Sample records for techniques ground based

  1. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    EPA Science Inventory

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  2. A Synthesis of Star Calibration Techniques for Ground-Based Narrowband Electron-Multiplying Charge-Coupled Device Imagers Used in Auroral Photometry

    NASA Technical Reports Server (NTRS)

    Grubbs, Guy II; Michell, Robert; Samara, Marilia; Hampton, Don; Jahn, Jorg-Micha

    2016-01-01

    A technique is presented for the periodic and systematic calibration of ground-based optical imagers. It is important to have a common system of units (Rayleighs or photon flux) for cross comparison as well as self-comparison over time. With the advancement in technology, the sensitivity of these imagers has improved so that stars can be used for more precise calibration. Background subtraction, flat fielding, star mapping, and other common techniques are combined in deriving a calibration technique appropriate for a variety of ground-based imager installations. Spectral (4278, 5577, and 8446 A ) ground-based imager data with multiple fields of view (19, 47, and 180 deg) are processed and calibrated using the techniques developed. The calibration techniques applied result in intensity measurements in agreement between different imagers using identical spectral filtering, and the intensity at each wavelength observed is within the expected range of auroral measurements. The application of these star calibration techniques, which convert raw imager counts into units of photon flux, makes it possible to do quantitative photometry. The computed photon fluxes, in units of Rayleighs, can be used for the absolute photometry between instruments or as input parameters for auroral electron transport models.

  3. AN EVALUATION OF TWO GROUND-BASED CROWN CLOSURE ESTIMATION TECHNIQUES COMPARED TO CROWN CLOSURE ESTIMATES DERIVED FROM HIGH RESOLUTION IMAGERY

    EPA Science Inventory

    Two ground-based canopy closure estimation techniques, the Spherical Densitometer (SD) and the Vertical Tube (VT), were compared for the effect of deciduous understory on dominantlco-dominant crown closure estimates in even-aged loblolly (Pinus taeda) pine stands located in the N...

  4. AN EVALUATION OF TWO GROUND-BASED CROWN CLOSURE ESTIMATION TECHNIQUES COMPARED TO CROWN CLOSURE ESTIMATES DERIVED FROM HIGH RESOLUTION IMAGERY

    EPA Science Inventory

    Two ground-based canopy closure estimation techniques, the Spherical Densitometer (SD) and the Vertical Tube (VT), were compared for the effect of deciduous understory on dominant/co-dominant crown closure estimates in even-aged loblolly (Pinus taeda) pine stands located in the N...

  5. Ground-Based Radiometric Measurements of Slant Path Attenuation in the V/W Bands

    DTIC Science & Technology

    2016-04-01

    GROUND-BASED RADIOMETRIC MEASUREMENTS OF SLANT PATH ATTENUATION IN THE V/W BANDS APRIL 2016 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE...2. REPORT TYPE FINAL TECHNICAL REPORT 3. DATES COVERED (From - To) OCT 2012 – SEP 2015 4. TITLE AND SUBTITLE GROUND-BASED RADIOMETRIC MEASUREMENTS ...SUPPLEMENTARY NOTES 14. ABSTRACT Ground-based radiometric techniques were applied to measure the slant path attenuation cumulative distribution function to

  6. Evaluating evaporation from field crops using airborne radiometry and ground-based meteorological data

    USGS Publications Warehouse

    Jackson, R. D.; Moran, M.S.; Gay, L.W.; Raymond, L.H.

    1987-01-01

    Airborne measurements of reflected solar and emitted thermal radiation were combined with ground-based measurements of incoming solar radiation, air temperature, windspeed, and vapor pressure to calculate instantaneous evaporation (LE) rates using a form of the Penman equation. Estimates of evaporation over cotton, wheat, and alfalfa fields were obtained on 5 days during a one-year period. A Bowen ratio apparatus, employed simultaneously, provided ground-based measurements of evaporation. Comparison of the airborne and ground techniques showed good agreement, with the greatest difference being about 12% for the instantaneous values. Estimates of daily (24 h) evaporation were made from the instantaneous data. On three of the five days, the difference between the two techniques was less than 8%, with the greatest difference being 25%. The results demonstrate that airborne remote sensing techniques can be used to obtain spatially distributed values of evaporation over agricultural fields. ?? 1987 Springer-Verlag.

  7. Study of Fluid Experiment System (FES)/CAST/Holographic Ground System (HGS)

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Cummings, Rick; Jones, Brian

    1992-01-01

    The use of holographic and schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The HGS facility at MSFC has been primary resource in researching this capability. Consequently, scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS Crystal Growth and the casting and solidification technology (CAST) experiments that were flown on the International Microgravity Laboratory (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment worked in space. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.

  8. An assessment of ground-based techniques for detecting other planetary systems. Volume 1: An overview. [workshop conclusions

    NASA Technical Reports Server (NTRS)

    Black, D. C. (Editor); Brunk, W. E. (Editor)

    1980-01-01

    The feasibility and limitations of ground-based techniques for detecting other planetary systems are discussed as well as the level of accuracy at which these limitations would occur and the extent to which they can be overcome by new technology and instrumenation. Workshop conclusions and recommendations are summarized and a proposed high priority program is considered.

  9. Enabling Autonomous Space Mission Operations with Artificial Intelligence

    NASA Technical Reports Server (NTRS)

    Frank, Jeremy

    2017-01-01

    For over 50 years, NASA's crewed missions have been confined to the Earth-Moon system, where speed-of-light communications delays between crew and ground are practically nonexistent. This ground-centered mode of operations, with a large, ground-based support team, is not sustainable for NASAs future human exploration missions to Mars. Future astronauts will need smarter tools employing Artificial Intelligence (AI) techniques make decisions without inefficient communication back and forth with ground-based mission control. In this talk we will describe several demonstrations of astronaut decision support tools using AI techniques as a foundation. These demonstrations show that astronauts tasks ranging from living and working to piloting can benefit from AI technology development.

  10. Comparing terrestrial laser scanning with ground and UAV-based imaging for national-level assessment of upland soil erosion

    NASA Astrophysics Data System (ADS)

    McShane, Gareth; Farrow, Luke; Morgan, David; Glendell, Miriam; James, Mike; Quinton, John; Evans, Martin; Anderson, Karen; Rawlins, Barry; Quine, Timothy; Debell, Leon; Benaud, Pia; Jones, Lee; Kirkham, Matthew; Lark, Murray; Rickson, Jane; Brazier, Richard

    2015-04-01

    Quantifying soil loss through erosion processes at a high resolution can be a time consuming and costly undertaking. In this pilot study 'a cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we compare methods for collecting suitable topographic measurements via remote sensing. The aim is to enable efficient but detailed site-scale studies of erosion forms in inaccessible UK upland environments, to quantify dynamic processes, such as erosion and mass movement. The techniques assessed are terrestrial laser scanning (TLS), and unmanned aerial vehicle (UAV) photography and ground-based photography, both processed using structure-from-motion (SfM) 3D reconstruction software. Compared to other established techniques, such as expensive TLS, SfM offers a potentially low-cost alternative for the reconstruction of 3D high-resolution micro-topographic models from photographs taken with consumer grade cameras. However, whilst an increasing number of research papers examine the relative merits of these novel versus more established survey techniques, no study to date has compared both ground-based and aerial SfM photogrammetry with TLS scanning across a range of scales (from m2 to 16ha). The evaluation of these novel low cost techniques is particularly relevant in upland landscapes, where the remoteness and inaccessibility of field sites may render some of the more established survey techniques impractical. Volumetric estimates of soil loss are quantified using the digital surface models (DSMs) derived from the data from each technique and subtracted from a modelled pre-erosion surface. The results from each technique are compared. The UAV was able to capture information over a wide area, a range of altitudes and angles over the study area. Combined with automated SfM-based processing, this technique was able to produce rapid orthophotos to support ground-based data acquisition, as well as a DSM for volume loss measurement in larger features. However, the DSM of erosion features lacked the detail of those captured using the ground-based methods. Terrestrial laser scanning provided detailed, accurate, high density measurements of the ground surface over long (100s m) distances, but size and weight of the instrument made it difficult to use in mountainous environments. In addition, deriving a reliable bare-earth digital terrain model (DTM) from TLS was at times problematic due to the presence of tall shrubby vegetation. Ground-based photography produced comparable data sets to terrestrial laser scanning and was the most useful for characterising small and difficult to view features. The relative advantages, limitations and cost-effectiveness of each approach at 5 upland sites across the UK are discussed.

  11. An expert system shell for inferring vegetation characteristics: Implementation of additional techniques (task E)

    NASA Technical Reports Server (NTRS)

    Harrison, P. Ann

    1992-01-01

    The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. The VEG subgoal PROPORTION.GROUND.COVER has been completed and a number of additional techniques that infer the proportion ground cover of a sample have been implemented. Some techniques operate on sample data at a single wavelength. The techniques previously incorporated in VEG for other subgoals operated on data at a single wavelength so implementing the additional single wavelength techniques required no changes to the structure of VEG. Two techniques which use data at multiple wavelengths to infer proportion ground cover were also implemented. This work involved modifying the structure of VEG so that multiple wavelength techniques could be incorporated. All the new techniques were tested using both the VEG 'Research Mode' and the 'Automatic Mode.'

  12. Remote sensing of high-latitude ionization profiles by ground-based and spaceborne instrumentation

    NASA Technical Reports Server (NTRS)

    Vondrak, R. R.

    1981-01-01

    Ionospheric specification and modeling are now largely based on data provided by active remote sensing with radiowave techniques (ionosondes, incoherent-scatter radars, and satellite beacons). More recently, passive remote sensing techniques have been developed that can be used to monitor quantitatively the spatial distribution of high-latitude E-region ionization. These passive methods depend on the measurement, or inference, of the energy distribution of precipitating kilovolt electrons, the principal source of the nighttime E-region at high latitudes. To validate these techniques, coordinated measurements of the auroral ionosphere have been made with the Chatanika incoherent-scatter radar and a variety of ground-based and spaceborne sensors

  13. Ground-based mm-wave emission spectroscopy for the detection and monitoring of stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Parrish, A.; Dezafra, R.; Solomon, P.

    1981-01-01

    The molecular rotational spectrum of ozone is quite rich in the mm-wave region from 50 to 300 GHz. An apparatus, which was developed primarily for detection and measurement of stratospheric ClO and other trace molecules, is found to be well suited also for the observation of ozone lines. The collecting antenna of the apparatus is a simple mm-waveguide feedhorn. The detector is a superheterodyne mixer using a special high frequency Schottky diode and a klystron local oscillator. The spectrometer is a 256 channel filter bank with 1 MHz resolution per channel. The apparatus is believed to be the first ground-based mm-wave instrument having the capability of obtaining data of sufficient quality to make use of the inversion technique. The ground based radio technique is most sensitive to changes in vertical distribution in the region above 25 km, a region which is difficult to sample by other techniques.

  14. Introduction: Photons and ground-based

    NASA Astrophysics Data System (ADS)

    Spann, James; Moore, Thomas

    2017-02-01

    A Conference on Measurement Techniques for Solar and Space Physics was held on 20-24 April 2015 in Boulder, Colorado, at the National Center for Atmospheric Research Center Green Campus. The present volume collects together the conference papers for photons and ground-based categories.

  15. Setting analyst: A practical harvest planning technique

    Treesearch

    Olivier R.M. Halleux; W. Dale Greene

    2001-01-01

    Setting Analyst is an ArcView extension that facilitates practical harvest planning for ground-based systems. By modeling the travel patterns of ground-based machines, it compares different harvesting settings based on projected average skidding distance, logging costs, and site disturbance levels. Setting Analyst uses information commonly available to consulting...

  16. Dragon Ears airborne acoustic array: CSP analysis applied to cross array to compute real-time 2D acoustic sound field

    NASA Astrophysics Data System (ADS)

    Cerwin, Steve; Barnes, Julie; Kell, Scott; Walters, Mark

    2003-09-01

    This paper describes development and application of a novel method to accomplish real-time solid angle acoustic direction finding using two 8-element orthogonal microphone arrays. The developed prototype system was intended for localization and signature recognition of ground-based sounds from a small UAV. Recent advances in computer speeds have enabled the implementation of microphone arrays in many audio applications. Still, the real-time presentation of a two-dimensional sound field for the purpose of audio target localization is computationally challenging. In order to overcome this challenge, a crosspower spectrum phase1 (CSP) technique was applied to each 8-element arm of a 16-element cross array to provide audio target localization. In this paper, we describe the technique and compare it with two other commonly used techniques; Cross-Spectral Matrix2 and MUSIC3. The results show that the CSP technique applied to two 8-element orthogonal arrays provides a computationally efficient solution with reasonable accuracy and tolerable artifacts, sufficient for real-time applications. Additional topics include development of a synchronized 16-channel transmitter and receiver to relay the airborne data to the ground-based processor and presentation of test data demonstrating both ground-mounted operation and airborne localization of ground-based gunshots and loud engine sounds.

  17. Low Earth orbit atomic oxygen simulation for durability evaluation of solar reflector surfaces

    NASA Technical Reports Server (NTRS)

    Degroh, Kim K.; Banks, Bruce A.

    1992-01-01

    To evaluate the performance and durability of solar reflector surfaces in the atomic oxygen environment typical of low Earth orbit (LEO), one must expose the reflector surface either directly to LEO or to ground-laboratory atomic oxygen environments. Although actual LEO exposures are most desired, such opportunities are typically scarce, expensive, and of limited duration. As a result, ground-laboratory exposures must be relied upon as the most practical long-term durability evaluation technique. Plasma ashers are widely used as LEO simulation facilities by producing atomic oxygen environments for durability evaluation of potential spacecraft materials. Atomic oxygen arrival differs between ground and space exposure in that plasma asher exposure produces isotropic arrival and space solar tracking produces sweeping arrival. Differences in initial impact reaction probability occur, dependent upon the energy and species existing in these environments. Due to the variations in ground-laboratory and space atomic oxygen, quantification of in-space performance based on plasma asher testing is not straightforward. The various atomic oxygen interactions that can occur with reflector surfaces, such as undercutting in organic substrates at protective coating defect sites, ground-laboratory techniques recommended for evaluating the atomic oxygen durability of reflectors based on asher exposures, and computational techniques which make use of ground-laboratory atomic oxygen exposure to predict in-space LEO durability are addressed.

  18. Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1996-01-01

    In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.

  19. A photogrammetric technique for generation of an accurate multispectral optical flow dataset

    NASA Astrophysics Data System (ADS)

    Kniaz, V. V.

    2017-06-01

    A presence of an accurate dataset is the key requirement for a successful development of an optical flow estimation algorithm. A large number of freely available optical flow datasets were developed in recent years and gave rise for many powerful algorithms. However most of the datasets include only images captured in the visible spectrum. This paper is focused on the creation of a multispectral optical flow dataset with an accurate ground truth. The generation of an accurate ground truth optical flow is a rather complex problem, as no device for error-free optical flow measurement was developed to date. Existing methods for ground truth optical flow estimation are based on hidden textures, 3D modelling or laser scanning. Such techniques are either work only with a synthetic optical flow or provide a sparse ground truth optical flow. In this paper a new photogrammetric method for generation of an accurate ground truth optical flow is proposed. The method combines the benefits of the accuracy and density of a synthetic optical flow datasets with the flexibility of laser scanning based techniques. A multispectral dataset including various image sequences was generated using the developed method. The dataset is freely available on the accompanying web site.

  20. A technique for measuring vertically and horizontally polarized microwave brightness temperatures using electronic polarization-basis rotation

    NASA Technical Reports Server (NTRS)

    Gasiewski, Albin J.

    1992-01-01

    This technique for electronically rotating the polarization basis of an orthogonal-linear polarization radiometer is based on the measurement of the first three feedhorn Stokes parameters, along with the subsequent transformation of this measured Stokes vector into a rotated coordinate frame. The technique requires an accurate measurement of the cross-correlation between the two orthogonal feedhorn modes, for which an innovative polarized calibration load was developed. The experimental portion of this investigation consisted of a proof of concept demonstration of the technique of electronic polarization basis rotation (EPBR) using a ground based 90-GHz dual orthogonal-linear polarization radiometer. Practical calibration algorithms for ground-, aircraft-, and space-based instruments were identified and tested. The theoretical effort consisted of radiative transfer modeling using the planar-stratified numerical model described in Gasiewski and Staelin (1990).

  1. Comparison of Water Vapor Measurements from Ground-based and Space-based GPS Atmospheric Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Colon-Pagan, Ian; Kuo, Ying-Hwa

    2008-10-01

    In this study, we compare precipitable water vapor (PWV) values from ground-based GPS water vapor sensing and COSMIC radio occultation (RO) measurements over the Caribbean Sea, Gulf of Mexico, and United States regions as well as global analyses from NCEP and ECMWF models. The results show good overall agreement; however, the PWV values estimated by ground-based GPS receivers tend to have a slight dry bias for low PWV values and a slight wet bias for higher PWV values, when compared with GPS RO measurements and global analyses. An application of a student T-test indicates that there is a significant difference between both ground- and space-based GPS measured datasets. The dry bias associated with space-based GPS is attributed to the missing low altitude data, where the concentration of water vapor is large. The close agreements between space-based and global analyses are due to the fact that these global analyses assimilate space-based GPS RO data from COSMIC, and the retrieval of water vapor profiles from space-based technique requires the use of global analyses as the first guess. This work is supported by UCAR SOARS and a grant from the National Oceanic and Atmospheric Administration, Educational Partnership Program under the cooperative agreement NA06OAR4810187.

  2. Ground-based determination of atmospheric radiance for correction of ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Peacock, K.

    1974-01-01

    A technique is described for estimating the atmospheric radiance observed by a downward sensor (ERTS) using ground-based measurements. A formula is obtained for the sky radiance at the time of the ERTS overpass from the radiometric measurement of the sky radiance made at a particular solar zenith angle and air mass. A graph illustrates ground-based sky radiance measurements as a function of the scattering angle for a range of solar air masses. Typical values for sky radiance at a solar zenith angle of 48 degrees are given.

  3. Detection of ground fog in mountainous areas from MODIS (Collection 051) daytime data using a statistical approach

    NASA Astrophysics Data System (ADS)

    Schulz, Hans Martin; Thies, Boris; Chang, Shih-Chieh; Bendix, Jörg

    2016-03-01

    The mountain cloud forest of Taiwan can be delimited from other forest types using a map of the ground fog frequency. In order to create such a frequency map from remotely sensed data, an algorithm able to detect ground fog is necessary. Common techniques for ground fog detection based on weather satellite data cannot be applied to fog occurrences in Taiwan as they rely on several assumptions regarding cloud properties. Therefore a new statistical method for the detection of ground fog in mountainous terrain from MODIS Collection 051 data is presented. Due to the sharpening of input data using MODIS bands 1 and 2, the method provides fog masks in a resolution of 250 m per pixel. The new technique is based on negative correlations between optical thickness and terrain height that can be observed if a cloud that is relatively plane-parallel is truncated by the terrain. A validation of the new technique using camera data has shown that the quality of fog detection is comparable to that of another modern fog detection scheme developed and validated for the temperate zones. The method is particularly applicable to optically thinner water clouds. Beyond a cloud optical thickness of ≈ 40, classification errors significantly increase.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermalmore » advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.« less

  5. Methods for analyzing optical observations of tsunami-induced signatures in airglow emissions from ground-based and space-based platforms

    NASA Astrophysics Data System (ADS)

    Grawe, M.; Makela, J. J.

    2016-12-01

    Airglow imaging of the 630.0-nm redline emission has emerged as a useful tool for studying the properties of tsunami-ionospheric coupling in recent years, offering spatially continuous coverage of the sky with a single instrument. Past studies have shown that airglow signatures induced by tsunamis are inherently anisotropic due to the observation geometry and effects from the geomagnetic field. Here, we present details behind the techniques used to determine the parameters of the signature (orientation, wavelength, etc) with potential extensions to real or quasi-real time and a tool for interpreting the location and strength of the signatures in the field of view. We demonstrate application of the techniques to ground-based optical measurements of several tsunami-induced signatures taking place over the past five years from an imaging system in Hawaii. Additionally, these methods are extended for use on space-based observation platforms, offering advantages over ground-based installations.

  6. Ground-based observation of near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Gaffey, Michael J.

    1992-01-01

    An increased ground-based observation program is an essential component of any serious attempt to assess the resource potential of near-Earth asteroids. A vigorous search and characterization program could lead to the discovery and description of about 400 to 500 near-Earth asteroids in the next 20 years. This program, in conjunction with meteorite studies, would provide the data base to ensure that the results of a small number of asteroid-rendezvous and sample-return missions could be extrapolated with confidence into a geological base map of the Aten, Apollo, and Amor asteroids. Ground-based spectral studies of nearly 30 members of the Aten/Apollo/Amor population provide good evidence that this class includes bodies composed of silicates, metal-silicates, and carbonaceous assemblages similar to those found in meteorites. The instruments that are being used or could be used to search for near-Earth asteroids are listed. Techniques useful in characterizing asteroids and the types of information obtainable using these techniques are listed.

  7. Ultrahigh-resolution mapping of peatland microform using ground-based structure from motion with multiview stereo

    NASA Astrophysics Data System (ADS)

    Mercer, Jason J.; Westbrook, Cherie J.

    2016-11-01

    Microform is important in understanding wetland functions and processes. But collecting imagery of and mapping the physical structure of peatlands is often expensive and requires specialized equipment. We assessed the utility of coupling computer vision-based structure from motion with multiview stereo photogrammetry (SfM-MVS) and ground-based photos to map peatland topography. The SfM-MVS technique was tested on an alpine peatland in Banff National Park, Canada, and guidance was provided on minimizing errors. We found that coupling SfM-MVS with ground-based photos taken with a point and shoot camera is a viable and competitive technique for generating ultrahigh-resolution elevations (i.e., <0.01 m, mean absolute error of 0.083 m). In evaluating 100+ viable SfM-MVS data collection and processing scenarios, vegetation was found to considerably influence accuracy. Vegetation class, when accounted for, reduced absolute error by as much as 50%. The logistic flexibility of ground-based SfM-MVS paired with its high resolution, low error, and low cost makes it a research area worth developing as well as a useful addition to the wetland scientists' toolkit.

  8. NO2 DOAS measurements from ground and space: comparison of ground based measurements and OMI data in Mexico City

    NASA Astrophysics Data System (ADS)

    Rivera, C.; Stremme, W.; Grutter, M.

    2012-04-01

    The combination of satellite data and ground based measurements can provide valuable information about atmospheric chemistry and air quality. In this work we present a comparison between measured ground based NO2 differential columns at the Universidad Nacional Autónoma de México (UNAM) in Mexico City, using the Differential Optical Absorption Spectroscopy (DOAS) technique and NO2 total columns measured by the Ozone Monitoring Instrument (OMI) onboard the Aura satellite using the same measurement technique. From these data, distribution maps of average NO2 above the Mexico basin were constructed and hot spots inside the city could be identified. In addition, a clear footprint was detected from the Tula industrial area, ~50 km northwest of Mexico City, where a refinery, a power plant and other industries are located. A less defined footprint was identified in the Cuernavaca basin, South of Mexico City, and the nearby cities of Toluca and Puebla do not present strong enhancements in the NO2 total columns. With this study we expect to cross-validate space and ground measurements and provide useful information for future studies.

  9. A comparison of time-shared vs. batch development of space software

    NASA Technical Reports Server (NTRS)

    Forthofer, M.

    1977-01-01

    In connection with a study regarding the ground support software development for the Space Shuttle, an investigation was conducted concerning the most suitable software development techniques to be employed. A time-sharing 'trial period' was used to determine whether or not time-sharing would be a cost-effective software development technique for the Ground Based Shuttle system. It was found that time-sharing substantially improved job turnaround and programmer access to the computer for the representative group of ground support programmers. Moreover, this improvement resulted in an estimated saving of over fifty programmer days during the trial period.

  10. Taking Stock of Circumboreal Forest Carbon With Ground Measurements, Airborne and Spaceborne LiDAR

    NASA Technical Reports Server (NTRS)

    Neigh, Christopher S. R.; Nelson, Ross F.; Ranson, K. Jon; Margolis, Hank A.; Montesano, Paul M.; Sun, Guoqing; Kharuk, Viacheslav; Naesset, Erik; Wulder, Michael A.; Andersen, Hans-Erik

    2013-01-01

    The boreal forest accounts for one-third of global forests, but remains largely inaccessible to ground-based measurements and monitoring. It contains large quantities of carbon in its vegetation and soils, and research suggests that it will be subject to increasingly severe climate-driven disturbance. We employ a suite of ground-, airborne- and space-based measurement techniques to derive the first satellite LiDAR-based estimates of aboveground carbon for the entire circumboreal forest biome. Incorporating these inventory techniques with uncertainty analysis, we estimate total aboveground carbon of 38 +/- 3.1 Pg. This boreal forest carbon is mostly concentrated from 50 to 55degN in eastern Canada and from 55 to 60degN in eastern Eurasia. Both of these regions are expected to warm >3 C by 2100, and monitoring the effects of warming on these stocks is important to understanding its future carbon balance. Our maps establish a baseline for future quantification of circumboreal carbon and the described technique should provide a robust method for future monitoring of the spatial and temporal changes of the aboveground carbon content.

  11. Modern developments for ground-based monitoring of fire behavior and effects

    Treesearch

    Colin C. Hardy; Robert Kremens; Matthew B. Dickinson

    2010-01-01

    Advances in electronic technology over the last several decades have been staggering. The cost of electronics continues to decrease while system performance increases seemingly without limit. We have applied modern techniques in sensors, electronics and instrumentation to create a suite of ground based diagnostics that can be used in laboratory (~ 1 m2), field scale...

  12. Angles-only, ground-based, initial orbit determination

    NASA Astrophysics Data System (ADS)

    Taff, L. G.; Randall, P. M. S.; Stansfield, S. A.

    1984-05-01

    Over the past few years, passive, ground-based, angles-only initial orbit determination has had a thorough analytical, numerical, experimental, and creative re-examination. This report presents the numerical culmination of this effort and contains specific recommendations for which of several techniques one should use on the different subsets of high altitude artificial satellites and minor planets.

  13. Recommended techniques for effective maintainability. A continuous improvement initiative of the NASA Reliability and Maintainability Steering Committee

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This manual presents a series of recommended techniques that can increase overall operational effectiveness of both flight and ground based NASA systems. It provides a set of tools that minimizes risk associated with: (1) restoring failed functions (both ground and flight based); (2) conducting complex and highly visible maintenance operations; and (3) sustaining a technical capability to support the NASA mission using aging equipment or facilities. It considers (1) program management - key elements of an effective maintainability effort; (2) design and development - techniques that have benefited previous programs; (3) analysis and test - quantitative and qualitative analysis processes and testing techniques; and (4) operations and operational design techniques that address NASA field experience. This document is a valuable resource for continuous improvement ideas in executing the systems development process in accordance with the NASA 'better, faster, smaller, and cheaper' goal without compromising safety.

  14. Differential absorption lidar measurements of atmospheric temperature and pressure profiles

    NASA Technical Reports Server (NTRS)

    Korb, C. L.

    1981-01-01

    The theory and methodology of using differential absorption lidar techniques for the remote measurement of atmospheric pressure profiles, surface pressure, and temperature profiles from ground, air, and space-based platforms are presented. Pressure measurements are effected by means of high resolution measurement of absorption at the edges of the oxygen A band lines where absorption is pressure dependent due to collisional line broadening. Temperature is assessed using measurements of the absorption at the center of the oxygen A band line originating from a quantum state with high ground state energy. The population of the state is temperature dependent, allowing determination of the temperature through the Boltzmann term. The results of simulations of the techniques using Voigt profile and variational analysis are reported for ground-based, airborne, and Shuttle-based systems. Accuracies in the 0.5-1.0 K and 0.1-0.3% range are projected.

  15. Choosing a DIVA: a comparison of emerging digital imagery vegetation analysis techniques

    USGS Publications Warehouse

    Jorgensen, Christopher F.; Stutzman, Ryan J.; Anderson, Lars C.; Decker, Suzanne E.; Powell, Larkin A.; Schacht, Walter H.; Fontaine, Joseph J.

    2013-01-01

    Question: What is the precision of five methods of measuring vegetation structure using ground-based digital imagery and processing techniques? Location: Lincoln, Nebraska, USA Methods: Vertical herbaceous cover was recorded using digital imagery techniques at two distinct locations in a mixed-grass prairie. The precision of five ground-based digital imagery vegetation analysis (DIVA) methods for measuring vegetation structure was tested using a split-split plot analysis of covariance. Variability within each DIVA technique was estimated using coefficient of variation of mean percentage cover. Results: Vertical herbaceous cover estimates differed among DIVA techniques. Additionally, environmental conditions affected the vertical vegetation obstruction estimates for certain digital imagery methods, while other techniques were more adept at handling various conditions. Overall, percentage vegetation cover values differed among techniques, but the precision of four of the five techniques was consistently high. Conclusions: DIVA procedures are sufficient for measuring various heights and densities of standing herbaceous cover. Moreover, digital imagery techniques can reduce measurement error associated with multiple observers' standing herbaceous cover estimates, allowing greater opportunity to detect patterns associated with vegetation structure.

  16. Discovery of hotspots on Io using disk-resolved infrared imaging

    NASA Technical Reports Server (NTRS)

    Spencer, J. R.; Shure, M. A.; Ressler, M. E.; Sinton, W. M.; Goguen, J. D.

    1990-01-01

    First results are presented using two new techniques for ground-based observation of Io's hotspots. An IR array camera was used to obtain direct IR images of Io with resolution better than 0.5 arcsec, so that more than one hotspot is seen on Io in Jupiter eclipse. The camera was also used to make the first observations of the Jupiter occultation of the hotspots. These new techniques have revealed and located at least three hotspots and will now permit routine ground-based monitoring of the locations, temperatures, and sizes of multiple hotspots on Io.

  17. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  18. Comparing and combining terrestrial laser scanning with ground-and UAV-based imaging for national-level assessment of soil erosion

    NASA Astrophysics Data System (ADS)

    McShane, Gareth; James, Mike R.; Quinton, John; Anderson, Karen; DeBell, Leon; Evans, Martin; Farrow, Luke; Glendell, Miriam; Jones, Lee; Kirkham, Matthew; Lark, Murray; Rawlins, Barry; Rickson, Jane; Quine, Tim; Wetherelt, Andy; Brazier, Richard

    2014-05-01

    3D topographic or surface models are increasingly being utilised for a wide range of applications and are established tools in geomorphological research. In this pilot study 'a cost effective framework for monitoring soil erosion in England and Wales', funded by the UK Department for Environment, Food and Rural Affairs (Defra), we compare methods of collecting topographic measurements via remote sensing for detailed studies of dynamic processes such as erosion and mass movement. The techniques assessed are terrestrial laser scanning (TLS), and unmanned aerial vehicle (UAV) photography and ground-based photography, processed using structure-from-motion (SfM) 3D reconstruction software. The methods will be applied in regions of different land use, including arable and horticultural, upland and semi natural habitats, and grassland, to quantify visible erosion pathways at the site scale. Volumetric estimates of soil loss will be quantified using the digital surface models (DSMs) provided by each technique and a modelled pre-erosion surface. Visible erosion and severity will be independently established through each technique, with their results compared and combined effectiveness assessed. A fixed delta-wing UAV (QuestUAV, http://www.questuav.com/) captures photos from a range of altitudes and angles over the study area, with automated SfM-based processing enabling rapid orthophoto production to support ground-based data acquisition. At sites with suitable scale erosion features, UAV data will also provide a DSM for volume loss measurement. Terrestrial laser scanning will provide detailed, accurate, high density measurements of the ground surface over long (100s m) distances. Ground-based photography is anticipated to be most useful for characterising small and difficult to view features. By using a consumer-grade digital camera and an SfM-based approach (using Agisoft Photoscan version 1.0.0, http://www.agisoft.ru/products/photoscan/), less expertise and fewer control measurements are required compared with traditional photogrammetry, and image processing is automated. Differential GPS data will be used to geo-reference the models to facilitate comparison. The relative advantages, limitations and cost-effectiveness of each approach will be established, and which technique, or combination of techniques, is most appropriate to monitor, model and estimate soil erosion at the national scale, determined.

  19. Productivity and cost estimators for conventional ground-based skidding on steep terrain using preplanned skid roads

    Treesearch

    Michael D. Erickson; Curt C. Hassler; Chris B. LeDoux

    1991-01-01

    Continuous time and motion study techniques were used to develop productivity and cost estimators for the skidding component of ground-based logging systems, operating on steep terrain using preplanned skid roads. Comparisons of productivity and costs were analyzed for an overland random access skidding method, verses a skidding method utilizing a network of preplanned...

  20. Ground-based LIDAR: a novel approach to quantify fine-scale fuelbed characteristics

    Treesearch

    E.L. Loudermilk; J.K. Hiers; J.J. O’Brien; R.J. Mitchell; A. Singhania; J.C. Fernandez; W.P. Cropper; K.C. Slatton

    2009-01-01

    Ground-based LIDAR (also known as laser ranging) is a novel technique that may precisely quantify fuelbed characteristics important in determining fire behavior. We measured fuel properties within a south-eastern US longleaf pine woodland at the individual plant and fuelbed scale. Data were collected using a mobile terrestrial LIDAR unit at sub-cm scale for individual...

  1. A low-disturbance capture technique for ground-nesting Double-crested Cormorants (Phalacrocorax auritus)

    USGS Publications Warehouse

    Courtot, Karen; Roby, Daniel D.; Kerr, Lauren H.; Lyons, Donald E.; Adkins, Jessica Y.

    2016-01-01

    Capturing breeding adults of colonially nesting species can entail risks of nest failure and even colony abandonment, especially in species that react strongly to human disturbance. A low-disturbance technique for capturing specific adult Double-crested Cormorants (Phalacrocorax auritus) at a ground-nesting colony was developed to reduce these risks and is described here. Nesting habitat enhancement was used to attract Doublecrested Cormorants to nest adjacent to above-ground tunnels constructed so that researchers could capture birds by hand. Using this technique, Double-crested Cormorants (n = 87) were captured during the incubation and chick-rearing stages of the nesting cycle. Unlike alternative capture techniques, this approach allowed targeting of specific individuals for capture and recapture, minimized local disturbance, and eliminated colony-wide disturbances. The tunnel-based system presented here could be adapted to capture adults or to access the nest contents of other ground-nesting colonial species that are inclined to nest in areas of enhanced nesting habitat and adapt to anthropogenic structures in their nesting area. This system would be particularly beneficial for other wary and easily disturbed species.

  2. Hydrographs Showing Ground-Water Level Changes for Selected Wells in the Lower Skagit River Basin, Washington

    USGS Publications Warehouse

    Fasser, E.T.; Julich, R.J.

    2009-01-01

    Hydrographs for selected wells in the Lower Skagit River basin, Washington, are presented in an interactive web-based map to illustrate monthly and seasonal changes in ground-water levels in the study area. Ground-water level data and well information were collected by the U.S. Geological Survey using standard techniques and were stored in the USGS National Water Information System (NWIS), Ground-Water Site-Inventory (GWSI) System.

  3. Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs

    USGS Publications Warehouse

    Brahana, J.V.; Hollyday, E.F.

    1988-01-01

    In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.

  4. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....404 Treatment technique violations for ground water systems. (a) A ground water system with a... ground water system is in violation of the treatment technique requirement if, within 120 days (or...) before or at the first customer for a ground water source is in violation of the treatment technique...

  5. Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies.

    PubMed

    Shahabpoor, Erfan; Pavic, Aleksandar

    2017-09-12

    Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Nevertheless, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge. A systematic review of English-language articles from scientific databases including Scopus, ScienceDirect, Pubmed, IEEE Xplore, EBSCO and MEDLINE were carried out to analyse the 'accuracy' and 'practicality' of the current techniques and technologies for quantitative measurement of the tri-axial walking ground reactions outside the laboratory environment, and to highlight their strengths and shortcomings. In total, 679 relevant abstracts were identified, 54 full-text papers were included in the paper and the quantitative results of 17 papers were used for meta-analysis and comparison. Three classes of methods were reviewed: (1) methods based on measured kinematic data; (2) methods based on measured plantar pressure; and (3) methods based on direct measurement of ground reactions. It was found that all three classes of methods have competitive accuracy levels with methods based on direct measurement of the ground reactions showing highest accuracy while being least practical for long-term real-life measurement. On the other hand, methods that estimate ground reactions using measured body kinematics show highest practicality of the three classes of methods reviewed. Among the most prominent technical and technological challenges are: (1) reducing the size and price of tri-axial load-cells; (2) improving the accuracy of orientation measurement using IMUs; (3) minimizing the number and optimizing the location of required IMUs for kinematic measurement; (4) increasing the durability of pressure insole sensors, and (5) enhancing the robustness and versatility of the ground reactions estimation methods to include pathological gaits and natural variability of gait in real-life physical environment.

  6. Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies

    PubMed Central

    Shahabpoor, Erfan; Pavic, Aleksandar

    2017-01-01

    Monitoring natural human gait in real-life environments is essential in many applications, including quantification of disease progression, monitoring the effects of treatment, and monitoring alteration of performance biomarkers in professional sports. Nevertheless, developing reliable and practical techniques and technologies necessary for continuous real-life monitoring of gait is still an open challenge. A systematic review of English-language articles from scientific databases including Scopus, ScienceDirect, Pubmed, IEEE Xplore, EBSCO and MEDLINE were carried out to analyse the ‘accuracy’ and ‘practicality’ of the current techniques and technologies for quantitative measurement of the tri-axial walking ground reactions outside the laboratory environment, and to highlight their strengths and shortcomings. In total, 679 relevant abstracts were identified, 54 full-text papers were included in the paper and the quantitative results of 17 papers were used for meta-analysis and comparison. Three classes of methods were reviewed: (1) methods based on measured kinematic data; (2) methods based on measured plantar pressure; and (3) methods based on direct measurement of ground reactions. It was found that all three classes of methods have competitive accuracy levels with methods based on direct measurement of the ground reactions showing highest accuracy while being least practical for long-term real-life measurement. On the other hand, methods that estimate ground reactions using measured body kinematics show highest practicality of the three classes of methods reviewed. Among the most prominent technical and technological challenges are: (1) reducing the size and price of tri-axial load-cells; (2) improving the accuracy of orientation measurement using IMUs; (3) minimizing the number and optimizing the location of required IMUs for kinematic measurement; (4) increasing the durability of pressure insole sensors, and (5) enhancing the robustness and versatility of the ground reactions estimation methods to include pathological gaits and natural variability of gait in real-life physical environment. PMID:28895909

  7. Subjective evaluation with FAA criteria: A multidimensional scaling approach. [ground track control management

    NASA Technical Reports Server (NTRS)

    Kreifeldt, J. G.; Parkin, L.; Wempe, T. E.; Huff, E. F.

    1975-01-01

    Perceived orderliness in the ground tracks of five A/C during their simulated flights was studied. Dynamically developing ground tracks for five A/C from 21 separate runs were reproduced from computer storage and displayed on CRTS to professional pilots and controllers for their evaluations and preferences under several criteria. The ground tracks were developed in 20 seconds as opposed to the 5 minutes of simulated flight using speedup techniques for display. Metric and nonmetric multidimensional scaling techniques are being used to analyze the subjective responses in an effort to: (1) determine the meaningfulness of basing decisions on such complex subjective criteria; (2) compare pilot/controller perceptual spaces; (3) determine the dimensionality of the subjects' perceptual spaces; and thereby (4) determine objective measures suitable for comparing alternative traffic management simulations.

  8. Image analysis for quantification of bacterial rock weathering.

    PubMed

    Puente, M Esther; Rodriguez-Jaramillo, M Carmen; Li, Ching Y; Bashan, Yoav

    2006-02-01

    A fast, quantitative image analysis technique was developed to assess potential rock weathering by bacteria. The technique is based on reduction in the surface area of rock particles and counting the relative increase in the number of small particles in ground rock slurries. This was done by recording changes in ground rock samples with an electronic image analyzing process. The slurries were previously amended with three carbon sources, ground to a uniform particle size and incubated with rock weathering bacteria for 28 days. The technique was developed and tested, using two rock-weathering bacteria Pseudomonas putida R-20 and Azospirillum brasilense Cd on marble, granite, apatite, quartz, limestone, and volcanic rock as substrates. The image analyzer processed large number of particles (10(7)-10(8) per sample), so that the weathering capacity of bacteria can be detected.

  9. Experiment T002: Manual navigation sightings

    NASA Technical Reports Server (NTRS)

    Smith, D.

    1971-01-01

    Navigation-type measurements through the window of the stabilized Gemini 12 spacecraft by the use of a hand-held sextant are reported. The major objectives were as follows: (1) to evaluate the ability of the crewmen to make accurate navigational measurements by the use of simple instruments in an authentic space flight environment; (2) to evaluate the operational feasibility of the measurement techniques by the use of the pressure suit with the helmet off and with the helmet on and the visor closed; (3) to evaluate operational problems associated with the spacecraft environment; and (4) to validate ground based simulation techniques by comparison of the inflight results with base line data obtained by the pilot by the use of simulators and celestial targets from ground based observatories.

  10. Improved ground-based remote-sensing systems help monitor plant response to climate and other changes

    USGS Publications Warehouse

    Dye, Dennis G.; Bogle, Rian

    2016-05-26

    Scientists at the U.S. Geological Survey are improving and developing new ground-based remote-sensing instruments and techniques to study how Earth’s vegetation responds to changing climates. Do seasonal grasslands and forests “green up” early (or late) and grow more (or less) during unusually warm years? How do changes in temperature and precipitation affect these patterns? Innovations in ground-based remote-sensing instrumentation can help us understand, assess, and mitigate the effects of climate change on vegetation and related land resources.

  11. Ground-water recharge from streamflow data, NW Florida

    USGS Publications Warehouse

    Vecchioli, John; Bridges, W.C.; Rumenik, Roger P.; Grubbs, J.W.

    1991-01-01

    Annual base flows of streams draining Okaloosa County and adjacent areas in northwest Florida were determined through hydrograph separation and correlation techniques for purposes of evaluating variations in ground-water recharge rates. Base flows were least in the northern part of the county and greatest in the southern part. Topographic and soils data were then superimposed on the distribution of base flow by subbasin to produce a map showing distribution of ground-water recharge throughout the county. The highest recharge rate occurs in the southern part of the county where relatively flat upland areas underlain by excessively drained sandy soils result in minimal storm runoff and evapotranspiration.

  12. Mapping the opacity of paint layers in paintings with coloured grounds using optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Hall-Aquitania, Moorea; Hermens, Erma; Groves, Roger M.

    2017-07-01

    Optical diagnostics techniques are becoming important for technical art history (TAH) as well as for heritage conservation. In recent years, optical coherence tomography (OCT) has been increasingly used as a novel technique for the inspection of artwork, revealing the stratigraphy of paintings. It has also shown to be an effective tool for vanish layer inspection. OCT is a contactless and non-destructive technique for microstructural imaging of turbid media, originally developed for medical applications. However current OCT instruments have difficulty in paint layer inspection due to the opacity of most pigments. This paper explores the potential of OCT for the investigation of paintings with coloured grounds. Depth scans were processed to determine the light penetration depth at the optical wavelength based on a 1/e light attenuation calculation. The variation in paint opacity was mapped based on the microstructural images and 3D penetration depth profiles was calculated and related back to the construction of the artwork. By determining the light penetration depth over a range of wavelengths the 3D depth perception of a painting with coloured grounds can be characterized optically.

  13. Space Based Observations of Coronal Cavities in Conjunction with the Total Solar Eclipse of July 2010

    NASA Technical Reports Server (NTRS)

    Kucera, T. A.; Berger, T. E.; Druckmuller, M.; Dietzel, M.; Gibson, S. E.; Habbal, S. R.; Morgan, H.; Reeves, K. K.; Schmit, D. J.; Seaton, D. B.

    2010-01-01

    In conjunction with the total solar eclipse on July 11, 2010 we coordinated a campaign between ground and space based observations. Our specific goal was to augment the ground based measurement of corona) prominence cavity temperatures made using iron lines in the IR (Habbal et al. 2010 ApJ 719 1362) with measurements performed by space based instruments. Included in the campaign were Hinode/EIS, XRT and SOT, PROBA2/SWAP, SDO/AIA, SOHO/CDS and STEREO/SECCHI/EUVI, in addition to the ground based IR measurements. We plan to use a combination of line ratio and forward modeling techniques to investigate the density and temperature structure of the cavities at that time.

  14. A large-scale intercomparison of stratospheric vertical distributions of NO2 and BrO retrieved from the SCIAMACHY limb measurements and ground-based twilight observations

    NASA Astrophysics Data System (ADS)

    Rozanov, Alexei; Hendrick, Francois; Lotz, Wolfhardt; van Roozendael, Michel; Bovensmann, Heinrich; Burrows, John P.

    This study is devoted to the intercomparison of NO2 and BrO vertical profiles obtained from the satellite and ground-based measurements. Although, the ground-based observations are performed only at selected locations, they have a great potential to be used for the validation of satellite measurements since continuous long-term measurement series performed with the same instruments are available. Thus, long-term trends in the observed species can be analyzed and intercompared. Previous intercomparisons of the vertical distributions of NO2 and BrO retrieved from SCIAMACHY limb measurements at the University of Bremen and obtained at IASB-BIRA by applying a profiling technique to ground-based zenith-sky DOAS observations have shown a good agreement between the results of completely different measurement techniques. However, only a relatively short time period of one year was analyzed so far which do not allow investigating seasonal variations and trends. Furthermore, some minor discrepancies are still to be analyzed. In the current study, several years datasets obtained at Observatoire de Haute-Provence (OHP) in France and in Harestua in Norway will be compared to the retrievals of SCIAMACHY limb measurements. Seasonal and annual variations will be analyzed and possible reasons for the remaining discrepancies will be discussed.

  15. Regional-specific Stochastic Simulation of Spatially-distributed Ground-motion Time Histories using Wavelet Packet Analysis

    NASA Astrophysics Data System (ADS)

    Huang, D.; Wang, G.

    2014-12-01

    Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.

  16. Solar Adaptive Optics.

    PubMed

    Rimmele, Thomas R; Marino, Jose

    Adaptive optics (AO) has become an indispensable tool at ground-based solar telescopes. AO enables the ground-based observer to overcome the adverse effects of atmospheric seeing and obtain diffraction limited observations. Over the last decade adaptive optics systems have been deployed at major ground-based solar telescopes and revitalized ground-based solar astronomy. The relatively small aperture of solar telescopes and the bright source make solar AO possible for visible wavelengths where the majority of solar observations are still performed. Solar AO systems enable diffraction limited observations of the Sun for a significant fraction of the available observing time at ground-based solar telescopes, which often have a larger aperture than equivalent space based observatories, such as HINODE. New ground breaking scientific results have been achieved with solar adaptive optics and this trend continues. New large aperture telescopes are currently being deployed or are under construction. With the aid of solar AO these telescopes will obtain observations of the highly structured and dynamic solar atmosphere with unprecedented resolution. This paper reviews solar adaptive optics techniques and summarizes the recent progress in the field of solar adaptive optics. An outlook to future solar AO developments, including a discussion of Multi-Conjugate AO (MCAO) and Ground-Layer AO (GLAO) will be given. Supplementary material is available for this article at 10.12942/lrsp-2011-2.

  17. Estimating Number of People Using Calibrated Monocular Camera Based on Geometrical Analysis of Surface Area

    NASA Astrophysics Data System (ADS)

    Arai, Hiroyuki; Miyagawa, Isao; Koike, Hideki; Haseyama, Miki

    We propose a novel technique for estimating the number of people in a video sequence; it has the advantages of being stable even in crowded situations and needing no ground-truth data. By analyzing the geometrical relationships between image pixels and their intersection volumes in the real world quantitatively, a foreground image directly indicates the number of people. Because foreground detection is possible even in crowded situations, the proposed method can be applied in such situations. Moreover, it can estimate the number of people in an a priori manner, so it needs no ground-truth data unlike existing feature-based estimation techniques. Experiments show the validity of the proposed method.

  18. The Adaptive Optics Lucky Imager: Diffraction limited imaging at visible wavelengths with large ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Crass, Jonathan; Mackay, Craig; King, David; Rebolo-López, Rafael; Labadie, Lucas; Puga, Marta; Oscoz, Alejandro; González Escalera, Victor; Pérez Garrido, Antonio; López, Roberto; Pérez-Prieto, Jorge; Rodríguez-Ramos, Luis; Velasco, Sergio; Villó, Isidro

    2015-01-01

    One of the continuing challenges facing astronomers today is the need to obtain ever higher resolution images of the sky. Whether studying nearby crowded fields or distant objects, with increased resolution comes the ability to probe systems in more detail and advance our understanding of the Universe. Obtaining these high-resolution images at visible wavelengths however has previously been limited to the Hubble Space Telescope (HST) due to atmospheric effects limiting the spatial resolution of ground-based telescopes to a fraction of their potential. With HST now having a finite lifespan, it is prudent to investigate other techniques capable of providing these kind of observations from the ground. Maintaining this capability is one of the goals of the Adaptive Optics Lucky Imager (AOLI).Achieving the highest resolutions requires the largest telescope apertures, however, this comes at the cost of increased atmospheric distortion. To overcome these atmospheric effects, there are two main techniques employed today: adaptive optics (AO) and lucky imaging. These techniques individually are unable to provide diffraction limited imaging in the visible on large ground-based telescopes; AO currently only works at infrared wavelengths while lucky imaging reduces in effectiveness on telescopes greater than 2.5 metres in diameter. The limitations of both techniques can be overcome by combing them together to provide diffraction limited imaging at visible wavelengths on the ground.The Adaptive Optics Lucky Imager is being developed as a European collaboration and combines AO and lucky imaging in a dedicated instrument for the first time. Initially for use on the 4.2 metre William Herschel Telescope, AOLI uses a low-order adaptive optics system to reduce the effects of atmospheric turbulence before imaging with a lucky imaging based science detector. The AO system employs a novel type of wavefront sensor, the non-linear Curvature Wavefront Sensor (nlCWFS) which provides significant sky-coverage using natural guide-stars alone.Here we present an overview of the instrument design, results from the first on-sky and laboratory testing and on-going development work of the instrument and its adaptive optics system.

  19. The evaluation of alternate methodologies for land cover classification in an urbanizing area

    NASA Technical Reports Server (NTRS)

    Smekofski, R. M.

    1981-01-01

    The usefulness of LANDSAT in classifying land cover and in identifying and classifying land use change was investigated using an urbanizing area as the study area. The question of what was the best technique for classification was the primary focus of the study. The many computer-assisted techniques available to analyze LANDSAT data were evaluated. Techniques of statistical training (polygons from CRT, unsupervised clustering, polygons from digitizer and binary masks) were tested with minimum distance to the mean, maximum likelihood and canonical analysis with minimum distance to the mean classifiers. The twelve output images were compared to photointerpreted samples, ground verified samples and a current land use data base. Results indicate that for a reconnaissance inventory, the unsupervised training with canonical analysis-minimum distance classifier is the most efficient. If more detailed ground truth and ground verification is available, the polygons from the digitizer training with the canonical analysis minimum distance is more accurate.

  20. Aircraft propeller induced structure-borne noise

    NASA Technical Reports Server (NTRS)

    Unruh, James F.

    1989-01-01

    A laboratory-based test apparatus employing components typical of aircraft construction was developed that would allow the study of structure-borne noise transmission due to propeller induced wake/vortex excitation of in-wake structural appendages. The test apparatus was employed to evaluate several aircraft installation effects (power plant placement, engine/nacelle mass loading, and wing/fuselage attachment methods) and several structural response modifications for structure-borne noise control (the use of wing blocking mass/fuel, wing damping treaments, and tuned mechanical dampers). Most important was the development of in-flight structure-borne noise transmission detection techniques using a combination of ground-based frequency response function testing and in-flight structural response measurement. Propeller wake/vortex excitation simulation techniques for improved ground-based testing were also developed to support the in-flight structure-borne noise transmission detection development.

  1. Photons and Ground-Based

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Moore, Thomas E.

    2017-01-01

    A Conference on Measurement Techniques for Solar and Space Physics was held on 20-24 April 2015 in Boulder, Colorado, at the National Center for Atmospheric Research Center Green Campus. The present volume collects together the conference papers for photons and ground-based categories. This gathering of over 200 scientists and instrumentalists was born out of the desire to collect in one place the latest experiment and instrument technologies required for advancement of scientific knowledge in the disciplines of solar and space physics. The two goals for this conference and the subsequent publication of its content are (a) to describe measurement techniques and technology development needed to advance high priority science in the fields of solar and space physics; and (b) to provide a survey or reference of techniques for in situ measurement and remote sensing of space plasmas. Towards this end, our goal has always been inspired by the two 1998 Geophysical Monographs (Nos. 102 and 103) entitled, "Measurement Techniques in Space Plasmas" (particles and fields) [Pfaff et al., 1998a, 1998b], which have served as a reference and resource for advanced students, engineers, and scientists who wish to learn the fundamentals of measurement techniques and technology in this field. Those monographs were the product of an American Geophysical Union Chapman Conference that took place in Santa Fe, NM, in 1995: "Measurement Techniques in Space Plasmas-What Works, What Doesn't." Two decades later, we believe that it is appropriate to revisit this subject, in light of recent advances in technology, research platforms, and analysis techniques. Moreover, we now include direct measurements of neutral gases in the upper atmosphere, optical imaging techniques, and remote observations in space and on the ground. Accordingly, the workshop was organized among four areas of measurement techniques: particles, fields, photons, and ground-based. This two-set volume is largely composed of the content of that workshop. Special attention is given to those techniques and technologies that demonstrate promise of significant advancement in measurements that will enable the highest priority science as described in the 2012 National Research Council Decadal Survey [Baker and Zurbuchen et al., 2013]. Additionally, a broad tutorial survey of the current technologies is provided to serve as reference material and as a basis from which advanced and innovative ideas can be discussed and pursued. Included are instrumentation and techniques to observe the solar environment from its interior to its outer atmosphere, the heliosphere out to the interstellar regions, in geospace, and other planetary magnetospheres and atmospheres. To make significant progress in priority science as expressed in the National Research Council solar and space physics decadal survey and recent NASA Heliophysics roadmaps, identification of enabling new measurement techniques and technologies to be developed is required. Also, it is valuable to the community and future scientists and engineers to have a complete survey of the techniques and technologies used by the practitioners of solar and space physics. As with the 1995 conference and subsequent 1998 publication, it is incumbent on the community to identify those measurements that are particularly challenging and still require new techniques to be identified and tested to enable the necessary accuracy and resolution of certain parameters to be achieved. The following is a partial list of the measurement technique categories that are featured in these special publications: Particles; Thermal plasma to MeV energetic particles, neutral gas properties including winds, density, temperature, and composition, and enhanced neutral atom imaging; Fields; DC electric and magnetic fields, plasma waves, and electron drift instruments from which the plasma velocity information provides a measure of the DC electric field; Photons; Instruments sensitive from the near-infrared to X-rays; Contributions of techniques and technology for optical design, optical components, sensors, material selection for cameras, telescopes, and spectrographs; Ground based; Remote sensing methods for solar and geospace activity and space weather. The focus includes solar observatories, all-sky cameras, lidars, and ionosphere thermosphere mesosphere observatory systems such as radars, ionosondes, GPS receivers, magnetometers, conjugate observations, and airborne campaigns. The present volume collects together the papers for photons and ground-based categories. The companion volume collects together the papers for particles and fields categories. It is recognized that there are measurement techniques that overlap among the four categories. For example, use of microchannel plate detectors is used in photon and particle measurement techniques or the observation of visible photons and magnetic fields in space and on the ground share common technologies. Therefore, the reader should consider the entire collection of papers as they seek to understand particular applications. We hope that these volumes will be as valuable as a reference for our community as the earlier 1998 volumes have been.

  2. Introduction: Photons and Ground-Based

    NASA Technical Reports Server (NTRS)

    Spann, James; Moore, Thomas

    2017-01-01

    A Conference on Measurement Techniques for Solar and Space Physics was held on 20-24 April 2015 in Boulder, Colorado, at the National Center for Atmospheric Research Center Green Campus. The present volume collects together the conference papers for photons and ground-based categories. This gathering of over 200 scientists and instrumentalists was born out of the desire to collect in one place the latest experiment and instrument technologies required for advancement of scientific knowledge in the disciplines of solar and space physics. The two goals for this conference and the subsequent publication of its content are (a) to describe measurement techniques and technology development needed to advance high priority science in the fields of solar and space physics; and (b) to provide a survey or reference of techniques for in situ measurement and remote sensing of space plasmas. Towards this end, our goal has always been inspired by the two 1998 Geophysical Monographs (Nos. 102 and 103) entitled, "Measurement Techniques in Space Plasmas" (particles and fields) [Pfaff et al., 1998a, 1998b], which have served as a reference and resource for advanced students, engineers, and scientists who wish to learn the fundamentals of measurement techniques and technology in this field. Those monographs were the product of an American Geophysical Union Chapman Conference that took place in Santa Fe, NM, in 1995: "Measurement Techniques in Space Plasmas-What Works, What Doesn't." Two decades later, we believe that it is appropriate to revisit this subject, in light of recent advances in technology, research platforms, and analysis techniques. Moreover, we now include direct measurements of neutral gases in the upper atmosphere, optical imaging techniques, and remote observations in space and on the ground. Accordingly, the workshop was organized among four areas of measurement techniques: particles, fields, photons, and ground-based. This two-set volume is largely composed of the content of that workshop. Special attention is given to those techniques and technologies that demonstrate promise of significant advancement in measurements that will enable the highest priority science as described in the 2012 National Research Council Decadal Survey [Baker and Zurbuchen et al., 2013]. Additionally, a broad tutorial survey of the current technologies is provided to serve as reference material and as a basis from which advanced and innovative ideas can be discussed and pursued. Included are instrumentation and techniques to observe the solar environment from its interior to its outer atmosphere, the heliosphere out to the interstellar regions, in geospace, and other planetary magnetospheres and atmospheres. To make significant progress in priority science as expressed in the National Research Council solar and space physics decadal survey and recent NASA Heliophysics roadmaps, identification of enabling new measurement techniques and technologies to be developed is required. Also, it is valuable to the community and future scientists and engineers to have a complete survey of the techniques and technologies used by the practitioners of solar and space physics. As with the 1995 conference and subsequent 1998 publication, it is incumbent on the community to identify those measurements that are particularly challenging and still require new techniques to be identified and tested to enable the necessary accuracy and resolution of certain parameters to be achieved. The following is a partial list of the measurement technique categories that are featured in these special publications: Particles; Thermal plasma to MeV energetic particles, neutral gas properties including winds, density, temperature, and composition, and enhanced neutral atom imaging; Fields; DC electric and magnetic fields, plasma waves, and electron drift instruments from which the plasma velocity information provides a measure of the DC electric field; Photons; Instruments sensitive from the near-infrared to X-rays; Contributions of techniques and technology for optical design, optical components, sensors, material selection for cameras, telescopes, and spectrographs; Ground based; Remote sensing methods for solar and geospace activity and space weather. The focus includes solar observatories, all-sky cameras, lidars, and ionosphere thermosphere mesosphere observatory systems such as radars, ionosondes, GPS receivers, magnetometers, conjugate observations, and airborne campaigns. The present volume collects together the papers for photons and ground-based categories. The companion volume collects together the papers for particles and fields categories. It is recognized that there are measurement techniques that overlap among the four categories. For example, use of microchannel plate detectors is used in photon and particle measurement techniques or the observation of visible photons and magnetic fields in space and on the ground share common technologies. Therefore, the reader should consider the entire collection of papers as they seek to understand particular applications. We hope that these volumes will be as valuable as a reference for our community as the earlier 1998 volumes have been.

  3. Can reliable sage-grouse lek counts be obtained using aerial infrared technology

    USGS Publications Warehouse

    Gillette, Gifford L.; Coates, Peter S.; Petersen, Steven; Romero, John P.

    2013-01-01

    More effective methods for counting greater sage-grouse (Centrocercus urophasianus) are needed to better assess population trends through enumeration or location of new leks. We describe an aerial infrared technique for conducting sage-grouse lek counts and compare this method with conventional ground-based lek count methods. During the breeding period in 2010 and 2011, we surveyed leks from fixed-winged aircraft using cryogenically cooled mid-wave infrared cameras and surveyed the same leks on the same day from the ground following a standard lek count protocol. We did not detect significant differences in lek counts between surveying techniques. These findings suggest that using a cryogenically cooled mid-wave infrared camera from an aerial platform to conduct lek surveys is an effective alternative technique to conventional ground-based methods, but further research is needed. We discuss multiple advantages to aerial infrared surveys, including counting in remote areas, representing greater spatial variation, and increasing the number of counted leks per season. Aerial infrared lek counts may be a valuable wildlife management tool that releases time and resources for other conservation efforts. Opportunities exist for wildlife professionals to refine and apply aerial infrared techniques to wildlife monitoring programs because of the increasing reliability and affordability of this technology.

  4. Identification of magnetic anomalies based on ground magnetic data analysis using multifractal modeling: a case study in Qoja-Kandi, East Azerbaijan Province, Iran

    NASA Astrophysics Data System (ADS)

    Mansouri, E.; Feizi, F.; Karbalaei Ramezanali, A. A.

    2015-07-01

    Ground magnetic anomaly separation using reduction-to-the-pole (RTP) technique and the fractal concentration-area (C-A) method has been applied to the Qoja-Kandi prosepecting area in NW Iran. The geophysical survey that resulted in the ground magnetic data was conducted for magnetic elements exploration. Firstly, RTP technique was applied for recognizing underground magnetic anomalies. RTP anomalies was classified to different populations based on this method. For this reason, drilling points determination with RTP technique was complicated. Next, C-A method was applied on the RTP-Magnetic-Anomalies (RTP-MA) for demonstrating magnetic susceptibility concentration. This identification was appropriate for increasing the resolution of the drilling points determination and decreasing the drilling risk, due to the economic costs of underground prospecting. In this study, the results of C-A Modeling on the RTP-MA are compared with 8 borehole data. The results show there is good correlation between anomalies derived via C-A method and log report of boreholes. Two boreholes were drilled in magnetic susceptibility concentration, based on multifractal modeling data analyses, between 63 533.1 and 66 296 nT. Drilling results show appropriate magnetite thickness with the grades greater than 20 % Fe total. Also, anomalies associated with andesite units host iron mineralization.

