on baroreflex sensitivity and cardiovascular neural modulation: a 4-month follow-up.

    PubMed

    Dalla Vecchia, Laura; Barbic, Franca; Galli, Andrea; Pisacreta, Massimo; Gornati, Rosella; Porretta, Tiziano; Porta, Alberto; Furlan, Raffaello

    2013-06-15

    Carotid surgery variably modifies carotid afferent innervation, thus affecting arterial baroreceptor sensitivity. Low arterial baroreflex sensitivity is a well-known independent risk factor for cardiovascular diseases. The aim of this study was to assess the 4-mo effects of carotid endarterectomy (CEA) on arterial baroreceptor sensitivity and cardiovascular autonomic profile in patients with unilateral carotid stenosis. We enrolled 20 patients (72 ± 8 yr) with unilateral >70% carotid stenosis. ECG, beat-by-beat blood pressure, and respiration were continuously recorded before and 126 ± 9 days after CEA, at rest and during a 75° head-up tilt. Both pharmacological (modified Oxford technique, BRS) and spontaneous (index α, spectral analysis) arterial baroreflex sensitivity were assessed. Cardiovascular autonomic profile was evaluated by plasma catecholamines and spectral indexes of cardiac sympathovagal modulation [low-frequency R-R interval (LFRR), low frequency-to high frequency ratio (LF/HF), high-frequency R-R interval (HFRR)] and sympathetic vasomotor control [low-frequency systolic arterial pressure (LFSAP)] obtained from heart rate and SAP variability. After CEA, both the index α and BRS were higher (P < 0.02) at rest. SAP variance decreased both at rest and during tilt (P < 0.02). Before surgery, tilt did not modify the autonomic profile compared with baseline. After CEA, tilt increased LF/HF and LFSAP and reduced HFRR compared with rest (P < 0.02). Four months after CEA was performed, arterial baroreflex sensitivity was enhanced. Accordingly, the patients' autonomic profile had shifted toward reduced cardiac and vascular sympathetic activation and enhanced cardiac vagal activity. The capability to increase cardiovascular sympathetic activation in response to orthostasis was restored. Baroreceptor sensitivity improvement might play an additional role in the more favorable outcome observed in patients after carotid surgery.

  13. Assessing Sensitive Attributes Using the Randomized Response Technique: Evidence for the Importance of Response Symmetry

    ERIC Educational Resources Information Center

    Ostapczuk, Martin; Moshagen, Morten; Zhao, Zengmei; Musch, Jochen

    2009-01-01

    Randomized response techniques (RRTs) aim to reduce social desirability bias in the assessment of sensitive attributes but differ regarding privacy protection. The less protection a design offers, the more likely respondents cheat by disobeying the instructions. In asymmetric RRT designs, respondents can play safe by giving a response that is…

  14. Method for establishing the presence of salmonella bacteria in eggs

    DOEpatents

    Johnston, Roger G.; Sinha, Dipen N.

    1995-01-01

    Measurement of the acoustical resonances in eggs is shown to provide a rapid, noninvasive technique for establishing the presence of Salmonella bacteria. The technique is also sensitive to yolk puncture, shell cracks, and may be sensitive to other yolk properties and to egg freshness. Remote characterization, potentially useful for characterizing large numbers of eggs, has been demonstrated.

  15. The Dirichlet-Multinomial Model for Multivariate Randomized Response Data and Small Samples

    ERIC Educational Resources Information Center

    Avetisyan, Marianna; Fox, Jean-Paul

    2012-01-01

    In survey sampling the randomized response (RR) technique can be used to obtain truthful answers to sensitive questions. Although the individual answers are masked due to the RR technique, individual (sensitive) response rates can be estimated when observing multivariate response data. The beta-binomial model for binary RR data will be generalized…

  16. Private Information Retrieval Techniques for Enabling Location Privacy in Location-Based Services

    NASA Astrophysics Data System (ADS)

    Khoshgozaran, Ali; Shahabi, Cyrus

    The ubiquity of smartphones and other location-aware hand-held devices has resulted in a dramatic increase in popularity of location-based services (LBS) tailored to user locations. The comfort of LBS comes with a privacy cost. Various distressing privacy violations caused by sharing sensitive location information with potentially malicious services have highlighted the importance of location privacy research aiming to protect user privacy while interacting with LBS.

  17. Role of radiology in a national initiative to interdict drug smuggling: the Dutch experience.

    PubMed

    Algra, Paul R; Brogdon, Byron G; Marugg, Roque C

    2007-08-01

    The purpose of this pictorial essay is to describe the role of radiology in a national initiative to intercept illegal narcotics concealed within the bodies of human transporters. Radiologic examination is increasingly important in identifying intracorporeal drug smuggling as improved wrapping techniques undermine the usefulness of blood and urine testing and clinical observation. Detection rates of high accuracy, sensitivity, and specificity are achieved by experienced radiologists.

  18. Design constraints of the LST fine guidance sensor

    NASA Technical Reports Server (NTRS)

    Wissinger, A. B.

    1975-01-01

    The LST Fine Guidance Sensor design is shaped by the rate of occurrence of suitable guide stars, the competition for telescope focal plane space with the Science Instruments, and the sensitivity of candidate image motion sensors. The relationship between these parameters is presented, and sensitivity to faint stars is shown to be of prime importance. An interferometric technique of image motion sensing is shown to have improved sensitivity and, therefore, a reduced focal plane area requirement in comparison with other candidate techniques (image-splitting prism and image dissector tube techniques). Another design requirement is speed in acquiring the guide star in order to maximize the time available for science observations. The design constraints are shown parametrically, and modelling results are presented.

  19. Evaluation of recombinant multi-epitope proteins for diagnosis of goat schistosomiasis by enzyme-linked immunosorbent assay.

    PubMed

    Lv, Chao; Hong, Yang; Fu, Zhiqiang; Lu, Ke; Cao, Xiaodan; Wang, Tao; Zhu, Chuangang; Li, Hao; Xu, Rui; Jia, Bingguang; Han, Qian; Dou, Xuefeng; Shen, Yuanxi; Zhang, Zuhang; Zai, Jinli; Feng, Jintao; Lin, Jiaojiao

    2016-03-09

    Schistosomiasis is a huge threat to human and animal health. Apart from bovines, goats play an important role in the transmission of schistosomiasis in some endemic areas of China. An accessible, quality-assured goat schistosomiasis diagnostic technique is needed. Recently, our laboratory identified two recombinant diagnostic antigens, SjPGM and SjRAD23 via an immuno-proteomic method. The application of these two recombinant antigens to develop a higher sensitivity and specificity technique for the sheep schistosomiasis diagnosis is urgently needed. Epitopes of SjPGM and SjRAD23 were predicted and three polypeptides, two from SjRAD23 and one from SjPGM, were selected. Recombinant plasmids containing two to three DNA sequences encoding predicted polypeptides or large hydrophilic region of Sj23 (LHD-Sj23) were constructed and expressed. Eight recombinant schistosome antigens including four multi-epitope proteins and four recombinant single-molecule antigens as well as SEA, were assessed by ELISA in 91 sera from schistosome-infected goats, 44 sera from non-infected goats, 37 sera from Orientobilharzia-infected goats, and 12 from Haemonchus contortus-infected goats. ELISA tests showed that three multi-epitope proteins had higher sensitivity than the four single-molecule antigens (rSjRAD23, rSjPGM, rBSjRAD23-1, rBSj23) and the multi-epitope protein rBSjPGM-BSjRAD23-1-BSj23 had the highest sensitivity (97.8 %, 89/91) and maintained good specificity (100 %, 44/44) as well as low cross-reactivity with haemonchosis (8.33 %, 3/12) and orientobilharziasis (13.51 %, 5/37) in the diagnosis of goat schistosomiasis. In contrast, when SEA was applied as a diagnosis antigen, it had 100 % (91/91) sensitivity, 75 % (33/44) specificity, 25 and 83.78 % cross-reactivity with haemonchosis (3/12) and orientobilharziasis (31/37), respectively. The application of recombinant multi-epitope proteins may increase the sensitivity of diagnosis technique and retain high specificity of single-molecule antigens for schistosomiasis, and the recombinant antigen rBSjPGM-BSjRAD23-1-BSj23 has the potential to be used as a diagnosis antigen for goat schistosomiasis.

  20. Effect of the Drilling Technique on Heat Generation During Osteotomy Preparation for Wide-Diameter Implants.

    PubMed

    El-Kholey, Khalid E; Elkomy, Aamna

    2016-12-01

    To test the hypothesis that there would be no difference in heat generation by reducing the number of drills during the implant site preparation relative to conventional drilling sequence. A total of 80 implant site preparations with 2 different diameters (5.6 and 6.2 mm) were performed on bovine ribs. Within the same diameter group, half of the preparations were performed by a simplified drilling procedure (pilot drill + final diameter drill) and the other half using the conventional drilling protocol, where multiple drills of increasing diameter were utilized. Heat production by different drilling techniques was evaluated by measuring the bone temperature using K-type thermocouple and a sensitive thermometer before and after each drill. Mean for maximum temperature increase during site preparation of the 5.6- and 6.2-mm implants was 2.20°C, and it was 2.55°C when the site was prepared by the simplified procedure, whereas it was 2.80°C and 2.95°C for the sites prepared by the conventional technique, respectively. No significant difference in temperature increase was found when implants of the 2 chosen diameters were prepared either by the conventional or simplified drilling procedure. The simplified drilling protocol produces similar amount of heat comparable to the conventional technique, which proved the initial hypothesis.

  1. Comparison of the sensitivity of mass spectrometry atmospheric pressure ionization techniques in the analysis of porphyrinoids.

    PubMed

    Swider, Paweł; Lewtak, Jan P; Gryko, Daniel T; Danikiewicz, Witold

    2013-10-01

    The porphyrinoids chemistry is greatly dependent on the data obtained in mass spectrometry. For this reason, it is essential to determine the range of applicability of mass spectrometry ionization methods. In this study, the sensitivity of three different atmospheric pressure ionization techniques, electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization, was tested for several porphyrinods and their metallocomplexes. Electrospray ionization method was shown to be the best ionization technique because of its high sensitivity for derivatives of cyanocobalamin, free-base corroles and porphyrins. In the case of metallocorroles and metalloporphyrins, atmospheric pressure photoionization with dopant proved to be the most sensitive ionization method. It was also shown that for relatively acidic compounds, particularly for corroles, the negative ion mode provides better sensitivity than the positive ion mode. The results supply a lot of relevant information on the methodology of porphyrinoids analysis carried out by mass spectrometry. The information can be useful in designing future MS or liquid chromatography-MS experiments. Copyright © 2013 John Wiley & Sons, Ltd.

  2. Development of a Transportable Gravity Gradiometer Based on Atom Interferometry

    NASA Astrophysics Data System (ADS)

    Yu, N.; Kohel, J. M.; Aveline, D. C.; Kellogg, J. R.; Thompson, R. J.; Maleki, L.

    2007-12-01

    JPL is developing a transportable gravity gradiometer based on light-pulse atom interferometers for NASA's Earth Science Technology Office's Instrument Incubator Program. The inertial sensors in this instrument employ a quantum interference measurement technique, analogous to the precise phase measurements in atomic clocks, which offers increased sensitivity and improved long-term stability over traditional mechanical devices. We report on the implementation of this technique in JPL's gravity gradiometer, and on the current performance of the mobile instrument. We also discuss the prospects for satellite-based gravity field mapping, including high-resolution monitoring of time-varying fields from a single satellite platform and multi-component measurements of the gravitational gradient tensor, using atom interferometer-based instruments.

  3. Advances in Mid-Infrared Spectroscopy for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Haas, Julian; Mizaikoff, Boris

    2016-06-01

    Infrared spectroscopy in the 3-20 μm spectral window has evolved from a routine laboratory technique into a state-of-the-art spectroscopy and sensing tool by benefitting from recent progress in increasingly sophisticated spectra acquisition techniques and advanced materials for generating, guiding, and detecting mid-infrared (MIR) radiation. Today, MIR spectroscopy provides molecular information with trace to ultratrace sensitivity, fast data acquisition rates, and high spectral resolution catering to demanding applications in bioanalytics, for example, and to improved routine analysis. In addition to advances in miniaturized device technology without sacrificing analytical performance, selected innovative applications for MIR spectroscopy ranging from process analysis to biotechnology and medical diagnostics are highlighted in this review.

  4. Magnetic anisotropies and rotational hysteresis in Ni81Fe19/Fe50Mn50 films: A study by torque magnetometry and anisotropic magnetoresistance

    NASA Astrophysics Data System (ADS)

    da Silva, O. E.; de Siqueira, J. V.; Kern, P. R.; Garcia, W. J. S.; Beck, F.; Rigue, J. N.; Carara, M.

