Sample records for techniques image processing

  1. A novel data processing technique for image reconstruction of penumbral imaging

    NASA Astrophysics Data System (ADS)

    Xie, Hongwei; Li, Hongyun; Xu, Zeping; Song, Guzhou; Zhang, Faqiang; Zhou, Lin

    2011-06-01

    CT image reconstruction technique was applied to the data processing of the penumbral imaging. Compared with other traditional processing techniques for penumbral coded pinhole image such as Wiener, Lucy-Richardson and blind technique, this approach is brand new. In this method, the coded aperture processing method was used for the first time independent to the point spread function of the image diagnostic system. In this way, the technical obstacles was overcome in the traditional coded pinhole image processing caused by the uncertainty of point spread function of the image diagnostic system. Then based on the theoretical study, the simulation of penumbral imaging and image reconstruction was carried out to provide fairly good results. While in the visible light experiment, the point source of light was used to irradiate a 5mm×5mm object after diffuse scattering and volume scattering. The penumbral imaging was made with aperture size of ~20mm. Finally, the CT image reconstruction technique was used for image reconstruction to provide a fairly good reconstruction result.

  2. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement.

    PubMed

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    99m Technetium-methylene diphosphonate ( 99m Tc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99m Tc-MDP-bone scan images. A set of 89 low contrast 99m Tc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t -test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful.

  3. Application of off-line image processing for optimization in chest computed radiography using a low cost system.

    PubMed

    Muhogora, Wilbroad E; Msaki, Peter; Padovani, Renato

    2015-03-08

     The objective of this study was to improve the visibility of anatomical details by applying off-line postimage processing in chest computed radiography (CR). Four spatial domain-based external image processing techniques were developed by using MATLAB software version 7.0.0.19920 (R14) and image processing tools. The developed techniques were implemented to sample images and their visual appearances confirmed by two consultant radiologists to be clinically adequate. The techniques were then applied to 200 chest clinical images and randomized with other 100 images previously processed online. These 300 images were presented to three experienced radiologists for image quality assessment using standard quality criteria. The mean and ranges of the average scores for three radiologists were characterized for each of the developed technique and imaging system. The Mann-Whitney U-test was used to test the difference of details visibility between the images processed using each of the developed techniques and the corresponding images processed using default algorithms. The results show that the visibility of anatomical features improved significantly (0.005 ≤ p ≤ 0.02) with combinations of intensity values adjustment and/or spatial linear filtering techniques for images acquired using 60 ≤ kVp ≤ 70. However, there was no improvement for images acquired using 102 ≤ kVp ≤ 107 (0.127 ≤ p ≤ 0.48). In conclusion, the use of external image processing for optimization can be effective in chest CR, but should be implemented in consultations with the radiologists.

  4. Application of off‐line image processing for optimization in chest computed radiography using a low cost system

    PubMed Central

    Msaki, Peter; Padovani, Renato

    2015-01-01

    The objective of this study was to improve the visibility of anatomical details by applying off‐line postimage processing in chest computed radiography (CR). Four spatial domain‐based external image processing techniques were developed by using MATLAB software version 7.0.0.19920 (R14) and image processing tools. The developed techniques were implemented to sample images and their visual appearances confirmed by two consultant radiologists to be clinically adequate. The techniques were then applied to 200 chest clinical images and randomized with other 100 images previously processed online. These 300 images were presented to three experienced radiologists for image quality assessment using standard quality criteria. The mean and ranges of the average scores for three radiologists were characterized for each of the developed technique and imaging system. The Mann‐Whitney U‐test was used to test the difference of details visibility between the images processed using each of the developed techniques and the corresponding images processed using default algorithms. The results show that the visibility of anatomical features improved significantly (0.005≤p≤0.02) with combinations of intensity values adjustment and/or spatial linear filtering techniques for images acquired using 60≤kVp≤70. However, there was no improvement for images acquired using 102≤kVp≤107 (0.127≤p≤0.48). In conclusion, the use of external image processing for optimization can be effective in chest CR, but should be implemented in consultations with the radiologists. PACS number: 87.59.−e, 87.59.−B, 87.59.−bd PMID:26103165

  5. Investigating the Role of Global Histogram Equalization Technique for 99mTechnetium-Methylene diphosphonate Bone Scan Image Enhancement

    PubMed Central

    Pandey, Anil Kumar; Sharma, Param Dev; Dheer, Pankaj; Parida, Girish Kumar; Goyal, Harish; Patel, Chetan; Bal, Chandrashekhar; Kumar, Rakesh

    2017-01-01

    Purpose of the Study: 99mTechnetium-methylene diphosphonate (99mTc-MDP) bone scan images have limited number of counts per pixel, and hence, they have inferior image quality compared to X-rays. Theoretically, global histogram equalization (GHE) technique can improve the contrast of a given image though practical benefits of doing so have only limited acceptance. In this study, we have investigated the effect of GHE technique for 99mTc-MDP-bone scan images. Materials and Methods: A set of 89 low contrast 99mTc-MDP whole-body bone scan images were included in this study. These images were acquired with parallel hole collimation on Symbia E gamma camera. The images were then processed with histogram equalization technique. The image quality of input and processed images were reviewed by two nuclear medicine physicians on a 5-point scale where score of 1 is for very poor and 5 is for the best image quality. A statistical test was applied to find the significance of difference between the mean scores assigned to input and processed images. Results: This technique improves the contrast of the images; however, oversaturation was noticed in the processed images. Student's t-test was applied, and a statistically significant difference in the input and processed image quality was found at P < 0.001 (with α = 0.05). However, further improvement in image quality is needed as per requirements of nuclear medicine physicians. Conclusion: GHE techniques can be used on low contrast bone scan images. In some of the cases, a histogram equalization technique in combination with some other postprocessing technique is useful. PMID:29142344

  6. Swarm Intelligence for Optimizing Hybridized Smoothing Filter in Image Edge Enhancement

    NASA Astrophysics Data System (ADS)

    Rao, B. Tirumala; Dehuri, S.; Dileep, M.; Vindhya, A.

    In this modern era, image transmission and processing plays a major role. It would be impossible to retrieve information from satellite and medical images without the help of image processing techniques. Edge enhancement is an image processing step that enhances the edge contrast of an image or video in an attempt to improve its acutance. Edges are the representations of the discontinuities of image intensity functions. For processing these discontinuities in an image, a good edge enhancement technique is essential. The proposed work uses a new idea for edge enhancement using hybridized smoothening filters and we introduce a promising technique of obtaining best hybrid filter using swarm algorithms (Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)) to search for an optimal sequence of filters from among a set of rather simple, representative image processing filters. This paper deals with the analysis of the swarm intelligence techniques through the combination of hybrid filters generated by these algorithms for image edge enhancement.

  7. Analyses of requirements for computer control and data processing experiment subsystems. Volume 1: ATM experiment S-056 image data processing system techniques development

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The solar imaging X-ray telescope experiment (designated the S-056 experiment) is described. It will photograph the sun in the far ultraviolet or soft X-ray region. Because of the imaging characteristics of this telescope and the necessity of using special techniques for capturing images on film at these wave lengths, methods were developed for computer processing of the photographs. The problems of image restoration were addressed to develop and test digital computer techniques for applying a deconvolution process to restore overall S-056 image quality. Additional techniques for reducing or eliminating the effects of noise and nonlinearity in S-056 photographs were developed.

  8. Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6

    NASA Technical Reports Server (NTRS)

    Lee, George

    1993-01-01

    A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored.

  9. Automated synthesis of image processing procedures using AI planning techniques

    NASA Technical Reports Server (NTRS)

    Chien, Steve; Mortensen, Helen

    1994-01-01

    This paper describes the Multimission VICAR (Video Image Communication and Retrieval) Planner (MVP) (Chien 1994) system, which uses artificial intelligence planning techniques (Iwasaki & Friedland, 1985, Pemberthy & Weld, 1992, Stefik, 1981) to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing subprograms) in response to image processing requests made to the JPL Multimission Image Processing Laboratory (MIPL). The MVP system allows the user to specify the image processing requirements in terms of the various types of correction required. Given this information, MVP derives unspecified required processing steps and determines appropriate image processing programs and parameters to achieve the specified image processing goals. This information is output as an executable image processing program which can then be executed to fill the processing request.

  10. Photo-reconnaissance applications of computer processing of images.

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1971-01-01

    An imaging processing technique is developed for enhancement and calibration of imaging experiments. The technique is shown to be useful not only for the original application but also when applied to images from a wide variety of sources.

  11. Introduction to computer image processing

    NASA Technical Reports Server (NTRS)

    Moik, J. G.

    1973-01-01

    Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed.

  12. Voyager image processing at the Image Processing Laboratory

    NASA Astrophysics Data System (ADS)

    Jepsen, P. L.; Mosher, J. A.; Yagi, G. M.; Avis, C. C.; Lorre, J. J.; Garneau, G. W.

    1980-09-01

    This paper discusses new digital processing techniques as applied to the Voyager Imaging Subsystem and devised to explore atmospheric dynamics, spectral variations, and the morphology of Jupiter, Saturn and their satellites. Radiometric and geometric decalibration processes, the modulation transfer function, and processes to determine and remove photometric properties of the atmosphere and surface of Jupiter and its satellites are examined. It is exhibited that selected images can be processed into 'approach at constant longitude' time lapse movies which are useful in observing atmospheric changes of Jupiter. Photographs are included to illustrate various image processing techniques.

  13. Voyager image processing at the Image Processing Laboratory

    NASA Technical Reports Server (NTRS)

    Jepsen, P. L.; Mosher, J. A.; Yagi, G. M.; Avis, C. C.; Lorre, J. J.; Garneau, G. W.

    1980-01-01

    This paper discusses new digital processing techniques as applied to the Voyager Imaging Subsystem and devised to explore atmospheric dynamics, spectral variations, and the morphology of Jupiter, Saturn and their satellites. Radiometric and geometric decalibration processes, the modulation transfer function, and processes to determine and remove photometric properties of the atmosphere and surface of Jupiter and its satellites are examined. It is exhibited that selected images can be processed into 'approach at constant longitude' time lapse movies which are useful in observing atmospheric changes of Jupiter. Photographs are included to illustrate various image processing techniques.

  14. Photo-reconnaissance applications of computer processing of images.

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1972-01-01

    Discussion of imaging processing techniques for enhancement and calibration of Jet Propulsion Laboratory imaging experiment pictures returned from NASA space vehicles such as Ranger, Mariner and Surveyor. Particular attention is given to data transmission, resolution vs recognition, and color aspects of digital data processing. The effectiveness of these techniques in applications to images from a wide variety of sources is noted. It is anticipated that the use of computer processing for enhancement of imagery will increase with the improvement and cost reduction of these techniques in the future.

  15. Image processing and recognition for biological images

    PubMed Central

    Uchida, Seiichi

    2013-01-01

    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. PMID:23560739

  16. Column ratio mapping: a processing technique for atomic resolution high-angle annular dark-field (HAADF) images.

    PubMed

    Robb, Paul D; Craven, Alan J

    2008-12-01

    An image processing technique is presented for atomic resolution high-angle annular dark-field (HAADF) images that have been acquired using scanning transmission electron microscopy (STEM). This technique is termed column ratio mapping and involves the automated process of measuring atomic column intensity ratios in high-resolution HAADF images. This technique was developed to provide a fuller analysis of HAADF images than the usual method of drawing single intensity line profiles across a few areas of interest. For instance, column ratio mapping reveals the compositional distribution across the whole HAADF image and allows a statistical analysis and an estimation of errors. This has proven to be a very valuable technique as it can provide a more detailed assessment of the sharpness of interfacial structures from HAADF images. The technique of column ratio mapping is described in terms of a [110]-oriented zinc-blende structured AlAs/GaAs superlattice using the 1 angstroms-scale resolution capability of the aberration-corrected SuperSTEM 1 instrument.

  17. Analysis of Variance in Statistical Image Processing

    NASA Astrophysics Data System (ADS)

    Kurz, Ludwik; Hafed Benteftifa, M.

    1997-04-01

    A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.

  18. A new data processing technique for Rayleigh-Taylor instability growth experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yongteng; Tu, Shaoyong; Miao, Wenyong

    Typical face-on experiments for Rayleigh-Taylor instability study involve the time-resolved radiography of an accelerated foil with line-of-sight of the radiography along the direction of motion. The usual method which derives perturbation amplitudes from the face-on images reverses the actual image transmission procedure, so the obtained results will have a large error in the case of large optical depth. In order to improve the accuracy of data processing, a new data processing technique has been developed to process the face-on images. This technique based on convolution theorem, refined solutions of optical depth can be achieved by solving equations. Furthermore, we discussmore » both techniques for image processing, including the influence of modulation transfer function of imaging system and the backlighter spatial profile. Besides, we use the two methods to the process the experimental results in Shenguang-II laser facility and the comparison shows that the new method effectively improve the accuracy of data processing.« less

  19. Image processing and recognition for biological images.

    PubMed

    Uchida, Seiichi

    2013-05-01

    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  20. White-Light Optical Information Processing and Holography.

    DTIC Science & Technology

    1982-05-03

    artifact noise . I. wever, the deblurring spatial filter that we used were a narrow spectral band centered at 5154A green light. To compensate for the scaling...Processing, White-Light 11olographyv, Image Profcessing, Optical Signal Process inI, Image Subtraction, Image Deblurring . 70. A S’ R ACT (Continua on crow ad...optical processing technique, we had shown that the incoherent source techniques provides better image quality, and very low coherent artifact noise

  1. Comparative performance evaluation of transform coding in image pre-processing

    NASA Astrophysics Data System (ADS)

    Menon, Vignesh V.; NB, Harikrishnan; Narayanan, Gayathri; CK, Niveditha

    2017-07-01

    We are in the midst of a communication transmute which drives the development as largely as dissemination of pioneering communication systems with ever-increasing fidelity and resolution. Distinguishable researches have been appreciative in image processing techniques crazed by a growing thirst for faster and easier encoding, storage and transmission of visual information. In this paper, the researchers intend to throw light on many techniques which could be worn at the transmitter-end in order to ease the transmission and reconstruction of the images. The researchers investigate the performance of different image transform coding schemes used in pre-processing, their comparison, and effectiveness, the necessary and sufficient conditions, properties and complexity in implementation. Whimsical by prior advancements in image processing techniques, the researchers compare various contemporary image pre-processing frameworks- Compressed Sensing, Singular Value Decomposition, Integer Wavelet Transform on performance. The paper exposes the potential of Integer Wavelet transform to be an efficient pre-processing scheme.