  5. Ground Motion Prediction Model Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Dhanya, J.; Raghukanth, S. T. G.

    2018-03-01

    This article focuses on developing a ground motion prediction equation based on artificial neural network (ANN) technique for shallow crustal earthquakes. A hybrid technique combining genetic algorithm and Levenberg-Marquardt technique is used for training the model. The present model is developed to predict peak ground velocity, and 5% damped spectral acceleration. The input parameters for the prediction are moment magnitude ( M w), closest distance to rupture plane ( R rup), shear wave velocity in the region ( V s30) and focal mechanism ( F). A total of 13,552 ground motion records from 288 earthquakes provided by the updated NGA-West2 database released by Pacific Engineering Research Center are utilized to develop the model. The ANN architecture considered for the model consists of 192 unknowns including weights and biases of all the interconnected nodes. The performance of the model is observed to be within the prescribed error limits. In addition, the results from the study are found to be comparable with the existing relations in the global database. The developed model is further demonstrated by estimating site-specific response spectra for Shimla city located in Himalayan region.

  6. Assimilation of Spatially Sparse In Situ Soil Moisture Networks into a Continuous Model Domain

    NASA Astrophysics Data System (ADS)

    Gruber, A.; Crow, W. T.; Dorigo, W. A.

    2018-02-01

    Growth in the availability of near-real-time soil moisture observations from ground-based networks has spurred interest in the assimilation of these observations into land surface models via a two-dimensional data assimilation system. However, the design of such systems is currently hampered by our ignorance concerning the spatial structure of error afflicting ground and model-based soil moisture estimates. Here we apply newly developed triple collocation techniques to provide the spatial error information required to fully parameterize a two-dimensional (2-D) data assimilation system designed to assimilate spatially sparse observations acquired from existing ground-based soil moisture networks into a spatially continuous Antecedent Precipitation Index (API) model for operational agricultural drought monitoring. Over the contiguous United States (CONUS), the posterior uncertainty of surface soil moisture estimates associated with this 2-D system is compared to that obtained from the 1-D assimilation of remote sensing retrievals to assess the value of ground-based observations to constrain a surface soil moisture analysis. Results demonstrate that a fourfold increase in existing CONUS ground station density is needed for ground network observations to provide a level of skill comparable to that provided by existing satellite-based surface soil moisture retrievals.

  7. Satellite and Ground-based Radiometers Reveal Much Lower Dust Absorption of Sunlight than Used in Climate Models

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Tanre, D.; Dubovik, O.; Karnieli, A.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The ability of dust to absorb solar radiation and heat the atmosphere is one of the main uncertainties in climate modeling and the prediction of climate change. Dust absorption is not well known due to limitations of in situ measurements. New techniques to measure dust absorption are needed in order to assess the impact of dust on climate. Here we report two new independent remote sensing techniques that provide sensitive measurements of dust absorption. Both are based on remote sensing. One uses satellite spectral measurements, the second uses ground based sky measurements from the AERONET network. Both techniques demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. Dust cooling of the earth system in the solar spectrum is therefore significantly stronger than recent calculations indicate. We shall also address the issue of the effects of dust non-sphericity on the aerosol optical properties.

  8. An Overview of Potential Methods for Maintaining Training Area Environments in Arid and Semi-Arid Climates

    DTIC Science & Technology

    1983-04-01

    Shrubs , Ground Covers, and Vines , Technical Manual 5-830-4 (June 1976). This manual provides guidelines and prescribes standard techniques to be used...in planting and the initial care required to successfully establish trees, shrubs , ground covers, and vines . Criteria for selecting materials are...their new location. The planting of trees, shrubs , ground covers, and vines should comply with approved landscape planting plans and should be based on

  9. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  10. Application of star identification using pattern matching to space ground systems at GSFC

    NASA Technical Reports Server (NTRS)

    Fink, D.; Shoup, D.

    1994-01-01

    This paper reports the application of pattern recognition techniques for star identification based on those proposed by Van Bezooijen to space ground systems for near-real-time attitude determination. A prototype was developed using these algorithms, which was used to assess the suitability of these techniques for support of the X-Ray Timing Explorer (XTE), Submillimeter Wave Astronomy Satellite (SWAS), and the Solar and Heliospheric Observatory (SOHO) missions. Experience with the prototype was used to refine specifications for the operational system. Different geometry tests appropriate to the mission requirements of XTE, SWAS, and SOHO were adopted. The applications of these techniques to upcoming mission support of XTE, SWAS, and SOHO are discussed.

  11. Ground roll attenuation using polarization analysis in the t-f-k domain

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, Y.

    2017-07-01

    S waves travel slower than P waves and have a lower dominant frequency. Therefore, applying common techniques such as time-frequency filtering and f-k filtering to separate S waves from ground roll is difficult because ground roll is also characterized by slow velocity and low frequency. In this study, we present a method for attenuating ground roll using a polarization filtering method based on the t-f-k transform. We describe the particle motion of the waves by complex vector signals. Each pair of frequency components, whose frequencies have the same absolute value but different signs, of the complex signal indicate an elliptical or linear motion. The polarization parameters of the elliptical or linear motion are explicitly related to the two Fourier coefficients. We then extend these concepts to the t-f-k domain and propose a polarization filtering method for ground roll attenuation based on the t-f-k transform. The proposed approach can define automatically the time-varying reject zones on the f-k panel at different times as a function of the reciprocal ellipticity. Four attributes, time, frequency, apparent velocity and polarization are used to identify and extract the ground roll simultaneously. Thus, the ground roll and body waves can be separated as long as they are dissimilar in one of these attributes. We compare our method with commonly used filtering techniques by applying the methods to synthetic and real seismic data. The results indicate that our method can attenuate ground roll while preserving body waves more effectively than the other methods.

  12. Study of FES/CAST/HGS

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Cummings, Rick; Jones, Brian

    1992-01-01

    The microgravity materials processing program has been instrumental in providing the crystal growth community with an experimental environment to better understand the phenomena associated with the growing of crystals. In many applications one may pursue the growth of large single crystals which cannot be grown on earth due to convective driven flows. A microgravity environment is characterized by neither convection of buoyancy. Consequently superior crystals are able to be grown in space. On the other hand, since neither convection nor buoyancy dominates the fluid flow in a microgravity environment, then lesser dominating phenomena can affect crystal growth, such as surface driven flows or diffusion limited solidification. In the case of experiments that are to be flown in space using the Fluid Experiments System (FES), diffusion limited growth should be the dominating phenomenon. The use of holographic and Schlieren optical techniques for studying the concentration gradients in solidification processes has been used by several investigators over the years. The Holographic Ground System (HGS) facility at MSFC has been a primary resource in researching this capability. Consequently scientific personnel have been able to utilize these techniques in both ground based research and in space experiments. An important event in the scientific utilization of the HGS facilities was the TGS (triglycine sulfate) Crystal Growth and the Casting and Solidification Technology (CAST) experiments that were flown on the International Microgravity Lab (IML) mission in March of this year. The preparation and processing of these space observations are the primary experiments reported in this work. This project provides some ground-based studies to optimize on the holographic techniques used to acquire information about the crystal growth processes flown on IML. Since the ground-based studies will be compared with the space-based experimental results, it is necessary to conduct sufficient ground based studies to best determine how the experiment in space worked. The current capabilities in computer based systems for image processing and numerical computation have certainly assisted in those efforts. As anticipated, this study has certainly shown that these advanced computing capabilities are helpful in the data analysis of such experiments.

  13. On Evaluating Brain Tissue Classifiers without a Ground Truth

    PubMed Central

    Martin-Fernandez, Marcos; Ungar, Lida; Nakamura, Motoaki; Koo, Min-Seong; McCarley, Robert W.; Shenton, Martha E.

    2009-01-01

    In this paper, we present a set of techniques for the evaluation of brain tissue classifiers on a large data set of MR images of the head. Due to the difficulty of establishing a gold standard for this type of data, we focus our attention on methods which do not require a ground truth, but instead rely on a common agreement principle. Three different techniques are presented: the Williams’ index, a measure of common agreement; STAPLE, an Expectation Maximization algorithm which simultaneously estimates performance parameters and constructs an estimated reference standard; and Multidimensional Scaling, a visualization technique to explore similarity data. We apply these different evaluation methodologies to a set eleven different segmentation algorithms on forty MR images. We then validate our evaluation pipeline by building a ground truth based on human expert tracings. The evaluations with and without a ground truth are compared. Our findings show that comparing classifiers without a gold standard can provide a lot of interesting information. In particular, outliers can be easily detected, strongly consistent or highly variable techniques can be readily discriminated, and the overall similarity between different techniques can be assessed. On the other hand, we also find that some information present in the expert segmentations is not captured by the automatic classifiers, suggesting that common agreement alone may not be sufficient for a precise performance evaluation of brain tissue classifiers. PMID:17532646

  14. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Treatment technique violations for ground water systems. 141.404 Section 141.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....404 Treatment technique violations for ground water systems. (a) A ground water system with a...

  15. Integration between ground based and satellite SAR data in landslide mapping: The San Fratello case study

    NASA Astrophysics Data System (ADS)

    Bardi, Federica; Frodella, William; Ciampalini, Andrea; Bianchini, Silvia; Del Ventisette, Chiara; Gigli, Giovanni; Fanti, Riccardo; Moretti, Sandro; Basile, Giuseppe; Casagli, Nicola

    2014-10-01

    The potential use of the integration of PSI (Persistent Scatterer Interferometry) and GB-InSAR (Ground-based Synthetic Aperture Radar Interferometry) for landslide hazard mitigation was evaluated for mapping and monitoring activities of the San Fratello landslide (Sicily, Italy). Intense and exceptional rainfall events are the main factors that triggered several slope movements in the study area, which is susceptible to landslides, because of its steep slopes and silty-clayey sedimentary cover. In the last three centuries, the town of San Fratello was affected by three large landslides, developed in different periods: the oldest one occurred in 1754, damaging the northeastern sector of the town; in 1922 a large landslide completely destroyed a wide area in the western hillside of the town. In this paper, the attention is focussed on the most recent landslide that occurred on 14 February 2010: in this case, the phenomenon produced the failure of a large sector of the eastern hillside, causing severe damages to buildings and infrastructures. In particular, several slow-moving rotational and translational slides occurred in the area, making it suitable to monitor ground instability through different InSAR techniques. PS-InSAR™ (permanent scatterers SAR interferometry) techniques, using ERS-1/ERS-2, ENVISAT, RADARSAT-1, and COSMO-SkyMed SAR images, were applied to analyze ground displacements during pre- and post-event phases. Moreover, during the post-event phase in March 2010, a GB-InSAR system, able to acquire data continuously every 14 min, was installed collecting ground displacement maps for a period of about three years, until March 2013. Through the integration of space-borne and ground-based data sets, ground deformation velocity maps were obtained, providing a more accurate delimitation of the February 2010 landslide boundary, with respect to the carried out traditional geomorphological field survey. The integration of GB-InSAR and PSI techniques proved to be very effective in landslide mapping in the San Fratello test site, representing a valid scientific support for local authorities and decision makers during the post-emergency management.

  16. Methods of collecting and interpreting ground-water data

    USGS Publications Warehouse

    Bentall, Ray

    1963-01-01

    Because ground water is hidden from view, ancient man could only theorize as to its sources of replenishment and its behavior. His theories held sway until the latter part of the 17th century, which marked the first experimental work to determine the source and movement of ground water. Thus founded, the science of ground-water hydrology grew slowly and not until the 19th century is there substantial evidence of conclusions having been based on observational data. The 20th century has witnessed tremendous advances in the science in the methods of field investigation and interpretation of collected data, in the methods of determining the hydrologic characteristics of water-bearing material, and in the methods of inventorying ground-water supplies. Now, as is true of many other disciplines, the science of ground-water hydrology is characterized by frequent advancement of new ideas and techniques, refinement of old techniques, and an increasing wealth of data awaiting interpretation.So that its widely scattered staff of professional hydrologists could keep abreast of new ideas and advances in the techniques of groundwater investigation, it has been the practice in the U.S. Geological Survey to distribute such information for immediate internal use. As the methods become better established and developed, they are described in formal publications. Six papers pertaining to widely different phases of ground-water investigation comprise this particular contribution. For the sake of clarity and conformity, the original papers have been revised and edited by the compiler.

  17. Ground-water recharge in the arid and semiarid southwestern United States

    USGS Publications Warehouse

    Stonestrom, David A.; Constantz, Jim; Ferré, Ty P.A.; Leake, Stanley A.

    2007-01-01

    Ground-water recharge in the arid and semiarid southwestern United States results from the complex interplay of climate, geology, and vegetation across widely ranging spatial and temporal scales. Present-day recharge tends to be narrowly focused in time and space. Widespread water-table declines accompanied agricultural development during the twentieth century, demonstrating that sustainable ground-water supplies are not guaranteed when part of the extracted resource represents paleorecharge. Climatic controls on ground-water recharge range from seasonal cycles of summer monsoonal and winter frontal storms to multimillennial cycles of glacial and interglacial periods. Precipitation patterns reflect global-scale interactions among the oceans, atmosphere, and continents. Large-scale climatic influences associated with El Niño and Pacific Decadal Oscillations strongly, but irregularly, control weather in the study area, so that year-to-year variations in precipitation and ground-water recharge are large and difficult to predict. Proxy data indicate geologically recent periods of naturally occurring multidecadal droughts unlike any in the modern instrumental record. Any anthropogenically induced climate change will likely reduce ground-water recharge through diminished snowpack at higher elevations. Future changes in El Niño and monsoonal patterns, both crucial to precipitation in the study area, are highly uncertain in current models. Current land-use modifications influence ground-water recharge through vegetation, irrigation, and impermeable area. High mountain ranges bounding the study area—the San Bernadino Mountains and Sierra Nevada to the west, and the Wasatch and southern Colorado Rocky Mountains to the east—provide external geologic controls on ground-water recharge. Internal geologic controls stem from tectonic processes that led to numerous, variably connected alluvial-filled basins, exposure of extensive Paleozoic aquifers in mountainous recharge areas, and distinct modes of recharge in the Colorado Plateau and Basin and Range subregions.The chapters in this professional paper present (first) an overview of climatic and hydrogeologic framework (chapter A), followed by a regional analysis of ground-water recharge across the entire study area (chapter B). These are followed by an overview of site-specific case studies representing different subareas of the geographically diverse arid and semiarid southwestern United States (chapter C); the case studies themselves follow in chapters D–K. The regional analysis includes detailed hydrologic modeling within the framework of a high-resolution geographic-information system (GIS). Results from the regional analysis are used to explore both the distribution of ground-water recharge for mean climatic conditions as well as the influence of two climatic patterns—the El Niño-Southern Oscillation and Pacific Decadal Oscillation—that impart a high degree of variability to the hydrologic cycle. Individual case studies employ a variety of geophysical and geochemical techniques to investigate recharge processes and relate the processes to local geologic and climatic conditions. All of the case studies made use of naturally occurring tracers to quantify recharge. Thermal and geophysical techniques that were developed in the course of the studies are presented in appendices.The quantification of ground-water recharge in arid settings is inherently difficult due to the generally low amount of recharge, its spatially and temporally spotty nature, and the absence of techniques for directly measuring fluxes entering the saturated zone from the unsaturated zone. Deep water tables in arid alluvial basins correspond to thick unsaturated zones that produce up to millennial time lags between changes in hydrologic conditions at the land surface and subsequent changes in recharge to underlying ground water. Recent advances in physical, chemical, isotopic, and modeling techniques have fostered new types of recharge assessments. Chemical and isotopic techniques include an increasing variety of environmental tracers that are useful and robust. Physically based techniques include the use of heat as a tracer and computationally intensive geophysical imaging tools for characterizing hydrologic conditions in the unsaturated zone. Modeling-based techniques include spatially distributed water-budget computations using high-resolution remotely sensed and ground-based geographic data. Application of these techniques to arid and semiarid settings in the southwestern United States reveals distinct patterns of recharge corresponding to geologic setting, climatic and vegetative history, and land use. Analysis of recharge patterns shows that large expanses of alluvial basin floors are drying out under current climatic conditions, with little to no recharge to underlying ground water. Ground-water recharge occurs mainly beneath upland catchments in which thin soils overlie permeable bedrock, ephemeral channels in which flow may average only several hours per year, and active agricultural areas. The chapters in this professional paper represent a coordinated attempt to develop a better understanding of one of the Nation's most critical yet difficult-to-quantify renewable resources.

  18. Unmanned aerial vehicle-based structure from motion biomass inventory estimates

    NASA Astrophysics Data System (ADS)

    Bedell, Emily; Leslie, Monique; Fankhauser, Katie; Burnett, Jonathan; Wing, Michael G.; Thomas, Evan A.

    2017-04-01

    Riparian vegetation restoration efforts require cost-effective, accurate, and replicable impact assessments. We present a method to use an unmanned aerial vehicle (UAV) equipped with a GoPro digital camera to collect photogrammetric data of a 0.8-ha riparian restoration. A three-dimensional point cloud was created from the photos using "structure from motion" techniques. The point cloud was analyzed and compared to traditional, ground-based monitoring techniques. Ground-truth data were collected on 6.3% of the study site and averaged across the entire site to report stem heights in stems/ha in three height classes. The project site was divided into four analysis sections, one for derivation of parameters used in the UAV data analysis and the remaining three sections reserved for method validation. Comparing the ground-truth data to the UAV generated data produced an overall error of 21.6% and indicated an R2 value of 0.98. A Bland-Altman analysis indicated a 95% probability that the UAV stems/section result will be within 61 stems/section of the ground-truth data. The ground-truth data are reported with an 80% confidence interval of ±1032 stems/ha thus, the UAV was able to estimate stems well within this confidence interval.

  19. Thermospheric observations combining chemical seeding and ground-based techniques. I - Winds, turbulence and the parameters of the neutral atmosphere.

    NASA Technical Reports Server (NTRS)

    Lloyd, K. H.; Low, C. H.; Mcavaney, B. J.; Rees, D.; Roper, R. G.

    1972-01-01

    Two Skylark sounding rockets carrying chemical seeding payloads were launched from Woomera, South Australia (31 S, 137 E) in October 1969. In conjunction with these firings, the University of Adelaide conducted ground-based experiments on the upper atmosphere using the radio meteor and spaced receiver drift methods. This paper presents the measurements of properties of the neutral atmosphere above 90 km which were obtained from these experiments.

  20. Bistatic LIDAR experiment proposed for the shuttle/tethered satellite system missions

    NASA Technical Reports Server (NTRS)

    Mccomas, D. J.; Spense, H. E.; Karl, R. R.; Horak, H. G.; Wilkerson, T. D.

    1986-01-01

    A new experiment concept has been proposed for the shuttle/tethered satellite system missions, which can provide high resolution, global density mappings of certain ionospheric species. The technique utilizes bistatic LIDAR to take advantage of the unique dual platform configuration offered by these missions. A tuned, shuttle-based laser is used to excite a column of the atmosphere adjacent to the tethered satellite, while triangulating photometic detectors on the satellite are employed to measure the fluorescence from sections of the column. The fluorescent intensity at the detectors is increased about six decades over both ground-based and monostatic shuttle-based LIDAR sounding of the same region. In addition, the orbital motion of the Shuttle provides for quasi-global mapping unattainable with ground-based observations. Since this technique provides such vastly improved resolution on a synoptic scale, many important middle atmospheric studies, heretofore untenable, may soon be addressed.

  1. SPECKLE NOISE SUBTRACTION AND SUPPRESSION WITH ADAPTIVE OPTICS CORONAGRAPHIC IMAGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren Deqing; Dou Jiangpei; Zhang Xi

    2012-07-10

    Future ground-based direct imaging of exoplanets depends critically on high-contrast coronagraph and wave-front manipulation. A coronagraph is designed to remove most of the unaberrated starlight. Because of the wave-front error, which is inherit from the atmospheric turbulence from ground observations, a coronagraph cannot deliver its theoretical performance, and speckle noise will limit the high-contrast imaging performance. Recently, extreme adaptive optics, which can deliver an extremely high Strehl ratio, is being developed for such a challenging mission. In this publication, we show that barely taking a long-exposure image does not provide much gain for coronagraphic imaging with adaptive optics. We furthermore » discuss a speckle subtraction and suppression technique that fully takes advantage of the high contrast provided by the coronagraph, as well as the wave front corrected by the adaptive optics. This technique works well for coronagraphic imaging with conventional adaptive optics with a moderate Strehl ratio, as well as for extreme adaptive optics with a high Strehl ratio. We show how to substrate and suppress speckle noise efficiently up to the third order, which is critical for future ground-based high-contrast imaging. Numerical simulations are conducted to fully demonstrate this technique.« less

  2. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  3. Assessment of NASA Airborne Laser Altimetry Data Using Ground-Based GPS Data near Summit Station, Greenland

    NASA Technical Reports Server (NTRS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-01-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airbornelaser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface elevation biases for these altimeters over the flat, ice-sheet interior are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  4. Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland

    NASA Astrophysics Data System (ADS)

    Brunt, Kelly M.; Hawley, Robert L.; Lutz, Eric R.; Studinger, Michael; Sonntag, John G.; Hofton, Michelle A.; Andrews, Lauren C.; Neumann, Thomas A.

    2017-03-01

    A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the data gap between satellite missions. We used data from ground-based Global Positioning System (GPS) surveys of an 11 km long track near Summit Station, Greenland, to assess the surface-elevation bias and measurement precision of three airborne laser altimeters including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). Ground-based GPS data from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of nine airborne lidar surveys associated with ATM and LVIS between 2007 and 2016. Surface-elevation biases for these altimeters - over the flat, ice-sheet interior - are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. Ground-based GPS positions determined both with and without differential post-processing techniques provided internally consistent solutions. Results from the analyses of ground-based and airborne data provide validation strategy guidance for the Ice, Cloud, and land Elevation Satellite 2 (ICESat-2) elevation and elevation-change data products.

  5. Ground deformation monitoring using small baseline DInSAR technique: A case study in Taiyuan City from 2003 to 2009

    USGS Publications Warehouse

    Wu, H.-A.; Zhang, Y.-H.; Chen, X.-Y.; Lu, T.; Du, J.; Sun, Z.-H.; Sun, G.-T.

    2011-01-01

    DInSAR technique based on time series of SAR images has been very popular to monitor ground stow deformation in recent years such as permanent scatterers (PS) method small baseline subsets (SBAS) method and coherent targets (CT) method. By taking advantage of PS method and CT method in this paper small baseline DTnSAR technique is used to investigate the ground deformation of Taiyuan City Shanxi Province from 2003 to 2009 by using 23 ENVISAT ASAR images. The experiment results demonstrate that: (1) during this period four significant subsidence centers have been developed in Taiyuan namely Xiayuan Wujiabu Xiaodian Sunjiazhai. The largest subsidence center is Sunjiazhai with an average subsidence rate of -77. 28 mm/a; (2) The subsidence of the old center Wanbolin has sHowed down. And the subsidence in the northern region has stopped and some areas even rebounded. (3) The change of subsidence centers indicates that the control measures of "closing wells and reducing exploitation" taken by the Taiyuan government has achieved initial effects. (4) The experiment results have been validated with leveling data and the acouracy is 2. 90 mm which shows that the small baseline DInSAR technique can be used to monitor urban ground deformation.

  6. Ground-based measurements with the ADRON active gamma-ray and neutron spectrometer designed for lunar and Martian landing missions

    NASA Astrophysics Data System (ADS)

    Litvak, M. L.; Golovin, D. V.; Kolesnikov, A. B.; Vostrukhin, A. A.; Djachkova, M. V.; Kozyrev, A. S.; Mitrofanov, I. G.; Mokrousov, M. I.; Sanin, A. B.

    2017-05-01

    This paper outlines the main research objectives and gives a description of the ADRON active gamma-ray and neutron spectrometer, which is designed specifically for the Russian lunar landing missions Luna-Glob and Luna-Resurs and for the ExoMars Martian landing platform. The measurement technique is described. The first ground-based calibration results are presented, making it possible to assess the sensitivity of the ADRON instruments in determining the average water content of the underlying surface in the range from 1% (dry ground) to 100% (water ice) to a depth of 0.5 m.

  7. Field-aligned electric currents and their measurement by the incoherent backscatter technique

    NASA Technical Reports Server (NTRS)

    Bauer, P.; Cole, K. D.; Lejeume, G.

    1975-01-01

    Field aligned electric currents flow in the magnetosphere in many situations of fundamental geophysical interest. It is shown here that the incoherent backscatter technique can be used to measure these currents when the plasma line can be observed. The technique provides a ground based means of measuring these currents which complements the rocket and satellite ones.

  8. Multi-instrument observations of the ionospheric and plasmaspheric density structure

    NASA Astrophysics Data System (ADS)

    Yizengaw, E.; Moldwin, M. B.

    2008-05-01

    : The density within the ionosphere and plasmasphere can be monitored using a combination of techniques that use both ground- and space-based instruments. We are combining diagnostic observations of everything, but the kitchen sink. These include observations of GPS TEC, TOPEX and JASON TEC, IMAGE EUV and FUV, GUVI composition data, ULF resonances, and many other multi-satellite data sets such as DMSP in situ observations. The dramatically growing number of GPS receivers on the ground and onboard Low-Earth-Orbit (LEO) satellites offers an excellent opportunity for remote sensing and monitoring of the ionospheric and plasmaspheric density structure using GPS TEC tomographic reconstruction technique. This allows us to clearly quantify magnetosphere-ionosphere (M-I) coupling dynamics, as well as confirm the long-standing conjecture that the mid-latitude trough and plasmapause are on the same field line. This has been demonstrated globally, for the first time, using a combination of data from IMAGE EUV and ground- and space-based GPS receivers. The two dimensional tomographic image of the ionosphere and plasmasphere, using data from the GPS receiver onboard LEO satellites, such as FedSat, CHAMP, COSMIC, etc, also provides a new ability to image the flux tube structure of ionospheric ion outflows, tracking flux tube structure up to 3.17Re (20,200 km) altitude for the first time. The combination of data from the altimeter on JASON and ground-based GPS network also provides an excellent opportunity to experimentally estimate the plasmaspheric density contribution to the ground-based GPS TEC and thus to the degradation of navigation and communication accuracy.

  9. A ground-based technique for millimeter wave spectroscopic observations of stratospheric trace constituents

    NASA Technical Reports Server (NTRS)

    Parrish, A.; Dezafra, R. L.; Solomon, P. M.; Barrett, J. W.

    1988-01-01

    Recent concern over possible long term stratospheric changes caused by the introduction of man-made compounds has increased the need for instrumentation that can accurately measure stratospheric minor constituents. The technique of radio spectroscopy at millimeter wavelengths was first used to observe rotational transitions of stratospheric ozone nearly two decades ago, but has not been highly developed until recently. A ground-based observing technique is reported which employs a millimeter-wave superheterodyne receiver and multichannel filter spectrometer for measurements of stratospheric constituents that have peak volume mixing ratios that are less than 10 to the -9th, more than 3 orders of magnitude less than that for ozone. The technique is used for an extensive program of observations of stratospheric chlorine monoxide and also for observations of other stratospheric trace gases such as (O-16)3, vibrationally excited (O-16)3, (O-18)2(O-16), N2O, HO2, and HCN. In the present paper, analysis of the observing technique is given, including the method of calibration and analysis of sources of error. The technique is found to be a reliable means of observing and monitoring important stratospheric trace constituents.

  10. Background adaptive division filtering for hand-held ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Lee, Matthew A.; Anderson, Derek T.; Ball, John E.; White, Julie L.

    2016-05-01

    The challenge in detecting explosive hazards is that there are multiple types of targets buried at different depths in a highlycluttered environment. A wide array of target and clutter signatures exist, which makes detection algorithm design difficult. Such explosive hazards are typically deployed in past and present war zones and they pose a grave threat to the safety of civilians and soldiers alike. This paper focuses on a new image enhancement technique for hand-held ground penetrating radar (GPR). Advantages of the proposed technique is it runs in real-time and it does not require the radar to remain at a constant distance from the ground. Herein, we evaluate the performance of the proposed technique using data collected from a U.S. Army test site, which includes targets with varying amounts of metal content, placement depths, clutter and times of day. Receiver operating characteristic (ROC) curve-based results are presented for the detection of shallow, medium and deeply buried targets. Preliminary results are very encouraging and they demonstrate the usefulness of the proposed filtering technique.

  11. Operational considerations for the application of remotely sensed forest data from LANDSAT or other airborne platforms

    NASA Technical Reports Server (NTRS)

    Baker, G. R.; Fethe, T. P.

    1975-01-01

    Research in the application of remotely sensed data from LANDSAT or other airborne platforms to the efficient management of a large timber based forest industry was divided into three phases: (1) establishment of a photo/ground sample correlation, (2) investigation of techniques for multi-spectral digital analysis, and (3) development of a semi-automated multi-level sampling system. To properly verify results, three distinct test areas were selected: (1) Jacksonville Mill Region, Lower Coastal Plain, Flatwoods, (2) Pensacola Mill Region, Middle Coastal Plain, and (3) Mississippi Mill Region, Middle Coastal Plain. The following conclusions were reached: (1) the probability of establishing an information base suitable for management requirements through a photo/ground double sampling procedure, alleviating the ground sampling effort, is encouraging, (2) known classification techniques must be investigated to ascertain the level of precision possible in separating the many densities involved, and (3) the multi-level approach must be related to an information system that is executable and feasible.

  12. Technique for Increasing the Selectivity of the Method of Laser Fragmentation/Laser-Induced Fluorescence

    NASA Astrophysics Data System (ADS)

    Bobrovnikov, S. M.; Gorlov, E. V.; Zharkov, V. I.

    2018-05-01

    A technique for increasing the selectivity of the method of detecting high-energy materials (HEMs) based on laser fragmentation of HEM molecules with subsequent laser excitation of fluorescence of the characteristic NO fragments from the first vibrational level of the ground state is suggested.

  13. Remote sensing of natural resources: Quarterly literature review

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A quarterly review of technical literature concerning remote sensing techniques is presented. The format contains indexed and abstracted materials with emphasis on data gathering techniques performed or obtained remotely from space, aircraft, or ground-based stations. Remote sensor applications including the remote sensing of natural resources are presented.

  14. Estimates of ground-water recharge based on streamflow-hydrograph methods: Pennsylvania

    USGS Publications Warehouse

    Risser, Dennis W.; Conger, Randall W.; Ulrich, James E.; Asmussen, Michael P.

    2005-01-01

    This study, completed by the U.S. Geological Survey (USGS) in cooperation with the Pennsylvania Department of Conservation and Natural Resources, Bureau of Topographic and Geologic Survey (T&GS), provides estimates of ground-water recharge for watersheds throughout Pennsylvania computed by use of two automated streamflow-hydrograph-analysis methods--PART and RORA. The PART computer program uses a hydrograph-separation technique to divide the streamflow hydrograph into components of direct runoff and base flow. Base flow can be a useful approximation of recharge if losses and interbasin transfers of ground water are minimal. The RORA computer program uses a recession-curve displacement technique to estimate ground-water recharge from each storm period indicated on the streamflow hydrograph. Recharge estimates were made using streamflow records collected during 1885-2001 from 197 active and inactive streamflow-gaging stations in Pennsylvania where streamflow is relatively unaffected by regulation. Estimates of mean-annual recharge in Pennsylvania computed by the use of PART ranged from 5.8 to 26.6 inches; estimates from RORA ranged from 7.7 to 29.3 inches. Estimates from the RORA program were about 2 inches greater than those derived from the PART program. Mean-monthly recharge was computed from the RORA program and was reported as a percentage of mean-annual recharge. On the basis of this analysis, the major ground-water recharge period in Pennsylvania typically is November through May; the greatest monthly recharge typically occurs in March.

  15. Characterizing Englacial Attenuation and Grounding Zone Geometry Using Airborne Radar Sounding

    NASA Astrophysics Data System (ADS)

    Schroeder, D. M.; Grima, C.; Blankenship, D. D.

    2014-12-01

    The impact of warm ocean water on ice sheet retreat and stability is a one of the primary drivers and sources of uncertainty for the rate of global sea level rise. One critical but challenging observation required to understand and model this impact is the location and extent of grounding ice sheet zones. However, existing surface topography based techniques do not directly detect the location where ocean water reaches (or breaches) grounded ice at the bed, which can significantly affect ice sheet stability. The primary geophysical tool for directly observing the basal properties of ice sheets is airborne radar sounding. However, uncertainty in englacial attenuation from unknown ice temperature and chemistry can lead to erroneous interpretation of subglacial conditions from bed echo strengths alone . Recently developed analysis techniques for radar sounding data have overcome this challenge by taking advantage of information in the angular distribution of bed echo energy and joint modeling of radar returns and water routing. We have developed similar approaches to analyze the spatial pattern and character of echoes to address the problems of improved characterization of grounding zone geometry and englacial attenuation. The spatial signal of the transition from an ice-bed interface to an ice-ocean interface is an increase in bed echo strength. However, rapidly changing attenuation near the grounding zone prevents the unambiguous interpretation of this signal in typical echo strength profiles and violates the assumptions of existing empirical attenuation correction techniques. We present a technique that treat bed echoes as continuous signals to take advantage of along-profile ice thickness and echo strength variations to constrain the spatial pattern of attenuation and detect the grounding zone transition. The transition from an ice-bed interface to an ice-ocean interface will also result in a change in the processes that determine basal interface morphology (e.g. melt/freeze processes for floating ice vs. erosion/deformation processes for grounded ice). This morphology change will be expressed in the angular distribution and coherency of bed echo energy. We also present techniques that exploit this character of bed echoes to further improve the detection and characterization of grounding zones.

  16. Ground-Based Lidar for Atmospheric Boundary Layer Ozone Measurements

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Newchurch, Michael J.; Burris, John; Liu, Xiong

    2013-01-01

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than 10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  17. A review of GPS-based tracking techniques for TDRS orbit determination

    NASA Technical Reports Server (NTRS)

    Haines, B. J.; Lichten, S. M.; Malla, R. P.; Wu, S.-C.

    1993-01-01

    This article evaluates two fundamentally different approaches to the Tracking and Data Relay Satellite (TDRS) orbit determination utilizing Global Positioning System (GPS) technology and GPS-related techniques. In the first, a GPS flight receiver is deployed on the TDRS. The TDRS ephemerides are determined using direct ranging to the GPS spacecraft, and no ground network is required. In the second approach, the TDRS's broadcast a suitable beacon signal, permitting the simultaneous tracking of GPS and Tracking and Data Relay Satellite System satellites by ground receivers. Both strategies can be designed to meet future operational requirements for TDRS-II orbit determination.

  18. Accelerated Time-Domain Modeling of Electromagnetic Pulse Excitation of Finite-Length Dissipative Conductors over a Ground Plane via Function Fitting and Recursive Convolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry K.; Sainath, Kamalesh

    In this report we overview the fundamental concepts for a pair of techniques which together greatly hasten computational predictions of electromagnetic pulse (EMP) excitation of finite-length dissipative conductors over a ground plane. In a time- domain, transmission line (TL) model implementation, predictions are computationally bottlenecked time-wise, either for late-time predictions (about 100ns-10000ns range) or predictions concerning EMP excitation of long TLs (order of kilometers or more ). This is because the method requires a temporal convolution to account for the losses in the ground. Addressing this to facilitate practical simulation of EMP excitation of TLs, we first apply a techniquemore » to extract an (approximate) complex exponential function basis-fit to the ground/Earth's impedance function, followed by incorporating this into a recursion-based convolution acceleration technique. Because the recursion-based method only requires the evaluation of the most recent voltage history data (versus the entire history in a "brute-force" convolution evaluation), we achieve necessary time speed- ups across a variety of TL/Earth geometry/material scenarios. Intentionally Left Blank« less

  19. Evaluation of Ground-Motion Modeling Techniques for Use in Global ShakeMap - A Critique of Instrumental Ground-Motion Prediction Equations, Peak Ground Motion to Macroseismic Intensity Conversions, and Macroseismic Intensity Predictions in Different Tectonic Settings

    USGS Publications Warehouse

    Allen, Trevor I.; Wald, David J.

    2009-01-01

    Regional differences in ground-motion attenuation have long been thought to add uncertainty in the prediction of ground motion. However, a growing body of evidence suggests that regional differences in ground-motion attenuation may not be as significant as previously thought and that the key differences between regions may be a consequence of limitations in ground-motion datasets over incomplete magnitude and distance ranges. Undoubtedly, regional differences in attenuation can exist owing to differences in crustal structure and tectonic setting, and these can contribute to differences in ground-motion attenuation at larger source-receiver distances. Herein, we examine the use of a variety of techniques for the prediction of several ground-motion metrics (peak ground acceleration and velocity, response spectral ordinates, and macroseismic intensity) and compare them against a global dataset of instrumental ground-motion recordings and intensity assignments. The primary goal of this study is to determine whether existing ground-motion prediction techniques are applicable for use in the U.S. Geological Survey's Global ShakeMap and Prompt Assessment of Global Earthquakes for Response (PAGER). We seek the most appropriate ground-motion predictive technique, or techniques, for each of the tectonic regimes considered: shallow active crust, subduction zone, and stable continental region.

  20. Combining low- to high-resolution transit spectroscopy of HD 189733b. Linking the troposphere and the thermosphere of a hot gas giant

    NASA Astrophysics Data System (ADS)

    Pino, Lorenzo; Ehrenreich, David; Wyttenbach, Aurélien; Bourrier, Vincent; Nascimbeni, Valerio; Heng, Kevin; Grimm, Simon; Lovis, Christophe; Malik, Matej; Pepe, Francesco; Piotto, Giampaolo

    2018-04-01

    Space-borne low- to medium-resolution (ℛ 102-103) and ground-based high-resolution spectrographs (ℛ 105) are commonly used to obtain optical and near infrared transmission spectra of exoplanetary atmospheres. In this wavelength range, space-borne observations detect the broadest spectral features (alkali doublets, molecular bands, scattering, etc.), while high-resolution, ground-based observations probe the sharpest features (cores of the alkali lines, molecular lines). The two techniques differ by several aspects. (1) The line spread function of ground-based observations is 103 times narrower than for space-borne observations; (2) Space-borne transmission spectra probe up to the base of thermosphere (P ≳ 10-6 bar), while ground-based observations can reach lower pressures (down to 10-11 bar) thanks to their high resolution; (3) Space-borne observations directly yield the transit depth of the planet, while ground-based observations can only measure differences in the apparent size of the planet at different wavelengths. These differences make it challenging to combine both techniques. Here, we develop a robust method to compare theoretical models with observations at different resolutions. We introduce πη, a line-by-line 1D radiative transfer code to compute theoretical transmission spectra over a broad wavelength range at very high resolution (ℛ 106, or Δλ 0.01 Å). An hybrid forward modeling/retrieval optimization scheme is devised to deal with the large computational resources required by modeling a broad wavelength range 0.3-2 μm at high resolution. We apply our technique to HD 189733b. In this planet, HST observations reveal a flattened spectrum due to scattering by aerosols, while high-resolution ground-based HARPS observations reveal sharp features corresponding to the cores of sodium lines. We reconcile these apparent contrasting results by building models that reproduce simultaneously both data sets, from the troposphere to the thermosphere. We confirm: (1) the presence of scattering by tropospheric aerosols; (2) that the sodium core feature is of thermospheric origin. When we take into account the presence of aerosols, the large contrast of the core of the sodium lines measured by HARPS indicates a temperature of up to 10 000K in the thermosphere, higher than what reported in the literature. We also show that the precise value of the thermospheric temperature is degenerate with the relative optical depth of sodium, controlled by its abundance, and of the aerosol deck.

  1. Comparison of cloud top heights derived from FY-2 meteorological satellites with heights derived from ground-based millimeter wavelength cloud radar

    NASA Astrophysics Data System (ADS)

    Wang, Zhe; Wang, Zhenhui; Cao, Xiaozhong; Tao, Fa

    2018-01-01

    Clouds are currently observed by both ground-based and satellite remote sensing techniques. Each technique has its own strengths and weaknesses depending on the observation method, instrument performance and the methods used for retrieval. It is important to study synergistic cloud measurements to improve the reliability of the observations and to verify the different techniques. The FY-2 geostationary orbiting meteorological satellites continuously observe the sky over China. Their cloud top temperature product can be processed to retrieve the cloud top height (CTH). The ground-based millimeter wavelength cloud radar can acquire information about the vertical structure of clouds-such as the cloud base height (CBH), CTH and the cloud thickness-and can continuously monitor changes in the vertical profiles of clouds. The CTHs were retrieved using both cloud top temperature data from the FY-2 satellites and the cloud radar reflectivity data for the same time period (June 2015 to May 2016) and the resulting datasets were compared in order to evaluate the accuracy of CTH retrievals using FY-2 satellites. The results show that the concordance rate of cloud detection between the two datasets was 78.1%. Higher consistencies were obtained for thicker clouds with larger echo intensity and for more continuous clouds. The average difference in the CTH between the two techniques was 1.46 km. The difference in CTH between low- and mid-level clouds was less than that for high-level clouds. An attenuation threshold of the cloud radar for rainfall was 0.2 mm/min; a rainfall intensity below this threshold had no effect on the CTH. The satellite CTH can be used to compensate for the attenuation error in the cloud radar data.

  2. Chroma key without color restrictions based on asynchronous amplitude modulation of background illumination on retroreflective screens

    NASA Astrophysics Data System (ADS)

    Vidal, Borja; Lafuente, Juan A.

    2016-03-01

    A simple technique to avoid color limitations in image capture systems based on chroma key video composition using retroreflective screens and light-emitting diodes (LED) rings is proposed and demonstrated. The combination of an asynchronous temporal modulation onto the background illumination and simple image processing removes the usual restrictions on foreground colors in the scene. The technique removes technical constraints in stage composition, allowing its design to be purely based on artistic grounds. Since it only requires adding a very simple electronic circuit to widely used chroma keying hardware based on retroreflective screens, the technique is easily applicable to TV and filming studios.

  3. Assessing LiDAR elevation data for KDOT applications.

    DOT National Transportation Integrated Search

    2013-02-01

    LiDAR-based elevation surveys are a cost-effective means for mapping topography over large areas. LiDAR : surveys use an airplane-mounted or ground-based laser radar unit to scan terrain. Post-processing techniques are : applied to remove vegetation ...

  4. Accuracy of vertical radial plume mapping technique in measuring lagoon gas emission

    USDA-ARS?s Scientific Manuscript database

    Recently, the U.S. Environmental Protection Agency (USEPA) posted a ground-based optical remote sensing method on its website called OTM 10 for measuring fugitive gas emission flux from area sources such as closed landfills. The OTM 10 utilizes the vertical radial plume mapping (VRPM) technique to c...

  5. Accommodation Strategies of College Students with Disabilities

    ERIC Educational Resources Information Center

    Barnard-Brak, Lucy; Lechtenberger, DeAnn; Lan, William Y.

    2010-01-01

    College students with disabilities develop and utilize strategies to facilitate their learning experiences due to their unique academic needs. Using a semi-structured interview technique to collect data and a technique based in grounded theory to analyze this data, the purpose of this study was to discern the meaning of disclosure for college…

  6. Comparison of five canopy cover estimation techniques in the western Oregon Cascades.

    Treesearch

    Anne C.S. Fiala; Steven L. Garman; Andrew N. Gray

    2006-01-01

    Estimates of forest canopy cover are widely used in forest research and management, yet methods used to quantify canopy cover and the estimates they provide vary greatly. Four commonly used ground-based techniques for estimating overstory cover - line-intercept, spherical densiometer, moosehorn, and hemispherical photography - and cover estimates generated from crown...

  7. Containerless Studies of Nucleation and Undercooling

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.

    1985-01-01

    The long term research goals are to perform experiments to determine the achievable limits of undercooling, the characteristics of heterogeneous nucleation, and the physical properties of significantly undercooled melts. The techniques used are based on the newly developed containerless manipulation methods afforded by acoustic levitation. Ground based investigations involved 0.1 to 2 mm specimens of pure metals and alloys (In, Ga, Sn, Ga-In, ...) as well as glass-forming organic compounds (O-Terphenyl). A currently operating ultrasonic high temperature apparatus has allowed the ground-based levitation of 1 to 2 mm samples of solid aluminum at 550 deg C in an argon atmosphere. Present work is concentrating on the undercooling of pure metal samples (In, Sn), and on the measurements of surface tension and viscosity of the undercooled melts via shape oscillation techniques monitored through optical detection methods. The sound velocity of undercooled O-Terphenyl is being measured in an immiscible liquid levitation cells.

  8. A theory for the retrieval of virtual temperature from winds, radiances and the equations of fluid dynamics

    NASA Technical Reports Server (NTRS)

    Tzvi, G. C.

    1986-01-01

    A technique to deduce the virtual temperature from the combined use of the equations of fluid dynamics, observed wind and observed radiances is described. The wind information could come from ground-based sensitivity very high frequency (VHF) Doppler radars and/or from space-borne Doppler lidars. The radiometers are also assumed to be either space-borne and/or ground-based. From traditional radiometric techniques the vertical structure of the temperature can be estimated only crudely. While it has been known for quite some time that the virtual temperature could be deduced from wind information only, such techniques had to assume the infallibility of certain diagnostic relations. The proposed technique is an extension of the Gal-Chen technique. It is assumed that due to modeling uncertainties the equations of fluid dynamics are satisfied only in the least square sense. The retrieved temperature, however, is constrained to reproduce the observed radiances. It is shown that the combined use of the three sources of information (wind, radiances and fluid dynamical equations) can result in a unique determination of the vertical temperature structure with spatial and temporal resolution comparable to that of the observed wind.

  9. A search for methane in the atmosphere of Mars using ground-based mid infrared heterodyne spectroscopy

    NASA Astrophysics Data System (ADS)

    Sonnabend, G.; Stupar, D.; Sornig, M.; Stangier, T.; Kostiuk, T.; Livengood, T. A.

    2013-09-01

    We report our search for methane in the atmosphere of Mars using high-spectral resolution heterodyne spectroscopy in the 7.8 μm wavelength region. Resolving power and frequency precision of >106 of the technique enable identification and full resolution of a targeted spectral line in the terrestrial-Mars spectrum observed from the ground. Observations were carried out on two occasions, in April 2010 and May 2012 at the McMath-Pierce Solar Telescope and the NASA Infrared Telescope Facility, respectively. A single line in the ν4 band of methane at 1282.62448 cm-1 was targeted in both cases. No absorption due to methane was detected and only upper limits of ∼100 ppb for the martian atmospheric methane concentration were retrieved. Lack of observing time (due to weather) and telluric opacity greater than anticipated led to reduced signal-to-noise ratios (SNR). Based on current measurements and calculations, under proper viewing conditions, we estimate an achievable detection limit of ∼10 ppb using the infrared heterodyne technique - adequate for confirming reported detections of methane based on other techniques.

  10. Ground based and airborne atmospheric measurements near bucharest

    NASA Astrophysics Data System (ADS)

    Nemuc, Anca; Boscornea, Andreea; Belegante, Livio; Vasilescu, Jeni; Vajaiac, Sorin; Ene, Dragos; Marmureanu, Luminita; Andrei, Simona

    2018-04-01

    This paper presents the results from a coordinated approach for atmospheric investigation, exploring synergies between different techniques. A wide range of instruments have been used during an intensive measurement period both from ground (lidar, sunphotometer, aethalometer and Aerosol Chemical Speciation Monitor) and airborne (aerodynamic particle sizer, the Picarro gas analyzer and the NO2 CAPS analyzer) in 2016 over Magurele, 6 km South West of Bucharest.

  11. Cloudy with a Chance of Solar Flares: The Sun as a Natural Hazard

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan

    2017-01-01

    Space weather is a naturally occurring phenomenon that represents a quantifiable risk to space- and ground-based infrastructure as well as society at large. Space weather hazards include permanent and correctable faults in computer systems, Global Positioning System (GPS) and high-frequency communication disturbances, increased airline passenger and astronaut radiation exposure, and electric grid disruption. From the National Space Weather Strategy, published by the Office of Science and Technology Policy in October 2015, space weather refers to the dynamic conditions of the space environment that arise from emissions from the Sun, which include solar flares, solar energetic particles, and coronal mass ejections. These emissions can interact with Earth and its surrounding space, including the Earth's magnetic field, potentially disrupting technologies and infrastructures. Space weather is measured using a range of space- and ground-based platforms that directly monitor the Sun, the Earth's magnetic field, the conditions in interplanetary space and impacts at Earth's surface, like neutron ground-level enhancement. The NASA Goddard Space Flight Center's Space Weather Research Center and their international collaborators in government, industry, and academia are working towards improved techniques for predicting space weather as part of the strategy and action plan to better quantify and mitigate space weather hazards. In addition to accurately measuring and predicting space weather, we also need to continue developing more advanced techniques for evaluating space weather impacts on space- and ground-based infrastructure. Within the Earth's atmosphere, elevated neutron flux driven by atmosphere-particle interactions from space weather is a primary risk source. Ground-based neutron sources form an essential foundation for quantifying space weather impacts in a variety of systems.

  12. Monitoring of ground movement in open pit iron mines of Carajás Province (Amazon region) based on A-DInSAR techniques using TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Silva, Guilherme Gregório; Mura, José Claudio; Paradella, Waldir Renato; Gama, Fabio Furlan; Temporim, Filipe Altoé

    2017-04-01

    Persistent scatterer interferometry (PSI) analysis of a large area is always a challenging task regarding the removal of the atmospheric phase component. This work presents an investigation of ground movement measurements based on a combination of differential SAR interferometry time-series (DTS) and PSI techniques, applied on a large area of extent with open pit iron mines located in Carajás (Brazilian Amazon Region), aiming at detecting linear and nonlinear ground movement. These mines have presented a history of instability, and surface monitoring measurements over sectors of the mines (pit walls) have been carried out based on ground-based radar and total station (prisms). Using a priori information regarding the topographic phase error and a phase displacement model derived from DTS, temporal phase unwrapping in the PSI processing and the removal of the atmospheric phases can be performed more efficiently. A set of 33 TerraSAR-X (TSX-1) images, acquired during the period from March 2012 to April 2013, was used to perform this investigation. The DTS analysis was carried out on a stack of multilook unwrapped interferograms using an extension of SVD to obtain the least-square solution. The height errors and deformation rates provided by the DTS approach were subtracted from the stack of interferograms to perform the PSI analysis. This procedure improved the capability of the PSI analysis for detecting high rates of deformation, as well as increased the numbers of point density of the final results. The proposed methodology showed good results for monitoring surface displacement in a large mining area, which is located in a rain forest environment, providing very useful information about the ground movement for planning and risk control.

  13. Assessing LiDAR elevation data for KDOT applications : [technical summary].

    DOT National Transportation Integrated Search

    2013-02-01

    LiDAR-based elevation surveys : are a cost-effective means for : mapping topography over large : areas. LiDAR surveys use an : airplane-mounted or ground-based : laser radar unit to scan terrain. : Post-processing techniques are : applied to remove v...

  14. Depletion-based techniques for super-resolution imaging of NV-diamond

    NASA Astrophysics Data System (ADS)

    Jaskula, Jean-Christophe; Trifonov, Alexei; Glenn, David; Walsworth, Ronald

    2012-06-01

    We discuss the development and application of depletion-based techniques for super-resolution imaging of NV centers in diamond: stimulated emission depletion (STED), metastable ground state depletion (GSD), and dark state depletion (DSD). NV centers in diamond do not bleach under optical excitation, are not biotoxic, and have long-lived electronic spin coherence and spin-state-dependent fluorescence. Thus NV-diamond has great potential as a fluorescent biomarker and as a magnetic biosensor.

  15. Determination of the Solar Energy Microclimate of the United States Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Vonderharr, T. H.; Ellis, J. S.

    1978-01-01

    The determination of total solar energy reaching the ground over the United States using measurements from meteorological satellites as the basic data set is examined. The methods of satellite data processing are described. Uncertainty analysis and comparison of results with well calibrated surface pyranometers are used to estimate the probable error in the satellite-based determination of ground insolation. It is 10 to 15 percent for daily information, and about 5 percent for monthly values. However, the natural space and time variability of insolation is much greater than the uncertainty in the method. The most important aspect of the satellite-based technique is the ability to determine the solar energy reaching the ground over small areas where no other measurements are available. Thus, it complements the widely spaced solar radiation measurement network of ground stations.

  16. A comparison of selected vertical wind measurement techniques on basis of the EUCAARI IMPACT observations

    NASA Astrophysics Data System (ADS)

    Arabas, S.; Baehr, C.; Boquet, M.; Dufournet, Y.; Pawlowska, H.; Siebert, H.; Unal, C.

    2009-04-01

    The poster presents a comparison of selected methods for determination of the vertical wind in the boundary layer used during the EUCAARI IMPACT campaign that took place in May 2008 in The Netherlands. The campaign covered a monthlong intensified ground-based and airborne measurements in the vicinity of the CESAR observatory in Cabauw. Ground-based vertical wind remote sensing was carried out using the Leosphere WindCube WLS70 IR Doppler lidar, Vaisala LAP3000 radar wind-profiler and the TUDelft TARA S-band radar. In-situ airborne measurements were performed using an ultrasonic anemometer (on the ACTOS helicopter underhung platform) and a 5-hole pressure probe (on the SAFIRE ATR-42 airplane radome). Several in-situ anemometers were deployed on the 200-meter high tower of the CESAR observatory. A summary of the characteristics and principles of the considered techniques is presented. A comparison of the results obtained from different platforms depicts the capabilities of each technique and highlights the time, space and velocity resolutions.

  17. Assessment of simulation fidelity using measurements of piloting technique in flight

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Cleveland, W. B.; Key, D. L.

    1984-01-01

    The U.S. Army and NASA joined together on a project to conduct a systematic investigation and validation of a ground based piloted simulation of the Army/Sikorsky UH-60A helicopter. Flight testing was an integral part of the validation effort. Nap-of-the-Earth (NOE) piloting tasks which were investigated included the bob-up, the hover turn, the dash/quickstop, the sidestep, the dolphin, and the slalom. Results from the simulation indicate that the pilot's NOE task performance in the simulator is noticeably and quantifiably degraded when compared with the task performance results generated in flight test. The results of the flight test and ground based simulation experiments support a unique rationale for the assessment of simulation fidelity: flight simulation fidelity should be judged quantitatively by measuring pilot's control strategy and technique as induced by the simulator. A quantitative comparison is offered between the piloting technique observed in a flight simulator and that observed in flight test for the same tasks performed by the same pilots.

  18. Remote sensing of natural resources

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Quarterly literature review compiles citations and abstracts from eight major abstracting and indexing services. Each issue contains author/keyword index. Includes data obtained or techniques used from space, aircraft, or ground-based stations.

  19. Mesures spectroscopiques de constituants et de polluants atmosphériques par techniques in situ et à distance, au sol ou embarquéesSpectroscopic measurements of atmospheric constituents and pollutants by in situ and remote techniques from the ground and in flight

    NASA Astrophysics Data System (ADS)

    Camy-Peyret, Claude; Payan, Sébastien; Jeseck, Pascal; Té, Yao

    2001-09-01

    Infrared spectroscopy is a powerful tool for precise measurements of atmospheric trace species concentrations through the use of characteristic spectral signatures of the different molecular species and their associated vibration-rotation bands in the mid- or near-infrared. Different methods based on quantitative spectroscopy permit tropospheric or stratospheric measurements: in situ long path absorption, atmospheric absorption/emission by Fourier transform spectroscopy with high spectral resolution instruments on the ground, airborne, balloon-borne or satellite-borne.

  20. Physics-Based Broadband Ground Motion Simulations in Near Fault Conditions: the L'Aquila (Italy) and the Upper Rhine Graben (France-Germany) Case of Studies

    NASA Astrophysics Data System (ADS)

    Del Gaudio, S.; Lancieri, M.; Hok, S.; Satriano, C.; Chartier, T.; Scotti, O.; Bernard, P.

    2016-12-01

    Predictions of realistic ground motion for potential future earthquakes are always an interesting task for seismologists and are also the main objective of seismic hazard assessment. While, on one hand, numerical simulations have become more and more accurate and several different techniques have been developed, on the other hand ground motion prediction equations (GMPEs) have become a powerful instrument (due to great improvement of seismic strong motion networks providing a large amount of data). Nevertheless GMPEs do not represent the whole variety of source processes and this can lead to incorrect estimates especially in the near fault conditions because of the lack of records of large earthquakes at short distances. In such cases, physics-based ground motion simulations can be a valid tool to complement prediction equations for scenario studies, provided that both source and propagation are accurately described. We present here a comparison between numerical simulations performed in near fault conditions using two different kinematic source models, which are based on different assumptions and parameterizations: the "k-2 model" and the "fractal model". Wave propagation is taken into account using hybrid Green's function (HGF), which consists in coupling numerical Green's function with an empirical Green's function (EGF) approach. The advantage of this technique is that it does not require a very detailed knowledge of the propagation medium, but requires availability of high quality records of small earthquakes in the target area. The first application we show is on L'Aquila 2009 M 6.3 earthquake, where the main event records provide a benchmark for the synthetic waveforms. Here we can clearly observe which are the limitations of these techniques and investigate which are the physical parameters that are effectively controlling the ground motion level. The second application is a blind test on Upper Rhine Graben (URG) where active faults producing micro seismic activity are very close to sites of interest needing a careful investigation of seismic hazard. Finally we will perform a probabilistic seismic hazard analysis (PSHA) for the URG using numerical simulations to define input ground motion for different scenarios and compare them with a classical probabilistic study based on GMPEs.

  1. Strong Sporadic E Occurrence Detected by Ground-Based GNSS

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Ning, Baiqi; Yue, Xinan; Li, Guozhu; Hu, Lianhuan; Chang, Shoumin; Lan, Jiaping; Zhu, Zhengping; Zhao, Biqiang; Lin, Jian

    2018-04-01

    The ionospheric sporadic E (Es) layer has significant impact on radio wave propagation. The traditional techniques employed for Es layer observation, for example, ionosondes, are not dense enough to resolve the morphology and dynamics of Es layer in spatial distribution. The ground-based Global Navigation Satellite Systems (GNSS) technique is expected to shed light on the understanding of regional strong Es occurrence, owing to the facts that the critical frequency (foEs) of strong Es structure is usually high enough to cause pulse-like disturbances in GNSS total electron content (TEC), and a large number of GNSS receivers have been deployed all over the world. Based on the Chinese ground-based GNSS networks, including the Crustal Movement Observation Network of China and the Beidou Ionospheric Observation Network, a large-scale strong Es event was observed in the middle latitude of China. The strong Es shown as a band-like structure in the southwest-northeast direction extended more than 1,000 km. By making a comparative analysis of Es occurrences identified from the simultaneous observations by ionosondes and GNSS TEC receivers over China middle latitude statistically, we found that GNSS TEC can be well employed to observe strong Es occurrence with a threshold value of foEs, 14 MHz.

  2. An expert system shell for inferring vegetation characteristics: Atmospheric techniques (Task G)

    NASA Technical Reports Server (NTRS)

    Harrison, P. Ann; Harrison, Patrick R.

    1993-01-01

    The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. The VEG Subgoals have been reorganized into categories. A new subgoal category 'Atmospheric Techniques' containing two new subgoals has been implemented. The subgoal Atmospheric Passes allows the scientist to take reflectance data measured at ground level and predict what the reflectance values would be if the data were measured at a different atmospheric height. The subgoal Atmospheric Corrections allows atmospheric corrections to be made to data collected from an aircraft or by a satellite to determine what the equivalent reflectance values would be if the data were measured at ground level. The report describes the implementation and testing of the basic framework and interface for the Atmospheric Techniques Subgoals.

  3. Conceptual Design of a Communication-Based Deep Space Navigation Network

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan J.; Chuang, C. H.

    2012-01-01

    As the need grows for increased autonomy and position knowledge accuracy to support missions beyond Earth orbit, engineers must push and develop more advanced navigation sensors and systems that operate independent of Earth-based analysis and processing. Several spacecraft are approaching this problem using inter-spacecraft radiometric tracking and onboard autonomous optical navigation methods. This paper proposes an alternative implementation to aid in spacecraft position fixing. The proposed method Network-Based Navigation technique takes advantage of the communication data being sent between spacecraft and between spacecraft and ground control to embed navigation information. The navigation system uses these packets to provide navigation estimates to an onboard navigation filter to augment traditional ground-based radiometric tracking techniques. As opposed to using digital signal measurements to capture inherent information of the transmitted signal itself, this method relies on the embedded navigation packet headers to calculate a navigation estimate. This method is heavily dependent on clock accuracy and the initial results show the promising performance of a notional system.

  4. Ground-based lidar for atmospheric boundary layer ozone measurements.

    PubMed

    Kuang, Shi; Newchurch, Michael J; Burris, John; Liu, Xiong

    2013-05-20

    Ground-based lidars are suitable for long-term ozone monitoring as a complement to satellite and ozonesonde measurements. However, current ground-based lidars are unable to consistently measure ozone below 500 m above ground level (AGL) due to both engineering issues and high retrieval sensitivity to various measurement errors. In this paper, we present our instrument design, retrieval techniques, and preliminary results that focus on the high-temporal profiling of ozone within the atmospheric boundary layer (ABL) achieved by the addition of an inexpensive and compact mini-receiver to the previous system. For the first time, to the best of our knowledge, the lowest, consistently achievable observation height has been extended down to 125 m AGL for a ground-based ozone lidar system. Both the analysis and preliminary measurements demonstrate that this lidar measures ozone with a precision generally better than ±10% at a temporal resolution of 10 min and a vertical resolution from 150 m at the bottom of the ABL to 550 m at the top. A measurement example from summertime shows that inhomogeneous ozone aloft was affected by both surface emissions and the evolution of ABL structures.

  5. Geostatistics: a new tool for describing spatially-varied surface conditions from timber harvested and burned hillslopes

    Treesearch

    Peter R. Robichaud

    1997-01-01

    Geostatistics provides a method to describe the spatial continuity of many natural phenomena. Spatial models are based upon the concept of scaling, kriging and conditional simulation. These techniques were used to describe the spatially-varied surface conditions on timber harvest and burned hillslopes. Geostatistical techniques provided estimates of the ground cover (...