    2018-04-01

    Exchange bias properties of NiFe/FeMn thin films have been investigated through X-ray diffraction, hysteresis loops, angular measurements of anisotropic magnetoresistance (AMR) and magnetic torque. As first predicted by Meiklejohn and Bean we found a decrease on the bias field as the NiFe layer thickness increases. However such reduction is not as strong as expected and it was attributed to the increase on the number of uncompensed antiferromagnetic spins resulting from the increase on the number of FeMn grains at the interface as the thickness of the NiFe layer is increased. The angular evolution of AMR and the magnetic torque were calculated and compared to the experimental ones using the minimization of the free magnetic energy and finding the magnetization equilibrium angle. The free energy, for each grain of the polycrystalline sample, is composed by the following terms: Zeeman, uniaxial, unidirectional and the rotatable energies. While from the AMR curves we obtain stable anisotropy fields independently on the measuring fields, from the torque curves we obtain increasing values of the uniaxial and rotatable fields, as the measuring field is increased. These results were attributed to the physical origin and sensitivity of the two different techniques. Magnetoresistance is mainly sensitive to the inner portion of the ferromagnetic layer, and the torque brings out information of the whole ferromagnetic layer including the interface of the layers. In this way, we believe that the increase in the uniaxial and rotatable values were due to an increase on the volume of the ferromagnetic layer, near the interfaces, which is made to rotate with the measuring field. Studying the rotational hysteresis by both techniques allows to separately obtain the contributions coming from the inner portion of ferromagnetic layer and from the interface.

  5. Positron emission tomography with α-[11C]methyl-L-tryptophan in tuberous sclerosis complex-related epilepsy.

    PubMed

    Rubí, Sebastià; Costes, Nicolas; Heckemann, Rolf A; Bouvard, Sandrine; Hammers, Alexander; Martí Fuster, Berta; Ostrowsky, Karine; Montavont, Alexandra; Jung, Julien; Setoain, Xavier; Catenoix, Hélène; Hino, Keiko; Liger, François; Le Bars, Didier; Ryvlin, Philippe

    2013-12-01

    Tuberous sclerosis complex (TSC) is often associated with cerebral tubers and medically intractable epilepsy. We reevaluated whether increased uptake of α-[(11) C]methyl-l-tryptophan (AMT) in cerebral tubers is associated with tuber epileptogenicity. We included 12 patients (six male, 4-53 years old) with TSC and refractory seizures who were evaluated for epilepsy surgery in our center, including video-electroencephalographic (EEG) monitoring, fluid-attenuated inversion recovery magnetic resonance imaging (FLAIR MRI), and positron emission tomography (PET) with α-[(11) C]methyl-l-tryptophan (AMT-PET). Nine of these 12 patients also underwent intracerebral EEG recording. AMT uptake in each tuber was visually evaluated on PET coregistered with MRI. An AMT uptake index based on lesional/healthy cortex ratio was also calculated. Sensitivity and specificity values of AMT-PET in the detection of epileptogenic lesions were obtained, using the available electroclinical and neuroimaging evidence as the gold standard for epileptogenicity. A total of 126 tubers were identified. Two of 12 patients demonstrated a tuber with clearly increased AMT uptake, one of whom also showed a subtle increased AMT uptake in another contralateral tuber. Four other patients showed only subtle increased AMT uptake. The only two tubers with clearly increased AMT uptake proved to be epileptogenic based on intracerebral EEG data, whereas none of the tubers associated with subtle increased AMT uptake were involved at ictal onset. In a per-patient approach, this yielded a sensitivity of clearly increased AMT uptake in detecting tuber epileptogenicity of 17% (2/12 patients), whereas the per-lesion sensitivity and specificity were 12% (95% confidence interval [CI]: 3-34%) and 100% (95% CI: 97-100%), respectively. AMT-PET is a specific neuroimaging technique in the identification of epileptogenic tubers in TSC. Despite its low sensitivity, the clinical usefulness of AMT-PET still deserves to be considered according to the challenging complexity of epilepsy surgery in tuberous sclerosis. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  6. [The diagnosis of malaria by the thick film and the QBC: a comparative study of both technics].

    PubMed

    Cabezos, J; Bada, J L

    1993-06-12

    The diagnosis of paludism is important because of the severity of the clinical picture caused by Plasmodium falciparum, the increasing number of travellers to endemic zones and the emigration from these zones. A comparative study of the QBC techniques (staining with acridin orange and observation with ultraviolet light) and the thick film with Giemsa staining was carried out. The QBC and thick film were performed parallelly for 17 months in a total of 623 samples pertaining to subjects from endemic zones of paludism (emigrants, immigrants and travellers). Of the 623 samples studied 49 were positive for paludism by both techniques. Ten were positive with only the thick film and six were positive only with QBC. The sensitivity of QBC versus thick film was 83% and specificity 98.9%. The time used to determine diagnosis with the QBC technique ranged from 6 to 12 minutes from withdrawal of the sample, while with the thick film the time spent was more than 2 hours. The cases positive by thick film and negative with QBC corresponded to patients with very low parasitation. The intensity of parasitation was difficult to determine quantitatively by QBC. Although the QBC technique has the advantage of speed it is inexact with respect to the quantification of parasitemia. Moreover, it is less sensitive than the thick film in patient with very low parasitations and cannot thus substitute the thick film.

  7. Prevention of bacterial foodborne disease using nanobiotechnology.

    PubMed

    Billington, Craig; Hudson, J Andrew; D'Sa, Elaine

    2014-01-01

    Foodborne disease is an important source of expense, morbidity, and mortality for society. Detection and control constitute significant components of the overall management of foodborne bacterial pathogens, and this review focuses on the use of nanosized biological entities and molecules to achieve these goals. There is an emphasis on the use of organisms called bacteriophages (phages: viruses that infect bacteria), which are increasingly being used in pathogen detection and biocontrol applications. Detection of pathogens in foods by conventional techniques is time-consuming and expensive, although it can also be sensitive and accurate. Nanobiotechnology is being used to decrease detection times and cost through the development of biosensors, exploiting specific cell-recognition properties of antibodies and phage proteins. Although sensitivity per test can be excellent (eg, the detection of one cell), the very small volumes tested mean that sensitivity per sample is less compelling. An ideal detection method needs to be inexpensive, sensitive, and accurate, but no approach yet achieves all three. For nanobiotechnology to displace existing methods (culture-based, antibody-based rapid methods, or those that detect amplified nucleic acid) it will need to focus on improving sensitivity. Although manufactured nonbiological nanoparticles have been used to kill bacterial cells, nanosized organisms called phages are increasingly finding favor in food safety applications. Phages are amenable to protein and nucleic acid labeling, and can be very specific, and the typical large "burst size" resulting from phage amplification can be harnessed to produce a rapid increase in signal to facilitate detection. There are now several commercially available phages for pathogen control, and many reports in the literature demonstrate efficacy against a number of foodborne pathogens on diverse foods. As a method for control of pathogens, nanobiotechnology is therefore flourishing.

  8. Enhanced performance for the analysis of prostaglandins and thromboxanes by liquid chromatography-tandem mass spectrometry using a new atmospheric pressure ionization source.

    PubMed

    Lubin, Arnaud; Geerinckx, Suzy; Bajic, Steve; Cabooter, Deirdre; Augustijns, Patrick; Cuyckens, Filip; Vreeken, Rob J

    2016-04-01

    Eicosanoids, including prostaglandins and thromboxanes are lipid mediators synthetized from polyunsaturated fatty acids. They play an important role in cell signaling and are often reported as inflammatory markers. LC-MS/MS is the technique of choice for the analysis of these compounds, often in combination with advanced sample preparation techniques. Here we report a head to head comparison between an electrospray ionization source (ESI) and a new atmospheric pressure ionization source (UniSpray). The performance of both interfaces was evaluated in various matrices such as human plasma, pig colon and mouse colon. The UniSpray source shows an increase in method sensitivity up to a factor 5. Equivalent to better linearity and repeatability on various matrices as well as an increase in signal intensity were observed in comparison to ESI. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2014-01-01

    Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.

  10. Array Technology for Terahertz Imaging

    NASA Technical Reports Server (NTRS)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-01-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  11. Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2016-01-01

    Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.

  12. Challenges in Modern Anti-Doping Analytical Science.

    PubMed

    Ayotte, Christiane; Miller, John; Thevis, Mario

    2017-01-01

    The challenges facing modern anti-doping analytical science are increasingly complex given the expansion of target drug substances, as the pharmaceutical industry introduces more novel therapeutic compounds and the internet offers designer drugs to improve performance. The technical challenges are manifold, including, for example, the need for advanced instrumentation for greater speed of analyses and increased sensitivity, specific techniques capable of distinguishing between endogenous and exogenous metabolites, or biological assays for the detection of peptide hormones or their markers, all of which require an important investment from the laboratories and recruitment of highly specialized scientific personnel. The consequences of introducing sophisticated and complex analytical procedures may result in the future in a change in the strategy applied by the Word Anti-Doping Agency in relation to the introduction and performance of new techniques by the network of accredited anti-doping laboratories. © 2017 S. Karger AG, Basel.

  13. Chemistry of superheavy elements.

    PubMed

    Schädel, Matthias

    2006-01-09

    The number of chemical elements has increased considerably in the last few decades. Most excitingly, these heaviest, man-made elements at the far-end of the Periodic Table are located in the area of the long-awaited superheavy elements. While physical techniques currently play a leading role in these discoveries, the chemistry of superheavy elements is now beginning to be developed. Advanced and very sensitive techniques allow the chemical properties of these elusive elements to be probed. Often, less than ten short-lived atoms, chemically separated one-atom-at-a-time, provide crucial information on basic chemical properties. These results place the architecture of the far-end of the Periodic Table on the test bench and probe the increasingly strong relativistic effects that influence the chemical properties there. This review is focused mainly on the experimental work on superheavy element chemistry. It contains a short contribution on relativistic theory, and some important historical and nuclear aspects.

  14. Visible-light sensitization of TiO2 photocatalysts via wet chemical N-doping for the degradation of dissolved organic compounds in wastewater treatment: a review

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jia, Baoping; Wang, Qiuze; Dionysiou, Dionysois

    2015-05-01

    Increased pollution of ground and surface water and emerging new micropollutants from a wide variety of industrial, municipal, and agricultural sources has increased demand on the development of innovative new technologies and materials whereby challenges associated with the provision of safe potable water can be addressed. Heterogeneous photocatalysis using visible-light sensitized TiO2 photocatalysts has attracted a lot of attention as it can effectively remove dissolved organic compound in water without generating harmful by-products. On this note, recent progress on visible-light sensitive TiO2 synthesis via wet chemical N-doping method is reviewed. In a typical visible-light sensitive TiO2 preparation via wet chemical methods, the chemical (e.g., N-doping content and states) and morphological properties (e.g., particle size, surface area, and crystal phase) of TiO2 in as-prepared resultants are sensitively dependent on many experimental variables during the synthesis. This has also made it very difficult to provide a universal guidance at this stage with a certainty for each variable of N-doping preparation. Instead of one-factor-at-a-time style investigation, a statistically valid parameter optimization investigation for general optima of photocatalytic activity will be certainly useful. Optimization of the preparation technique is envisaged to be beneficial to many environmental applications, i.e., dissolved organic compounds removal in wastewater treatment.

  15. Ammonium Sulfate Improves Detection of Hydrophilic Quaternary Ammonium Compounds through Decreased Ion Suppression in Matrix-Assisted Laser Desorption/Ionization Imaging Mass Spectrometry.

    PubMed

    Sugiyama, Eiji; Masaki, Noritaka; Matsushita, Shoko; Setou, Mitsutoshi

    2015-11-17

    Hydrophilic quaternary ammonium compounds (QACs) include derivatives of carnitine (Car) or choline, which are known to have essential bioactivities. Here we developed a technique for improving the detection of hydrophilic QACs using ammonium sulfate (AS) in matrix-assisted laser desorption/ionization-imaging mass spectrometry (MALDI-IMS). In MALDI mass spectrometry for brain homogenates, the addition of AS greatly increased the signal intensities of Car, acetylcarnitine (AcCar), and glycerophosphocholine (GPC) by approximately 300-, 700-, and 2500-fold. The marked improvement required a higher AS concentration than that needed for suppressing the potassium adduction on phosphatidylcholine and 2,5-dihydroxybenzoic acid. Adding AS also increased the signal intensities of Car, AcCar, and GPC by approximately 10-, 20-, and 40-fold in MALDI-IMS. Consequently, the distributions of five hydrophilic QACs (Car, AcCar, GPC, choline, and phosphocholine) were simultaneously visualized by this technique. The distinct mechanism from other techniques such as improved matrix application, derivatization, or postionization suggests the great potential of AS addition to achieve higher sensitivity of MALDI-IMS for various analytes.

  16. Reflection on Molecular Approaches Influencing State-of-the-Art Bioremediation Design: Culturing to Microbial Community Fingerprinting to Omics

    PubMed Central

    Czaplicki, Lauren M.; Gunsch, Claudia K.