  2. MMX-I: data-processing software for multimodal X-ray imaging and tomography.

    PubMed

    Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea

    2016-05-01

    A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors' knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments.

  3. Processing infrared images of aircraft lapjoints

    NASA Technical Reports Server (NTRS)

    Syed, Hazari; Winfree, William P.; Cramer, K. E.

    1992-01-01

    Techniques for processing IR images of aging aircraft lapjoint data are discussed. Attention is given to a technique for detecting disbonds in aircraft lapjoints which clearly delineates the disbonded region from the bonded regions. The technique is weak on unpainted aircraft skin surfaces, but can be overridden by using a self-adhering contact sheet. Neural network analysis on raw temperature data has been shown to be an effective tool for visualization of images. Numerical simulation results show the above processing technique to be an effective tool in delineating the disbonds.

  4. The Design and Development of Test Platform for Wheat Precision Seeding Based on Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Li, Qing; Lin, Haibo; Xiu, Yu-Feng; Wang, Ruixue; Yi, Chuijie

    The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces the whole structure, design parameters of the platform and hardware & software of the image acquisition system were introduced, as well as the method of seed identification and seed-space measurement using image's threshold and counting the seed's center. By analyzing the experimental result, the measurement error is less than ± 1mm.

  5. The Goddard Space Flight Center Program to develop parallel image processing systems

    NASA Technical Reports Server (NTRS)

    Schaefer, D. H.

    1972-01-01

    Parallel image processing which is defined as image processing where all points of an image are operated upon simultaneously is discussed. Coherent optical, noncoherent optical, and electronic methods are considered parallel image processing techniques.

  6. How Digital Image Processing Became Really Easy

    NASA Astrophysics Data System (ADS)

    Cannon, Michael

    1988-02-01

    In the early and mid-1970s, digital image processing was the subject of intense university and corporate research. The research lay along two lines: (1) developing mathematical techniques for improving the appearance of or analyzing the contents of images represented in digital form, and (2) creating cost-effective hardware to carry out these techniques. The research has been very effective, as evidenced by the continued decline of image processing as a research topic, and the rapid increase of commercial companies to market digital image processing software and hardware.

  7. Advanced technology development for image gathering, coding, and processing

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.

    1990-01-01

    Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.

  8. Image processing techniques for noise removal, enhancement and segmentation of cartilage OCT images

    NASA Astrophysics Data System (ADS)

    Rogowska, Jadwiga; Brezinski, Mark E.

    2002-02-01

    Osteoarthritis, whose hallmark is the progressive loss of joint cartilage, is a major cause of morbidity worldwide. Recently, optical coherence tomography (OCT) has demonstrated considerable promise for the assessment of articular cartilage. Among the most important parameters to be assessed is cartilage width. However, detection of the bone cartilage interface is critical for the assessment of cartilage width. At present, the quantitative evaluations of cartilage thickness are being done using manual tracing of cartilage-bone borders. Since data is being obtained near video rate with OCT, automated identification of the bone-cartilage interface is critical. In order to automate the process of boundary detection on OCT images, there is a need for developing new image processing techniques. In this paper we describe the image processing techniques for speckle removal, image enhancement and segmentation of cartilage OCT images. In particular, this paper focuses on rabbit cartilage since this is an important animal model for testing both chondroprotective agents and cartilage repair techniques. In this study, a variety of techniques were examined. Ultimately, by combining an adaptive filtering technique with edge detection (vertical gradient, Sobel edge detection), cartilage edges can be detected. The procedure requires several steps and can be automated. Once the cartilage edges are outlined, the cartilage thickness can be measured.

  9. Investigation of radio astronomy image processing techniques for use in the passive millimetre-wave security screening environment

    NASA Astrophysics Data System (ADS)

    Taylor, Christopher T.; Hutchinson, Simon; Salmon, Neil A.; Wilkinson, Peter N.; Cameron, Colin D.

    2014-06-01

    Image processing techniques can be used to improve the cost-effectiveness of future interferometric Passive MilliMetre Wave (PMMW) imagers. The implementation of such techniques will allow for a reduction in the number of collecting elements whilst ensuring adequate image fidelity is maintained. Various techniques have been developed by the radio astronomy community to enhance the imaging capability of sparse interferometric arrays. The most prominent are Multi- Frequency Synthesis (MFS) and non-linear deconvolution algorithms, such as the Maximum Entropy Method (MEM) and variations of the CLEAN algorithm. This investigation focuses on the implementation of these methods in the defacto standard for radio astronomy image processing, the Common Astronomy Software Applications (CASA) package, building upon the discussion presented in Taylor et al., SPIE 8362-0F. We describe the image conversion process into a CASA suitable format, followed by a series of simulations that exploit the highlighted deconvolution and MFS algorithms assuming far-field imagery. The primary target application used for this investigation is an outdoor security scanner for soft-sided Heavy Goods Vehicles. A quantitative analysis of the effectiveness of the aforementioned image processing techniques is presented, with thoughts on the potential cost-savings such an approach could yield. Consideration is also given to how the implementation of these techniques in CASA might be adapted to operate in a near-field target environment. This may enable a much wider usability by the imaging community outside of radio astronomy and thus would be directly relevant to portal screening security systems in the microwave and millimetre wave bands.

  10. MMX-I: data-processing software for multimodal X-ray imaging and tomography

    PubMed Central

    Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea

    2016-01-01

    A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors’ knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments. PMID:27140159

  11. Making the PACS workstation a browser of image processing software: a feasibility study using inter-process communication techniques.

    PubMed

    Wang, Chunliang; Ritter, Felix; Smedby, Orjan

    2010-07-01

    To enhance the functional expandability of a picture archiving and communication systems (PACS) workstation and to facilitate the integration of third-part image-processing modules, we propose a browser-server style method. In the proposed solution, the PACS workstation shows the front-end user interface defined in an XML file while the image processing software is running in the background as a server. Inter-process communication (IPC) techniques allow an efficient exchange of image data, parameters, and user input between the PACS workstation and stand-alone image-processing software. Using a predefined communication protocol, the PACS workstation developer or image processing software developer does not need detailed information about the other system, but will still be able to achieve seamless integration between the two systems and the IPC procedure is totally transparent to the final user. A browser-server style solution was built between OsiriX (PACS workstation software) and MeVisLab (Image-Processing Software). Ten example image-processing modules were easily added to OsiriX by converting existing MeVisLab image processing networks. Image data transfer using shared memory added <10ms of processing time while the other IPC methods cost 1-5 s in our experiments. The browser-server style communication based on IPC techniques is an appealing method that allows PACS workstation developers and image processing software developers to cooperate while focusing on different interests.

  12. Multiscale Image Processing of Solar Image Data

    NASA Astrophysics Data System (ADS)

    Young, C.; Myers, D. C.

    2001-12-01

    It is often said that the blessing and curse of solar physics is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also increased the amount of highly complex data. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present several applications of multiscale techniques applied to solar image data. Specifically, we discuss uses of the wavelet, curvelet, and related transforms to define a multiresolution support for EIT, LASCO and TRACE images.

  13. The Application of Special Computing Techniques to Speed-Up Image Feature Extraction and Processing Techniques.

    DTIC Science & Technology

    1981-12-01

    ocessors has led to the possibility of implementing a large number of image processing functions in near real time . ~CC~ jnro _ j:% UNLSSFE (b-.YC ASIIAINO...to the possibility of implementing a large number of image processing functions in near " real - time ," a result which is essential to establishing a...for example, and S) rapid image handling for near real - time in- teraction by a user at a display. For example, for a large resolution image, say

  14. Analysis of the Growth Process of Neural Cells in Culture Environment Using Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Mirsafianf, Atefeh S.; Isfahani, Shirin N.; Kasaei, Shohreh; Mobasheri, Hamid

    Here we present an approach for processing neural cells images to analyze their growth process in culture environment. We have applied several image processing techniques for: 1- Environmental noise reduction, 2- Neural cells segmentation, 3- Neural cells classification based on their dendrites' growth conditions, and 4- neurons' features Extraction and measurement (e.g., like cell body area, number of dendrites, axon's length, and so on). Due to the large amount of noise in the images, we have used feed forward artificial neural networks to detect edges more precisely.

  15. Fingerprint pattern restoration by digital image processing techniques.

    PubMed

    Wen, Che-Yen; Yu, Chiu-Chung

    2003-09-01

    Fingerprint evidence plays an important role in solving criminal problems. However, defective (lacking information needed for completeness) or contaminated (undesirable information included) fingerprint patterns make identifying and recognizing processes difficult. Unfortunately. this is the usual case. In the recognizing process (enhancement of patterns, or elimination of "false alarms" so that a fingerprint pattern can be searched in the Automated Fingerprint Identification System (AFIS)), chemical and physical techniques have been proposed to improve pattern legibility. In the identifying process, a fingerprint examiner can enhance contaminated (but not defective) fingerprint patterns under guidelines provided by the Scientific Working Group on Friction Ridge Analysis, Study and Technology (SWGFAST), the Scientific Working Group on Imaging Technology (SWGIT), and an AFIS working group within the National Institute of Justice. Recently, the image processing techniques have been successfully applied in forensic science. For example, we have applied image enhancement methods to improve the legibility of digital images such as fingerprints and vehicle plate numbers. In this paper, we propose a novel digital image restoration technique based on the AM (amplitude modulation)-FM (frequency modulation) reaction-diffusion method to restore defective or contaminated fingerprint patterns. This method shows its potential application to fingerprint pattern enhancement in the recognizing process (but not for the identifying process). Synthetic and real images are used to show the capability of the proposed method. The results of enhancing fingerprint patterns by the manual process and our method are evaluated and compared.

  16. Fission gas bubble identification using MATLAB's image processing toolbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, R.; King, J.; Keiser, Jr., D.

    Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less

  17. Fission gas bubble identification using MATLAB's image processing toolbox

    DOE PAGES

    Collette, R.; King, J.; Keiser, Jr., D.; ...

    2016-06-08

    Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. In addition, this study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding provedmore » to be the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods.« less

  18. Fission gas bubble identification using MATLAB's image processing toolbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collette, R.

    Automated image processing routines have the potential to aid in the fuel performance evaluation process by eliminating bias in human judgment that may vary from person-to-person or sample-to-sample. This study presents several MATLAB based image analysis routines designed for fission gas void identification in post-irradiation examination of uranium molybdenum (U–Mo) monolithic-type plate fuels. Frequency domain filtration, enlisted as a pre-processing technique, can eliminate artifacts from the image without compromising the critical features of interest. This process is coupled with a bilateral filter, an edge-preserving noise removal technique aimed at preparing the image for optimal segmentation. Adaptive thresholding proved to bemore » the most consistent gray-level feature segmentation technique for U–Mo fuel microstructures. The Sauvola adaptive threshold technique segments the image based on histogram weighting factors in stable contrast regions and local statistics in variable contrast regions. Once all processing is complete, the algorithm outputs the total fission gas void count, the mean void size, and the average porosity. The final results demonstrate an ability to extract fission gas void morphological data faster, more consistently, and at least as accurately as manual segmentation methods. - Highlights: •Automated image processing can aid in the fuel qualification process. •Routines are developed to characterize fission gas bubbles in irradiated U–Mo fuel. •Frequency domain filtration effectively eliminates FIB curtaining artifacts. •Adaptive thresholding proved to be the most accurate segmentation method. •The techniques established are ready to be applied to large scale data extraction testing.« less

  19. Image Analysis, Microscopic, and Spectrochemical Study of the PVC Dry Blending Process,

    DTIC Science & Technology

    The dry blending process used in the production of electrical grade pvc formulations has been studies using a combination of image analysis , microscopic...by image analysis techniques. Optical and scanning electron microscopy were used to assess morphological differences. Spectrochemical techniques were used to indicate chemical changes.

  20. Flash X-ray with image enhancement applied to combustion events

    NASA Astrophysics Data System (ADS)

    White, K. J.; McCoy, D. G.

    1983-10-01

    Flow visualization of interior ballistic processes by use of X-rays has placed more stringent requirements on flash X-ray techniques. The problem of improving radiographic contrast of propellants in X-ray transparent chambers was studied by devising techniques for evaluating, measuring and reducing the effects of scattering from both the test object and structures in the test area. X-ray film and processing is reviewed and techniques for evaluating and calibrating these are outlined. Finally, after X-ray techniques were optimized, the application of image enhancement processing which can improve image quality is described. This technique was applied to X-ray studies of the combustion of very high burning rate (VHBR) propellants and stick propellant charges.

  1. Multi-frame image processing with panning cameras and moving subjects

    NASA Astrophysics Data System (ADS)

    Paolini, Aaron; Humphrey, John; Curt, Petersen; Kelmelis, Eric

    2014-06-01

    Imaging scenarios commonly involve erratic, unpredictable camera behavior or subjects that are prone to movement, complicating multi-frame image processing techniques. To address these issues, we developed three techniques that can be applied to multi-frame image processing algorithms in order to mitigate the adverse effects observed when cameras are panning or subjects within the scene are moving. We provide a detailed overview of the techniques and discuss the applicability of each to various movement types. In addition to this, we evaluated algorithm efficacy with demonstrated benefits using field test video, which has been processed using our commercially available surveillance product. Our results show that algorithm efficacy is significantly improved in common scenarios, expanding our software's operational scope. Our methods introduce little computational burden, enabling their use in real-time and low-power solutions, and are appropriate for long observation periods. Our test cases focus on imaging through turbulence, a common use case for multi-frame techniques. We present results of a field study designed to test the efficacy of these techniques under expanded use cases.