  6. Lidar and airborne investigation of smoke plume characteristics: Kootenai Creek Fire case study

    Treesearch

    S. Urbanski; V. Kovalev; W. M. Hao; C. Wold; A. Petkov

    2010-01-01

    A ground-based scanning lidar was utilized with a set of airborne instruments to acquire measurements of smoke plume dynamics, smoke aerosol distribution and chemical composition in the vicinity of active wildfires in the western U.S. A new retrieval technique was used for processing lidar multiangle measurements. The technique determines the location of...

  7. Infrasound Signals from Ground-Motion Sources

    DTIC Science & Technology

    2008-09-01

    signals as a basis for discriminants between underground nuclear tests ( UGT ) and earthquakes (EQ). In an earlier program, infrasound signals from... UGTs and EQs were collected at ranges of a few hundred kilometers, in the far-field. Analysis of these data revealed two parameters that had potential...well. To study the near-field signals, we are using computational techniques based on modeled ground motions from UGTs and EQs. One is the closed

  8. Atmospheric Precorrected Differential Absorption technique to retrieve columnar water vapor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaepfer, D.; Itten, K.I.; Borel, C.C.

    1998-09-01

    Differential absorption techniques are suitable to retrieve the total column water vapor contents from imaging spectroscopy data. A technique called Atmospheric Precorrected Differential Absorption (APDA) is derived directly from simplified radiative transfer equations. It combines a partial atmospheric correction with a differential absorption technique. The atmospheric path radiance term is iteratively corrected during the retrieval of water vapor. This improves the results especially over low background albedos. The error of the method for various ground reflectance spectra is below 7% for most of the spectra. The channel combinations for two test cases are then defined, using a quantitative procedure, whichmore » is based on MODTRAN simulations and the image itself. An error analysis indicates that the influence of aerosols and channel calibration is minimal. The APDA technique is then applied to two AVIRIS images acquired in 1991 and 1995. The accuracy of the measured water vapor columns is within a range of {+-}5% compared to ground truth radiosonde data.« less

  9. Effects of line-of-sight velocity on spaced-antenna measurements, part 3.5A

    NASA Technical Reports Server (NTRS)

    Royrvik, O.

    1984-01-01

    Horizontal wind velocities in the upper atmosphere, particularly the mesosphere, have been measured using a multitude of different techniques. Most techniques are based on stated or unstated assumptions about the wind field that may or may not be true. Some problems with the spaced antenna drifts (SAD) technique that usually appear to be overlooked are investigated. These problems are not unique to the SAD technique; very similar considerations apply to measurement of horizontal wind using multiple-beam Doppler radars as well. Simply stated, the SAD technique relies on scattering from multiple scatterers within an antenna beam of fairly large beam width. The combination of signals with random phase gives rise to an interference pattern on the ground. This pattern will drift across the ground with a velocity twice that of the ionospheric irregularities from which the radar signals are scattered. By using spaced receivers and measuring time delays of the signal fading in different antennas, it is possible to estimate the horizontal drift velocities.

  10. Unisys' experience in software quality and productivity management of an existing system

    NASA Technical Reports Server (NTRS)

    Munson, John B.

    1988-01-01

    A summary of Quality Improvement techniques, implementation, and results in the maintenance, management, and modification of large software systems for the Space Shuttle Program's ground-based systems is provided.

  11. The Telecommunications and Data Aquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1983-01-01

    Tracking and ground-based navigation techniques are discussed in relation to DSN advanced systems. Network data processing and productivity are studied to improve management planning methods. Project activities for upgrading DSN facilities are presented.

  12. High-Resolution Optical and Near-Infrared Imaging of Young Circumstellar Disks

    NASA Technical Reports Server (NTRS)

    McCaughrean, Mark; Stapelfeldt, Karl; Close, Laird

    2000-01-01

    In the past five years, observations at optical and near-infrared wavelengths obtained with the Hubble Space Telescope and ground-based adaptive optics have provided the first well-resolved images of young circumstellar disks which may form planetary systems. We review these two observational techniques and highlight their results by presenting prototype examples of disks imaged in the Taurus-Auriga and Orion star-forming regions. As appropriate, we discuss the disk parameters that may be typically derived from the observations, as well as the implications that the observations may have on our understanding of, for example, the role of the ambient environment in shaping the disk evolution. We end with a brief summary of the prospects for future improvements in space- and ground-based optical/IR imaging techniques, and how they may impact disk studies.

  13. 40 CFR 141.404 - Treatment technique violations for ground water systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Treatment technique violations for ground water systems. 141.404 Section 141.404 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Ground Water Rule § 141.404 Treatment technique violations for...

  14. Identification of magnetic anomalies based on ground magnetic data analysis using multifractal modelling: a case study in Qoja-Kandi, East Azerbaijan Province, Iran

    NASA Astrophysics Data System (ADS)

    Mansouri, E.; Feizi, F.; Karbalaei Ramezanali, A. A.

    2015-10-01

    Ground magnetic anomaly separation using the reduction-to-the-pole (RTP) technique and the fractal concentration-area (C-A) method has been applied to the Qoja-Kandi prospecting area in northwestern Iran. The geophysical survey resulting in the ground magnetic data was conducted for magnetic element exploration. Firstly, the RTP technique was applied to recognize underground magnetic anomalies. RTP anomalies were classified into different populations based on the current method. For this reason, drilling point area determination by the RTP technique was complicated for magnetic anomalies, which are in the center and north of the studied area. Next, the C-A method was applied to the RTP magnetic anomalies (RTP-MA) to demonstrate magnetic susceptibility concentrations. This identification was appropriate for increasing the resolution of the drilling point area determination and decreasing the drilling risk issue, due to the economic costs of underground prospecting. In this study, the results of C-A modelling on the RTP-MA are compared with 8 borehole data. The results show that there is a good correlation between anomalies derived via the C-A method and the log report of boreholes. Two boreholes were drilled in magnetic susceptibility concentrations, based on multifractal modelling data analyses, between 63 533.1 and 66 296 nT. Drilling results showed appropriate magnetite thickness with grades greater than 20 % Fe. The total associated with anomalies containing andesite units hosts iron mineralization.

  15. Flight Experiments of Physical Vapor Transport of ZnSe: Growth of Crystals in Various Convective Conditions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2015-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). The flight experiment will conduct crystal growths of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT). The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds, especially the effects of different growth orientations related to gravity direction on the grown crystals.

  16. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2014-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  17. Ground and satellite based assessment of meteorological droughts: The Coello river basin case study

    NASA Astrophysics Data System (ADS)

    Cruz-Roa, A. F.; Olaya-Marín, E. J.; Barrios, M. I.

    2017-10-01

    The spatial distribution of droughts is a key factor for designing water management policies at basin scale in arid and semi-arid regions. Ground hydro-meteorological data in neo-tropical areas are scarce; therefore, the merging of ground and satellite datasets is a promissory approach for improving our understanding of water distribution. This paper compares three monthly rainfall interpolation methods for drought evaluation. The ordinary kriging technique based on ground data, and cokriging with elevation as auxiliary variable were compared against cokriging using the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA). Twenty rain gauge stations and the 3B42V7 version of the TMPA research dataset were considered. Comparisons were made over the Coello river basin (Colombia) at 3″ spatial resolution covering a period of eight years (1998-2005). The best spatial rainfall estimation was found for cokriging using ground data and elevation. The spatial support of TMPA dataset is very coarse for a merged interpolation with ground data, this spatial scales discrepancy highlight the need to consider scaling rules in the interpolation process.

  18. Estimates of ground-water recharge, base flow, and stream reach gains and losses in the Willamette River basin, Oregon

    USGS Publications Warehouse

    Lee, Karl K.; Risley, John C.

    2002-03-19

    Precipitation-runoff models, base-flow-separation techniques, and stream gain-loss measurements were used to study recharge and ground-water surface-water interaction as part of a study of the ground-water resources of the Willamette River Basin. The study was a cooperative effort between the U.S. Geological Survey and the State of Oregon Water Resources Department. Precipitation-runoff models were used to estimate the water budget of 216 subbasins in the Willamette River Basin. The models were also used to compute long-term average recharge and base flow. Recharge and base-flow estimates will be used as input to a regional ground-water flow model, within the same study. Recharge and base-flow estimates were made using daily streamflow records. Recharge estimates were made at 16 streamflow-gaging-station locations and were compared to recharge estimates from the precipitation-runoff models. Base-flow separation methods were used to identify the base-flow component of streamflow at 52 currently operated and discontinued streamflow-gaging-station locations. Stream gain-loss measurements were made on the Middle Fork Willamette, Willamette, South Yamhill, Pudding, and South Santiam Rivers, and were used to identify and quantify gaining and losing stream reaches both spatially and temporally. These measurements provide further understanding of ground-water/surface-water interactions.

  19. Aerial surveys adjusted by ground surveys to estimate area occupied by black-tailed prairie dog colonies

    USGS Publications Warehouse

    Sidle, John G.; Augustine, David J.; Johnson, Douglas H.; Miller, Sterling D.; Cully, Jack F.; Reading, Richard P.

    2012-01-01

    Aerial surveys using line-intercept methods are one approach to estimate the extent of prairie dog colonies in a large geographic area. Although black-tailed prairie dogs (Cynomys ludovicianus) construct conspicuous mounds at burrow openings, aerial observers have difficulty discriminating between areas with burrows occupied by prairie dogs (colonies) versus areas of uninhabited burrows (uninhabited colony sites). Consequently, aerial line-intercept surveys may overestimate prairie dog colony extent unless adjusted by an on-the-ground inspection of a sample of intercepts. We compared aerial line-intercept surveys conducted over 2 National Grasslands in Colorado, USA, with independent ground-mapping of known black-tailed prairie dog colonies. Aerial line-intercepts adjusted by ground surveys using a single activity category adjustment overestimated colonies by ≥94% on the Comanche National Grassland and ≥58% on the Pawnee National Grassland. We present a ground-survey technique that involves 1) visiting on the ground a subset of aerial intercepts classified as occupied colonies plus a subset of intercepts classified as uninhabited colony sites, and 2) based on these ground observations, recording the proportion of each aerial intercept that intersects a colony and the proportion that intersects an uninhabited colony site. Where line-intercept techniques are applied to aerial surveys or remotely sensed imagery, this method can provide more accurate estimates of black-tailed prairie dog abundance and trends

  20. Thrust Vectoring on the NASA F-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.; Pahle, Joseph W.

    1996-01-01

    Investigations into a multiaxis thrust-vectoring system have been conducted on an F-18 configuration. These investigations include ground-based scale-model tests, ground-based full-scale testing, and flight testing. This thrust-vectoring system has been tested on the NASA F-18 High Alpha Research Vehicle (HARV). The system provides thrust vectoring in pitch and yaw axes. Ground-based subscale test data have been gathered as background to the flight phase of the program. Tests investigated aerodynamic interaction and vane control effectiveness. The ground-based full-scale data were gathered from static engine runs with image analysis to determine relative thrust-vectoring effectiveness. Flight tests have been conducted at the NASA Dryden Flight Research Center. Parameter identification input techniques have been developed. Individual vanes were not directly controlled because of a mixer-predictor function built into the flight control laws. Combined effects of the vanes have been measured in flight and compared to combined effects of the vanes as predicted by the cold-jet test data. Very good agreement has been found in the linearized effectiveness derivatives.

  1. Limitation of Ground-based Estimates of Solar Irradiance Due to Atmospheric Variations

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Cahalan, Robert F.; Holben, Brent N.

    2003-01-01

    The uncertainty in ground-based estimates of solar irradiance is quantitatively related to the temporal variability of the atmosphere's optical thickness. The upper and lower bounds of the accuracy of estimates using the Langley Plot technique are proportional to the standard deviation of aerosol optical thickness (approx. +/- 13 sigma(delta tau)). The estimates of spectral solar irradiance (SSI) in two Cimel sun photometer channels from the Mauna Loa site of AERONET are compared with satellite observations from SOLSTICE (Solar Stellar Irradiance Comparison Experiment) on UARS (Upper Atmospheric Research Satellite) for almost two years of data. The true solar variations related to the 27-day solar rotation cycle observed from SOLSTICE are about 0.15% at the two sun photometer channels. The variability in ground-based estimates is statistically one order of magnitude larger. Even though about 30% of these estimates from all Level 2.0 Cimel data fall within the 0.4 to approx. 0.5% variation level, ground-based estimates are not able to capture the 27-day solar variation observed from SOLSTICE.

  2. Automated cloud classification using a ground based infra-red camera and texture analysis techniques

    NASA Astrophysics Data System (ADS)

    Rumi, Emal; Kerr, David; Coupland, Jeremy M.; Sandford, Andrew P.; Brettle, Mike J.

    2013-10-01

    Clouds play an important role in influencing the dynamics of local and global weather and climate conditions. Continuous monitoring of clouds is vital for weather forecasting and for air-traffic control. Convective clouds such as Towering Cumulus (TCU) and Cumulonimbus clouds (CB) are associated with thunderstorms, turbulence and atmospheric instability. Human observers periodically report the presence of CB and TCU clouds during operational hours at airports and observatories; however such observations are expensive and time limited. Robust, automatic classification of cloud type using infrared ground-based instrumentation offers the advantage of continuous, real-time (24/7) data capture and the representation of cloud structure in the form of a thermal map, which can greatly help to characterise certain cloud formations. The work presented here utilised a ground based infrared (8-14 μm) imaging device mounted on a pan/tilt unit for capturing high spatial resolution sky images. These images were processed to extract 45 separate textural features using statistical and spatial frequency based analytical techniques. These features were used to train a weighted k-nearest neighbour (KNN) classifier in order to determine cloud type. Ground truth data were obtained by inspection of images captured simultaneously from a visible wavelength colour camera at the same installation, with approximately the same field of view as the infrared device. These images were classified by a trained cloud observer. Results from the KNN classifier gave an encouraging success rate. A Probability of Detection (POD) of up to 90% with a Probability of False Alarm (POFA) as low as 16% was achieved.

  3. Large Footprint LiDAR Data Processing for Ground Detection and Biomass Estimation

    NASA Astrophysics Data System (ADS)

    Zhuang, Wei

    Ground detection in large footprint waveform Light Detection And Ranging (LiDAR) data is important in calculating and estimating downstream products, especially in forestry applications. For example, tree heights are calculated as the difference between the ground peak and first returned signal in a waveform. Forest attributes, such as aboveground biomass, are estimated based on the tree heights. This dissertation investigated new metrics and algorithms for estimating aboveground biomass and extracting ground peak location in large footprint waveform LiDAR data. In the first manuscript, an accurate and computationally efficient algorithm, named Filtering and Clustering Algorithm (FICA), was developed based on a set of multiscale second derivative filters for automatically detecting the ground peak in an waveform from Land, Vegetation and Ice Sensor. Compared to existing ground peak identification algorithms, FICA was tested in different land cover type plots and showed improved accuracy in ground detections of the vegetation plots and similar accuracy in developed area plots. Also, FICA adopted a peak identification strategy rather than following a curve-fitting process, and therefore, exhibited improved efficiency. In the second manuscript, an algorithm was developed specifically for shrub waveforms. The algorithm only partially fitted the shrub canopy reflection and detected the ground peak by investigating the residual signal, which was generated by deducting a Gaussian fitting function from the raw waveform. After the deduction, the overlapping ground peak was identified as the local maximum of the residual signal. In addition, an applicability model was built for determining waveforms where the proposed PCF algorithm should be applied. In the third manuscript, a new set of metrics was developed to increase accuracy in biomass estimation models. The metrics were based on the results of Gaussian decomposition. They incorporated both waveform intensity represented by the area covered by a Gaussian function and its associated heights, which was the centroid of the Gaussian function. By considering signal reflection of different vegetation layers, the developed metrics obtained better estimation accuracy in aboveground biomass when compared to existing metrics. In addition, the new developed metrics showed strong correlation with other forest structural attributes, such as mean Diameter at Breast Height (DBH) and stem density. In sum, the dissertation investigated the various techniques for large footprint waveform LiDAR processing for detecting the ground peak and estimating biomass. The novel techniques developed in this dissertation showed better performance than existing methods or metrics.

  4. Characterization of Orbital Debris via Hyper-Velocity Ground-Based Tests

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather

    2016-01-01

    The purpose of the DebriSat project is to replicate a hyper-velocity fragmentation event using modern-day spacecraft materials and construction techniques to better improve the existing DoDand NASA breakup models.

  5. The use of LANDSAT digital data to detect and monitor vegetation water deficiencies. [South Dakota

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Wehmanen, O. A.

    1977-01-01

    A technique devised using a vector transformation of LANDSAT digital data to indicate when vegetation is undergoing moisture stress is described. A relation established between the remote sensing-based criterion (the Green Index Number) and a ground-based criterion (Crop Moisture Index) is discussed.

  6. Hierarchical object-based classification of ultra-high-resolution digital mapping camera (DMC) imagery for rangeland mapping and assessment

    USDA-ARS?s Scientific Manuscript database

    Ultra high resolution digital aerial photography has great potential to complement or replace ground measurements of vegetation cover for rangeland monitoring and assessment. We investigated object-based image analysis (OBIA) techniques for classifying vegetation in southwestern U.S. arid rangelands...

  7. Flight data acquisition methodology for validation of passive ranging algorithms for obstacle avoidance

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.

    1990-01-01

    The automation of low-altitude rotorcraft flight depends on the ability to detect, locate, and navigate around obstacles lying in the rotorcraft's intended flightpath. Computer vision techniques provide a passive method of obstacle detection and range estimation, for obstacle avoidance. Several algorithms based on computer vision methods have been developed for this purpose using laboratory data; however, further development and validation of candidate algorithms require data collected from rotorcraft flight. A data base containing low-altitude imagery augmented with the rotorcraft and sensor parameters required for passive range estimation is not readily available. Here, the emphasis is on the methodology used to develop such a data base from flight-test data consisting of imagery, rotorcraft and sensor parameters, and ground-truth range measurements. As part of the data preparation, a technique for obtaining the sensor calibration parameters is described. The data base will enable the further development of algorithms for computer vision-based obstacle detection and passive range estimation, as well as provide a benchmark for verification of range estimates against ground-truth measurements.

  8. Independent Component Analysis applied to Ground-based observations

    NASA Astrophysics Data System (ADS)

    Martins-Filho, Walter; Griffith, Caitlin; Pearson, Kyle; Waldmann, Ingo; Alvarez-Candal, Alvaro; Zellem, Robert Thomas

    2018-01-01

    Transit measurements of Jovian-sized exoplanetary atmospheres allow one to study the composition of exoplanets, largely independent of the planet’s temperature profile. However, measurements of hot-Jupiter transits must archive a level of accuracy in the flux to determine the spectral modulation of the exoplanetary atmosphere. To accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth’s atmosphere, from signal due to the exoplanet, which is several orders of magnitude smaller. The effects of the terrestrial atmosphere and some of the time-dependent systematic errors of ground-based transit measurements are treated mainly by dividing the host star by a reference star at each wavelength and time step of the transit. Recently, Independent Component Analysis (ICA) have been used to remove systematics effects from the raw data of space-based observations (Waldmann, 2014, 2012; Morello et al., 2016, 2015). ICA is a statistical method born from the ideas of the blind-source separations studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). This technique requires no additional prior knowledge of the data set. In addition, this technique has the advantage of requiring no reference star. Here we apply the ICA to ground-based photometry of the exoplanet XO-2b recorded by the 61” Kuiper Telescope and compare the results of the ICA to those of a previous analysis from Zellem et al. (2015), which does not use ICA. We also simulate the effects of various conditions (concerning the systematic errors, noise and the stability of object on the detector) to determine the conditions under which an ICA can be used with high precision to extract the light curve of exoplanetary photometry measurements

  9. Independent Component Analysis applied to Ground-based observations

    NASA Astrophysics Data System (ADS)

    Martins-Filho, Walter; Griffith, Caitlin Ann; Pearson, Kyle; Waldmann, Ingo; Alvarez-Candal, Alvaro; Zellem, Robert

    2017-10-01

    Transit measurements of Jovian-sized exoplanetary atmospheres allow one to study the composition of exoplanets, largely independent of the planet’s temperature profile. However, measurements of hot-Jupiter transits must archive a level of accuracy in the flux to determine the spectral modulations of the exoplanetary atmosphere. To accomplish this level of precision, we need to extract systematic errors, and, for ground-based measurements, the effects of Earth’s atmosphere, from signal due to the exoplanet, which is several orders of magnitudes smaller.The effects of the terrestrial atmosphere and some of the time dependent systematic errors of ground-based transit measurements are treated mainly by dividing the host star by a reference star at each wavelength and time step of the transit. Recently, Independent Component Analyses (ICA) have been used to remove systematics effects from the raw data of space-based observations (Waldmann, 2014, 2012; Morello et al., 2016, 2015). ICA is a statistical method born from the ideas of the blind-source separations studies, which can be used to de-trend several independent source signals of a data set (Hyvarinen and Oja, 2000). This technique requires no additional prior knowledge of the data set. In addition this technique has the advantage of requiring no reference star.Here we apply the ICA to ground-based photometry of the exoplanet XO-2b recorded by the 61” Kuiper Telescope and compare the results of the ICA to those of a previous analysis from Zellem et al. (2015), which does not use ICA. We also simulate the effects of various conditions (concerning the systematic errors, noise and the stability of object on the detector) to determine the conditions under which an ICA can be used with high precision to extract the light curve of exoplanetary photometry measurements.

  10. Determination of canal leakage potential using continuous resistivity profiling techniques, Interstate and Tri-State Canals, western Nebraska and eastern Wyoming, 2004

    USGS Publications Warehouse

    Ball, Lyndsay B.; Kress, Wade H.; Steele, Gregory V.; Cannia, James C.; Andersen, Michael J.

    2006-01-01

    In the North Platte River Basin, a ground-water model is being developed to evaluate the effectiveness of using water leakage from selected irrigation canal systems to enhance ground-water recharge. The U.S. Geological Survey, in cooperation with the North Platte Natural Resources District, used land-based capacitively coupled and water-borne direct-current continuous resistivity profiling techniques to map the lithology of the upper 8 meters and to interpret the relative canal leakage potential of 110 kilometers of the Interstate and Tri-State Canals in western Nebraska and eastern Wyoming. Lithologic descriptions from 25 test holes were used to evaluate the effectiveness of both techniques for indicating relative grain size. An interpretive color scale was developed that symbolizes contrasting resistivity features indicative of different grain-size categories. The color scale was applied to the vertically averaged resistivity and used to classify areas of the canals as having either high, moderate, or low canal leakage potential. When results were compared with the lithologic descriptions, both land-based and water-borne continuous resistivity profiling techniques were determined to be effective at differentiating coarse-grained from fine-grained sediment. Both techniques were useful for producing independent, similar interpretations of canal leakage potential.

  11. Negotiating the Rules of Engagement: Exploring Perceptions of Dance Technique Learning through Bourdieu's Concept of "Doxa"

    ERIC Educational Resources Information Center

    Rimmer, Rachel

    2017-01-01

    This article presents the findings from a focus group discussion conducted with first year undergraduate dance students in March 2015. The focus group concluded a cycle of action research during which the researcher explored the use of enquiry-based learning approaches to teaching dance technique in higher education. Grounded in transformative and…

  12. Radar observations of asteroids and comets

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1985-01-01

    Radar techniques for the observation of asteroids and comets are reviewed, emphasizing the logical basis for inferring physical properties from radar measurements. Results to date are reviewed, focusing on some recent highlights of the research to demonstrate the synergism between radar and other ground-based techniques. Particular attention is given to the asteroids 2 Pallas, 16 Psyche, 2101 Adonis, and the comet IRAS-Araki-Alcock.

  13. Grounding Headphones for Protection Against ESD

    NASA Technical Reports Server (NTRS)

    Peters, John; Youngquist, Robert C.

    2004-01-01

    A simple alternative technique has been devised protecting delicate equipment against electrostatic discharge (ESD) in settings in which workers wear communication headsets. In the original setting in which the technique was devised, the workers who wear the headsets also wear anti-ESD grounding straps on their wrists. The alternative technique eliminates the need for the wrist grounding straps by providing for grounding through the headsets. In place of the electrically insulating foam pads on the headsets, one installs pads made of electrically conductive foam like that commonly used to protect electronic components. Grounding wires are attached to the conductive foam pads, then possibly to the shielding cable which may be grounded to the backshell on the connector. The efficacy of this technique in protecting against ESD has been verified in experiments. The electrical resistance of the pads is a few megohms - about the same as that of a human body between the fingers of opposite hands and, hence, low enough for grounding. The only drawback of the technique is that care must be taken to place the foam pads in contact with the user s skin: any hair that comes between the foam pads and the skin must be pushed aside because hair is electrically insulating and thus prevents adequate grounding.

  14. Iterative repair for scheduling and rescheduling

    NASA Technical Reports Server (NTRS)

    Zweben, Monte; Davis, Eugene; Deale, Michael

    1991-01-01

    An iterative repair search method is described called constraint based simulated annealing. Simulated annealing is a hill climbing search technique capable of escaping local minima. The utility of the constraint based framework is shown by comparing search performance with and without the constraint framework on a suite of randomly generated problems. Results are also shown of applying the technique to the NASA Space Shuttle ground processing problem. These experiments show that the search methods scales to complex, real world problems and reflects interesting anytime behavior.

  15. Estimating Natural Recharge in a Desert Environment Facing Increasing Ground-Water Demands

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Izbicki, J. A.; Hevesi, J. A.; Martin, P.

    2004-12-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin, and ground-water withdrawals averaging about 960 acre-ft/yr have resulted in as much as 35 ft of drawdown. As growth continues in the desert, ground-water resources may need to be supplemented using imported water. To help meet future demands, JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. To manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. To this end, field and numerical techniques were applied to determine the distribution and quantity of natural recharge. Field techniques included the installation of instrumented boreholes in selected washes and at a nearby control site. Numerical techniques included the use of a distributed-parameter watershed model and a ground-water flow model. The results from the field techniques indicated that as much as 70 acre-ft/yr of water infiltrated downward through the two principal washes during the study period (2001-3). The results from the watershed model indicated that the average annual recharge in the ground-water subbasins is about 160 acre-ft/yr. The results from the calibrated ground-water flow model indicated that the average annual recharge for the same area is about 125 acre-ft/yr. Although the field and numerical techniques were applied to different scales (local vs. large), all indicate that natural recharge in the Joshua Tree area is very limited; therefore, careful management of the limited ground-water resources is needed. Moreover, the calibrated model can now be used to estimate the effects of different water-management strategies on the ground-water subbasins.

  16. A preliminary study of the benefits of flying by ground speed during final approach

    NASA Technical Reports Server (NTRS)

    Hastings, E. C., Jr.

    1978-01-01

    A study was conducted to evaluate the benefits of an approach technique which utilized constant ground speed on approach. It was determined that the technique reduced the capacity losses in headwinds experienced with the currently used constant airspeed technique. The benefits of technique were found to increase as headwinds increased and as the wake avoidance separation intervals were reduced. An additional benefit noted for the constant ground speed technique was a reduction in stopping distance variance due to the approach wind environment.

  17. Seismic Hazard Analysis as a Controlling Technique of Induced Seismicity in Geothermal Systems

    NASA Astrophysics Data System (ADS)

    Convertito, V.; Sharma, N.; Maercklin, N.; Emolo, A.; Zollo, A.

    2011-12-01

    The effect of induced seismicity of geothermal systems during stimulation and fluid circulation can cover a wide range of values from light and unfelt to severe and damaging. If the design of a modern geothermal system requires the largest efficiency to be obtained from the social point of view it is required that the system could be managed in order to reduce possible impact in advance. In this framework, automatic control of the seismic response of the stimulated reservoir is nowadays mandatory, particularly in proximity of densely populated areas. Recently, techniques have been proposed for this purpose mainly based on the concept of the traffic light. This system provides a tool to decide the level of stimulation rate based on the real-time analysis of the induced seismicity and the ongoing ground motion values. However, in some cases the induced effect can be delayed with respect to the time when the reservoir is stimulated. Thus, a controlling system technique able to estimate the ground motion levels for different time scales can help to better control the geothermal system. Here we present an adaptation of the classical probabilistic seismic hazard analysis to the case where the seismicity rate as well as the propagation medium properties are not constant with time. We use a non-homogeneous seismicity model for modeling purposes, in which the seismicity rate and b-value of the recurrence relationship change with time. Additionally, as a further controlling procedure, we propose a moving time window analysis of the recorded peak ground-motion values aimed at monitoring the changes in the propagation medium. In fact, for the same set of magnitude values recorded at the same stations, we expect that on average peak ground motion values attenuate in same way. As a consequence, the residual differences can be reasonably ascribed to changes in medium properties. These changes can be modeled and directly introduced in the hazard integral. We applied the proposed technique to a training dataset of induced earthquakes recorded by Berkeley-Geysers network, which is installed in The Geysers geothermal area in Northern California. The reliability of the techniques is then tested by using a different dataset performing seismic hazard analysis in a time-evolving approach, which provides with ground-motion values having fixed probabilities of exceedence. Those values can be finally compared with the observations by using appropriate statistical tests.

  18. Analysis of meteorological variables in the Australasian region using ground- and space-based GPS techniques

    NASA Astrophysics Data System (ADS)

    Kuleshov, Yuriy; Choy, Suelynn; Fu, Erjiang Frank; Chane-Ming, Fabrice; Liou, Yuei-An; Pavelyev, Alexander G.

    2016-07-01

    Results of analysis of meteorological variables (temperature and moisture) in the Australasian region using the global positioning system (GPS) radio occultation (RO) and GPS ground-based observations verified with in situ radiosonde (RS) data are presented. The potential of using ground-based GPS observations for retrieving column integrated precipitable water vapour (PWV) over the Australian continent has been demonstrated using the Australian ground-based GPS reference stations network. Using data from the 15 ground-based GPS stations, the state of the atmosphere over Victoria during a significant weather event, the March 2010 Melbourne storm, has been investigated, and it has been shown that the GPS observations has potential for monitoring the movement of a weather front that has sharp moisture contrast. Temperature and moisture variability in the atmosphere over various climatic regions (the Indian and the Pacific Oceans, the Antarctic and Australia) has been examined using satellite-based GPS RO and in situ RS observations. Investigating recent atmospheric temperature trends over Antarctica, the time series of the collocated GPS RO and RS data were examined, and strong cooling in the lower stratosphere and warming through the troposphere over Antarctica has been identified, in agreement with outputs of climate models. With further expansion of the Global Navigation Satellite Systems (GNSS) system, it is expected that GNSS satellite- and ground-based measurements would be able to provide an order of magnitude larger amount of data which in turn could significantly advance weather forecasting services, climate monitoring and analysis in the Australasian region.

  19. Aircraft wing structural design optimization based on automated finite element modelling and ground structure approach

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Yue, Zhufeng; Li, Lei; Wang, Peiyan

    2016-01-01

    An optimization procedure combining an automated finite element modelling (AFEM) technique with a ground structure approach (GSA) is proposed for structural layout and sizing design of aircraft wings. The AFEM technique, based on CATIA VBA scripting and PCL programming, is used to generate models automatically considering the arrangement of inner systems. GSA is used for local structural topology optimization. The design procedure is applied to a high-aspect-ratio wing. The arrangement of the integral fuel tank, landing gear and control surfaces is considered. For the landing gear region, a non-conventional initial structural layout is adopted. The positions of components, the number of ribs and local topology in the wing box and landing gear region are optimized to obtain a minimum structural weight. Constraints include tank volume, strength, buckling and aeroelastic parameters. The results show that the combined approach leads to a greater weight saving, i.e. 26.5%, compared with three additional optimizations based on individual design approaches.

  20. Constructed-Response Matching to Sample and Spelling Instruction.

    ERIC Educational Resources Information Center

    Dube, William V.; And Others

    1991-01-01

    This paper describes a computer-based spelling program grounded in programed instructional techniques and using constructed-response matching-to-sample procedures. Following use of the program, two mentally retarded men successfully spelled previously misspelled words. (JDD)

  1. Solar multi-conjugate adaptive optics based on high order ground layer adaptive optics and low order high altitude correction.

    PubMed

    Zhang, Lanqiang; Guo, Youming; Rao, Changhui

    2017-02-20

    Multi-conjugate adaptive optics (MCAO) is the most promising technique currently developed to enlarge the corrected field of view of adaptive optics for astronomy. In this paper, we propose a new configuration of solar MCAO based on high order ground layer adaptive optics and low order high altitude correction, which result in a homogeneous correction effect in the whole field of view. An individual high order multiple direction Shack-Hartmann wavefront sensor is employed in the configuration to detect the ground layer turbulence for low altitude correction. Furthermore, the other low order multiple direction Shack-Hartmann wavefront sensor supplies the wavefront information caused by high layers' turbulence through atmospheric tomography for high altitude correction. Simulation results based on the system design at the 1-meter New Vacuum Solar Telescope show that the correction uniform of the new scheme is obviously improved compared to conventional solar MCAO configuration.

  2. Estimation of soft sediment thickness in Kuala Lumpur based on microtremor observation data

    NASA Astrophysics Data System (ADS)

    Chiew, Chang Chyau; Cheah, Yi Ben; Tan, Chin Guan; Lau, Tze Liang

    2017-10-01

    Seismic site effect is one of the major concerns in earthquake engineering. Soft ground tends to amplify the seismic wave in surficial geological layers. The determination of soft ground thickness on the surface layers of the earth is an important input for seismic hazard assessment. This paper presents an easy and convenient approach to estimate the soft sediment thickness at the site using microtremor observation technique. A total number of 133 survey points were conducted in selected sites around Kuala Lumpur area using a microtremor measuring instrument, but only 103 survey points contributed to the seismic microzonation and sediment thickness plots. The bedrock of Kuala Lumpur area is formed by Kenny Hill Formation, limestone, granite, and the Hawthornden Schist; however, the thickness of surface soft ground formed by alluvial deposits, mine tailings, and residual soils remains unknown. Hence, the predominant frequency of the ground in each site was determined based on Nakamura method. A total number of 14 sites with known depth to bedrock from the supply of geotechnical reports in the study area were determined. An empirical correlation was developed to relate the ground predominant frequency and soft ground thickness. This correlation may contribute to local soil underlying the subsurface of Kuala Lumpur area. The finding provides an important relationship for engineers to estimate the soft ground thickness in Kuala Lumpur area based on the dynamic characteristics of the ground measured from microtremor observation.

  3. An In Depth Look at Lightning Trends in Hurricane Harvey using Satellite and Ground-Based Measurements

    NASA Astrophysics Data System (ADS)

    Ringhausen, J.

    2017-12-01

    This research combines satellite measurements of lightning in Hurricane Harvey with ground-based lightning measurements to get a better sense of the total lightning occurring in the hurricane, both intra-cloud (IC) and cloud-to-ground (CG), and how it relates to the intensification and weakening of the tropical system. Past studies have looked at lightning trends in hurricanes using the space based Lightning Imaging Sensor (LIS) or ground-based lightning detection networks. However, both of these methods have drawbacks. For instance, LIS was in low earth orbit, which limited lightning observations to 90 seconds for a particular point on the ground; hence, continuous lightning coverage of a hurricane was not possible. Ground-based networks can have a decreased detection efficiency, particularly for ICs, over oceans where hurricanes generally intensify. With the launch of the Geostationary Lightning Mapper (GLM) on the GOES-16 satellite, researchers can study total lightning continuously over the lifetime of a tropical cyclone. This study utilizes GLM to investigate total lightning activity in Hurricane Harvey temporally; this is augmented with spatial analysis relative to hurricane structure, similar to previous studies. Further, GLM and ground-based network data are combined using Bayesian techniques in a new manner to leverage the strengths of each detection method. This methodology 1) provides a more complete estimate of lightning activity and 2) enables the derivation of the IC:CG ratio (Z-ratio) throughout the time period of the study. In particular, details of the evolution of the Z-ratio in time and space are presented. In addition, lightning stroke spatiotemporal trends are compared to lightning flash trends. This research represents a new application of lightning data that can be used in future study of tropical cyclone intensification and weakening.

  4. A Method for Assessing Ground-Truth Accuracy of the 5DCT Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Tai H., E-mail: tdou@mednet.ucla.edu; Thomas, David H.; O'Connell, Dylan P.

    2015-11-15

    Purpose: To develop a technique that assesses the accuracy of the breathing phase-specific volume image generation process by patient-specific breathing motion model using the original free-breathing computed tomographic (CT) scans as ground truths. Methods: Sixteen lung cancer patients underwent a previously published protocol in which 25 free-breathing fast helical CT scans were acquired with a simultaneous breathing surrogate. A patient-specific motion model was constructed based on the tissue displacements determined by a state-of-the-art deformable image registration. The first image was arbitrarily selected as the reference image. The motion model was used, along with the free-breathing phase information of the originalmore » 25 image datasets, to generate a set of deformation vector fields that mapped the reference image to the 24 nonreference images. The high-pitch helically acquired original scans served as ground truths because they captured the instantaneous tissue positions during free breathing. Image similarity between the simulated and the original scans was assessed using deformable registration that evaluated the pointwise discordance throughout the lungs. Results: Qualitative comparisons using image overlays showed excellent agreement between the simulated images and the original images. Even large 2-cm diaphragm displacements were very well modeled, as was sliding motion across the lung–chest wall boundary. The mean error across the patient cohort was 1.15 ± 0.37 mm, and the mean 95th percentile error was 2.47 ± 0.78 mm. Conclusion: The proposed ground truth–based technique provided voxel-by-voxel accuracy analysis that could identify organ-specific or tumor-specific motion modeling errors for treatment planning. Despite a large variety of breathing patterns and lung deformations during the free-breathing scanning session, the 5-dimensionl CT technique was able to accurately reproduce the original helical CT scans, suggesting its applicability to a wide range of patients.« less

  5. The feasibility of imaging subglacial hydrology beneath ice streams with ground-based electromagnetics

    NASA Astrophysics Data System (ADS)

    Siegfried, M. R.; Key, K.

    2017-12-01

    Subglacial hydrologic systems in Antarctica and Greenland play a fundamental role in ice-sheet dynamics, yet critical aspects of these systems remain poorly understood due to a lack of observations. Ground-based electromagnetic (EM) geophysical methods are established for mapping groundwater in many environments, but have never been applied to imaging lakes beneath ice sheets. Here we study the feasibility of passive and active source EM imaging for quantifying the nature of subglacial water systems beneath ice streams, with an emphasis on the interfaces between ice and basal meltwater, as well as deeper groundwater in the underlying sediments. Specifically, we look at the passive magnetotelluric method and active-source EM methods that use a large loop transmitter and receivers that measure either frequency-domain or transient soundings. We describe a suite of model studies that exam the data sensitivity as a function of ice thickness, water conductivity and hydrologic system geometry for models representative of a subglacial lake and a grounding zone estuary. We show that EM data are directly sensitive to groundwater and can image its lateral and depth extent. By combining the conductivity obtained from EM data with ice thickness and geological structure from conventional geophysical techniques such as ground-penetrating radar and active seismic techniques, EM data have the potential to provide new insights on the interaction between ice, rock, and water at critical ice-sheet boundaries.

  6. Polarimetric measurements in prominences and "tornadoe" observed by THEMIS

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; López Ariste, Arturo; Levens, Peter; Labrosse, Nicolas; Dalmasse, Kévin

    2015-10-01

    Since 2013, coordinated campaigns with the THEMIS spectropolarimeter in Tenerife and other instruments (space based: Hinode/SOT, IRIS or ground based: Sac Peak, Meudon) are organized to observe prominences. THEMIS records spectropolarimetry at the He I D3 and we use the PCA inversion technique to derive their field strength, inclination and azimuth.

  7. The use of Landsat digital data to detect and monitor vegetation water deficiencies

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Wehmanen, O. A.

    1977-01-01

    In the Large Area Crop Inventory Experiment a technique was devised using a vector transformation of Landsat digital data to indicate when vegetation is undergoing moisture stress. A relation was established between the remote-sensing-based criterion (the Green Index Number) and a ground-based criterion (Crop Moisture Index).

  8. An inexpensive active optical remote sensing instrument for assessing aerosol distributions.

    PubMed

    Barnes, John E; Sharma, Nimmi C P

    2012-02-01

    Air quality studies on a broad variety of topics from health impacts to source/sink analyses, require information on the distributions of atmospheric aerosols over both altitude and time. An inexpensive, simple to implement, ground-based optical remote sensing technique has been developed to assess aerosol distributions. The technique, called CLidar (Charge Coupled Device Camera Light Detection and Ranging), provides aerosol altitude profiles over time. In the CLidar technique a relatively low-power laser transmits light vertically into the atmosphere. The transmitted laser light scatters off of air molecules, clouds, and aerosols. The entire beam from ground to zenith is imaged using a CCD camera and wide-angle (100 degree) optics which are a few hundred meters from the laser. The CLidar technique is optimized for low altitude (boundary layer and lower troposphere) measurements where most aerosols are found and where many other profiling techniques face difficulties. Currently the technique is limited to nighttime measurements. Using the CLidar technique aerosols may be mapped over both altitude and time. The instrumentation required is portable and can easily be moved to locations of interest (e.g. downwind from factories or power plants, near highways). This paper describes the CLidar technique, implementation and data analysis and offers specifics for users wishing to apply the technique for aerosol profiles.

  9. Beacon Collision Avoidance System (BCAS) Alternative Concepts for Determining Target Positions

    DOT National Transportation Integrated Search

    1978-09-01

    The (Litchford) Beacon-based Collision Avoidance System concept requires the computation of target range and bearing relative to the BCAS aircraft. Techniques for determining target range and bearing under four different assumptions about the ground ...

  10. Multi-Spectral Image Analysis for Improved Space Object Characterization

    NASA Astrophysics Data System (ADS)

    Duggin, M.; Riker, J.; Glass, W.; Bush, K.; Briscoe, D.; Klein, M.; Pugh, M.; Engberg, B.

    The Air Force Research Laboratory (AFRL) is studying the application and utility of various ground based and space-based optical sensors for improving surveillance of space objects in both Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO). At present, ground-based optical and radar sensors provide the bulk of remotely sensed information on satellites and space debris, and will continue to do so into the foreseeable future. However, in recent years, the Space Based Visible (SBV) sensor was used to demonstrate that a synthesis of space-based visible data with ground-based sensor data could provide enhancements to information obtained from any one source in isolation. The incentives for space-based sensing include improved spatial resolution due to the absence of atmospheric effects and cloud cover and increased flexibility for observations. Though ground-based optical sensors can use adaptive optics to somewhat compensate for atmospheric turbulence, cloud cover and absorption are unavoidable. With recent advances in technology, we are in a far better position to consider what might constitute an ideal system to monitor our surroundings in space. This work has begun at the AFRL using detailed optical sensor simulations and analysis techniques to explore the trade space involved in acquiring and processing data from a variety of hypothetical space-based and ground-based sensor systems. In this paper, we briefly review the phenomenology and trade space aspects of what might be required in order to use multiple band-passes, sensor characteristics, and observation and illumination geometries to increase our awareness of objects in space.

  11. A robust automated left ventricle region of interest localization technique using a cardiac cine MRI atlas

    NASA Astrophysics Data System (ADS)

    Ben-Zikri, Yehuda Kfir; Linte, Cristian A.

    2016-03-01

    Region of interest detection is a precursor to many medical image processing and analysis applications, including segmentation, registration and other image manipulation techniques. The optimal region of interest is often selected manually, based on empirical knowledge and features of the image dataset. However, if inconsistently identified, the selected region of interest may greatly affect the subsequent image analysis or interpretation steps, in turn leading to incomplete assessment during computer-aided diagnosis or incomplete visualization or identification of the surgical targets, if employed in the context of pre-procedural planning or image-guided interventions. Therefore, the need for robust, accurate and computationally efficient region of interest localization techniques is prevalent in many modern computer-assisted diagnosis and therapy applications. Here we propose a fully automated, robust, a priori learning-based approach that provides reliable estimates of the left and right ventricle features from cine cardiac MR images. The proposed approach leverages the temporal frame-to-frame motion extracted across a range of short axis left ventricle slice images with small training set generated from les than 10% of the population. This approach is based on histogram of oriented gradients features weighted by local intensities to first identify an initial region of interest depicting the left and right ventricles that exhibits the greatest extent of cardiac motion. This region is correlated with the homologous region that belongs to the training dataset that best matches the test image using feature vector correlation techniques. Lastly, the optimal left ventricle region of interest of the test image is identified based on the correlation of known ground truth segmentations associated with the training dataset deemed closest to the test image. The proposed approach was tested on a population of 100 patient datasets and was validated against the ground truth region of interest of the test images manually annotated by experts. This tool successfully identified a mask around the LV and RV and furthermore the minimal region of interest around the LV that fully enclosed the left ventricle from all testing datasets, yielding a 98% overlap with their corresponding ground truth. The achieved mean absolute distance error between the two contours that normalized by the radius of the ground truth is 0.20 +/- 0.09.

  12. Long-term ground deformation patterns of Bucharest using multi-temporal InSAR and multivariate dynamic analyses: a possible transpressional system?

    PubMed Central

    Armaş, Iuliana; Mendes, Diana A.; Popa, Răzvan-Gabriel; Gheorghe, Mihaela; Popovici, Diana

    2017-01-01

    The aim of this exploratory research is to capture spatial evolution patterns in the Bucharest metropolitan area using sets of single polarised synthetic aperture radar (SAR) satellite data and multi-temporal radar interferometry. Three sets of SAR data acquired during the years 1992–2010 from ERS-1/-2 and ENVISAT, and 2011–2014 from TerraSAR-X satellites were used in conjunction with the Small Baseline Subset (SBAS) and persistent scatterers (PS) high-resolution multi-temporal interferometry (InSAR) techniques to provide maps of line-of-sight displacements. The satellite-based remote sensing results were combined with results derived from classical methodologies (i.e., diachronic cartography) and field research to study possible trends in developments over former clay pits, landfill excavation sites, and industrial parks. The ground displacement trend patterns were analysed using several linear and nonlinear models, and techniques. Trends based on the estimated ground displacement are characterised by long-term memory, indicated by low noise Hurst exponents, which in the long-term form interesting attractors. We hypothesize these attractors to be tectonic stress fields generated by transpressional movements. PMID:28252103

  13. Long-term ground deformation patterns of Bucharest using multi-temporal InSAR and multivariate dynamic analyses: a possible transpressional system?

    PubMed

    Armaş, Iuliana; Mendes, Diana A; Popa, Răzvan-Gabriel; Gheorghe, Mihaela; Popovici, Diana

    2017-03-02

    The aim of this exploratory research is to capture spatial evolution patterns in the Bucharest metropolitan area using sets of single polarised synthetic aperture radar (SAR) satellite data and multi-temporal radar interferometry. Three sets of SAR data acquired during the years 1992-2010 from ERS-1/-2 and ENVISAT, and 2011-2014 from TerraSAR-X satellites were used in conjunction with the Small Baseline Subset (SBAS) and persistent scatterers (PS) high-resolution multi-temporal interferometry (InSAR) techniques to provide maps of line-of-sight displacements. The satellite-based remote sensing results were combined with results derived from classical methodologies (i.e., diachronic cartography) and field research to study possible trends in developments over former clay pits, landfill excavation sites, and industrial parks. The ground displacement trend patterns were analysed using several linear and nonlinear models, and techniques. Trends based on the estimated ground displacement are characterised by long-term memory, indicated by low noise Hurst exponents, which in the long-term form interesting attractors. We hypothesize these attractors to be tectonic stress fields generated by transpressional movements.

  14. Evaluation of a native vegetation masking technique

    NASA Technical Reports Server (NTRS)

    Kinsler, M. C.

    1984-01-01

    A crop masking technique based on Ashburn's vegetative index (AVI) was used to evaluate native vegetation as an indicator of crop moisture condition. A mask of the range areas (native vegetation) was generated for each of thirteen Great Plains LANDSAT MSS sample segments. These masks were compared to the digitized ground truth and accuracies were computed. An analysis of the types of errors indicates a consistency in errors among the segments. The mask represents a simple quick-look technique for evaluating vegetative cover.

  15. Exploring multi-scale forest above ground biomass estimation with optical remote sensing imageries

    NASA Astrophysics Data System (ADS)

    Koju, U.; Zhang, J.; Gilani, H.

    2017-02-01

    Forest shares 80% of total exchange of carbon between the atmosphere and the terrestrial ecosystem. Due to this monitoring of forest above ground biomass (as carbon can be calculated as 0.47 part of total biomass) has become very important. Forest above ground biomass as being the major portion of total forest biomass should be given a very careful consideration in its estimation. It is hoped to be useful in addressing the ongoing problems of deforestation and degradation and to gain carbon mitigation benefits through mechanisms like Reducing Emissions from Deforestation and Forest Degradation (REDD+). Many methods of above ground biomass estimation are in used ranging from use of optical remote sensing imageries of very high to very low resolution to SAR data and LIDAR. This paper describes a multi-scale approach for assessing forest above ground biomass, and ultimately carbon stocks, using very high imageries, open source medium resolution and medium resolution satellite datasets with a very limited number of field plots. We found this method is one of the most promising method for forest above ground biomass estimation with higher accuracy and low cost budget. Pilot study was conducted in Chitwan district of Nepal on the estimation of biomass using this technique. The GeoEye-1 (0.5m), Landsat (30m) and Google Earth (GE) images were used remote sensing imageries. Object-based image analysis (OBIA) classification technique was done on Geo-eye imagery for the tree crown delineation at the watershed level. After then, crown projection area (CPA) vs. biomass model was developed and validated at the watershed level. Open source GE imageries were used to calculate the CPA and biomass from virtual plots at district level. Using data mining technique, different parameters from Landsat imageries along with the virtual sample biomass were used for upscaling biomass estimation at district level. We found, this approach can considerably reduce field data requirements for estimation of biomass and carbon in comparison with inventory methods based on enumeration of all trees in a plot. The proposed methodology is very cost effective and can be replicated with limited resources and time.

  16. A survey of light-scattering techniques used in the remote monitoring of atmospheric aerosols

    NASA Technical Reports Server (NTRS)

    Deirmendjian, D.

    1980-01-01

    A critical survey of the literature on the use of light-scattering mechanisms in the remote monitoring of atmospheric aerosols, their geographical and spatial distribution, and temporal variations was undertaken to aid in the choice of future operational systems, both ground based and air or space borne. An evaluation, mainly qualitative and subjective, of various techniques and systems is carried out. No single system is found to be adequate for operational purposes. A combination of earth surface and space-borne systems based mainly on passive techniques involving solar radiation with active (lidar) systems to provide auxiliary or backup information is tentatively recommended.

  17. An aircraft measurement technique for formaldehyde and soluble carbonyl compounds

    NASA Astrophysics Data System (ADS)

    Lee, Yin-Nan; Zhou, Xianliang; Leaitch, W. Richard; Banic, Catharine M.

    1996-12-01

    An aircraft technique was developed for measuring ambient concentrations of formaldehyde and a number of soluble carbonyl compounds, including glycolaldehyde, glyoxal, methylglyoxal, glyoxylic acid, and pyruvic acid. Sampling was achieved by liquid scrubbing using a glass coil scrubber in conjunction with an autosampler which collected 5-min integrated liquid samples in septum-sealed vials. Analysis was performed on the ground after flight using high-performance liquid chromatography following derivatization of the carbonyl analytes with 2,4-dinitrophenylhydrazine; the limit of detection was 0.01 to 0.02 parts per billion by volume (ppbv) in the gas phase. Although lacking a real-time capability, this technique offers the advantage of simultaneously measuring six carbonyl compounds, savings in space and power on the aircraft, and a dependable ground-based analysis. This technique was deployed on the Canadian National Research Council DHC-6 Twin Otter during the 1993 summer intensive of the North Atlantic Regional Experiment. The data obtained on August 28, 1993, during a pollutant transport episode are presented as an example of the performance and capability of this technique.

  18. GNSS VTEC calibration using satellite altimetry and LEO data

    NASA Astrophysics Data System (ADS)

    Alizadeh, M. Mahdi; Schuh, Harald

    2015-04-01

    Among different systems remote sensing the ionosphere, space geodetic techniques have turned into a promising tool for monitoring and modeling the ionospheric parameters. Due to the fact that ionosphere is a dispersive medium, the signals travelling through this medium provide information about the parameters of the ionosphere in terms of Total Electron Content (TEC) or electron density along the ray path. The classical input data for development of Global Ionosphere Maps (GIM) of the Vertical Total Electron Content (VTEC) is obtained from the dual-frequency Global Navigation Satellite Systems (GNSS) ground-based observations. Nevertheless due to the fact that GNSS ground stations are in-homogeneously distributed with poor coverage over the oceans (namely southern Pacific and southern Atlantic) and also parts of Africa, the precision of VTEC maps are rather low in these areas. From long term analyses it is believed that the International GNSS Service (IGS) VTEC maps have an accuracy of 1-2 TECU in areas well covered with GNSS receivers; conversely, in areas with poor coverage the accuracy can be degraded by a factor of up to five. On the other hand dual-frequency satellite altimetry missions (such as Jason-1&2) provide direct VTEC values exactly over the oceans, and furthermore the Low Earth Orbiting (LEO) satellites such as the Formosat-3/COSMIC (F/C) provide about a great number of globally distributed occultation measurements per day, which can be used to obtain VTEC values. Combining these data with the ground-based data improves the accuracy and reliability of the VTEC maps by closing of observation gaps that arise when using ground-based data only. In this approach an essential step is the evaluation and calibration of the different data sources used for the combination procedure. This study investigates the compatibility of calibrated TEC observables derived from GNSS dual-frequency data, recorded at global ground-based station networks, with space-based TEC values from satellite altimetry and F/C observations. In the current procedure the ground-based GNSS observations have been used to develop a GNSS-only GIM, using the parameter estimation technique. The VTEC values extracted from these models have been quantified and calibrated with the raw altimetry and LEO measurements. The calibrated values have been consequently used for developing the combined GIMs of the VTEC.

  19. Report to TRMM

    NASA Technical Reports Server (NTRS)

    Jameson, Arthur R.

    1997-01-01

    The effort involved three elements all related to the measurement of rain and clouds using microwaves: (1) Examine recently proposed techniques for measuring rainfall rate and rain water content using data from ground-based radars and the TRMM microwave link in order to develop improved ground validation and radar calibration techniques; (2) Develop dual-polarization, multiple frequency radar techniques for estimating rain water content and cloud water content to interpret the vertical profiles of radar reflectivity factors (Z) measured by the TRMM Precipitation Radar; and (3) Investigate theoretically and experimentally the potential biases in TRMM Z measurements due to spatial inhomogeneities in precipitation. The research succeeded in addressing all of these topics, resulting in several referred publications. addition, the research indicated that the effects of non-Rayleigh statistics resulting from the nature of the precipitation inhomogeneities will probably not result in serious errors for the TRMM radar Measurements, but the TRMM radiometers may be subject to significant bias due to the inhomogeneities.

  20. Corrosive effect of the type of soil in the systems of grounding more used (copper and stainless steel) for local soil samples from the city of Tunja (Colombia), by means of electrochemical techniques

    NASA Astrophysics Data System (ADS)

    Guerrero, L.; Salas, Y.; Blanco, J.

    2016-02-01

    In this work electrochemical techniques were used to determine the corrosion behaviour of copper and stainless steel electrodes, used in grounding varying soil type with which they react. A slight but significant change in the corrosion rate, linear polarization resistance and equivalent parameters in the technique of electrochemical impedance spectroscopy circuit was observed. Electrolytes in soils are slightly different depending on laboratory study, but the influence was noted in the retention capacity of water, mainly due to clays, affecting ion mobility and therefore measures such as the corrosion rate. Behaviour was noted in lower potential for copper corrosion, though the corrosion rate regardless of the type of soil, was much higher for electrodes based on copper, by several orders of magnitude.

  1. Quantum memory with a controlled homogeneous splitting

    NASA Astrophysics Data System (ADS)

    Hétet, G.; Wilkowski, D.; Chanelière, T.

    2013-04-01

    We propose a quantum memory protocol where an input light field can be stored onto and released from a single ground state atomic ensemble by controlling dynamically the strength of an external static and homogeneous field. The technique relies on the adiabatic following of a polaritonic excitation onto a state for which the forward collective radiative emission is forbidden. The resemblance with the archetypal electromagnetically induced transparency is only formal because no ground state coherence-based slow-light propagation is considered here. As compared to the other grand category of protocols derived from the photon-echo technique, our approach only involves a homogeneous static field. We discuss two physical situations where the effect can be observed, and show that in the limit where the excited state lifetime is longer than the storage time; the protocols are perfectly efficient and noise free. We compare the technique with other quantum memories, and propose atomic systems where the experiment can be realized.

  2. Report to TRMM

    NASA Technical Reports Server (NTRS)

    Jameson, Arthur R.

    1997-01-01

    The effort involved three elements all related to the measurement of rain and clouds using microwaves: (1) Examine recently proposed techniques for measuring rainfall rate and rain water content using data from ground-based radars and the TRMM microwave link in order to develop improved ground validation and radar calibration techniques; (2) Develop dual-polarization, multiple frequency radar techniques for estimating rain water content and cloud water content to interpret the vertical profiles of radar reflectivity factors (Z) measured by the TRMM Precipitation Radar; and (3) Investigate theoretically and experimentally the potential biases in TRMM Z measurements due to spatial inhomogeneities in precipitation. The research succeeded in addressing all of these topics, resulting in several refereed publications. In addition, the research indicated that the effects of non-Rayleigh statistics resulting from the nature of the precipitation inhomogeneities will probably not result in serious errors for the TRMM radar measurements, but the TRMM radiometers may be subject to significant bias due to the inhomogeneities.

  3. Interdisciplinary Common Ground: Techniques and Attentional Processes

    ERIC Educational Resources Information Center

    Arvidson, P. Sven

    2014-01-01

    Common ground in the interdisciplinary research process is the pivot from disciplinary to interdisciplinary perspective. As thinking moves from disciplinary to interdisciplinary, what is the shape or structure of attention, how does intellectual content transform in the attending process? Four common ground techniques--extension, redefinition,…

  4. Using modern imaging techniques to old HST data: a summary of the ALICE program.

    NASA Astrophysics Data System (ADS)

    Choquet, Elodie; Soummer, Remi; Perrin, Marshall; Pueyo, Laurent; Hagan, James Brendan; Zimmerman, Neil; Debes, John Henry; Schneider, Glenn; Ren, Bin; Milli, Julien; Wolff, Schuyler; Stark, Chris; Mawet, Dimitri; Golimowski, David A.; Hines, Dean C.; Roberge, Aki; Serabyn, Eugene

    2018-01-01

    Direct imaging of extrasolar systems is a powerful technique to study the physical properties of exoplanetary systems and understand their formation and evolution mechanisms. The detection and characterization of these objects are challenged by their high contrast with their host star. Several observing strategies and post-processing algorithms have been developed for ground-based high-contrast imaging instruments, enabling the discovery of directly-imaged and spectrally-characterized exoplanets. The Hubble Space Telescope (HST), pioneer in directly imaging extrasolar systems, has yet been often limited to the detection of bright debris disks systems, with sensitivity limited by the difficulty to implement an optimal PSF subtraction stategy, which is readily offered on ground-based telescopes in pupil tracking mode.The Archival Legacy Investigations of Circumstellar Environments (ALICE) program is a consistent re-analysis of the 10 year old coronagraphic archive of HST's NICMOS infrared imager. Using post-processing methods developed for ground-based observations, we used the whole archive to calibrate PSF temporal variations and improve NICMOS's detection limits. We have now delivered ALICE-reprocessed science products for the whole NICMOS archival data back to the community. These science products, as well as the ALICE pipeline, were used to prototype the JWST coronagraphic data and reduction pipeline. The ALICE program has enabled the detection of 10 faint debris disk systems never imaged before in the near-infrared and several substellar companion candidates, which we are all in the process of characterizing through follow-up observations with both ground-based facilities and HST-STIS coronagraphy. In this publication, we provide a summary of the results of the ALICE program, advertise its science products and discuss the prospects of the program.

  5. Monitoring of surface movement in a large area of the open pit iron mines (Carajás, Brazil) based on A-DInSAR techniques using TerraSAR-X data

    NASA Astrophysics Data System (ADS)

    Mura, José C.; Paradella, Waldir R.; Gama, Fabio F.; Silva, Guilherme G.

    2016-10-01

    PSI (Persistent Scatterer Interferometry) analysis of large area is always a challenging task regarding the removal of the atmospheric phase component. This work presents an investigation of ground deformation measurements based on a combination of DInSAR Time-Series (DTS) and PSI techniques, applied in a large area of open pit iron mines located in Carajás (Brazilian Amazon Region), aiming at detect high rates of linear and nonlinear ground deformation. These mines have presented a historical of instability and surface monitoring measurements over sectors of the mines (pit walls) have been carried out based on ground based radar and total station (prisms). By using a priori information regarding the topographic phase error and phase displacement model derived from DTS, temporal phase unwrapping in the PSI processing and the removal of the atmospheric phases can be performed more efficiently. A set of 33 TerraSAR-X-1 images, acquired during the period from March 2012 to April 2013, was used to perform this investigation. The DTS analysis was carried out on a stack of multi-look unwrapped interferogram using an extension of SVD to obtain the Least-Square solution. The height errors and deformation rates provided by the DTS approach were subtracted from the stack of interferogram to perform the PSI analysis. This procedure improved the capability of the PSI analysis to detect high rates of deformation as well as increased the numbers of point density of the final results. The proposed methodology showed good results for monitoring surface displacement in a large mining area, which is located in a rain forest environment, providing very useful information about the ground movement for planning and risks control.

  6. Techniques for inventorying manmade impacts in roadway environments.

    Treesearch

    Dale R. Potter; J. Alan. Wagar

    1971-01-01

    Four techniques for inventorying manmade impacts along roadway corridors were devised and compared. Ground surveillance and ground photography techniques recorded impacts within the corridor visible from the road. Techniques on large- and small-scale aerial photography recorded impacts within a more complete corridor that included areas screened from the road by...

  7. Sonic Boom Pressure Signature Uncertainty Calculation and Propagation to Ground Noise

    NASA Technical Reports Server (NTRS)

    West, Thomas K., IV; Bretl, Katherine N.; Walker, Eric L.; Pinier, Jeremy T.