    2017-01-01

    Bioremediation is generally viewed as a cost effective and sustainable technology because it relies on microbes to transform pollutants into benign compounds. Advances in molecular biological analyses allow unprecedented microbial detection and are increasingly incorporated into bioremediation. Throughout history, state-of-the-art techniques have informed bioremediation strategies. However, the insights those techniques provided were not as in depth as those provided by recently developed omics tools. Advances in next generation sequencing (NGS) have now placed metagenomics and metatranscriptomics within reach of environmental engineers. As NGS costs decrease, metagenomics and metatranscriptomics have become increasingly feasible options to rapidly scan sites for specific degradative functions and identify microorganisms important in pollutant degradation. These omic techniques are capable of revolutionizing biological treatment in environmental engineering by allowing highly sensitive characterization of previously uncultured microorganisms. Omics enables the discovery of novel microorganisms for use in bioaugmentation and supports systematic optimization of biostimulation strategies. This review describes the omics journey from roots in biology and medicine to its current status in environmental engineering including potential future directions in commercial application. PMID:28348455

  17. The design of a new concept chromatography column.

    PubMed

    Camenzuli, Michelle; Ritchie, Harald J; Ladine, James R; Shalliker, R Andrew

    2011-12-21

    Active Flow Management is a new separation technique whereby the flow of mobile phase and the injection of sample are introduced to the column in a manner that allows migration according to the principles of the infinite diameter column. A segmented flow outlet fitting allows for the separation of solvent or solute that elutes along the central radial section of the column from that of the sample or solvent that elutes along the wall region of the column. Separation efficiency on the analytical scale is increased by 25% with an increase in sensitivity by as much as 52% compared to conventional separations.

  18. An overview of the endocrine and metabolic changes in manned space flight

    NASA Astrophysics Data System (ADS)

    Leach, Carolyns.

    In the years since the Skylab Program, endocrinology and metabolism have gone through stages of development that can be characterized as descriptive, both physiological and biochemical. At the present time, this area demonstrates a significant increase in knowledge of endocrine and metabolic function in physiology and pathology at the biochemical level. The development of sensitive techniques for the measurement of hormones, their precursors and metabolites and the increasing amount of information on integrated endocrine responses in various physiologic processes make it valuable for us to retrospectively consider our space flight findings especially in considering future work.

  19. Room temperature single-photon detectors for high bit rate quantum key distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comandar, L. C.; Patel, K. A.; Engineering Department, Cambridge University, 9 J J Thomson Ave., Cambridge CB3 0FA

    We report room temperature operation of telecom wavelength single-photon detectors for high bit rate quantum key distribution (QKD). Room temperature operation is achieved using InGaAs avalanche photodiodes integrated with electronics based on the self-differencing technique that increases avalanche discrimination sensitivity. Despite using room temperature detectors, we demonstrate QKD with record secure bit rates over a range of fiber lengths (e.g., 1.26 Mbit/s over 50 km). Furthermore, our results indicate that operating the detectors at room temperature increases the secure bit rate for short distances.

  20. Measuring Intracranial Pressure And Volume Noninvasively

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1994-01-01

    Ultrasonic technique eliminates need to drill into brain cavity. Intracranial dynamics instrument probes cranium ultrasonically to obtain data for determination of intracranial pressure (ICP) and pressure-volume index (PVI). Instrument determines sensitivity of skull to changes in pressure and by use of mechanical device to exert external calibrated pressure on skull. By monitoring volume of blood flowing into jugular vein, one determines change of volume of blood in cranial system. By measuring response of skull to increasing pressure (where pressure increased by tilting patient known amount) and by using cranial blood pressure, one determines intial pressure in cerebrospinal fluid. Once PVI determined, ICP determined.

  1. Synchronous optical pumping of quantum revival beats for atomic magnetometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seltzer, S. J.; Meares, P. J.; Romalis, M. V.

    2007-05-15

    We observe quantum beats with periodic revivals due to nonlinear spacing of Zeeman levels in the ground state of potassium atoms, and demonstrate their synchronous optical pumping by double modulation of the pumping light at the Larmor frequency and the revival frequency. We show that synchronous pumping increases the degree of spin polarization by a factor of 4. As a practical example, we explore the application of this double-modulation technique to atomic magnetometers operating in the geomagnetic field range, and find that it can increase the sensitivity and reduce magnetic-field-orientation-dependent measurement errors endemic to alkali-metal magnetometers.

  2. Medium-energy heavy-ion single-event-burnout imaging of power MOSFETs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musseau, O.; Torres, A.; Campbell, A.B.

    The authors present the first experimental determination of the SEB sensitive area in a power MOSFET irradiated with a high-LET heavy-ion microbeam. They used a spectroscopy technique to perform coincident measurements of the charge collected in both source and drain junctions together, with a non-destructive technique (current limitation). The resulting charge collection images are related to the physical structure of the individual cells. These experimental data reveal the complex 3-dimensional behavior of a real structure, which can not easily be simulated using available tools. As the drain voltage is increased, the onset of burnout is reached, characterized by a suddenmore » change in the charge collection image. Hot spots are observed where the collected charge reaches its maximum value. Those spots, due to burnout triggering events, correspond to areas where the silicon is degraded through thermal effects along a single ion track. This direct observation of SEB sensitive areas as applications for, either device hardening, by modifying doping profiles or layout of the cells, or for code calibration and device simulation.« less

  3. Study of aluminum content in a welding metal by thermoelectric measurements

    NASA Astrophysics Data System (ADS)

    Carreón, H.; Ramirez, S.; Coronado, C.; Salazar, M.

    2018-03-01

    This work investigates the effect caused by the aluminum content in a welding metal and its variation in mechanical properties through the use of a non-destructive thermoelectric technique. It is known that aluminum has positive effects as deoxidizer in low percentages and alloying element together with Niobium and Vanadium. Aluminum has a positive and negative effect, initially improves the mechanical properties of the metal, as it acts as a grain refiner, increasing the yield strength, but in larger quantities, important mechanical properties such as hardness and toughness are seriously affected. For this purpose, HSLA ASTM 572 Gr. 50 steel was used as the base metal, where the weld metal was deposited, after which the specimens were fabricated and the mechanical tests and non-destructive tests were carried out. The sensitivity of the thermoelectric potential technique to microstructural and chemical composition changes was confirmed. The evolution of absolute thermoelectric potential (TEP) values with respect to the percentage of aluminum added to the weld was observed, being also quite sensitive to defects such as micro-cracks.

  4. A humidity sensing organic-inorganic composite for environmental monitoring.

    PubMed

    Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S

    2013-03-14

    In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ~200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ~31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved.

  5. A Humidity Sensing Organic-Inorganic Composite for Environmental Monitoring

    PubMed Central

    Ahmad, Zubair; Zafar, Qayyum; Sulaiman, Khaulah; Akram, Rizwan; Karimov, Khasan S.

    2013-01-01

    In this paper, we present the effect of varying humidity levels on the electrical parameters and the multi frequency response of the electrical parameters of an organic-inorganic composite (PEPC+NiPc+Cu2O)-based humidity sensor. Silver thin films (thickness ∼200 nm) were primarily deposited on plasma cleaned glass substrates by the physical vapor deposition (PVD) technique. A pair of rectangular silver electrodes was formed by patterning silver film through standard optical lithography technique. An active layer of organic-inorganic composite for humidity sensing was later spun coated to cover the separation between the silver electrodes. The electrical characterization of the sensor was performed as a function of relative humidity levels and frequency of the AC input signal. The sensor showed reversible changes in its capacitance with variations in humidity level. The maximum sensitivity ∼31.6 pF/%RH at 100 Hz in capacitive mode of operation has been attained. The aim of this study was to increase the sensitivity of the previously reported humidity sensors using PEPC and NiPc, which has been successfully achieved. PMID:23493124

  6. Integration of polarization-multiplexing and phase-shifting in nanometric two dimensional self-mixing measurement.

    PubMed

    Tao, Yufeng; Xia, Wei; Wang, Ming; Guo, Dongmei; Hao, Hui

    2017-02-06

    Integration of phase manipulation and polarization multiplexing was introduced to self-mixing interferometry (SMI) for high-sensitive measurement. Light polarizations were used to increase measuring path number and predict manifold merits for potential applications. Laser source was studied as a microwave-photonic resonator optically-injected by double reflected lights on a two-feedback-factor analytical model. Independent external paths exploited magnesium-oxide doped lithium niobate crystals at perpendicular polarizations to transfer interferometric phases into amplitudes of harmonics. Theoretical resolutions reached angstrom level. By integrating two techniques, this SMI outperformed the conventional single-path SMIs by simultaneous dual-targets measurement on single laser tube with high sensitivity and low speckle noise. In experimental demonstration, by nonlinear filtering method, a custom-made phase-resolved algorithm real-time figured out instantaneous two-dimensional displacements with nanometer resolution. Experimental comparisons to lock-in technique and a commercial Ploytec-5000 laser Doppler velocity meter validated this two-path SMI in micron range without optical cross-talk. Moreover, accuracy subjected to slewing rates of crystals could be flexibly adjusted.

  7. Prostate lesion detection and localization based on locality alignment discriminant analysis

    NASA Astrophysics Data System (ADS)

    Lin, Mingquan; Chen, Weifu; Zhao, Mingbo; Gibson, Eli; Bastian-Jordan, Matthew; Cool, Derek W.; Kassam, Zahra; Chow, Tommy W. S.; Ward, Aaron; Chiu, Bernard

    2017-03-01

    Prostatic adenocarcinoma is one of the most commonly occurring cancers among men in the world, and it also the most curable cancer when it is detected early. Multiparametric MRI (mpMRI) combines anatomic and functional prostate imaging techniques, which have been shown to produce high sensitivity and specificity in cancer localization, which is important in planning biopsies and focal therapies. However, in previous investigations, lesion localization was achieved mainly by manual segmentation, which is time-consuming and prone to observer variability. Here, we developed an algorithm based on locality alignment discriminant analysis (LADA) technique, which can be considered as a version of linear discriminant analysis (LDA) localized to patches in the feature space. Sensitivity, specificity and accuracy generated by the proposed algorithm in five prostates by LADA were 52.2%, 89.1% and 85.1% respectively, compared to 31.3%, 85.3% and 80.9% generated by LDA. The delineation accuracy attainable by this tool has a potential in increasing the cancer detection rate in biopsies and in minimizing collateral damage of surrounding tissues in focal therapies.

  8. Rapid and sensitive ultrasonic-assisted derivatisation microextraction (UDME) technique for bitter taste-free amino acids (FAA) study by HPLC-FLD.

    PubMed

    Chen, Guang; Li, Jun; Sun, Zhiwei; Zhang, Shijuan; Li, Guoliang; Song, Cuihua; Suo, Yourui; You, Jinmao

    2014-01-15

    Amino acids, as the main contributors to taste, are usually found in relatively high levels in bitter foods. In this work, we focused on seeking a rapid, sensitive and simple method to determine FAA for large batches of micro-samples and to explore the relationship between FAA and bitterness. Overall condition optimisation indicated that the new UDME technique offered higher derivatisation yields and extraction efficiencies than traditional methods. Only 35min was needed in the whole operation process. Very low LLOQ (Lower limit of quantification: 0.21-5.43nmol/L) for FAA in twelve bitter foods was obtained, with which BTT (bitter taste thresholds) and CABT (content of FAA at BTT level) were newly determined. The ratio of CABT to BTT increased with decreasing of BTT. This work provided powerful potential for the high-throughput trace analysis of micro-sample and also a methodology to study the relationship between the chemical constituents and the taste. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Central sensitization: Implications for the diagnosis and treatment of pain

    PubMed Central

    Woolf, Clifford J

    2010-01-01

    Nociceptor inputs can trigger a prolonged but reversible increase in the excitability and synaptic efficacy of neurons in central nociceptive pathways, the phenomenon of central sensitization. Central sensitization manifests as pain hypersensitivity, particularly dynamic tactile allodynia, secondary punctate or pressure hyperalgesia, aftersensations, and enhanced temporal summation. It can be readily and rapidly elicited in human volunteers by diverse experimental noxious conditioning stimuli to skin, muscles or viscera, and in addition to producing pain hypersensitivity, results in secondary changes in brain activity that can be detected by electrophysiological or imaging techniques. Studies in clinical cohorts reveal changes in pain sensitivity that have been interpreted as revealing an important contribution of central sensitization to the pain phenotype in patients with fibromyalgia, osteoarthritis, musculoskeletal disorders with generalized pain hypersensitivity, headache, temporomandibular joint disorders, dental pain, neuropathic pain, visceral pain hypersensitivity disorders and postsurgical pain. The comorbidity of those pain hypersensitivity syndromes that present in the absence of inflammation or a neural lesion, their similar pattern of clinical presentation and response to centrally acting analgesics, may reflect a commonality of central sensitization to their pathophysiology. An important question that still needs to be determined is whether there are individuals with a higher inherited propensity for developing central sensitization than others, and if so, whether this conveys an increased risk both of developing conditions with pain hypersensitivity, and their chronification. Diagnostic criteria to establish the presence of central sensitization in patients will greatly assist the phenotyping of patients for choosing treatments that produce analgesia by normalizing hyperexcitable central neural activity. We have certainly come a long way since the first discovery of activity-dependent synaptic plasticity in the spinal cord and the revelation that it occurs and produces pain hypersensitivity in patients. Nevertheless, discovering the genetic and environmental contributors to and objective biomarkers of central sensitization will be highly beneficial, as will additional treatment options to prevent or reduce this prevalent and promiscuous form of pain plasticity. PMID:20961685

  10. Assessment of cardiac fibrosis: a morphometric method comparison for collagen quantification.

    PubMed

    Schipke, Julia; Brandenberger, Christina; Rajces, Alexandra; Manninger, Martin; Alogna, Alessio; Post, Heiner; Mühlfeld, Christian

    2017-04-01

    Fibrotic remodeling of the heart is a frequent condition linked to various diseases and cardiac dysfunction. Collagen quantification is an important objective in cardiac fibrosis research; however, a variety of different histological methods are currently used that may differ in accuracy. Here, frequently applied collagen quantification techniques were compared. A porcine model of early stage heart failure with preserved ejection fraction was used as an example. Semiautomated threshold analyses were imprecise, mainly due to inclusion of noncollagen structures or failure to detect certain collagen deposits. In contrast, collagen assessment by automated image analysis and light microscopy (LM)-stereology was more sensitive. Depending on the quantification method, the amount of estimated collagen varied and influenced intergroup comparisons. PicroSirius Red, Masson's trichrome, and Azan staining protocols yielded similar results, whereas the measured collagen area increased with increasing section thickness. Whereas none of the LM-based methods showed significant differences between the groups, electron microscopy (EM)-stereology revealed a significant collagen increase between cardiomyocytes in the experimental group, but not at other localizations. In conclusion, in contrast to the staining protocol, section thickness and the quantification method being used directly influence the estimated collagen content and thus, possibly, intergroup comparisons. EM in combination with stereology is a precise and sensitive method for collagen quantification if certain prerequisites are considered. For subtle fibrotic alterations, consideration of collagen localization may be necessary. Among LM methods, LM-stereology and automated image analysis are appropriate to quantify fibrotic changes, the latter depending on careful control of algorithm and comparable section staining. NEW & NOTEWORTHY Direct comparison of frequently applied histological fibrosis assessment techniques revealed a distinct relation of measured collagen and utilized quantification method as well as section thickness. Besides electron microscopy-stereology, which was precise and sensitive, light microscopy-stereology and automated image analysis proved to be appropriate for collagen quantification. Moreover, consideration of collagen localization might be important in revealing minor fibrotic changes. Copyright © 2017 the American Physiological Society.