  2. Impervious surfaces mapping using high resolution satellite imagery

    NASA Astrophysics Data System (ADS)

    Shirmeen, Tahmina

    In recent years, impervious surfaces have emerged not only as an indicator of the degree of urbanization, but also as an indicator of environmental quality. As impervious surface area increases, storm water runoff increases in velocity, quantity, temperature and pollution load. Any of these attributes can contribute to the degradation of natural hydrology and water quality. Various image processing techniques have been used to identify the impervious surfaces, however, most of the existing impervious surface mapping tools used moderate resolution imagery. In this project, the potential of standard image processing techniques to generate impervious surface data for change detection analysis using high-resolution satellite imagery was evaluated. The city of Oxford, MS was selected as the study site for this project. Standard image processing techniques, including Normalized Difference Vegetation Index (NDVI), Principal Component Analysis (PCA), a combination of NDVI and PCA, and image classification algorithms, were used to generate impervious surfaces from multispectral IKONOS and QuickBird imagery acquired in both leaf-on and leaf-off conditions. Accuracy assessments were performed, using truth data generated by manual classification, with Kappa statistics and Zonal statistics to select the most appropriate image processing techniques for impervious surface mapping. The performance of selected image processing techniques was enhanced by incorporating Soil Brightness Index (SBI) and Greenness Index (GI) derived from Tasseled Cap Transformed (TCT) IKONOS and QuickBird imagery. A time series of impervious surfaces for the time frame between 2001 and 2007 was made using the refined image processing techniques to analyze the changes in IS in Oxford. It was found that NDVI and the combined NDVI--PCA methods are the most suitable image processing techniques for mapping impervious surfaces in leaf-off and leaf-on conditions respectively, using high resolution multispectral imagery. It was also found that IS data generated by these techniques can be refined by removing the conflicting dry soil patches using SBI and GI obtained from TCT of the same imagery used for IS data generation. The change detection analysis of the IS time series shows that Oxford experienced the major changes in IS from the year 2001 to 2004 and 2006 to 2007.

  3. Ultra high speed image processing techniques. [electronic packaging techniques

    NASA Technical Reports Server (NTRS)

    Anthony, T.; Hoeschele, D. F.; Connery, R.; Ehland, J.; Billings, J.

    1981-01-01

    Packaging techniques for ultra high speed image processing were developed. These techniques involve the development of a signal feedthrough technique through LSI/VLSI sapphire substrates. This allows the stacking of LSI/VLSI circuit substrates in a 3 dimensional package with greatly reduced length of interconnecting lines between the LSI/VLSI circuits. The reduced parasitic capacitances results in higher LSI/VLSI computational speeds at significantly reduced power consumption levels.

  4. Application of AIS Technology to Forest Mapping

    NASA Technical Reports Server (NTRS)

    Yool, S. R.; Star, J. L.

    1985-01-01

    Concerns about environmental effects of large scale deforestation have prompted efforts to map forests over large areas using various remote sensing data and image processing techniques. Basic research on the spectral characteristics of forest vegetation are required to form a basis for development of new techniques, and for image interpretation. Examination of LANDSAT data and image processing algorithms over a portion of boreal forest have demonstrated the complexity of relations between the various expressions of forest canopies, environmental variability, and the relative capacities of different image processing algorithms to achieve high classification accuracies under these conditions. Airborne Imaging Spectrometer (AIS) data may in part provide the means to interpret the responses of standard data and techniques to the vegetation based on its relatively high spectral resolution.

  5. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  6. A cost-effective line-based light-balancing technique using adaptive processing.

    PubMed

    Hsia, Shih-Chang; Chen, Ming-Huei; Chen, Yu-Min

    2006-09-01

    The camera imaging system has been widely used; however, the displaying image appears to have an unequal light distribution. This paper presents novel light-balancing techniques to compensate uneven illumination based on adaptive signal processing. For text image processing, first, we estimate the background level and then process each pixel with nonuniform gain. This algorithm can balance the light distribution while keeping a high contrast in the image. For graph image processing, the adaptive section control using piecewise nonlinear gain is proposed to equalize the histogram. Simulations show that the performance of light balance is better than the other methods. Moreover, we employ line-based processing to efficiently reduce the memory requirement and the computational cost to make it applicable in real-time systems.

  7. Measurement and image processing evaluation of surface modifications of dental implants G4 pure titanium created by different techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bulutsuz, A. G., E-mail: asligunaya@gmail.com; Demircioglu, P., E-mail: pinar.demircioglu@adu.edu.tr; Bogrekci, I., E-mail: ismail.bogrekci@adu.edu.tr

    Foreign substances and organic tissue interaction placed into the jaw in order to eliminate tooth loss involves a highly complex process. Many biological reactions take place as well as the biomechanical forces that influence this formation. Osseointegration denotes to the direct structural and functional association between the living bone and the load-bearing artificial implant's surface. Taking into consideration of the requirements in the manufacturing processes of the implants, surface characterizations with high precise measurement techniques are investigated and thus long-term success of dental implant is emphasized on the importance of these processes in this study. In this research, the detailedmore » surface characterization was performed to identify the dependence of the manufacturing techniques on the surface properties by using the image processing methods and using the scanning electron microscope (SEM) for morphological properties in 3D and Taylor Hobson stylus profilometer for roughness properties in 2D. Three implant surfaces fabricated by different manufacturing techniques were inspected, and a machined surface was included into the study as a reference specimen. The results indicated that different surface treatments were strongly influenced surface morphology. Thus 2D and 3D precise inspection techniques were highlighted on the importance for surface characterization. Different image analyses techniques such as Dark-light technique were used to verify the surface measurement results. The computational phase was performed using image processing toolbox in Matlab with precise evaluation of the roughness for the implant surfaces. The relationship between the number of black and white pixels and surface roughness is presented. FFT image processing and analyses results explicitly imply that the technique is useful in the determination of surface roughness. The results showed that the number of black pixels in the image increases with increase in surface roughness.« less

  8. Semi-automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images

    PubMed Central

    Jurrus, Elizabeth; Watanabe, Shigeki; Giuly, Richard J.; Paiva, Antonio R. C.; Ellisman, Mark H.; Jorgensen, Erik M.; Tasdizen, Tolga

    2013-01-01

    Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated process first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes. PMID:22644867

  9. Higher resolution satellite remote sensing and the impact on image mapping

    USGS Publications Warehouse

    Watkins, Allen H.; Thormodsgard, June M.

    1987-01-01

    Recent advances in spatial, spectral, and temporal resolution of civil land remote sensing satellite data are presenting new opportunities for image mapping applications. The U.S. Geological Survey's experimental satellite image mapping program is evolving toward larger scale image map products with increased information content as a result of improved image processing techniques and increased resolution. Thematic mapper data are being used to produce experimental image maps at 1:100,000 scale that meet established U.S. and European map accuracy standards. Availability of high quality, cloud-free, 30-meter ground resolution multispectral data from the Landsat thematic mapper sensor, along with 10-meter ground resolution panchromatic and 20-meter ground resolution multispectral data from the recently launched French SPOT satellite, present new cartographic and image processing challenges.The need to fully exploit these higher resolution data increases the complexity of processing the images into large-scale image maps. The removal of radiometric artifacts and noise prior to geometric correction can be accomplished by using a variety of image processing filters and transforms. Sensor modeling and image restoration techniques allow maximum retention of spatial and radiometric information. An optimum combination of spectral information and spatial resolution can be obtained by merging different sensor types. These processing techniques are discussed and examples are presented.

  10. Optical coherence tomography for embryonic imaging: a review

    PubMed Central

    Raghunathan, Raksha; Singh, Manmohan; Dickinson, Mary E.; Larin, Kirill V.

    2016-01-01

    Abstract. Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development. PMID:27228503

  11. Graphics Processing Unit-Accelerated Nonrigid Registration of MR Images to CT Images During CT-Guided Percutaneous Liver Tumor Ablations.

    PubMed

    Tokuda, Junichi; Plishker, William; Torabi, Meysam; Olubiyi, Olutayo I; Zaki, George; Tatli, Servet; Silverman, Stuart G; Shekher, Raj; Hata, Nobuhiko

    2015-06-01

    Accuracy and speed are essential for the intraprocedural nonrigid magnetic resonance (MR) to computed tomography (CT) image registration in the assessment of tumor margins during CT-guided liver tumor ablations. Although both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique on the basis of volume subdivision with hardware acceleration using a graphics processing unit (GPU). We compared the registration accuracy and processing time of GPU-accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid B-spline registration technique. Fourteen image data sets of preprocedural MR and intraprocedural CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images was registered using the GPU-accelerated volume subdivision technique and the B-spline technique. Manual contouring of ROI was used only for the B-spline technique. Registration accuracies (Dice similarity coefficient [DSC] and 95% Hausdorff distance [HD]) and total processing time including contouring of ROIs and computation were compared using a paired Student t test. Accuracies of the GPU-accelerated registrations and B-spline registrations, respectively, were 88.3 ± 3.7% versus 89.3 ± 4.9% (P = .41) for DSC and 13.1 ± 5.2 versus 11.4 ± 6.3 mm (P = .15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration techniques was 88 ± 14 versus 557 ± 116 seconds (P < .000000002), respectively; there was no significant difference in computation time despite the difference in the complexity of the algorithms (P = .71). The GPU-accelerated volume subdivision technique was as accurate as the B-spline technique and required significantly less processing time. The GPU-accelerated volume subdivision technique may enable the implementation of nonrigid registration into routine clinical practice. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  12. Symmetric Phase Only Filtering for Improved DPIV Data Processing

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2006-01-01

    The standard approach in Digital Particle Image Velocimetry (DPIV) data processing is to use Fast Fourier Transforms to obtain the cross-correlation of two single exposure subregions, where the location of the cross-correlation peak is representative of the most probable particle displacement across the subregion. This standard DPIV processing technique is analogous to Matched Spatial Filtering, a technique commonly used in optical correlators to perform the crosscorrelation operation. Phase only filtering is a well known variation of Matched Spatial Filtering, which when used to process DPIV image data yields correlation peaks which are narrower and up to an order of magnitude larger than those obtained using traditional DPIV processing. In addition to possessing desirable correlation plane features, phase only filters also provide superior performance in the presence of DC noise in the correlation subregion. When DPIV image subregions contaminated with surface flare light or high background noise levels are processed using phase only filters, the correlation peak pertaining only to the particle displacement is readily detected above any signal stemming from the DC objects. Tedious image masking or background image subtraction are not required. Both theoretical and experimental analyses of the signal-to-noise ratio performance of the filter functions are presented. In addition, a new Symmetric Phase Only Filtering (SPOF) technique, which is a variation on the traditional phase only filtering technique, is described and demonstrated. The SPOF technique exceeds the performance of the traditionally accepted phase only filtering techniques and is easily implemented in standard DPIV FFT based correlation processing with no significant computational performance penalty. An "Automatic" SPOF algorithm is presented which determines when the SPOF is able to provide better signal to noise results than traditional PIV processing. The SPOF based optical correlation processing approach is presented as a new paradigm for more robust cross-correlation processing of low signal-to-noise ratio DPIV image data."

  13. MOSAIC - A space-multiplexing technique for optical processing of large images

    NASA Technical Reports Server (NTRS)

    Athale, Ravindra A.; Astor, Michael E.; Yu, Jeffrey

    1993-01-01

    A technique for Fourier processing of images larger than the space-bandwidth products of conventional or smart spatial light modulators and two-dimensional detector arrays is described. The technique involves a spatial combination of subimages displayed on individual spatial light modulators to form a phase-coherent image, which is subsequently processed with Fourier optical techniques. Because of the technique's similarity with the mosaic technique used in art, the processor used is termed an optical MOSAIC processor. The phase accuracy requirements of this system were studied by computer simulation. It was found that phase errors of less than lambda/8 did not degrade the performance of the system and that the system was relatively insensitive to amplitude nonuniformities. Several schemes for implementing the subimage combination are described. Initial experimental results demonstrating the validity of the mosaic concept are also presented.

  14. Overlay metrology for double patterning processes

    NASA Astrophysics Data System (ADS)

    Leray, Philippe; Cheng, Shaunee; Laidler, David; Kandel, Daniel; Adel, Mike; Dinu, Berta; Polli, Marco; Vasconi, Mauro; Salski, Bartlomiej

    2009-03-01

    The double patterning (DPT) process is foreseen by the industry to be the main solution for the 32 nm technology node and even beyond. Meanwhile process compatibility has to be maintained and the performance of overlay metrology has to improve. To achieve this for Image Based Overlay (IBO), usually the optics of overlay tools are improved. It was also demonstrated that these requirements are achievable with a Diffraction Based Overlay (DBO) technique named SCOLTM [1]. In addition, we believe that overlay measurements with respect to a reference grid are required to achieve the required overlay control [2]. This induces at least a three-fold increase in the number of measurements (2 for double patterned layers to the reference grid and 1 between the double patterned layers). The requirements of process compatibility, enhanced performance and large number of measurements make the choice of overlay metrology for DPT very challenging. In this work we use different flavors of the standard overlay metrology technique (IBO) as well as the new technique (SCOL) to address these three requirements. The compatibility of the corresponding overlay targets with double patterning processes (Litho-Etch-Litho-Etch (LELE); Litho-Freeze-Litho-Etch (LFLE), Spacer defined) is tested. The process impact on different target types is discussed (CD bias LELE, Contrast for LFLE). We compare the standard imaging overlay metrology with non-standard imaging techniques dedicated to double patterning processes (multilayer imaging targets allowing one overlay target instead of three, very small imaging targets). In addition to standard designs already discussed [1], we investigate SCOL target designs specific to double patterning processes. The feedback to the scanner is determined using the different techniques. The final overlay results obtained are compared accordingly. We conclude with the pros and cons of each technique and suggest the optimal metrology strategy for overlay control in double patterning processes.

  15. Digital Image Processing Overview For Helmet Mounted Displays

    NASA Astrophysics Data System (ADS)

    Parise, Michael J.

    1989-09-01

    Digital image processing provides a means to manipulate an image and presents a user with a variety of display formats that are not available in the analog image processing environment. When performed in real time and presented on a Helmet Mounted Display, system capability and flexibility are greatly enhanced. The information content of a display can be increased by the addition of real time insets and static windows from secondary sensor sources, near real time 3-D imaging from a single sensor can be achieved, graphical information can be added, and enhancement techniques can be employed. Such increased functionality is generating a considerable amount of interest in the military and commercial markets. This paper discusses some of these image processing techniques and their applications.