    2015-01-01

    The objective of this study was to outline an approach for the quantification of uncertainty in sonic boom measurements and to investigate the effect of various near-field uncertainty representation approaches on ground noise predictions. These approaches included a symmetric versus asymmetric uncertainty band representation and a dispersion technique based on a partial sum Fourier series that allows for the inclusion of random error sources in the uncertainty. The near-field uncertainty was propagated to the ground level, along with additional uncertainty in the propagation modeling. Estimates of perceived loudness were obtained for the various types of uncertainty representation in the near-field. Analyses were performed on three configurations of interest to the sonic boom community: the SEEB-ALR, the 69o DeltaWing, and the LM 1021-01. Results showed that representation of the near-field uncertainty plays a key role in ground noise predictions. Using a Fourier series based dispersion approach can double the amount of uncertainty in the ground noise compared to a pure bias representation. Compared to previous computational fluid dynamics results, uncertainty in ground noise predictions were greater when considering the near-field experimental uncertainty.

  8. Ground-based sensors for the SR-71 sonic boom propagation experiment

    NASA Technical Reports Server (NTRS)

    Norris, Stephen R.; Haering, Edward A., Jr.; Murray, James E.

    1995-01-01

    This paper describes ground-level measurements of sonic boom signatures made as part of the SR-71 sonic boom propagation experiment recently completed at NASA Dryden Flight Research Center, Edwards, California. Ground level measurements were the final stage of this experiment which also included airborne measurements at near and intermediate distances from an SR-71 research aircraft. Three types of sensors were deployed to three station locations near the aircraft ground track. Pressure data were collected for flight conditions from Mach 1.25 to Mach 1.60 at altitudes from 30,000 to 48,000 ft. Ground-level measurement techniques, comparisons of data sets from different ground sensors, and sensor system strengths and weaknesses are discussed. The well-known N-wave structure dominated the sonic boom signatures generated by the SR-71 aircraft at most of these conditions. Variations in boom shape caused by atmospheric turbulence, focusing effects, or both were observed for several flights. Peak pressure and boom event duration showed some dependence on aircraft gross weight. The sonic boom signatures collected in this experiment are being compiled in a data base for distribution in support of the High Speed Research Program.

  9. Polarimetric SAR Interferometry based modeling for tree height and aboveground biomass retrieval in a tropical deciduous forest

    NASA Astrophysics Data System (ADS)

    Kumar, Shashi; Khati, Unmesh G.; Chandola, Shreya; Agrawal, Shefali; Kushwaha, Satya P. S.

    2017-08-01

    The regulation of the carbon cycle is a critical ecosystem service provided by forests globally. It is, therefore, necessary to have robust techniques for speedy assessment of forest biophysical parameters at the landscape level. It is arduous and time taking to monitor the status of vast forest landscapes using traditional field methods. Remote sensing and GIS techniques are efficient tools that can monitor the health of forests regularly. Biomass estimation is a key parameter in the assessment of forest health. Polarimetric SAR (PolSAR) remote sensing has already shown its potential for forest biophysical parameter retrieval. The current research work focuses on the retrieval of forest biophysical parameters of tropical deciduous forest, using fully polarimetric spaceborne C-band data with Polarimetric SAR Interferometry (PolInSAR) techniques. PolSAR based Interferometric Water Cloud Model (IWCM) has been used to estimate aboveground biomass (AGB). Input parameters to the IWCM have been extracted from the decomposition modeling of SAR data as well as PolInSAR coherence estimation. The technique of forest tree height retrieval utilized PolInSAR coherence based modeling approach. Two techniques - Coherence Amplitude Inversion (CAI) and Three Stage Inversion (TSI) - for forest height estimation are discussed, compared and validated. These techniques allow estimation of forest stand height and true ground topography. The accuracy of the forest height estimated is assessed using ground-based measurements. PolInSAR based forest height models showed enervation in the identification of forest vegetation and as a result height values were obtained in river channels and plain areas. Overestimation in forest height was also noticed at several patches of the forest. To overcome this problem, coherence and backscatter based threshold technique is introduced for forest area identification and accurate height estimation in non-forested regions. IWCM based modeling for forest AGB retrieval showed R2 value of 0.5, RMSE of 62.73 (t ha-1) and a percent accuracy of 51%. TSI based PolInSAR inversion modeling showed the most accurate result for forest height estimation. The correlation between the field measured forest height and the estimated tree height using TSI technique is 62% with an average accuracy of 91.56% and RMSE of 2.28 m. The study suggested that PolInSAR coherence based modeling approach has significant potential for retrieval of forest biophysical parameters.

  10. Determining the location of buried plastic water pipes from measurements of ground surface vibration

    NASA Astrophysics Data System (ADS)

    Muggleton, J. M.; Brennan, M. J.; Gao, Y.

    2011-09-01

    ‘Mapping the Underworld' is a UK-based project, which aims to create a multi-sensor device that combines complementary technologies for remote buried utility service detection and location. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and techniques for detecting buried infrastructure, in particular plastic water pipes, are being investigated. One of the proposed techniques involves excitation of the pipe at some known location with concurrent vibrational mapping of the ground surface in order to infer the location of the remainder of the pipe. In this paper, measurements made on a dedicated pipe rig are reported. Frequency response measurements relating vibrational velocity on the ground to the input excitation were acquired. Contour plots of the unwrapped phase revealed the location of the pipe to within 0.1-0.2 m. Magnitude contour plots revealed the excitation point and also the location of the pipe end. By examining the unwrapped phase gradients along a line above the pipe, it was possible to identify the wave-type within the pipe responsible for the ground surface vibration. Furthermore, changes in the ground surface phase speed computed using this method enabled the location of the end of the pipe to be confirmed.

  11. Determination of rain rate from a spaceborne radar using measurements of total attenuation

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Eckerman, J.; Atlas, D.

    1981-01-01

    Studies shows that path-integrated rain rates can be determined by means of a direct measurement of attenuation. For ground based radars this is done by measuring the backscattering cross section of a fixed target in the presence and absence of rain along the radar beam. A ratio of the two measurements yields a factor proportional to the attenuation from which the average rain rate is deduced. The technique is extended to spaceborne radars by choosing the ground as reference target. The technique is also generalized so that both the average and range-profiled rain rates are determined. The accuracies of the resulting estimates are evaluated for a narrow beam radar located on a low earth orbiting satellite.

  12. ISINGLASS Auroral Sounding Rocket Campaign Data Synthesis: Radar, Imagery, and In Situ Observations

    NASA Astrophysics Data System (ADS)

    Clayton, R.; Lynch, K. A.; Evans, T.; Hampton, D. L.; Burleigh, M.; Zettergren, M. D.; Varney, R. H.; Reimer, A.; Hysell, D. L.; Michell, R.; Samara, M.; Grubbs, G. A., II

    2017-12-01

    E-field and flow variations across auroral arc boundaries are typically sub-grid measurements for ground based sensors such as radars and imagers, even for quiet stable arcs. In situ measurements can provide small scale resolution, but only provide a snapshot at a localized time and place. Using ground based and in situ measurements of the ISINGLASS auroral sounding rocket campaign in conjunction, we use the in situ measurements to validate ground based synthesis of these small scale observations based on the classification of auroral arcs in Marklund(1984). With validation of this technique, sub-grid information can be gained from radar data using particular visible auroral features during times where only ground based measurements are present. The ISINGLASS campaign (Poker Flat Alaska, Winter 2017) included the nights of Feb 22 2017 and Mar 02 2017, which possessed multiple stable arc boundaries that can be used for synthesis, including the two events into which the ISINGLASS rockets were launched. On Mar 02 from 0700 to 0800 UT, two stable slowly southward-propagating auroral arcs persisted within the instrument field of view, and lasted for a period of >15min. The second of these events contains the 36.304 rocket trajectory, while both events have full ground support from camera imagery and radar. Data synthesis from these events is accomplished using Butler (2010), Vennell (2009), and manually selected auroral boundaries from ground based cameras. With determination of the auroral arc boundaries from ground based imagery, a prediction of the fields along the length of a long straight arc boundary can be made using the ground based radar data, even on a sub-radar-grid scale, using the Marklund arc boundary classification. We assume that fields everywhere along a long stable arc boundary should be the same. Given a long stable arc, measurements anywhere along the arc (i.e. from PFISR) can be replicated along the length of the boundary. This prediction can then be validated from the in situ measurements of the fields from the ISINGLASS campaign. Upon successful synthesis and validation of the ground based data for the times where in situ data are present, the same analysis will be applied to similar long straight stable arcs during the campaign window when ground support is present to further explore the data synthesis method.

  13. CEMERLL: The Propagation of an Atmosphere-Compensated Laser Beam to the Apollo 15 Lunar Array

    NASA Technical Reports Server (NTRS)

    Fugate, R. Q.; Leatherman, P. R.; Wilson, K. E.

    1997-01-01

    Adaptive optics techniques can be used to realize a robust low bit-error-rate link by mitigating the atmosphere-induced signal fades in optical communications links between ground-based transmitters and deep-space probes.

  14. Middle Atmosphere Program. Handbook for MAP. Volume 13: Ground-based Techniques

    NASA Technical Reports Server (NTRS)

    Vincent, R. A. (Editor)

    1984-01-01

    Topics of activities in the middle Atmosphere program covered include: lidar systems of aerosol studies; mesosphere temperature; upper atmosphere temperatures and winds; D region electron densities; nitrogen oxides; atmospheric composition and structure; and optical sounding of ozone.

  15. External approach to rhinoplasty.

    PubMed

    Goodman, Wilfred S; Charbonneau, Paul A

    2015-07-01

    The technique of external rhinoplasty is outlined. Having reviewed 74 cases, its advantages and disadvantages are discussed. Reluctance to use this external approach seems to be based on emotional rather than radical grounds, for its seems to be the procedure of choice for many problems.

  16. The use of lidar for stratospheric measurements

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.

    1977-01-01

    Stratospheric measurements possible with ground-based, airborne, and satellite-borne lidar systems are reviewed. The instruments, basic equations, and formats normally used for various scattering and absorption phenomena measurements are presented including a discussion of elastic, resonance, Raman, and fluorescence scattering techniques.

  17. Desalination of Ground Water Minerals (Case Study: Kashan Desert in Iran)

    NASA Astrophysics Data System (ADS)

    Mahani, S. E.; Esmaeli Mahani, M.; Siavoshi, F.; Jafari, M.

    2009-12-01

    The present study focuses on testing quality and desalination of minerals from ground water that is used as the only source of water supply particularly for drinking in the Kashan Desert in Iran. About 14.2 cubic meter water/year from 59 wells, with the average depth of 120 meter, are used for drinking and personal usage in the selected study area. To test the quality of ground water, in general, salinity of minerals such as: chloride (Cl), sulfate (SO4), carbonate (CO3), bicarbonate (HCO3), potassium (K), sodium (Na), calcium (Ca), and magnesium (Mg), as well as PH, Total Dissolved Solids (TDS), Electric Conductivity (EC), and Temperature (T) are measured. EC and TDS in the deserts and arid areas are usually very high because of lack of rainfall, higher temperature, and high rate of evaporation. If the TDS is greater than 1000 mg/l, ground water needs to be desalinated. The TDS of ground water samples in Kashan Desert is greater than 2500 mg/l, which is higher than international World Health Organization (WHO) and Environmental Protection Agency (EPA) standard values. Conventional treatment can not be the only solution for making Kashan Desert ground water that much pure that can be used as fresh water for drinking because EC, Mg, Na, Cl, and SO4 are also higher than standard values. Various techniques such as: Ion Exchange (IX), Microfiltration (MF), Ultra Filtration (UF), Nano Filtration (NF), Electro Dialysis (ED), and Reserve Osmosis (RO) are examined to desalinate above mentioned minerals. Based on molecular weight and diameter of chemical particles which should be removed, in addition to experiences of operational groups in Iran, the RO technique has been selected as the best methodology. The results show that the RO technique could improve the quality of Kashan Desert ground water by comparison with the standard fresh water up to 95% to 99%.

  18. Simulations of Ground Motion in Southern California based upon the Spectral-Element Method

    NASA Astrophysics Data System (ADS)

    Tromp, J.; Komatitsch, D.; Liu, Q.

    2003-12-01

    We use the spectral-element method to simulate ground motion generated by recent well-recorded small earthquakes in Southern California. Simulations are performed using a new sedimentary basin model that is constrained by hundreds of petroleum industry well logs and more than twenty thousand kilometers of seismic reflection profiles. The numerical simulations account for 3D variations of seismic wave speeds and density, topography and bathymetry, and attenuation. Simulations for several small recent events demonstrate that the combination of a detailed sedimentary basin model and an accurate numerical technique facilitates the simulation of ground motion at periods of 2 seconds and longer inside the Los Angeles basin and 6 seconds and longer elsewhere. Peak ground displacement, velocity and acceleration maps illustrate that significant amplification occurs in the basin. Centroid-Moment Tensor mechanisms are obtained based upon Pnl and surface waveforms and numerically calculated 3D Frechet derivatives. We use a combination of waveform and waveform-envelope misfit criteria, and facilitate pure double-couple or zero-trace moment-tensor inversions.

  19. Equipment and techniques for low-altitude aerial sensing of water-vapor concentration and movement

    USGS Publications Warehouse

    Howell, R.L.

    1969-01-01

    Progress in the development of equipment and techniques for making rapid measurements of moisture movement through the atmosphere over a large area is described. Airborne sensing elements measure relative humidity, temperature, and air currents. These data are telemetered to a ground-based station and recorded. A radar unit tracks the aircraft and electronically plots its position on a base map of the area being studied. Thus the distribution of atmospheric conditions can be directly related to the underlying terrain and vegetation features. ?? 1969 American Elsevier Publishing Company, Inc.

  20. Evaluation of Airborne l- Band Multi-Baseline Pol-Insar for dem Extraction Beneath Forest Canopy

    NASA Astrophysics Data System (ADS)

    Li, W. M.; Chen, E. X.; Li, Z. Y.; Jiang, C.; Jia, Y.

    2018-04-01

    DEM beneath forest canopy is difficult to extract with optical stereo pairs, InSAR and Pol-InSAR techniques. Tomographic SAR (TomoSAR) based on different penetration and view angles could reflect vertical structure and ground structure. This paper aims at evaluating the possibility of TomoSAR for underlying DEM extraction. Airborne L-band repeat-pass Pol-InSAR collected in BioSAR 2008 campaign was applied to reconstruct the 3D structure of forest. And sum of kronecker product and algebraic synthesis algorithm were used to extract ground structure, and phase linking algorithm was applied to estimate ground phase. Then Goldstein cut-branch approach was used to unwrap the phases and then estimated underlying DEM. The average difference between the extracted underlying DEM and Lidar DEM is about 3.39 m in our test site. And the result indicates that it is possible for underlying DEM estimation with airborne L-band repeat-pass TomoSAR technique.

  1. Electrical Grounding - a Field for Geophysicists and Electrical Engineers Partnership

    NASA Astrophysics Data System (ADS)

    Freire, P. F.; Pane, E.; Guaraldo, N.

    2012-12-01

    Technology for designing ground electrodes for high-voltage direct current transmission systems (HVDC) has being using in the last years, deep soil models based on a wide range of geophysical methods. These models shall include detailed representation of shallow soil, down to 100 meters, in order to allow the evaluation of the soil conditions where the ground electrodes will be buried. Also deep soil models are needed, to be used for the interference studies, which shall represent a soil volume of about 15 km deep and a surface area of about 15 to 30 km radius. Large facilities for power plants (hydroelectric and wind farms, for example) and industrial complexes (such as petrochemical plants) has become usual at the current stage of Brazil industrialization. Grounding mats for these facilities are made of a buried cooper mesh, interconnected to a wide variety of metallic masses, such as steel reinforced concrete foundations, ducts in general etc. These grounding systems may present dimensions with the order of hundreds of meters, and, at least in Brazil, are usually calculated by using electrical resistivity soil models, based on short spacing Wenner measurements (with maximum spacing of about 64 m.). The soil model shall be the best possible representation of the environment in which the grounding electrodes are immersed, for the purpose of calculation of resistance or for digital simulation. The model to be obtained is limited by the amount and quality of soil resistivity measurements are available, and the resources to be used in the calculations and simulations. Geophysics uses a wide range of technologies for exploring subsoil, ranging from surface measurements to wells logging - seismic, gravimetric, magnetic, electrical, electromagnetic and radiometric. The electrical and electromagnetic methods includes various measurement techniques (Wenner, Schlumberger, TDEM, Magneto-telluric etc.), which together allow the development of complex resistivity soil models, layered stratified or showing lateral variations, ranging down to several tens of kilometers deep, reaching the crust-mantle interface (typically with the order of 30-40 km). This work aims to analyze the constraints of the current soil models being used for grounding electrodes design, and suggests the need of a soil modeling methodology compatible with large grounding systems. Concerning the aspects related to soil modeling, electrical engineers need to get aware of geophysics resources, such as: - geophysical techniques for soil electrical resistivity prospection (down to about 15 kilometers deep); and - techniques for converting field measured data, from many different geophysical techniques, into adequate soil models for grounding grid simulation. It is also important to equalize the basic knowledge for the professionals that are working together for the specific purpose of soil modeling for electrical grounding studies. The authors have experienced the situation of electrical engineers working with geophysicists, but it was not clear for the latter the effective need of the electrical engineers, and for the engineers it was unknown the available geophysical resources, and also, what to do convert the large amount of soil resistivity data into a reliable soil model.

  2. Monitoring Strategies of Earth Dams by Ground-Based Radar Interferometry: How to Extract Useful Information for Seismic Risk Assessment.

    PubMed

    Di Pasquale, Andrea; Nico, Giovanni; Pitullo, Alfredo; Prezioso, Giuseppina

    2018-01-16

    The aim of this paper is to describe how ground-based radar interferometry can provide displacement measurements of earth dam surfaces and of vibration frequencies of its main concrete infrastructures. In many cases, dams were built many decades ago and, at that time, were not equipped with in situ sensors embedded in the structure when they were built. Earth dams have scattering properties similar to landslides for which the Ground-Based Synthetic Aperture Radar (GBSAR) technique has been so far extensively applied to study ground displacements. In this work, SAR and Real Aperture Radar (RAR) configurations are used for the measurement of earth dam surface displacements and vibration frequencies of concrete structures, respectively. A methodology for the acquisition of SAR data and the rendering of results is described. The geometrical correction factor, needed to transform the Line-of-Sight (LoS) displacement measurements of GBSAR into an estimate of the horizontal displacement vector of the dam surface, is derived. Furthermore, a methodology for the acquisition of RAR data and the representation of displacement temporal profiles and vibration frequency spectra of dam concrete structures is presented. For this study a Ku-band ground-based radar, equipped with horn antennas having different radiation patterns, has been used. Four case studies, using different radar acquisition strategies specifically developed for the monitoring of earth dams, are examined. The results of this work show the information that a Ku-band ground-based radar can provide to structural engineers for a non-destructive seismic assessment of earth dams.

  3. Automatic satellite capture and berthing with robot arm (ASCABRA)

    NASA Technical Reports Server (NTRS)

    Inaba, Noriyasu; Wakabayashi, Yasufumi; Iijima, Takahiko

    1994-01-01

    The NASDA office of R&D is studying an automatic technique to capture and berth free-floating satellites using a robot arm on another satellite. A demonstration experiment plan with the Japanese engineering test satellite ETS-7 is being developed based on the basic research on the ground. The overview and key technologies of this experiment plan are presented, and future applications of the automatic capture technique are also reviewed.

  4. Multi-Autonomous Ground-robotic International Challenge (MAGIC) 2010

    DTIC Science & Technology

    2010-12-14

    SLAM technique since this setup, having a LIDAR with long-range high-accuracy measurement capability, allows accurate localization and mapping more...achieve the accuracy of 25cm due to the use of multi-dimensional information. OGM is, similarly to SLAM , carried out by using LIDAR data. The OGM...a result of the development and implementation of the hybrid feature-based/scan-matching Simultaneous Localization and Mapping ( SLAM ) technique, the

  5. Performance-Based Logistics, Contractor Logistics Support, and Stryker

    DTIC Science & Technology

    2007-06-15

    automotive , armament, missile, communications, special devices, and ground equipment repair. The essential maintenance task for the FMC is to maintain...technologies and welding techniques into their production processes. Finally, GDLS’s use of progressive management techniques and supply chain information...C4ISR, MEP) per the NMC criteria in the -10 manual, the contractors system only focuses on the platform or automotive status. Thus a vehicle “up” for

  6. Comparative measurements of stratospheric particulate content by aircraft and ground-based lidar. [aerosol sampling and scattering data analysis

    NASA Technical Reports Server (NTRS)

    Viezee, W.; Russell, P. B.; Hake, R. D., Jr.

    1974-01-01

    The matching method of lidar data analysis is explained, and the results from two flights studying the stratospheric aerosol using lidar techniques are summarized and interpreted. Support is lent to the matching method of lidar data analysis by the results, but it is not yet apparent that the analysis technique leads to acceptable results on all nights in all seasons.

  7. Liquid Structures and Physical Properties -- Ground Based Studies for ISS Experiments

    NASA Technical Reports Server (NTRS)

    Kelton, K. F.; Bendert, J. C.; Mauro, N. A.

    2012-01-01

    Studies of electrostatically-levitated supercooled liquids have demonstrated strong short- and medium-range ordering in transition metal and alloy liquids, which can influence phase transitions like crystal nucleation and the glass transition. The structure is also related to the liquid properties. Planned ISS experiments will allow a deeper investigation of these results as well as the first investigations of a new type of coupling in crystal nucleation in primary crystallizing liquids, resulting from a linking of the stochastic processes of diffusion with interfacial-attachment. A brief description of the techniques used for ground-based studies and some results relevant to planned ISS investigations are discussed.

  8. First comparison of simultaneous IRIS, BUV, and ground-based measurements of total ozone

    NASA Technical Reports Server (NTRS)

    Prior, E. J.; Oza, B. J.

    1978-01-01

    In the present paper, the zonally-averaged global distribution of total ozone obtained simultaneously from different measurements are compared with respect to differences in the measured latitudinal and seasonal variations of total ozone. Emphasis is placed on systematic discrepancies that appear to be related to differences in the sensing methodologies or instruments. While the zonal averages of the IRIS and BUV satellite techniques agree quite well at low latitudes, the results are consistently higher for IRIS than for BUV above mid-latitudes in both the Northern and Southern Hemispheres. The BUV and ground-based ultraviolet averages agree better with each other than with infrared IRIS measurements.

  9. (DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground Based Sensors

    DTIC Science & Technology

    2013-03-01

    Plenoptic modeling: an image-based rendering system,” in SIGGRAPH ’95: Proceedings of the 22nd annual conference on Computer graphics and interactive...techniques. New York, NY, USA: ACM, 1995, pp. 39–46. [21] D. G. Aliaga and I. Carlbom, “ Plenoptic stitching: a scalable method for reconstructing 3D

  10. From Cure to Care: Assessing the Ethical and Professional Learning Needs of Medical Learners in a Care-Based Facility

    ERIC Educational Resources Information Center

    Hall, Pippa; O'Reilly, Jane; Dojeiji, Sue; Blair, Richard; Harley, Anne

    2009-01-01

    The purpose of this study was to assess the ethical and professional learning needs of medical trainees on clinical placements at a care-based facility, as they shifted from acute care to care-based philosophy. Using qualitative data analysis and grounded theory techniques, 12 medical learners and five clinical supervisors were interviewed. Five…

  11. Thermal Conductivity Measurements of Helium 4 Near the Lambda-Transition Using a Magnetostrictive Low Gravity Simulator

    NASA Technical Reports Server (NTRS)

    Larson, Melora; Israelsson, Ulf E.

    1995-01-01

    There has been a recent increase in interest both experimentally and theoretically in the study of liquid helium very near the lambda-transition in the presence of a heat current. In traditional ground based experiments there are gravitationally induced pressure variations in any macroscopic helium sample that limit how closely the transition can be approached. We have taken advantage of the finite magnetic susceptibility of He 4 to build a magnetostrictive low gravity simulator. The simulator consists of a superconducting magnet with field profile shaped to counteract the force of gravity in a helium sample. When the magnet is operated with B x dB/dz = 21T(exp 2)/cm at the location of the cell, the gravitationally induced pressure variations will be canceled to within 1% over a volume of 0.5 cm in height and 0.5 cm in diameter. This technique for canceling the pressure variations in a long sample cell allows the lambda-transition to be studied much closer in reduced temperature and under a wider range of applied heat currents than is possible using other ground based techniques. Preliminary results using this low gravity simulator and the limitations of the magnetostrictive technique in comparison to doing space based experiments will be presented.

  12. Fast ground filtering for TLS data via Scanline Density Analysis

    NASA Astrophysics Data System (ADS)

    Che, Erzhuo; Olsen, Michael J.

    2017-07-01

    Terrestrial Laser Scanning (TLS) efficiently collects 3D information based on lidar (light detection and ranging) technology. TLS has been widely used in topographic mapping, engineering surveying, forestry, industrial facilities, cultural heritage, and so on. Ground filtering is a common procedure in lidar data processing, which separates the point cloud data into ground points and non-ground points. Effective ground filtering is helpful for subsequent procedures such as segmentation, classification, and modeling. Numerous ground filtering algorithms have been developed for Airborne Laser Scanning (ALS) data. However, many of these are error prone in application to TLS data because of its different angle of view and highly variable resolution. Further, many ground filtering techniques are limited in application within challenging topography and experience difficulty coping with some objects such as short vegetation, steep slopes, and so forth. Lastly, due to the large size of point cloud data, operations such as data traversing, multiple iterations, and neighbor searching significantly affect the computation efficiency. In order to overcome these challenges, we present an efficient ground filtering method for TLS data via a Scanline Density Analysis, which is very fast because it exploits the grid structure storing TLS data. The process first separates the ground candidates, density features, and unidentified points based on an analysis of point density within each scanline. Second, a region growth using the scan pattern is performed to cluster the ground candidates and further refine the ground points (clusters). In the experiment, the effectiveness, parameter robustness, and efficiency of the proposed method is demonstrated with datasets collected from an urban scene and a natural scene, respectively.

  13. On the inlet vortex system. [preventing jet engine damage caused by debris pick-up

    NASA Technical Reports Server (NTRS)

    Bissinger, N. C.; Braun, G. W.

    1974-01-01

    The flow field of a jet engine with an inlet vortex, which can pick up heavy debris from the ground and damage the engine, was simulated in a small water tunnel by means of the hydrogen bubble technique. It was found that the known engine inlet vortex is accompained by a vortex system, consisting of two inlet vortices (the ground based and the trailing one), secondary vortices, and ground vortices. Simulation of the ground effect by an inlet image proved that the inlet vortex feeds on free stream vorticity and can exist without the presence of a ground boundary layer. The structural form of the inlet vortex system was explained by a simple potential flow model, which showed the number, location, and the importance of the stagnation points. A retractable horizontal screen or an up-tilt of the engine is suggested as countermeasure against debris ingestion.

  14. A case-based reasoning tool for breast cancer knowledge management with data mining concepts and techniques

    NASA Astrophysics Data System (ADS)

    Demigha, Souâd.

    2016-03-01

    The paper presents a Case-Based Reasoning Tool for Breast Cancer Knowledge Management to improve breast cancer screening. To develop this tool, we combine both concepts and techniques of Case-Based Reasoning (CBR) and Data Mining (DM). Physicians and radiologists ground their diagnosis on their expertise (past experience) based on clinical cases. Case-Based Reasoning is the process of solving new problems based on the solutions of similar past problems and structured as cases. CBR is suitable for medical use. On the other hand, existing traditional hospital information systems (HIS), Radiological Information Systems (RIS) and Picture Archiving Information Systems (PACS) don't allow managing efficiently medical information because of its complexity and heterogeneity. Data Mining is the process of mining information from a data set and transform it into an understandable structure for further use. Combining CBR to Data Mining techniques will facilitate diagnosis and decision-making of medical experts.

  15. Multi-spectral image analysis for improved space object characterization

    NASA Astrophysics Data System (ADS)

    Glass, William; Duggin, Michael J.; Motes, Raymond A.; Bush, Keith A.; Klein, Meiling

    2009-08-01

    The Air Force Research Laboratory (AFRL) is studying the application and utility of various ground-based and space-based optical sensors for improving surveillance of space objects in both Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO). This information can be used to improve our catalog of space objects and will be helpful in the resolution of satellite anomalies. At present, ground-based optical and radar sensors provide the bulk of remotely sensed information on satellites and space debris, and will continue to do so into the foreseeable future. However, in recent years, the Space-Based Visible (SBV) sensor was used to demonstrate that a synthesis of space-based visible data with ground-based sensor data could provide enhancements to information obtained from any one source in isolation. The incentives for space-based sensing include improved spatial resolution due to the absence of atmospheric effects and cloud cover and increased flexibility for observations. Though ground-based optical sensors can use adaptive optics to somewhat compensate for atmospheric turbulence, cloud cover and absorption are unavoidable. With recent advances in technology, we are in a far better position to consider what might constitute an ideal system to monitor our surroundings in space. This work has begun at the AFRL using detailed optical sensor simulations and analysis techniques to explore the trade space involved in acquiring and processing data from a variety of hypothetical space-based and ground-based sensor systems. In this paper, we briefly review the phenomenology and trade space aspects of what might be required in order to use multiple band-passes, sensor characteristics, and observation and illumination geometries to increase our awareness of objects in space.

  16. Inverse modeling of Texas NOx emissions using space-based and ground-based NO2 observations

    NASA Astrophysics Data System (ADS)

    Tang, W.; Cohan, D. S.; Lamsal, L. N.; Xiao, X.; Zhou, W.

    2013-11-01

    Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite-observed NO2 over rural regions. Satellite-based top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with decoupled direct method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2-based DKF inversion. The DKF inversions yield conflicting results: the satellite-based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.

  17. Inverse modeling of Texas NOx emissions using space-based and ground-based NO2 observations

    NASA Astrophysics Data System (ADS)

    Tang, W.; Cohan, D.; Lamsal, L. N.; Xiao, X.; Zhou, W.

    2013-07-01

    Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite observed NO2 over rural regions. Satellite-based top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with Decoupled Direct Method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2 based DKF inversion. The DKF inversions yield conflicting results: the satellite-based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.

  18. Soft computing-based terrain visual sensing and data fusion for unmanned ground robotic systems

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir

    2006-05-01

    In this paper, we have primarily discussed technical challenges and navigational skill requirements of mobile robots for traversability path planning in natural terrain environments similar to Mars surface terrains. We have described different methods for detection of salient terrain features based on imaging texture analysis techniques. We have also presented three competing techniques for terrain traversability assessment of mobile robots navigating in unstructured natural terrain environments. These three techniques include: a rule-based terrain classifier, a neural network-based terrain classifier, and a fuzzy-logic terrain classifier. Each proposed terrain classifier divides a region of natural terrain into finite sub-terrain regions and classifies terrain condition exclusively within each sub-terrain region based on terrain visual clues. The Kalman Filtering technique is applied for aggregative fusion of sub-terrain assessment results. The last two terrain classifiers are shown to have remarkable capability for terrain traversability assessment of natural terrains. We have conducted a comparative performance evaluation of all three terrain classifiers and presented the results in this paper.

  19. A method for the retrieval of atomic oxygen density and temperature profiles from ground-based measurements of the O(+)(2D-2P) 7320 A twilight airglow

    NASA Technical Reports Server (NTRS)

    Fennelly, J. A.; Torr, D. G.; Richards, P. G.; Torr, M. R.; Sharp, W. E.

    1991-01-01

    This paper describes a technique for extracting thermospheric profiles of the atomic-oxygen density and temperature, using ground-based measurements of the O(+)(2D-2P) doublet at 7320 and 7330 A in the twilight airglow. In this method, a local photochemical model is used to calculate the 7320-A intensity; the method also utilizes an iterative inversion procedure based on the Levenberg-Marquardt method described by Press et al. (1986). The results demonstrate that, if the measurements are only limited by errors due to Poisson noise, the altitude profiles of neutral temperature and atomic oxygen concentration can be determined accurately using currently available spectrometers.

  20. Monitoring of land subsidence in Ravenna Municipality using two different DInSAR techniques: comparison and discussion of the results.

    NASA Astrophysics Data System (ADS)

    Fiaschi, Simone; Di Martire, Diego; Tessitore, Serena; Achilli, Vladimiro; Ahmed, Ahmed; Borgstrom, Sven; Calcaterra, Domenico; Fabris, Massimo; Ramondini, Massimo; Serpelloni, Enrico; Siniscalchi, Valeria; Floris, Mario

    2015-04-01

    Land subsidence affecting the Ravenna Municipality (Emilia Romagna Region, NE Italy) is one of the best example on how the exploitation of natural resources can affect the environment and the territory. In fact, the pumping of groundwater and the extraction of gas from both on and off-shore reservoirs, started in the 1950s, have caused a strong land subsidence affecting most of the Emilia Romagna territory but in particular the Adriatic Sea coastline near Ravenna. In such area the current subsidence rate, even if lower than in the past, can reach the -2cm/y. Local Authorities have monitored this phenomenon over the years with different techniques: spirit levelling, GPS surveys and, more recently, Interferometric Synthetic Aperture Radar (InSAR) techniques, confirming the critical situation of land subsidence risk. In this work, we present the comparison between the results obtained with two different DInSAR techniques applied to the study of the land subsidence in the Ravenna territory: the Small Baseline Subset (SBAS) and the Coherent Pixel Technique (CPT) techniques. The SBAS works on SARscape software and is based on the Berardino et al., 2002 algorithm. This technique relies on the combination of differential interferograms created from stacks of SAR image pairs that have small temporal and perpendicular baselines. Thanks to the application of several interferograms for every single image, it is possible to obtain high spatial coherence, high data density and more effective error reduction. This allows us to obtain mean velocity maps with good data density even over non-urbanized territories. For the CPT we used the SUBsoft processor based on the algorithm implemented by Mora et al., 2003. CPT is able to extract from a stack of differential interferograms the deformation evolution over wide areas during large time spans. The processing scheme is composed of three main steps: a) the generation of the best interferogram set among all the available images of the zone under study; b) the selection of the pixels with reliable phase within the employed interferograms and, c) their phase analysis to calculate, as the main result, their deformation time series within the observation period. For this study, different SAR images have been used: 25 meters ground resolution ERS 1/2 (1992-2000) and ENVISAT (2003-2010), and 3 meters ground resolution TerraSAR-X (2012-2014). The results obtained for each stack of images with the two techniques are validated and compared with the C-GPS time series of more than three benchmarks stations. The aim is to test the two InSAR techniques in the monitoring of ground settlements in low urbanized territories. Furthermore, we have investigated the advantages (data accuracy and density) of using SAR images with higher ground resolution.

  1. Calculation of ground vibration spectra from heavy military vehicles

    NASA Astrophysics Data System (ADS)

    Krylov, V. V.; Pickup, S.; McNuff, J.

    2010-07-01

    The demand for reliable autonomous systems capable to detect and identify heavy military vehicles becomes an important issue for UN peacekeeping forces in the current delicate political climate. A promising method of detection and identification is the one using the information extracted from ground vibration spectra generated by heavy military vehicles, often termed as their seismic signatures. This paper presents the results of the theoretical investigation of ground vibration spectra generated by heavy military vehicles, such as tanks and armed personnel carriers. A simple quarter car model is considered to identify the resulting dynamic forces applied from a vehicle to the ground. Then the obtained analytical expressions for vehicle dynamic forces are used for calculations of generated ground vibrations, predominantly Rayleigh surface waves, using Green's function method. A comparison of the obtained theoretical results with the published experimental data shows that analytical techniques based on the simplified quarter car vehicle model are capable of producing ground vibration spectra of heavy military vehicles that reproduce basic properties of experimental spectra.

  2. Advanced Testing Method for Ground Thermal Conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaobing; Clemenzi, Rick; Liu, Su

    A new method is developed that can quickly and more accurately determine the effective ground thermal conductivity (GTC) based on thermal response test (TRT) results. Ground thermal conductivity is an important parameter for sizing ground heat exchangers (GHEXs) used by geothermal heat pump systems. The conventional GTC test method usually requires a TRT for 48 hours with a very stable electric power supply throughout the entire test. In contrast, the new method reduces the required test time by 40%–60% or more, and it can determine GTC even with an unstable or intermittent power supply. Consequently, it can significantly reduce themore » cost of GTC testing and increase its use, which will enable optimal design of geothermal heat pump systems. Further, this new method provides more information about the thermal properties of the GHEX and the ground than previous techniques. It can verify the installation quality of GHEXs and has the potential, if developed, to characterize the heterogeneous thermal properties of the ground formation surrounding the GHEXs.« less

  3. Ground-based deep-space LADAR for satellite detection: A parametric study

    NASA Astrophysics Data System (ADS)

    Davey, Kevin F.

    1989-12-01

    The minimum performance requirements are determined of a ground based infrared LADAR designed to detect deep space satellites, and a candidate sensor design is presented based on current technology. The research examines LADAR techniques and detection methods to determine the optimum LADAR configuration, and then assesses the effects of atmospheric transmission, background radiance, and turbulence across the infrared region to find the optimum laser wavelengths. Diffraction theory is then used in a parametric analysis of the transmitted laser beam and received signal, using a Cassegrainian telescope design and heterodyne detection. The effects of beam truncation and obscuration, heterodyne misalignment, off-boresight detection, and image-pixel geometry are also included in the analysis. The derived equations are then used to assess the feasibility of several candidate designs under a wide range of detection conditions including daylight operation through cirrus. The results show that successful detection is theoretically possible under most conditions by transmitting a high power frequency modulated pulse train from an isotopic 13CO2 laser radiating at 11.17 micrometers, and utilizing post-detection integration and pulse compression techniques.

  4. High resolution imaging at Palomar

    NASA Technical Reports Server (NTRS)

    Kulkarni, Shrinivas R.

    1992-01-01

    For the last two years we have embarked on a program of understanding the ultimate limits of ground-based optical imaging. We have designed and fabricated a camera specifically for high resolution imaging. This camera has now been pressed into service at the prime focus of the Hale 5 m telescope. We have concentrated on two techniques: the Non-Redundant Masking (NRM) and Weigelt's Fully Filled Aperture (FFA) method. The former is the optical analog of radio interferometry and the latter is a higher order extension of the Labeyrie autocorrelation method. As in radio Very Long Baseline Interferometry (VLBI), both these techniques essentially measure the closure phase and, hence, true image construction is possible. We have successfully imaged binary stars and asteroids with angular resolution approaching the diffraction limit of the telescope and image quality approaching that of a typical radio VLBI map. In addition, we have carried out analytical and simulation studies to determine the ultimate limits of ground-based optical imaging, the limits of space-based interferometric imaging, and investigated the details of imaging tradeoffs of beam combination in optical interferometers.

  5. Noncoherent Doppler tracking: first flight results

    NASA Astrophysics Data System (ADS)

    DeBoy, Christopher C.; Robert Jensen, J.; Asher, Mark S.

    2005-01-01

    Noncoherent Doppler tracking has been devised as a means to achieve highly accurate, two-way Doppler measurements with a simple, transceiver-based communications system. This technique has been flown as an experiment on the Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) spacecraft, (launched 7 December 2001), as the operational technique for Doppler tracking on CONTOUR, and is baselined on several future deep space missions at JHU/APL. This paper reports on initial results from a series of successful tests of this technique between the TIMED spacecraft and NASA ground stations in the Deep Space Network. It also examines the advantages that noncoherent Doppler tracking and a transceiver-based system may offer to small satellite systems, including reduced cost, mass, and power.

  6. Ground deposition of liquid droplets released from a point source in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Panneton, Bernard

    1989-05-01

    A series of field experiments is presented in which the ground deposition of liquid droplets, 120 and 150 micrometers in diameter, released from a point source at 7 meters above the ground level, was measured. A detailed description of the experimental technique is provided, and the results are presented and compared to the predictions of a few models. A new rotating droplet generator is described. Droplets are produced by the forced breakup of capillary liquid jets and droplet coalescence is inhibited by the rotational motion of the spray head. A system for analyzing spray samples was developed. This is a specialized image analysis system based on an electronic digitizing camera which measures the area and perimeter of stains left by dyed droplets collected on Kromekote cards. A complete set of meteorological data supports the ground-deposition data. The turbulent air velocities at two levels above the ground and the temperature of the air at one level were measured with one sonic anemometer and a sonic anemometer-thermometer. The vertical heat and momentum fluxes were estimated using the eddy-correlation technique. The two-dimensional deposition patterns are presented in the form of plots of contours of constant density, normalized arcwise distributions and crosswind integrated distributions. Models of the crosswind integrated deposit from Godson, Csanady, Walker, Bache and Sayer, and Wilson et al., are evaluated. The results indicate that the Wilson et al random walk model is adequate for predicting the ground deposition of the 150 micrometer droplets.

  7. Analysis and correction of ground reflection effects in measured narrowband sound spectra using cepstral techniques

    NASA Technical Reports Server (NTRS)

    Miles, J. H.; Stevens, G. H.; Leininger, G. G.

    1975-01-01

    Ground reflections generate undesirable effects on acoustic measurements such as those conducted outdoors for jet noise research, aircraft certification, and motor vehicle regulation. Cepstral techniques developed in speech processing are adapted to identify echo delay time and to correct for ground reflection effects. A sample result is presented using an actual narrowband sound pressure level spectrum. The technique can readily be adapted to existing fast Fourier transform type spectrum measurement instrumentation to provide field measurements/of echo time delays.

  8. Ground Data System Risk Mitigation Techniques for Faster, Better, Cheaper Missions

    NASA Technical Reports Server (NTRS)

    Catena, John J.; Saylor, Rick; Casasanta, Ralph; Weikel, Craig; Powers, Edward I. (Technical Monitor)

    2000-01-01

    With the advent of faster, cheaper, and better missions, NASA Projects acknowledged that a higher level of risk was inherent and accepted with this approach. It was incumbent however upon each component of the Project whether spacecraft, payload, launch vehicle, or ground data system to ensure that the mission would nevertheless be an unqualified success. The Small Explorer (SMEX) program's ground data system (GDS) team developed risk mitigation techniques to achieve these goals starting in 1989. These techniques have evolved through the SMEX series of missions and are practiced today under the Triana program. These techniques are: (1) Mission Team Organization--empowerment of a closeknit ground data system team comprising system engineering, software engineering, testing, and flight operations personnel; (2) Common Spacecraft Test and Operational Control System--utilization of the pre-launch spacecraft integration system as the post-launch ground data system on-orbit command and control system; (3) Utilization of operations personnel in pre-launch testing--making the flight operations team an integrated member of the spacecraft testing activities at the beginning of the spacecraft fabrication phase; (4) Consolidated Test Team--combined system, mission readiness and operations testing to optimize test opportunities with the ground system and spacecraft; and (5). Reuse of Spacecraft, Systems and People--reuse of people, software and on-orbit spacecraft throughout the SMEX mission series. The SMEX ground system development approach for faster, cheaper, better missions has been very successful. This paper will discuss these risk management techniques in the areas of ground data system design, implementation, test, and operational readiness.

  9. Machine learning modelling for predicting soil liquefaction susceptibility

    NASA Astrophysics Data System (ADS)

    Samui, P.; Sitharam, T. G.

    2011-01-01

    This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT) data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN) based on multi-layer perceptions (MLP) that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM) that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N1)60] and cyclic stress ratio (CSR). Further, an attempt has been made to simplify the models, requiring only the two parameters [(N1)60 and peck ground acceleration (amax/g)], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.

  10. Fast Coherent Differential Imaging for Exoplanet Imaging

    NASA Astrophysics Data System (ADS)

    Gerard, Benjamin; Marois, Christian; Galicher, Raphael; Veran, Jean-Pierre; Macintosh, B.; Guyon, O.; Lozi, J.; Pathak, P.; Sahoo, A.

    2018-06-01

    Direct detection and detailed characterization of exoplanets using extreme adaptive optics (ExAO) is a key science goal of future extremely large telescopes and space observatories. However, quasi-static wavefront errors will limit the sensitivity of this endeavor. Additional limitations for ground-based telescopes arise from residual AO-corrected atmospheric wavefront errors, generating short-lived aberrations that will average into a halo over a long exposure, also limiting the sensitivity of exoplanet detection. We develop the framework for a solution to both of these problems using the self-coherent camera (SCC), to be applied to ground-based telescopes, called Fast Atmospheric SCC Technique (FAST). Simulations show that for typical ExAO targets the FAST approach can reach ~100 times better in raw contrast than what is currently achieved with ExAO instruments if we extrapolate for an hour of observing time, illustrating that the sensitivity improvement from this method could play an essential role in the future ground-based detection and characterization of lower mass/colder exoplanets.

  11. Covariance of lucky images for increasing objects contrast: diffraction-limited images in ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Cagigal, Manuel P.; Valle, Pedro J.; Colodro-Conde, Carlos; Villó-Pérez, Isidro; Pérez-Garrido, Antonio

    2016-01-01

    Images of stars adopt shapes far from the ideal Airy pattern due to atmospheric density fluctuations. Hence, diffraction-limited images can only be achieved by telescopes without atmospheric influence, e.g. spatial telescopes, or by using techniques like adaptive optics or lucky imaging. In this paper, we propose a new computational technique based on the evaluation of the COvariancE of Lucky Images (COELI). This technique allows us to discover companions to main stars by taking advantage of the atmospheric fluctuations. We describe the algorithm and we carry out a theoretical analysis of the improvement in contrast. We have used images taken with 2.2-m Calar Alto telescope as a test bed for the technique resulting that, under certain conditions, telescope diffraction limit is clearly reached.

  12. The International Ultraviolet Explorer: Case study in spacecraft design

    NASA Technical Reports Server (NTRS)

    Freeman, H. R.; Longanecker, G. W.

    1979-01-01

    The International Ultraviolet Explorer (IUE) is a geosynchronous scientific satellite that was conceived as an international space observatory capable of measuring UV spectra of faint celestial bodies. Simple operational procedures allow the astronomers to joystick the spaceborne telescope about the sky, using familiar ground-based observatory techniques. The present paper deals with the IUE project objectives, the technical problems, constraints, trade-offs, and the problem solving techniques used in the IUE program.

  13. Ground Vibration Test Planning and Pre-Test Analysis for the X-33 Vehicle

    NASA Technical Reports Server (NTRS)

    Bedrossian, Herand; Tinker, Michael L.; Hidalgo, Homero

    2000-01-01

    This paper describes the results of the modal test planning and the pre-test analysis for the X-33 vehicle. The pre-test analysis included the selection of the target modes, selection of the sensor and shaker locations and the development of an accurate Test Analysis Model (TAM). For target mode selection, four techniques were considered, one based on the Modal Cost technique, one based on Balanced Singular Value technique, a technique known as the Root Sum Squared (RSS) method, and a Modal Kinetic Energy (MKE) approach. For selecting sensor locations, four techniques were also considered; one based on the Weighted Average Kinetic Energy (WAKE), one based on Guyan Reduction (GR), one emphasizing engineering judgment, and one based on an optimum sensor selection technique using Genetic Algorithm (GA) search technique combined with a criteria based on Hankel Singular Values (HSV's). For selecting shaker locations, four techniques were also considered; one based on the Weighted Average Driving Point Residue (WADPR), one based on engineering judgment and accessibility considerations, a frequency response method, and an optimum shaker location selection based on a GA search technique combined with a criteria based on HSV's. To evaluate the effectiveness of the proposed sensor and shaker locations for exciting the target modes, extensive numerical simulations were performed. Multivariate Mode Indicator Function (MMIF) was used to evaluate the effectiveness of each sensor & shaker set with respect to modal parameter identification. Several TAM reduction techniques were considered including, Guyan, IRS, Modal, and Hybrid. Based on a pre-test cross-orthogonality checks using various reduction techniques, a Hybrid TAM reduction technique was selected and was used for all three vehicle fuel level configurations.

  14. Phase Contrast Wavefront Sensing for Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Wallace, J. K.; Bloemhof, E. E.

    2004-01-01

    Most ground-based adaptive optics systems use one of a small number of wavefront sensor technologies, notably (for relatively high-order systems) the Shack-Hartmann sensor, which provides local measurements of the phase slope (first-derivative) at a number of regularly-spaced points across the telescope pupil. The curvature sensor, with response proportional to the second derivative of the phase, is also sometimes used, but has undesirable noise propagation properties during wavefront reconstruction as the number of actuators becomes large. It is interesting to consider the use for astronomical adaptive optics of the "phase contrast" technique, originally developed for microscopy by Zemike to allow convenient viewing of phase objects. In this technique, the wavefront sensor provides a direct measurement of the local value of phase in each sub-aperture of the pupil. This approach has some obvious disadvantages compared to Shack-Hartmann wavefront sensing, but has some less obvious but substantial advantages as well. Here we evaluate the relative merits in a practical ground-based adaptive optics system.

  15. Stereoscopic determination of all-sky altitude map of aurora using two ground-based Nikon DSLR cameras

    NASA Astrophysics Data System (ADS)

    Kataoka, R.; Miyoshi, Y.; Shigematsu, K.; Hampton, D.; Mori, Y.; Kubo, T.; Yamashita, A.; Tanaka, M.; Takahei, T.; Nakai, T.; Miyahara, H.; Shiokawa, K.

    2013-09-01

    A new stereoscopic measurement technique is developed to obtain an all-sky altitude map of aurora using two ground-based digital single-lens reflex (DSLR) cameras. Two identical full-color all-sky cameras were set with an 8 km separation across the Chatanika area in Alaska (Poker Flat Research Range and Aurora Borealis Lodge) to find localized emission height with the maximum correlation of the apparent patterns in the localized pixels applying a method of the geographical coordinate transform. It is found that a typical ray structure of discrete aurora shows the broad altitude distribution above 100 km, while a typical patchy structure of pulsating aurora shows the narrow altitude distribution of less than 100 km. Because of its portability and low cost of the DSLR camera systems, the new technique may open a unique opportunity not only for scientists but also for night-sky photographers to complementarily attend the aurora science to potentially form a dense observation network.

  16. Snowpack ground-truth manual

    NASA Technical Reports Server (NTRS)

    Jones, E. B.

    1983-01-01

    As remote sensing increasingly becomes more of an operational tool in the field of snow management and snow hydrology, there is need for some degree of standardization of ""snowpack ground truth'' techniques. This manual provides a first step in standardizing these procedures and was prepared to meet the needs of remote sensing researchers in planning missions requiring ground truth as well as those providing the ground truth. Focus is on ground truth for remote sensors primarily operating in the microwave portion of the electromagnetic spectrum; nevertheless, the manual should be of value to other types of sensor programs. This first edition of ground truth procedures must be updated as new or modified techniques are developed.

  17. Assessing Groundwater Depletion and Dynamics Using GRACE and InSAR: Potential and Limitations.

    PubMed

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L; Longuevergne, Laurent; Rivera, Alfonso

    2016-11-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km 2 ). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems. © 2016, National Ground Water Association.

  18. Rapid Monitoring of Bacteria and Fungi aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Gunter, D.; Flores, G.; Effinger, M.; Maule, J.; Wainwright, N.; Steele, A.; Damon, M.; Wells, M.; Williams, S.; Morris, H.; hide

    2009-01-01

    Microorganisms within spacecraft have traditionally been monitored with culture-based techniques. These techniques involve growth of environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies or return of samples to Earth for ground-based analysis. Data obtained over the past 4 decades have enhanced our understanding of the microbial ecology within space stations. However, the approach has been limited by the following factors: i) Many microorganisms (estimated > 95%) in the environment cannot grow on conventional growth media; ii) Significant time lags (3-5 days for incubation and up to several months to return samples to ground); iii) Condensation in contact slides hinders colony counting by crew; and iv) Growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and beta-1, 3-glucan, found in the cell walls of gramnegative bacteria and fungi, respectively. The technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device, known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). LOCADPTS was launched to the ISS in December 2006, and here we present data obtained from Mach 2007 until the present day. These data include a comparative study between LOCADPTS analysis and existing culture-based methods; and an exploratory survey of surface endotoxin and beta-1, 3-glucan throughout the ISS. While a general correlation between LOCAD-PTS and traditional culture-based methods should not be expected, we will suggest new requirements for microbial monitoring based upon culture-independent parameters measured by LOCAD-PTS.

  19. Phosphorus and nitrogen concentrations and loads at Illinois River south of Siloam Springs, Arkansas, 1997-1999

    USGS Publications Warehouse

    Green, W. Reed; Haggard, Brian E.

    2001-01-01

    Water-quality sampling consisting of every other month (bimonthly) routine sampling and storm event sampling (six storms annually) is used to estimate annual phosphorus and nitrogen loads at Illinois River south of Siloam Springs, Arkansas. Hydrograph separation allowed assessment of base-flow and surfacerunoff nutrient relations and yield. Discharge and nutrient relations indicate that water quality at Illinois River south of Siloam Springs, Arkansas, is affected by both point and nonpoint sources of contamination. Base-flow phosphorus concentrations decreased with increasing base-flow discharge indicating the dilution of phosphorus in water from point sources. Nitrogen concentrations increased with increasing base-flow discharge, indicating a predominant ground-water source. Nitrogen concentrations at higher base-flow discharges often were greater than median concentrations reported for ground water (from wells and springs) in the Springfield Plateau aquifer. Total estimated phosphorus and nitrogen annual loads for calendar year 1997-1999 using the regression techniques presented in this paper (35 samples) were similar to estimated loads derived from integration techniques (1,033 samples). Flow-weighted nutrient concentrations and nutrient yields at the Illinois River site were about 10 to 100 times greater than national averages for undeveloped basins and at North Sylamore Creek and Cossatot River (considered to be undeveloped basins in Arkansas). Total phosphorus and soluble reactive phosphorus were greater than 10 times and total nitrogen and dissolved nitrite plus nitrate were greater than 10 to 100 times the national and regional averages for undeveloped basins. These results demonstrate the utility of a strategy whereby samples are collected every other month and during selected storm events annually, with use of regression models to estimate nutrient loads. Annual loads of phosphorus and nitrogen estimated using regression techniques could provide similar results to estimates using integration techniques, with much less investment.

  20. Improving Agricultural Water Resources Management Using Ground-based Infrared Thermometry

    NASA Astrophysics Data System (ADS)

    Taghvaeian, S.

    2014-12-01

    Irrigated agriculture is the largest user of freshwater resources in arid/semi-arid parts of the world. Meeting rapidly growing demands in food, feed, fiber, and fuel while minimizing environmental pollution under a changing climate requires significant improvements in agricultural water management and irrigation scheduling. Although recent advances in remote sensing techniques and hydrological modeling has provided valuable information on agricultural water resources and their management, real improvements will only occur if farmers, the decision makers on the ground, are provided with simple, affordable, and practical tools to schedule irrigation events. This presentation reviews efforts in developing methods based on ground-based infrared thermometry and thermography for day-to-day management of irrigation systems. The results of research studies conducted in Colorado and Oklahoma show that ground-based remote sensing methods can be used effectively in quantifying water stress and consequently triggering irrigation events. Crop water use estimates based on stress indices have also showed to be in good agreement with estimates based on other methods (e.g. surface energy balance, root zone soil water balance, etc.). Major challenges toward the adoption of this approach by agricultural producers include the reduced accuracy under cloudy and humid conditions and its inability to forecast irrigation date, which is a critical knowledge since many irrigators need to decide about irrigations a few days in advance.

  1. Comparison of monthly nighttime cloud fraction products from MODIS and AIRS and ground-based camera over Manila Observatory (14.64N, 121.07E)

    NASA Astrophysics Data System (ADS)

    Gacal, G. F. B.; Lagrosas, N.

    2017-12-01

    Cloud detection nowadays is primarily achieved by the utilization of various sensors aboard satellites. These include MODIS Aqua, MODIS Terra, and AIRS with products that include nighttime cloud fraction. Ground-based instruments are, however, only secondary to these satellites when it comes to cloud detection. Nonetheless, these ground-based instruments (e.g., LIDARs, ceilometers, and sky-cameras) offer significant datasets about a particular region's cloud cover values. For nighttime operations of cloud detection instruments, satellite-based instruments are more reliably and prominently used than ground-based ones. Therefore if a ground-based instrument for nighttime operations is operated, it ought to produce reliable scientific datasets. The objective of this study is to do a comparison between the results of a nighttime ground-based instrument (sky-camera) and that of MODIS Aqua and MODIS Terra. A Canon Powershot A2300 is placed ontop of Manila Observatory (14.64N, 121.07E) and is configured to take images of the night sky at 5min intervals. To detect pixels with clouds, the pictures are converted to grayscale format. Thresholding technique is used to screen pixels with cloud and pixels without clouds. If the pixel value is greater than 17, it is considered as a cloud; otherwise, a noncloud (Gacal et al., 2016). This algorithm is applied to the data gathered from Oct 2015 to Oct 2016. A scatter plot between satellite cloud fraction in the area covering the area 14.2877N, 120.9869E, 14.7711N and 121.4539E and ground cloud cover is graphed to find the monthly correlation. During wet season (June - November), the satellite nighttime cloud fraction vs ground measured cloud cover produce an acceptable R2 (Aqua= 0.74, Terra= 0.71, AIRS= 0.76). However, during dry season, poor R2 values are obtained (AIRS= 0.39, Aqua & Terra = 0.01). The high correlation during wet season can be attributed to a high probability that the camera and satellite see the same clouds. However during dry season, the satellite sees high altitude clouds and the camera can not detect these clouds from the ground as it relies on city lights reflected from low level clouds. With this acknowledged disparity, the ground-based camera has the advantage of detecting haze and thin clouds near the ground that are hardly or not detected by the satellites.

  2. An extended stochastic method for seismic hazard estimation

    NASA Astrophysics Data System (ADS)

    Abd el-aal, A. K.; El-Eraki, M. A.; Mostafa, S. I.

    2015-12-01

    In this contribution, we developed an extended stochastic technique for seismic hazard assessment purposes. This technique depends on the hypothesis of stochastic technique of Boore (2003) "Simulation of ground motion using the stochastic method. Appl. Geophy. 160:635-676". The essential characteristics of extended stochastic technique are to obtain and simulate ground motion in order to minimize future earthquake consequences. The first step of this technique is defining the seismic sources which mostly affect the study area. Then, the maximum expected magnitude is defined for each of these seismic sources. It is followed by estimating the ground motion using an empirical attenuation relationship. Finally, the site amplification is implemented in calculating the peak ground acceleration (PGA) at each site of interest. We tested and applied this developed technique at Cairo, Suez, Port Said, Ismailia, Zagazig and Damietta cities to predict the ground motion. Also, it is applied at Cairo, Zagazig and Damietta cities to estimate the maximum peak ground acceleration at actual soil conditions. In addition, 0.5, 1, 5, 10 and 20 % damping median response spectra are estimated using the extended stochastic simulation technique. The calculated highest acceleration values at bedrock conditions are found at Suez city with a value of 44 cm s-2. However, these acceleration values decrease towards the north of the study area to reach 14.1 cm s-2 at Damietta city. This comes in agreement with the results of previous studies of seismic hazards in northern Egypt and is found to be comparable. This work can be used for seismic risk mitigation and earthquake engineering purposes.

  3. Determination of the smoke-plume heights and their dynamics with ground-based scanning LIDAR

    Treesearch

    V. Kovalev; A. Petkov; C. Wold; S. Urbanski; W. M. Hao

    2015-01-01

    Lidar-data processing techniques are analyzed, which allow determining smoke-plume heights and their dynamics and can be helpful for the improvement of smoke dispersion and air quality models. The data processing algorithms considered in the paper are based on the analysis of two alternative characteristics related to the smoke dispersion process: the regularized...

  4. Remote sensing for grassland management in the arid Southwest

    USGS Publications Warehouse

    Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Watson, M.C.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R.

    2006-01-01

    We surveyed a group of rangeland managers in the Southwest about vegetation monitoring needs on grassland. Based on their responses, the objective of the RANGES (Rangeland Analysis Utilizing Geospatial Information Science) project was defined to be the accurate conversion of remotely sensed data (satellite imagery) to quantitative estimates of total (green and senescent) standing cover and biomass on grasslands and semidesert grasslands. Although remote sensing has been used to estimate green vegetation cover, in arid grasslands herbaceous vegetation is senescent much of the year and is not detected by current remote sensing techniques. We developed a ground truth protocol compatible with both range management requirements and Landsat's 30 m resolution imagery. The resulting ground-truth data were then used to develop image processing algorithms that quantified total herbaceous vegetation cover, height, and biomass. Cover was calculated based on a newly developed Soil Adjusted Total Vegetation Index (SATVI), and height and biomass were estimated based on reflectance in the near infrared (NIR) band. Comparison of the remotely sensed estimates with independent ground measurements produced r2 values of 0.80, 0.85, and 0.77 and Nash Sutcliffe values of 0.78, 0.70, and 0.77 for the cover, plant height, and biomass, respectively. The approach for estimating plant height and biomass did not work for sites where forbs comprised more than 30% of total vegetative cover. The ground reconnaissance protocol and image processing techniques together offer land managers accurate and timely methods for monitoring extensive grasslands. The time-consuming requirement to collect concurrent data in the field for each image implies a need to share the high fixed costs of processing an image across multiple users to reduce the costs for individual rangeland managers.

  5. Reference-free ground truth metric for metal artifact evaluation in CT images.

    PubMed

    Kratz, Bärbel; Ens, Svitlana; Müller, Jan; Buzug, Thorsten M

    2011-07-01

    In computed tomography (CT), metal objects in the region of interest introduce data inconsistencies during acquisition. Reconstructing these data results in an image with star shaped artifacts induced by the metal inconsistencies. To enhance image quality, the influence of the metal objects can be reduced by different metal artifact reduction (MAR) strategies. For an adequate evaluation of new MAR approaches a ground truth reference data set is needed. In technical evaluations, where phantoms can be measured with and without metal inserts, ground truth data can easily be obtained by a second reference data acquisition. Obviously, this is not possible for clinical data. Here, an alternative evaluation method is presented without the need of an additionally acquired reference data set. The proposed metric is based on an inherent ground truth for metal artifacts as well as MAR methods comparison, where no reference information in terms of a second acquisition is needed. The method is based on the forward projection of a reconstructed image, which is compared to the actually measured projection data. The new evaluation technique is performed on phantom and on clinical CT data with and without MAR. The metric results are then compared with methods using a reference data set as well as an expert-based classification. It is shown that the new approach is an adequate quantification technique for artifact strength in reconstructed metal or MAR CT images. The presented method works solely on the original projection data itself, which yields some advantages compared to distance measures in image domain using two data sets. Beside this, no parameters have to be manually chosen. The new metric is a useful evaluation alternative when no reference data are available.

  6. Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Degroh, Kim K.; Sechkar, Edward A.