  11. Observer training for computer-aided detection of pulmonary nodules in chest radiography.

    PubMed

    De Boo, Diederick W; van Hoorn, François; van Schuppen, Joost; Schijf, Laura; Scheerder, Maeke J; Freling, Nicole J; Mets, Onno; Weber, Michael; Schaefer-Prokop, Cornelia M

    2012-08-01

    To assess whether short-term feedback helps readers to increase their performance using computer-aided detection (CAD) for nodule detection in chest radiography. The 140 CXRs (56 with a solitary CT-proven nodules and 84 negative controls) were divided into four subsets of 35; each were read in a different order by six readers. Lesion presence, location and diagnostic confidence were scored without and with CAD (IQQA-Chest, EDDA Technology) as second reader. Readers received individual feedback after each subset. Sensitivity, specificity and area under the receiver-operating characteristics curve (AUC) were calculated for readings with and without CAD with respect to change over time and impact of CAD. CAD stand-alone sensitivity was 59 % with 1.9 false-positives per image. Mean AUC slightly increased over time with and without CAD (0.78 vs. 0.84 with and 0.76 vs. 0.82 without CAD) but differences did not reach significance. The sensitivity increased (65 % vs. 70 % and 66 % vs. 70 %) and specificity decreased over time (79 % vs. 74 % and 80 % vs. 77 %) but no significant impact of CAD was found. Short-term feedback does not increase the ability of readers to differentiate true- from false-positive candidate lesions and to use CAD more effectively. • Computer-aided detection (CAD) is increasingly used as an adjunct for many radiological techniques. • Short-term feedback does not improve reader performance with CAD in chest radiography. • Differentiation between true- and false-positive CAD for low conspicious possible lesions proves difficult. • CAD can potentially increase reader performance for nodule detection in chest radiography.

  12. Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique.

    PubMed

    Xiong, L Z; Xu, C G; Saghai Maroof, M A; Zhang, Q

    1999-04-01

    DNA methylation is known to play an important role in the regulation of gene expression in eukaryotes. In this study, we assessed the extent and pattern of cytosine methylation in the rice genome, using the technique of methylation-sensitive amplified polymorphism (MSAP), which is a modification of the amplified fragment length polymorphism (AFLP) method that makes use of the differential sensitivity of a pair of isoschizomers to cytosine methylation. The tissues assayed included seedlings and flag leaves of an elite rice hybrid, Shanyou 63, and the parental lines Zhenshan 97 and Minghui 63. In all, 1076 fragments, each representing a recognition site cleaved by either or both of the isoschizomers, were amplified using 16 pairs of selective primers. A total of 195 sites were found to be methylated at cytosines in one or both parents, and the two parents showed approximately the same overall degree of methylation (16.3%), as revealed by the incidence of differential digestion by the isoschizomers. Four classes of patterns were identified in a comparative assay of cytosine methylation in the parents and hybrid; increased methylation was detected in the hybrid compared to the parents at some of the recognition sites, while decreased methylation in the hybrid was detected at other sites. A small proportion of the sites was found to be differentially methylated in seedlings and flag leaves; DNA from young seedlings was methylated to a greater extent than that from flag leaves. Almost all of the methylation patterns detected by MSAP could be confirmed by Southern analysis using the isolated amplified fragments as probes. The results clearly demonstrate that the MSAP technique is highly efficient for large-scale detection of cytosine methylation in the rice genome. We believe that the technique can be adapted for use in other plant species.

  13. Analytical electron microscopy in the study of biological systems.

    PubMed

    Johnson, D E

    1986-01-01

    The AEM is a powerful tool in biological research, capable of providing information simply not available by other means. The use of a field emission STEM for this application can lead to a significant improvement in spatial resolution in most cases now allowed by the quality of the specimen preparation but perhaps ultimately limited by the effects of radiation damage. Increased elemental sensitivity is at least possible in selected cases with electron energy-loss spectrometry, but fundamental aspects of ELS will probably confine its role to that of a limited complement to EDS. The considerable margin for improvement in sensitivity of the basic analytical technique means that the search for technological improvement will continue. Fortunately, however, current technology can also continue to answer important biological questions.

  14. Aerodynamic parameter studies and sensitivity analysis for rotor blades in axial flight

    NASA Technical Reports Server (NTRS)

    Chiu, Y. Danny; Peters, David A.

    1991-01-01

    The analytical capability is offered for aerodynamic parametric studies and sensitivity analyses of rotary wings in axial flight by using a 3-D undistorted wake model in curved lifting line theory. The governing equations are solved by both the Multhopp Interpolation technique and the Vortex Lattice method. The singularity from the bound vortices is eliminated through the Hadamard's finite part concept. Good numerical agreement between both analytical methods and finite differences methods are found. Parametric studies were made to assess the effects of several shape variables on aerodynamic loads. It is found, e.g., that a rotor blade with out-of-plane and inplane curvature can theoretically increase lift in the inboard and outboard regions respectively without introducing an additional induced drag.

  15. Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acosta, V. M.; Bauch, E.; Jarmola, A.

    We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast, and collection efficiency can approach unity, leading to an increase in magnetic sensitivity compared to the more common method of collecting red fluorescence. Working at 75 K with a sensor with effective volume 50x50x300 {mu}m{sup 3}, we project photon shot-noise limited sensitivity of 5 pT in one second of acquisition and bandwidth from dc to a few megahertz. Operation in a gradiometer configuration yields a noise floor of 7 nT{sub rms} at {approx}110 Hzmore » in one second of acquisition.« less

  16. Single-event effects experienced by astronauts and microelectronic circuits flown in space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNulty, P.J.

    Models developed for explaining the light flashes experienced by astronauts on Apollo and Skylab missions were used with slight modification to explain upsets observed in microelectronic circuits. Both phenomena can be explained by the simple assumption that an event occurs whenever a threshold number of ionizations or isomerizations are generated within a sensitive volume. Evidence is consistent with the threshold being sharp in both cases, but fluctuations in the physical stimuli lead to a gradual rather than sharp increase in cross section with LET. Successful use of the model requires knowledge of the dimensions of the sensitive volume and themore » value of threshold. Techniques have been developed to determine these SEU parameters in modern circuits.« less

  17. A sub-sampled approach to extremely low-dose STEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, A.; Luzi, L.; Yang, H.

    The inpainting of randomly sub-sampled images acquired by scanning transmission electron microscopy (STEM) is an attractive method for imaging under low-dose conditions (≤ 1 e -Å 2) without changing either the operation of the microscope or the physics of the imaging process. We show that 1) adaptive sub-sampling increases acquisition speed, resolution, and sensitivity; and 2) random (non-adaptive) sub-sampling is equivalent, but faster than, traditional low-dose techniques. Adaptive sub-sampling opens numerous possibilities for the analysis of beam sensitive materials and in-situ dynamic processes at the resolution limit of the aberration corrected microscope and is demonstrated here for the analysis ofmore » the node distribution in metal-organic frameworks (MOFs).« less

  18. Para-phenylenediamine allergy: current perspectives on diagnosis and management

    PubMed Central

    Mukkanna, Krishna Sumanth; Stone, Natalie M; Ingram, John R

    2017-01-01

    Para-phenylenediamine (PPD) is the commonest and most well-known component of hair dyes. Oxidative hair dyes and dark henna temporary tattoos contain PPD. Individuals may be sensitized to PPD by temporary henna tattooing in addition to dyeing their hair. PPD allergy can cause severe reactions and may result in complications. In recent years, frequency of positive patch test reactions to PPD has been increasing. Cross-sensitization to other contact allergens may occur, in particular to other hair dye components. Hairdressers are at a high risk for PPD allergy and require counseling regarding techniques to minimize exposure and protective measures while handling hair dye. We focus this review on the current perspectives of diagnosis and management of PPD allergy. PMID:28176912

  19. Spin-Label CW Microwave Power Saturation and Rapid Passage with Triangular Non-Adiabatic Rapid Sweep (NARS) and Adiabatic Rapid Passage (ARP) EPR Spectroscopy

    PubMed Central

    Kittell, Aaron W.; Hyde, James S.

    2015-01-01

    Non-adiabatic rapid passage (NARS) electron paramagnetic resonance (EPR) spectroscopy was introduced by Kittell, A.W., Camenisch, T.G., Ratke, J.J. Sidabras, J.W., Hyde, J.S., 2011 as a general purpose technique to collect the pure absorption response. The technique has been used to improve sensitivity relative to sinusoidal magnetic field modulation, increase the range of inter-spin distances that can be measured under near physiological conditions, and enhance spectral resolution in copper (II) spectra. In the present work, the method is extended to CW microwave power saturation of spin-labeled T4 Lysozyme (T4L). As in the cited papers, rapid triangular sweep of the polarizing magnetic field was superimposed on slow sweep across the spectrum. Adiabatic rapid passage (ARP) effects were encountered in samples undergoing very slow rotational diffusion as the triangular magnetic field sweep rate was increased. The paper reports results of variation of experimental parameters at the interface of adiabatic and non-adiabatic rapid sweep conditions. Comparison of the forward (up) and reverse (down) triangular sweeps is shown to be a good indicator of the presence of rapid passage effects. Spectral turning points can be distinguished from spectral regions between turning points in two ways: differential microwave power saturation and differential passage effects. Oxygen accessibility data are shown under NARS conditions that appear similar to conventional field modulation data. However, the sensitivity is much higher, permitting, in principle, experiments at substantially lower protein concentrations. Spectral displays were obtained that appear sensitive to rotational diffusion in the range of rotational correlation times of 10−3 to 10−7 s in a manner that is analogous to saturation transfer spectroscopy. PMID:25917132

  20. Induced thermoluminescence as a method for dating recent volcanism: Hawaii County, Hawaii, USA

    NASA Astrophysics Data System (ADS)

    Sears, Derek W. G.; Sears, Hazel; Sehlke, Alexander; Hughes, Scott S.

    2018-01-01

    We have measured the induced thermoluminescence (TL) properties of fifteen samples of basalts collected from the Big Island of Hawaii in order to continue our investigation into the possible utility of this technique as a chronometer. Previous studies of basalts from Idaho have suggested the induced TL of basalts increases with age. Meteorite data suggest two possible explanations for this observation which are that (1) the initial glassy or amorphous phases crystalize with time to produce feldspar, the mineral producing the TL signal, and (2) feldspars lose Fe as they equilibrate and since Fe is a quencher of TL this would cause an increase in TL. The old basalts from Kohala (> 100 ka), which are mostly alkali basalts, have TL sensitivities 10-100 times higher than the much younger tholeiites from Kilauea and Mauna Loa (< 50 ka). The thermoluminescence of feldspars is strongly dependent on composition and when this is corrected for, using literature data, the slope of the regression line for the plot of log TL sensitivity against historic or radiometric age for the Hawaii basalts is within 2 sigma of the regression line for the analogous plot for the Idaho basalts, although the Hawaii line is much shallower (0.0015 ± 0.0012 for Hawaii cf. 0.0039 ± - 0.0014 for Idaho, 2σ uncertainties). However, the intercepts are significantly different (0.78 ± 0.18 for Hawaii cf. - 0.079 ± 0.28 for Idaho, 2σ uncertainties). These results suggest that TL sensitivity has the potential to be a means of dating volcanism in the 0-800 ka range, although the scatter in the data - especially for the < 50 ka samples - needs to be understood, and a means found for its removal, before the technique has the possibility of being practically useful.

  1. Approach of technical decision-making by element flow analysis and Monte-Carlo simulation of municipal solid waste stream.