  16. Semi-Automated Neuron Boundary Detection and Nonbranching Process Segmentation in Electron Microscopy Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jurrus, Elizabeth R.; Watanabe, Shigeki; Giuly, Richard J.

    2013-01-01

    Neuroscientists are developing new imaging techniques and generating large volumes of data in an effort to understand the complex structure of the nervous system. The complexity and size of this data makes human interpretation a labor-intensive task. To aid in the analysis, new segmentation techniques for identifying neurons in these feature rich datasets are required. This paper presents a method for neuron boundary detection and nonbranching process segmentation in electron microscopy images and visualizing them in three dimensions. It combines both automated segmentation techniques with a graphical user interface for correction of mistakes in the automated process. The automated processmore » first uses machine learning and image processing techniques to identify neuron membranes that deliniate the cells in each two-dimensional section. To segment nonbranching processes, the cell regions in each two-dimensional section are connected in 3D using correlation of regions between sections. The combination of this method with a graphical user interface specially designed for this purpose, enables users to quickly segment cellular processes in large volumes.« less

  17. Experiments with recursive estimation in astronomical image processing

    NASA Technical Reports Server (NTRS)

    Busko, I.

    1992-01-01

    Recursive estimation concepts were applied to image enhancement problems since the 70's. However, very few applications in the particular area of astronomical image processing are known. These concepts were derived, for 2-dimensional images, from the well-known theory of Kalman filtering in one dimension. The historic reasons for application of these techniques to digital images are related to the images' scanned nature, in which the temporal output of a scanner device can be processed on-line by techniques borrowed directly from 1-dimensional recursive signal analysis. However, recursive estimation has particular properties that make it attractive even in modern days, when big computer memories make the full scanned image available to the processor at any given time. One particularly important aspect is the ability of recursive techniques to deal with non-stationary phenomena, that is, phenomena which have their statistical properties variable in time (or position in a 2-D image). Many image processing methods make underlying stationary assumptions either for the stochastic field being imaged, for the imaging system properties, or both. They will underperform, or even fail, when applied to images that deviate significantly from stationarity. Recursive methods, on the contrary, make it feasible to perform adaptive processing, that is, to process the image by a processor with properties tuned to the image's local statistical properties. Recursive estimation can be used to build estimates of images degraded by such phenomena as noise and blur. We show examples of recursive adaptive processing of astronomical images, using several local statistical properties to drive the adaptive processor, as average signal intensity, signal-to-noise and autocorrelation function. Software was developed under IRAF, and as such will be made available to interested users.

  18. Processing and refinement of steel microstructure images for assisting in computerized heat treatment of plain carbon steel

    NASA Astrophysics Data System (ADS)

    Gupta, Shubhank; Panda, Aditi; Naskar, Ruchira; Mishra, Dinesh Kumar; Pal, Snehanshu

    2017-11-01

    Steels are alloys of iron and carbon, widely used in construction and other applications. The evolution of steel microstructure through various heat treatment processes is an important factor in controlling properties and performance of steel. Extensive experimentations have been performed to enhance the properties of steel by customizing heat treatment processes. However, experimental analyses are always associated with high resource requirements in terms of cost and time. As an alternative solution, we propose an image processing-based technique for refinement of raw plain carbon steel microstructure images, into a digital form, usable in experiments related to heat treatment processes of steel in diverse applications. The proposed work follows the conventional steps practiced by materials engineers in manual refinement of steel images; and it appropriately utilizes basic image processing techniques (including filtering, segmentation, opening, and clustering) to automate the whole process. The proposed refinement of steel microstructure images is aimed to enable computer-aided simulations of heat treatment of plain carbon steel, in a timely and cost-efficient manner; hence it is beneficial for the materials and metallurgy industry. Our experimental results prove the efficiency and effectiveness of the proposed technique.

  19. Correlation processing for correction of phase distortions in subaperture imaging.

    PubMed

    Tavh, B; Karaman, M

    1999-01-01

    Ultrasonic subaperture imaging combines synthetic aperture and phased array approaches and permits low-cost systems with improved image quality. In subaperture processing, a large array is synthesized using echo signals collected from a number of receive subapertures by multiple firings of a phased transmit subaperture. Tissue inhomogeneities and displacements in subaperture imaging may cause significant phase distortions on received echo signals. Correlation processing on reference echo signals can be used for correction of the phase distortions, for which the accuracy and robustness are critically limited by the signal correlation. In this study, we explore correlation processing techniques for adaptive subaperture imaging with phase correction for motion and tissue inhomogeneities. The proposed techniques use new subaperture data acquisition schemes to produce reference signal sets with improved signal correlation. The experimental test results were obtained using raw radio frequency (RF) data acquired from two different phantoms with 3.5 MHz, 128-element transducer array. The results show that phase distortions can effectively be compensated by the proposed techniques in real-time adaptive subaperture imaging.

  20. Measurement of action spectra of light-activated processes

    NASA Astrophysics Data System (ADS)

    Ross, Justin; Zvyagin, Andrei V.; Heckenberg, Norman R.; Upcroft, Jacqui; Upcroft, Peter; Rubinsztein-Dunlop, Halina H.

    2006-01-01

    We report on a new experimental technique suitable for measurement of light-activated processes, such as fluorophore transport. The usefulness of this technique is derived from its capacity to decouple the imaging and activation processes, allowing fluorescent imaging of fluorophore transport at a convenient activation wavelength. We demonstrate the efficiency of this new technique in determination of the action spectrum of the light mediated transport of rhodamine 123 into the parasitic protozoan Giardia duodenalis.

  1. A novel pre-processing technique for improving image quality in digital breast tomosynthesis.

    PubMed

    Kim, Hyeongseok; Lee, Taewon; Hong, Joonpyo; Sabir, Sohail; Lee, Jung-Ryun; Choi, Young Wook; Kim, Hak Hee; Chae, Eun Young; Cho, Seungryong

    2017-02-01

    Nonlinear pre-reconstruction processing of the projection data in computed tomography (CT) where accurate recovery of the CT numbers is important for diagnosis is usually discouraged, for such a processing would violate the physics of image formation in CT. However, one can devise a pre-processing step to enhance detectability of lesions in digital breast tomosynthesis (DBT) where accurate recovery of the CT numbers is fundamentally impossible due to the incompleteness of the scanned data. Since the detection of lesions such as micro-calcifications and mass in breasts is the purpose of using DBT, it is justified that a technique producing higher detectability of lesions is a virtue. A histogram modification technique was developed in the projection data domain. Histogram of raw projection data was first divided into two parts: One for the breast projection data and the other for background. Background pixel values were set to a single value that represents the boundary between breast and background. After that, both histogram parts were shifted by an appropriate amount of offset and the histogram-modified projection data were log-transformed. Filtered-backprojection (FBP) algorithm was used for image reconstruction of DBT. To evaluate performance of the proposed method, we computed the detectability index for the reconstructed images from clinically acquired data. Typical breast border enhancement artifacts were greatly suppressed and the detectability of calcifications and masses was increased by use of the proposed method. Compared to a global threshold-based post-reconstruction processing technique, the proposed method produced images of higher contrast without invoking additional image artifacts. In this work, we report a novel pre-processing technique that improves detectability of lesions in DBT and has potential advantages over the global threshold-based post-reconstruction processing technique. The proposed method not only increased the lesion detectability but also reduced typical image artifacts pronounced in conventional FBP-based DBT. © 2016 American Association of Physicists in Medicine.

  2. Transportation informatics : advanced image processing techniques automated pavement distress evaluation.

    DOT National Transportation Integrated Search

    2010-01-01

    The current project, funded by MIOH-UTC for the period 1/1/2009- 4/30/2010, is concerned : with the development of the framework for a transportation facility inspection system using : advanced image processing techniques. The focus of this study is ...

  3. Can state-of-the-art HVS-based objective image quality criteria be used for image reconstruction techniques based on ROI analysis?

    NASA Astrophysics Data System (ADS)

    Dostal, P.; Krasula, L.; Klima, M.

    2012-06-01

    Various image processing techniques in multimedia technology are optimized using visual attention feature of the human visual system. Spatial non-uniformity causes that different locations in an image are of different importance in terms of perception of the image. In other words, the perceived image quality depends mainly on the quality of important locations known as regions of interest. The performance of such techniques is measured by subjective evaluation or objective image quality criteria. Many state-of-the-art objective metrics are based on HVS properties; SSIM, MS-SSIM based on image structural information, VIF based on the information that human brain can ideally gain from the reference image or FSIM utilizing the low-level features to assign the different importance to each location in the image. But still none of these objective metrics utilize the analysis of regions of interest. We solve the question if these objective metrics can be used for effective evaluation of images reconstructed by processing techniques based on ROI analysis utilizing high-level features. In this paper authors show that the state-of-the-art objective metrics do not correlate well with subjective evaluation while the demosaicing based on ROI analysis is used for reconstruction. The ROI were computed from "ground truth" visual attention data. The algorithm combining two known demosaicing techniques on the basis of ROI location is proposed to reconstruct the ROI in fine quality while the rest of image is reconstructed with low quality. The color image reconstructed by this ROI approach was compared with selected demosaicing techniques by objective criteria and subjective testing. The qualitative comparison of the objective and subjective results indicates that the state-of-the-art objective metrics are still not suitable for evaluation image processing techniques based on ROI analysis and new criteria is demanded.

  4. Scanning the Images of Science.

    ERIC Educational Resources Information Center

    Greenberg, Richard

    1992-01-01

    The Image Processing Technology Project explores the possibility of using digital image processing in mathematics and science education. Describes the origin of the project and reports the results of a 4-week teacher workshop that trained over 80 teachers in the techniques and technology of image processing. (MDH)

  5. An Adaptive Image Enhancement Technique by Combining Cuckoo Search and Particle Swarm Optimization Algorithm

    PubMed Central

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928

  6. An adaptive image enhancement technique by combining cuckoo search and particle swarm optimization algorithm.

    PubMed

    Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei

    2015-01-01

    Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.

  7. Detection of Glaucoma Using Image Processing Techniques: A Critique.

    PubMed

    Kumar, B Naveen; Chauhan, R P; Dahiya, Nidhi

    2018-01-01

    The primary objective of this article is to present a summary of different types of image processing methods employed for the detection of glaucoma, a serious eye disease. Glaucoma affects the optic nerve in which retinal ganglion cells become dead, and this leads to loss of vision. The principal cause is the increase in intraocular pressure, which occurs in open-angle and angle-closure glaucoma, the two major types affecting the optic nerve. In the early stages of glaucoma, no perceptible symptoms appear. As the disease progresses, vision starts to become hazy, leading to blindness. Therefore, early detection of glaucoma is needed for prevention. Manual analysis of ophthalmic images is fairly time-consuming and accuracy depends on the expertise of the professionals. Automatic analysis of retinal images is an important tool. Automation aids in the detection, diagnosis, and prevention of risks associated with the disease. Fundus images obtained from a fundus camera have been used for the analysis. Requisite pre-processing techniques have been applied to the image and, depending upon the technique, various classifiers have been used to detect glaucoma. The techniques mentioned in the present review have certain advantages and disadvantages. Based on this study, one can determine which technique provides an optimum result.

  8. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  9. Development of a fusion approach selection tool

    NASA Astrophysics Data System (ADS)

    Pohl, C.; Zeng, Y.

    2015-06-01

    During the last decades number and quality of available remote sensing satellite sensors for Earth observation has grown significantly. The amount of available multi-sensor images along with their increased spatial and spectral resolution provides new challenges to Earth scientists. With a Fusion Approach Selection Tool (FAST) the remote sensing community would obtain access to an optimized and improved image processing technology. Remote sensing image fusion is a mean to produce images containing information that is not inherent in the single image alone. In the meantime the user has access to sophisticated commercialized image fusion techniques plus the option to tune the parameters of each individual technique to match the anticipated application. This leaves the operator with an uncountable number of options to combine remote sensing images, not talking about the selection of the appropriate images, resolution and bands. Image fusion can be a machine and time-consuming endeavour. In addition it requires knowledge about remote sensing, image fusion, digital image processing and the application. FAST shall provide the user with a quick overview of processing flows to choose from to reach the target. FAST will ask for available images, application parameters and desired information to process this input to come out with a workflow to quickly obtain the best results. It will optimize data and image fusion techniques. It provides an overview on the possible results from which the user can choose the best. FAST will enable even inexperienced users to use advanced processing methods to maximize the benefit of multi-sensor image exploitation.

  10. The application of a unique flow modeling technique to complex combustion systems

    NASA Astrophysics Data System (ADS)

    Waslo, J.; Hasegawa, T.; Hilt, M. B.

    1986-06-01

    This paper describes the application of a unique three-dimensional water flow modeling technique to the study of complex fluid flow patterns within an advanced gas turbine combustor. The visualization technique uses light scattering, coupled with real-time image processing, to determine flow fields. Additional image processing is used to make concentration measurements within the combustor.

  11. Fault detection and isolation in the challenging Tennessee Eastman process by using image processing techniques.

    PubMed

    Hajihosseini, Payman; Anzehaee, Mohammad Mousavi; Behnam, Behzad

    2018-05-22

    The early fault detection and isolation in industrial systems is a critical factor in preventing equipment damage. In the proposed method, instead of using the time signals of sensors, the 2D image obtained by placing these signals next to each other in a matrix has been used; and then a novel fault detection and isolation procedure has been carried out based on image processing techniques. Different features including texture, wavelet transform, mean and standard deviation of the image accompanied with MLP and RBF neural networks based classifiers have been used for this purpose. Obtained results indicate the notable efficacy and success of the proposed method in detecting and isolating faults of the Tennessee Eastman benchmark process and its superiority over previous techniques. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  12. High Tech Aids Low Vision: A Review of Image Processing for the Visually Impaired.