    1992-01-01

    Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) will assist in understanding the mechanisms involved, and will lead to improved reliability in predicting in-space durability of materials based on ground laboratory testing. A computational simulation of atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of assumed mechanistic behavior of atomic oxygen and results of both ground laboratory and LDEF data, a predictive Monte Carlo model was developed which simulates the oxidation processes that occur on polymers with applied protective coatings that have defects. The use of high atomic oxygen fluence-directed ram LDEF results has enabled mechanistic implications to be made by adjusting Monte Carlo modeling assumptions to match observed results based on scanning electron microscopy. Modeling assumptions, implications, and predictions are presented, along with comparison of observed ground laboratory and LDEF results.

  7. Satellite-tracking and earth-dynamics research programs. [NASA Programs on satellite orbits and satellite ground tracks of geodetic satellites

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Observations and research progress of the Smithsonian Astrophysical Observatory are reported. Satellite tracking networks (ground stations) are discussed and equipment (Baker-Nunn cameras) used to observe the satellites is described. The improvement of the accuracy of a laser ranging system of the ground stations is discussed. Also, research efforts in satellite geodesy (tides, gravity anomalies, plate tectonics) is discussed. The use of data processing for geophysical data is examined, and a data base for the Earth and Ocean Physics Applications Program is proposed. Analytical models of the earth's motion (computerized simulation) are described and the computation (numerical integration and algorithms) of satellite orbits affected by the earth's albedo, using computer techniques, is also considered. Research efforts in the study of the atmosphere are examined (the effect of drag on satellite motion), and models of the atmosphere based on satellite data are described.

  8. Convergence acceleration of computer methods for grounding analysis in stratified soils

    NASA Astrophysics Data System (ADS)

    Colominas, I.; París, J.; Navarrina, F.; Casteleiro, M.

    2010-06-01

    The design of safe grounding systems in electrical installations is essential to assure the protection of the equipment, the power supply continuity and the security of the persons. In order to achieve these goals, it is necessary to compute the equivalent electrical resistance of the system and the potential distribution on the earth surface when a fault condition occurs. In the last years the authors have developed a numerical formulation based on the BEM for the analysis of grounding systems embedded in uniform and layered soils. As it is known, in practical cases the underlying series have a poor rate of convergence and the use of multilayer soils requires an out of range computational cost. In this paper we present an efficient technique based on the Aitken δ2-process in order to improve the rate of convergence of the involved series expansions.

  9. Shifts in the eruptive styles at Stromboli in 2010–2014 revealed by ground-based InSAR data

    USGS Publications Warehouse

    Di Traglia, Federico; Battaglia, Maurizio; Nolesini, Teresa; Lagomarsino, Daniela; Casaglia, Nicola

    2015-01-01

    Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) is an efficient technique for capturing short, subtle episodes of conduit pressurization in open vent volcanoes like Stromboli (Italy), because it can detect very shallow magma storage, which is difficult to identify using other methods. This technique allows the user to choose the optimal radar location for measuring the most significant deformation signal, provides an exceptional geometrical resolution, and allows for continuous monitoring of the deformation. Here, we present and model ground displacements collected at Stromboli by GBInSAR from January 2010 to August 2014. During this period, the volcano experienced several episodes of intense volcanic activity, culminated in the effusive flank eruption of August 2014. Modelling of the deformation allowed us to estimate a source depth of 482 ± 46 m a.s.l. The cumulative volume change was 4.7 ± 2.6 × 105 m3. The strain energy of the source was evaluated 3–5 times higher than the surface energy needed to open the 6–7 August eruptive fissure. The analysis proposed here can help forecast shifts in the eruptive style and especially the onset of flank eruptions at Stromboli and at similar volcanic systems (e.g. Etna, Piton de La Fournaise, Kilauea).

  10. Shifts in the eruptive styles at Stromboli in 2010-2014 revealed by ground-based InSAR data.

    PubMed

    Di Traglia, Federico; Battaglia, Maurizio; Nolesini, Teresa; Lagomarsino, Daniela; Casagli, Nicola

    2015-09-01

    Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) is an efficient technique for capturing short, subtle episodes of conduit pressurization in open vent volcanoes like Stromboli (Italy), because it can detect very shallow magma storage, which is difficult to identify using other methods. This technique allows the user to choose the optimal radar location for measuring the most significant deformation signal, provides an exceptional geometrical resolution, and allows for continuous monitoring of the deformation. Here, we present and model ground displacements collected at Stromboli by GBInSAR from January 2010 to August 2014. During this period, the volcano experienced several episodes of intense volcanic activity, culminated in the effusive flank eruption of August 2014. Modelling of the deformation allowed us to estimate a source depth of 482 ± 46 m a.s.l. The cumulative volume change was 4.7 ± 2.6 × 10(5) m(3). The strain energy of the source was evaluated 3-5 times higher than the surface energy needed to open the 6-7 August eruptive fissure. The analysis proposed here can help forecast shifts in the eruptive style and especially the onset of flank eruptions at Stromboli and at similar volcanic systems (e.g. Etna, Piton de La Fournaise, Kilauea).

  11. On the importance of a rich embodiment in the grounding of concepts: perspectives from embodied cognitive science and computational linguistics.

    PubMed

    Thill, Serge; Padó, Sebastian; Ziemke, Tom

    2014-07-01

    The recent trend in cognitive robotics experiments on language learning, symbol grounding, and related issues necessarily entails a reduction of sensorimotor aspects from those provided by a human body to those that can be realized in machines, limiting robotic models of symbol grounding in this respect. Here, we argue that there is a need for modeling work in this domain to explicitly take into account the richer human embodiment even for concrete concepts that prima facie relate merely to simple actions, and illustrate this using distributional methods from computational linguistics which allow us to investigate grounding of concepts based on their actual usage. We also argue that these techniques have applications in theories and models of grounding, particularly in machine implementations thereof. Similarly, considering the grounding of concepts in human terms may be of benefit to future work in computational linguistics, in particular in going beyond "grounding" concepts in the textual modality alone. Overall, we highlight the overall potential for a mutually beneficial relationship between the two fields. Copyright © 2014 Cognitive Science Society, Inc.

  12. Inverse Modeling of Texas NOx Emissions Using Space-Based and Ground-Based NO2 Observations

    NASA Technical Reports Server (NTRS)

    Tang, Wei; Cohan, D.; Lamsal, L. N.; Xiao, X.; Zhou, W.

    2013-01-01

    Inverse modeling of nitrogen oxide (NOx) emissions using satellite-based NO2 observations has become more prevalent in recent years, but has rarely been applied to regulatory modeling at regional scales. In this study, OMI satellite observations of NO2 column densities are used to conduct inverse modeling of NOx emission inventories for two Texas State Implementation Plan (SIP) modeling episodes. Addition of lightning, aircraft, and soil NOx emissions to the regulatory inventory narrowed but did not close the gap between modeled and satellite observed NO2 over rural regions. Satellitebased top-down emission inventories are created with the regional Comprehensive Air Quality Model with extensions (CAMx) using two techniques: the direct scaling method and discrete Kalman filter (DKF) with Decoupled Direct Method (DDM) sensitivity analysis. The simulations with satellite-inverted inventories are compared to the modeling results using the a priori inventory as well as an inventory created by a ground-level NO2 based DKF inversion. The DKF inversions yield conflicting results: the satellite based inversion scales up the a priori NOx emissions in most regions by factors of 1.02 to 1.84, leading to 3-55% increase in modeled NO2 column densities and 1-7 ppb increase in ground 8 h ozone concentrations, while the ground-based inversion indicates the a priori NOx emissions should be scaled by factors of 0.34 to 0.57 in each region. However, none of the inversions improve the model performance in simulating aircraft-observed NO2 or ground-level ozone (O3) concentrations.

  13. Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, A.; Pitts, M.; Ludowise, J.D.

    The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removesmore » outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)« less

  14. Proxies for soil organic carbon derived from remote sensing

    NASA Astrophysics Data System (ADS)

    Rasel, S. M. M.; Groen, T. A.; Hussin, Y. A.; Diti, I. J.

    2017-07-01

    The possibility of carbon storage in soils is of interest because compared to vegetation it contains more carbon. Estimation of soil carbon through remote sensing based techniques can be a cost effective approach, but is limited by available methods. This study aims to develop a model based on remotely sensed variables (elevation, forest type and above ground biomass) to estimate soil carbon stocks. Field observations on soil organic carbon, species composition, and above ground biomass were recorded in the subtropical forest of Chitwan, Nepal. These variables were also estimated using LiDAR data and a WorldView 2 image. Above ground biomass was estimated from the LiDAR image using a novel approach where the image was segmented to identify individual trees, and for these trees estimates of DBH and Height were made. Based on AIC (Akaike Information Criterion) a regression model with above ground biomass derived from LiDAR data, and forest type derived from WorldView 2 imagery was selected to estimate soil organic carbon (SOC) stocks. The selected model had a coefficient of determination (R2) of 0.69. This shows the scope of estimating SOC with remote sensing derived variables in sub-tropical forests.

  15. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  16. Severe storm electricity

    NASA Technical Reports Server (NTRS)

    Rust, W. D.; Macgorman, D. R.; Taylor, W.; Arnold, R. T.

    1984-01-01

    Severe storms and lightning were measured with a NASA U2 and ground based facilities, both fixed base and mobile. Aspects of this program are reported. The following results are presented: (1) ground truth measurements of lightning for comparison with those obtained by the U2. These measurements include flash type identification, electric field changes, optical waveforms, and ground strike location; (2) simultaneous extremely low frequency (ELF) waveforms for cloud to ground (CG) flashes; (3) the CG strike location system (LLP) using a combination of mobile laboratory and television video data are assessed; (4) continued development of analog-to-digital conversion techniques for processing lightning data from the U2, mobile laboratory, and NSSL sensors; (5) completion of an all azimuth TV system for CG ground truth; (6) a preliminary analysis of both IC and CG lightning in a mesocyclone; and (7) the finding of a bimodal peak in altitude lightning activity in some storms in the Great Plains and on the east coast. In the forms on the Great Plains, there was a distinct class of flash what forms the upper mode of the distribution. These flashes are smaller horizontal extent, but occur more frequently than flashes in the lower mode of the distribution.

  17. A1297 GPR vs. hydro video clip.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research was ground-coupled ground penetrating radar (G...

  18. Satellite-based phenology detection in broadleaf forests in South-Western Germany

    NASA Astrophysics Data System (ADS)

    Misra, Gourav; Buras, Allan; Menzel, Annette

    2016-04-01

    Many techniques exist for extracting phenological information from time series of satellite data. However, there have been only a few successful attempts to temporarily match satellite-derived observations with ground based phenological observations (Fisher et al., 2006; Hamunyela et al., 2013; Galiano et al., 2015). Such studies are primarily plagued with problems relating to shorter time series of satellite data including spatial and temporal resolution issues. A great challenge is to correlate spatially continuous and pixel-based satellite information with spatially discontinuous and point-based, mostly species-specific, ground observations of phenology. Moreover, the minute differences in phenology observed by ground volunteers might not be sufficient to produce changes in satellite-measured reflectance of vegetation, which also exposes the difference in the definitions of phenology (Badeck et al., 2004; White et al., 2014). In this study Start of Season (SOS) was determined for broadleaf forests at a site in south-western Germany using MODIS-sensor time series of Normalised Difference Vegetation Index (NDVI) data for the years covering 2001 to 2013. The NDVI time series raster data was masked for broadleaf forests using Corine Land Cover dataset, filtered and corrected for snow and cloud contaminations, smoothed with a Gaussian filter and interpolated to daily values. Several SOS techniques cited in literature, namely thresholds of amplitudes (20%, 50%, 60% and 75%), rates of change (1st, 2nd and 3rd derivative) and delayed moving average (DMA) were tested for determination of satellite SOS. The different satellite SOS were then compared with a species-rich ground based phenology information (e.g. understory leaf unfolding, broad leaf unfolding and greening of evergreen tree species). Working with all the pixels at a finer resolution, it is seen that the temporal trends in understory and broad leaf species are well captured. Initial analyses show promising results and suggest that different satellite SOS extraction techniques work well for specific phases of ground phenology information. More than half of the broadleaf pixels show an earliness in SOS which matches with the trend in ground phenology. References 1. F.-W. Badeck, A. Bondeau, K. Bottcher, D. Doktor, W. Lucht, J. Schaber, and S. Sitch, 2004, "Responses of spring phenology to climate change," New Phytologist, vol. 162, no. 2, pp. 295-309. 2. E. Hamunyela, J. Verbesselt, G. Roerink, and M. Herold, 2013, "Trends in Spring Phenology of Western European Deciduous Forests," Remote Sensing, vol. 5, no. 12, pp. 6159-6179. 3. V. F. Rodriguez-Galiano, J. Dash, and P. M. Atkinson, 2015, "Intercomparison of satellite sensor land surface phenology and ground phenology in Europe: Inter-annual comparison and modelling," Geophysical Research Letters, vol. 42, no. 7, pp. 2253-2260. 4. J. Fisher, J. Mustard, and M. Vadeboncoeur, 2006, "Green leaf phenology at Landsat resolution: Scaling from the field to the satellite," Remote Sensing of Environment, vol. 100, no. 2, pp. 265-279. 5. K. White, J. Pontius, and P. Schaberg, 2014, "Remote sensing of spring phenology in northeastern forests: A comparison of methods, field metrics and sources of uncertainty," Remote Sensing of Environment, vol. 148, pp. 97-107.

  19. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    NASA Technical Reports Server (NTRS)

    Reginato, R. J.; Idso, S. B.; Jackson, R. D.; Vedder, J. F.; Blanchard, M. B.; Goettelman, R.

    1976-01-01

    Soil water contents from both smooth and rough bare soil were estimated from remotely sensed surface soil and air temperatures. An inverse relationship between two thermal parameters and gravimetric soil water content was found for Avondale loam when its water content was between air-dry and field capacity. These parameters, daily maximum minus minimum surface soil temperature and daily maximum soil minus air temperature, appear to describe the relationship reasonably well. These two parameters also describe relative soil water evaporation (actual/potential). Surface soil temperatures showed good agreement among three measurement techniques: in situ thermocouples, a ground-based infrared radiation thermometer, and the thermal infrared band of an airborne multispectral scanner.

  20. Mobile Aerial Tracking and Imaging System (MATRIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, R. C.; Miller, G. M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles (RLVs) as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of RLV configurations. During that study NASA teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility (MDA/ISTEF) to test techniques and analysis on two Space Shuttle flights.

  1. Instrumentation and control system for an F-15 stall/spin

    NASA Technical Reports Server (NTRS)

    Pitts, F. L.; Holmes, D. C. E.; Zaepfel, K. P.

    1974-01-01

    An instrumentation and control system is described that was used for radio-controlled F-15 airplane model stall/spin research at the NASA-Langley Research Center. This stall/spin research technique, using scale model aircraft, provides information on the post-stall and spin-entry characteristics of full-scale aircraft. The instrumentation described provides measurements of flight parameters such as angle of attack and sideslip, airspeed, control-surface position, and three-axis rotation rates; these data are recorded on an onboard magnetic tape recorder. The proportional radio control system, which utilizes analog potentiometric signals generated from ground-based pilot inputs, and the ground-based system used in the flight operation are also described.

  2. Evaluating Remotely-Sensed Soil Moisture Retrievals Using Triple Collocation Techniques

    USDA-ARS?s Scientific Manuscript database

    The validation is footprint-scale (~40 km) surface soil moisture retrievals from space is complicated by a lack of ground-based soil moisture instrumentation and challenges associated with up-scaling point-scale measurements from such instrumentation. Recent work has demonstrated the potential of e...

  3. Autonomous Aerial Refueling Ground Test Demonstration—A Sensor-in-the-Loop, Non-Tracking Method

    PubMed Central

    Chen, Chao-I; Koseluk, Robert; Buchanan, Chase; Duerner, Andrew; Jeppesen, Brian; Laux, Hunter

    2015-01-01

    An essential capability for an unmanned aerial vehicle (UAV) to extend its airborne duration without increasing the size of the aircraft is called the autonomous aerial refueling (AAR). This paper proposes a sensor-in-the-loop, non-tracking method for probe-and-drogue style autonomous aerial refueling tasks by combining sensitivity adjustments of a 3D Flash LIDAR camera with computer vision based image-processing techniques. The method overcomes the inherit ambiguity issues when reconstructing 3D information from traditional 2D images by taking advantage of ready to use 3D point cloud data from the camera, followed by well-established computer vision techniques. These techniques include curve fitting algorithms and outlier removal with the random sample consensus (RANSAC) algorithm to reliably estimate the drogue center in 3D space, as well as to establish the relative position between the probe and the drogue. To demonstrate the feasibility of the proposed method on a real system, a ground navigation robot was designed and fabricated. Results presented in the paper show that using images acquired from a 3D Flash LIDAR camera as real time visual feedback, the ground robot is able to track a moving simulated drogue and continuously narrow the gap between the robot and the target autonomously. PMID:25970254

  4. Overview of SnowEx Year 1 Activities

    NASA Technical Reports Server (NTRS)

    Kim, Edward; Gatebe, Charles; Hall, Dorothy; Newlin, Jerry; Misakonis, Amy; Elder, Kelly; Marshall, Hans Peter; Heimstra, Chris; Brucker, Ludovic; De Marco, Eugenia; hide

    2017-01-01

    SnowEx is a multi-year airborne snow campaign with the primary goal of addressing the question: How much water is stored in Earths terrestrial snow-covered regions? Year 1 (2016-17) focused on the distribution of snow-water equivalent (SWE) and the snow energy balance in a forested environment. The year 1 primary site was Grand Mesa and the secondary site was the Senator Beck Basin, both in western, Colorado, USA. Nine sensors on five aircraft made observations using a broad range of sensing techniques, active and passive microwave, and active and passive optical infrared to determine the sensitivity and accuracy of these potential satellite remote sensing techniques, along with models, to measure snow under a range of forest conditions. SnowEx also included an extensive range of ground truth measurements in-situ manual samples, snow pits, ground based remote sensing measurements, and sophisticated new techniques. A detailed description of the data collected will be given and some preliminary results will be presented.

  5. Ground Deposition of Liquid Droplets Released from a Point Source in the Atmospheric Surface Layer.

    NASA Astrophysics Data System (ADS)

    Panneton, Bernard

    1989-09-01

    A series of field experiments is presented in which the ground deposition of liquid droplets, 120 and 150 μm in diameter, released from a point source at 7 meters above the ground level, was measured. A detailed description of the experimental technique is provided, and the results are presented and compared to the predictions of a few models. A new rotating droplet generator is described. Droplets are produced by the forced breakup of capillary liquid jets and droplet coalescence is inhibited by the rotational motion of the spray head. A system for analyzing spray samples has been developed. This is a specialized image analysis system based on an electronic digitizing camera which measures the area and perimeter of stains left by dyed droplets collected on Kromekote^{rm TM } cards. A complete set of meteorological data supports the ground-deposition data. The turbulent air velocities at two levels above the ground and the temperature of the air at one level were measured with one sonic anemometer and a sonic anemometer-thermometer. The vertical heat and momentum fluxes were estimated using the eddy-correlation technique. The two-dimensional deposition patterns are presented in the form of plots of contours of constant density, normalized arcwise distributions and crosswind integrated distributions. The arcwise distributions follow a Gaussian distribution whose standard deviation is evaluated using a modified Pasquill's beta technique. Models of the crosswind integrated deposit from Godson, Csanady, Walker, Bache and Sayer, and Wilson et al are evaluated. The results indicate that the Wilson et al random walk model is adequate for predicting the ground deposition of the 150 μm droplets. In one case, where the ratio of the droplet settling velocity to the mean wind speed was largest, Walker's model proved to be adequate. Otherwise, none of the models were acceptable in light of our experimental data.

  6. Surface deformation of Ayaz-Akhtarma Mud volcano in Azerbaijan detected by ALOS/ALOS-2 InSAR and its source modeling

    NASA Astrophysics Data System (ADS)

    Iio, K.; Furuya, M.

    2017-12-01

    Interferometric synthetic aperture radar (InSAR) allows us to image a wide area with dense spatial resolution without a need for ground-based measurement tools with a precision on the order of a few centimeters. This technique has been mainly used to investigate such ground deformation associated with earthquakes, volcanic eruptions and ground subsidence due to water pumping. However there have been few cases that applied the technique to the activity of mud volcanos. Azerbaijan, located on the western edge of the Caspian Sea in Central Asia, is one of the most abundant countries in term of the population of mud volcanoes over the land. We focused on an especially large and unique mud volcano known as the Ayaz-Akhtarma because the deformation signals are the most evident and peculiar. Antonielli et al., (2014) detected the ground deformation of this mud volcano, using ENVISAT/ASAR C-band SAR data spanning from 2003 to 2005 only along descending path. While the ground displacement at the volcano was 20 cm in line of sight (LOS) for the two years, Antonielli et al., (2014) attributed the observed LOS changes to the uplift and subsidence in the eastern half and western half, respectively, whereas no source model was presented in the study. In the previous study, however, the 3D displacements were totally uncertain because of the restricted looking geometry. We could observe the displacements, based not only on the ALOS data along the ascending path that is the opposite look direction from the previous study but also on the ALOS-2 data for ascending and descending paths. Our observed LOS change data indicated more active and larger horizontal displacements. The cumulative LOS displacement is up to nearly 300 cm for four years by ALOS and 100 cm for two years by ALOS-2. In addition to InSAR, we performed MAI analysis. MAI is a technique for measuring ground displacement along flight direction, which is not sensitive to the InSAR measurement. The result of MAI showed a few meters displacement and also indicated mostly horizontal displacement. Our preliminary source modeling indicates that a fault with normal faulting and tensile opening could account for the observed LOS changes. The more precise source modeling by simultaneous inversion to explain both the InSAR and MAI displacements is under construction.

  7. Nondestructive evaluation of MoDOT bridge decks : pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  8. Nondestructive evaluation of MoDOT bridge decks : pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition assessments. The primary nondestructive : testing/evaluation (NDT/NDE) technique utilized in this research was ground-coupled ground penetrating radar ...

  9. LOCAD-PTS: Operation of a New System for Microbial Monitoring Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Maule, J.; Wainwright, N.; Steele, A.; Gunter, D.; Flores, G.; Effinger, M.; Danibm N,; Wells, M.; Williams, S.; Morris, H.; hide

    2008-01-01

    Microorganisms within the space stations Salyut, Mir and the International Space Station (ISS), have traditionally been monitored with culture-based techniques. These techniques involve growing environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies; and return of samples to Earth for ground-based analysis. This approach has provided a wealth of useful data and enhanced our understanding of the microbial ecology within space stations. However, the approach is also limited by the following: i) More than 95% microorganisms in the environment cannot grow on conventional growth media; ii) Significant time lags occur between onboard sampling and colony visualization (3-5 days) and ground-based analysis (as long as several months); iii) Colonies are often difficult to visualize due to condensation within contact slide media plates; and iv) Techniques involve growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and -1, 3-glucan, found in the cell walls of gram-negative bacteria and fungi, respectively. This technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device. This handheld device and sampling system is known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). A poster will be presented that describes a comparative study between LOCAD-PTS analysis and existing culture-based methods onboard the ISS; together with an exploratory survey of surface endotoxin throughout the ISS. It is concluded that while a general correlation between LOCAD-PTS and traditional culture-based methods should not necessarily be expected, a combinatorial approach can be adopted where both sets of data are used together to generate a more complete story of the microbial ecology on the ISS.

  10. Assessment of surface solar irradiance derived from real-time modelling techniques and verification with ground-based measurements

    NASA Astrophysics Data System (ADS)

    Kosmopoulos, Panagiotis G.; Kazadzis, Stelios; Taylor, Michael; Raptis, Panagiotis I.; Keramitsoglou, Iphigenia; Kiranoudis, Chris; Bais, Alkiviadis F.

    2018-02-01

    This study focuses on the assessment of surface solar radiation (SSR) based on operational neural network (NN) and multi-regression function (MRF) modelling techniques that produce instantaneous (in less than 1 min) outputs. Using real-time cloud and aerosol optical properties inputs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation (MSG) satellite and the Copernicus Atmosphere Monitoring Service (CAMS), respectively, these models are capable of calculating SSR in high resolution (1 nm, 0.05°, 15 min) that can be used for spectrally integrated irradiance maps, databases and various applications related to energy exploitation. The real-time models are validated against ground-based measurements of the Baseline Surface Radiation Network (BSRN) in a temporal range varying from 15 min to monthly means, while a sensitivity analysis of the cloud and aerosol effects on SSR is performed to ensure reliability under different sky and climatological conditions. The simulated outputs, compared to their common training dataset created by the radiative transfer model (RTM) libRadtran, showed median error values in the range -15 to 15 % for the NN that produces spectral irradiances (NNS), 5-6 % underestimation for the integrated NN and close to zero errors for the MRF technique. The verification against BSRN revealed that the real-time calculation uncertainty ranges from -100 to 40 and -20 to 20 W m-2, for the 15 min and monthly mean global horizontal irradiance (GHI) averages, respectively, while the accuracy of the input parameters, in terms of aerosol and cloud optical thickness (AOD and COT), and their impact on GHI, was of the order of 10 % as compared to the ground-based measurements. The proposed system aims to be utilized through studies and real-time applications which are related to solar energy production planning and use.

  11. WE-AB-202-09: Feasibility and Quantitative Analysis of 4DCT-Based High Precision Lung Elastography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasse, K; Neylon, J; Low, D

    2016-06-15

    Purpose: The purpose of this project is to derive high precision elastography measurements from 4DCT lung scans to facilitate the implementation of elastography in a radiotherapy context. Methods: 4DCT scans of the lungs were acquired, and breathing stages were subsequently registered to each other using an optical flow DIR algorithm. The displacement of each voxel gleaned from the registration was taken to be the ground-truth deformation. These vectors, along with the 4DCT source datasets, were used to generate a GPU-based biomechanical simulation that acted as a forward model to solve the inverse elasticity problem. The lung surface displacements were appliedmore » as boundary constraints for the model-guided lung tissue elastography, while the inner voxels were allowed to deform according to the linear elastic forces within the model. A biomechanically-based anisotropic convergence magnification technique was applied to the inner voxels in order to amplify the subtleties of the interior deformation. Solving the inverse elasticity problem was accomplished by modifying the tissue elasticity and iteratively deforming the biomechanical model. Convergence occurred when each voxel was within 0.5 mm of the ground-truth deformation and 1 kPa of the ground-truth elasticity distribution. To analyze the feasibility of the model-guided approach, we present the results for regions of low ventilation, specifically, the apex. Results: The maximum apical boundary expansion was observed to be between 2 and 6 mm. Simulating this expansion within an apical lung model, it was observed that 100% of voxels converged within 0.5 mm of ground-truth deformation, while 91.8% converged within 1 kPa of the ground-truth elasticity distribution. A mean elasticity error of 0.6 kPa illustrates the high precision of our technique. Conclusion: By utilizing 4DCT lung data coupled with a biomechanical model, high precision lung elastography can be accurately performed, even in low ventilation regions of the lungs. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144087.« less

  12. Implementation of the New Approach for the Dose-Response Functions Development for the Case of Athens and Greece

    NASA Astrophysics Data System (ADS)

    Christodoulakis, J.; Tzanis, C. G.; Varotsos, C. A.; Kouremadas, G.

    2016-08-01

    Dose-response functions (DRFs) are functions used for estimating corrosion and/or soiling levels of materials used in constructions and cultural monuments. In order to achieve this, DRFs lean on ground-based measurements of specific air pollution and climatic parameters like nitrogen oxides, ozone, temperature and others. In DRAGON 3 2015 Symposium we presented a new approach which proposed a technique for using satellite-based data for the necessary parameters instead of ground-based expanding in this way: a) the usage of DRFs in cases/areas where there is no availability of in situ measurements, b) the applicability of satellite-based data. In this work we present mapping results of deterioration levels (corrosion and soiling) for the case of Athens, Greece but also for the whole Greece country.

  13. Photogrammetric techniques for aerospace applications

    NASA Astrophysics Data System (ADS)

    Liu, Tianshu; Burner, Alpheus W.; Jones, Thomas W.; Barrows, Danny A.

    2012-10-01

    Photogrammetric techniques have been used for measuring the important physical quantities in both ground and flight testing including aeroelastic deformation, attitude, position, shape and dynamics of objects such as wind tunnel models, flight vehicles, rotating blades and large space structures. The distinct advantage of photogrammetric measurement is that it is a non-contact, global measurement technique. Although the general principles of photogrammetry are well known particularly in topographic and aerial survey, photogrammetric techniques require special adaptation for aerospace applications. This review provides a comprehensive and systematic summary of photogrammetric techniques for aerospace applications based on diverse sources. It is useful mainly for aerospace engineers who want to use photogrammetric techniques, but it also gives a general introduction for photogrammetrists and computer vision scientists to new applications.

  14. Experiments on Adaptive Techniques for Host-Based Intrusion Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DRAELOS, TIMOTHY J.; COLLINS, MICHAEL J.; DUGGAN, DAVID P.

    2001-09-01

    This research explores four experiments of adaptive host-based intrusion detection (ID) techniques in an attempt to develop systems that can detect novel exploits. The technique considered to have the most potential is adaptive critic designs (ACDs) because of their utilization of reinforcement learning, which allows learning exploits that are difficult to pinpoint in sensor data. Preliminary results of ID using an ACD, an Elman recurrent neural network, and a statistical anomaly detection technique demonstrate an ability to learn to distinguish between clean and exploit data. We used the Solaris Basic Security Module (BSM) as a data source and performed considerablemore » preprocessing on the raw data. A detection approach called generalized signature-based ID is recommended as a middle ground between signature-based ID, which has an inability to detect novel exploits, and anomaly detection, which detects too many events including events that are not exploits. The primary results of the ID experiments demonstrate the use of custom data for generalized signature-based intrusion detection and the ability of neural network-based systems to learn in this application environment.« less

  15. Experiment D009: Simple navigation

    NASA Technical Reports Server (NTRS)

    Silva, R. M.; Jorris, T. R.; Vallerie, E. M., III

    1971-01-01

    Space position-fixing techniques have been investigated by collecting data on the observable phenomena of space flight that could be used to solve the problem of autonomous navigation by the use of optical data and manual computations to calculate the position of a spacecraft. After completion of the developmental and test phases, the product of the experiment would be a manual-optical technique of orbital space navigation that could be used as a backup to onboard and ground-based spacecraft-navigation systems.

  16. Crystal Growth of ZnSe and Related Ternary Compound Semiconductors by Vapor Transport in Low Gravity

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Ramachandran, N.

    2013-01-01

    Crystals of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, will be grown by physical vapor transport in the Material Science Research Rack (MSRR) on International Space Station (ISS). The objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the crystals grown by vapor transport as results of buoyance-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  17. Comparisons of COSMIC and C/NOFS GPS Occultation Ionospheric Scintillation Measurements with Ground-based Radar and VHF Measurements

    NASA Astrophysics Data System (ADS)

    Ruggiero, F. H.; Groves, K. M.; Straus, P. R.; Caton, R. G.; Starks, M. J.; Tanyi, K. L.; Verlinden, M.

    2009-12-01

    Ionospheric irregularities are known to cause scintillation of trans-ionospheric radio signals and can affect space-based UHF/VHF communications, causing outages, and degrading GPS accuracy and precision. Current capability for characterizing and predicting ionospheric scintillation utilizes a network of ground-based receivers to detect scintillation and then extrapolate for short-term forecasts. Practical limits on deploying the ground receivers limits the accuracy and spatial coverage one can achieve with this approach. A more global approach is to use a set of space-based satellites equipped with GPS receivers, such as the COSMIC satellite constellation, to measure scintillations observed during so-called occultations with GPS satellites. In this paper the signal-to-noise values of GPS L1 signals received on the COSMIC and C/NOFS satellites for the portions of the occultations that are not affected by the terrestrial atmosphere are examined to help identify areas of ionospheric scintillation. Three years of S4 scintillation index values from COSMIC occultations are compared with near-zenith ground-based VHF S4 scintillation measurements from the AFRL SCIntillation Network Decision Aid (SCINDA) network stations. The data are correlated to ascertain the viability of using space-based scintillation measurements to characterize and predict scintillation to ground-based receivers. Several days of COSMIC and C/NOFS data are compared with each other and the ALTAIR radar located on Kwajalein Atoll, Marshall Islands to examine how occultation geometry affects observed scintillation and also to verify techniques that provide an upper bound on the spatial location of the ionospheric irregularities contributing to scintillations observed in the occultations.

  18. Global navigation satellite sounding of the atmosphere and GNSS altimetry : prospects for geosciences

    NASA Technical Reports Server (NTRS)

    Yunck, Tom P.; Hajj, George A.

    2003-01-01

    The vast illuminating power of the Global Positioning System (GPS), which transformed space geodesy in the 199Os, is now serving to probe the earth's fluid envelope in unique ways. Three distinct techniques have emerged: ground-based sensing of the integrated atmospheric moisture; space-based profiling of atmospheric refractivity, pressure, temperature, moisture, and other properties by active limb sounding; and surface (ocean and ice) altimetry and scatterometry with reflected signals detected from space. Ground-based GPS moisture sensing is already in provisional use for numerical weather prediction. Limb sounding, while less mature, offers a bevy of attractions, including high accuracy, stability, and vertical resolution; all-weather operation; and exceptionally low cost. GPS bistatic radar, r 'reflectometry,' is the least advanced but shows promise for a number of niche applications.

  19. Review of crop growth and soil moisture monitoring from a ground-based instrument implementing the Interference Pattern GNSS-R Technique

    NASA Astrophysics Data System (ADS)

    Rodriguez-Alvarez, N.; Bosch-Lluis, X.; Camps, A.; Aguasca, A.; Vall-Llossera, M.; Valencia, E.; Ramos-Perez, I.; Park, H.

    2011-12-01

    Reflectometry using Global Navigation Satellite Systems signals (GNSSR) has been the focus of many studies during the past few years for a number of applications over different scenarios as land, ocean or snow and ice surfaces. In the past decade, its potential has increased yearly, with improved receivers and signal processors, from generic GNSS receivers whose signals were recorded in magnetic tapes to instruments that measure full Delay Doppler Maps (the power distribution of the reflected GNSS signal over the 2-D space of delay offsets and Doppler shifts) in real time. At present, these techniques are considered to be promising tools to retrieve geophysical parameters such as soil moisture, vegetation height, topography, altimetry, sea state and ice and snow thickness, among others. This paper focuses on the land geophysical retrievals (topography, vegetation height and soil moisture) performed from a ground-based instrument using the Interference Pattern Technique (IPT). This technique consists of the measurement of the power fluctuations of the interference signal resulting from the simultaneous reception of the direct and the reflected GNSS signals. The latest experiment performed using this technique over a maize field is shown in this paper. After a review of the previous results, this paper presents the latest experiment performed using this technique over a maize field. This new study provides a deeper analysis on the soil moisture retrieval by observing three irrigation-drying cycles and comparing them to different depths soil moisture probes. Furthermore, the height of the maize, almost 300 cm, has allowed testing the capabilities of the technique over dense and packed vegetation layers, with high vegetation water content.

  20. Validation of GOME (ERS-2) NO2 vertical column data with ground-based measurements at Issyk-Kul (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Ionov, D.; Sinyakov, V.; Semenov, V.

    Starting from 1995 the global monitoring of atmospheric nitrogen dioxide is carried out by the measurements of nadir-viewing GOME spectrometer aboard ERS-2 satellite. Continuous validation of that data by means of comparisons with well-controlled ground-based measurements is important to ensure the quality of GOME data products and improve related retrieval algorithms. At the station of Issyk-Kul (Kyrgyzstan) the ground-based spectroscopic observations of NO2 vertical column have been started since 1983. The station is located on the northern shore of Issyk-Kul lake, 1650 meters above the sea level (42.6 N, 77.0 E). The site is equipped with grating spectrometer for the twilight measurements of zenith-scattered solar radiation in the visible range, and applies the DOAS technique to retrieve NO2 vertical column. It is included in the list of NDSC stations as a complementary one. The present study is focused on validation of GOME NO2 vertical column data, based on 8-year comparison with correlative ground-based measurements at Issyk-Kul station in 1996-2003. Within the investigation, an agreement of both individual and monthly averaged GOME measurements with corresponding twilight ground-based observations is examined. Such agreement is analyzed with respect to different conditions (season, sun elevation), temporal/spatial criteria choice (actual overpass location, correction for diurnal variation) and data processing (GDP version 2.7, 3.0). In addition, NO2 vertical columns were integrated from simultaneous stratospheric profile measurements by NASA HALOE and SAGE-II/III satellite instruments and introduced to explain the differences with ground-based observations. In particular cases, NO2 vertical profiles retrieved from the twilight ground-based measurements at Issuk-Kul were also included into comparison. Overall, summertime GOME NO2 vertical columns were found to be systematicaly lower than ground-based data. This work was supported by International Association for the promotion of co-operation with scientists from the New Independent States of the former Soviet Union (INTAS-YSF-02-138), International Science and Technology Center (ISTC Kr-763), Russian Foundation for Basic Research (RFBR-03-05-64626), the joint foundation of Russian Ministry of Education and St.Petersburg Administration (PD02-1.5-96) and the President of Russia grant (MK-2686.2003.05).

  1. Detection technique of targets for missile defense system

    NASA Astrophysics Data System (ADS)

    Guo, Hua-ling; Deng, Jia-hao; Cai, Ke-rong

    2009-11-01

    Ballistic missile defense system (BMDS) is a weapon system for intercepting enemy ballistic missiles. It includes ballistic-missile warning system, target discrimination system, anti-ballistic-missile guidance systems, and command-control communication system. Infrared imaging detection and laser imaging detection are widely used in BMDS for surveillance, target detection, target tracking, and target discrimination. Based on a comprehensive review of the application of target-detection techniques in the missile defense system, including infrared focal plane arrays (IRFPA), ground-based radar detection technology, 3-dimensional imaging laser radar with a photon counting avalanche photodiode (APD) arrays and microchip laser, this paper focuses on the infrared and laser imaging detection techniques in missile defense system, as well as the trends for their future development.

  2. A1297 hydro demolition video versus GPR results : west bound lane.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  3. A1193 hydro demolition video versus GPR results : east bound lane.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  4. A1297 hydro demolition video versus GPR results : east bound lane.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  5. A Distributive, Non-Destructive, Real-Time Approach to Snowpack Monitoring

    NASA Technical Reports Server (NTRS)

    Frolik, Jeff; Skalka, Christian

    2012-01-01

    This invention is designed to ascertain the snow water equivalence (SWE) of snowpacks with better spatial and temporal resolutions than present techniques. The approach is ground-based, as opposed to some techniques that are air-based. In addition, the approach is compact, non-destructive, and can be communicated with remotely, and thus can be deployed in areas not possible with current methods. Presently there are two principal ground-based techniques for obtaining SWE measurements. The first is manual snow core measurements of the snowpack. This approach is labor-intensive, destructive, and has poor temporal resolution. The second approach is to deploy a large (e.g., 3x3 m) snowpillow, which requires significant infrastructure, is potentially hazardous [uses a approximately equal to 200-gallon (approximately equal to 760-L) antifreeze-filled bladder], and requires deployment in a large, flat area. High deployment costs necessitate few installations, thus yielding poor spatial resolution of data. Both approaches have limited usefulness in complex and/or avalanche-prone terrains. This approach is compact, non-destructive to the snowpack, provides high temporal resolution data, and due to potential low cost, can be deployed with high spatial resolution. The invention consists of three primary components: a robust wireless network and computing platform designed for harsh climates, new SWE sensing strategies, and algorithms for smart sampling, data logging, and SWE computation.

  6. A method of time transfer between remote stations via LRO

    NASA Astrophysics Data System (ADS)

    Hoffman, Evan; Sun, Xiaoli; Skillman, David R.; McGarry, Jan F.; Mao, Dandan

    2014-05-01

    Satellite Laser Ranging (SLR) is a standard geodetic technique that uses the round trip time of light from a ground station to a satellite to determine distance. When combined with a spacecraft detector and timing system, this technique can also be used to transfer time between ground stations, demonstrated by the Time Transfer by Laser Link (T2L2) project by the Centre National d'Etudes Spatiaes (CNES) and Observatorire de la Cote d'Azur (OCA) as well as the Laser Time Transfer (LTT) project by the Shanghai Astronomical Observatory. We describe an additional method of time transfer using simultaneous one-way laser ranging (LR) by two or more ground stations to the Lunar Reconnaissance Orbiter (LRO). A one way ranging is necessary, as two way ranging via retroreflectors for time transfer becomes impractical at lunar distances. The method will utilize the one-way LR currently being performed as a part of the LRO mission, allowing time transfer to be a by-product of the conventional usage of the data. Each ground station is referenced to a Master Clock using a multifrequency all-view GPS receiver at both the ground station and Master Clock locations.The Master Clock is located close enough to the ground station to make ionospheric differences in signal path negligible. Two or more stations range to LRO at the same time and their times of arrival are compared. Results from a ground-based experiment are shown, with sub-nanosecond precision shown to be achievable. Ultimately this measurement will provide a more precise and accurate relation of timing standards between stations, leading to a marked improvement in orbit determination.

  7. Interferometry in the Era of Very Large Telescopes

    NASA Technical Reports Server (NTRS)

    Barry, Richard K.

    2010-01-01

    Research in modern stellar interferometry has focused primarily on ground-based observatories, with very long baselines or large apertures, that have benefited from recent advances in fringe tracking, phase reconstruction, adaptive optics, guided optics, and modern detectors. As one example, a great deal of effort has been put into development of ground-based nulling interferometers. The nulling technique is the sparse aperture equivalent of conventional coronography used in filled aperture telescopes. In this mode the stellar light itself is suppressed by a destructive fringe, effectively enhancing the contrast of the circumstellar material located near the star. Nulling interferometry has helped to advance our understanding of the astrophysics of many distant objects by providing the spatial resolution necessary to localize the various faint emission sources near bright objects. We illustrate the current capabilities of this technique by describing the first scientific results from the Keck Interferometer Nuller that combines the light from the two largest optical telescopes in the world including new, unpublished measurements of exozodiacal dust disks. We discuss prospects in the near future for interferometry in general, the capabilities of secondary masking interferometry on very large telescopes, and of nulling interferometry using outriggers on very large telescopes. We discuss future development of a simplified space-borne NIR nulling architecture, the Fourier-Kelvin Stellar Interferometer, capable of detecting and characterizing an Earth twin in the near future and how such a mission would benefit from the optical wavelength coverage offered by large, ground-based instruments.

  8. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  9. Electromagnetic Methods of Lightning Detection

    NASA Astrophysics Data System (ADS)

    Rakov, V. A.

    2013-11-01

    Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.

  10. Vision Based Autonomous Robotic Control for Advanced Inspection and Repair

    NASA Technical Reports Server (NTRS)

    Wehner, Walter S.

    2014-01-01

    The advanced inspection system is an autonomous control and analysis system that improves the inspection and remediation operations for ground and surface systems. It uses optical imaging technology with intelligent computer vision algorithms to analyze physical features of the real-world environment to make decisions and learn from experience. The advanced inspection system plans to control a robotic manipulator arm, an unmanned ground vehicle and cameras remotely, automatically and autonomously. There are many computer vision, image processing and machine learning techniques available as open source for using vision as a sensory feedback in decision-making and autonomous robotic movement. My responsibilities for the advanced inspection system are to create a software architecture that integrates and provides a framework for all the different subsystem components; identify open-source algorithms and techniques; and integrate robot hardware.

  11. Sympathetic Cooling of Molecular Ions in Selected Rotational and Vibrational States Produced by Threshold Photoionization

    NASA Astrophysics Data System (ADS)

    Tong, Xin; Winney, Alexander H.; Willitsch, Stefan

    2010-10-01

    We present a new method for the generation of rotationally and vibrationally state-selected, translationally cold molecular ions in ion traps. Our technique is based on the state-selective threshold photoionization of neutral molecules followed by sympathetic cooling of the resulting ions with laser-cooled calcium ions. Using N2+ ions as a test system, we achieve >90% selectivity in the preparation of the ground rovibrational level and state lifetimes on the order of 15 minutes limited by collisions with background-gas molecules. The technique can be employed to produce a wide range of apolar and polar molecular ions in the ground and excited rovibrational states. Our approach opens up new perspectives for cold quantum-controlled ion-molecule-collision studies, frequency-metrology experiments with state-selected molecular ions and molecular-ion qubits.

  12. Review of Air Vitiation Effects on Scramjet Ignition and Flameholding Combustion Processes

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Bruno, Claudio; Chinitz, W.

    2002-01-01

    This paper offers a detailed review and analysis of more than 100 papers on the physics and chemistry of scramjet ignition and flameholding combustion processes, and the known effects of air vitiation on these processes. The paper attempts to explain vitiation effects in terms of known chemical kinetics and flame propagation phenomena. Scaling methodology is also examined, and a highly simplified Damkoehler scaling technique based on OH radical production/destruction is developed to extrapolate ground test results, affected by vitiation, to flight testing conditions. The long term goal of this effort is to help provide effective means for extrapolating ground test data to flight, and thus to reduce the time and expense of both ground and flight testing.

  13. Enhanced orbit determination filter: Inclusion of ground system errors as filter parameters

    NASA Technical Reports Server (NTRS)

    Masters, W. C.; Scheeres, D. J.; Thurman, S. W.

    1994-01-01

    The theoretical aspects of an orbit determination filter that incorporates ground-system error sources as model parameters for use in interplanetary navigation are presented in this article. This filter, which is derived from sequential filtering theory, allows a systematic treatment of errors in calibrations of transmission media, station locations, and earth orientation models associated with ground-based radio metric data, in addition to the modeling of the spacecraft dynamics. The discussion includes a mathematical description of the filter and an analytical comparison of its characteristics with more traditional filtering techniques used in this application. The analysis in this article shows that this filter has the potential to generate navigation products of substantially greater accuracy than more traditional filtering procedures.

  14. Calculation of broadband time histories of ground motion: Comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Frankel, A.; Larsen, S.

    1999-01-01

    This article compares techniques for calculating broadband time histories of ground motion in the near field of a finite fault by comparing synthetics with the strong-motion data set for the 1994 Northridge earthquake. Based on this comparison, a preferred methodology is presented. Ground-motion-simulation techniques are divided into two general methods: kinematic- and composite-fault models. Green's functions of three types are evaluated: stochastic, empirical, and theoretical. A hybrid scheme is found to give the best fit to the Northridge data. Low frequencies ( 1 Hz) are calculated using a composite-fault model with a fractal subevent size distribution and stochastic, bandlimited, white-noise Green's functions. At frequencies below 1 Hz, theoretical elastic-wave-propagation synthetics introduce proper seismic-phase arrivals of body waves and surface waves. The 3D velocity structure more accurately reproduces record durations for the deep sedimentary basin structures found in the Los Angeles region. At frequencies above 1 Hz, scattering effects become important and wave propagation is more accurately represented by stochastic Green's functions. A fractal subevent size distribution for the composite fault model ensures an ??-2 spectral shape over the entire frequency band considered (0.1-20 Hz).

  15. 3D Monitoring under the Keciova Mosque (Casbah-Algier, Algeria) with Ground Penetrating Radar Method

    NASA Astrophysics Data System (ADS)

    Kadioglu, Selma; Kagan Kadioglu, Yusuf; Deniz, Kiymet; Akin Akyol, Ali

    2014-05-01

    Keciova (Ketchaoua) Mosque, in Casbah-Algiers, the capital of Algeria, is a UNESCO World Heritage Site. Keciova Mosque was originally built in 1612 by the Ottoman Empire. A RAMAC CU II GPR system and a 250 MHz shielded antenna have been employed inside of the Mosque including the Cathedral and inside of the burial chambers under the Cathedral Site on parallel profiles spaced approximately 0.30 m apart to measure data. After applying standard two-dimensional (2D) and three dimensional (3D) imaging techniques, transparent 3D imaging techniques have been used to photograph the foundational infrastructures, buried remains and safety problems of the Mosque. The results showed that we obtained 3D GPR visualization until 12.0 m in depth. Firstly we imaged the base floor including corridors. Then we monitored buried remains under the first ground level between 5.0-7.0 m in depths. Finally we indicated 3D GPR photographs a spectacular protected buried old mosque structures under the second ground level between 9.0-12.0 m in depths. This project has been supported by Republic of Turkey Prime Ministry Turkish Cooperation and Coordination Agency (TIKA). This study is a contribution to the EU funded COST action TU1208, "Civil Engineering Applications of Ground penetrating Radar".

  16. ACTS Ka-Band Earth Stations: Technology, Performance, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Struharik, Steven J.; Diamond, John J.; Stewart, David

    2000-01-01

    The Advanced Communications Technology Satellite (ACTS) Project invested heavily in prototype Ka-band satellite ground terminals to conduct an experiments program with ACTS. The ACTS experiments program proposed to validate Ka-band satellite and ground-station technology, demonstrate future telecommunication services, demonstrate commercial viability and market acceptability of these new services, evaluate system networking and processing technology, and characterize Ka-band propagation effects, including development of techniques to mitigate signal fading. This paper will present a summary of the fixed ground terminals developed by the NASA Glenn Research Center and its industry partners, emphasizing the technology and performance of the terminals and the lessons learned throughout their 6-year operation, including the inclined orbit phase-of-operations. The fixed ground stations used for experiments by government, academic, and commercial entities used reflector-based offset-fed antenna systems with antennas ranging in size from 0.35 to 3.4 in. in diameter. Gateway earth stations included two systems referred to as the NASA Ground Station (NGS) and the Link Evaluation Terminal (LET).

  17. Bridge A1187 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  18. Bridge A3406 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  19. Bridge A1479 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  20. Bridge A2966 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  1. Bridge A2111 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  2. Bridge A1297 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  3. Bridge A1193 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  4. Bridge A0569 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  5. Bridge K0197 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  6. Bridge A3017 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  7. Bridge A3405 : Missouri S&T nondestructive evaluation of bridge decks - pilot study.

    DOT National Transportation Integrated Search

    2014-03-01

    This research has examined the use of nondestructive techniques for concrete bridge deck condition : assessments. The primary nondestructive testing/evaluation (NDT/NDE) technique utilized in this research : was ground-coupled ground penetrating rada...

  8. Regional estimation of base recharge to ground water using water balance and a base-flow index.

    PubMed

    Szilagyi, Jozsef; Harvey, F Edwin; Ayers, Jerry F

    2003-01-01

    Naturally occurring long-term mean annual base recharge to ground water in Nebraska was estimated with the help of a water-balance approach and an objective automated technique for base-flow separation involving minimal parameter-optimization requirements. Base recharge is equal to total recharge minus the amount of evapotranspiration coming directly from ground water. The estimation of evapotranspiration in the water-balance equation avoids the need to specify a contributing drainage area for ground water, which in certain cases may be considerably different from the drainage area for surface runoff. Evapotranspiration was calculated by the WREVAP model at the Solar and Meteorological Surface Observation Network (SAMSON) sites. Long-term mean annual base recharge was derived by determining the product of estimated long-term mean annual runoff (the difference between precipitation and evapotranspiration) and the base-flow index (BFI). The BFI was calculated from discharge data obtained from the U.S. Geological Survey's gauging stations in Nebraska. Mapping was achieved by using geographic information systems (GIS) and geostatistics. This approach is best suited for regional-scale applications. It does not require complex hydrogeologic modeling nor detailed knowledge of soil characteristics, vegetation cover, or land-use practices. Long-term mean annual base recharge rates in excess of 110 mm/year resulted in the extreme eastern part of Nebraska. The western portion of the state expressed rates of only 15 to 20 mm annually, while the Sandhills region of north-central Nebraska was estimated to receive twice as much base recharge (40 to 50 mm/year) as areas south of it.

  9. Ground-based radiometric calibration of the Landsat 8 Operational Land Imager (OLI) using in situ techniques

    NASA Astrophysics Data System (ADS)

    Czapla-Myers, J.

    2013-12-01

    Landsat 8 was successfully launched from Vandenberg Air Force Base in California on 11 February 2013, and was placed into the orbit previously occupied by Landsat 5. Landsat 8 is the latest platform in the 40-year history of the Landsat series of satellites, and it contains two instruments that operate in the solar-reflective and the thermal infrared regimes. The Operational Land Imager (OLI) is a pushbroom sensor that contains eight multispectral bands ranging from 400-2300 nm, and one panchromatic band. The spatial resolution of the multispectral bands is 30 m, which is similar to previous Landsat sensors, and the panchromatic band has a 15-m spatial resolution, which is also similar to previous Landsat sensors. The 12-bit radiometric resolution of OLI improves upon the 8-bit resolution of the Enhanced Thematic Mapper Plus (ETM+) onboard Landsat 7. An important requirement for the Landsat program is the long-term radiometric continuity of its sensors. Ground-based vicarious techniques have been used for over 20 years to determine the absolute radiometric calibration of sensors that encompass a wide variety of spectral and spatial characteristics. This work presents the early radiometric calibration results of Landsat 8 OLI that were obtained using the traditional reflectance-based approach. University of Arizona personnel used five sites in Arizona, California, and Nevada to collect ground-based data. In addition, a unique set of in situ data were collected in March 2013, when Landsat 7 and Landsat 8 were observing the same site within minutes of each other. The tandem overfly schedule occurred while Landsat 8 was shifting to the WRS-2 orbital grid, and lasted only a few days. The ground-based data also include results obtained using the University of Arizona's Radiometric Calibration Test Site (RadCaTS), which is an automated suite of instruments located at Railroad Valley, Nevada. The results presented in this work include a comparison to the L1T at-sensor spectral radiance and the top-of-atmosphere reflectance, both of which are standard products available from the US Geological Survey.

  10. ERS-2 SAR and IRS-1C LISS III data fusion: A PCA approach to improve remote sensing based geological interpretation

    NASA Astrophysics Data System (ADS)

    Pal, S. K.; Majumdar, T. J.; Bhattacharya, Amit K.

    Fusion of optical and synthetic aperture radar data has been attempted in the present study for mapping of various lithologic units over a part of the Singhbhum Shear Zone (SSZ) and its surroundings. ERS-2 SAR data over the study area has been enhanced using Fast Fourier Transformation (FFT) based filtering approach, and also using Frost filtering technique. Both the enhanced SAR imagery have been then separately fused with histogram equalized IRS-1C LISS III image using Principal Component Analysis (PCA) technique. Later, Feature-oriented Principal Components Selection (FPCS) technique has been applied to generate False Color Composite (FCC) images, from which corresponding geological maps have been prepared. Finally, GIS techniques have been successfully used for change detection analysis in the lithological interpretation between the published geological map and the fusion based geological maps. In general, there is good agreement between these maps over a large portion of the study area. Based on the change detection studies, few areas could be identified which need attention for further detailed ground-based geological studies.

  11. Assessing the British Isles CH4 flux using aircraft and ground-based sampling: a case study on 12 May 2015

    NASA Astrophysics Data System (ADS)

    Pitt, Joseph

    2017-04-01

    Aircraft and ground-based sampling of atmospheric greenhouse gas composition over the British Isles was conducted between 2014 and 2016 as part of the Greenhouse gAs UK and Global Emissions (GAUGE) project. We report a case study focussing on two research aircraft flights conducted on 12 May 2015 to sample inflow and outflow across the British Isles. We have employed the NAME Lagrangian dispersion model to simulate CH4 mole fraction enhancements corresponding to aircraft and ground-based sample times and locations, using CH4 surface fluxes derived from a composite flux inventory, which included both anthropogenic and natural sources. For each sampling location, variations in the baseline CH4 mole fraction were derived using the MOZART global chemical transport model, and added to the NAME enhancements to produce a dataset of modelled CH4 mole fractions which can be compared to the measurements. Using a multiple variable regression technique, we derive CH4 fluxes for the British Isles region from both aircraft and ground-based datasets. We discuss the applicability of our approach for both datasets, and conclude that in this case the assumptions inherent in our method are much better satisfied for the aircraft data than for the ground-based data. Using the aircraft data we derive a possible range of scale factors for the prior inventory flux of 0.53 - 0.97, with a central estimate of 0.82 based on our assessment of the most likely apportionment of model uncertainty. This leads to a posterior estimate of the British Isles CH4 flux of 67 kg s-1 - 121 kg s-1, with a central value of 103 kg s-1.

  12. Direct Georeferencing on Small Unmanned Aerial Platforms for Improved Reliability and Accuracy of Mapping Without the Need for Ground Control Points

    NASA Astrophysics Data System (ADS)

    Mian, O.; Lutes, J.; Lipa, G.; Hutton, J. J.; Gavelle, E.; Borghini, S.

    2015-08-01

    This paper presents results from a Direct Mapping Solution (DMS) comprised of an Applanix APX-15 UAV GNSS-Inertial system integrated with a Sony a7R camera to produce highly accurate ortho-rectified imagery without Ground Control Points on a Microdrones md4-1000 platform. A 55 millimeter Nikkor f/1.8 lens was mounted on the Sony a7R and the camera was then focused and calibrated terrestrially using the Applanix camera calibration facility, and then integrated with the APX-15 UAV GNSS-Inertial system using a custom mount specifically designed for UAV applications. In July 2015, Applanix and Avyon carried out a test flight of this system. The goal of the test flight was to assess the performance of DMS APX-15 UAV direct georeferencing system on the md4-1000. The area mapped during the test was a 250 x 300 meter block in a rural setting in Ontario, Canada. Several ground control points are distributed within the test area. The test included 8 North-South lines and 1 cross strip flown at 80 meters AGL, resulting in a ~1 centimeter Ground Sample Distance (GSD). Map products were generated from the test flight using Direct Georeferencing, and then compared for accuracy against the known positions of ground control points in the test area. The GNSS-Inertial data collected by the APX-15 UAV was post-processed in Single Base mode, using a base station located in the project area via POSPac UAV. The base-station's position was precisely determined by processing a 12-hour session using the CSRS-PPP Post Processing service. The ground control points were surveyed in using differential GNSS post-processing techniques with respect to the base-station.

  13. Aerosol profiling during the large scale field campaign CINDI-2

    NASA Astrophysics Data System (ADS)

    Apituley, Arnoud; Roozendael, Michel Van; Richter, Andreas; Wagner, Thomas; Friess, Udo; Hendrick, Francois; Kreher, Karin; Tirpitz, Jan-Lukas

    2018-04-01

    For the validation of space borne observations of NO2 and other trace gases from hyperspectral imagers, ground based instruments based on the MAXDOAS technique are an excellent choice, since they rely on similar retrieval techniques as the observations from orbit. To ensure proper traceability of the MAXDOAS observations, a thorough validation and intercomparison is mandatory. Advanced MAXDOAS observation and retrieval techniques enable inferring vertical structure of trace gases and aerosols. These techniques and their results need validation by e.g. lidar techniques. For the proper understanding of the results from passive remote sensing techniques, independent observations are needed that include parameters needed to understand the light paths, i.e. in-situ aerosol observations of optical and microphysical properties, and essential are in particular the vertical profiles of aerosol optical properties by (Raman) lidar. The approach used in the CINDI-2 campaign held in Cabauw in 2016 is presented in this paper and the results will be discussed in the presentation at the conference.

  14. Intuitive Terrain Reconstruction Using Height Observation-Based Ground Segmentation and 3D Object Boundary Estimation

    PubMed Central

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-01-01

    Mobile robot operators must make rapid decisions based on information about the robot’s surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot’s array of sensors, but some upper parts of objects are beyond the sensors’ measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances. PMID:23235454

  15. Intuitive terrain reconstruction using height observation-based ground segmentation and 3D object boundary estimation.

    PubMed

    Song, Wei; Cho, Kyungeun; Um, Kyhyun; Won, Chee Sun; Sim, Sungdae

    2012-12-12

    Mobile robot operators must make rapid decisions based on information about the robot's surrounding environment. This means that terrain modeling and photorealistic visualization are required for the remote operation of mobile robots. We have produced a voxel map and textured mesh from the 2D and 3D datasets collected by a robot's array of sensors, but some upper parts of objects are beyond the sensors' measurements and these parts are missing in the terrain reconstruction result. This result is an incomplete terrain model. To solve this problem, we present a new ground segmentation method to detect non-ground data in the reconstructed voxel map. Our method uses height histograms to estimate the ground height range, and a Gibbs-Markov random field model to refine the segmentation results. To reconstruct a complete terrain model of the 3D environment, we develop a 3D boundary estimation method for non-ground objects. We apply a boundary detection technique to the 2D image, before estimating and refining the actual height values of the non-ground vertices in the reconstructed textured mesh. Our proposed methods were tested in an outdoor environment in which trees and buildings were not completely sensed. Our results show that the time required for ground segmentation is faster than that for data sensing, which is necessary for a real-time approach. In addition, those parts of objects that were not sensed are accurately recovered to retrieve their real-world appearances.

  16. Long term landslide monitoring with Ground Based SAR

    NASA Astrophysics Data System (ADS)

    Monserrat, Oriol; Crosetto, Michele; Luzi, Guido; Gili, Josep; Moya, Jose; Corominas, Jordi

    2014-05-01

    In the last decade, Ground-Based (GBSAR) has proven to be a reliable microwave Remote Sensing technique in several application fields, especially for unstable slopes monitoring. GBSAR can provide displacement measurements over few squared kilometres areas and with a very high spatial and temporal resolution. This work is focused on the use of GBSAR technique for long term landslide monitoring based on a particular data acquisition configuration, which is called discontinuous GBSAR (D-GBSAR). In the most commonly used GBSAR configuration, the radar is left installed in situ, acquiring data periodically, e.g. every few minutes. Deformations are estimated by processing sets of GBSAR images acquired during several weeks or months, without moving the system. By contrast, in the D-GBSAR the radar is installed and dismounted at each measurement campaign, revisiting a given site periodically. This configuration is useful to monitor slow deformation phenomena. In this work, two alternative ways for exploiting the D-GBSAR technique will be presented: the DInSAR technique and the Amplitude based Technique. The former is based on the exploitation of the phase component of the acquired SAR images and it allows providing millimetric precision on the deformation estimates. However, this technique presents several limitations like the reduction of measurable points with an increase in the period of observation, the ambiguous nature of the phase measurements, and the influence of the atmospheric phase component that can make it non applicable in some cases, specially when working in natural environments. The second approach, that is based on the use of the amplitude component of GB-SAR images combined with a image matching technique, will allow the estimation of the displacements over specific targets avoiding two of the limitations commented above: the phase unwrapping and atmosphere contribution but reducing the deformation measurement precision. Two successful examples of D-GBSAR landslide monitoring will be analysed and discussed: the first example is based on DInSAR and concerns to an urban landslide located in Barberà de la Conca (Catalonia, Spain). This village has experienced deformations since 2011 that have caused cracks in the church and several buildings. The results of a one year and half monitoring will be shown. The second example is based on the amplitude based approach and concerns to the active landslide of Vallcebre (Eastern Pyrenees, Spain). For this site, the results of eight campaigns during a period of 19 months were performed. During this period displacements of up to 80 cm were measured.