    PubMed

    Tian, Bao-Guo; Si, Ji-Tao; Zhao, Yan; Wang, Hong-Tao; Hao, Ji-Ming

    2007-01-01

    This paper deals with the procedure and methodology which can be used to select the optimal treatment and disposal technology of municipal solid waste (MSW), and to provide practical and effective technical support to policy-making, on the basis of study on solid waste management status and development trend in China and abroad. Focusing on various treatment and disposal technologies and processes of MSW, this study established a Monte-Carlo mathematical model of cost minimization for MSW handling subjected to environmental constraints. A new method of element stream (such as C, H, O, N, S) analysis in combination with economic stream analysis of MSW was developed. By following the streams of different treatment processes consisting of various techniques from generation, separation, transfer, transport, treatment, recycling and disposal of the wastes, the element constitution as well as its economic distribution in terms of possibility functions was identified. Every technique step was evaluated economically. The Mont-Carlo method was then conducted for model calibration. Sensitivity analysis was also carried out to identify the most sensitive factors. Model calibration indicated that landfill with power generation of landfill gas was economically the optimal technology at the present stage under the condition of more than 58% of C, H, O, N, S going to landfill. Whether or not to generate electricity was the most sensitive factor. If landfilling cost increases, MSW separation treatment was recommended by screening first followed with incinerating partially and composting partially with residue landfilling. The possibility of incineration model selection as the optimal technology was affected by the city scale. For big cities and metropolitans with large MSW generation, possibility for constructing large-scale incineration facilities increases, whereas, for middle and small cities, the effectiveness of incinerating waste decreases.

  2. Enhancement in sample collection for the detection of MDMA using a novel planar SPME (PSPME) device coupled to ion mobility spectrometry (IMS).

    PubMed

    Gura, Sigalit; Guerra-Diaz, Patricia; Lai, Hanh; Almirall, José R

    2009-07-01

    Trace detection of illicit drugs challenges the scientific community to develop improved sensitivity and selectivity in sampling and detection techniques. Ion mobility spectrometry (IMS) is one of the prominent trace detectors for illicit drugs and explosives, mostly due to its portability, high sensitivity and fast analysis. Current sampling methods for IMS rely on wiping suspected surfaces or withdrawing air through filters to collect particulates. These methods depend greatly on the particulates being bound onto surfaces or having sufficient vapour pressure to be airborne. Many of these compounds are not readily available in the headspace due to their low vapour pressure. This research presents a novel SPME device for enhanced air sampling and shows the use of optimized IMS by genetic algorithms to target volatile markers and/or odour signatures of illicit substances. The sampling method was based on unique static samplers, planar substrates coated with sol-gel polydimethyl siloxane (PDMS) nanoparticles, also known as planar solid-phase microextraction (PSPME). Due to its surface chemistry, high surface area and capacity, PSPME provides significant increases in sensitivity over conventional fibre SPME. The results show a 50-400 times increase in the detection capacity for piperonal, the odour signature of 3,4-methylenedioxymethamphetamine (MDMA). The PSPME-IMS technique was able to detect 600 ng of piperonal in a 30 s extraction from a quart-sized can containing 5 MDMA tablets, while detection using fibre SPME-IMS was not attainable. In a blind study of six cases suspected to contain varying amounts of MDMA in the tablets, PSPME-IMS successfully detected five positive cases and also produced no false positives or false negatives. One positive case had minimal amounts of MDMA resulting in a false negative response for fibre SPME-IMS.

  3. Computational procedures for evaluating the sensitivity derivatives of vibration frequencies and Eigenmodes of framed structures

    NASA Technical Reports Server (NTRS)

    Fetterman, Timothy L.; Noor, Ahmed K.

    1987-01-01

    Computational procedures are presented for evaluating the sensitivity derivatives of the vibration frequencies and eigenmodes of framed structures. Both a displacement and a mixed formulation are used. The two key elements of the computational procedure are: (a) Use of dynamic reduction techniques to substantially reduce the number of degrees of freedom; and (b) Application of iterative techniques to improve the accuracy of the derivatives of the eigenmodes. The two reduction techniques considered are the static condensation and a generalized dynamic reduction technique. Error norms are introduced to assess the accuracy of the eigenvalue and eigenvector derivatives obtained by the reduction techniques. The effectiveness of the methods presented is demonstrated by three numerical examples.

  4. Automatic arc welding of propulsion system tubing in close proximity to sensitive electronic devices

    NASA Technical Reports Server (NTRS)

    Lumsden, J. M.; Whittlesey, A. C.

    1981-01-01

    The planned final assembly of the Galileo spacecraft propulsion system tubing, which involves welding in close proximity to sensitive electronics, raised significant concerns about the effects of electromagnetic coupling of weld energy on CMOS and other sensitive integrated circuits. A test program was established to assess the potential of an orbital arc welder and an RF-induction brazing machine to damage sensitive electronic equipment. Test parameters were varied to assess the effectiveness of typical transient suppression practices such as grounding, bonding, and shielding. A technique was developed to calibrate the hazard levels at the victim-circuit location; this technique is described along with the results and conclusions of the test program.

  5. The accuracy of formol-ether concentration in diagnosing soiltransmitted helminths in elementary school 27 Peusangan in Bireuen

    NASA Astrophysics Data System (ADS)

    Fitriani, C. L.; Panggabean, M.; Pasaribu, A. P.

    2018-03-01

    Soil-transmitted helminths (STH) or a group of parasitic nematode worms causing human infection through contact with moist soil may contribute to anemia, nutritional disorders, physical and intellectual growth retardation. School-age children are at high risk of STH infection due to frequent contact with soil. Reliable, sensitive, and practical diagnostic are the test series for detecting STH. This study aimed to assess the sensitivity and specificity of the formol-ether concentration (FEC) in the diagnosis of STH when compared to the Kato-Katz technique. The study was designed at state elementary school 27 Peusangan, Bireuen. The FEC study on a total of 80 (100%) elementary students showed that 12 (15%) sample had the STH infection, while Kato-Katz technique (Gold standard) showed that 31 (38.75%) sample had the STH infection. The FEC technique has the sensitivity of (38.71%), specificity of (100%) and accuracy of (76.25%). The Kato-Katz technique is better than the FEC technique for assessing STH in Bireuen due to mild infection.

  6. Neurotransmitter measurement with a fiber optic probe using pulsed ultraviolet resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Schulze, H. Georg; Greek, L. Shane; Blades, Michael W.; Bree, Alan V.; Gorzalka, Boris B.; Turner, Robin F. B.

    1997-05-01

    Many techniques have been developed to investigate the chemistry associated with brain activity. These techniques generally fall into two categories: fast techniques with species restricted sensitivity and slow techniques with generally unrestricted species sensitivity. Therefore, a need exists for a fast non-invasive technique sensitive to a wide array of biologically relevant compounds in order to measure chemical brain events in real time. The work presented here describes the progress made toward the development of a novel neurotransmitter probe. A fiber-optic linked Raman and tunable ultraviolet resonance Raman system was assembled with custom designed optical fiber probes. Probes of several different geometries were constructed and their working curves obtained in aqueous mixtures of methyl orange and potassium nitrate to determine the best probe configuration given particular sample characteristics. Using this system, the ultraviolet resonance Raman spectra of some neurotransmitters were measured with a fiber-optic probe and are reported here for the first time. The probe has also been used to measure neurotransmitter secretions obtained from depolarized rat pheochromocytoma cells.

  7. Quantitative optical metrology with CMOS cameras

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Kolenovic, Ervin; Ferguson, Curtis F.

    2004-08-01

    Recent advances in laser technology, optical sensing, and computer processing of data, have lead to the development of advanced quantitative optical metrology techniques for high accuracy measurements of absolute shapes and deformations of objects. These techniques provide noninvasive, remote, and full field of view information about the objects of interest. The information obtained relates to changes in shape and/or size of the objects, characterizes anomalies, and provides tools to enhance fabrication processes. Factors that influence selection and applicability of an optical technique include the required sensitivity, accuracy, and precision that are necessary for a particular application. In this paper, sensitivity, accuracy, and precision characteristics in quantitative optical metrology techniques, and specifically in optoelectronic holography (OEH) based on CMOS cameras, are discussed. Sensitivity, accuracy, and precision are investigated with the aid of National Institute of Standards and Technology (NIST) traceable gauges, demonstrating the applicability of CMOS cameras in quantitative optical metrology techniques. It is shown that the advanced nature of CMOS technology can be applied to challenging engineering applications, including the study of rapidly evolving phenomena occurring in MEMS and micromechatronics.

  8. Simultaneous pH-sensitive and oxygen-sensitive MRI of human gliomas at 3 T using multi-echo amine proton chemical exchange saturation transfer spin-and-gradient echo echo-planar imaging (CEST-SAGE-EPI).

    PubMed

    Harris, Robert J; Yao, Jingwen; Chakhoyan, Ararat; Raymond, Catalina; Leu, Kevin; Liau, Linda M; Nghiemphu, Phioanh L; Lai, Albert; Salamon, Noriko; Pope, Whitney B; Cloughesy, Timothy F; Ellingson, Benjamin M

    2018-04-06

    To introduce a new pH-sensitive and oxygen-sensitive MRI technique using amine proton CEST echo spin-and-gradient echo (SAGE) EPI (CEST-SAGE-EPI). pH-weighting was obtained using CEST estimations of magnetization transfer ratio asymmetry (MTR asym ) at 3 ppm, and oxygen-weighting was obtained using R2' measurements. Glutamine concentration, pH, and relaxation rates were varied in phantoms to validate simulations and estimate relaxation rates. The values of MTR asym and R2' in normal-appearing white matter, T 2 hyperintensity, contrast enhancement, and macroscopic necrosis were measured in 47 gliomas. Simulation and phantom results confirmed an increase in MTR asym with decreasing pH. The CEST-SAGE-EPI estimates of R 2 , R2*, and R2' varied linearly with gadolinium diethylenetriamine penta-acetic acid concentration (R 2  = 6.2 mM -1 ·sec -1 and R2* = 6.9 mM -1 ·sec -1 ). The CEST-SAGE-EPI and Carr-Purcell-Meiboom-Gill estimates of R 2 (R 2  = 0.9943) and multi-echo gradient-echo estimates of R2* (R 2  = 0.9727) were highly correlated. T 2 lesions had lower R2' and higher MTR asym compared with normal-appearing white matter, suggesting lower hypoxia and high acidity, whereas contrast-enhancement tumor regions had elevated R2' and MTR asym , indicating high hypoxia and acidity. The CEST-SAGE-EPI technique provides simultaneous pH-sensitive and oxygen-sensitive image contrasts for evaluation of the brain tumor microenvironment. Advantages include fast whole-brain acquisition, in-line B 0 correction, and simultaneous estimation of CEST effects, R 2 , R2*, and R2' at 3 T. © 2018 International Society for Magnetic Resonance in Medicine.

  9. EBUS-Guided Cautery-Assisted Transbronchial Forceps Biopsies: Safety and Sensitivity Relative to Transbronchial Needle Aspiration

    PubMed Central

    Bramley, Kyle; Pisani, Margaret A.; Murphy, Terrence E.; Araujo, Katy; Homer, Robert; Puchalski, Jonathan

    2016-01-01

    Background EBUS-guided transbronchial needle aspiration (TBNA) is important in the evaluation of thoracic lymphadenopathy. Reliably providing excellent diagnostic yield for malignancy, its diagnosis of sarcoidosis is inconsistent. Furthermore, when larger “core” biopsy samples of malignant tissue are required, TBNA may not suffice. The primary objective of this study was to determine if the sequential use of TBNA and a novel technique called cautery-assisted transbronchial forceps biopsies (ca-TBFB) was safe. Secondary outcomes included sensitivity and successful acquisition of tissue. Methods Fifty unselected patients undergoing convex probe EBUS were prospectively enrolled. Under EBUS guidance, all lymph nodes ≥ 1 cm were sequentially biopsied using TBNA and ca-TBFB. Safety and sensitivity were assessed at the nodal level for 111 nodes. Results of each technique were also reported on a per-patient basis. Results There were no significant adverse events. In nodes determined to be malignant, TBNA provided higher sensitivity (100%) than ca-TBFB (78%). However, among nodes with granulomatous inflammation, ca-TBFB exhibited higher sensitivity (90%) than TBNA (33%). For analysis based on patients rather than nodes, 6 of the 31 patients with malignancy would have been missed or understaged if the diagnosis was based on samples obtained by ca-TBFB. On the other hand, 3 of 8 patients with sarcoidosis would have been missed if analysis was based only on TBNA samples. In some cases only ca-TBFB acquired sufficient tissue for the core samples needed in clinical trials of malignancy. Conclusions The sequential use of TBNA and ca-TBFB appears to be safe. The larger samples obtained from ca-TBFB increased its sensitivity to detect granulomatous disease and provided specimens for clinical trials of malignancy when needle biopsies were insufficient. For thoracic surgeons and advanced bronchoscopists, we advocate ca-TBFB as an alternative to TBNA in select clinical scenarios. PMID:26912301

  10. Endobronchial Ultrasound-Guided Cautery-Assisted Transbronchial Forceps Biopsies: Safety and Sensitivity Relative to Transbronchial Needle Aspiration.