    PubMed

    Moshtael, Howard; Aslam, Tariq; Underwood, Ian; Dhillon, Baljean

    2015-08-01

    Recent advances in digital image processing provide promising methods for maximizing the residual vision of the visually impaired. This paper seeks to introduce this field to the readership and describe its current state as found in the literature. A systematic search revealed 37 studies that measure the value of image processing techniques for subjects with low vision. The techniques used are categorized according to their effect and the principal findings are summarized. The majority of participants preferred enhanced images over the original for a wide range of enhancement types. Adapting the contrast and spatial frequency content often improved performance at object recognition and reading speed, as did techniques that attenuate the image background and a technique that induced jitter. A lack of consistency in preference and performance measures was found, as well as a lack of independent studies. Nevertheless, the promising results should encourage further research in order to allow their widespread use in low-vision aids.

  13. Comparison of ring artifact removal methods using flat panel detector based CT images

    PubMed Central

    2011-01-01

    Background Ring artifacts are the concentric rings superimposed on the tomographic images often caused by the defective and insufficient calibrated detector elements as well as by the damaged scintillator crystals of the flat panel detector. It may be also generated by objects attenuating X-rays very differently in different projection direction. Ring artifact reduction techniques so far reported in the literature can be broadly classified into two groups. One category of the approaches is based on the sinogram processing also known as the pre-processing techniques and the other category of techniques perform processing on the 2-D reconstructed images, recognized as the post-processing techniques in the literature. The strength and weakness of these categories of approaches are yet to be explored from a common platform. Method In this paper, a comparative study of the two categories of ring artifact reduction techniques basically designed for the multi-slice CT instruments is presented from a common platform. For comparison, two representative algorithms from each of the two categories are selected from the published literature. A very recently reported state-of-the-art sinogram domain ring artifact correction method that classifies the ring artifacts according to their strength and then corrects the artifacts using class adaptive correction schemes is also included in this comparative study. The first sinogram domain correction method uses a wavelet based technique to detect the corrupted pixels and then using a simple linear interpolation technique estimates the responses of the bad pixels. The second sinogram based correction method performs all the filtering operations in the transform domain, i.e., in the wavelet and Fourier domain. On the other hand, the two post-processing based correction techniques actually operate on the polar transform domain of the reconstructed CT images. The first method extracts the ring artifact template vector using a homogeneity test and then corrects the CT images by subtracting the artifact template vector from the uncorrected images. The second post-processing based correction technique performs median and mean filtering on the reconstructed images to produce the corrected images. Results The performances of the comparing algorithms have been tested by using both quantitative and perceptual measures. For quantitative analysis, two different numerical performance indices are chosen. On the other hand, different types of artifact patterns, e.g., single/band ring, artifacts from defective and mis-calibrated detector elements, rings in highly structural object and also in hard object, rings from different flat-panel detectors are analyzed to perceptually investigate the strength and weakness of the five methods. An investigation has been also carried out to compare the efficacy of these algorithms in correcting the volume images from a cone beam CT with the parameters determined from one particular slice. Finally, the capability of each correction technique in retaining the image information (e.g., small object at the iso-center) accurately in the corrected CT image has been also tested. Conclusions The results show that the performances of the algorithms are limited and none is fully suitable for correcting different types of ring artifacts without introducing processing distortion to the image structure. To achieve the diagnostic quality of the corrected slices a combination of the two approaches (sinogram- and post-processing) can be used. Also the comparing methods are not suitable for correcting the volume images from a cone beam flat-panel detector based CT. PMID:21846411

  14. Computer vision applications for coronagraphic optical alignment and image processing.

    PubMed

    Savransky, Dmitry; Thomas, Sandrine J; Poyneer, Lisa A; Macintosh, Bruce A

    2013-05-10

    Modern coronagraphic systems require very precise alignment between optical components and can benefit greatly from automated image processing. We discuss three techniques commonly employed in the fields of computer vision and image analysis as applied to the Gemini Planet Imager, a new facility instrument for the Gemini South Observatory. We describe how feature extraction and clustering methods can be used to aid in automated system alignment tasks, and also present a search algorithm for finding regular features in science images used for calibration and data processing. Along with discussions of each technique, we present our specific implementation and show results of each one in operation.

  15. Applications of digital image processing techniques to problems of data registration and correlation

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1978-01-01

    An overview is presented of the evolution of the computer configuration at JPL's Image Processing Laboratory (IPL). The development of techniques for the geometric transformation of digital imagery is discussed and consideration is given to automated and semiautomated image registration, and the registration of imaging and nonimaging data. The increasing complexity of image processing tasks at IPL is illustrated with examples of various applications from the planetary program and earth resources activities. It is noted that the registration of existing geocoded data bases with Landsat imagery will continue to be important if the Landsat data is to be of genuine use to the user community.

  16. Noise reduction techniques for Bayer-matrix images

    NASA Astrophysics Data System (ADS)

    Kalevo, Ossi; Rantanen, Henry

    2002-04-01

    In this paper, some arrangements to apply Noise Reduction (NR) techniques for images captured by a single sensor digital camera are studied. Usually, the NR filter processes full three-color component image data. This requires that raw Bayer-matrix image data, available from the image sensor, is first interpolated by using Color Filter Array Interpolation (CFAI) method. Another choice is that the raw Bayer-matrix image data is processed directly. The advantages and disadvantages of both processing orders, before (pre-) CFAI and after (post-) CFAI, are studied with linear, multi-stage median, multistage median hybrid and median-rational filters .The comparison is based on the quality of the output image, the processing power requirements and the amount of memory needed. Also the solution, which improves preservation of details in the NR filtering before the CFAI, is proposed.

  17. Computer image processing: Geologic applications

    NASA Technical Reports Server (NTRS)

    Abrams, M. J.

    1978-01-01

    Computer image processing of digital data was performed to support several geological studies. The specific goals were to: (1) relate the mineral content to the spectral reflectance of certain geologic materials, (2) determine the influence of environmental factors, such as atmosphere and vegetation, and (3) improve image processing techniques. For detection of spectral differences related to mineralogy, the technique of band ratioing was found to be the most useful. The influence of atmospheric scattering and methods to correct for the scattering were also studied. Two techniques were used to correct for atmospheric effects: (1) dark object subtraction, (2) normalization of use of ground spectral measurements. Of the two, the first technique proved to be the most successful for removing the effects of atmospheric scattering. A digital mosaic was produced from two side-lapping LANDSAT frames. The advantages were that the same enhancement algorithm can be applied to both frames, and there is no seam where the two images are joined.

  18. Optical analysis of crystal growth

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Passeur, Andrea; Harper, Sabrina

    1994-01-01

    Processing and data reduction of holographic images from Spacelab presents some interesting challenges in determining the effects of microgravity on crystal growth processes. Evaluation of several processing techniques, including the Computerized Holographic Image Processing System and the image processing software ITEX150, will provide fundamental information for holographic analysis of the space flight data.

  19. Image processing analysis on the air-water slug two-phase flow in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Dinaryanto, Okto; Widyatama, Arif; Majid, Akmal Irfan; Deendarlianto, Indarto

    2016-06-01

    Slug flow is a part of intermittent flow which is avoided in industrial application because of its irregularity and high pressure fluctuation. Those characteristics cause some problems such as internal corrosion and the damage of the pipeline construction. In order to understand the slug characteristics, some of the measurement techniques can be applied such as wire-mesh sensors, CECM, and high speed camera. The present study was aimed to determine slug characteristics by using image processing techniques. Experiment has been carried out in 26 mm i.d. acrylic horizontal pipe with 9 m long. Air-water flow was recorded 5 m from the air-water mixer using high speed video camera. Each of image sequence was processed using MATLAB. There are some steps including image complement, background subtraction, and image filtering that used in this algorithm to produce binary images. Special treatments also were applied to reduce the disturbance effect of dispersed bubble around the bubble. Furthermore, binary images were used to describe bubble contour and calculate slug parameter such as gas slug length, gas slug velocity, and slug frequency. As a result the effect of superficial gas velocity and superficial liquid velocity on the fundamental parameters can be understood. After comparing the results to the previous experimental results, the image processing techniques is a useful and potential technique to explain the slug characteristics.

  20. Evaluation of a rule-based compositing technique for Landsat-5 TM and Landsat-7 ETM+ images

    NASA Astrophysics Data System (ADS)

    Lück, W.; van Niekerk, A.

    2016-05-01

    Image compositing is a multi-objective optimization process. Its goal is to produce a seamless cloud and artefact-free artificial image. This is achieved by aggregating image observations and by replacing poor and cloudy data with good observations from imagery acquired within the timeframe of interest. This compositing process aims to minimise the visual artefacts which could result from different radiometric properties, caused by atmospheric conditions, phenologic patterns and land cover changes. It has the following requirements: (1) image compositing must be cloud free, which requires the detection of clouds and shadows, and (2) the image composite must be seamless, minimizing artefacts and visible across inter image seams. This study proposes a new rule-based compositing technique (RBC) that combines the strengths of several existing methods. A quantitative and qualitative evaluation is made of the RBC technique by comparing it to the maximum NDVI (MaxNDVI), minimum red (MinRed) and maximum ratio (MaxRatio) compositing techniques. A total of 174 Landsat TM and ETM+ images, covering three study sites and three different timeframes for each site, are used in the evaluation. A new set of quantitative/qualitative evaluation techniques for compositing quality measurement was developed and showed that the RBC technique outperformed all other techniques, with MaxRatio, MaxNDVI, and MinRed techniques in order of performance from best to worst.

  1. Imaging techniques in digital forensic investigation: a study using neural networks

    NASA Astrophysics Data System (ADS)

    Williams, Godfried

    2006-09-01

    Imaging techniques have been applied to a number of applications, such as translation and classification problems in medicine and defence. This paper examines the application of imaging techniques in digital forensics investigation using neural networks. A review of applications of digital image processing is presented, whiles a Pedagogical analysis of computer forensics is also highlighted. A data set describing selected images in different forms are used in the simulation and experimentation.

  2. Near-infrared hyperspectral imaging for quality analysis of agricultural and food products

    NASA Astrophysics Data System (ADS)

    Singh, C. B.; Jayas, D. S.; Paliwal, J.; White, N. D. G.

    2010-04-01

    Agricultural and food processing industries are always looking to implement real-time quality monitoring techniques as a part of good manufacturing practices (GMPs) to ensure high-quality and safety of their products. Near-infrared (NIR) hyperspectral imaging is gaining popularity as a powerful non-destructive tool for quality analysis of several agricultural and food products. This technique has the ability to analyse spectral data in a spatially resolved manner (i.e., each pixel in the image has its own spectrum) by applying both conventional image processing and chemometric tools used in spectral analyses. Hyperspectral imaging technique has demonstrated potential in detecting defects and contaminants in meats, fruits, cereals, and processed food products. This paper discusses the methodology of hyperspectral imaging in terms of hardware, software, calibration, data acquisition and compression, and development of prediction and classification algorithms and it presents a thorough review of the current applications of hyperspectral imaging in the analyses of agricultural and food products.

  3. Process techniques of charge transfer time reduction for high speed CMOS image sensors

    NASA Astrophysics Data System (ADS)

    Zhongxiang, Cao; Quanliang, Li; Ye, Han; Qi, Qin; Peng, Feng; Liyuan, Liu; Nanjian, Wu

    2014-11-01

    This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques.

  4. Computers in Public Schools: Changing the Image with Image Processing.

    ERIC Educational Resources Information Center

    Raphael, Jacqueline; Greenberg, Richard

    1995-01-01

    The kinds of educational technologies selected can make the difference between uninspired, rote computer use and challenging learning experiences. University of Arizona's Image Processing for Teaching Project has worked with over 1,000 teachers to develop image-processing techniques that provide students with exciting, open-ended opportunities for…

  5. Imaging live cells at high spatiotemporal resolution for lab-on-a-chip applications.

    PubMed

    Chin, Lip Ket; Lee, Chau-Hwang; Chen, Bi-Chang

    2016-05-24

    Conventional optical imaging techniques are limited by the diffraction limit and difficult-to-image biomolecular and sub-cellular processes in living specimens. Novel optical imaging techniques are constantly evolving with the desire to innovate an imaging tool that is capable of seeing sub-cellular processes in a biological system, especially in three dimensions (3D) over time, i.e. 4D imaging. For fluorescence imaging on live cells, the trade-offs among imaging depth, spatial resolution, temporal resolution and photo-damage are constrained based on the limited photons of the emitters. The fundamental solution to solve this dilemma is to enlarge the photon bank such as the development of photostable and bright fluorophores, leading to the innovation in optical imaging techniques such as super-resolution microscopy and light sheet microscopy. With the synergy of microfluidic technology that is capable of manipulating biological cells and controlling their microenvironments to mimic in vivo physiological environments, studies of sub-cellular processes in various biological systems can be simplified and investigated systematically. In this review, we provide an overview of current state-of-the-art super-resolution and 3D live cell imaging techniques and their lab-on-a-chip applications, and finally discuss future research trends in new and breakthrough research areas of live specimen 4D imaging in controlled 3D microenvironments.

  6. Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing.

    PubMed

    Rahim, Sarni Suhaila; Palade, Vasile; Shuttleworth, James; Jayne, Chrisina

    2016-12-01

    Digital retinal imaging is a challenging screening method for which effective, robust and cost-effective approaches are still to be developed. Regular screening for diabetic retinopathy and diabetic maculopathy diseases is necessary in order to identify the group at risk of visual impairment. This paper presents a novel automatic detection of diabetic retinopathy and maculopathy in eye fundus images by employing fuzzy image processing techniques. The paper first introduces the existing systems for diabetic retinopathy screening, with an emphasis on the maculopathy detection methods. The proposed medical decision support system consists of four parts, namely: image acquisition, image preprocessing including four retinal structures localisation, feature extraction and the classification of diabetic retinopathy and maculopathy. A combination of fuzzy image processing techniques, the Circular Hough Transform and several feature extraction methods are implemented in the proposed system. The paper also presents a novel technique for the macula region localisation in order to detect the maculopathy. In addition to the proposed detection system, the paper highlights a novel online dataset and it presents the dataset collection, the expert diagnosis process and the advantages of our online database compared to other public eye fundus image databases for diabetic retinopathy purposes.