  17. NASA and CFD - Making investments for the future

    NASA Technical Reports Server (NTRS)

    Hessenius, Kristin A.; Richardson, P. F.

    1992-01-01

    From a NASA perspective, CFD is a new tool for fluid flow simulation and prediction with virtually none of the inherent limitations of other ground-based simulation techniques. A primary goal of NASA's CFD research program is to develop efficient and accurate computational techniques for utilization in the design and analysis of aerospace vehicles. The program in algorithm development has systematically progressed through the hierarchy of engineering simplifications of the Navier-Stokes equations, starting with the inviscid formulations such as transonic small disturbance, full potential, and Euler.

  18. Monitoring of civil infrastructures by interferometric radar: a review.

    PubMed

    Pieraccini, Massimiliano

    2013-01-01

    Ground-based radar interferometry is an increasingly popular technique for monitoring civil infrastructures. Many research groups, professionals, and companies have tested it in different operative scenarios, so it is time for a first systematic survey of the case studies reported in the literature. This review is addressed especially to the engineers and scientists interested to consider the applicability of the technique to their practice, so it is focused on the issues of the practical cases rather than on theory and principles, which are now well consolidated.

  19. Techniques for measuring arrival times of pulsar signals 1: DSN observations from 1968 to 1980

    NASA Technical Reports Server (NTRS)

    Downs, G. S.; Reichley, P. E.

    1980-01-01

    Techniques used in the ground based observations of pulsars are described, many of them applicable in a navigation scheme. The arrival times of the pulses intercepting Earth are measured at time intervals from a few days to a few months. Low noise, wide band receivers, amplify signals intercepted by 26 m, 34, and 64 m antennas. Digital recordings of total received signal power versus time are cross correlated with the appropriate pulse template.

  20. a Hybrid Method in Vegetation Height Estimation Using Polinsar Images of Campaign Biosar

    NASA Astrophysics Data System (ADS)

    Dehnavi, S.; Maghsoudi, Y.

    2015-12-01

    Recently, there have been plenty of researches on the retrieval of forest height by PolInSAR data. This paper aims at the evaluation of a hybrid method in vegetation height estimation based on L-band multi-polarized air-borne SAR images. The SAR data used in this paper were collected by the airborne E-SAR system. The objective of this research is firstly to describe each interferometry cross correlation as a sum of contributions corresponding to single bounce, double bounce and volume scattering processes. Then, an ESPIRIT (Estimation of Signal Parameters via Rotational Invariance Techniques) algorithm is implemented, to determine the interferometric phase of each local scatterer (ground and canopy). Secondly, the canopy height is estimated by phase differencing method, according to the RVOG (Random Volume Over Ground) concept. The applied model-based decomposition method is unrivaled, as it is not limited to specific type of vegetation, unlike the previous decomposition techniques. In fact, the usage of generalized probability density function based on the nth power of a cosine-squared function, which is characterized by two parameters, makes this method useful for different vegetation types. Experimental results show the efficiency of the approach for vegetation height estimation in the test site.

  1. How well do we know the incoming solar infrared radiation?

    NASA Astrophysics Data System (ADS)

    Elsey, Jonathan; Coleman, Marc; Gardiner, Tom; Shine, Keith

    2017-04-01

    The solar spectral irradiance (SSI) has been identified as a key climate variable by the Global Climate Observing System (Bojinski et al. 2014, Bull. Amer. Meteor. Soc.). It is of importance in the modelling of atmospheric radiative transfer, and the quantification of the global energy budget. However, in the near-infrared spectral region (between 2000-10000 cm-1) there exists a discrepancy of 7% between spectra measured from the space-based SOLSPEC instrument (Thuillier et al. 2015, Solar Physics) and those from a ground-based Langley technique (Bolseé et al. 2014, Solar Physics). This same difference is also present between different analyses of the SOLSPEC data. This work aims to reconcile some of these differences by presenting an estimate of the near-infrared SSI obtained from ground-based measurements taken using an absolutely calibrated Fourier transform spectrometer. Spectra are obtained both using the Langley technique and by direct comparison with a radiative transfer model, with appropriate handling of both aerosol scattering and molecular continuum absorption. Particular focus is dedicated to the quantification of uncertainty in these spectra, from both the inherent uncertainty in the measurement setup and that from the use of the radiative transfer code and its inputs.

  2. Spatiotemporal Interpolation Methods for Solar Event Trajectories

    NASA Astrophysics Data System (ADS)

    Filali Boubrahimi, Soukaina; Aydin, Berkay; Schuh, Michael A.; Kempton, Dustin; Angryk, Rafal A.; Ma, Ruizhe

    2018-05-01

    This paper introduces four spatiotemporal interpolation methods that enrich complex, evolving region trajectories that are reported from a variety of ground-based and space-based solar observatories every day. Our interpolation module takes an existing solar event trajectory as its input and generates an enriched trajectory with any number of additional time–geometry pairs created by the most appropriate method. To this end, we designed four different interpolation techniques: MBR-Interpolation (Minimum Bounding Rectangle Interpolation), CP-Interpolation (Complex Polygon Interpolation), FI-Interpolation (Filament Polygon Interpolation), and Areal-Interpolation, which are presented here in detail. These techniques leverage k-means clustering, centroid shape signature representation, dynamic time warping, linear interpolation, and shape buffering to generate the additional polygons of an enriched trajectory. Using ground-truth objects, interpolation effectiveness is evaluated through a variety of measures based on several important characteristics that include spatial distance, area overlap, and shape (boundary) similarity. To our knowledge, this is the first research effort of this kind that attempts to address the broad problem of spatiotemporal interpolation of solar event trajectories. We conclude with a brief outline of future research directions and opportunities for related work in this area.

  3. MAcro-Electro-Mechanical Systems (MÆMS) based concept for microwave beam steering in reflectarray antennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momeni Hasan Abadi, Seyed Mohamad Amin, E-mail: momenihasana@wisc.edu; Booske, John H., E-mail: jhbooske@wisc.edu; Behdad, Nader, E-mail: behdad@wisc.edu

    2016-08-07

    We present a new approach to perform beam steering in reflecting type apertures such as reflectarray antennas. The proposed technique exploits macro-scale mechanical movements of parts of the structure to achieve two-dimensional microwave beam steering without using any solid-state devices or phase shifters integrated within the aperture of the antenna. The principles of operation of this microwave beam steering technique are demonstrated in an aperture occupied by ground-plane-backed, sub-wavelength capacitive patches with identical dimensions. We demonstrate that by tilting the ground plane underneath the entire patch array layer, a phase shift gradient can be created over the aperture of themore » reflectarray that determines the direction of the radiated beam. Changing the direction and slope of this phase shift gradient on the aperture allows for performing beam steering in two dimensions using only one control parameter (i.e., tilt vector of the ground plane). A proof-of-concept prototype of the structure operating at X-band is designed, fabricated, and experimentally characterized. Experiments demonstrate that small mechanical movements of the ground plane (in the order of 0.05λ{sub 0}) can be used to steer the beam direction in the ±10° in two dimensions. It is also demonstrated that this beam scanning range can be greatly enhanced to ±30° by applying this concept to the same structure when its ground plane is segmented.« less

  4. Problems associated with estimating ground water discharge and recharge from stream-discharge records

    USGS Publications Warehouse

    Halford, K.J.; Mayer, G.C.

    2000-01-01

    Ground water discharge and recharge frequently have been estimated with hydrograph-separation techniques, but the critical assumptions of the techniques have not been investigated. The critical assumptions are that the hydraulic characteristics of the contributing aquifer (recession index) can be estimated from stream-discharge records; that periods of exclusively ground water discharge can be reliably identified; and that stream-discharge peaks approximate the magnitude and tinting of recharge events. The first assumption was tested by estimating the recession index from st earn-discharge hydrographs, ground water hydrographs, and hydraulic diffusivity estimates from aquifer tests in basins throughout the eastern United States and Montana. The recession index frequently could not be estimated reliably from stream-discharge records alone because many of the estimates of the recession index were greater than 1000 days. The ratio of stream discharge during baseflow periods was two to 36 times greater than the maximum expected range of ground water discharge at 12 of the 13 field sites. The identification of the ground water component of stream-discharge records was ambiguous because drainage from bank-storage, wetlands, surface water bodies, soils, and snowpacks frequently exceeded ground water discharge and also decreased exponentially during recession periods. The timing and magnitude of recharge events could not be ascertained from stream-discharge records at any of the sites investigated because recharge events were not directly correlated with stream peaks. When used alone, the recession-curve-displacement method and other hydrograph-separation techniques are poor tools for estimating ground water discharge or recharge because the major assumptions of the methods are commonly and grossly violated. Multiple, alternative methods of estimating ground water discharge and recharge should be used because of the uncertainty associated with any one technique.

  5. Ground state of Ho atoms on Pt(111) metal surfaces: Implications for magnetism

    NASA Astrophysics Data System (ADS)

    Karbowiak, M.; Rudowicz, C.

    2016-05-01

    We investigated the ground state of Ho atoms adsorbed on the Pt(111) surface, for which conflicting results exist. The density functional theory (DFT) calculations yielded the Ho ground state as | Jz=±8 > . Interpretation of x-ray absorption spectroscopy and x-ray magnetic circular dichroism spectra and the magnetization curves indicated the ground state as | Jz=±6 > . Superposition model is employed to predict the crystal-field (CF) parameters based on the structural data for the system Ho/Pt(111) obtained from the DFT modeling. Simultaneous diagonalization of the free-ion (HFI) and the trigonal CF Hamiltonian (HCF) within the whole configuration 4 f10 of H o3 + ion was performed. The role of the trigonal CF terms, neglected in the pure uniaxial CF model used previously for interpretation of experimental spectra, is found significant, whereas the sixth-rank CF terms may be neglected in agreement with the DFT predictions. The results provide substantial support for the experimental designation of the | Jz=±6 > ground state, albeit with subtle difference due to admixture of other | Jz> states, but run against the DFT-based designation of the | Jz=±8 > ground state. A subtle splitting of the ground energy level with the state (predominantly), | Jz=±6 > is predicted. This paper provides better insight into the single-ion magnetic behavior of the Ho/Pt(111) system by helping to resolve the controversy concerning the Ho ground state. Experimental techniques with greater resolution powers are suggested for direct confirmation of this splitting and C3 v symmetry experienced by the Ho atom.

  6. Concepts and algorithms for terminal-area traffic management

    NASA Technical Reports Server (NTRS)

    Erzberger, H.; Chapel, J. D.

    1984-01-01

    The nation's air-traffic-control system is the subject of an extensive modernization program, including the planned introduction of advanced automation techniques. This paper gives an overview of a concept for automating terminal-area traffic management. Four-dimensional (4D) guidance techniques, which play an essential role in the automated system, are reviewed. One technique, intended for on-board computer implementation, is based on application of optimal control theory. The second technique is a simplified approach to 4D guidance intended for ground computer implementation. It generates advisory messages to help the controller maintain scheduled landing times of aircraft not equipped with on-board 4D guidance systems. An operational system for the second technique, recently evaluated in a simulation, is also described.

  7. Mobile Aerial Tracking and Imaging System (MATrIS) for Aeronautical Research

    NASA Technical Reports Server (NTRS)

    Banks, Daniel W.; Blanchard, Robert C.; Miller, Geoffrey M.

    2004-01-01

    A mobile, rapidly deployable ground-based system to track and image targets of aeronautical interest has been developed. Targets include reentering reusable launch vehicles as well as atmospheric and transatmospheric vehicles. The optics were designed to image targets in the visible and infrared wavelengths. To minimize acquisition cost and development time, the system uses commercially available hardware and software where possible. The conception and initial funding of this system originated with a study of ground-based imaging of global aerothermal characteristics of reusable launch vehicle configurations. During that study the National Aeronautics and Space Administration teamed with the Missile Defense Agency/Innovative Science and Technology Experimentation Facility to test techniques and analysis on two Space Shuttle flights.

  8. Time domain analysis of thin-wire antennas over lossy ground using the reflection-coefficient approximation

    NASA Astrophysics Data System (ADS)

    FernáNdez Pantoja, M.; Yarovoy, A. G.; Rubio Bretones, A.; GonzáLez GarcíA, S.

    2009-12-01

    This paper presents a procedure to extend the methods of moments in time domain for the transient analysis of thin-wire antennas to include those cases where the antennas are located over a lossy half-space. This extended technique is based on the reflection coefficient (RC) approach, which approximates the fields incident on the ground interface as plane waves and calculates the time domain RC using the inverse Fourier transform of Fresnel equations. The implementation presented in this paper uses general expressions for the RC which extend its range of applicability to lossy grounds, and is proven to be accurate and fast for antennas located not too near to the ground. The resulting general purpose procedure, able to treat arbitrarily oriented thin-wire antennas, is appropriate for all kind of half-spaces, including lossy cases, and it has turned out to be as computationally fast solving the problem of an arbitrary ground as dealing with a perfect electric conductor ground plane. Results show a numerical validation of the method for different half-spaces, paying special attention to the influence of the antenna to ground distance in the accuracy of the results.

  9. Development of a NEHRP site classification map of Chiang Mai city, Thailand, based on shear-wave velocity using the MASW technique

    NASA Astrophysics Data System (ADS)

    Thitimakorn, Thanop

    2013-08-01

    To account for site amplification and seismic hazard mapping, the shear-wave velocity (Vs) profile to a depth of 30 m (Vs (30)) is an important parameter and can be used to calculate the ground motion for specific site conditions. In this study, the near-surface Vs profiles of soils were collected at 44 sites in Chiang Mai city using the multi-channel analysis of surface-wave technique. The Vs of each tested location was average weighted to Vs (30) based on the National Earthquake Hazards Reduction Program (NEHRP) criteria. The average Vs (30) value of the alluvium soils was about 362 m s-1, which falls between NEHRP site classes C and D. The average Vs (30) values of flood plain, fluvial clay and natural levee soils (at 300, 299 and 311 m s-1, respectively) all equated to NEHRP class D. The colluvial deposits in the north-western part of the city were mainly composed of gravel, coarse sand and rock fragments, and were assigned to class C (average Vs (30) of 412 m s-1). Soils with lower Vs values will experience higher earthquake ground shaking than those of the bedrock. Accordingly the major part of Chiang Mai city may experience substantial ground shaking due to the amplification in the soft soils.

  10. Shifts in the eruptive styles at Stromboli in 2010–2014 revealed by ground-based InSAR data

    PubMed Central

    Di Traglia, Federico; Battaglia, Maurizio; Nolesini, Teresa; Lagomarsino, Daniela; Casagli, Nicola

    2015-01-01

    Ground-Based Interferometric Synthetic Aperture Radar (GBInSAR) is an efficient technique for capturing short, subtle episodes of conduit pressurization in open vent volcanoes like Stromboli (Italy), because it can detect very shallow magma storage, which is difficult to identify using other methods. This technique allows the user to choose the optimal radar location for measuring the most significant deformation signal, provides an exceptional geometrical resolution, and allows for continuous monitoring of the deformation. Here, we present and model ground displacements collected at Stromboli by GBInSAR from January 2010 to August 2014. During this period, the volcano experienced several episodes of intense volcanic activity, culminated in the effusive flank eruption of August 2014. Modelling of the deformation allowed us to estimate a source depth of 482 ± 46 m a.s.l. The cumulative volume change was 4.7 ± 2.6 × 105 m3. The strain energy of the source was evaluated 3–5 times higher than the surface energy needed to open the 6–7 August eruptive fissure. The analysis proposed here can help forecast shifts in the eruptive style and especially the onset of flank eruptions at Stromboli and at similar volcanic systems (e.g. Etna, Piton de La Fournaise, Kilauea). PMID:26323251

  11. Can One Satellite Data Set Validation Another? Validation of Envisat SCIAMACHY Data by Comparisons with NOAA-16 SBUV/2 and ERS-2 GOME

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E.; Bojkov, B. R.; Labow, G.; Weber, M.; Burrows, J.

    2004-01-01

    Validation of satellite data remains a high priority for the construction of climate data sets. Traditionally ground based measurements have provided the primary comparison data for validation. For some atmospheric parameters such as ozone, a thoroughly validated satellite data record can be used to validate a new instrument s data product in addition to using ground based data. Comparing validated data with new satellite data has several advantages; availability of much more data, which will improve precision, larger geographical coverage, and the footprints are closer in size, which removes uncertainty due to different observed atmospheric volumes. To demonstrate the applicability and some limitations of this technique, observations from the newly launched SCIAMACHY instrument were compared with the NOM-16 SBW/2 and ERS-2 GOME instruments. The SBW/2 data had all ready undergone validation by comparing to the total ozone ground network. Overall the SCIAMACHY data were found to low by 3% with respect to satellite data and 1% low with respect to ground station data. There appears to be seasonal and or solar zenith angle dependences in the comparisons with SBW/2 where differences increase with higher solar zenith angles. It is known that accuracies in both satellite and ground based total ozone algorithms decrease at high solar zenith angles. There is a strong need for more accurate measurement from and the ground under these conditions. At the present time SCIAMACHY data are limited and longer data set with more coverage in both hemispheres is needed to unravel the cause of these differences.

  12. Amplitude and intensity spatial interferometry; Proceedings of the Meeting, Tucson, AZ, Feb. 14-16, 1990

    NASA Technical Reports Server (NTRS)

    Breckinridge, Jim B. (Editor)

    1990-01-01

    Attention is given to such topics as ground interferometers, space interferometers, speckle-based and interferometry-based astronomical observations, adaptive and atmospheric optics, speckle techniques, and instrumentation. Particular papers are presented concerning recent progress on the IR Michelson array; the IOTA interferometer project; a space interferometer concept for the detection of extrasolar earth-like planets; IR speckle imaging at Palomar; optical diameters of stars measured with the Mt. Wilson Mark III interferometer; the IR array camera for interferometry with the cophased Multiple Mirror Telescope; optimization techniques appliesd to the bispectrum of one-dimensional IR astronomical speckle data; and adaptive optical iamging for extended objects.

  13. Adapting New Space System Designs into Existing Ground Infrastructure

    NASA Technical Reports Server (NTRS)

    Delgado, Hector N.; McCleskey, Carey M.

    2008-01-01

    As routine space operations extend beyond earth orbit, the ability for ground infrastructures to take on new launch vehicle systems and a more complex suite of spacecraft and payloads has become a new challenge. The U.S. Vision for Space Exploration and its Constellation Program provides opportunities for our space operations community to meet this challenge. Presently, as new flight and ground systems add to the overall groundbased and space-based capabilities for NASA and its international partners, specific choices are being made as to what to abandon, what to retain, as well as what to build new. The total ground and space-based infrastructure must support a long-term, sustainable operation after it is all constructed, deployed, and activated. This paper addresses key areas of engineering concern during conceptual design, development, and routine operations, with a particular focus on: (1) legacy system reusability, (2) system supportability attributes and operations characteristics, (3) ground systems design trades and criteria, and (4) technology application survey. Each key area explored weighs the merits of reusability of the infrastructure in terms of: engineering analysis methods and techniques; top-level facility, systems, and equipment design criteria; and some suggested methods for making the operational system attributes (the "-ilities") highly visible to the design teams and decisionmakers throughout the design process.

  14. Measurement of high-energy neutron flux above ground utilizing a spallation based multiplicity technique

    DOE PAGES

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; ...

    2016-11-14

    Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Montemore » Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.« less

  15. Measurement of high-energy neutron flux above ground utilizing a spallation based multiplicity technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter

    Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Montemore » Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.« less

  16. Water sprays in space retrieval operations

    NASA Technical Reports Server (NTRS)

    Freesland, D. C.

    1977-01-01

    Experiments were conducted in a ground based vacuum chamber to determine physical properties of water-ice in a space-like environment. Additional ices, alcohol and ammonia, were also studied. An analytical analysis based on the conservation of angular momentum, resulted in despin performance parameters, i.e., total water mass requirements and despin times. The despin and retrieval of a disabled spacecraft was considered to illustrate a potential application of the water spray technique.

  17. Using satellite image-based maps and ground inventory data to estimate the area of the remaining Atlantic forest in the Brazilian state of Santa Catarina

    Treesearch

    Alexander C. Vibrans; Ronald E. McRoberts; Paolo Moser; Adilson L. Nicoletti

    2013-01-01

    Estimation of large area forest attributes, such as area of forest cover, from remote sensing-based maps is challenging because of image processing, logistical, and data acquisition constraints. In addition, techniques for estimating and compensating for misclassification and estimating uncertainty are often unfamiliar. Forest area for the state of Santa Catarina in...

  18. Future of Space Astronomy: A Global Road Map for the Next Decades

    NASA Technical Reports Server (NTRS)

    Ubertini, Pietro; Gehrels, Neil; Corbett, Ian; DeBernardis, Paolo; Machado, Marcos; Griffin, Matt; Hauser, Michael; Manchanda, Ravinder K.; Kawai, Nobuyuki; Zhang, Shuang-Nan; hide

    2012-01-01

    The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromagnetic spectrum from the radio observations to the high energy gamma rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration. Furthermore, combining existing and future datasets from space and ground based observatories is an emerging mode of powerful and relatively inexpensive research to address problems that can only be tackled by the application of large multi-wavelength observations. If the present set of space and ground-based astronomy facilities today is impressive and complete, with space and ground based astronomy telescopes nicely complementing each other, the situation becomes concerning and critical in the next 10-20 years. In fact, only a few main space missions are planned, possibly restricted to JWST and, perhaps, WFIRST and SPICA, since no other main facilities are already recommended. A "Working Group on the Future of Space Astronomy" was established at the 38th COSPAR Assembly held in Bremen, Germany in July 2010. The purpose of this Working Group was to establish a roadmap for future major space missions to complement future large ground-based telescopes. This paper presents the results of this study including a number of recommendations and a road map for the next decades of Space Astronomy research.

  19. Spectral estimates of net radiation and soil heat flux

    USGS Publications Warehouse

    Daughtry, C.S.T.; Kustas, William P.; Moran, M.S.; Pinter, P. J.; Jackson, R. D.; Brown, P.W.; Nichols, W.D.; Gay, L.W.

    1990-01-01

    Conventional methods of measuring surface energy balance are point measurements and represent only a small area. Remote sensing offers a potential means of measuring outgoing fluxes over large areas at the spatial resolution of the sensor. The objective of this study was to estimate net radiation (Rn) and soil heat flux (G) using remotely sensed multispectral data acquired from an aircraft over large agricultural fields. Ground-based instruments measured Rn and G at nine locations along the flight lines. Incoming fluxes were also measured by ground-based instruments. Outgoing fluxes were estimated using remotely sensed data. Remote Rn, estimated as the algebraic sum of incoming and outgoing fluxes, slightly underestimated Rn measured by the ground-based net radiometers. The mean absolute errors for remote Rn minus measured Rn were less than 7%. Remote G, estimated as a function of a spectral vegetation index and remote Rn, slightly overestimated measured G; however, the mean absolute error for remote G was 13%. Some of the differences between measured and remote values of Rn and G are associated with differences in instrument designs and measurement techniques. The root mean square error for available energy (Rn - G) was 12%. Thus, methods using both ground-based and remotely sensed data can provide reliable estimates of the available energy which can be partitioned into sensible and latent heat under nonadvective conditions. ?? 1990.

  20. NEAR-INFRARED THERMAL EMISSION DETECTIONS OF A NUMBER OF HOT JUPITERS AND THE SYSTEMATICS OF GROUND-BASED NEAR-INFRARED PHOTOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croll, Bryce; Albert, Loic; Lafreniere, David

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K {sub CONT}-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so asmore » to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations.« less

  1. Comparison of crossover and jab step start techniques for base stealing in baseball.

    PubMed

    Miyanishi, Tomohisa; Endo, So; Nagahara, Ryu

    2017-11-01

    Base stealing is an important tactic for increasing the chance of scoring in baseball. This study aimed to compare the crossover step (CS) and jab step (JS) starts for base stealing start performance and to clarify the differences between CS and JS starts in terms of three-dimensional lower extremity joint kinetics. Twelve male baseball players performed CS and JS starts, during which their motion and the force they applied to the ground were simultaneously recorded using a motion-capture system and two force platforms. The results showed that the normalised average forward external power, the average forward-backward force exerted by the left leg, and the forward velocities of the whole body centre of gravity generated by both legs and the left leg were significantly higher for the JS start than for the CS start. Moreover, the positive work done by hip extension during the left leg push-off was two-times greater for the JS start than the CS start. In conclusion, this study has demonstrated that the jab step start may be the better technique for a base stealing start and that greater positive work produced by left hip extension is probably responsible for producing its larger forward ground reaction force.

  2. Feasibility of FT–Raman spectroscopy for rapid screening for DON toxin in ground wheat and barley.

    PubMed

    Liu, Y; Delwiche, S R; Dong, Y

    2009-10-01

    Rapid detection of deoxynivalenol (DON) in cereal-based food and feed has long been the goal of regulators and manufacturers. As non-destructive approaches, infrared (IR) and near-infrared (NIR) spectroscopic techniques have been used for the prediction and classification of contaminated single-kernel and ground grain without any DON extraction steps. These methods, however, are hindered by the intense and broad spectral bands attributed to naturally occurring moisture. Raman spectroscopy could be an alternative to IR and NIR due to its insensitivity to water and fewer overlapped bands. This study explored the feasibility of the Raman technique for rapid and non-destructive screening of DON-contaminated wheat and barley meal. The advantages of this technique include the use of a 1064-nm NIR excitation laser that reduces interference from fluorescence of biological compounds in wheat and barley, the use of a simple intensity-intensity algorithm at two unique frequencies, plus the technique's ease of sample preparation. The results indicate that the simple algorithm, as well as principal component analysis applied to the Raman spectra, can be used to classify low from high DON grain.

  3. Fluid flow electrophoresis in space

    NASA Technical Reports Server (NTRS)

    Griffin, R. N.

    1975-01-01

    Four areas relating to free-flow electrophoresis in space were investigated. The first was the degree of improvement over earthbound operations that might be expected. The second area of investigation covered the problems in developing a flowing buffer electrophoresis apparatus. The third area of investigation was the problem of testing on the ground equipment designed for use in space. The fourth area of investigation was the improvement to be expected in space for purification of biologicals. The results of some ground-based experiments are described. Other studies included cooling requirements in space, fluid sealing techniques, and measurement of voltage drop across membranes.

  4. Drag reductions obtained by modifying a box-shaped ground vehicle

    NASA Technical Reports Server (NTRS)

    Saltzman, E. J.; Meyer, R. R., Jr.; Lux, D. P.

    1974-01-01

    A box-shaped ground vehicle was used to simulate the aerodynamic drag of high volume transports, that is, delivery vans, trucks, or motor homes. The coast-down technique was used to define the drag of the original vehicle, having all square corners, and several modifications of the vehicle. Test velocities ranged up to 65 miles per hour, which provided maximum Reynolds numbers of 1 times 10 to the 7th power based on vehicle length. One combination of modifications produced a reduction in aerodynamic drag of 61 percent as compared with the original square-cornered vehicle.

  5. the Large Aperture GRB Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertou, Xavier

    2009-04-30

    The Large Aperture GRB Observatory (LAGO) aims at the detection of high energy photons from Gamma Ray Bursts (GRB) using the single particle technique (SPT) in ground based water Cherenkov detectors (WCD). To reach a reasonable sensitivity, high altitude mountain sites have been selected in Mexico (Sierra Negra, 4550 m a.s.l.), Bolivia (Chacaltaya, 5300 m a.s.l.) and Venezuela (Merida, 4765 m a.s.l.). We report on the project progresses and the first operation at high altitude, search for bursts in 6 months of preliminary data, as well as search for signal at ground level when satellites report a burst.

  6. Efficiency of optical-electronic systems: methods application for the analysis of structural changes in the process of eye grounds diagnosis

    NASA Astrophysics Data System (ADS)

    Saldan, Yosyp R.; Pavlov, Sergii V.; Vovkotrub, Dina V.; Saldan, Yulia Y.; Vassilenko, Valentina B.; Mazur, Nadia I.; Nikolaichuk, Daria V.; Wójcik, Waldemar; Romaniuk, Ryszard; Suleimenov, Batyrbek; Bainazarov, Ulan

    2017-08-01

    Process of eye tomogram obtaining by means of optical coherent tomography is studied. Stages of idiopathic macula holes formation in the process of eye grounds diagnostics are considered. Main stages of retina pathology progression are determined: Fuzzy logic units for obtaining reliable conclusions regarding the result of diagnosis are developed. By the results of theoretical and practical research system and technique of retinal macular region of the eye state analysis is developed ; application of the system, based on fuzzy logic device, improves the efficiency of eye retina complex.

  7. Recommended data sets, corn segments and spring wheat segments, for use in program development

    NASA Technical Reports Server (NTRS)

    Austin, W. W. (Principal Investigator)

    1981-01-01

    The sets of Large Area Crop Inventory Experiment sites, crop year 1978, which are recommended for use in the development and evaluation of classification techniques based on LANDSAT spectral data are presented. For each site, the following exists: (1) accuracy assessment digitized ground truth; (2) a minimum of 5 percent of the scene ground truth identified as corn or spring wheat; and (3) at least four acquisitions of acceptable data quality during the growing season of the crop of interest. The recommended data sets consist of 41 corn/soybean sites and 17 spring wheat sites.

  8. Data Assimilation Techniques for Ionospheric Reference Scenarios - project overview and first results

    NASA Astrophysics Data System (ADS)

    Gerzen, Tatjana; Mainul Hoque, M.; Wilken, Volker; Minkwitz, David; Schlüter, Stefan

    2015-04-01

    The European Geostationary Navigation Overlay Service (EGNOS) is the European Satellite Based Augmentation Service (SBAS) that provides value added services, in particular to Safety of Live (SoL) users of the Global Navigation Satellite Systems (GNSS). In the frame of the European GNSS Evolution Programme (EGEP), ESA has launched several activities, which are aiming to support the design, development and qualification of the future operational EGNOS infrastructure and associated services. The ionosphere is the part of the upper Earth's atmosphere between about 50 km and 1000 km above the Earth's surface, which contains sufficient free electrons to cause strong impact on radio signal propagation. Therefore, treatment of the ionosphere is a critical issue to guarantee the EGNOS system performance. In order to conduct the EGNOS end-to-end performance simulations and to assure the capability for maintaining integrity of the EGNOS system especially during ionospheric storm conditions, Ionospheric Reference Scenarios (IRSs) are introduced by ESA. The project Data Assimilation Techniques for Ionospheric Reference Scenarios (DAIS) - aims to generate improved EGNOS IRSs by combining space borne and ground based GNSS observations. The main focus of this project is to demonstrate that ionospheric radio occultation (IRO) measurements can significantly contribute to fill data gaps in GNSS ground networks (particularly in Africa and over the oceans) when generating the IRSs. The primary tasks are the calculation and validation of time series of IRSs (i.e. TEC maps) by a 3D assimilation approach that combines IRO and ground based GNSS measurements with an ionospheric background model in an optimal way. In the first phase of the project we selected appropriate test periods, one presenting perturbed and the other one - nominal ionospheric conditions, collected and filtered the corresponding data. We defined and developed an applicable technique for the 3D assimilation and applied this technique for the generation of IRSs covering the EGNOS V3 service area. This presentation gives an overview about the DAIS project and the first results. We outline the assimilation approach, show test run results and finally address and discuss open questions.

  9. Intelligent and integrated techniques for coalbed methane (CBM) recovery and reduction of greenhouse gas emission.

    PubMed

    Qianting, Hu; Yunpei, Liang; Han, Wang; Quanle, Zou; Haitao, Sun

    2017-07-01

    Coalbed methane (CBM) recovery is a crucial approach to realize the exploitation of a clean energy and the reduction of the greenhouse gas emission. In the past 10 years, remarkable achievements on CBM recovery have been obtained in China. However, some key difficulties still exist such as long borehole drilling in complicated geological condition, and poor gas drainage effect due to low permeability. In this study, intelligent and integrated techniques for CBM recovery are introduced. These integrated techniques mainly include underground CBM recovery techniques and ground well CBM recovery techniques. The underground CBM recovery techniques consist of the borehole formation technique, gas concentration improvement technique, and permeability enhancement technique. According to the division of mining-induced disturbance area, the ground well arrangement area and well structure type in mining-induced disturbance developing area and mining-induced disturbance stable area are optimized to significantly improve the ground well CBM recovery. Besides, automatic devices such as drilling pipe installation device are also developed to achieve remote control of data recording, which makes the integrated techniques intelligent. These techniques can provide key solutions to some long-term difficulties in CBM recovery.

  10. Airborne Visible Laser Optical Communications Program (AVLOC)

    NASA Technical Reports Server (NTRS)

    Ward, J. H.

    1975-01-01

    The design, development, and operation of airborne and ground-based laser communications and laser radar hardware is described in support of the Airborne Visible Laser Optical Communication program. The major emphasis is placed on the development of a highly flexible test bed for the evaluation of laser communications systems techniques and components in an operational environment.

  11. Application of the Combination Approach for Estimating Evapotranspiration in Puerto Rico

    NASA Technical Reports Server (NTRS)

    Harmsen, Eric; Luvall, Jeffrey; Gonzalez, Jorge

    2005-01-01

    The ability to estimate short-term fluxes of water vapor from the land surface is important for validating latent heat flux estimates from high resolution remote sensing techniques. A new, relatively inexpensive method is presented for estimating t h e ground-based values of the surface latent heat flux or evapotranspiration.

  12. A technique for correcting ERTS data for solar and atmospheric effects. [Michigan test site

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Peacock, K.; Shah, N. J.

    1974-01-01

    The author has identified the following significant results. Based on processing ERTS CCTs and ground truth measurements collected on Michigan test site for January through June 1973 the following results are reported: (1) atmospheric transmittance varies from: 70 to 85% in band 4, 77 to 90% in band 5, 80 to 94% in band 6, and 84 to 97% in band 7 for one air mass; (2) a simple technique was established to determine atmospheric scattering seen by ERTS-1 from ground-based measurements of sky radiance. For March this scattering was found to be equivalent to that produced by a target having a reflectance of 11% in band 4, 5% in band 5, 3% in band 6, and 1% in band 7; (3) computer ability to classify targets under various atmospheric conditions was determined. Classification accuracy on some targets (i.e. bare soil, tended grass, etc.) hold up even under the most severe atmospheres encountered, while performance on other targets (trees, urban, rangeland, etc.) degrades rapidly when atmospheric conditions change by the smallest amount.

  13. Multidisciplinary approach for the study of an Egyptian coffin (late 22nd/early 25th dynasty): combining imaging and spectroscopic techniques.

    PubMed

    Bracci, S; Caruso, O; Galeotti, M; Iannaccone, R; Magrini, D; Picchi, D; Pinna, D; Porcinai, S

    2015-06-15

    This paper demonstrates that an educated methodology based on both non-invasive and micro invasive techniques in a two-step approach is a powerful tool to characterize the materials and stratigraphies of an Egyptian coffin, which was restored several times. This coffin, belonging to a certain Mesiset, is now located at the Museo Civico Archeologico of Bologna (inventory number MCABo EG 1963). Scholars attributed it to the late 22nd/early 25th dynasty by stylistic comparison. The first step of the diagnostic approach applied imaging techniques on the whole surface in order to select measurements spots and to unveil both original and restored areas. Images and close microscopic examination of the polychrome surface allowed selecting representative areas to be investigated in situ by portable spectroscopic techniques: X-ray Fluorescence (XRF), Fiber Optic Reflectance Spectroscopy (FORS) and Fourier Transform Infrared spectroscopy (FTIR). After the analysis of the results coming from the first step, very few selected samples were taken to clarify the stratigraphy of the polychrome layers. The first step, based on the combination of imaging and spectroscopic techniques in a totally non-invasive modality, is quite unique in the literature on Egyptian coffins and enabled us to reveal many differences in the ground layer's composition and to identify a remarkable number of pigments in the original and restored areas. This work offered also a chance to check the limitations of the non-invasive approach applied on a complex case, namely the right localization of different materials in the stratigraphy and the identification of binding media. Indeed, to dissolve any remaining doubts on superimposed layers belonging to different interventions, it was necessary to sample few micro-fragments in some selected areas and analyze them prepared as cross-sections. The original ground layer is made of calcite, while the restored areas show the presence of either a mixture of calcite and silicates or a gypsum ground, overlapped by lead white. The original pigments were identified as orpiment, cinnabar and red clay, Egyptian blue and green copper based pigments. Some other pigments, such as white lead, Naples yellow, cerulean blue and azurite were only found in the restored areas. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Determination of aluminium in groundwater samples by GF-AAS, ICP-AES, ICP-MS and modelling of inorganic aluminium complexes.

    PubMed

    Frankowski, Marcin; Zioła-Frankowska, Anetta; Kurzyca, Iwona; Novotný, Karel; Vaculovič, Tomas; Kanický, Viktor; Siepak, Marcin; Siepak, Jerzy

    2011-11-01

    The paper presents the results of aluminium determinations in ground water samples of the Miocene aquifer from the area of the city of Poznań (Poland). The determined aluminium content amounted from <0.0001 to 752.7 μg L(-1). The aluminium determinations were performed using three analytical techniques: graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The results of aluminium determinations in groundwater samples for particular analytical techniques were compared. The results were used to identify the ascent of ground water from the Mesozoic aquifer to the Miocene aquifer in the area of the fault graben. Using the Mineql+ program, the modelling of the occurrence of aluminium and the following aluminium complexes: hydroxy, with fluorides and sulphates was performed. The paper presents the results of aluminium determinations in ground water using different analytical techniques as well as the chemical modelling in the Mineql+ program, which was performed for the first time and which enabled the identification of aluminium complexes in the investigated samples. The study confirms the occurrence of aluminium hydroxy complexes and aluminium fluoride complexes in the analysed groundwater samples. Despite the dominance of sulphates and organic matter in the sample, major participation of the complexes with these ligands was not stated based on the modelling.

  15. Exploration Challenges: Transferring Ground Repair Techniques to Space Flight Application

    NASA Technical Reports Server (NTRS)

    McLemore, Carole A.; Kennedy, James P.; Rose, Frederick A.; Evans, Brian W.

    2007-01-01

    Fulfilling NASA's Vision for Space Exploration will demand an extended presence in space at distances from our home planet that exceed our current experience in space logistics and maintenance. The ability to perform repairs in lieu of the customary Orbital Replacement Unit (ORU) process where a faulty part is replaced will be elevated from contingency to routine to sustain operations. The use and cost effectiveness of field repairs for ground based operations in industry and the military have advanced with the development of technology in new materials, new repair techniques and new equipment. The unique environments, accessibility constraints and Extra Vehicular Activity (EVA) issues of space operations will require extensive assessment and evolution of these technologies to provide an equivalent and expected level of assurance to mission success. Challenges include the necessity of changes in design philosophy and policy, extremes in thermal cycling, disruptive forces (such as static charge and wind entrainment) on developed methods for control of materials, dramatically increased volatility of chemicals for cleaning and other compounds due to extremely low pressures, the limits imposed on dexterity and maneuverability by current EVA equipment and practices, and the necessity of unique verification methodology. This paper describes these challenges in and discusses the effects on the established ground techniques for repair. The paper also describes the leading repair methodology candidates and their beneficial attributes for resolving these issues with the evolution of technology.

  16. Cross Calibration of TOMS, SBUV/2 and SCIAMACHY Radiances from Ground Observations

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Bhartia, P. K.; Bojkov, B.; Kowaleski, M.; Labow, G.; Ahmad, Z.

    2002-01-01

    We have shown that validation of radiances is a very effective means for correcting absolute accuracy and long term drifts of backscatter type satellite measurements. This method by-passes the algorithms used for both satellite and ground based measurements which are normally used to validate and correct the satellite data. A new method for satellite validation is planned which will compliment measurements from the existing ground-based networks. This method will employ very accurate comparisons between ground based zenith sky radiances and satellite nadir radiances. These comparisons will rely heavily on the experience derived from the Shuttle SBUV (SSBUV) program which provided a reference standard of radiance measurements for SBUV/2, TOMS, and GOME. This new measurement program, called 'Skyrad', employs two well established capabilities at the Goddard Space Flight Center, 1) the SSBUV calibration facilities and 2) the radiative transfer codes used for the TOMS and SBUV/2 algorithms and their subsequent refinements. Radiative transfer calculations show that ground based zenith sky and satellite nadir backscatter ultraviolet comparisons can be made very accurately under certain viewing conditions. The Skyrad instruments (SSBUV, Brewer spectrophotometers, and possibly others) will be calibrated and maintained to a precision of a few tenths of a percent. Skyrad data will then enable long term calibration of upcoming satellite instruments such as QuickTOMS, SBUV/2s and SCIAMACHY with a high degree of precision. This technique can be further employed to monitor the performance of future instruments such as GOMEZ, OMI, and OMPS. Additional information is included in the original extended abstract.

  17. Measuring structure deformations of a composite glider by optical means with on-ground and in-flight testing

    NASA Astrophysics Data System (ADS)

    Bakunowicz, Jerzy; Święch, Łukasz; Meyer, Ralf

    2016-12-01

    In aeronautical research experimental data sets of high quality are essential to verify and improve simulation algorithms. For this reason the experimental techniques need to be constantly refined. The shape, movement or deformation of structural aircraft elements can be measured implicitly in multiple ways; however, only optical, correlation-based techniques are able to deliver direct high-order and spatial results. In this paper two different optical metrologies are used for on-ground preparation and the actual execution of in-flight wing deformation measurements on a PW-6U glider. Firstly, the commercial PONTOS system is used for static tests on the ground and for wind tunnel investigations to successfully certify an experimental sensor pod mounted on top of the test bed fuselage. Secondly, a modification of the glider is necessary to implement the optical method named image pattern correlation technique (IPCT), which has been developed by the German Aerospace Center DLR. This scientific technology uses a stereoscopic camera set-up placed inside the experimental pod and a stochastic dot matrix applied to the area of interest on the glider wing to measure the deformation of the upper wing surface in-flight. The flight test installation, including the preparation, is described and results are presented briefly. Focussing on the compensation for typical error sources, the paper concludes with a recommended procedure to enhance the data processing for better results. Within the presented project IPCT has been developed and optimized for a new type of test bed. Adapted to the special requirements of the glider, the IPCT measurements were able to deliver a valuable wing deformation data base which now can be used to improve corresponding numerical models and simulations.

  18. An ANN-Based Smart Tomographic Reconstructor in a Dynamic Environment

    PubMed Central

    de Cos Juez, Francisco J.; Lasheras, Fernando Sánchez; Roqueñí, Nieves; Osborn, James

    2012-01-01

    In astronomy, the light emitted by an object travels through the vacuum of space and then the turbulent atmosphere before arriving at a ground based telescope. By passing through the atmosphere a series of turbulent layers modify the light's wave-front in such a way that Adaptive Optics reconstruction techniques are needed to improve the image quality. A novel reconstruction technique based in Artificial Neural Networks (ANN) is proposed. The network is designed to use the local tilts of the wave-front measured by a Shack Hartmann Wave-front Sensor (SHWFS) as inputs and estimate the turbulence in terms of Zernike coefficients. The ANN used is a Multi-Layer Perceptron (MLP) trained with simulated data with one turbulent layer changing in altitude. The reconstructor was tested using three different atmospheric profiles and compared with two existing reconstruction techniques: Least Squares type Matrix Vector Multiplication (LS) and Learn and Apply (L + A). PMID:23012524

  19. Noble-TLBO MPPT Technique and its Comparative Analysis with Conventional methods implemented on Solar Photo Voltaic System

    NASA Astrophysics Data System (ADS)

    Patsariya, Ajay; Rai, Shiwani; Kumar, Yogendra, Dr.; Kirar, Mukesh, Dr.

    2017-08-01

    The energy crisis particularly with developing GDPs, has bring up to a new panorama of sustainable power source like solar energy, which has encountered huge development. Progressively high infiltration level of photovoltaic (PV) era emerges in keen matrix. Sunlight based power is irregular and variable, as the sun based source at the ground level is exceedingly subject to overcast cover inconstancy, environmental vaporized levels, and other climate parameters. The inalienable inconstancy of substantial scale sun based era acquaints huge difficulties with keen lattice vitality administration. Exact determining of sun powered power/irradiance is basic to secure financial operation of the shrewd framework. In this paper a noble TLBO-MPPT technique has been proposed to address the vitality of solar energy. A comparative analysis has been presented between conventional PO, IC and the proposed MPPT technique. The research has been done on Matlab Simulink software version 2013.

  20. Solidification kinetics of a Cu-Zr alloy: ground-based and microgravity experiments

    NASA Astrophysics Data System (ADS)

    Galenko, P. K.; Hanke, R.; Paul, P.; Koch, S.; Rettenmayr, M.; Gegner, J.; Herlach, D. M.; Dreier, W.; Kharanzhevski, E. V.

    2017-04-01

    Experimental and theoretical results obtained in the MULTIPHAS-project (ESA-European Space Agency and DLR-German Aerospace Center) are critically discussed regarding solidification kinetics of congruently melting and glass forming Cu50Zr50 alloy samples. The samples are investigated during solidification using a containerless technique in the Electromagnetic Levitation Facility [1]. Applying elaborated methodologies for ground-based and microgravity experimental investigations [2], the kinetics of primary dendritic solidification is quantitatively evaluated. Electromagnetic Levitator in microgravity (parabolic flights and on board of the International Space Station) and Electrostatic Levitator on Ground are employed. The solidification kinetics is determined using a high-speed camera and applying two evaluation methods: “Frame by Frame” (FFM) and “First Frame - Last Frame” (FLM). In the theoretical interpretation of the solidification experiments, special attention is given to the behavior of the cluster structure in Cu50Zr50 samples with the increase of undercooling. Experimental results on solidification kinetics are interpreted using a theoretical model of diffusion controlled dendrite growth.

  1. Predicting thunderstorm evolution using ground-based lightning detection networks

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.

    1990-01-01

    Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined.

  2. Exploitation of ERTS-1 imagery utilizing snow enhancement techniques

    NASA Technical Reports Server (NTRS)

    Wobber, F. J.; Martin, K. R.

    1973-01-01

    Photogeological analysis of ERTS-simulation and ERTS-1 imagery of snowcovered terrain within the ERAP Feather River site and within the New England (ERTS) test area provided new fracture detail which does not appear on available geological maps. Comparative analysis of snowfree ERTS-1 images has demonstrated that MSS Bands 5 and 7 supply the greatest amount of geological fracture detail. Interpretation of the first snow-covered ERTS-1 images in correlation with ground snow depth data indicates that a heavy blanket of snow (more than 9 inches) accentuates major structural features while a light "dusting", (less than 1 inch) accentuates more subtle topographic expressions. An effective mail-based method for acquiring timely ground-truth (snowdepth) information was established and provides a ready correlation of fracture detail with snow depth so as to establish the working limits of the technique. The method is both efficient and inexpensive compared with the cost of similarly scaled direct field observations.

  3. Predicting Electron Population Characteristics in 2-D Using Multispectral Ground-Based Imaging

    NASA Astrophysics Data System (ADS)

    Grubbs, Guy; Michell, Robert; Samara, Marilia; Hampton, Donald; Jahn, Jorg-Micha

    2018-01-01

    Ground-based imaging and in situ sounding rocket data are compared to electron transport modeling for an active inverted-V type auroral event. The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska, on 3 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km over the aurora. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska, and aimed toward magnetic zenith. The imagers observed the intensity of different auroral emission lines (427.8, 557.7, and 844.6 nm) at the magnetic foot point of the rocket payload. Emission line intensity data are correlated with electron characteristics measured by the GREECE onboard electron spectrometer. A modified version of the GLobal airglOW (GLOW) model is used to estimate precipitating electron characteristics based on optical emissions. GLOW predicted the electron population characteristics with 20% error given the observed spectral intensities within 10° of magnetic zenith. Predictions are within 30% of the actual values within 20° of magnetic zenith for inverted-V-type aurora. Therefore, it is argued that this technique can be used, at least in certain types of aurora, such as the inverted-V type presented here, to derive 2-D maps of electron characteristics. These can then be used to further derive 2-D maps of ionospheric parameters as a function of time, based solely on multispectral optical imaging data.

  4. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: a review.

    PubMed

    Maes, W H; Steppe, K

    2012-08-01

    As evaporation of water is an energy-demanding process, increasing evapotranspiration rates decrease the surface temperature (Ts) of leaves and plants. Based on this principle, ground-based thermal remote sensing has become one of the most important methods for estimating evapotranspiration and drought stress and for irrigation. This paper reviews its application in agriculture. The review consists of four parts. First, the basics of thermal remote sensing are briefly reviewed. Second, the theoretical relation between Ts and the sensible and latent heat flux is elaborated. A modelling approach was used to evaluate the effect of weather conditions and leaf or vegetation properties on leaf and canopy temperature. Ts increases with increasing air temperature and incoming radiation and with decreasing wind speed and relative humidity. At the leaf level, the leaf angle and leaf dimension have a large influence on Ts; at the vegetation level, Ts is strongly impacted by the roughness length; hence, by canopy height and structure. In the third part, an overview of the different ground-based thermal remote sensing techniques and approaches used to estimate drought stress or evapotranspiration in agriculture is provided. Among other methods, stress time, stress degree day, crop water stress index (CWSI), and stomatal conductance index are discussed. The theoretical models are used to evaluate the performance and sensitivity of the most important methods, corroborating the literature data. In the fourth and final part, a critical view on the future and remaining challenges of ground-based thermal remote sensing is presented.

  5. Vibrationally resolved photoelectron spectroscopy of electronic excited states of DNA bases: application to the ã state of thymine cation.

    PubMed

    Hochlaf, Majdi; Pan, Yi; Lau, Kai-Chung; Majdi, Youssef; Poisson, Lionel; Garcia, Gustavo A; Nahon, Laurent; Al Mogren, Muneerah Mogren; Schwell, Martin

    2015-02-19

    For fully understanding the light-molecule interaction dynamics at short time scales, recent theoretical and experimental studies proved the importance of accurate characterizations not only of the ground (D0) but also of the electronic excited states (e.g., D1) of molecules. While ground state investigations are currently straightforward, those of electronic excited states are not. Here, we characterized the à electronic state of ionic thymine (T(+)) DNA base using explicitly correlated coupled cluster ab initio methods and state-of-the-art synchrotron-based electron/ion coincidence techniques. The experimental spectrum is composed of rich and long vibrational progressions corresponding to the population of the low frequency modes of T(+)(Ã). This work challenges previous numerous works carried out on DNA bases using common synchrotron and VUV-based photoelectron spectroscopies. We provide hence a powerful theoretical and experimental framework to study the electronic structure of ionized DNA bases that could be generalized to other medium-sized biologically relevant systems.

  6. High-spatial-resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.

    1994-01-01

    The principal contributions of this combined theoretical and experimental effort were to advance and demonstrate new and more accurate techniques for sounding atmospheric temperature, humidity, and precipitation profiles at millimeter wavelengths, and to improve the scientific basis for such soundings. Some of these techniques are being incorporated in both research and operational systems. Specific results include: (1) development of the MIT Microwave Temperature Sounder (MTS), a 118-GHz eight-channel imaging spectrometer plus a switched-frequency spectrometer near 53 GHz, for use on the NASA ER-2 high-altitude aircraft, (2) conduct of ER-2 MTS missions in multiple seasons and locations in combination with other instruments, mapping with unprecedented approximately 2-km lateral resolution atmospheric temperature and precipitation profiles, atmospheric transmittances (at both zenith and nadir), frontal systems, and hurricanes, (3) ground based 118-GHz 3-D spectral images of wavelike structure within clouds passing overhead, (4) development and analysis of approaches to ground- and space-based 5-mm wavelength sounding of the upper stratosphere and mesosphere, which supported the planning of improvements to operational weather satellites, (5) development of improved multidimensional and adaptive retrieval methods for atmospheric temperature and humidity profiles, (6) development of combined nonlinear and statistical retrieval techniques for 183-GHz humidity profile retrievals, (7) development of nonlinear statistical retrieval techniques for precipitation cell-top altitudes, and (8) numerical analyses of the impact of remote sensing data on the accuracy of numerical weather predictions; a 68-km gridded model was used to study the spectral properties of error growth.

  7. Localization Using Visual Odometry and a Single Downward-Pointing Camera

    NASA Technical Reports Server (NTRS)

    Swank, Aaron J.

    2012-01-01

    Stereo imaging is a technique commonly employed for vision-based navigation. For such applications, two images are acquired from different vantage points and then compared using transformations to extract depth information. The technique is commonly used in robotics for obstacle avoidance or for Simultaneous Localization And Mapping, (SLAM). Yet, the process requires a number of image processing steps and therefore tends to be CPU-intensive, which limits the real-time data rate and use in power-limited applications. Evaluated here is a technique where a monocular camera is used for vision-based odometry. In this work, an optical flow technique with feature recognition is performed to generate odometry measurements. The visual odometry sensor measurements are intended to be used as control inputs or measurements in a sensor fusion algorithm using low-cost MEMS based inertial sensors to provide improved localization information. Presented here are visual odometry results which demonstrate the challenges associated with using ground-pointing cameras for visual odometry. The focus is for rover-based robotic applications for localization within GPS-denied environments.

  8. Cone penetrometer testing and discrete-depth ground water sampling techniques: A cost-effective method of site characterization in a multiple-aquifer setting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemo, D.A.; Pierce, Y.G.; Gallinatti, J.D.

    Cone penetrometer testing (CPT), combined with discrete-depth ground water sampling methods, can significantly reduce the time and expense required to characterize large sites that have multiple aquifers. Results from the screening site characterization can then be used to design and install a cost-effective monitoring well network. At a site in northern California, it was necessary to characterize the stratigraphy and the distribution of volatile organic compounds (VOCs). To expedite characterization, a five-week field screening program was implemented that consisted of a shallow ground water survey, CPT soundings and pore-pressure measurements, and discrete-depth ground water sampling. Based on continuous lithologic informationmore » provided by the CPT soundings, four predominantly coarse-grained, water yielding stratigraphic packages were identified. Seventy-nine discrete-depth ground water samples were collected using either shallow ground water survey techniques, the BAT Enviroprobe, or the QED HydroPunch I, depending on subsurface conditions. Using results from these efforts, a 20-well monitoring network was designed and installed to monitor critical points within each stratigraphic package. Good correlation was found for hydraulic head and chemical results between discrete-depth screening data and monitoring well data. Understanding the vertical VOC distribution and concentrations produced substantial time and cost savings by minimizing the number of permanent monitoring wells and reducing the number of costly conductor casings that had to be installed. Additionally, significant long-term cost savings will result from reduced sampling costs, because fewer wells comprise the monitoring network. The authors estimate these savings to be 50% for site characterization costs, 65% for site characterization time, and 60% for long-term monitoring costs.« less

  9. IDENTIFICATION OF SOURCES OF GROUND-WATER SALINIZA- TION USING GEOCHEMICAL TECHNIQUES

    EPA Science Inventory

    This report deals with salt-water sources that commonly mix and deteriorate fresh ground water. It reviews characteristics of salt-water sources and geochemical techniques that can be used to identify these sources after mixing has occurred. The report is designed to assist inves...

  10. V/STOL and STOL ground effects and testing techniques

    NASA Technical Reports Server (NTRS)

    Kuhn, R. E.

    1987-01-01

    The ground effects associated with V/STOL operation were examined and an effort was made to develop the equipment and testing techniques needed for that understanding. Primary emphasis was on future experimental programs in the 40 x 80 and the 80 x 120 foot test sections and in the outdoor static test stand associated with these facilities. The commonly used experimental techniques are reviewed and data obtained by various techniques are compared with each other and with available estimating methods. These reviews and comparisons provide insight into the limitations of past studies and the testing techniques used and identify areas where additional work is needed. The understanding of the flow mechanics involved in hovering and in transition in and out of ground effect is discussed. The basic flow fields associated with hovering, transition and STOL operation of jet powered V/STOL aircraft are depicted.

  11. Response of the Earth’s lower ionosphere to the Ground Level Enhancement event of December 13, 2006

    NASA Astrophysics Data System (ADS)

    Žigman, Vida; Kudela, Karel; Grubor, Davorka

    2014-03-01

    In this study we analyze the Ground Level Enhancement Event No 70 observed on December 13, 2006, by correlating the observations from two research topics: Cosmic rays and Very Low Frequency (VLF < 30 kHz) wave propagation, as two ground based techniques for the detection of solar proton events, and their impact on the lower ionosphere. The observations have been endorsed from recordings of worldwide network ground based Neutron Monitors as well as by satellite data from the satellites GOES 12 (www.swpc.noaa.gov) and Pamela (www.pamela.roma2infn.it). We have evaluated the ionization rate for protons in the altitude range relevant to VLF propagation, and for galactic cosmic ray (GCR) background, finding that at energies up to ˜2 GeV the ionization rate of solar protons exceeded the GCR ionization by 1.5 orders of magnitude. We have applied the Long Wave Propagation Capability (LWPC) code to evaluate the enhancement of the electron density from VLF signal perturbation and have inferred corresponding electron densities from the evaluated ionization rates and effective recombination coefficients from literature, to find the two independent sets in good agreement.

  12. Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).

    PubMed

    Cox, Christian L; Chippindale, Paul T

    2014-08-01

    We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.

  13. Report of the panel on international programs

    NASA Technical Reports Server (NTRS)

    Anderson, Allen Joel; Fuchs, Karl W.; Ganeka, Yasuhiro; Gaur, Vinod; Green, Andrew A.; Siegfried, W.; Lambert, Anthony; Rais, Jacub; Reighber, Christopher; Seeger, Herman

    1991-01-01

    The panel recommends that NASA participate and take an active role in the continuous monitoring of existing regional networks, the realization of high resolution geopotential and topographic missions, the establishment of interconnection of the reference frames as defined by different space techniques, the development and implementation of automation for all ground-to-space observing systems, calibration and validation experiments for measuring techniques and data, the establishment of international space-based networks for real-time transmission of high density space data in standardized formats, tracking and support for non-NASA missions, and the extension of state-of-the art observing and analysis techniques to developing nations.

  14. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  15. Moving towards Hyper-Resolution Hydrologic Modeling

    NASA Astrophysics Data System (ADS)

    Rouf, T.; Maggioni, V.; Houser, P.; Mei, Y.

    2017-12-01

    Developing a predictive capability for terrestrial hydrology across landscapes, with water, energy and nutrients as the drivers of these dynamic systems, faces the challenge of scaling meter-scale process understanding to practical modeling scales. Hyper-resolution land surface modeling can provide a framework for addressing science questions that we are not able to answer with coarse modeling scales. In this study, we develop a hyper-resolution forcing dataset from coarser resolution products using a physically based downscaling approach. These downscaling techniques rely on correlations with landscape variables, such as topography, roughness, and land cover. A proof-of-concept has been implemented over the Oklahoma domain, where high-resolution observations are available for validation purposes. Hourly NLDAS (North America Land Data Assimilation System) forcing data (i.e., near-surface air temperature, pressure, and humidity) have been downscaled to 500m resolution over the study area for 2015-present. Results show that correlation coefficients between the downscaled temperature dataset and ground observations are consistently higher than the ones between the NLDAS temperature data at their native resolution and ground observations. Not only correlation coefficients are higher, but also the deviation around the 1:1 line in the density scatterplots is smaller for the downscaled dataset than the original one with respect to the ground observations. Results are therefore encouraging as they demonstrate that the 500m temperature dataset has a good agreement with the ground information and can be adopted to force the land surface model for soil moisture estimation. The study has been expanded to wind speed and direction, incident longwave and shortwave radiation, pressure, and precipitation. Precipitation is well known to vary dramatically with elevation and orography. Therefore, we are pursuing a downscaling technique based on both topographical and vegetation characteristics.

  16. Determination of a Limited Scope Network's Lightning Detection Efficiency

    NASA Technical Reports Server (NTRS)

    Rompala, John T.; Blakeslee, R.

    2008-01-01

    This paper outlines a modeling technique to map lightning detection efficiency variations over a region surveyed by a sparse array of ground based detectors. A reliable flash peak current distribution (PCD) for the region serves as the technique's base. This distribution is recast as an event probability distribution function. The technique then uses the PCD together with information regarding: site signal detection thresholds, type of solution algorithm used, and range attenuation; to formulate the probability that a flash at a specified location will yield a solution. Applying this technique to the full region produces detection efficiency contour maps specific to the parameters employed. These contours facilitate a comparative analysis of each parameter's effect on the network's detection efficiency. In an alternate application, this modeling technique gives an estimate of the number, strength, and distribution of events going undetected. This approach leads to a variety of event density contour maps. This application is also illustrated. The technique's base PCD can be empirical or analytical. A process for formulating an empirical PCD specific to the region and network being studied is presented. A new method for producing an analytical representation of the empirical PCD is also introduced.

  17. Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream

    USGS Publications Warehouse

    Katz, B.G.; Catches, J.S.; Bullen, T.D.; Michel, R.L.

    1998-01-01

    The Little River, an ephemeral stream that drains a watershed of approximately 88 km2 in northern Florida, disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer, the source of water supply in northern Florida. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques. Nine monitoring wells were installed open to the uppermost part of the aquifer in areas near the sinks where numerous subterranean karst solution features were identified using ground penetrating radar. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Rapid recharge of river water into some parts of the aquifer during high-flow conditions was indicated by enriched values of delta 18O and delta deuterium (-1.67 to -3.17 per mil and -9.2 to -15.6 per mil, respectively), elevated concentrations of tannic acid, higher (more radiogenic) 87Sr/86Sr ratios, and lower concentrations of 222Rn, silica, and alkalinity compared to low-flow conditions. The proportion of river water that mixed with ground water ranged from 0.10 to 0.67 based on binary mixing models using the tracers 18O, deuterium, tannic acid, silica, 222Rn, and 87Sr/86Sr. On the basis of mass-balance modeling during steady-state flow conditions, the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter.The Little River of northern Florida disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques. Nine monitoring wells were installed open to the uppermost part of the aquifer. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Based on mass-balance modeling during steady-state flow conditions, it was found that the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter.