    PubMed

    Bramley, Kyle; Pisani, Margaret A; Murphy, Terrence E; Araujo, Katy L; Homer, Robert J; Puchalski, Jonathan T

    2016-05-01

    Endobronchial ultrasound (EBUS)-guided transbronchial needle aspiration (TBNA) is important in the evaluation of thoracic lymphadenopathy. Reliably providing excellent diagnostic yield for malignancy, its diagnosis of sarcoidosis is inconsistent. Furthermore, TBNA may not suffice when larger "core biopsy" samples of malignant tissue are required. The primary objective of this study was to determine if the sequential use of TBNA and a novel technique called cautery-assisted transbronchial forceps biopsy (ca-TBFB) was safe. Secondary outcomes included sensitivity and successful acquisition of tissue. The study prospectively enrolled 50 unselected patients undergoing convex-probe EBUS. All lymph nodes exceeding 1 cm were sequentially biopsied under EBUS guidance using TBNA and ca-TBFB. Safety and sensitivity were assessed at the nodal level for 111 nodes. Results of each technique were also reported for each patient. There were no significant adverse events. In nodes determined to be malignant, TBNA provided higher sensitivity (100%) than ca-TBFB (78%). However, among nodes with granulomatous inflammation, ca-TBFB exhibited higher sensitivity (90%) than TBNA (33%). On the one hand, for analysis based on patients rather than nodes, 6 of the 31 patients with malignancy would have been missed or understaged if the diagnosis were based on samples obtained by ca-TBFB. On the other hand, 3 of 8 patients with sarcoidosis would have been missed if analysis were based only on TBNA samples. In some patients, only ca-TBFB acquired sufficient tissue for the core samples needed in clinical trials of malignancy. The sequential use of TBNA and ca-TBFB appears to be safe. The larger samples obtained from ca-TBFB increased its sensitivity to detect granulomatous disease and provided adequate specimens for clinical trials of malignancy when specimens from needle biopsies were insufficient. For thoracic surgeons and advanced bronchoscopists, we advocate ca-TBFB as an alternative to TBNA in select clinical scenarios. Copyright © 2016 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Improved Gustatory Sensitivity in Morbidly Obese Patients After Laparoscopic Sleeve Gastrectomy.

    PubMed

    Altun, Huseyin; Hanci, Deniz; Altun, Hasan; Batman, Burcin; Serin, Rahmi Kursat; Karip, Aziz Bora; Akyuz, Umit

    2016-07-01

    The reduction in the preferences for sweet and fat containing tastes in obese patients who underwent bariatric surgery was relatively well shown; however, there are only limited data on the changes in the sensitivity of other tastes like sour, salty, and bitter. We investigated the changes in gustatory sensitivity of 52 morbidly obese patients (M/F, 22/30; age range, 19-60 years; BMI range, 32.5-63.0 kg/m(2)) after laparoscopic sleeve gastrectomy. The surgery was performed by the same surgeon using 5 ports technique. Gustatory sensitivity was tested preoperatively and 1 and 3 months after the surgery using standardized Taste Strips test. There was a statistically significant improvement in the taste acuity to sweet, sour, salty, and bitter tastants in morbidly obese patients after the laparoscopic sleeve gastrectomy during the follow-up period of 3 months. Median whole test scores of the patients were increased from 11.5 preoperatively to 14 in the first and third months. In this study, we were able to show the significant improvement in gustatory sensitivity of morbidly obese patients after laparoscopic sleeve gastrectomy for the first time in literature. © The Author(s) 2016.

  12. Evaluation and recommendation of sensitivity analysis methods for application to Stochastic Human Exposure and Dose Simulation models.

    PubMed

    Mokhtari, Amirhossein; Christopher Frey, H; Zheng, Junyu

    2006-11-01

    Sensitivity analyses of exposure or risk models can help identify the most significant factors to aid in risk management or to prioritize additional research to reduce uncertainty in the estimates. However, sensitivity analysis is challenged by non-linearity, interactions between inputs, and multiple days or time scales. Selected sensitivity analysis methods are evaluated with respect to their applicability to human exposure models with such features using a testbed. The testbed is a simplified version of a US Environmental Protection Agency's Stochastic Human Exposure and Dose Simulation (SHEDS) model. The methods evaluated include the Pearson and Spearman correlation, sample and rank regression, analysis of variance, Fourier amplitude sensitivity test (FAST), and Sobol's method. The first five methods are known as "sampling-based" techniques, wheras the latter two methods are known as "variance-based" techniques. The main objective of the test cases was to identify the main and total contributions of individual inputs to the output variance. Sobol's method and FAST directly quantified these measures of sensitivity. Results show that sensitivity of an input typically changed when evaluated under different time scales (e.g., daily versus monthly). All methods provided similar insights regarding less important inputs; however, Sobol's method and FAST provided more robust insights with respect to sensitivity of important inputs compared to the sampling-based techniques. Thus, the sampling-based methods can be used in a screening step to identify unimportant inputs, followed by application of more computationally intensive refined methods to a smaller set of inputs. The implications of time variation in sensitivity results for risk management are briefly discussed.

  13. Near-infrared spectroscopy assessment of divided visual attention task-invoked cerebral hemodynamics during prolonged true driving

    NASA Astrophysics Data System (ADS)

    Li, Ting; Zhao, Yue; Sun, Yunlong; Gao, Yuan; Su, Yu; Hetian, Yiyi; Chen, Min

    2015-03-01

    Driver fatigue is one of the leading causes of traffic accidents. It is imperative to develop a technique to monitor fatigue of drivers in real situation. Near-infrared spectroscopy (fNIRS) is now capable of measuring brain functional activity noninvasively in terms of hemodynamic responses sensitively, which shed a light to us that it may be possible to detect fatigue-specified brain functional activity signal. We developed a sensitive, portable and absolute-measure fNIRS, and utilized it to monitor cerebral hemodynamics on car drivers during prolonged true driving. An odd-ball protocol was employed to trigger the drivers' visual divided attention, which is a critical function in safe driving. We found that oxyhemoglobin concentration and blood volume in prefrontal lobe dramatically increased with driving duration (stand for fatigue degree; 2-10 hours), while deoxyhemoglobin concentration increased to the top at 4 hours then decreased slowly. The behavior performance showed clear decrement only after 6 hours. Our study showed the strong potential of fNIRS combined with divided visual attention protocol in driving fatigue degree monitoring. Our findings indicated the fNIRS-measured hemodynamic parameters were more sensitive than behavior performance evaluation.

  14. Broadband sensitized photon up-conversion at subsolar irradiance (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pedrini, Jacopo; Monguzzi, Angelo; Meinardi, Francesco

    2016-09-01

    A crucial limit of solar devices is their inability to harvest the full solar spectrum. Currently, sensitized up-conversion based on triplet-tripled annihilation (STTA-UC) in bi-component organic systems is the most promising technique to recover sub-bandgap photons, showing good efficiencies also at excitation intensities comparable to the solar irradiance. In STTA-UC, high-energy light is generated through annihilation of metastable triplet states of molecules acting as emitters, which are populated via resonant energy transfer from a light-harvesting sensitizer. However, suitable sensitizers show narrow absorption bands, limiting the fraction of recoverable photons, therefore preventing the application of STTA-UC to real-world devices. Here we demonstrate how to overcome the described limit by using multiple sensitizers that work cooperatively to broaden the overall system absorption band. This is obtained using an additional sensitizer that transfers the extra harvested energy to the main one (sensitization of the sensitizer), or a set of properly designed complementary absorbing sensitizers all able to excite simultaneously the same emitter (multi-sensitizers). In both cases STTA-UC performances result strongly enhanced compared to the corresponding mono-sensitizer system, increasing the up-converted light intensity generated at AM 1.5 up to two times. Remarkably, by coupling our light converters to a DSSC we prove its operation by exploiting exclusively sub-bandgap photons. A detailed modeling of the photophysical processes involved in these complex systems allows us to draw the guidelines for the design of the next generation STTA-UC materials, encouraging their application to photovoltaic technologies.

  15. Shot noise-limited Cramér-Rao bound and algorithmic sensitivity for wavelength shifting interferometry

    NASA Astrophysics Data System (ADS)

    Chen, Shichao; Zhu, Yizheng

    2017-02-01

    Sensitivity is a critical index to measure the temporal fluctuation of the retrieved optical pathlength in quantitative phase imaging system. However, an accurate and comprehensive analysis for sensitivity evaluation is still lacking in current literature. In particular, previous theoretical studies for fundamental sensitivity based on Gaussian noise models are not applicable to modern cameras and detectors, which are dominated by shot noise. In this paper, we derive two shot noiselimited theoretical sensitivities, Cramér-Rao bound and algorithmic sensitivity for wavelength shifting interferometry, which is a major category of on-axis interferometry techniques in quantitative phase imaging. Based on the derivations, we show that the shot noise-limited model permits accurate estimation of theoretical sensitivities directly from measured data. These results can provide important insights into fundamental constraints in system performance and can be used to guide system design and optimization. The same concepts can be generalized to other quantitative phase imaging techniques as well.

  16. SYMPOSIUM ON MULTIMODALITY CARDIOVASCULAR MOLECULAR IMAGING IMAGING TECHNOLOGY - PART 2

    PubMed Central

    de Kemp, Robert A.; Epstein, Frederick H.; Catana, Ciprian; Tsui, Benjamin M.W.; Ritman, Erik L.

    2013-01-01

    Rationale The ability to trace or identify specific molecules within a specific anatomic location provides insight into metabolic pathways, tissue components and tracing of solute transport mechanisms. With the increasing use of small animals for research such imaging must have sufficiently high spatial resolution to allow anatomic localization as well as sufficient specificity and sensitivity to provide an accurate description of the molecular distribution and concentration. Methods Imaging methods based on electromagnetic radiation, such as PET, SPECT, MRI and CT, are increasingly applicable due to recent advances in novel scanner hardware, image reconstruction software and availability of novel molecules which have enhanced sensitivity in these methodologies. Results Micro-PET has been advanced by development of detector arrays that provide higher resolution and positron emitting elements that allow new molecular tracers to be labeled. Micro-MRI has been improved in terms of spatial resolution and sensitivity by increased magnet field strength and development of special purpose coils and associated scan protocols. Of particular interest is the associated ability to image local mechanical function and solute transport processes which can be directly related to the molecular information. This is further strengthened by the synergistic integration of the PET with MRI. Micro-SPECT has been improved by use of coded aperture imaging approaches as well as image reconstruction algorithms which can better deal with the photon limited scan data. The limited spatial resolution can be partially overcome by integrating the SPECT with CT. Micro-CT by itself provides exquisite spatial resolution of anatomy, but recent developments of high spatial resolution photon counting and spectrally-sensitive imaging arrays, combined with x-ray optical devices, have promise for actual molecular identification by virtue of the chemical bond lengths of molecules, especially of bio-polymers. Conclusion With the increasing use of small animals for evaluating new clinical imaging techniques as well as providing increased insights into patho-physiological phenomena, the availability of improved detection systems, scanning protocols and associated software, the repertoire of molecular imaging is greatly increased in sensitivity and specificity. PMID:20457793

  17. Increasing the Analytical Sensitivity by Oligonucleotides Modified with Para- and Ortho-Twisted Intercalating Nucleic Acids – TINA

    PubMed Central

    Schneider, Uffe V.; Géci, Imrich; Jøhnk, Nina; Mikkelsen, Nikolaj D.; Pedersen, Erik B.; Lisby, Gorm

    2011-01-01

    The sensitivity and specificity of clinical diagnostic assays using DNA hybridization techniques are limited by the dissociation of double-stranded DNA (dsDNA) antiparallel duplex helices. This situation can be improved by addition of DNA stabilizing molecules such as nucleic acid intercalators. Here, we report the synthesis of a novel ortho-Twisted Intercalating Nucleic Acid (TINA) amidite utilizing the phosphoramidite approach, and examine the stabilizing effect of ortho- and para-TINA molecules in antiparallel DNA duplex formation. In a thermal stability assay, ortho- and para-TINA molecules increased the melting point (Tm) of Watson-Crick based antiparallel DNA duplexes. The increase in Tm was greatest when the intercalators were placed at the 5′ and 3′ termini (preferable) or, if placed internally, for each half or whole helix turn. Terminally positioned TINA molecules improved analytical sensitivity in a DNA hybridization capture assay targeting the Escherichia coli rrs gene. The corresponding sequence from the Pseudomonas aeruginosa rrs gene was used as cross-reactivity control. At 150 mM ionic strength, analytical sensitivity was improved 27-fold by addition of ortho-TINA molecules and 7-fold by addition of para-TINA molecules (versus the unmodified DNA oligonucleotide), with a 4-fold increase retained at 1 M ionic strength. Both intercalators sustained the discrimination of mismatches in the dsDNA (indicated by ΔTm), unless placed directly adjacent to the mismatch – in which case they partly concealed ΔTm (most pronounced for para-TINA molecules). We anticipate that the presented rules for placement of TINA molecules will be broadly applicable in hybridization capture assays and target amplification systems. PMID:21673988

  18. A Fluorescence Recovery After Photobleaching (FRAP) Technique for the Measurement of Solute Transport Across Surfactant-Laden Interfaces

    NASA Technical Reports Server (NTRS)

    Browne, Edward P.; Hatton, T. Alan

    1996-01-01

    The technique of Fluorescence Recovery After Photobleaching (FRAP) has been applied to the measurement of interfacial transport in two-phase systems. FRAP exploits the loss of fluorescence exhibited by certain fluorophores when over-stimulated (photobleached), so that a two-phase system, originally at equilibrium, can be perturbed without disturbing the interface by strong light from an argon-ion laser and its recovery monitored by a microscope-mounted CCD camera as it relaxes to a new equilibrium. During this relaxation, the concentration profiles of the probe solute are measured on both sides of the interface as a function of time, yielding information about the transport characteristics of the system. To minimize the size of the meniscus between the two phases, a photolithography technique is used to selectively treat the glass walls of the cell in which the phases are contained. This allows concentration measurements to be made very close to the interface and increases the sensitivity of the FRAP technique.