  7. Curve and Polygon Evolution Techniques for Image Processing

    DTIC Science & Technology

    2002-01-01

    iterative image registration technique with an application to stereo vision. IJCAI, pages 674–679, 1981. 127 [93] R . Malladi , J.A. Sethian, and B.C...Notation A digital image to be processed is a 2-Dimensional (2-D) function denoted by I , I : ! R , where R2 is the domain of the function. Processing a...function Io(x; y), which depends on two spatial variables, x 2 R , and y 2 R , via a partial differential equation (PDE) takes the form; It = A(I; Ix

  8. Comparison of remote sensing image processing techniques to identify tornado damage areas from Landsat TM data

    USGS Publications Warehouse

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.P.

    2008-01-01

    Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and objectoriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. ?? 2008 by MDPI.

  9. Comparison of Remote Sensing Image Processing Techniques to Identify Tornado Damage Areas from Landsat TM Data

    PubMed Central

    Myint, Soe W.; Yuan, May; Cerveny, Randall S.; Giri, Chandra P.

    2008-01-01

    Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and object-oriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. PMID:27879757

  10. Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT)

    NASA Astrophysics Data System (ADS)

    Tanaka, Rie; Sanada, Shigeru; Sakuta, Keita; Kawashima, Hiroki

    2015-05-01

    The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images obtained by the dual-energy subtraction technique. This study was performed to evaluate the usefulness of bone suppression image processing in image-guided radiation therapy. We demonstrated the improved accuracy of markerless motion tracking on bone suppression images. Chest fluoroscopic images of nine patients with lung nodules during respiration were obtained using a flat-panel detector system (120 kV, 0.1 mAs/pulse, 5 fps). Commercial bone suppression image processing software was applied to the fluoroscopic images to create corresponding bone suppression images. Regions of interest were manually located on lung nodules and automatic target tracking was conducted based on the template matching technique. To evaluate the accuracy of target tracking, the maximum tracking error in the resulting images was compared with that of conventional fluoroscopic images. The tracking errors were decreased by half in eight of nine cases. The average maximum tracking errors in bone suppression and conventional fluoroscopic images were 1.3   ±   1.0 and 3.3   ±   3.3 mm, respectively. The bone suppression technique was especially effective in the lower lung area where pulmonary vessels, bronchi, and ribs showed complex movements. The bone suppression technique improved tracking accuracy without special equipment and implantation of fiducial markers, and with only additional small dose to the patient. Bone suppression fluoroscopy is a potential measure for respiratory displacement of the target. This paper was presented at RSNA 2013 and was carried out at Kanazawa University, JAPAN.

  11. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques

    PubMed Central

    Bayır, Şafak

    2016-01-01

    With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC. PMID:27110272

  12. Unified Digital Image Display And Processing System

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.; Maguire, Gerald Q.; Noz, Marilyn E.; Schimpf, James H.

    1981-11-01

    Our institution like many others, is faced with a proliferation of medical imaging techniques. Many of these methods give rise to digital images (e.g. digital radiography, computerized tomography (CT) , nuclear medicine and ultrasound). We feel that a unified, digital system approach to image management (storage, transmission and retrieval), image processing and image display will help in integrating these new modalities into the present diagnostic radiology operations. Future techniques are likely to employ digital images, so such a system could readily be expanded to include other image sources. We presently have the core of such a system. We can both view and process digital nuclear medicine (conventional gamma camera) images, positron emission tomography (PET) and CT images on a single system. Images from our recently installed digital radiographic unit can be added. Our paper describes our present system, explains the rationale for its configuration, and describes the directions in which it will expand.

  13. Recovering the fine structures in solar images

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita; Habbal, S. R.; Golub, L.; Deluca, E.; Hudson, Hugh S.

    1994-01-01

    Several examples of the capability of the blind iterative deconvolution (BID) technique to recover the real point spread function, when limited a priori information is available about its characteristics. To demonstrate the potential of image post-processing for probing the fine scale and temporal variability of the solar atmosphere, the BID technique is applied to different samples of solar observations from space. The BID technique was originally proposed for correction of the effects of atmospheric turbulence on optical images. The processed images provide a detailed view of the spatial structure of the solar atmosphere at different heights in regions with different large-scale magnetic field structures.

  14. Assesment on the performance of electrode arrays using image processing technique

    NASA Astrophysics Data System (ADS)

    Usman, N.; Khiruddin, A.; Nawawi, Mohd

    2017-08-01

    Interpreting inverted resistivity section is time consuming, tedious and requires other sources of information to be relevant geologically. Image processing technique was used in order to perform post inversion processing which make geophysical data interpretation easier. The inverted data sets were imported into the PCI Geomatica 9.0.1 for further processing. The data sets were clipped and merged together in order to match the coordinates of the three layers and permit pixel to pixel analysis. Dipole-dipole array is more sensitive to resistivity variation with depth in comparison with Werner-Schlumberger and pole-dipole. Image processing serves as good post-inversion tool in geophysical data processing.

  15. Document Examination: Applications of Image Processing Systems.

    PubMed

    Kopainsky, B

    1989-12-01

    Dealing with images is a familiar business for an expert in questioned documents: microscopic, photographic, infrared, and other optical techniques generate images containing the information he or she is looking for. A recent method for extracting most of this information is digital image processing, ranging from the simple contrast and contour enhancement to the advanced restoration of blurred texts. When combined with a sophisticated physical imaging system, an image pricessing system has proven to be a powerful and fast tool for routine non-destructive scanning of suspect documents. This article reviews frequent applications, comprising techniques to increase legibility, two-dimensional spectroscopy (ink discrimination, alterations, erased entries, etc.), comparison techniques (stamps, typescript letters, photo substitution), and densitometry. Computerized comparison of handwriting is not included. Copyright © 1989 Central Police University.

  16. A simple 2D composite image analysis technique for the crystal growth study of L-ascorbic acid.

    PubMed

    Kumar, Krishan; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir

    2017-06-01

    This work was destined for 2D crystal growth studies of L-ascorbic acid using the composite image analysis technique. Growth experiments on the L-ascorbic acid crystals were carried out by standard (optical) microscopy, laser diffraction analysis, and composite image analysis. For image analysis, the growth of L-ascorbic acid crystals was captured as digital 2D RGB images, which were then processed to composite images. After processing, the crystal boundaries emerged as white lines against the black (cancelled) background. The crystal boundaries were well differentiated by peaks in the intensity graphs generated for the composite images. The lengths of crystal boundaries measured from the intensity graphs of composite images were in good agreement (correlation coefficient "r" = 0.99) with the lengths measured by standard microscopy. On the contrary, the lengths measured by laser diffraction were poorly correlated with both techniques. Therefore, the composite image analysis can replace the standard microscopy technique for the crystal growth studies of L-ascorbic acid. © 2017 Wiley Periodicals, Inc.

  17. Study of pipe thickness loss using a neutron radiography method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Abdul Aziz; Wahab, Aliff Amiru Bin; Yazid, Hafizal B.

    2014-02-12

    The purpose of this preliminary work is to study for thickness changes in objects using neutron radiography. In doing the project, the technique for the radiography was studied. The experiment was done at NUR-2 facility at TRIGA research reactor in Malaysian Nuclear Agency, Malaysia. Test samples of varying materials were used in this project. The samples were radiographed using direct technique. Radiographic images were recorded using Nitrocellulose film. The films obtained were digitized to processed and analyzed. Digital processing is done on the images using software Isee!. The images were processed to produce better image for analysis. The thickness changesmore » in the image were measured to be compared with real thickness of the objects. From the data collected, percentages difference between measured and real thickness are below than 2%. This is considerably very low variation from original values. Therefore, verifying the neutron radiography technique used in this project.« less

  18. Phase in Optical Image Processing

    NASA Astrophysics Data System (ADS)

    Naughton, Thomas J.

    2010-04-01

    The use of phase has a long standing history in optical image processing, with early milestones being in the field of pattern recognition, such as VanderLugt's practical construction technique for matched filters, and (implicitly) Goodman's joint Fourier transform correlator. In recent years, the flexibility afforded by phase-only spatial light modulators and digital holography, for example, has enabled many processing techniques based on the explicit encoding and decoding of phase. One application area concerns efficient numerical computations. Pushing phase measurement to its physical limits, designs employing the physical properties of phase have ranged from the sensible to the wonderful, in some cases making computationally easy problems easier to solve and in other cases addressing mathematics' most challenging computationally hard problems. Another application area is optical image encryption, in which, typically, a phase mask modulates the fractional Fourier transformed coefficients of a perturbed input image, and the phase of the inverse transform is then sensed as the encrypted image. The inherent linearity that makes the system so elegant mitigates against its use as an effective encryption technique, but we show how a combination of optical and digital techniques can restore confidence in that security. We conclude with the concept of digital hologram image processing, and applications of same that are uniquely suited to optical implementation, where the processing, recognition, or encryption step operates on full field information, such as that emanating from a coherently illuminated real-world three-dimensional object.

  19. An improved algorithm of image processing technique for film thickness measurement in a horizontal stratified gas-liquid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuntoro, Hadiyan Yusuf; Hudaya, Akhmad Zidni; Dinaryanto, Okto; Majid, Akmal Irfan; Deendarlianto

    2016-06-01

    Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methods and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (hL) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.

  20. An improved algorithm of image processing technique for film thickness measurement in a horizontal stratified gas-liquid two-phase flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuntoro, Hadiyan Yusuf, E-mail: hadiyan.y.kuntoro@mail.ugm.ac.id; Majid, Akmal Irfan; Deendarlianto, E-mail: deendarlianto@ugm.ac.id

    Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methodsmore » and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (h{sub L}) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.« less

  1. Wavelet-based higher-order neural networks for mine detection in thermal IR imagery

    NASA Astrophysics Data System (ADS)

    Baertlein, Brian A.; Liao, Wen-Jiao

    2000-08-01

    An image processing technique is described for the detection of miens in RI imagery. The proposed technique is based on a third-order neural network, which processes the output of a wavelet packet transform. The technique is inherently invariant to changes in signature position, rotation and scaling. The well-known memory limitations that arise with higher-order neural networks are addressed by (1) the data compression capabilities of wavelet packets, (2) protections of the image data into a space of similar triangles, and (3) quantization of that 'triangle space'. Using these techniques, image chips of size 28 by 28, which would require 0(109) neural net weights, are processed by a network having 0(102) weights. ROC curves are presented for mine detection in real and simulated imagery.

  2. A motion-compensated image filter for low-dose fluoroscopy in a real-time tumor-tracking radiotherapy system

    PubMed Central

    Miyamoto, Naoki; Ishikawa, Masayori; Sutherland, Kenneth; Suzuki, Ryusuke; Matsuura, Taeko; Toramatsu, Chie; Takao, Seishin; Nihongi, Hideaki; Shimizu, Shinichi; Umegaki, Kikuo; Shirato, Hiroki

    2015-01-01

    In the real-time tumor-tracking radiotherapy system, a surrogate fiducial marker inserted in or near the tumor is detected by fluoroscopy to realize respiratory-gated radiotherapy. The imaging dose caused by fluoroscopy should be minimized. In this work, an image processing technique is proposed for tracing a moving marker in low-dose imaging. The proposed tracking technique is a combination of a motion-compensated recursive filter and template pattern matching. The proposed image filter can reduce motion artifacts resulting from the recursive process based on the determination of the region of interest for the next frame according to the current marker position in the fluoroscopic images. The effectiveness of the proposed technique and the expected clinical benefit were examined by phantom experimental studies with actual tumor trajectories generated from clinical patient data. It was demonstrated that the marker motion could be traced in low-dose imaging by applying the proposed algorithm with acceptable registration error and high pattern recognition score in all trajectories, although some trajectories were not able to be tracked with the conventional spatial filters or without image filters. The positional accuracy is expected to be kept within ±2 mm. The total computation time required to determine the marker position is a few milliseconds. The proposed image processing technique is applicable for imaging dose reduction. PMID:25129556

  3. Platform for Post-Processing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    2010-01-01

    Signal- and image-processing methods are commonly needed to extract information from the waves, improve resolution of, and highlight defects in an image. Since some similarity exists for all waveform-based nondestructive evaluation (NDE) methods, it would seem that a common software platform containing multiple signal- and image-processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. NDE Wave & Image Processor Version 2.0 software provides a single, integrated signal- and image-processing and analysis environment for total NDE data processing and analysis. It brings some of the most useful algorithms developed for NDE over the past 20 years into a commercial-grade product. The software can import signal/spectroscopic data, image data, and image series data. This software offers the user hundreds of basic and advanced signal- and image-processing capabilities including esoteric 1D and 2D wavelet-based de-noising, de-trending, and filtering. Batch processing is included for signal- and image-processing capability so that an optimized sequence of processing operations can be applied to entire folders of signals, spectra, and images. Additionally, an extensive interactive model-based curve-fitting facility has been included to allow fitting of spectroscopy data such as from Raman spectroscopy. An extensive joint-time frequency module is included for analysis of non-stationary or transient data such as that from acoustic emission, vibration, or earthquake data.

  4. Digital image analysis techniques for fiber and soil mixtures.

    DOT National Transportation Integrated Search

    1999-05-01

    The objective of image processing is to visually enhance, quantify, and/or statistically evaluate some aspect of an image not readily apparent in its original form. Processed digital image data can be analyzed in numerous ways. In order to summarize ...

  5. Pseudo-shading technique in the two-dimensional domain: a post-processing algorithm for enhancing the Z-buffer of a three-dimensional binary image.

    PubMed

    Tan, A C; Richards, R

    1989-01-01

    Three-dimensional (3D) medical graphics is becoming popular in clinical use on tomographic scanners. Research work in 3D reconstructive display of computerized tomography (CT) and magnetic resonance imaging (MRI) scans on conventional computers has produced many so-called pseudo-3D images. The quality of these images depends on the rendering algorithm, the coarseness of the digitized object, the number of grey levels and the image screen resolution. CT and MRI data are fundamentally voxel based and they produce images that are coarse because of the resolution of the data acquisition system. 3D images produced by the Z-buffer depth shading technique suffer loss of detail when complex objects with fine textural detail need to be displayed. Attempts have been made to improve the display of voxel objects, and existing techniques have shown the improvement possible using these post-processing algorithms. The improved rendering technique works on the Z-buffer image to generate a shaded image using a single light source in any direction. The effectiveness of the technique in generating a shaded image has been shown to be a useful means of presenting 3D information for clinical use.