  18. Domain-wall excitations in the two-dimensional Ising spin glass

    NASA Astrophysics Data System (ADS)

    Khoshbakht, Hamid; Weigel, Martin

    2018-02-01

    The Ising spin glass in two dimensions exhibits rich behavior with subtle differences in the scaling for different coupling distributions. We use recently developed mappings to graph-theoretic problems together with highly efficient implementations of combinatorial optimization algorithms to determine exact ground states for systems on square lattices with up to 10 000 ×10 000 spins. While these mappings only work for planar graphs, for example for systems with periodic boundary conditions in at most one direction, we suggest here an iterative windowing technique that allows one to determine ground states for fully periodic samples up to sizes similar to those for the open-periodic case. Based on these techniques, a large number of disorder samples are used together with a careful finite-size scaling analysis to determine the stiffness exponents and domain-wall fractal dimensions with unprecedented accuracy, our best estimates being θ =-0.2793 (3 ) and df=1.273 19 (9 ) for Gaussian couplings. For bimodal disorder, a new uniform sampling algorithm allows us to study the domain-wall fractal dimension, finding df=1.279 (2 ) . Additionally, we also investigate the distributions of ground-state energies, of domain-wall energies, and domain-wall lengths.

  19. Fusion of LIDAR Data and Multispectral Imagery for Effective Building Detection Based on Graph and Connected Component Analysis

    NASA Astrophysics Data System (ADS)

    Gilani, S. A. N.; Awrangjeb, M.; Lu, G.

    2015-03-01

    Building detection in complex scenes is a non-trivial exercise due to building shape variability, irregular terrain, shadows, and occlusion by highly dense vegetation. In this research, we present a graph based algorithm, which combines multispectral imagery and airborne LiDAR information to completely delineate the building boundaries in urban and densely vegetated area. In the first phase, LiDAR data is divided into two groups: ground and non-ground data, using ground height from a bare-earth DEM. A mask, known as the primary building mask, is generated from the non-ground LiDAR points where the black region represents the elevated area (buildings and trees), while the white region describes the ground (earth). The second phase begins with the process of Connected Component Analysis (CCA) where the number of objects present in the test scene are identified followed by initial boundary detection and labelling. Additionally, a graph from the connected components is generated, where each black pixel corresponds to a node. An edge of a unit distance is defined between a black pixel and a neighbouring black pixel, if any. An edge does not exist from a black pixel to a neighbouring white pixel, if any. This phenomenon produces a disconnected components graph, where each component represents a prospective building or a dense vegetation (a contiguous block of black pixels from the primary mask). In the third phase, a clustering process clusters the segmented lines, extracted from multispectral imagery, around the graph components, if possible. In the fourth step, NDVI, image entropy, and LiDAR data are utilised to discriminate between vegetation, buildings, and isolated building's occluded parts. Finally, the initially extracted building boundary is extended pixel-wise using NDVI, entropy, and LiDAR data to completely delineate the building and to maximise the boundary reach towards building edges. The proposed technique is evaluated using two Australian data sets: Aitkenvale and Hervey Bay, for object-based and pixel-based completeness, correctness, and quality. The proposed technique detects buildings larger than 50 m2 and 10 m2 in the Aitkenvale site with 100% and 91% accuracy, respectively, while in the Hervey Bay site it performs better with 100% accuracy for buildings larger than 10 m2 in area.

  20. Comparison of wind velocity in thunderstorms determined from measurements by a ground-based Doppler radar and an F-106B airplane

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Dunham, R. E., Jr.; Lee, J. T.

    1985-01-01

    As a part of the NASA Storm Hazards Program, the wind velocity in several thunderstorms was measured by an F-106B instrumented airplane and a ground-based Doppler radar. The results of five airplane penetrations of two storms in 1980 and six penetrations of one storm in 1981 are given. Comparisons were made between the radial wind velocity components measured by the radar and the airplane. The correlation coefficients for the 1980 data and part of the 1981 data were 0.88 and 0.78, respectively. It is suggested that larger values for these coefficients may be obtained by improving the experimental technique and in particular by slaving the radar to track the airplane during such tests.

  1. Edge Detection Method Based on Neural Networks for COMS MI Images

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Ho; Park, Eun-Bin; Woo, Sun-Hee

    2016-12-01

    Communication, Ocean And Meteorological Satellite (COMS) Meteorological Imager (MI) images are processed for radiometric and geometric correction from raw image data. When intermediate image data are matched and compared with reference landmark images in the geometrical correction process, various techniques for edge detection can be applied. It is essential to have a precise and correct edged image in this process, since its matching with the reference is directly related to the accuracy of the ground station output images. An edge detection method based on neural networks is applied for the ground processing of MI images for obtaining sharp edges in the correct positions. The simulation results are analyzed and characterized by comparing them with the results of conventional methods, such as Sobel and Canny filters.

  2. An expert system shell for inferring vegetation characteristics

    NASA Technical Reports Server (NTRS)

    Harrison, P. Ann; Harrison, Patrick R.

    1992-01-01

    The NASA VEGetation Workbench (VEG) is a knowledge based system that infers vegetation characteristics from reflectance data. The report describes the extensions that have been made to the first generation version of VEG. An interface to a file of unkown cover type data has been constructed. An interface that allows the results of VEG to be written to a file has been implemented. A learning system that learns class descriptions from a data base of historical cover type data and then uses the learned class descriptions to classify an unknown sample has been built. This system has an interface that integrates it into the rest of VEG. The VEG subgoal PROPORTION.GROUND.COVER has been completed and a number of additional techniques that infer the proportion ground cover of a sample have been implemented.

  3. On the use of satellite-based estimates of rainfall temporal distribution to simulate the potential for malaria transmission in rural Africa

    NASA Astrophysics Data System (ADS)

    Yamana, Teresa K.; Eltahir, Elfatih A. B.

    2011-02-01

    This paper describes the use of satellite-based estimates of rainfall to force the Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a hydrology-based mechanistic model of malaria transmission. We first examined the temporal resolution of rainfall input required by HYDREMATS. Simulations conducted over Banizoumbou village in Niger showed that for reasonably accurate simulation of mosquito populations, the model requires rainfall data with at least 1 h resolution. We then investigated whether HYDREMATS could be effectively forced by satellite-based estimates of rainfall instead of ground-based observations. The Climate Prediction Center morphing technique (CMORPH) precipitation estimates distributed by the National Oceanic and Atmospheric Administration are available at a 30 min temporal resolution and 8 km spatial resolution. We compared mosquito populations simulated by HYDREMATS when the model is forced by adjusted CMORPH estimates and by ground observations. The results demonstrate that adjusted rainfall estimates from satellites can be used with a mechanistic model to accurately simulate the dynamics of mosquito populations.

  4. Soil response to skidder and dozer traffic as indicated by soil stress residuals

    Treesearch

    Brian Parkhurst; Mike Aust; Chad Bolding; Scott Barrett; Andrew Vinson; John Klepac; Emily Carter

    2015-01-01

    Ground-based timber harvesting systems are common throughout many regions of the United States. Machine movements during harvesting can negatively impact soils leading to increased erosion and soil compaction. This is especially true of skid trails that have been established to facilitate tree removals. Several techniques have the potential to reduce soil compaction...

  5. Collaborative Research in Child Welfare: A Rationale for Rigorous Participatory Evaluation Designs to Promote Sustained Systems Change

    ERIC Educational Resources Information Center

    Collins-Camargo, Crystal; Shackelford, Kim; Kelly, Michael; Martin-Galijatovic, Ramie

    2011-01-01

    Expansion of the child welfare evidence base is a major challenge. The field must establish how organizational systems and practice techniques yield outcomes for children and families. Needed research must be grounded in practice and must engage practitioners and administrators via participatory evaluation. The extent to which successful practices…

  6. A mobile target-netting technique for canopy birds

    Treesearch

    Scott Stoleson; Linda Ordiway; Emily H. Thomas; Donald Watts

    2016-01-01

    Mist-netting of birds is a well-established and much used method for capturing birds for banding, taking blood, feather, or tissue samples, attaching radio transmitters or light-sensitive geolocators, and other purposes (Karr 1981, Dunn and Ralph 2004). Mistnets are typically ground based, with individual nets stretched between poles and extending 2.6 m high. Captures...

  7. Comparison of WindTrax and flux-gradient technique in determining PM10 emission rates from a beef cattle feedlot

    USDA-ARS?s Scientific Manuscript database

    Several emission estimation methods can be used to determine emission fluxes from ground-level area sources, including open-lot beef cattle feedlots. This research determined PM10 emission fluxes from a commercial cattle feedlot in Kansas using WindTrax, a backward Lagrangian stochastic-based atmosp...

  8. Piloted Aircraft Environment Simulation Techniques

    DTIC Science & Technology

    1978-04-01

    raS’I.Al. lIIf~iiI~.1 labL. lot. Rolmotion -oft. skylicav - ow d Roll rMotion -oft Skylicape - Off Fig 6 a A Effect of roll motion and akyscape, an msatwntn...greater realism and pilot involvement than ground based simu- lation, it still lacks some of the pilot motivating factors of actual combat. Flight

  9. Semi-automated based ground-truthing GUI for airborne imagery

    NASA Astrophysics Data System (ADS)

    Phan, Chung; Lydic, Rich; Moore, Tim; Trang, Anh; Agarwal, Sanjeev; Tiwari, Spandan

    2005-06-01

    Over the past several years, an enormous amount of airborne imagery consisting of various formats has been collected and will continue into the future to support airborne mine/minefield detection processes, improve algorithm development, and aid in imaging sensor development. The ground-truthing of imagery is a very essential part of the algorithm development process to help validate the detection performance of the sensor and improving algorithm techniques. The GUI (Graphical User Interface) called SemiTruth was developed using Matlab software incorporating signal processing, image processing, and statistics toolboxes to aid in ground-truthing imagery. The semi-automated ground-truthing GUI is made possible with the current data collection method, that is including UTM/GPS (Universal Transverse Mercator/Global Positioning System) coordinate measurements for the mine target and fiducial locations on the given minefield layout to support in identification of the targets on the raw imagery. This semi-automated ground-truthing effort has developed by the US Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD), Countermine Division, Airborne Application Branch with some support by the University of Missouri-Rolla.

  10. Calculation of the effects of ice on the backscatter of a ground plane

    NASA Technical Reports Server (NTRS)

    Lambert, K. M.; Peters, L., Jr.

    1988-01-01

    Described is a technique for examining the effect of a rough ice layer on the backscatter of a ground plane. The technique is applied to the special case of a rough ice layer that is periodic in space. By assuming that the roughness is periodic, the backscatter of the ground plane can be found from the backscatter of a single period. Backscatter calculations are presented for a single period in which the thickness of the ice layer has a Gaussian shape.

  11. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras.

    PubMed

    Li, Zhenyu; Wang, Bin; Liu, Hong

    2016-08-30

    Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme.

  12. Target Capturing Control for Space Robots with Unknown Mass Properties: A Self-Tuning Method Based on Gyros and Cameras

    PubMed Central

    Li, Zhenyu; Wang, Bin; Liu, Hong

    2016-01-01

    Satellite capturing with free-floating space robots is still a challenging task due to the non-fixed base and unknown mass property issues. In this paper gyro and eye-in-hand camera data are adopted as an alternative choice for solving this problem. For this improved system, a new modeling approach that reduces the complexity of system control and identification is proposed. With the newly developed model, the space robot is equivalent to a ground-fixed manipulator system. Accordingly, a self-tuning control scheme is applied to handle such a control problem including unknown parameters. To determine the controller parameters, an estimator is designed based on the least-squares technique for identifying the unknown mass properties in real time. The proposed method is tested with a credible 3-dimensional ground verification experimental system, and the experimental results confirm the effectiveness of the proposed control scheme. PMID:27589748

  13. e-POP RRI provides new opportunities for space-based, high-frequency radio science experiments

    NASA Astrophysics Data System (ADS)

    Burrell, Angeline G.

    2017-04-01

    Perry et al. (2016, https://doi.org/10.1002/2017JG003855) present the first results of the Radio Receiver Instrument (RRI), a part of the enhanced Polar Outflow Probe (e-POP) that flies on board the CAScade, Smallsat and IOnospheric Polar Explorer satellite. Using a matched filter technique, e-POP RRI was able to observe individual radio pulses transmitted by a ground-based radar. These results were used to examine the temporal variations in the dispersion, polarization, and power of the pulses, demonstrating the capacity for e-POP RRI to contribute to studies of radio propagation at high-frequency (HF) ranges. Understanding radio propagation in the presence and absence of ionospheric irregularities is crucial for ionospheric physics, as well as commercial and military radio applications. Conjunctions between e-POP RRI and ground- or space-based HF transmitters offer a new opportunity for coherent scatter experiments.

  14. Summary of astronaut inputs on automation and robotics for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Weeks, David J.

    1990-01-01

    Astronauts and payload specialists present specific recommendations in the form of an overview that relate to the use of automation and robotics on the Space Station Freedom. The inputs are based on on-orbit operations experience, time requirements for crews, and similar crew-specific knowledge that address the impacts of automation and robotics on productivity. Interview techniques and specific questionnaire results are listed, and the majority of the responses indicate that incorporating automation and robotics to some extent and with human backup can improve productivity. Specific support is found for the use of advanced automation and EVA robotics on the Space Station Freedom and for the use of advanced automation on ground-based stations. Ground-based control of in-flight robotics is required, and Space Station activities and crew tasks should be analyzed to assess the systems engineering approach for incorporating automation and robotics.

  15. Advanced training systems

    NASA Technical Reports Server (NTRS)

    Savely, Robert T.; Loftin, R. Bowen

    1990-01-01

    Training is a major endeavor in all modern societies. Common training methods include training manuals, formal classes, procedural computer programs, simulations, and on-the-job training. NASA's training approach has focussed primarily on on-the-job training in a simulation environment for both crew and ground based personnel. NASA must explore new approaches to training for the 1990's and beyond. Specific autonomous training systems are described which are based on artificial intelligence technology for use by NASA astronauts, flight controllers, and ground based support personnel that show an alternative to current training systems. In addition to these specific systems, the evolution of a general architecture for autonomous intelligent training systems that integrates many of the features of traditional training programs with artificial intelligence techniques is presented. These Intelligent Computer Aided Training (ICAT) systems would provide much of the same experience that could be gained from the best on-the-job training.

  16. Super-resolution optical imaging and magnetometry using NV centers in diamond

    NASA Astrophysics Data System (ADS)

    Jaskula, Jean-Christophe; Trifonov, Alexei; Glenn, David; Bar-Gill, Nir; Walsworth, Ronald

    2013-05-01

    We report progress done on the development and application of depletion-based techniques for super-resolution (nanoscale) optical imaging and magnetometry using NV centers in diamond. In particulare we are integrating stimulated emission depletion (STED) and ground state depletion (GSD) imaging techniques with advanced pulsed sequences for AC magnetometry. NV centers in diamond do not bleach under optical excitation, have long-lived electronic spin coherence and spin-state-dependent fluorescence, and are not biotoxic. Thus NV-diamond has great potential in quantum science and as a nanoscale magnetic biosensor.

  17. Development of a filter regeneration system for advanced spacecraft fluid systems

    NASA Technical Reports Server (NTRS)

    Behrend, A. F., Jr.; Descamp, V. A.

    1974-01-01

    The development of a filter regeneration system for efficiently cleaning fluid particulate filters is presented. Based on a backflush/jet impingement technique, the regeneration system demonstrated a cleaning efficiency of 98.7 to 100%. The operating principles and design features are discussed with emphasis on the primary system components that include a regenerable filter, vortex particle separator, and zero-g particle trap. Techniques and equipment used for ground and zero-g performance tests are described. Test results and conclusions, as well as possible areas for commercial application, are included.

  18. Monitoring of Civil Infrastructures by Interferometric Radar: A Review

    PubMed Central

    Pieraccini, Massimiliano

    2013-01-01

    Ground-based radar interferometry is an increasingly popular technique for monitoring civil infrastructures. Many research groups, professionals, and companies have tested it in different operative scenarios, so it is time for a first systematic survey of the case studies reported in the literature. This review is addressed especially to the engineers and scientists interested to consider the applicability of the technique to their practice, so it is focused on the issues of the practical cases rather than on theory and principles, which are now well consolidated. PMID:24106454

  19. TeV radiation from the Crab nebula and other matters

    NASA Technical Reports Server (NTRS)

    Lamb, R. C.

    1990-01-01

    The detection of the Crab Nebula via the Cherenkov imaging technique places TeV astronomy on a secure observational footing. The motivation for TeV observations, a discussion of the atmospheric Cherenkov technique, the experimental details of the Crab Nebula detection, and its scientific implications are presented. The present dilemma of VHE/UHE astronomy is that the Crab appears to be the only source whose showers match theoretical expectations. The situation will be clarified as improved ground-based detectors come on-line with sensitivities matching those of the GRO (Gamma Ray Observatory) instruments.

  20. Using Landsat digital data to detect moisture stress in corn-soybean growing regions

    NASA Technical Reports Server (NTRS)

    Thompson, D. R.; Wehmanen, O. A.

    1980-01-01

    As a part of a follow-on study to the moisture stress detection effort conducted in the Large Area Crop Inventory Experiment (LACIE), a technique utilizing transformed Landsat digital data was evaluated for detecting moisture stress in humid growing regions using sample segments from Iowa, Illinois, and Indiana. At known growth stages of corn and soybeans, segments were classified as undergoing moisture stress or not undergoing stress. The remote-sensing-based information was compared to a weekly ground-based index (Crop Moisture Index). This comparison demonstrated that the remote sensing technique could be used to monitor the growing conditions within a region where corn and soybeans are the major crop.

  1. Analysis to feature-based video stabilization/registration techniques within application of traffic data collection

    NASA Astrophysics Data System (ADS)

    Sadat, Mojtaba T.; Viti, Francesco

    2015-02-01

    Machine vision is rapidly gaining popularity in the field of Intelligent Transportation Systems. In particular, advantages are foreseen by the exploitation of Aerial Vehicles (AV) in delivering a superior view on traffic phenomena. However, vibration on AVs makes it difficult to extract moving objects on the ground. To partly overcome this issue, image stabilization/registration procedures are adopted to correct and stitch multiple frames taken of the same scene but from different positions, angles, or sensors. In this study, we examine the impact of multiple feature-based techniques for stabilization, and we show that SURF detector outperforms the others in terms of time efficiency and output similarity.

  2. Explosion Source Location Study Using Collocated Acoustic and Seismic Networks in Israel

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Gitterman, Y.; Arrowsmith, S.; Ben-Horin, Y.

    2013-12-01

    We explore a joined analysis of seismic and infrasonic signals for improvement in automatic monitoring of small local/regional events, such as construction and quarry blasts, military chemical explosions, sonic booms, etc. using collocated seismic and infrasonic networks recently build in Israel (ISIN) in the frame of the project sponsored by the Bi-national USA-Israel Science Foundation (BSF). The general target is to create an automatic system, which will provide detection, location and identification of explosions in real-time or close-to-real time manner. At the moment the network comprises 15 stations hosting a microphone and seismometer (or accelerometer), operated by the Geophysical Institute of Israel (GII), plus two infrasonic arrays, operated by the National Data Center, Soreq: IOB in the South (Negev desert) and IMA in the North of Israel (Upper Galilee),collocated with the IMS seismic array MMAI. The study utilizes a ground-truth data-base of numerous Rotem phosphate quarry blasts, a number of controlled explosions for demolition of outdated ammunitions and experimental surface explosions for a structure protection research, at the Sayarim Military Range. A special event, comprising four military explosions in a neighboring country, that provided both strong seismic (up to 400 km) and infrasound waves (up to 300 km), is also analyzed. For all of these events the ground-truth coordinates and/or the results of seismic location by the Israel Seismic Network (ISN) have been provided. For automatic event detection and phase picking we tested the new recursive picker, based on Statistically optimal detector. The results were compared to the manual picks. Several location techniques have been tested using the ground-truth event recordings and the preliminary results obtained have been compared to the ground-truth locations: 1) a number of events have been located as intersection of azimuths estimated using the wide-band F-K analysis technique applied to the infrasonic phases of the two distant arrays; 2) a standard robust grid-search location procedure based on phase picks and a constant celerity for a phase (tropospheric or stratospheric) was applied; 3) a joint coordinate grid-search procedure using array waveforms and phase picks was tested, 4) the Bayesian Infrasonic Source Localization (BISL) method, incorporating semi-empirical model-based prior information, was modified for array+network configuration and applied to the ground-truth events. For this purpose we accumulated data of the former observations of the air-to-ground infrasonic phases to compute station specific ground-truth Celerity-Range Histograms (ssgtCRH) and/or model-based CRH (mbCRH), which allow to essentially improve the location results. For building the mbCRH the local meteo-data and the ray-tracing modeling in 3 available azimuth ranges, accounting seasonal variations of winds directivity (quadrants North:315-45, South: 135-225, East 45-135) have been used.

  3. Innovative Applications of Laser Scanning and Rapid Prototype Printing to Rock Breakdown Experiments

    NASA Technical Reports Server (NTRS)

    Bourke, Mary; Viles, Heather; Nicoll, Joe; Lyew-Ayee, Parris; Ghent, Rebecca; Holmlund, James

    2008-01-01

    We present the novel application of two technologies for use in rock breakdown experiments, i.e. close-range, ground-based 3D triangulation scanning and rapid prototype printing. These techniques aid analyses of form-process interactions across the range of scales relevant to breakdown (micron-m). This is achieved through (a) the creation of DEMs (which permit quantitative description and analysis of rock surface morphology and morphological change) and (b) the production of more realistically-shaped experimental blocks. We illustrate the use of these techniques, alongside appropriate data analysis routines, in experiments designed to investigate the persistence of fluvially-derived features in the face of subsequent wind abrasion and weathering. These techniques have a range of potential applications in experimental field and lab-based geomorphic studies beyond those specifically outlined here.

  4. A Large Sparse Aperture Densified Pupil Hypertelescope Concept for Ground Based Detection of Extra-Solar Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Lyon, R.; Woodruff, R.; Labeyrie, A.; Oegerle, William (Technical Monitor)

    2002-01-01

    A concept is presented for a large (10 - 30 meter) sparse aperture hyper telescope to image extrasolar earth-like planets from the ground in the presence of atmospheric seeing. The telescope achieves high dynamic range very close to bright stellar sources with good image quality using pupil densification techniques. Active correction of the perturbed wavefront is simplified by using 36 small flat mirrors arranged in a parabolic steerable array structure, eliminating the need for large delat lines and operating at near-infrared (1 - 3 Micron) wavelengths with flats comparable in size to the seeing cells.

  5. Probabilistic low-rank factorization accelerates tensor network simulations of critical quantum many-body ground states.

    PubMed

    Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B; Tamascelli, Dario; Montangero, Simone

    2018-01-01

    We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.

  6. Probabilistic low-rank factorization accelerates tensor network simulations of critical quantum many-body ground states

    NASA Astrophysics Data System (ADS)

    Kohn, Lucas; Tschirsich, Ferdinand; Keck, Maximilian; Plenio, Martin B.; Tamascelli, Dario; Montangero, Simone

    2018-01-01

    We provide evidence that randomized low-rank factorization is a powerful tool for the determination of the ground-state properties of low-dimensional lattice Hamiltonians through tensor network techniques. In particular, we show that randomized matrix factorization outperforms truncated singular value decomposition based on state-of-the-art deterministic routines in time-evolving block decimation (TEBD)- and density matrix renormalization group (DMRG)-style simulations, even when the system under study gets close to a phase transition: We report linear speedups in the bond or local dimension of up to 24 times in quasi-two-dimensional cylindrical systems.

  7. From Regional Hazard Assessment to Nuclear-Test-Ban Treaty Support - InSAR Ground Motion Services

    NASA Astrophysics Data System (ADS)

    Lege, T.; Kalia, A.; Gruenberg, I.; Frei, M.

    2016-12-01

    There are numerous scientific applications of InSAR methods in tectonics, earthquake analysis and other geologic and geophysical fields. Ground motion on local and regional scale measured and monitored via the application of the InSAR techniques provide scientists and engineers with plenty of new insights and further understanding of subsurface processes. However, the operational use of InSAR is not yet very widespread. To foster the operational utilization of the Copernicus Sentinel Satellites in the day-to-day business of federal, state and municipal work and planning BGR (Federal Institute for Geosciences and Natural Resources) initiated workshops with potential user groups. Through extensive reconcilement of interests and demands with scientific, technical, economic and governmental stakeholders (e.g. Ministries, Mining Authorities, Geological Surveys, Geodetic Surveys and Environmental Agencies on federal and state level, SMEs, German Aerospace Center) BGR developed the concept of the InSAR based German National Ground Motion Service. One important backbone for the nationwide ground motion service is the so-called Persistent Scatterer Interferometry Wide Area Product (WAP) approach developed with grants of European research funds. The presentation shows the implementation of the ground motion service and examples for product developments for operational supervision of mining, water resources management and spatial planning. Furthermore the contributions of Copernicus Sentinel 1 radar data in the context of CTBT are discussed. The DInSAR processing of Sentinel 1 IW (Interferometric Wide Swath) SAR acquisitions from January 1st and 13th Jan. 2016 allow for the first time a near real time ground motion measurement of the North Korean nuclear test site. The measured ground displacements show a strong spatio-temporal correlation to the calculated epicenter measured by teleseismic stations. We are convinced this way another space technique will soon contribute even further to secure better societal information needs.

  8. Performance of the NASA Airborne Radar with the Windshear Database for Forward-Looking Systems

    NASA Technical Reports Server (NTRS)

    Switzer, George F.; Britt, Charles L.

    1996-01-01

    This document describes the simulation approach used to test the performance of the NASA airborne windshear radar. An explanation of the actual radar hardware and processing algorithms provides an understanding of the parameters used in the simulation program. This report also contains a brief overview of the NASA airborne windshear radar experimental flight test results. A description of the radar simulation program shows the capabilities of the program and the techniques used for certification evaluation. Simulation of the NASA radar is comprised of three steps. First, the choice of the ground clutter data must be made. The ground clutter is the return from objects in or nearby an airport facility. The choice of the ground clutter also dictates the aircraft flight path since ground clutter is gathered while in flight. The second step is the choice of the radar parameters and the running of the simulation program which properly combines the ground clutter data with simulated windshear weather data. The simulated windshear weather data is comprised of a number of Terminal Area Simulation System (TASS) model results. The final step is the comparison of the radar simulation results to the known windshear data base. The final evaluation of the radar simulation is based on the ability to detect hazardous windshear with the aircraft at a safe distance while at the same time not displaying false alerts.

  9. GSFLOW - Coupled Ground-Water and Surface-Water Flow Model Based on the Integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005)

    USGS Publications Warehouse

    Markstrom, Steven L.; Niswonger, Richard G.; Regan, R. Steven; Prudic, David E.; Barlow, Paul M.

    2008-01-01

    The need to assess the effects of variability in climate, biota, geology, and human activities on water availability and flow requires the development of models that couple two or more components of the hydrologic cycle. An integrated hydrologic model called GSFLOW (Ground-water and Surface-water FLOW) was developed to simulate coupled ground-water and surface-water resources. The new model is based on the integration of the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) and the U.S. Geological Survey Modular Ground-Water Flow Model (MODFLOW). Additional model components were developed, and existing components were modified, to facilitate integration of the models. Methods were developed to route flow among the PRMS Hydrologic Response Units (HRUs) and between the HRUs and the MODFLOW finite-difference cells. This report describes the organization, concepts, design, and mathematical formulation of all GSFLOW model components. An important aspect of the integrated model design is its ability to conserve water mass and to provide comprehensive water budgets for a location of interest. This report includes descriptions of how water budgets are calculated for the integrated model and for individual model components. GSFLOW provides a robust modeling system for simulating flow through the hydrologic cycle, while allowing for future enhancements to incorporate other simulation techniques.

  10. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs

    PubMed Central

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2015-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012. PMID:26347393

  11. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-Based Coronagraphs

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Frazin, Richard; Barrett, Harrison; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gladysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jerome; hide

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We provide a formal comparison of techniques through a blind data challenge and evaluate performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  12. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs.

    PubMed

    Lawson, Peter R; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  13. On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs

    NASA Astrophysics Data System (ADS)

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  14. Does foot pitch at ground contact affect parachute landing technique?

    PubMed

    Whitting, John W; Steele, Julie R; Jaffrey, Mark; Munro, Bridget J

    2009-08-01

    The Australian Defence Force Parachute Training School instructs trainees to make initial ground contact using a flat foot whereas United States paratroopers are taught to contact the ground with the ball of the foot first. This study aimed to determine whether differences in foot pitch affected parachute landing technique. Kinematic, ground reaction force and electromyographic data were analyzed for 28 parachutists who performed parachute landings (vertical descent velocity = 3.4 m x s(-1)) from a monorail apparatus. Independent t-tests were used to determine significant (p < 0.05) differences between variables characterizing foot pitch. Subjects who landed flat-footed displayed less knee and ankle flexion, sustained higher peak ground reaction forces, and took less time to reach peak force than those who landed on the balls of their feet. Although forefoot landings lowered ground reaction forces compared to landing flat-footed, further research is required to confirm whether this is a safer parachute landing strategy.

  15. Approximate ground states of the random-field Potts model from graph cuts

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Kumar, Ravinder; Weigel, Martin; Banerjee, Varsha; Janke, Wolfhard; Puri, Sanjay

    2018-05-01

    While the ground-state problem for the random-field Ising model is polynomial, and can be solved using a number of well-known algorithms for maximum flow or graph cut, the analog random-field Potts model corresponds to a multiterminal flow problem that is known to be NP-hard. Hence an efficient exact algorithm is very unlikely to exist. As we show here, it is nevertheless possible to use an embedding of binary degrees of freedom into the Potts spins in combination with graph-cut methods to solve the corresponding ground-state problem approximately in polynomial time. We benchmark this heuristic algorithm using a set of quasiexact ground states found for small systems from long parallel tempering runs. For a not-too-large number q of Potts states, the method based on graph cuts finds the same solutions in a fraction of the time. We employ the new technique to analyze the breakup length of the random-field Potts model in two dimensions.

  16. Generation of ULF waves by electric or magnetic dipoles. [propagation from earth surface to ionosphere

    NASA Technical Reports Server (NTRS)

    Harker, K. J.

    1975-01-01

    The generation of ULF waves by ground-based magnetic and electric dipoles is studied with a simplified model consisting of three adjoining homogeneous regions representing the groud, the vacuum (free space) region, and the ionosphere. The system is assumed to be immersed in a homogeneous magnetic field with an arbitrary tilt angle. By the use of Fourier techniques and the method of stationary phase, analytic expressions are obtained for the field strength of the compressional Alfven waves in the ionosphere. Expressions are also obtained for the strength of the torsional Alfven wave in the ionosphere and the ULF magnetic field at ground level. Numerical results are obtained for the compressional Alfven-wave field strength in the ionosphere with a nonvertical geomagnetic field and for the ULF magnetic field at ground level for a vertical geomagnetic field.

  17. The equivalence of three techniques for estimating ground reflectance from LANDSAT digital count data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J. (Principal Investigator)

    1983-01-01

    The equivalence of three separate investigations that related LANDSAT digital count (DC) to ground measured reflectance (R) was demonstrated. One investigator related DC data to the cosZ, where Z is the solar zenith angle, for surfaces of constant R. The second investigator corrected the DC data to the solar zenith angle of 39 degrees before relating to surface R. Both of these investigators used LANDSAT 1 and 2 data from overpass dates 1972 through 1977. A third investigator calculated the relation between DC and R based on atmospheric radiative transfer theory. The equation coefficients obtained from these three investigators for all four LANDSAT MSS bands were shown to be equivalent although differences in ground reflectance measurement procedures have created coefficient variations among the three investigations. These relations should be useful for testing atmospheric radiative transfer theory.

  18. Ground penetrating radar prospections in Romania. Mariuta la Movila Necropolis, a case study

    NASA Astrophysics Data System (ADS)

    Lazãr, C.; Ene, D.; Parnic, V.; Popovici, D. N.; Florea, M.

    In the last decades, ground-penetrating radar (GPR) has been successfully used in archaeological and forensic anthropological applications to locate relatively shallow features, even though the technique can also probe deeper into the ground. GPR is a non-destructive method based on the propagation of electromagnetic waves in soil, rocks or other media. This prospection method has rarely been used previously in Romanian archaeology and never for a necropolis. GPR surveys of the Măriuța - La Movilă necropolis (Călăraşi county, southeastern Romania) led to the identification of several new structures: a prehistoric pit belonging to the Kodjadermen-Gumelnița-Karanovo VI culture (Complex 1/2008), a grave from the IVth century A.D. (Complex 2/2009) and a modern burrowing pit (Complex 1/2009).

  19. Influence of ground level SO2 on the diffuse to direct irradiance ratio in the middle ultraviolet

    NASA Technical Reports Server (NTRS)

    Klenk, K. F.; Green, A. E. S.

    1977-01-01

    The dependence of the ratio of the diffuse to direct irradiances at the ground were examined for a wavelength of 315.1 nm. A passive remote sensing method based on ratio measurements for obtaining the optical thickness of SO2 in the vertical column was proposed. If, in addition to the ratio measurements, the SO2 density at the ground is determining using an appropriate point-sampling technique then some inference on the vertical extent of SO2 can be drawn. An analytic representation is presented of the ratio for a wide range of SO2 and aerosol optical thicknesses and solar zenith angles which can be inverted algebraically to give the SO2 optical thickness in terms of the measured ratio, aerosol optical thickness and solar zenith angle.

  20. Digital Elevation Models of the Pre-Eruption 2000 Crater and 2004-07 Dome-Building Eruption at Mount St. Helens, Washington, USA

    USGS Publications Warehouse

    Messerich, J.A.; Schilling, S.P.; Thompson, R.A.

    2008-01-01

    Presented in this report are 27 digital elevation model (DEM) datasets for the crater area of Mount St. Helens. These datasets include pre-eruption baseline data collected in 2000, incremental model subsets collected during the 2004-07 dome building eruption, and associated shaded-relief image datasets. Each dataset was collected photogrammetrically with digital softcopy methods employing a combination of manual collection and iterative compilation of x,y,z coordinate triplets utilizing autocorrelation techniques. DEM data points collected using autocorrelation methods were rigorously edited in stereo and manually corrected to ensure conformity with the ground surface. Data were first collected as a triangulated irregular network (TIN) then interpolated to a grid format. DEM data are based on aerotriangulated photogrammetric solutions for aerial photograph strips flown at a nominal scale of 1:12,000 using a combination of surveyed ground control and photograph-identified control points. The 2000 DEM is based on aerotriangulation of four strips totaling 31 photographs. Subsequent DEMs collected during the course of the eruption are based on aerotriangulation of single aerial photograph strips consisting of between three and seven 1:12,000-scale photographs (two to six stereo pairs). Most datasets were based on three or four stereo pairs. Photogrammetric errors associated with each dataset are presented along with ground control used in the photogrammetric aerotriangulation. The temporal increase in area of deformation in the crater as a result of dome growth, deformation, and translation of glacial ice resulted in continual adoption of new ground control points and abandonment of others during the course of the eruption. Additionally, seasonal snow cover precluded the consistent use of some ground control points.

  1. Study of Diagenetic Features in Rudist Buildups of Cretaceous Edwards Formation Using Ground Based Hyperspectral Scanning and Terrestrial LiDAR

    NASA Astrophysics Data System (ADS)

    Krupnik, D.; Khan, S.; Okyay, U.; Hartzell, P. J.; Biber, K.

    2015-12-01

    Ground based remote sensing is a novel technique for development of digital outcrop models which can be instrumental in performing detailed qualitative and quantitative sedimentological analysis for the study of depositional environment, diagenetic processes, and hydrocarbon reservoir characterization. For this investigation, ground-based hyperspectral data collection is combined with terrestrial LiDAR to study outcrops of Late Albian rudist buildups of the Edwards formation in the Lake Georgetown Spillway in Williamson County, Texas. The Edwards formation consists of shallow water deposits of reef and associated inter-reef facies, including rudist bioherms and biostromes. It is a significant aquifer and was investigated as a hydrocarbon play in south central Texas. Hyperspectral data were used to map compositional variation in the outcrop by distinguishing spectral properties unique to each material. Lithological variation was mapped in detail to investigate the structure and composition of rudist buildups. Hyperspectral imagery was registered to a 3D model produced from the LiDAR point cloud with an accuracy of up to one pixel. Flat-topped toucasid-rich bioherm facies were distinguished from overlying toucasid-rich biostrome facies containing chert nodules, overlying sucrosic dolostones, and uppermost peloid wackestones and packstones of back-reef facies. Ground truth was established by petrographic study of samples from this area and has validated classification products of remote sensing data. Several types of porosity were observed and have been associated with increased dolomitization. This ongoing research involves integration of remotely sensed datasets to analyze geometrical and compositional properties of this carbonate formation at a finer scale than traditional methods have achieved and seeks to develop a workflow for quick and efficient ground based remote sensing-assisted outcrop studies.

  2. An integrated approach to monitoring the calibration stability of operational dual-polarization radars

    DOE PAGES

    Vaccarono, Mattia; Bechini, Renzo; Chandrasekar, Chandra V.; ...

    2016-11-08

    The stability of weather radar calibration is a mandatory aspect for quantitative applications, such as rainfall estimation, short-term weather prediction and initialization of numerical atmospheric and hydrological models. Over the years, calibration monitoring techniques based on external sources have been developed, specifically calibration using the Sun and calibration based on ground clutter returns. In this paper, these two techniques are integrated and complemented with a self-consistency procedure and an intercalibration technique. The aim of the integrated approach is to implement a robust method for online monitoring, able to detect significant changes in the radar calibration. The physical consistency of polarimetricmore » radar observables is exploited using the self-consistency approach, based on the expected correspondence between dual-polarization power and phase measurements in rain. This technique allows a reference absolute value to be provided for the radar calibration, from which eventual deviations may be detected using the other procedures. In particular, the ground clutter calibration is implemented on both polarization channels (horizontal and vertical) for each radar scan, allowing the polarimetric variables to be monitored and hardware failures to promptly be recognized. The Sun calibration allows monitoring the calibration and sensitivity of the radar receiver, in addition to the antenna pointing accuracy. It is applied using observations collected during the standard operational scans but requires long integration times (several days) in order to accumulate a sufficient amount of useful data. Finally, an intercalibration technique is developed and performed to compare colocated measurements collected in rain by two radars in overlapping regions. The integrated approach is performed on the C-band weather radar network in northwestern Italy, during July–October 2014. The set of methods considered appears suitable to establish an online tool to monitor the stability of the radar calibration with an accuracy of about 2 dB. In conclusion, this is considered adequate to automatically detect any unexpected change in the radar system requiring further data analysis or on-site measurements.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccarono, Mattia; Bechini, Renzo; Chandrasekar, Chandra V.

    The stability of weather radar calibration is a mandatory aspect for quantitative applications, such as rainfall estimation, short-term weather prediction and initialization of numerical atmospheric and hydrological models. Over the years, calibration monitoring techniques based on external sources have been developed, specifically calibration using the Sun and calibration based on ground clutter returns. In this paper, these two techniques are integrated and complemented with a self-consistency procedure and an intercalibration technique. The aim of the integrated approach is to implement a robust method for online monitoring, able to detect significant changes in the radar calibration. The physical consistency of polarimetricmore » radar observables is exploited using the self-consistency approach, based on the expected correspondence between dual-polarization power and phase measurements in rain. This technique allows a reference absolute value to be provided for the radar calibration, from which eventual deviations may be detected using the other procedures. In particular, the ground clutter calibration is implemented on both polarization channels (horizontal and vertical) for each radar scan, allowing the polarimetric variables to be monitored and hardware failures to promptly be recognized. The Sun calibration allows monitoring the calibration and sensitivity of the radar receiver, in addition to the antenna pointing accuracy. It is applied using observations collected during the standard operational scans but requires long integration times (several days) in order to accumulate a sufficient amount of useful data. Finally, an intercalibration technique is developed and performed to compare colocated measurements collected in rain by two radars in overlapping regions. The integrated approach is performed on the C-band weather radar network in northwestern Italy, during July–October 2014. The set of methods considered appears suitable to establish an online tool to monitor the stability of the radar calibration with an accuracy of about 2 dB. In conclusion, this is considered adequate to automatically detect any unexpected change in the radar system requiring further data analysis or on-site measurements.« less

  4. Fabry-Perot Based Radiometers for Precise Measurement of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Wilson, Emily L.; Georgieva, Elena

    2007-01-01

    Differential radiometers based upon the Fabry-Perot interferometer have been developed and demonstrated that exhibit very great sensitivity to changes in the atmospheric column of carbon dioxide, oxygen, and water vapor. These instruments employ a solid Fabry-Perot etalon that is tuned to the proper wavelength by changing the temperature. By choosing the thickness of the etalon its multiple pass bands can be made to align with regularly space absorption features of the molecule under investigation. Use of multiple absorption features improves the optical throughput of the instrument and improves the stability of the instrument response with respect to environmental changes. Efforts are underway at Goddard to extend this technique to the carbon 13 isotope of carbon dioxide and to methane. These instruments are intrinsically rugged and can be made rather small and inexpensively. They therefore hold promise for widespread use in ground based networks for calibration of satellite instruments such as OCO and GOSAT. Results will be presented for ground based and airborne operations for these systems. The effects of atmospheric scattering, pointing errors, pressure broadening and temperature effects will be discussed with regard to achieving precision better than .5% required for validation of carbon dioxide column measured from space. Designs permitting the extension of the technique to an even larger number of atmospheric species will be discussed along with theoretical analysis of potential system performance.

  5. High-resolution image reconstruction technique applied to the optical testing of ground-based astronomical telescopes

    NASA Astrophysics Data System (ADS)

    Jin, Zhenyu; Lin, Jing; Liu, Zhong

    2008-07-01

    By study of the classical testing techniques (such as Shack-Hartmann Wave-front Sensor) adopted in testing the aberration of ground-based astronomical optical telescopes, we bring forward two testing methods on the foundation of high-resolution image reconstruction technology. One is based on the averaged short-exposure OTF and the other is based on the Speckle Interferometric OTF by Antoine Labeyrie. Researches made by J.Ohtsubo, F. Roddier, Richard Barakat and J.-Y. ZHANG indicated that the SITF statistical results would be affected by the telescope optical aberrations, which means the SITF statistical results is a function of optical system aberration and the atmospheric Fried parameter (seeing). Telescope diffraction-limited information can be got through two statistics methods of abundant speckle images: by the first method, we can extract the low frequency information such as the full width at half maximum (FWHM) of the telescope PSF to estimate the optical quality; by the second method, we can get a more precise description of the telescope PSF with high frequency information. We will apply the two testing methods to the 2.4m optical telescope of the GMG Observatory, in china to validate their repeatability and correctness and compare the testing results with that of the Shack-Hartmann Wave-Front Sensor got. This part will be described in detail in our paper.

  6. 3D Riesz-wavelet based Covariance descriptors for texture classification of lung nodule tissue in CT.

    PubMed

    Cirujeda, Pol; Muller, Henning; Rubin, Daniel; Aguilera, Todd A; Loo, Billy W; Diehn, Maximilian; Binefa, Xavier; Depeursinge, Adrien

    2015-01-01

    In this paper we present a novel technique for characterizing and classifying 3D textured volumes belonging to different lung tissue types in 3D CT images. We build a volume-based 3D descriptor, robust to changes of size, rigid spatial transformations and texture variability, thanks to the integration of Riesz-wavelet features within a Covariance-based descriptor formulation. 3D Riesz features characterize the morphology of tissue density due to their response to changes in intensity in CT images. These features are encoded in a Covariance-based descriptor formulation: this provides a compact and flexible representation thanks to the use of feature variations rather than dense features themselves and adds robustness to spatial changes. Furthermore, the particular symmetric definite positive matrix form of these descriptors causes them to lay in a Riemannian manifold. Thus, descriptors can be compared with analytical measures, and accurate techniques from machine learning and clustering can be adapted to their spatial domain. Additionally we present a classification model following a "Bag of Covariance Descriptors" paradigm in order to distinguish three different nodule tissue types in CT: solid, ground-glass opacity, and healthy lung. The method is evaluated on top of an acquired dataset of 95 patients with manually delineated ground truth by radiation oncology specialists in 3D, and quantitative sensitivity and specificity values are presented.

  7. Semantic Entity-Component State Management Techniques to Enhance Software Quality for Multimodal VR-Systems.

    PubMed

    Fischbach, Martin; Wiebusch, Dennis; Latoschik, Marc Erich

    2017-04-01

    Modularity, modifiability, reusability, and API usability are important software qualities that determine the maintainability of software architectures. Virtual, Augmented, and Mixed Reality (VR, AR, MR) systems, modern computer games, as well as interactive human-robot systems often include various dedicated input-, output-, and processing subsystems. These subsystems collectively maintain a real-time simulation of a coherent application state. The resulting interdependencies between individual state representations, mutual state access, overall synchronization, and flow of control implies a conceptual close coupling whereas software quality asks for a decoupling to develop maintainable solutions. This article presents five semantics-based software techniques that address this contradiction: Semantic grounding, code from semantics, grounded actions, semantic queries, and decoupling by semantics. These techniques are applied to extend the well-established entity-component-system (ECS) pattern to overcome some of this pattern's deficits with respect to the implied state access. A walk-through of central implementation aspects of a multimodal (speech and gesture) VR-interface is used to highlight the techniques' benefits. This use-case is chosen as a prototypical example of complex architectures with multiple interacting subsystems found in many VR, AR and MR architectures. Finally, implementation hints are given, lessons learned regarding maintainability pointed-out, and performance implications discussed.

  8. Crystal growth and DFT insight on sodium para-nitrophenolate para-nitrophenol dihydrate single crystal for NLO applications

    NASA Astrophysics Data System (ADS)

    Selvakumar, S.; Boobalan, Maria Susai; Anthuvan Babu, S.; Ramalingam, S.; Leo Rajesh, A.

    2016-12-01

    Single crystals of sodium para-nitrophenolate para-nitrophenol dihydrate (SPPD) were grown by slow evaporation technique and its structure has been studied by FT-IR, FT-Raman and single crystal X-ray diffraction techniques. The optical and electrical properties were characterized by UV-Vis spectrum, and dielectric studies respectively. SPPD was thermally stable up to 128 °C as determined by TG-DTA curves. Using the Kurtz-Perry powder method, the second-harmonic generation efficiency was found to be five times to that of KDP. Third-order nonlinear response was studied using Z-scan technique with a He-Ne laser (632.8 nm) and NLO parameters such as intensity dependent refractive index, nonlinear absorption coefficient and third-order susceptibility were also estimated. The molecular geometry from X-ray experiment in the ground state has been compared using density functional theory (DFT) with appropriate basis set. The first-order hyperpolarizability also calculated using DFT approaches. Stability of the molecule arising from hyperconjugative interactions leading to its nonlinear optical activity and charge delocalization were analyzed using natural bond orbital technique. HOMO-LUMO energy gap value suggests the possibility of charge transfer within the molecule. Based on optimized ground state geometries, Natural bond orbital (NBO) analysis was performed to study donor-acceptor interactions.

  9. Steps in Moving Evidence-Based Health Informatics from Theory to Practice.

    PubMed

    Rigby, Michael; Magrabi, Farah; Scott, Philip; Doupi, Persephone; Hypponen, Hannele; Ammenwerth, Elske

    2016-10-01

    To demonstrate and promote the importance of applying a scientific process to health IT design and implementation, and of basing this on research principles and techniques. A review by international experts linked to the IMIA Working Group on Technology Assessment and Quality Development. Four approaches are presented, linking to the creation of national professional expectations, adherence to research-based standards, quality assurance approaches to ensure safety, and scientific measurement of impact. Solely marketing- and aspiration-based approaches to health informatics applications are no longer ethical or acceptable when scientifically grounded evidence-based approaches are available and in use.

  10. Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations

    USGS Publications Warehouse

    Castellazzi, Pascal; Martel, Richard; Galloway, Devin L.; Longuevergne, Laurent; Rivera, Alfonso

    2016-01-01

    In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km2). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.

  11. Results of the application of seismic-reflection and electromagnetic techniques for near-surface hydrogeologic and environmental investigations at Fort Bragg, North Carolina

    USGS Publications Warehouse

    Meyer, M.T.; Fine, J.M.

    1997-01-01

    As part of the U.S. Geological Survey's Resource Conservation and Recovery Act, Facilities Investigations at Fort Bragg, North Carolina, selected geophysical techniques were evaluated for their usefulness as assessment tools for determining subsurface geology, delineating the areal extent of potentially contaminated landfill sites, and locating buried objects and debris of potential environmental concern. Two shallow seismic-reflection techniques (compression and shear wave) and two electromagnetic techniques (ground-penetrating radar and terrain conductivity) were evaluated at several sites at the U.S. Army Base. The electromagnetic techniques also were tested for tolerance to cultural noise, such as nearby fences, vehicles, and power lines. For the terrain conductivity tests, two instruments were used--the EM31 and EM34, which have variable depths of exploration. The shallowest reflection event was 70 feet below land surface observed in common-depth point, stacked compression-wave data from 24- and 12-fold shallow-seismic-reflection surveys. Several reflection events consistent with clay-sand interfaces between 70 and 120 feet below land surface, along with basement-saprolite surfaces, were imaged in the 24-fold, common- depth-point stacked data. 12-fold, common-depth-point stacked data set contained considerably more noise than the 24-fold, common-depth-point data, due to reduced shot-to-receiver redundancy. Coherent stacked reflection events were not observed in the 24-fold, common-depth-point stacked shear-wave data because of the partial decoupling of the shear- wave generator from the ground. At one site, ground-penetrating radar effectively delineated a shallow, 2- to 5-foot thick sand unit bounded by thin (less than 1 foot) clay layers. The radar signal was completely attenuated where the overlying and underlying clay units thickened and the sand unit thinned. The pene- tration depth of the radar signal was less than 10 feet below land surface. A slight increase in electromagnetic conductivity across shallow sampling EM31 and EM34 profiles provided corroborative evidence of the shallow, thickening clay units. Plots of raw EM31 and EM34 data provided no direct interpretable information to delineate sand and clay units in the shallow subsurface. At two sites, the ground-penetrating radar effectively delineated the lateral continuity of surficial sand units 5 to 25 feet in thickness and the tops of their underlying clay units. The effective exploration depth of the ground-penetrating radar was limited by the proximity of clay units to the subsurface and their thickness. The ground-penetrating radar delineated the areal extent and depth of cover at a previously unrecognized extension of a trench-like landfill underlying a vehicle salvage yard. Attenuation of the radar signal beneath the landfill cover and the adjacent subsurface clays made these two mediums indistinguishable by ground-penetrating radar; however, EM31 data indicated that the electrical conductivity of the landfill was higher than the subsurface material adjacent to the landfill. The EM31 and EM34 conductivity surveys defined the areal extent of a landfill whose boundaries were inaccurately mapped, and also identified the locations of an old dumpsite and waste incinerator site at another landfill. A follow-up ground-penetrating radar survey of the abandoned dumpsite showed incongruities in some of the shallow radar reflections interpreted as buried refuse dispersed throughout the landfill. The ground-penetrating radar and EM31 effectively delineated a shallow buried fuel-oil tank. Of the three electromagnetic instruments, the ground-penetrating radar with the shielded 100-megahertz antenna was the least affected by cultural noise followed, in order, by the EM31 and EM34. The combination of terrain- conductivity and ground-penetrating radar for the site assessment of the landfill provided a powerful means to identify the areal extent of the landfill, potenti

  12. Variation of TEC and related parameters over the Indian EIA region from ground and space based GPS observations during the low solar activity period of May 2007-April 2008

    NASA Astrophysics Data System (ADS)

    Chakravarty, S. C.; Nagaraja, Kamsali; Jakowski, N.

    2017-03-01

    The annual variations of ionospheric Total Electron Content (TEC), F-region peak ionisation (NmF2) and the ionospheric slab thickness (τ) over the Indian region during the low solar activity period of May 2007-April 2008 have been studied. For this purpose the ground based TEC data obtained from GAGAN measurements and the space based data from GPS radio occultation technique using CHAMP have been utilised. The results of these independent measurements are combined to derive additional parameters such as the equivalent slab thickness of the total and the bottom-side ionospheric regions (τT and τB). The one year hourly average values of all these parameters over the ionospheric anomaly latitude region (10-26°N) are presented here along with the statistical error estimates. It is expected that these results are potentially suited to be used as base level values during geomagnetically quiet and undisturbed solar conditions.

  13. A space station onboard scheduling assistant

    NASA Technical Reports Server (NTRS)

    Brindle, A. F.; Anderson, B. H.

    1988-01-01

    One of the goals for the Space Station is to achieve greater autonomy, and have less reliance on ground commanding than previous space missions. This means that the crew will have to take an active role in scheduling and rescheduling their activities onboard, perhaps working from preliminary schedules generated on the ground. Scheduling is a time intensive task, whether performed manually or automatically, so the best approach to solving onboard scheduling problems may involve crew members working with an interactive software scheduling package. A project is described which investigates a system that uses knowledge based techniques for the rescheduling of experiments within the Materials Technology Laboratory of the Space Station. Particular attention is paid to: (1) methods for rapid response rescheduling to accommodate unplanned changes in resource availability, (2) the nature of the interface to the crew, (3) the representation of the many types of data within the knowledge base, and (4) the possibility of applying rule-based and constraint-based reasoning methods to onboard activity scheduling.

  14. GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran)

    NASA Astrophysics Data System (ADS)

    Haghizadeh, Ali; Moghaddam, Davoud Davoudi; Pourghasemi, Hamid Reza

    2017-12-01

    Groundwater potential analysis prepares better comprehension of hydrological settings of different regions. This study shows the potency of two GIS-based data driven bivariate techniques namely statistical index (SI) and Dempster-Shafer theory (DST) to analyze groundwater potential in Broujerd region of Iran. The research was done using 11 groundwater conditioning factors and 496 spring positions. Based on the ground water potential maps (GPMs) of SI and DST methods, 24.22% and 23.74% of the study area is covered by poor zone of groundwater potential, and 43.93% and 36.3% of Broujerd region is covered by good and very good potential zones, respectively. The validation of outcomes displayed that area under the curve (AUC) of SI and DST techniques are 81.23% and 79.41%, respectively, which shows SI method has slightly a better performance than the DST technique. Therefore, SI and DST methods are advantageous to analyze groundwater capacity and scrutinize the complicated relation between groundwater occurrence and groundwater conditioning factors, which permits investigation of both systemic and stochastic uncertainty. Finally, it can be realized that these techniques are very beneficial for groundwater potential analyzing and can be practical for water-resource management experts.

  15. A New Technique to Observe ENSO Activity via Ground-Based GPS Receivers

    NASA Astrophysics Data System (ADS)

    Suparta, Wayan; Iskandar, Ahmad; Singh, Mandeep Singh Jit

    In an attempt to study the effects of global climate change in the tropics for improving global climate model, this paper aims to detect the ENSO events, especially El Nino phase by using ground-based GPS receivers. Precipitable water vapor (PWV) obtained from the Global Positioning System (GPS) Meteorology measurements in line with the sea surface temperature anomaly (SSTa) are used to connect their response to El Niño activity. The data gathered from four selected stations over the Southeast Asia, namely PIMO (Philippines), KUAL (Malaysia), NTUS (Singapore) and BAKO (Indonesia) for the year of 2009/2010 were processed. A strong correlation was observed for PIMO station with a correlation coefficient of -0.90, significantly at the 99 % confidence level. In general, the relationship between GPS PWV and SSTa at all stations on a weekly basis showed with a negative correlation. The negative correlation indicates that during the El Niño event, the PWV variation was in decreased trend. Decreased trend of PWV value is caused by a dry season that affected the GPS signals in the ocean-atmospheric coupling. Based on these promising results, we can propose that the ground-based GPS receiver is capable used to monitor ENSO activity and this is a new prospective method that previously unexplored.

  16. Automatic vetting of planet candidates from ground based surveys: Machine learning with NGTS

    NASA Astrophysics Data System (ADS)

    Armstrong, David J.; Günther, Maximilian N.; McCormac, James; Smith, Alexis M. S.; Bayliss, Daniel; Bouchy, François; Burleigh, Matthew R.; Casewell, Sarah; Eigmüller, Philipp; Gillen, Edward; Goad, Michael R.; Hodgkin, Simon T.; Jenkins, James S.; Louden, Tom; Metrailler, Lionel; Pollacco, Don; Poppenhaeger, Katja; Queloz, Didier; Raynard, Liam; Rauer, Heike; Udry, Stéphane; Walker, Simon R.; Watson, Christopher A.; West, Richard G.; Wheatley, Peter J.

    2018-05-01

    State of the art exoplanet transit surveys are producing ever increasing quantities of data. To make the best use of this resource, in detecting interesting planetary systems or in determining accurate planetary population statistics, requires new automated methods. Here we describe a machine learning algorithm that forms an integral part of the pipeline for the NGTS transit survey, demonstrating the efficacy of machine learning in selecting planetary candidates from multi-night ground based survey data. Our method uses a combination of random forests and self-organising-maps to rank planetary candidates, achieving an AUC score of 97.6% in ranking 12368 injected planets against 27496 false positives in the NGTS data. We build on past examples by using injected transit signals to form a training set, a necessary development for applying similar methods to upcoming surveys. We also make the autovet code used to implement the algorithm publicly accessible. autovet is designed to perform machine learned vetting of planetary candidates, and can utilise a variety of methods. The apparent robustness of machine learning techniques, whether on space-based or the qualitatively different ground-based data, highlights their importance to future surveys such as TESS and PLATO and the need to better understand their advantages and pitfalls in an exoplanetary context.

  17. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  18. Critically endangered blonde capuchins fish for termites and use new techniques to accomplish the task

    PubMed Central

    Souto, Antonio; Bione, Camila B. C.; Bastos, Monique; Bezerra, Bruna M.; Fragaszy, Dorothy; Schiel, Nicola

    2011-01-01

    We report the spontaneous modification and use of sticks to fish for termites, above the ground, in wild blonde capuchins (Cebus flavius). These critically endangered Neotropical primates inhabit remnants of the Atlantic Forest. They used two previously undescribed techniques to enhance their termite capture success: nest tapping and stick rotation. The current ecologically based explanation for tool use in wild capuchins (i.e. terrestrial habits and bipedalism) must be viewed cautiously. Instead, remarkable manual skills linked to a varied diet seem important in promoting tool use in different contexts. The repertoire of tool-using techniques employed by wild capuchins has been expanded, highlighting the behavioural versatility in this genus. PMID:21389018

  19. C-MOS array design techniques: SUMC multiprocessor system study

    NASA Technical Reports Server (NTRS)

    Clapp, W. A.; Helbig, W. A.; Merriam, A. S.

    1972-01-01

    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units.

  20. Laser-Induced Fluorescence Helps Diagnose Plasma Processes

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Mattosian, J. N.; Gaeta, C. J.; Turley, R. S.; Williams, J. D.; Williamson, W. S.

    1994-01-01

    Technique developed to provide in situ monitoring of rates of ion sputter erosion of accelerator electrodes in ion thrusters also used for ground-based applications to monitor, calibrate, and otherwise diagnose plasma processes in fabrication of electronic and optical devices. Involves use of laser-induced-fluorescence measurements, which provide information on rates of ion etching, inferred rates of sputter deposition, and concentrations of contaminants.

  1. Evaluation of the Stress Resilience Training System

    DTIC Science & Technology

    2014-10-30

    enhanced by combining cognitive learning methodologies grounded in learning theory and biofeedback techniques based on heart rate variability ( HRV ) with...to reduce arousal. Biofeedback has been shown to reduce subjective stress, lower depression scores, decrease anxiety in athletes, and reduce...user’s biology (e.g., HRV -controlled games) provide a unique and highly immersive gaming experience (Prensky, 2001). These findings have been adopted

  2. Adaptive Noise Reduction Techniques for Airborne Acoustic Sensors

    DTIC Science & Technology

    2012-01-01

    and Preamplifiers . . . . . . . . . . . . . . . . . . . . 16 3.3.2 Audio Recorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 iv 4...consuming less energy than active systems such as radar, lidar, or sonar [5]. Ground and marine-based acoustic arrays are currently employed in a variety of...factors for the performance of an airborne acoustic array. 3.3.1 Audio Microphones and Preamplifiers An audio microphone is a transducer that converts

  3. Stream channel erosion in a rapidly urbanizing region of the US-Mexico border: documenting importance of channel hardpoints with structure-from-motion

    USDA-ARS?s Scientific Manuscript database

    A combination of field surveys and Structure-from-Motion (SfM) techniques were used to document spatial patterns in stream channel geometry in a rapidly urbanizing watershed, Los Laureles Canyon (LLCW), in Tijuana, Mexico. Ground-based SfM was used to map channel dimensions with 10 cm vertical accur...

  4. VLF long-range lightning location using the arrival time difference technique (ATD)

    NASA Technical Reports Server (NTRS)

    Ierkic, H. Mario

    1996-01-01

    A new network of VLF receiving systems is currently being developed in the USA to support NASA's Tropical Rain Measuring Mission (TRMM). The new network will be deployed in the east coast of the US, including Puerto Rico, and will be operational in late 1995. The system should give affordable, near real-time, accurate lightning locating capabilities at long ranges and with extended coverage. It is based on the Arrival Time Difference (ATD) method of Lee (1986; 1990). The ATD technique is based on the estimation of the time of arrival of sferics detected over an 18 kHz bandwith. The ground system results will be compared and complemented with satellite optical measurements gathered with the already operational Optical Transient Detector (OTD) instrument and in due course with its successor the Lightning Imaging Sensor (LIS). Lightning observations are important to understand atmospheric electrification phenomena, discharge processes, associated phenomena on earth (e.g. whistlers, explosive Spread-F) and other planets. In addition, lightning is a conspicuous indicator of atmospheric activity whose potential is just beginning to be recognized and utilized. On more prosaic grounds, lightning observations are important for protection of life, property and services.

  5. Techniques for optimizing human-machine information transfer related to real-time interactive display systems

    NASA Technical Reports Server (NTRS)

    Granaas, Michael M.; Rhea, Donald C.