  19. Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential

    PubMed Central

    Li, Zhiyun; Deen, M. Jamal; Kumar, Shiva; Selvaganapathy, P. Ravi

    2014-01-01

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring. PMID:25230309

  20. Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Xueyun; Wojcik, Roza; Zhang, Xing

    Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. IMS alone is useful, but its coupling with mass spectrometry (MS) and front-end separations has been extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information in biological and environmental sample analyses. Multiple studies in disease screening and environmental evaluations have even shown these IMS-based multidimensional separations extract information not possible with each technique individually. This review highlights 3-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography (GC),more » supercritical fluid chromatography (SFC), liquid chromatography (LC), solid phase extractions (SPE), capillary electrophoresis (CE), field asymmetric ion mobility spectrometry (FAIMS), and microfluidic devices. The origination, current state, various applications, and future capabilities for these multidimensional approaches are described to provide insight into the utility and potential of each technique.« less

  1. Raman spectroscopy for in-line water quality monitoring--instrumentation and potential.

    PubMed

    Li, Zhiyun; Deen, M Jamal; Kumar, Shiva; Selvaganapathy, P Ravi

    2014-09-16

    Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals. The development of advanced Raman techniques and improvements in instrumentation, has significantly improved the performance of modern Raman spectrometers so that it can now be used for detection of low concentrations of chemicals such as in-line monitoring of chemical and pharmaceutical contaminants in water. This paper briefly introduces the fundamentals of Raman spectroscopy, reviews the development of Raman instrumentations and discusses advanced and potential Raman techniques for in-line water quality monitoring.

  2. Cost-sensitive case-based reasoning using a genetic algorithm: application to medical diagnosis.

    PubMed

    Park, Yoon-Joo; Chun, Se-Hak; Kim, Byung-Chun

    2011-02-01

    The paper studies the new learning technique called cost-sensitive case-based reasoning (CSCBR) incorporating unequal misclassification cost into CBR model. Conventional CBR is now considered as a suitable technique for diagnosis, prognosis and prescription in medicine. However it lacks the ability to reflect asymmetric misclassification and often assumes that the cost of a positive diagnosis (an illness) as a negative one (no illness) is the same with that of the opposite situation. Thus, the objective of this research is to overcome the limitation of conventional CBR and encourage applying CBR to many real world medical cases associated with costs of asymmetric misclassification errors. The main idea involves adjusting the optimal cut-off classification point for classifying the absence or presence of diseases and the cut-off distance point for selecting optimal neighbors within search spaces based on similarity distribution. These steps are dynamically adapted to new target cases using a genetic algorithm. We apply this proposed method to five real medical datasets and compare the results with two other cost-sensitive learning methods-C5.0 and CART. Our finding shows that the total misclassification cost of CSCBR is lower than other cost-sensitive methods in many cases. Even though the genetic algorithm has limitations in terms of unstable results and over-fitting training data, CSCBR results with GA are better overall than those of other methods. Also the paired t-test results indicate that the total misclassification cost of CSCBR is significantly less than C5.0 and CART for several datasets. We have proposed a new CBR method called cost-sensitive case-based reasoning (CSCBR) that can incorporate unequal misclassification costs into CBR and optimize the number of neighbors dynamically using a genetic algorithm. It is meaningful not only for introducing the concept of cost-sensitive learning to CBR, but also for encouraging the use of CBR in the medical area. The result shows that the total misclassification costs of CSCBR do not increase in arithmetic progression as the cost of false absence increases arithmetically, thus it is cost-sensitive. We also show that total misclassification costs of CSCBR are the lowest among all methods in four datasets out of five and the result is statistically significant in many cases. The limitation of our proposed CSCBR is confined to classify binary cases for minimizing misclassification cost because our proposed CSCBR is originally designed to classify binary case. Our future work extends this method for multi-classification which can classify more than two groups. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Estimating Sobol Sensitivity Indices Using Correlations

    EPA Science Inventory

    Sensitivity analysis is a crucial tool in the development and evaluation of complex mathematical models. Sobol's method is a variance-based global sensitivity analysis technique that has been applied to computational models to assess the relative importance of input parameters on...

  4. Effect of electrode material and design on sensitivity and selectivity for high temperature impedancemetric NOx sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, L Y; Glass, R S; Novak, R F

    2009-09-23

    Solid-state electrochemical sensors using two different sensing electrode compositions, gold and strontium-doped lanthanum manganite (LSM), were evaluated for gas phase sensing of NO{sub x} (NO and NO{sub 2}) using an impedance-metric technique. An asymmetric cell design utilizing porous YSZ electrolyte exposed both electrodes to the test gas (i.e., no reference gas). Sensitivity to less than 5 ppm NO and response/recovery times (10-90%) less than 10 s were demonstrated. Using an LSM sensing electrode, virtual identical sensitivity towards NO and NO{sub 2} was obtained, indicating that the equilibrium gas concentration was measured by the sensing electrode. In contrast, for cells employingmore » a gold sensing electrode the NO{sub x} sensitivity varied depending on the cell design: increasing the amount of porous YSZ electrolyte on the sensor surface produced higher NO{sub 2} sensitivity compared to NO. In order to achieve comparable sensitivity for both NO and NO{sub 2}, the cell with the LSM sensing electrode required operation at a lower temperature (575 C) than the cell with the gold sensing electrode (650 C). The role of surface reactions are proposed to explain the differences in NO and NO{sub 2} selectivity using the two different electrode materials.« less

  5. Gastrointestinal sensitivity to soy and milk proteins in patients with IgA nephropathy.

    PubMed

    Kloster Smerud, H; Fellström, B; Hällgren, R; Osagie, S; Venge, P; Kristjánsson, G

    2010-11-01

    sensitivity to food antigens has been postulated as a contributing factor to the pathogenesis of IgA nephropathy (IgAN). in this study we used a recently developed mucosal patch technique to evaluate rectal mucosal sensitivity to soy and cow's milk (CM) proteins in IgAN patients (n = 28) compared to healthy subjects (n = 18). The rectal mucosal production of nitric oxide (NO) and release of myeloperoxidase (MPO) and eosinophil cationic protein (ECP) were measured. Serum samples were analyzed for IgA and IgG antibodies to alpha-lactalbumin, beta-lactoglobulin, casein and soy. 14 of 28 (14/28) patients experienced a rectal mucosal reaction, measured by increased NO and/or MPO levels, upon rectal challenge with soy and/or cow's milk proteins. The levels of IgG antibodies to alpha-lactalbumin, beta-lactoglobulin and casein were significantly higher in CM sensitive as compared with non-sensitive IgAN patients, whereas the mean serum levels of IgA antibodies were similar. No differences were seen in serum levels of IgA or IgG antibodies to soy. it is concluded that approximately half of our IgAN patients have a rectal mucosal sensitivity to soy or CM, and that an immune reactivity against antigens may be involved in the pathogenesis of IgAN in this subgroup of patients.

  6. Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study.

    PubMed

    Walker, Martin; Basáñez, María-Gloria; Ouédraogo, André Lin; Hermsen, Cornelus; Bousema, Teun; Churcher, Thomas S

    2015-01-16

    Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens.

  7. New technologies and advances in colposcopic assessment.

    PubMed

    Tan, Jeffrey H J; Wrede, C David H

    2011-10-01

    To have a good grasp of clinical colposcopy, it is necessary to understand the histopathologic structure of the normal and dysplastic cervical epithelium. Previous meta-analyses had indicated high overall sensitivity of colposcopy in detecting dysplastic lesions, but recent studies have suggested that the technique has much lower sensitivity in detecting high-grade intraepithelial neoplasia. The best practice in colposcopy relies on accurately taking a biopsy from the correct (i.e. most morphological abnormal) site, and by taking more than one biopsy, the sensitivity for detection of high-grade cervical intraepithelial neoplasia can be increased. Cytological screening programmes of proven and maintained high quality will enhance the predictive colposcopic accuracy for high-grade cervical intraepithelial neoplasia after referral. With the advent of computerised colposcopy and the Internet, digital imaging can be transmitted in real-time for instant viewing, facilitating distant consultation and education. This form of 'telemedicine' will allow family practice and remote areas to have access to colposcopy expertise. Of all the currently available technological adjuncts to colposcopy, spectroscopy devices have demonstrated relatively high sensitivities, and seem to have the best potential to become the technique of choice in future routine clinical practice in developed countries following the human papillomavirus vaccination. Other alternatives may need to be used in parts of the globe with high disease incidence and without organised screening or vaccination programmes. Opportunities remain for global collaboration in research, education and training to promote more effective and affordable cervical screening, and to enhance the skills of colposcopists worldwide. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Water Transport Properties of Roots and Root Cortical Cells in Proton- and Al-Stressed Maize Varieties.

    PubMed Central

    Gunse, B.; Poschenrieder, C.; Barcelo, J.

    1997-01-01

    Root and root cell pressure-probe techniques were used to investigate the possible relationship between Al- or H+-induced alterations of the hydraulic conductivity of root cells (LPc) and whole-root water conductivity (LPr) in maize (Zea mays L.) plants. To distinguish between H+ and Al effects two varieties that differ in H+ and Al tolerance were assayed. Based on root elongation rates after 24 h in nutrient solution of pH 6.0, pH 4.5, or pH 4.5 plus 50 [mu]M Al, the variety Adour 250 was found to be H+-sensitive and Al-tolerant, whereas the variety BR 201 F was found to be H+-tolerant but Al-sensitive. No Al-induced decrease of root pressure and root cell turgor was observed in Al-sensitive BR 201 F, indicating that Al toxicity did not cause a general breakdown of membrane integrity and that ion pumping to the stele was maintained. Al reduced LPc more than LPr in Al-sensitive BR 201 F. Proton toxicity in Adour 250 affected LPr more than LPc. In this Al-tolerant variety LPc was increased by Al. Nevertheless, this positive effect on LPc did not render higher LPr values. In conclusion, there were no direct relationships between Al- or H+-induced decreases of LPr and the effects on LPc. To our knowledge, this is the first time that the influence of H+ and Al on root and root cell water relations has been directly measured by pressure-probe techniques. PMID:12223628

  9. Portable, low-cost NMR with laser-lathe lithography produced microcoils.

    PubMed

    Demas, Vasiliki; Herberg, Julie L; Malba, Vince; Bernhardt, Anthony; Evans, Lee; Harvey, Christopher; Chinn, Sarah C; Maxwell, Robert S; Reimer, Jeffrey

    2007-11-01

    Nuclear Magnetic Resonance (NMR) is unsurpassed in its ability to non-destructively probe chemical identity. Portable, low-cost NMR sensors would enable on-site identification of potentially hazardous substances, as well as the study of samples in a variety of industrial applications. Recent developments in RF microcoil construction (i.e. coils much smaller than the standard 5mm NMR RF coils), have dramatically increased NMR sensitivity and decreased the limits-of-detection (LOD). We are using advances in laser pantographic microfabrication techniques, unique to LLNL, to produce RF microcoils for field deployable, high sensitivity NMR-based detectors. This same fabrication technique can be used to produce imaging coils for MRI as well as for standard hardware shimming or "ex-situ" shimming of field inhomogeneities typically associated with inexpensive magnets. This paper describes a portable NMR system based on the use of a 2 kg hand-held permanent magnet, laser-fabricated microcoils, and a compact spectrometer. The main limitations for such a system are the low resolution and sensitivity associated with the low field values and quality of small permanent magnets, as well as the lack of large amounts of sample of interest in most cases. The focus of the paper is on the setting up of this system, initial results, sensitivity measurements, discussion of the limitations and future plans. The results, even though preliminary, are promising and provide the foundation for developing a portable, inexpensive NMR system for chemical analysis. Such a system will be ideal for chemical identification of trace substances on site.

  10. Frequency Response of Pressure Sensitive Paints

    NASA Technical Reports Server (NTRS)

    Winslow, Neal A.; Carroll, Bruce F.; Setzer, Fred M.

    1996-01-01

    An experimental method for measuring the frequency response of Pressure Sensitive Paints (PSP) is presented. These results lead to the development of a dynamic correction technique for PSP measurements which is of great importance to the advancement of PSP as a measurement technique. The ability to design such a dynamic corrector is most easily formed from the frequency response of the given system. An example of this correction technique is shown. In addition to the experimental data, an analytical model for the frequency response is developed from the one dimensional mass diffusion equation.