  6. Image processing of aerodynamic data

    NASA Technical Reports Server (NTRS)

    Faulcon, N. D.

    1985-01-01

    The use of digital image processing techniques in analyzing and evaluating aerodynamic data is discussed. An image processing system that converts images derived from digital data or from transparent film into black and white, full color, or false color pictures is described. Applications to black and white images of a model wing with a NACA 64-210 section in simulated rain and to computed low properties for transonic flow past a NACA 0012 airfoil are presented. Image processing techniques are used to visualize the variations of water film thicknesses on the wing model and to illustrate the contours of computed Mach numbers for the flow past the NACA 0012 airfoil. Since the computed data for the NACA 0012 airfoil are available only at discrete spatial locations, an interpolation method is used to provide values of the Mach number over the entire field.

  7. Pattern recognition and expert image analysis systems in biomedical image processing (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Oosterlinck, A.; Suetens, P.; Wu, Q.; Baird, M.; F. M., C.

    1987-09-01

    This paper gives an overview of pattern recoanition techniques (P.R.) used in biomedical image processing and problems related to the different P.R. solutions. Also the use of knowledge based systems to overcome P.R. difficulties, is described. This is illustrated by a common example ofabiomedical image processing application.

  8. Enhancement of Satellite Image Compression Using a Hybrid (DWT-DCT) Algorithm

    NASA Astrophysics Data System (ADS)

    Shihab, Halah Saadoon; Shafie, Suhaidi; Ramli, Abdul Rahman; Ahmad, Fauzan

    2017-12-01

    Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) image compression techniques have been utilized in most of the earth observation satellites launched during the last few decades. However, these techniques have some issues that should be addressed. The DWT method has proven to be more efficient than DCT for several reasons. Nevertheless, the DCT can be exploited to improve the high-resolution satellite image compression when combined with the DWT technique. Hence, a proposed hybrid (DWT-DCT) method was developed and implemented in the current work, simulating an image compression system on-board on a small remote sensing satellite, with the aim of achieving a higher compression ratio to decrease the onboard data storage and the downlink bandwidth, while avoiding further complex levels of DWT. This method also succeeded in maintaining the reconstructed satellite image quality through replacing the standard forward DWT thresholding and quantization processes with an alternative process that employed the zero-padding technique, which also helped to reduce the processing time of DWT compression. The DCT, DWT and the proposed hybrid methods were implemented individually, for comparison, on three LANDSAT 8 images, using the MATLAB software package. A comparison was also made between the proposed method and three other previously published hybrid methods. The evaluation of all the objective and subjective results indicated the feasibility of using the proposed hybrid (DWT-DCT) method to enhance the image compression process on-board satellites.

  9. A noncoherent optical analog image processor.

    PubMed

    Swindell, W

    1970-11-01

    The description of a machine that performs a variety of image processing operations is given, together with a theoretical discussion of its operation. Spatial processing is performed by corrective convolution techniques. Density processing is achieved by means of an electrical transfer function generator included in the video circuit. Examples of images processed for removal of image motion blur, defocus, and atmospheric seeing blur are shown.

  10. Analysis of objects in binary images. M.S. Thesis - Old Dominion Univ.

    NASA Technical Reports Server (NTRS)

    Leonard, Desiree M.

    1991-01-01

    Digital image processing techniques are typically used to produce improved digital images through the application of successive enhancement techniques to a given image or to generate quantitative data about the objects within that image. In support of and to assist researchers in a wide range of disciplines, e.g., interferometry, heavy rain effects on aerodynamics, and structure recognition research, it is often desirable to count objects in an image and compute their geometric properties. Therefore, an image analysis application package, focusing on a subset of image analysis techniques used for object recognition in binary images, was developed. This report describes the techniques and algorithms utilized in three main phases of the application and are categorized as: image segmentation, object recognition, and quantitative analysis. Appendices provide supplemental formulas for the algorithms employed as well as examples and results from the various image segmentation techniques and the object recognition algorithm implemented.

  11. Computer image processing - The Viking experience. [digital enhancement techniques

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    Computer processing of digital imagery from the Viking mission to Mars is discussed, with attention given to subjective enhancement and quantitative processing. Contrast stretching and high-pass filtering techniques of subjective enhancement are described; algorithms developed to determine optimal stretch and filtering parameters are also mentioned. In addition, geometric transformations to rectify the distortion of shapes in the field of view and to alter the apparent viewpoint of the image are considered. Perhaps the most difficult problem in quantitative processing of Viking imagery was the production of accurate color representations of Orbiter and Lander camera images.

  12. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method.

    PubMed

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-17

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat 'brighter' than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  13. Bone surface enhancement in ultrasound images using a new Doppler-based acquisition/processing method

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Tang, Songyuan; Tasciotti, Ennio; Righetti, Raffaella

    2018-01-01

    Ultrasound (US) imaging has long been considered as a potential aid in orthopedic surgeries. US technologies are safe, portable and do not use radiations. This would make them a desirable tool for real-time assessment of fractures and to monitor fracture healing. However, image quality of US imaging methods in bone applications is limited by speckle, attenuation, shadow, multiple reflections and other imaging artifacts. While bone surfaces typically appear in US images as somewhat ‘brighter’ than soft tissue, they are often not easily distinguishable from the surrounding tissue. Therefore, US imaging methods aimed at segmenting bone surfaces need enhancement in image contrast prior to segmentation to improve the quality of the detected bone surface. In this paper, we present a novel acquisition/processing technique for bone surface enhancement in US images. Inspired by elastography and Doppler imaging methods, this technique takes advantage of the difference between the mechanical and acoustic properties of bones and those of soft tissues to make the bone surface more easily distinguishable in US images. The objective of this technique is to facilitate US-based bone segmentation methods and improve the accuracy of their outcomes. The newly proposed technique is tested both in in vitro and in vivo experiments. The results of these preliminary experiments suggest that the use of the proposed technique has the potential to significantly enhance the detectability of bone surfaces in noisy ultrasound images.

  14. An Ibm PC/AT-Based Image Acquisition And Processing System For Quantitative Image Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Yongmin; Alexander, Thomas

    1986-06-01

    In recent years, a large number of applications have been developed for image processing systems in the area of biological imaging. We have already finished the development of a dedicated microcomputer-based image processing and analysis system for quantitative microscopy. The system's primary function has been to facilitate and ultimately automate quantitative image analysis tasks such as the measurement of cellular DNA contents. We have recognized from this development experience, and interaction with system users, biologists and technicians, that the increasingly widespread use of image processing systems, and the development and application of new techniques for utilizing the capabilities of such systems, would generate a need for some kind of inexpensive general purpose image acquisition and processing system specially tailored for the needs of the medical community. We are currently engaged in the development and testing of hardware and software for a fairly high-performance image processing computer system based on a popular personal computer. In this paper, we describe the design and development of this system. Biological image processing computer systems have now reached a level of hardware and software refinement where they could become convenient image analysis tools for biologists. The development of a general purpose image processing system for quantitative image analysis that is inexpensive, flexible, and easy-to-use represents a significant step towards making the microscopic digital image processing techniques more widely applicable not only in a research environment as a biologist's workstation, but also in clinical environments as a diagnostic tool.

  15. Imaging through Fog Using Polarization Imaging in the Visible/NIR/SWIR Spectrum

    DTIC Science & Technology

    2017-01-11

    few haze effects as possible.  One post processing step on the image in order to complete image dehazing Figure 6: Basic architecture of the...Page 16 Figure 7: Basic architecture of post-processing techniques to recover an image dehazed from a raw image This first study was limited on the

  16. Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images.

    PubMed

    Morgan, David G; Ramasse, Quentin M; Browning, Nigel D

    2009-06-01

    Zone axis images recorded using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM or Z-contrast imaging) reveal the atomic structure with a resolution that is defined by the probe size of the microscope. In most cases, the full images contain many sub-images of the crystal unit cell and/or interface structure. Thanks to the repetitive nature of these images, it is possible to apply standard image processing techniques that have been developed for the electron crystallography of biological macromolecules and have been used widely in other fields of electron microscopy for both organic and inorganic materials. These methods can be used to enhance the signal-to-noise present in the original images, to remove distortions in the images that arise from either the instrumentation or the specimen itself and to quantify properties of the material in ways that are difficult without such data processing. In this paper, we describe briefly the theory behind these image processing techniques and demonstrate them for aberration-corrected, high-resolution HAADF-STEM images of Si(46) clathrates developed for hydrogen storage.

  17. Applications of emerging imaging techniques for meat quality and safety detection and evaluation: A review.

    PubMed

    Xiong, Zhenjie; Sun, Da-Wen; Pu, Hongbin; Gao, Wenhong; Dai, Qiong

    2017-03-04

    With improvement in people's living standards, many people nowadays pay more attention to quality and safety of meat. However, traditional methods for meat quality and safety detection and evaluation, such as manual inspection, mechanical methods, and chemical methods, are tedious, time-consuming, and destructive, which cannot meet the requirements of modern meat industry. Therefore, seeking out rapid, non-destructive, and accurate inspection techniques is important for the meat industry. In recent years, a number of novel and noninvasive imaging techniques, such as optical imaging, ultrasound imaging, tomographic imaging, thermal imaging, and odor imaging, have emerged and shown great potential in quality and safety assessment. In this paper, a detailed overview of advanced applications of these emerging imaging techniques for quality and safety assessment of different types of meat (pork, beef, lamb, chicken, and fish) is presented. In addition, advantages and disadvantages of each imaging technique are also summarized. Finally, future trends for these emerging imaging techniques are discussed, including integration of multiple imaging techniques, cost reduction, and developing powerful image-processing algorithms.

  18. Image processing system performance prediction and product quality evaluation

    NASA Technical Reports Server (NTRS)

    Stein, E. K.; Hammill, H. B. (Principal Investigator)

    1976-01-01

    The author has identified the following significant results. A new technique for image processing system performance prediction and product quality evaluation was developed. It was entirely objective, quantitative, and general, and should prove useful in system design and quality control. The technique and its application to determination of quality control procedures for the Earth Resources Technology Satellite NASA Data Processing Facility are described.

  19. A fast and fully automatic registration approach based on point features for multi-source remote-sensing images

    NASA Astrophysics Data System (ADS)

    Yu, Le; Zhang, Dengrong; Holden, Eun-Jung

    2008-07-01

    Automatic registration of multi-source remote-sensing images is a difficult task as it must deal with the varying illuminations and resolutions of the images, different perspectives and the local deformations within the images. This paper proposes a fully automatic and fast non-rigid image registration technique that addresses those issues. The proposed technique performs a pre-registration process that coarsely aligns the input image to the reference image by automatically detecting their matching points by using the scale invariant feature transform (SIFT) method and an affine transformation model. Once the coarse registration is completed, it performs a fine-scale registration process based on a piecewise linear transformation technique using feature points that are detected by the Harris corner detector. The registration process firstly finds in succession, tie point pairs between the input and the reference image by detecting Harris corners and applying a cross-matching strategy based on a wavelet pyramid for a fast search speed. Tie point pairs with large errors are pruned by an error-checking step. The input image is then rectified by using triangulated irregular networks (TINs) to deal with irregular local deformations caused by the fluctuation of the terrain. For each triangular facet of the TIN, affine transformations are estimated and applied for rectification. Experiments with Quickbird, SPOT5, SPOT4, TM remote-sensing images of the Hangzhou area in China demonstrate the efficiency and the accuracy of the proposed technique for multi-source remote-sensing image registration.

  20. Particle sizing in rocket motor studies utilizing hologram image processing

    NASA Technical Reports Server (NTRS)

    Netzer, David; Powers, John

    1987-01-01

    A technique of obtaining particle size information from holograms of combustion products is described. The holograms are obtained with a pulsed ruby laser through windows in a combustion chamber. The reconstruction is done with a krypton laser with the real image being viewed through a microscope. The particle size information is measured with a Quantimet 720 image processing system which can discriminate various features and perform measurements of the portions of interest in the image. Various problems that arise in the technique are discussed, especially those that are a consequence of the speckle due to the diffuse illumination used in the recording process.

  1. A survey of landmine detection using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Makki, Ihab; Younes, Rafic; Francis, Clovis; Bianchi, Tiziano; Zucchetti, Massimo

    2017-02-01

    Hyperspectral imaging is a trending technique in remote sensing that finds its application in many different areas, such as agriculture, mapping, target detection, food quality monitoring, etc. This technique gives the ability to remotely identify the composition of each pixel of the image. Therefore, it is a natural candidate for the purpose of landmine detection, thanks to its inherent safety and fast response time. In this paper, we will present the results of several studies that employed hyperspectral imaging for the purpose of landmine detection, discussing the different signal processing techniques used in this framework for hyperspectral image processing and target detection. Our purpose is to highlight the progresses attained in the detection of landmines using hyperspectral imaging and to identify possible perspectives for future work, in order to achieve a better detection in real-time operation mode.

  2. Multiscale Analysis of Solar Image Data

    NASA Astrophysics Data System (ADS)

    Young, C. A.; Myers, D. C.

    2001-12-01

    It is often said that the blessing and curse of solar physics is that there is too much data. Solar missions such as Yohkoh, SOHO and TRACE have shown us the Sun with amazing clarity but have also cursed us with an increased amount of higher complexity data than previous missions. We have improved our view of the Sun yet we have not improved our analysis techniques. The standard techniques used for analysis of solar images generally consist of observing the evolution of features in a sequence of byte scaled images or a sequence of byte scaled difference images. The determination of features and structures in the images are done qualitatively by the observer. There is little quantitative and objective analysis done with these images. Many advances in image processing techniques have occured in the past decade. Many of these methods are possibly suited for solar image analysis. Multiscale/Multiresolution methods are perhaps the most promising. These methods have been used to formulate the human ability to view and comprehend phenomena on different scales. So these techniques could be used to quantitify the imaging processing done by the observers eyes and brains. In this work we present a preliminary analysis of multiscale techniques applied to solar image data. Specifically, we explore the use of the 2-d wavelet transform and related transforms with EIT, LASCO and TRACE images. This work was supported by NASA contract NAS5-00220.