    1989-01-01

    In recent years the needs of ground-based researcher-analysts to access real-time engineering data in the form of processed information has expanded rapidly. Fortunately, the capacity to deliver that information has also expanded. The development of advanced display systems is essential to the success of a research test activity. Those developed at the National Aeronautics and Space Administration (NASA), Western Aeronautical Test Range (WATR), range from simple alphanumerics to interactive mapping and graphics. These unique display systems are designed not only to meet basic information display requirements of the user, but also to take advantage of techniques for optimizing information display. Future ground-based display systems will rely heavily not only on new technologies, but also on interaction with the human user and the associated productivity with that interaction. The psychological abilities and limitations of the user will become even more important in defining the difference between a usable and a useful display system. This paper reviews the requirements for development of real-time displays; the psychological aspects of design such as the layout, color selection, real-time response rate, and interactivity of displays; and an analysis of some existing WATR displays.

  6. An alternative approach for estimating above ground biomass using Resourcesat-2 satellite data and artificial neural network in Bundelkhand region of India.

    PubMed

    Deb, Dibyendu; Singh, J P; Deb, Shovik; Datta, Debajit; Ghosh, Arunava; Chaurasia, R S

    2017-10-20

    Determination of above ground biomass (AGB) of any forest is a longstanding scientific endeavor, which helps to estimate net primary productivity, carbon stock and other biophysical parameters of that forest. With advancement of geospatial technology in last few decades, AGB estimation now can be done using space-borne and airborne remotely sensed data. It is a well-established, time saving and cost effective technique with high precision and is frequently applied by the scientific community. It involves development of allometric equations based on correlations of ground-based forest biomass measurements with vegetation indices derived from remotely sensed data. However, selection of the best-fit and explanatory models of biomass estimation often becomes a difficult proposition with respect to the image data resolution (spatial and spectral) as well as the sensor platform position in space. Using Resourcesat-2 satellite data and Normalized Difference Vegetation Index (NDVI), this pilot scale study compared traditional linear and nonlinear models with an artificial intelligence-based non-parametric technique, i.e. artificial neural network (ANN) for formulation of the best-fit model to determine AGB of forest of the Bundelkhand region of India. The results confirmed the superiority of ANN over other models in terms of several statistical significance and reliability assessment measures. Accordingly, this study proposed the use of ANN instead of traditional models for determination of AGB and other bio-physical parameters of any dry deciduous forest of tropical sub-humid or semi-arid area. In addition, large numbers of sampling sites with different quadrant sizes for trees, shrubs, and herbs as well as application of LiDAR data as predictor variable were recommended for very high precision modelling in ANN for a large scale study.

  7. Development and verification of ground-based tele-robotics operations concept for Dextre

    NASA Astrophysics Data System (ADS)

    Aziz, Sarmad

    2013-05-01

    The Special Purpose Dextreous Manipulator (Dextre) is the latest addition to the on-orbit segment of the Mobile Servicing System (MSS); Canada's contribution to the International Space Station (ISS). Launched in March 2008, the advanced two-armed robot is designed to perform various ISS maintenance tasks on robotically compatible elements and on-orbit replaceable units using a wide variety of tools and interfaces. The addition of Dextre has increased the capabilities of the MSS, and has introduced significant complexity to ISS robotics operations. While the initial operations concept for Dextre was based on human-in-the-loop control by the on-orbit astronauts, the complexities of robotic maintenance and the associated costs of training and maintaining the operator skills required for Dextre operations demanded a reexamination of the old concepts. A new approach to ISS robotic maintenance was developed in order to utilize the capabilities of Dextre safely and efficiently, while at the same time reducing the costs of on-orbit operations. This paper will describe the development, validation, and on-orbit demonstration of the operations concept for ground-based tele-robotics control of Dextre. It will describe the evolution of the new concepts from the experience gained from the development and implementation of the ground control capability for the Space Station Remote Manipulator System; Canadarm 2. It will discuss the various technical challenges faced during the development effort, such as requirements for high positioning accuracy, force/moment sensing and accommodation, failure tolerance, complex tool operations, and the novel operational tools and techniques developed to overcome them. The paper will also describe the work performed to validate the new concepts on orbit and will discuss the results and lessons learned from the on-orbit checkout and commissioning of Dextre using the newly developed tele-robotics techniques and capabilities.

  8. Modeling of Aerosol Optical Depth Variability during the 1998 Canadian Forest Fire Smoke Event

    NASA Astrophysics Data System (ADS)

    Aubé, M.; O`Neill, N. T.; Royer, A.; Lavoué, D.

    2003-04-01

    Monitoring of aerosol optical depth (AOD) is of particular importance due to the significant role of aerosols in the atmospheric radiative budget. Up to now the two standard techniques used for retrieving AOD are; (i) sun photometry which provides measurements of high temporal frequency and sparse spatial frequency, and (ii) satellite based approaches such as based DDV (Dense Dark Vegetation) inversion algorithms which extract AOD over dark targets in remotely sensed imagery. Although the latter techniques allow AOD retrieval over appreciable spatial domains, the irregular spatial pattern of dark targets and the typically low repeat frequencies of imaging satellites exclude the acquisition of AOD databases on a continuous spatio-temporal basis. We attempt to fill gaps in spatio-temporal AOD measurements using a new methodology that links AOD measurements and particulate matter Transport Model using a data assimilation approach. This modelling package (AODSEM for Aerosol Optical Depth Spatio-temporal Evolution Model) uses a size and aerosol type segregated semi-Lagrangian-Eulerian trajectory algorithm driven by analysed meteorological data. Its novelty resides in the fact that the model evolution is tied to both ground based and satellite level AOD measurement and all physical processes have been optimized to track this important but crude parameter. We applied this methodology to a significant smoke event that occurred over Canada in august 1998. The results show the potential of this approach inasmuch as residuals between AODSEM assimilated analysis and measurements are smaller than typical errors associated to remotely sensed AOD (satellite or ground based). The AODSEM assimilation approach also gives better results than classical interpolation techniques. This improvement is especially evident when the available number of AOD measurements is small.

  9. Ground penetrating radar (GPR) detects fine roots of agricultural crops in the field

    Treesearch

    Xiuwei Liu; Xuejun Dong; Qingwu Xue; Daniel I. Leskovar; John Jifon; John R. Butnor; Thomas Marek

    2018-01-01

    Aim Ground penetrating radar (GPR) as a non-invasive technique is widely used in coarse root detection. However, the applicability of the technique to detect fine roots of agricultural crops is unknown. The objective of this study was to assess the feasibility of utilizing GPR to detect fine roots in the field.

  10. Void detection beneath reinforced concrete sections: The practical application of ground-penetrating radar and ultrasonic techniques

    NASA Astrophysics Data System (ADS)

    Cassidy, Nigel J.; Eddies, Rod; Dods, Sam

    2011-08-01

    Ground-penetrating radar (GPR) and ultrasonic 'pulse echo' techniques are well-established methods for the imaging, investigation and analysis of steel reinforced concrete structures and are important civil engineering survey tools. GPR is, arguably, the more widely-used technique as it is suitable for a greater range of problem scenarios (i.e., from rebar mapping to moisture content determination). Ultrasonic techniques are traditionally associated with the engineering-based, non-destructive testing of concrete structures and their integrity analyses (e.g., flaw detection, shear/longitudinal velocity determination, etc). However, when used in an appropriate manner, both techniques can be considered complementary and provide a unique way of imaging the sub-surface that is suited to a range of geotechnical problems. In this paper, we present a comparative study between mid-to-high frequency GPR (450 MHz and 900 MHz) and array-based, shear wave, pulse-echo ultrasonic surveys using proprietary instruments and conventional GPR data processing and visualisation techniques. Our focus is the practical detection of sub-metre scale voids located under steel reinforced concrete sections in realistic survey conditions (e.g., a capped, relict mine shaft or vent). Representative two-dimensional (2D) sections are presented for both methods illustrating the similarities/differences in signal response and the temporal-spatial target resolutions achieved with each technique. The use of three-dimensional data volumes and time slices (or 'C-scans') for advanced interpretation is also demonstrated, which although common in GPR applications is under-utilised as a technique in general ultrasonic surveys. The results show that ultrasonic methods can perform as well as GPR for this specific investigation scenario and that they have the potential of overcoming some of the inherent limitations of GPR investigations (i.e., the need for careful antenna frequency selection and survey design in order to image through the rebar meshes). More importantly, we show that standard GPR data collection, processing and visualisation techniques can be used with both types of data without users needing to change existing operational protocols or survey criteria.

  11. Downward longwave surface radiation from sun-synchronous satellite data - Validation of methodology

    NASA Technical Reports Server (NTRS)

    Darnell, W. L.; Gupta, S. K.; Staylor, W. F.

    1986-01-01

    An extensive study has been carried out to validate a satellite technique for estimating downward longwave radiation at the surface. The technique, mostly developed earlier, uses operational sun-synchronous satellite data and a radiative transfer model to provide the surface flux estimates. The satellite-derived fluxes were compared directly with corresponding ground-measured fluxes at four different sites in the United States for a common one-year period. This provided a study of seasonal variations as well as a diversity of meteorological conditions. Dome heating errors in the ground-measured fluxes were also investigated and were corrected prior to the comparisons. Comparison of the monthly averaged fluxes from the satellite and ground sources for all four sites for the entire year showed a correlation coefficient of 0.98 and a standard error of estimate of 10 W/sq m. A brief description of the technique is provided, and the results validating the technique are presented.

  12. Characterizing and estimating noise in InSAR and InSAR time series with MODIS

    USGS Publications Warehouse

    Barnhart, William D.; Lohman, Rowena B.

    2013-01-01

    InSAR time series analysis is increasingly used to image subcentimeter displacement rates of the ground surface. The precision of InSAR observations is often affected by several noise sources, including spatially correlated noise from the turbulent atmosphere. Under ideal scenarios, InSAR time series techniques can substantially mitigate these effects; however, in practice the temporal distribution of InSAR acquisitions over much of the world exhibit seasonal biases, long temporal gaps, and insufficient acquisitions to confidently obtain the precisions desired for tectonic research. Here, we introduce a technique for constraining the magnitude of errors expected from atmospheric phase delays on the ground displacement rates inferred from an InSAR time series using independent observations of precipitable water vapor from MODIS. We implement a Monte Carlo error estimation technique based on multiple (100+) MODIS-based time series that sample date ranges close to the acquisitions times of the available SAR imagery. This stochastic approach allows evaluation of the significance of signals present in the final time series product, in particular their correlation with topography and seasonality. We find that topographically correlated noise in individual interferograms is not spatially stationary, even over short-spatial scales (<10 km). Overall, MODIS-inferred displacements and velocities exhibit errors of similar magnitude to the variability within an InSAR time series. We examine the MODIS-based confidence bounds in regions with a range of inferred displacement rates, and find we are capable of resolving velocities as low as 1.5 mm/yr with uncertainties increasing to ∼6 mm/yr in regions with higher topographic relief.

  13. Stochastic ground-motion simulations for the 2016 Kumamoto, Japan, earthquake

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Chen, Guangqi; Wu, Yanqiang; Jiang, Han

    2016-11-01

    On April 15, 2016, Kumamoto, Japan, was struck by a large earthquake sequence, leading to severe casualty and building damage. The stochastic finite-fault method based on a dynamic corner frequency has been applied to perform ground-motion simulations for the 2016 Kumamoto earthquake. There are 53 high-quality KiK-net stations available in the Kyushu region, and we employed records from all stations to determine region-specific source, path and site parameters. The calculated S-wave attenuation for the Kyushu region beneath the volcanic and non-volcanic areas can be expressed in the form of Q s = (85.5 ± 1.5) f 0.68±0.01 and Q s = (120 ± 5) f 0.64±0.05, respectively. The effects of lateral S-wave velocity and attenuation heterogeneities on the ground-motion simulations were investigated. Site amplifications were estimated using the corrected cross-spectral ratios technique. Zero-distance kappa filter was obtained to be the value of 0.0514 ± 0.0055 s, using the spectral decay method. The stress drop of the mainshock based on the USGS slip model was estimated optimally to have a value of 64 bars. Our finite-fault model with optimized parameters was validated through the good agreement of observations and simulations at all stations. The attenuation characteristics of the simulated peak ground accelerations were also successfully captured by the ground-motion prediction equations. Finally, the ground motions at two destructively damaged regions, Kumamoto Castle and Minami Aso village, were simulated. We conclude that the stochastic finite-fault method with well-determined parameters can reproduce the ground-motion characteristics of the 2016 Kumamoto earthquake in both the time and frequency domains. This work is necessary for seismic hazard assessment and mitigation.[Figure not available: see fulltext.

  14. A comparative study of ground motion hybrid simulations and the modified NGA ground motion predictive equations for directivity and its application to the the Marmara Sea region (Turkey)

    NASA Astrophysics Data System (ADS)

    Pischiutta, M.; Akinci, A.; Spagnuolo, E.; Taroni, M.; Herrero, A.; Aochi, H.

    2016-12-01

    We have simulated strong ground motions for two Mw>7.0 rupture scenarios on the North Anatolian Fault, in the Marmara Sea within 10-20 km from Istanbul. This city is characterized by one of the highest levels of seismic risk in Europe and the Mediterranean region. The increased risk in Istanbul is due to eight destructive earthquakes that ruptured the fault system and left a seismic gap at the western portion of the 1000km-long North Anatolian Fault Zone. To estimate the ground motion characteristics and its variability in the region we have simulated physics-based rupture scenarios, producing hybrid broadband time histories. We have merged two simulation techniques: a full 3D wave propagation method to generate low-frequency seismograms (Aochi and Ulrich, 2015) and the stochastic finite-fault model approach based on a dynamic corner frequency (Motazedian and Atkinson, 2005) to simulate high-frequency seismograms (Akinci et al., 2016, submitted to BSSA, 2016). They are merged to compute realistic broadband hybrid time histories. The comparison of ground motion intensity measures (PGA, PGV, SA) resulting from our simulations with those predicted by the recent Ground Motion Prediction Equations (GMPEs) in the region (Boore & Atkinson, 2008; Chiou & Young, 2008; Akkar & Bommer, 2010; Akkar & Cagnan, 2010) seems to indicate that rupture directivity and super-shear rupture effects affect the ground motion in the Marmara Sea region. In order to account for the rupture directivity we improve the comparison using the directivity predictor proposed by Spudich & Chiu (2008). This study highlights the importance of the rupture directivity for the hazard estimation in the Marmara Sea region, especially for the city of Istanbul.

  15. Enviro-Net: From Networks of Ground-Based Sensor Systems to a Web Platform for Sensor Data Management

    PubMed Central

    Pastorello, Gilberto Z.; Sanchez-Azofeifa, G. Arturo; Nascimento, Mario A.

    2011-01-01

    Ecosystems monitoring is essential to properly understand their development and the effects of events, both climatological and anthropological in nature. The amount of data used in these assessments is increasing at very high rates. This is due to increasing availability of sensing systems and the development of new techniques to analyze sensor data. The Enviro-Net Project encompasses several of such sensor system deployments across five countries in the Americas. These deployments use a few different ground-based sensor systems, installed at different heights monitoring the conditions in tropical dry forests over long periods of time. This paper presents our experience in deploying and maintaining these systems, retrieving and pre-processing the data, and describes the Web portal developed to help with data management, visualization and analysis. PMID:22163965

  16. Design and investigation of planar technology based ultra-wideband antenna with directional radiation patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meena, M. L., E-mail: madan.meena.ece@gamil.com; Parmar, Girish, E-mail: girish-parmar2002@yahoo.com; Kumar, Mithilesh, E-mail: mith-kr@yahoo.com

    A novel design technique based on planar technology for ultra-wideband (UWB) antennas with different ground shape having directional radiation pattern is being presented here. Firstly, the L-shape corner reflector ground plane antenna is designed with microstrip feed line in order to achieve large bandwidth and directivity. Thereafter, for the further improvement in the directivity as well as for better impedance matching the parabolic-shape ground plane has been introduced. The coaxial feed line is given for the proposed directional antenna in order to achieve better impedance matching with 50 ohm transmission line. The simulation analysis of the antenna is done onmore » CST Microwave Studio software using FR-4 substrate having thickness of 1.6 mm and dielectric constant of 4.4. The simulated result shows a good return loss (S11) with respect to -10 dB. The radiation pattern characteristic, angular width, directivity and bandwidth performance of the antenna have also been compared at different resonant frequencies. The designed antennas exhibit low cost, low reflection coefficient and better directivity in the UWB frequency band.« less

  17. Simulating tropical carbon stocks and fluxes in a changing world using an individual-based forest model.

    NASA Astrophysics Data System (ADS)

    Fischer, Rico; Huth, Andreas

    2014-05-01

    Large areas of tropical forests are disturbed due to climate change and human influence. Experts estimate that the last remaining rainforests could be destroyed in less than 100 years with strong consequences for both developing and industrial countries. Using a modelling approach we analyse how disturbances modify carbon stocks and carbon fluxes of African rainforests. In this study we use the process-based, individual-oriented forest model FORMIND. The main processes of this model are tree growth, mortality, regeneration and competition. The study regions are tropical rainforests in the Kilimanjaro region and Madagascar. Modelling above and below ground carbon stocks, we analyze the impact of disturbances and climate change on forest dynamics and forest carbon stocks. Droughts and fire events change the structure of tropical rainforests. Human influence like logging intensify this effect. With the presented results we could establish new allometric relationships between forest variables and above ground carbon stocks in tropical regions. Using remote sensing techniques, these relationships would offer the possibility for a global monitoring of the above ground carbon stored in the vegetation.

  18. Advanced flight hardware for organic separations

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Weber, John T.

    1997-01-01

    Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT fabricated and integrated the ADSEP flight hardware for a commercially-driven flight experiment as the initial step in marketing space processing services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.

  19. Optimum Damping in a Non-Linear Base Isolation System

    NASA Astrophysics Data System (ADS)

    Jangid, R. S.

    1996-02-01

    Optimum isolation damping for minimum acceleration of a base-isolated structure subjected to earthquake ground excitation is investigated. The stochastic model of the El-Centro1940 earthquake, which preserves the non-stationary evolution of amplitude and frequency content of ground motion, is used as an earthquake excitation. The base isolated structure consists of a linear flexible shear type multi-storey building supported on a base isolation system. The resilient-friction base isolator (R-FBI) is considered as an isolation system. The non-stationary stochastic response of the system is obtained by the time dependent equivalent linearization technique as the force-deformation of the R-FBI system is non-linear. The optimum damping of the R-FBI system is obtained under important parametric variations; i.e., the coefficient of friction of the R-FBI system, the period and damping of the superstructure; the effective period of base isolation. The criterion selected for optimality is the minimization of the top floor root mean square (r.m.s.) acceleration. It is shown that the above parameters have significant effects on optimum isolation damping.

  20. The ground truth about metadata and community detection in networks.

    PubMed

    Peel, Leto; Larremore, Daniel B; Clauset, Aaron

    2017-05-01

    Across many scientific domains, there is a common need to automatically extract a simplified view or coarse-graining of how a complex system's components interact. This general task is called community detection in networks and is analogous to searching for clusters in independent vector data. It is common to evaluate the performance of community detection algorithms by their ability to find so-called ground truth communities. This works well in synthetic networks with planted communities because these networks' links are formed explicitly based on those known communities. However, there are no planted communities in real-world networks. Instead, it is standard practice to treat some observed discrete-valued node attributes, or metadata, as ground truth. We show that metadata are not the same as ground truth and that treating them as such induces severe theoretical and practical problems. We prove that no algorithm can uniquely solve community detection, and we prove a general No Free Lunch theorem for community detection, which implies that there can be no algorithm that is optimal for all possible community detection tasks. However, community detection remains a powerful tool and node metadata still have value, so a careful exploration of their relationship with network structure can yield insights of genuine worth. We illustrate this point by introducing two statistical techniques that can quantify the relationship between metadata and community structure for a broad class of models. We demonstrate these techniques using both synthetic and real-world networks, and for multiple types of metadata and community structures.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitarka, A.

    In this project we developed GEN_SRF4 a computer program for generating kinematic rupture models, compatible with the SRF format, using Irikura and Miyake (2011) asperity-­based earthquake rupture model (IM2011, hereafter). IM2011, also known as Irkura’s recipe, has been widely used to model and simulate ground motion from earthquakes in Japan. An essential part of the method is its kinematic rupture generation technique, which is based on a deterministic rupture asperity modeling approach. The source model simplicity and efficiency of IM2011 at reproducing ground motion from earthquakes recorded in Japan makes it attractive to developers and users of the Southern Californiamore » Earthquake Center Broadband Platform (SCEC BB platform). Besides writing the code the objective of our study was to test the transportability of IM2011 to broadband simulation methods used by the SCEC BB platform. Here we test it using the Graves and Pitarka (2010) method, implemented in the platform. We performed broadband (0.1- -10 Hz) ground motion simulations for a M6.7 scenario earthquake using rupture models produced with both GEN_SRF4 and rupture generator of Graves and Pitarka (2016), (GP2016 hereafter). In the simulations we used the same Green’s functions, and same high frequency approach for calculating the low-­frequency and high-­frequency parts of ground motion, respectively.« less

  2. Development of silicon grisms and immersion gratings for high-resolution infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ge, Jian; McDavitt, Daniel L.; Bernecker, John L.; Miller, Shane; Ciarlo, Dino R.; Kuzmenko, Paul J.

    2002-01-01

    We report new results on silicon grism and immersion grating development using photolithography and anisotropic chemical etching techniques, which include process recipe finding, prototype grism fabrication, lab performance evaluation and initial scientific observations. The very high refractive index of silicon (n=3.4) enables much higher dispersion power for silicon-based gratings than conventional gratings, e.g. a silicon immersion grating can offer a factor of 3.4 times the dispersion of a conventional immersion grating. Good transmission in the infrared (IR) allows silicon-based gratings to operate in the broad IR wavelength regions (~1- 10 micrometers and far-IR), which make them attractive for both ground and space-based spectroscopic observations. Coarser gratings can be fabricated with these new techniques rather than conventional techniques, allowing observations at very high dispersion orders for larger simultaneous wavelength coverage. We have found new etching techniques for fabricating high quality silicon grisms with low wavefront distortion, low scattered light and high efficiency. Particularly, a new etching process using tetramethyl ammonium hydroxide (TMAH) is significantly simplifying the fabrication process on large, thick silicon substrates, while providing comparable grating quality to our traditional potassium hydroxide (KOH) process. This technique is being used for fabricating inch size silicon grisms for several IR instruments and is planned to be used for fabricating ~ 4 inch size silicon immersion gratings later. We have obtained complete K band spectra of a total of 6 T Tauri and Ae/Be stars and their close companions at a spectral resolution of R ~ 5000 using a silicon echelle grism with a 5 mm pupil diameter at the Lick 3m telescope. These results represent the first scientific observations conducted by the high-resolution silicon grisms, and demonstrate the extremely high dispersing power of silicon- based gratings. The future of silicon-based grating applications in ground and space-based IR instruments is promising. Silicon immersion gratings will make very high-resolution spectroscopy (R>100,000) feasible with compact instruments for implementation on large telescopes. Silicon grisms will offer an efficient way to implement low-cost medium to high resolution IR spectroscopy (R~ 1000-50000) through the conversion of existing cameras into spectrometers by locating a grism in the instrument's pupil location.

  3. Simulation verification techniques study: Simulation self test hardware design and techniques report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The final results are presented of the hardware verification task. The basic objectives of the various subtasks are reviewed along with the ground rules under which the overall task was conducted and which impacted the approach taken in deriving techniques for hardware self test. The results of the first subtask and the definition of simulation hardware are presented. The hardware definition is based primarily on a brief review of the simulator configurations anticipated for the shuttle training program. The results of the survey of current self test techniques are presented. The data sources that were considered in the search for current techniques are reviewed, and results of the survey are presented in terms of the specific types of tests that are of interest for training simulator applications. Specifically, these types of tests are readiness tests, fault isolation tests and incipient fault detection techniques. The most applicable techniques were structured into software flows that are then referenced in discussions of techniques for specific subsystems.

  4. InSAR observations of active volcanoes in Latin America

    NASA Astrophysics Data System (ADS)

    Morales Rivera, A. M.; Chaussard, E.; Amelung, F.

    2012-12-01

    Over the last decade satellite-based interferometric synthetic aperture radar (InSAR) has developed into a well-known technique to gauge the status of active volcanoes. The InSAR technique can detect the ascent of magma to shallow levels of the volcanic plumbing system because new arriving magma pressurizes the system. This is likely associated with the inflation of the volcanic edifice and the surroundings. Although the potential of InSAR to detect magma migration is well known, the principal limitation was that only for few volcanoes frequent observations were acquired. The ALOS-1 satellite of the Japanese Aerospace Exploration Agency (JAXA) acquired a global L-band data set of 15-20 acquisitions during 2006-2011. Here we use ALOS InSAR and Small Baseline (SB) time-series methods for a ground deformation survey of Latin America with emphasis on the northern Andes. We present time-dependent ground deformation data for the volcanoes in Colombia, Ecuador and Peru and interpret the observations in terms of the dynamics of the volcanic systems.

  5. Mapping wetlands on beaver flowages with 35-mm photography

    USGS Publications Warehouse

    Kirby, R.E.

    1976-01-01

    Beaver flowages and associated wetlands on the Chippewa National Forest, north-central Minnesota, were photographed from the ground and from the open side window of a small high-wing monoplane. The 35-mm High Speed Ektachrome transparencies obtained were used to map the cover-type associations visible on the aerial photographs. Nearly vertical aerial photos were rectified by projecting the slides onto a base map consisting ofcontrol points located by plane-table survey. Maps were prepared by tracing the recognizable stands of vegetation in the rectified projection at the desired map scale. Final map scales ranging from 1:260 to 1:571 permitted identification and mapping of 26 cover-type associations on 10 study flowages in 1971. This cover-mapping technique was economical and substituted for detailed ground surveys. Comparative data from 10 flowages were collected serially throughout the entire open-water season. Although developed for analysis of waterfowl habitat, the technique has application to other areas of wildlife management and ecological investigation.

  6. Proposal for a study of computer mapping of terrain using multispectral data from ERTS-A for the Yellowstone National Park test site

    NASA Technical Reports Server (NTRS)

    Smedes, H. W. (Principal Investigator); Root, R. R.; Roller, N. E. G.; Despain, D.

    1978-01-01

    The author has identified the following significant results. A terrain map of Yellowstone National Park showed plant community types and other classes of ground cover in what is basically a wild land. The map comprised 12 classes, six of which were mapped with accuracies of 70 to 95%. The remaining six classes had spectral reflectances that overlapped appreciably, and hence, those were mapped less accurately. Techniques were devised for quantitatively comparing the recognition map of the park with control data acquired from ground inspection and from analysis of sidelooking radar images, a thermal IR mosaic, and IR aerial photos of several scales. Quantitative analyses were made in ten 40 sq km test areas. Comparison mechanics were performed by computer with the final results displayed on line printer output. Forested areas were mapped by computer using ERTS data for less than 1/4 the cost of the conventional forest mapping technique for topographic base maps.

  7. Efficient computer algorithms for infrared astronomy data processing

    NASA Technical Reports Server (NTRS)

    Pelzmann, R. F., Jr.

    1976-01-01

    Data processing techniques to be studied for use in infrared astronomy data analysis systems are outlined. Only data from space based telescope systems operating as survey instruments are considered. Resulting algorithms, and in some cases specific software, will be applicable for use with the infrared astronomy satellite (IRAS) and the shuttle infrared telescope facility (SIRTF). Operational tests made during the investigation use data from the celestial mapping program (CMP). The overall task differs from that involved in ground-based infrared telescope data reduction.

  8. Improvements on GPS Location Cluster Analysis for the Prediction of Large Carnivore Feeding Activities: Ground-Truth Detection Probability and Inclusion of Activity Sensor Measures

    PubMed Central

    Blecha, Kevin A.; Alldredge, Mat W.

    2015-01-01

    Animal space use studies using GPS collar technology are increasingly incorporating behavior based analysis of spatio-temporal data in order to expand inferences of resource use. GPS location cluster analysis is one such technique applied to large carnivores to identify the timing and location of feeding events. For logistical and financial reasons, researchers often implement predictive models for identifying these events. We present two separate improvements for predictive models that future practitioners can implement. Thus far, feeding prediction models have incorporated a small range of covariates, usually limited to spatio-temporal characteristics of the GPS data. Using GPS collared cougar (Puma concolor) we include activity sensor data as an additional covariate to increase prediction performance of feeding presence/absence. Integral to the predictive modeling of feeding events is a ground-truthing component, in which GPS location clusters are visited by human observers to confirm the presence or absence of feeding remains. Failing to account for sources of ground-truthing false-absences can bias the number of predicted feeding events to be low. Thus we account for some ground-truthing error sources directly in the model with covariates and when applying model predictions. Accounting for these errors resulted in a 10% increase in the number of clusters predicted to be feeding events. Using a double-observer design, we show that the ground-truthing false-absence rate is relatively low (4%) using a search delay of 2–60 days. Overall, we provide two separate improvements to the GPS cluster analysis techniques that can be expanded upon and implemented in future studies interested in identifying feeding behaviors of large carnivores. PMID:26398546

  9. The Question of Impurities in Macromolecule Crystal Quality Improvement in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matthew; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is how do macromolecule impurities effect crystal X-ray quality and diffraction resolution. In the case of chicken egg white lysozyme previous researchers have reported that crystals grown in the presence of ovalbumin, ovotransferrin, and turkey egg white lysozyme show no difference in diffraction resolution compared to those grown in pure solutions. One impurity however, a naturally occurring lysozyme dimer, does negatively impact the X-ray crystal properties. For this impurity it has been reported that crystal quality improvement in microgravity may be due to improved impurity partitioning during crystallization. In this study we have examined the incorporation of the dimer into lysozyme crystals, both on the ground and in microgravity experiments, and have performed detailed X-ray analysis of the crystals using a new technique for finely probing the mosaicity of the crystal at the Stanford Synchrotron Radiation Laboratory. Dimer partitioning was not significantly different in microgravity compared to the ground based experiments, although it is significantly better than that previously reported in microgravity. Mosaicity analysis of pure crystals, 1422 indexed reflections (microgravity) and 752 indexed reflections (ground), gave average results of 0.0066 and 0.0092 degrees (FWHM) respectively. The microgravity crystals also provided an increased signal to noise. Dimer incorporation increased the average mosaicity in microgravity but not on the ground. However, dimer incorporation did greatly reduce the resolution limit in both ground and microgravity grown crystals. The data is being treated anisotropically to explore these effects. These results indicate that impurity effects in microgravity are complex and that the conditions or techniques employed may greatly affect the role of impurities.

  10. Monitoring and Modeling Crop Health and Water Use via in-situ, Airborne and Space-based Platforms

    NASA Astrophysics Data System (ADS)

    McCabe, M. F.

    2014-12-01

    The accurate retrieval of plant water use, health and function together with soil state and condition, represent key objectives in the management and monitoring of large-scale agricultural production. In regions of water shortage or stress, understanding the sustainable use of available water supplies is critical. Unfortunately, this need is all too often limited by a lack of reliable observations. Techniques that balance the demand for reliable ground-based data with the rapid retrieval of spatially distributed crop characteristics represent a needed line of research. Data from in-situ monitoring coupled with advances in satellite retrievals of key land surface variables, provide the information necessary to characterize many crop health and water use features, including evaporation, leaf-chlorophyll and other common vegetation indices. With developments in UAV and quadcopter solutions, the opportunity to bridge the spatio-temporal gap between satellite and ground based sensing now exists, along with the capacity for customized retrievals of crop information. While there remain challenges in the routine application of autonomous airborne systems, the state of current technology and sensor developments provide the capacity to explore the operational potential. While this presentation will focus on the multi-scale estimation of crop-water use and crop-health characteristics from satellite-based sensors, the retrieval of high resolution spatially distributed information from near-surface airborne and ground-based systems will also be examined.

  11. Requirements for facilities and measurement techniques to support CFD development for hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Sellers, William L., III; Dwoyer, Douglas L.

    1992-01-01

    The design of a hypersonic aircraft poses unique challenges to the engineering community. Problems with duplicating flight conditions in ground based facilities have made performance predictions risky. Computational fluid dynamics (CFD) has been proposed as an additional means of providing design data. At the present time, CFD codes are being validated based on sparse experimental data and then used to predict performance at flight conditions with generally unknown levels of uncertainty. This paper will discuss the facility and measurement techniques that are required to support CFD development for the design of hypersonic aircraft. Illustrations are given of recent success in combining experimental and direct numerical simulation in CFD model development and validation for hypersonic perfect gas flows.

  12. Efficient Testing Combining Design of Experiment and Learn-to-Fly Strategies

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Brandon, Jay M.

    2017-01-01

    Rapid modeling and efficient testing methods are important in a number of aerospace applications. In this study efficient testing strategies were evaluated in a wind tunnel test environment and combined to suggest a promising approach for both ground-based and flight-based experiments. Benefits of using Design of Experiment techniques, well established in scientific, military, and manufacturing applications are evaluated in combination with newly developing methods for global nonlinear modeling. The nonlinear modeling methods, referred to as Learn-to-Fly methods, utilize fuzzy logic and multivariate orthogonal function techniques that have been successfully demonstrated in flight test. The blended approach presented has a focus on experiment design and identifies a sequential testing process with clearly defined completion metrics that produce increased testing efficiency.

  13. Bioinspired optical sensors for unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Chahl, Javaan; Rosser, Kent; Mizutani, Akiko

    2011-04-01

    Insects are dependant on the spatial, spectral and temporal distributions of light in the environment for flight control and navigation. This paper reports on flight trials of implementations of insect inspired behaviors on unmanned aerial vehicles. Optical flow methods for maintaining a constant height above ground and a constant course have been demonstrated to provide navigation capabilities that are impossible using conventional avionics sensors. Precision control of height above ground and ground course were achieved over long distances. Other vision based techniques demonstrated include a biomimetic stabilization sensor that uses the ultraviolet and green bands of the spectrum, and a sky polarization compass. Both of these sensors were tested over long trajectories in different directions, in each case showing performance similar to low cost inertial heading and attitude systems. The behaviors demonstrate some of the core functionality found in the lower levels of the sensorimotor system of flying insects and shows promise for more integrated solutions in the future.

  14. Modeling of the ground-to-SSFMB link networking features using SPW

    NASA Technical Reports Server (NTRS)

    Watson, John C.

    1993-01-01

    This report describes the modeling and simulation of the networking features of the ground-to-Space Station Freedom manned base (SSFMB) link using COMDISCO signal processing work-system (SPW). The networking features modeled include the implementation of Consultative Committee for Space Data Systems (CCSDS) protocols in the multiplexing of digitized audio and core data into virtual channel data units (VCDU's) in the control center complex and the demultiplexing of VCDU's in the onboard baseband signal processor. The emphasis of this work has been placed on techniques for modeling the CCSDS networking features using SPW. The objectives for developing the SPW models are to test the suitability of SPW for modeling networking features and to develop SPW simulation models of the control center complex and space station baseband signal processor for use in end-to-end testing of the ground-to-SSFMB S-band single access forward (SSAF) link.

  15. Irrigated lands assessment for water management: Technique test. [California

    NASA Technical Reports Server (NTRS)

    Wall, S. L.; Brown, C. E.; Eriksson, M.; Grigg, C. A.; Thomas, R. W.; Colwell, R. N.; Estes, J. E.; Tinney, L. R.; Baggett, J. O.; Sawyer, G.

    1981-01-01

    A procedure for estimating irrigated land using full frame LANDSAT imagery was demonstrated. Relatively inexpensive interpretation of multidate LANDSAT photographic enlargements was used to produce a map of irrigated land in California. The LANDSAT and ground maps were then linked by regression equations to enable precise estimation of irrigated land area by county, basin, and statewide. Land irrigated at least once in California in 1979 was estimated to be 9.86 million acres, with an expected error of less than 1.75% at the 99% level of confidence. To achieve the same level of error with a ground-only sample would have required 3 to 5 times as many ground sample units statewide. A procedure for relatively inexpensive computer classification of LANDSAT digital data to irrigated land categories was also developed. This procedure is based on ratios of MSS band 7 and 5, and gave good results for several counties in the Central Valley.

  16. Integrated monitoring system for ground deformation hazard assessment in Telese Terme (Benevento province, Italy)

    NASA Astrophysics Data System (ADS)

    Tessitore, S.; Castiello, G.; Fedi, M.; Florio, G.; Fuschini, V.; Ramondini, M.; Calcaterra, D.

    2012-04-01

    TeleseTerme plain is characterized by a very articulated stratigraphy (levels of travertine, fluvial-marshy and pyroclastic deposits), that allows the occurrence of underground water circulation with overlapping aquifers. These aquifers are locally in pressure and, because of chemical characteristics and physical properties of the water, they may activate processes of accelerated travertine's corrosion; the consequence is the formation of cavity along the ground water's preferential flow paths, and the activation of subsidence and sinkholes phenomena. In particular test area includes two zones, where in 2002 and 2006 occurred two sinkholes events, classified as "piping sinkholes". The hazard evaluation was carried out trhought an integrated monitoring system, based on "traditional" techniques conduced "in situ", as geological-geomorphological and geophysical (microgravity) surveys, integrated by the most innovative techniques of Remote sensing interferometry(Advanced DInSAR Interferometry Techniques). The last allow to evaluate the ground deformation, characterized by a predominantvertical component (typical deformation of sinkholes and subsidence phenomena), and are well suited to operate a continuous and long monitoring ofvery extended areas. Through an initial analysis of the Permanent Scatterers available in the Telese municipality, we found the envelopes of the areal that contain PS with negative and positive mean velocities; these velocities showed the presence of a possible phenomenon of subsidence detected by ERS and ENVISAT satellites. Through interferometric processing of ENVISAT images, the soil deformations of 2002-2010 year sare evaluated and compared with the data obtainedby survey took "in situ" during the same period. The knowledge of the deformation's evolution of the area made it possible to organize a more focused future monitoring through traditional techniques of relief (with the help of geophysical methodologies). Since the zone affected by sinkhole phenomena is located in urbanized area, microgravity method was preferred to other geophysical methodologies. In fact, seismic, magnetic and electromagnetic techniques are strongly influenced by urban noise and this produces a low value of signal to noise ratio. The gravity exploration, based on the identification of anomalies in the Earth's gravity field by measuring the gravity acceleration, allows to define any inhomogeneities generated by sources at different densities in the subsurface structure, such as underground voids. Based on geological informations, geophysical models of the known cavities are made. Establishing the physical and geometrical characteristics of the voids it was possible compute the amplitudes and wavelengths of the expected geophysical signal, in order to establish the procedures of the executive acquisition phase. If the magnitude of the evolution of the sinkhole phenomenon will be detected by gravity observations, the time-lapse gravity monitoring will be an excellent tool at the base of risk mitigation.

  17. Volumetric measurement of rock movement using photogrammetry

    PubMed Central

    Benton, Donovan J.; Iverson, Stephen R.; Martin, Lewis A.; Johnson, Jeffrey C.; Raffaldi, Michael J.

    2016-01-01

    NIOSH ground control safety research program at Spokane, Washington, is exploring applications of photogrammetry to rock mass and support monitoring. This paper describes two ways photogrammetric techniques are being used. First, photogrammetric data of laboratory testing is being used to correlate energy input and support deformation. This information can be used to infer remaining support toughness after ground deformation events. This technique is also demonstrated in a field application. Second, field photogrammetric data is compared to crackmeter data from a deep underground mine. Accuracies were found to average 8 mm, but have produced results within 0.2 mm of true displacement, as measured by crackmeters. Application of these techniques consists of monitoring overall fault activity by monitoring multiple points around the crackmeter. A case study is provided in which a crackmeter is clearly shown to have provided insufficient information regarding overall fault ground deformation. Photogrammetry is proving to be a useful ground monitoring tool due to its unobtrusiveness and ease of use. PMID:27110429

  18. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Guoyan

    2010-04-15

    Purpose: The aim of this article is to investigate the feasibility of using a statistical shape model (SSM)-based reconstruction technique to derive a scaled, patient-specific surface model of the pelvis from a single standard anteroposterior (AP) x-ray radiograph and the feasibility of estimating the scale of the reconstructed surface model by performing a surface-based 3D/3D matching. Methods: Data sets of 14 pelvises (one plastic bone, 12 cadavers, and one patient) were used to validate the single-image based reconstruction technique. This reconstruction technique is based on a hybrid 2D/3D deformable registration process combining a landmark-to-ray registration with a SSM-based 2D/3D reconstruction.more » The landmark-to-ray registration was used to find an initial scale and an initial rigid transformation between the x-ray image and the SSM. The estimated scale and rigid transformation were used to initialize the SSM-based 2D/3D reconstruction. The optimal reconstruction was then achieved in three stages by iteratively matching the projections of the apparent contours extracted from a 3D model derived from the SSM to the image contours extracted from the x-ray radiograph: Iterative affine registration, statistical instantiation, and iterative regularized shape deformation. The image contours are first detected by using a semiautomatic segmentation tool based on the Livewire algorithm and then approximated by a set of sparse dominant points that are adaptively sampled from the detected contours. The unknown scales of the reconstructed models were estimated by performing a surface-based 3D/3D matching between the reconstructed models and the associated ground truth models that were derived from a CT-based reconstruction method. Such a matching also allowed for computing the errors between the reconstructed models and the associated ground truth models. Results: The technique could reconstruct the surface models of all 14 pelvises directly from the landmark-based initialization. Depending on the surface-based matching techniques, the reconstruction errors were slightly different. When a surface-based iterative affine registration was used, an average reconstruction error of 1.6 mm was observed. This error was increased to 1.9 mm, when a surface-based iterative scaled rigid registration was used. Conclusions: It is feasible to reconstruct a scaled, patient-specific surface model of the pelvis from single standard AP x-ray radiograph using the present approach. The unknown scale of the reconstructed model can be estimated by performing a surface-based 3D/3D matching.« less

  19. The environmental control and life support system advanced automation project

    NASA Technical Reports Server (NTRS)

    Dewberry, Brandon S.

    1991-01-01

    The objective of the ECLSS Advanced Automation project includes reduction of the risk associated with the integration of new, beneficial software techniques. Demonstrations of this software to baseline engineering and test personnel will show the benefits of these techniques. The advanced software will be integrated into ground testing and ground support facilities, familiarizing its usage by key personnel.

  20. Full-waveform inversion of GPR data for civil engineering applications

    NASA Astrophysics Data System (ADS)

    van der Kruk, Jan; Kalogeropoulos, Alexis; Hugenschmidt, Johannes; Klotzsche, Anja; Busch, Sebastian; Vereecken, Harry

    2014-05-01

    Conventional GPR ray-based techniques are often limited in their capability to image complex structures due to the pertaining approximations. Due to the increased computational power, it is becoming more easy to use modeling and inversion tools that explicitly take into account the detailed electromagnetic wave propagation characteristics. In this way, new civil engineering application avenues are opening up that enable an improved high resolution imaging of quantitative medium properties. In this contribution, we show recent developments that enable the full-waveform inversion of off-ground, on-ground and crosshole GPR data. For a successful inversion, a proper start model must be used that generates synthetic data that overlaps the measured data with at least half a wavelength. In addition, the GPR system must be calibrated such that an effective wavelet is obtained that encompasses the complexity of the GPR source and receiver antennas. Simple geometries such as horizontal layers can be described with a limited number of model parameters, which enable the use of a combined global and local search using the Simplex search algorithm. This approach has been implemented for the full-waveform inversion of off-ground and on-ground GPR data measured over horizontally layered media. In this way, an accurate 3D frequency domain forward model of Maxwell's equation can be used where the integral representation of the electric field is numerically evaluated. The full-waveform inversion (FWI) for a large number of unknowns uses gradient-based optimization methods where a 3D to 2D conversion is used to apply this method to experimental data. Off-ground GPR data, measured over homogeneous concrete specimens, were inverted using the full-waveform inversion. In contrast to traditional ray-based techniques we were able to obtain quantitative values for the permittivity and conductivity and in this way distinguish between moisture and chloride effects. For increasing chloride content increasing frequency-dependent conductivity values were obtained. The off-ground full-waveform inversion was extended to invert for positive and negative gradients in conductivity and the conductivity gradient direction could be correctly identified. Experimental specimen containing gradients were generated by exposing a concrete slab to controlled wetting-drying cycles using a saline solution. Full-waveform inversion of the measured data correctly identified the conductivity gradient direction which was confirmed by destructive analysis. On-ground CMP GPR data measured over a concrete layer overlying a metal plate show interfering multiple reflections, which indicates that the structure acts as a waveguide. Calculation of the phase-velocity spectrum shows the presence of several higher order modes. Whereas the dispersion inversion returns the thickness and layer height, the full-waveform inversion was also able to estimate quantitative conductivity values. This abstract is a contribution to COST Action TU1208

  1. A comparative review of optical surface contamination assessment techniques

    NASA Technical Reports Server (NTRS)

    Heaney, James B.

    1987-01-01

    This paper will review the relative sensitivities and practicalities of the common surface analytical methods that are used to detect and identify unwelcome adsorbants on optical surfaces. The compared methods include visual inspection, simple reflectometry and transmissiometry, ellipsometry, infrared absorption and attenuated total reflectance spectroscopy (ATR), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), and mass accretion determined by quartz crystal microbalance (QCM). The discussion is biased toward those methods that apply optical thin film analytical techniques to spacecraft optical contamination problems. Examples are cited from both ground based and in-orbit experiments.

  2. Range estimation techniques in single-station thunderstorm warning sensors based upon gated, wideband, magnetic direction finder technology

    NASA Technical Reports Server (NTRS)

    Pifer, Alburt E.; Hiscox, William L.; Cummins, Kenneth L.; Neumann, William T.

    1991-01-01

    Gated, wideband, magnetic direction finders (DFs) were originally designed to measure the bearing of cloud-to-ground lightning relative to the sensor. A recent addition to this device uses proprietary waveform discrimination logic to select return stroke signatures and certain range dependent features in the waveform to provide an estimate of range of flashes within 50 kms. The enhanced ranging techniques are discussed which were designed and developed for use in single station thunderstorm warning sensor. Included are the results of on-going evaluations being conducted under a variety of meteorological and geographic conditions.

  3. Ground-water/surface-water interaction in nearshore areas of Three Lakes on the Grand Portage Reservation, northeastern Minnesota, 2003-04

    USGS Publications Warehouse

    Jones, Perry M.

    2006-01-01

    Knowledge of general water-flow directions in lake watersheds and how they may change seasonally can help water-quality specialists and lake managers address a variety of water-quality and aquatic habitat protection issues for lakes. Results from this study indicate that ground-water and surface-water interactions at the study lakes are complex, and the ability of the applied techniques to identify ground-water inflow and surface-water outseepage locations varied among the lakes. Measurement of lake-sediment temperatures proved to be a reliable and relatively inexpensive reconnaissance technique that lake managers may apply in complex settings to identify general areas of ground-water inflow and surface-water outseepage.

  4. Radiation Characteristics of Cavity Backed Aperture Antennas in Finite Ground Plane Using the Hybrid FEM/MoM Technique and Geometrical Theory of Diffraction

    NASA Technical Reports Server (NTRS)

    Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.

    1996-01-01

    A technique using hybrid Finite Element Method (FEM)/Method of Moments (MoM), and Geometrical Theory of Diffraction (GTD) is presented to analyze the radiation characteristics of cavity fed aperture antennas in a finite ground plane. The cavity which excites the aperture is assumed to be fed by a cylindrical transmission line. The electromagnetic (EM) fields inside the cavity are obtained using FEM. The EM fields and their normal derivatives required for FEM solution are obtained using (1) the modal expansion in the feed region and (2) the MoM for the radiating aperture region(assuming an infinite ground plane). The finiteness of the ground plane is taken into account using GTD. The input admittance of open ended circular, rectangular, and coaxial line radiating into free space through an infinite ground plane are computed and compared with earlier published results. Radiation characteristics of a coaxial cavity fed circular aperture in a finite rectangular ground plane are verified with experimental results.

  5. A compressive sensing-based computational method for the inversion of wide-band ground penetrating radar data

    NASA Astrophysics Data System (ADS)

    Gelmini, A.; Gottardi, G.; Moriyama, T.

    2017-10-01

    This work presents an innovative computational approach for the inversion of wideband ground penetrating radar (GPR) data. The retrieval of the dielectric characteristics of sparse scatterers buried in a lossy soil is performed by combining a multi-task Bayesian compressive sensing (MT-BCS) solver and a frequency hopping (FH) strategy. The developed methodology is able to benefit from the regularization capabilities of the MT-BCS as well as to exploit the multi-chromatic informative content of GPR measurements. A set of numerical results is reported in order to assess the effectiveness of the proposed GPR inverse scattering technique, as well as to compare it to a simpler single-task implementation.

  6. Improving semantic scene understanding using prior information

    NASA Astrophysics Data System (ADS)

    Laddha, Ankit; Hebert, Martial

    2016-05-01

    Perception for ground robot mobility requires automatic generation of descriptions of the robot's surroundings from sensor input (cameras, LADARs, etc.). Effective techniques for scene understanding have been developed, but they are generally purely bottom-up in that they rely entirely on classifying features from the input data based on learned models. In fact, perception systems for ground robots have a lot of information at their disposal from knowledge about the domain and the task. For example, a robot in urban environments might have access to approximate maps that can guide the scene interpretation process. In this paper, we explore practical ways to combine such prior information with state of the art scene understanding approaches.

  7. Radar activities of the DFVLR Institute for Radio Frequency Technology

    NASA Technical Reports Server (NTRS)

    Keydel, W.

    1983-01-01

    Aerospace research and the respective applications microwave tasks with respect to remote sensing, position finding and communication are discussed. The radar activities are directed at point targets, area targets and volume targets; they center around signature research for earth and ocean remote sensing, target recognition, reconnaissance and camouflage and imaging and area observation radar techniques (SAR and SLAR). The radar activities cover a frequency range from 1 GHz up to 94 GHz. The radar program is oriented to four possible application levels: ground, air, shuttle orbits and satellite orbits. Ground based studies and measurements, airborne scatterometers and imaging radars, a space shuttle radar, the MRSE, and follow on experiments are considered.

  8. Coordinated observations of chemical releases from the ground and from aircraft at high latitudes

    NASA Technical Reports Server (NTRS)

    Romick, G. J.

    1973-01-01

    The ground observations of the Na-Li trail released from a Nike-Apache rocket obtained by the Geophysical Institute are discussed. By using the nominal trajectory for a 60 pound payload and the particular rocket, a best fit trajectory was determined based on the Ester Dome photographic data, launch time and earth-sun geometrical shadow height. From these calculations, the height of obvious features along the trail were determined and their velocity estimated. A clockwise rotation of the velocity vector with increasing height was observed. Velocities deduced at various altitudes were then compared to meter radar data also obtained during this period. The comparisons of these two neutral wind measurements techniques are satisfactory.

  9. Recent Improvements in AMSR2 Ground-Based RFI Filtering

    NASA Astrophysics Data System (ADS)

    Scott, J. P.; Gentemann, C. L.; Wentz, F. J.

    2015-12-01

    Passive satellite radiometer measurements in the microwave frequencies (6-89 GHz) are useful in providing geophysical retrievals of sea surface temperature (SST), atmospheric water vapor, wind speed, rain rate, and more. However, radio frequency interference (RFI) is one of the fastest growing sources of error in these retrievals. RFI can originate from broadcasting satellites, as well as from ground-based instrumentation that makes use of the microwave range. The microwave channel bandwidths used by passive satellite radiometers are often wider than the protected bands allocated for this type of remote sensing, a common practice in microwave radiometer design used to reduce the effect of instrument noise in the observed signal. However, broad channel bandwidths allow greater opportunity for RFI to affect these observations and retrievals. For ground-based RFI, a signal is broadcast directly into the atmosphere which may interfere with the radiometer - its antenna, cold mirror, hot load or the internal workings of the radiometer itself. It is relatively easy to identify and flag RFI from large sources, but more difficult to do so from small, sporadic sources. Ground-based RFI has high spatial and temporal variability, requiring constant, automated detection and removal to avoid spurious trends leaching into the geophysical retrievals. Ascension Island in the South Atlantic Ocean has been one of these notorious ground-based RFI sources, affecting many microwave radiometers, including the AMSR2 radiometer onboard JAXA's GCOM-W1 satellite. Ascension Island RFI mainly affects AMSR2's lower frequency channels (6.9, 7.3, and 10.65 GHz) over a broad spatial region in the South Atlantic Ocean, which makes it challenging to detect and flag this RFI using conventional channel and geophysical retrieval differencing techniques. The authors have developed a new method of using the radiometer's earth counts and hot counts, for the affected channels, to detect an Ascension Island RFI event and flag the data efficiently and accurately, thereby reducing false detections and optimizing retrieval quality and data preservation.

  10. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  11. Integration of unmanned systems for tactical operations within hostile environments

    NASA Astrophysics Data System (ADS)

    Maddux, Gary A.; Bosco, Charles D.; Lawrence, James D.

    2006-05-01

    The University of Alabama in Huntsville (UAH) is currently investigating techniques and technologies for the integration of a small unmanned aerial vehicle (SUAV) with small unmanned ground vehicles (SUGV). Each vehicle has its own set of unique capabilities, but the efficient integration of the two for a specific application requires modifying and integrating both systems. UAH has been flying and testing an autonomously-controlled small helicopter, called the Flying Bassett (Base Airborne Surveillance and Sensing for Emergency Threat Tracking) for over a year. Recently, integrated operations were performed with four SUGVs, the Matilda (Mesa Robotics, Huntsville, AL), the US Navy Vanguard, the UAH Rover, and the Penetrator (Mesa Robotics). The program has progressed from 1) building an air and ground capability for video and infrared surveillance, 2) integration with ground vehicles in realistic scenarios, to 3) deployment and recovery of ground vehicles. The work was done with the cooperation of the US Army at Ft. Benning, GA and Redstone Arsenal, AL, the Federal Bureau of Investigation in Huntsville, AL, the US Naval Reserve in Knoxville, TN, and local emergency organizations. The results so far have shown that when the air and ground systems are employed together, their utility is greatly enhanced.

  12. UAS-Borne Photogrammetry for Surface Topographic Characterization: A Ground-Truth Baseline for Future Change Detection and Refinement of Scaled Remotely-Sensed Datasets

    NASA Astrophysics Data System (ADS)

    Coppersmith, R.; Schultz-Fellenz, E. S.; Sussman, A. J.; Vigil, S.; Dzur, R.; Norskog, K.; Kelley, R.; Miller, L.

    2015-12-01

    While long-term objectives of monitoring and verification regimes include remote characterization and discrimination of surficial geologic and topographic features at sites of interest, ground truth data is required to advance development of remote sensing techniques. Increasingly, it is desirable for these ground-based or ground-proximal characterization methodologies to be as nimble, efficient, non-invasive, and non-destructive as their higher-altitude airborne counterparts while ideally providing superior resolution. For this study, the area of interest is an alluvial site at the Nevada National Security Site intended for use in the Source Physics Experiment's (Snelson et al., 2013) second phase. Ground-truth surface topographic characterization was performed using a DJI Inspire 1 unmanned aerial system (UAS), at very low altitude (< 5-30m AGL). 2D photographs captured by the standard UAS camera payload were imported into Agisoft Photoscan to create three-dimensional point clouds. Within the area of interest, careful installation of surveyed ground control fiducial markers supplied necessary targets for field collection, and information for model georectification. The resulting model includes a Digital Elevation Model derived from 2D imagery. It is anticipated that this flexible and versatile characterization process will provide point cloud data resolution equivalent to a purely ground-based LiDAR scanning deployment (e.g., 1-2cm horizontal and vertical resolution; e.g., Sussman et al., 2012; Schultz-Fellenz et al., 2013). In addition to drastically increasing time efficiency in the field, the UAS method also allows for more complete coverage of the study area when compared to ground-based LiDAR. Comparison and integration of these data with conventionally-acquired airborne LiDAR data from a higher-altitude (~ 450m) platform will aid significantly in the refinement of technologies and detection capabilities of remote optical systems to identify and detect surface geologic and topographic signatures of interest. This work includes a preliminary comparison of surface signatures detected from varying standoff distances to assess current sensor performance and benefits.

  13. Determination of Ground-Laboratory to In-Space Effective Atomic Oxygen Fluence for DC 93?500 Silicone

    NASA Technical Reports Server (NTRS)

    deGroh, Kim K.; Banks, Bruce A.; Ma, David

    2004-01-01

    The objective of this research was to calibrate the ground-to-space effective atomic oxygen fluence for DC 93-500 silicone in a thermal energy electron cyclotron resonance (ECR) oxygen plasma facility. Silicones, commonly used spacecraft materials, do not chemically erode with atomic oxygen attack like other organic materials but form an oxidized hardened silicate surface layer. Therefore, the effective atomic oxygen fluence in a ground test facility should not be determined based on mass loss measurements, as they are with organic polymers. A technique has been developed at the Glenn Research Center to determine the equivalent amount of atomic oxygen exposure in an ECR ground test facility to produce the same degree of atomic oxygen damage as in space. The approach used was to compare changes in the surface hardness of ground test (ECR) exposed DC 93-500 silicone with DC 93-500 exposed to low Earth orbit (LEO) atomic oxygen as part of a shuttle flight experiment. The ground to in-space effective atomic oxygen fluence correlation was determined based on the fluence in the ECR source that produced the same hardness for the fluence in-space. Nanomechanical hardness versus contact depth measurements were obtained for five ECR exposed DC 93-500 samples (ECR exposed for 18 to 40 hrs, corresponding to Kapton effective fluences of 4.2 x 10(exp 20) to 9.4 x 10(exp 20) atoms/sq cm, respectively) and for space exposed DC 93-500 from the Evaluation of Oxygen Interactions with Materials III (EOIM III) shuttle flight experiment, exposed to LEO atomic oxygen for 2.3 x 10(exp 20) atoms/sq cm. Pristine controls were also evaluated. A ground-to-space correlation value was determined based on correlation values for four contact depths (150, 200, 250, and 300 nm), which represent the near surface depth data. The results indicate that the Kapton effective atomic oxygen fluence in the ECR facility needs to be 2.64 times higher than in LEO to replicate equivalent exposure damage in the ground test silicone as occurred in the space exposed silicone.

  14. Space debris tracking based on fuzzy running Gaussian average adaptive particle filter track-before-detect algorithm

    NASA Astrophysics Data System (ADS)

    Torteeka, Peerapong; Gao, Peng-Qi; Shen, Ming; Guo, Xiao-Zhang; Yang, Da-Tao; Yu, Huan-Huan; Zhou, Wei-Ping; Zhao, You

    2017-02-01

    Although tracking with a passive optical telescope is a powerful technique for space debris observation, it is limited by its sensitivity to dynamic background noise. Traditionally, in the field of astronomy, static background subtraction based on a median image technique has been used to extract moving space objects prior to the tracking operation, as this is computationally efficient. The main disadvantage of this technique is that it is not robust to variable illumination conditions. In this article, we propose an approach for tracking small and dim space debris in the context of a dynamic background via one of the optical telescopes that is part of the space surveillance network project, named the Asia-Pacific ground-based Optical Space Observation System or APOSOS. The approach combines a fuzzy running Gaussian average for robust moving-object extraction with dim-target tracking using a particle-filter-based track-before-detect method. The performance of the proposed algorithm is experimentally evaluated, and the results show that the scheme achieves a satisfactory level of accuracy for space debris tracking.

  15. Absolute Radiometric Calibration of Narrow-Swath Imaging Sensors with Reference to Non-Coincident Wide-Swath Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Lockwood, Ronald

    2012-01-01

    An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors.

  16. Toward a Grounded Theory for Residential Environmental Education: A Case Study of the New Jersey School of Conservation

    ERIC Educational Resources Information Center

    Smith-Sebasto, N. J.; Walker, Lisa M.

    2005-01-01

    The authors present the findings of a study that explored student perceptions of the residential environmental education (EE) program at the New Jersey School of Conservation. The authors administered a 3-item instrument that was based on the minute paper/muddiest point techniques to 2,779 students from 31 schools. A qualitative methodology with a…

  17. The terrestrial ring current - From in situ measurements to global images using energetic neutral atoms

    NASA Technical Reports Server (NTRS)

    Roelof, Edmond C.; Williams, Donald J.

    1988-01-01

    Electrical currents flowing in the equatorial magnetosphere, first inferred from ground-based magnetic disturbances, are carried by trapped energetic ions. Spacecraft measurements have determined the spectrum and composition of those currents, and the newly developed technique of energetic-neutral-atom imaging allows the global dynamics of that entire ion population to be viewed from a single spacecraft.

  18. Data assimilation of ground GPG total electron content into a physics-based ionosheric model by use of the Kalman filter

    NASA Technical Reports Server (NTRS)

    Hajj, G. A.; Wilson, B. D.; Wang, C.; Pi, X.; Rosen, I. G.

    2004-01-01

    A three-dimensional (3-D) Global Assimilative Ionospheric Model (GAIM) is currently being developed by a joint University of Southern California and Jet Propulsion Laboratory (JPL) team. To estimate the electron density on a global grid, GAIM uses a first-principles ionospheric physics model and the Kalman filter as one of its possible estimation techniques.

  19. A technique for displaying flight information in the field of view of binoculars for use by the pilots of radio controlled models

    NASA Technical Reports Server (NTRS)

    Fuller, H. V.

    1974-01-01

    A display system was developed to provide flight information to the ground based pilots of radio controlled models used in flight research programs. The display system utilizes data received by telemetry from the model, and presents the information numerically in the field of view of the binoculars used by the pilots.

  20. Performance evaluation of setback buildings with open ground storey on plain and sloping ground under earthquake loadings and mitigation of failure

    NASA Astrophysics Data System (ADS)

    Ghosh, Rahul; Debbarma, Rama

    2017-06-01

    Setback structures are highly vulnerable during earthquakes due to its vertical geometrical and mass irregularity, but the vulnerability becomes higher if the structures also have stiffness irregularity in elevation. The risk factor of such structure may increase, if the structure rests on sloping ground. In this paper, an attempt has been made to evaluate the seismic performance of setback structures resting on plain ground as well as in the slope of a hill, with soft storey configuration. The analysis has been performed in three individual methods, equivalent static force method, response spectrum method and time history method and extreme responses have been recorded for open ground storeyed setback building. To mitigate this soft storey effect and the extreme responses, three individual mitigation techniques have been adopted and the best solution among these three techniques is presented.

Top