  11. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

    NASA Astrophysics Data System (ADS)

    Ashtari Esfahani, Ali; Asner, David M.; Böser, Sebastian; Cervantes, Raphael; Claessens, Christine; de Viveiros, Luiz; Doe, Peter J.; Doeleman, Shepard; Fernandes, Justin L.; Fertl, Martin; Finn, Erin C.; Formaggio, Joseph A.; Furse, Daniel; Guigue, Mathieu; Heeger, Karsten M.; Jones, A. Mark; Kazkaz, Kareem; Kofron, Jared A.; Lamb, Callum; LaRoque, Benjamin H.; Machado, Eric; McBride, Elizabeth L.; Miller, Michael L.; Monreal, Benjamin; Mohanmurthy, Prajwal; Nikkel, James A.; Oblath, Noah S.; Pettus, Walter C.; Hamish Robertson, R. G.; Rosenberg, Leslie J.; Rybka, Gray; Rysewyk, Devyn; Saldaña, Luis; Slocum, Penny L.; Sternberg, Matthew G.; Tedeschi, Jonathan R.; Thümmler, Thomas; VanDevender, Brent A.; E Vertatschitsch, Laura; Wachtendonk, Megan; Weintroub, Jonathan; Woods, Natasha L.; Young, André; Zayas, Evan M.

    2017-05-01

    The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with { O }({eV}) resolution. A lower bound of m({ν }e)≳ 9(0.1) {meV} is set by observations of neutrino oscillations, while the KATRIN experiment—the current-generation tritium beta-decay experiment that is based on magnetic adiabatic collimation with an electrostatic (MAC-E) filter—will achieve a sensitivity of m({ν }e)≲ 0.2 {eV}. The CRES technique aims to avoid the difficulties in scaling up a MAC-E filter-based experiment to achieve a lower mass sensitivity. In this paper we review the current status of the CRES technique and describe Project 8, a phased absolute neutrino mass experiment that has the potential to reach sensitivities down to m({ν }e)≲ 40 {meV} using an atomic tritium source.

  12. Fabrication of a highly sensitive penicillin sensor based on charge transfer techniques.

    PubMed

    Lee, Seung-Ro; Rahman, M M; Sawada, Kazuaki; Ishida, Makoto

    2009-03-15

    A highly sensitive penicillin biosensor based on a charge-transfer technique (CTTPS) has been fabricated and demonstrated in this paper. CTTPS comprised a charge accumulation technique for penicilloic acid and H(+) ions perception system. With the proposed CTTPS, it is possible to amplify the sensing signals without external amplifier by using the charge accumulation cycles. The fabricated CTTPS exhibits excellent performance for penicillin detection and exhibit a high-sensitivity (47.852 mV/mM), high signal-to-noise ratio (SNR), large span (1445 mV), wide linear range (0-25 mM), fast response time (<3s), and very good reproducibility. A very lower detection limit of about 0.01 mM was observed from the proposed sensor. Under optimum conditions, the proposed CTTPS outstripped the performance of the widely used ISFET penicillin sensor and exhibited almost eight times greater sensitivity as compared to ISFET (6.56 mV/mM). The sensor system is implemented for the measurement of the penicillin concentration in penicillin fermentation broth.

  13. Quantum correlation measurements in interferometric gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Martynov, D. V.; Frolov, V. V.; Kandhasamy, S.; Izumi, K.; Miao, H.; Mavalvala, N.; Hall, E. D.; Lanza, R.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Aston, S. M.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fritschel, P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Jones, R.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lormand, M.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Mason, K.; Massinger, T. J.; Matichard, F.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Miller, J.; Mittleman, R.; Moreno, G.; Mueller, G.; Mullavey, A.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors

    2017-04-01

    Quantum fluctuations in the phase and amplitude quadratures of light set limitations on the sensitivity of modern optical instruments. The sensitivity of the interferometric gravitational-wave detectors, such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), is limited by quantum shot noise, quantum radiation pressure noise, and a set of classical noises. We show how the quantum properties of light can be used to distinguish these noises using correlation techniques. Particularly, in the first part of the paper we show estimations of the coating thermal noise and gas phase noise, hidden below the quantum shot noise in the Advanced LIGO sensitivity curve. We also make projections on the observatory sensitivity during the next science runs. In the second part of the paper we discuss the correlation technique that reveals the quantum radiation pressure noise from the background of classical noises and shot noise. We apply this technique to the Advanced LIGO data, collected during the first science run, and experimentally estimate the quantum correlations and quantum radiation pressure noise in the interferometer.

  14. Immunodiagnosis of fascioliasis using sandwich enzyme-linked immunosorbent assay for detection of Fasciola gigantica paramyosin antigen

    PubMed Central

    Abou-Elhakam, Hany Mohamed Adel; Bauomy, Ibraheem Rabia; El Deeb, Somaya Osman; El Amir, Azza Mohamed

    2013-01-01

    Background: Many immunological techniques have been developed over years using the different Fasciola antigens for diagnosis of parasitic infection and to replace the parasitological techniques, which are time consuming and usually lack sensitivity and reproducibility. Materials and Methods: In this study, Fasciola gigantica paramyosin (Pmy) antigen was early detected in cattle sera using sandwich enzyme-linked immunosorbent assay (ELISA), to evaluate the Pmy antigen performance in diagnosis. This work was conducted on 135 cattle blood samples, which were classified according to parasitological investigation into, healthy control (30), fascioliasis (75), and other parasites (30) groups. Results: The sensitivity of Sandwich ELISA was 97.33%, and the specificity was 95%, in comparison with parasitological examination, which recorded 66.66% sensitivity and 100% specificity, respectively. Conclusions: It was clear that the native F. gigantica Pmy is considered as a powerful antigen in early immunodiagnosis of fascioliasis, using a highly sensitive and specific sandwich ELISA technique. PMID:23961441

  15. Comparison of four functionalization methods of gold nanoparticles for enhancing the enzyme-linked immunosorbent assay (ELISA).

    PubMed

    Ciaurriz, Paula; Fernández, Fátima; Tellechea, Edurne; Moran, Jose F; Asensio, Aaron C

    2017-01-01

    The enzyme-linked immunosorbent assay (ELISA) technique is based on the specific recognition ability of the molecular structure of an antigen (epitope) by an antibody and is likely the most important diagnostic technique used today in bioscience. With this methodology, it is possible to diagnose illness, allergies, alimentary fraud, and even to detect small molecules such as toxins, pesticides, heavy metals, etc. For this reason, any procedures that improve the detection limit, sensitivity or reduce the analysis time could have an important impact in several fields. In this respect, many methods have been developed for improving the technique, ranging from fluorescence substrates to methods for increasing the number of enzyme molecules involved in the detection such as the biotin-streptavidin method. In this context, nanotechnology has offered a significant number of proposed solutions, mainly based on the functionalization of nanoparticles from gold to carbon which could be used as antibody carriers as well as reporter enzymes like peroxidase. However, few works have focused on the study of best practices for nanoparticle functionalization for ELISA enhancement. In this work, we use 20 nm gold nanoparticles (AuNPs) as a vehicle for secondary antibodies and peroxidase (HRP). The design of experiments technique (DOE) and four different methods for biomolecule loading were compared using a rabbit IgG/goat anti-rabbit IgG ELISA model (adsorption, directional, covalent and a combination thereof). As a result, AuNP probes prepared by direct adsorption were the most effective method. AuNPs probes were then used to detect gliadin, one of the main components of wheat gluten, the protein composite that causes celiac disease. With this optimized approach, our data showed a sensitivity increase of at least five times and a lower detection limit with respect to a standard ELISA of at least three times. Additionally, the assay time was remarkably decreased.

  16. Effect of Simplifying Drilling Technique on Heat Generation During Osteotomy Preparation for Dental Implant.

    PubMed

    El-Kholey, Khalid E; Ramasamy, Saravanan; Kumar R, Sheetal; Elkomy, Aamna

    2017-12-01

    To test the hypothesis that there would be no difference in heat production by reducing the number of drills during the implant site preparation relative to conventional drilling sequence. A total of 120 implant site preparations with 3 different diameters (3.6, 4.3, and 4.6 mm) were performed on bovine ribs. Within the same diameter group, half of the preparations were performed by a simplified drilling procedure (pilot drill + final diameter drill) and other half using the conventional drilling protocol (pilot drill followed by graduated series of drills to widen the site). Heat production by different drilling techniques was evaluated by measuring the bone temperature using k-type thermocouple and a sensitive thermometer before and after each drill. Mean for maximum temperature increase during site preparation of the 3.6, 4.3, and 4.6-mm implants was 2.45, 2.60, and 2.95° when the site was prepared by the simplified procedure, whereas it was 2.85, 3.10, and 3.60° for the sites prepared by the conventional technique, respectively. No significant difference in temperature increase was found when implants of the 3 different diameters were prepared either by the conventional or simplified drilling procedure. The simplified drilling technique produced similar amount of heat comparable to the conventional technique that proved the initial hypothesis.

  17. Application of CRAFT (complete reduction to amplitude frequency table) in nonuniformly sampled (NUS) 2D NMR data processing.

    PubMed

    Krishnamurthy, Krish; Hari, Natarajan

    2017-09-15

    The recently published CRAFT (complete reduction to amplitude frequency table) technique converts the raw FID data (i.e., time domain data) into a table of frequencies, amplitudes, decay rate constants, and phases. It offers an alternate approach to decimate time-domain data, with minimal preprocessing step. It has been shown that application of CRAFT technique to process the t 1 dimension of the 2D data significantly improved the detectable resolution by its ability to analyze without the use of ubiquitous apodization of extensively zero-filled data. It was noted earlier that CRAFT did not resolve sinusoids that were not already resolvable in time-domain (i.e., t 1 max dependent resolution). We present a combined NUS-IST-CRAFT approach wherein the NUS acquisition technique (sparse sampling technique) increases the intrinsic resolution in time-domain (by increasing t 1 max), IST fills the gap in the sparse sampling, and CRAFT processing extracts the information without loss due to any severe apodization. NUS and CRAFT are thus complementary techniques to improve intrinsic and usable resolution. We show that significant improvement can be achieved with this combination over conventional NUS-IST processing. With reasonable sensitivity, the models can be extended to significantly higher t 1 max to generate an indirect-DEPT spectrum that rivals the direct observe counterpart. Copyright © 2017 John Wiley & Sons, Ltd.

  18. Surface enhanced Raman spectroscopy: A review of recent applications in forensic science.

    PubMed

    Fikiet, Marisia A; Khandasammy, Shelby R; Mistek, Ewelina; Ahmed, Yasmine; Halámková, Lenka; Bueno, Justin; Lednev, Igor K

    2018-05-15

    Surface enhanced Raman spectroscopy has many advantages over its parent technique of Raman spectroscopy. Some of these advantages such as increased sensitivity and selectivity and therefore the possibility of small sample sizes and detection of small concentrations are invaluable in the field of forensics. A variety of new SERS surfaces and novel approaches are presented here on a wide range of forensically relevant topics. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A quartz-based micro catalytic methane sensor by high resolution screen printing

    NASA Astrophysics Data System (ADS)

    Lu, Wenshuai; Jing, Gaoshan; Bian, Xiaomeng; Yu, Hongyan; Cui, Tianhong

    2016-02-01

    A micro catalytic methane sensor was proposed and fabricated on a bulk fused quartz substrate using a high resolution screen printing technique for the first time, with reduced power consumption and optimized sensitivity. The sensor was designed by the finite element method and quartz was chosen as the substrate material and alumina support with optimized dimensions. Fabrication of the sensor consisted of two MEMS processes, lift-off and high resolution screen printing, with the advantages of high yield and uniformity. When the sensor’s regional working temperature changes from 250 °C to 470 °C, its sensitivity increases, as well as the power consumption. The highest sensitivity can reach 1.52 mV/% CH4. A temperature of 300 °C was chosen as the optimized working temperature, and the sensor’s sensitivity, power consumption, nonlinearity and response time are 0.77 mV/% CH4, 415 mW, 2.6%, and 35 s, respectively. This simple, but highly uniform fabrication process and the reliable performance of this sensor may lead to wide applications for methane detection.

  20. Review of SPECT collimator selection, optimization, and fabrication for clinical and preclinical imaging

    PubMed Central

    Van Audenhaege, Karen; Van Holen, Roel; Vandenberghe, Stefaan; Vanhove, Christian; Metzler, Scott D.; Moore, Stephen C.

    2015-01-01

    In single photon emission computed tomography, the choice of the collimator has a major impact on the sensitivity and resolution of the system. Traditional parallel-hole and fan-beam collimators used in clinical practice, for example, have a relatively poor sensitivity and subcentimeter spatial resolution, while in small-animal imaging, pinhole collimators are used to obtain submillimeter resolution and multiple pinholes are often combined to increase sensitivity. This paper reviews methods for production, sensitivity maximization, and task-based optimization of collimation for both clinical and preclinical imaging applications. New opportunities for improved collimation are now arising primarily because of (i) new collimator-production techniques and (ii) detectors with improved intrinsic spatial resolution that have recently become available. These new technologies are expected to impact the design of collimators in the future. The authors also discuss concepts like septal penetration, high-resolution applications, multiplexing, sampling completeness, and adaptive systems, and the authors conclude with an example of an optimization study for a parallel-hole, fan-beam, cone-beam, and multiple-pinhole collimator for different applications. PMID:26233207

Top