  3. A Software Platform for Post-Processing Waveform-Based NDE

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Martin, Richard E.; Seebo, Jeff P.; Trinh, Long B.; Walker, James L.; Winfree, William P.

    2007-01-01

    Ultrasonic, microwave, and terahertz nondestructive evaluation imaging systems generally require the acquisition of waveforms at each scan point to form an image. For such systems, signal and image processing methods are commonly needed to extract information from the waves and improve resolution of, and highlight, defects in the image. Since some similarity exists for all waveform-based NDE methods, it would seem a common software platform containing multiple signal and image processing techniques to process the waveforms and images makes sense where multiple techniques, scientists, engineers, and organizations are involved. This presentation describes NASA Glenn Research Center's approach in developing a common software platform for processing waveform-based NDE signals and images. This platform is currently in use at NASA Glenn and at Lockheed Martin Michoud Assembly Facility for processing of pulsed terahertz and ultrasonic data. Highlights of the software operation will be given. A case study will be shown for use with terahertz data. The authors also request scientists and engineers who are interested in sharing customized signal and image processing algorithms to contribute to this effort by letting the authors code up and include these algorithms in future releases.

  4. Visually enhanced CCTV digital surveillance utilizing Intranet and Internet.

    PubMed

    Ozaki, Nobuyuki

    2002-07-01

    This paper describes a solution for integrated plant supervision utilizing closed circuit television (CCTV) digital surveillance. Three basic requirements are first addressed as the platform of the system, with discussion on the suitable video compression. The system configuration is described in blocks. The system provides surveillance functionality: real-time monitoring, and process analysis functionality: a troubleshooting tool. This paper describes the formulation of practical performance design for determining various encoder parameters. It also introduces image processing techniques for enhancing the original CCTV digital image to lessen the burden on operators. Some screenshots are listed for the surveillance functionality. For the process analysis, an image searching filter supported by image processing techniques is explained with screenshots. Multimedia surveillance, which is the merger with process data surveillance, or the SCADA system, is also explained.

  5. Three-dimensional imaging and remote sensing imaging; Proceedings of the Meeting, Los Angeles, CA, Jan. 14, 15, 1988

    NASA Astrophysics Data System (ADS)

    Robbins, Woodrow E.

    1988-01-01

    The present conference discusses topics in novel technologies and techniques of three-dimensional imaging, human factors-related issues in three-dimensional display system design, three-dimensional imaging applications, and image processing for remote sensing. Attention is given to a 19-inch parallactiscope, a chromostereoscopic CRT-based display, the 'SpaceGraph' true three-dimensional peripheral, advantages of three-dimensional displays, holographic stereograms generated with a liquid crystal spatial light modulator, algorithms and display techniques for four-dimensional Cartesian graphics, an image processing system for automatic retina diagnosis, the automatic frequency control of a pulsed CO2 laser, and a three-dimensional display of magnetic resonance imaging of the spine.

  6. Three-dimensional image contrast using biospeckle

    NASA Astrophysics Data System (ADS)

    Godinho, Robson Pierangeli; Braga, Roberto A., Jr.

    2010-09-01

    The biospeckle laser (BSL) has been applied in many areas of knowledge and a variety of approaches has been presented to address the best results in biological and non-biological samples, in fast or slow activities, or else in defined flow of materials or in random activities. The methodologies accounted in the literature consider the apparatus used in the image assembling and the way the collected data is processed. The image processing steps presents in turn a variety of procedures with first or second order statistics analysis, and as well with different sizes of data collected. One way to access the biospeckle in defined flow, such as in capillary blood flow in alive animals, was the adoption of the image contrast technique which uses only one image from the illuminated sample. That approach presents some problems related to the resolution of the image, which is reduced during the image contrast processing. In order to help the visualization of the low resolution image formed by the contrast technique, this work presents the three-dimensional procedure as a reliable alternative to enhance the final image. The work based on a parallel processing, with the generation of a virtual map of amplitudes, and maintaining the quasi-online characteristic of the contrast technique. Therefore, it was possible to generate in the same display the observed material, the image contrast result and in addiction the three-dimensional image with adjustable options of rotation. The platform also offers to the user the possibility to access the 3D image offline.

  7. NASA IMAGESEER: NASA IMAGEs for Science, Education, Experimentation and Research

    NASA Technical Reports Server (NTRS)

    Le Moigne, Jacqueline; Grubb, Thomas G.; Milner, Barbara C.

    2012-01-01

    A number of web-accessible databases, including medical, military or other image data, offer universities and other users the ability to teach or research new Image Processing techniques on relevant and well-documented data. However, NASA images have traditionally been difficult for researchers to find, are often only available in hard-to-use formats, and do not always provide sufficient context and background for a non-NASA Scientist user to understand their content. The new IMAGESEER (IMAGEs for Science, Education, Experimentation and Research) database seeks to address these issues. Through a graphically-rich web site for browsing and downloading all of the selected datasets, benchmarks, and tutorials, IMAGESEER provides a widely accessible database of NASA-centric, easy to read, image data for teaching or validating new Image Processing algorithms. As such, IMAGESEER fosters collaboration between NASA and research organizations while simultaneously encouraging development of new and enhanced Image Processing algorithms. The first prototype includes a representative sampling of NASA multispectral and hyperspectral images from several Earth Science instruments, along with a few small tutorials. Image processing techniques are currently represented with cloud detection, image registration, and map cover/classification. For each technique, corresponding data are selected from four different geographic regions, i.e., mountains, urban, water coastal, and agriculture areas. Satellite images have been collected from several instruments - Landsat-5 and -7 Thematic Mappers, Earth Observing-1 (EO-1) Advanced Land Imager (ALI) and Hyperion, and the Moderate Resolution Imaging Spectroradiometer (MODIS). After geo-registration, these images are available in simple common formats such as GeoTIFF and raw formats, along with associated benchmark data.

  8. SU-E-I-37: Low-Dose Real-Time Region-Of-Interest X-Ray Fluoroscopic Imaging with a GPU-Accelerated Spatially Different Bilateral Filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, H; Lee, J; Pua, R

    2014-06-01

    Purpose: The purpose of our study is to reduce imaging radiation dose while maintaining image quality of region of interest (ROI) in X-ray fluoroscopy. A low-dose real-time ROI fluoroscopic imaging technique which includes graphics-processing-unit- (GPU-) accelerated image processing for brightness compensation and noise filtering was developed in this study. Methods: In our ROI fluoroscopic imaging, a copper filter is placed in front of the X-ray tube. The filter contains a round aperture to reduce radiation dose to outside of the aperture. To equalize the brightness difference between inner and outer ROI regions, brightness compensation was performed by use of amore » simple weighting method that applies selectively to the inner ROI, the outer ROI, and the boundary zone. A bilateral filtering was applied to the images to reduce relatively high noise in the outer ROI images. To speed up the calculation of our technique for real-time application, the GPU-acceleration was applied to the image processing algorithm. We performed a dosimetric measurement using an ion-chamber dosimeter to evaluate the amount of radiation dose reduction. The reduction of calculation time compared to a CPU-only computation was also measured, and the assessment of image quality in terms of image noise and spatial resolution was conducted. Results: More than 80% of dose was reduced by use of the ROI filter. The reduction rate depended on the thickness of the filter and the size of ROI aperture. The image noise outside the ROI was remarkably reduced by the bilateral filtering technique. The computation time for processing each frame image was reduced from 3.43 seconds with single CPU to 9.85 milliseconds with GPU-acceleration. Conclusion: The proposed technique for X-ray fluoroscopy can substantially reduce imaging radiation dose to the patient while maintaining image quality particularly in the ROI region in real-time.« less

  9. Computer-aided light sheet flow visualization using photogrammetry

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1994-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and a visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) results, was chosen to interactively display the reconstructed light sheet images with the numerical surface geometry for the model or aircraft under study. The photogrammetric reconstruction technique and the image processing and computer graphics techniques and equipment are described. Results of the computer-aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images with CFD solutions in the same graphics environment is also demonstrated.

  10. Computer-Aided Light Sheet Flow Visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  11. Computer-aided light sheet flow visualization

    NASA Technical Reports Server (NTRS)

    Stacy, Kathryn; Severance, Kurt; Childers, Brooks A.

    1993-01-01

    A computer-aided flow visualization process has been developed to analyze video images acquired from rotating and translating light sheet visualization systems. The computer process integrates a mathematical model for image reconstruction, advanced computer graphics concepts, and digital image processing to provide a quantitative and visual analysis capability. The image reconstruction model, based on photogrammetry, uses knowledge of the camera and light sheet locations and orientations to project two-dimensional light sheet video images into three-dimensional space. A sophisticated computer visualization package, commonly used to analyze computational fluid dynamics (CFD) data sets, was chosen to interactively display the reconstructed light sheet images, along with the numerical surface geometry for the model or aircraft under study. A description is provided of the photogrammetric reconstruction technique, and the image processing and computer graphics techniques and equipment. Results of the computer aided process applied to both a wind tunnel translating light sheet experiment and an in-flight rotating light sheet experiment are presented. The capability to compare reconstructed experimental light sheet images and CFD solutions in the same graphics environment is also demonstrated.

  12. Real-time processing of interferograms for monitoring protein crystal growth on the Space Station

    NASA Technical Reports Server (NTRS)

    Choudry, A.; Dupuis, N.

    1988-01-01

    The possibility of using microscopic interferometric techniques to monitor the growth of protein crystals on the Space Station is studied. Digital image processing techniques are used to develop a system for the real-time analysis of microscopic interferograms of nucleation sites during protein crystal growth. Features of the optical setup and the image processing system are discussed and experimental results are presented.

  13. Survey Of Lossless Image Coding Techniques

    NASA Astrophysics Data System (ADS)

    Melnychuck, Paul W.; Rabbani, Majid

    1989-04-01

    Many image transmission/storage applications requiring some form of data compression additionally require that the decoded image be an exact replica of the original. Lossless image coding algorithms meet this requirement by generating a decoded image that is numerically identical to the original. Several lossless coding techniques are modifications of well-known lossy schemes, whereas others are new. Traditional Markov-based models and newer arithmetic coding techniques are applied to predictive coding, bit plane processing, and lossy plus residual coding. Generally speaking, the compression ratio offered by these techniques are in the area of 1.6:1 to 3:1 for 8-bit pictorial images. Compression ratios for 12-bit radiological images approach 3:1, as these images have less detailed structure, and hence, their higher pel correlation leads to a greater removal of image redundancy.

  14. Watermarking and copyright labeling of printed images

    NASA Astrophysics Data System (ADS)

    Hel-Or, Hagit Z.

    2001-07-01

    Digital watermarking is a labeling technique for digital images which embeds a code into the digital data so the data are marked. Watermarking techniques previously developed deal with on-line digital data. These techniques have been developed to withstand digital attacks such as image processing, image compression and geometric transformations. However, one must also consider the readily available attack of printing and scanning. The available watermarking techniques are not reliable under printing and scanning. In fact, one must consider the availability of watermarks for printed images as well as for digital images. An important issue is to intercept and prevent forgery in printed material such as currency notes, back checks, etc. and to track and validate sensitive and secrete printed material. Watermarking in such printed material can be used not only for verification of ownership but as an indicator of date and type of transaction or date and source of the printed data. In this work we propose a method of embedding watermarks in printed images by inherently taking advantage of the printing process. The method is visually unobtrusive to the printed image, the watermark is easily extracted and is robust under reconstruction errors. The decoding algorithm is automatic given the watermarked image.

  15. Modern Observational Techniques for Comets

    NASA Technical Reports Server (NTRS)

    Brandt, J. C. (Editor); Greenberg, J. M. (Editor); Donn, B. (Editor); Rahe, J. (Editor)

    1981-01-01

    Techniques are discussed in the following areas: astrometry, photometry, infrared observations, radio observations, spectroscopy, imaging of coma and tail, image processing of observation. The determination of the chemical composition and physical structure of comets is highlighted.

  16. Towards an Intelligent Planning Knowledge Base Development Environment

    NASA Technical Reports Server (NTRS)

    Chien, S.

    1994-01-01

    ract describes work in developing knowledge base editing and debugging tools for the Multimission VICAR Planner (MVP) system. MVP uses artificial intelligence planning techniques to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing requests made to the JPL Multimission Image Processing Laboratory.

  17. Linear- and Repetitive Feature Detection Within Remotely Sensed Imagery

    DTIC Science & Technology

    2017-04-01

    applicable to Python or other pro- gramming languages with image- processing capabilities. 4.1 Classification machine learning The first methodology uses...remotely sensed images that are in panchromatic or true-color formats. Image- processing techniques, in- cluding Hough transforms, machine learning, and...data fusion .................................................................................................... 44 6.3 Context-based processing

  18. Design concepts for an on-board coherent optical image processor

    NASA Technical Reports Server (NTRS)

    Husain-Abidi, A. S.

    1972-01-01

    On-board spacecraft image data processing systems for transmitting processed data rather than raw data are discussed. A brief history of the development of the optical data processing techniques is presented along with the conceptual design of a coherent optical system with a noncoherent image input.

  19. Demosaiced pixel super-resolution in digital holography for multiplexed computational color imaging on-a-chip (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wu, Yichen; Zhang, Yibo; Luo, Wei; Ozcan, Aydogan

    2017-03-01

    Digital holographic on-chip microscopy achieves large space-bandwidth-products (e.g., >1 billion) by making use of pixel super-resolution techniques. To synthesize a digital holographic color image, one can take three sets of holograms representing the red (R), green (G) and blue (B) parts of the spectrum and digitally combine them to synthesize a color image. The data acquisition efficiency of this sequential illumination process can be improved by 3-fold using wavelength-multiplexed R, G and B illumination that simultaneously illuminates the sample, and using a Bayer color image sensor with known or calibrated transmission spectra to digitally demultiplex these three wavelength channels. This demultiplexing step is conventionally used with interpolation-based Bayer demosaicing methods. However, because the pixels of different color channels on a Bayer image sensor chip are not at the same physical location, conventional interpolation-based demosaicing process generates strong color artifacts, especially at rapidly oscillating hologram fringes, which become even more pronounced through digital wave propagation and phase retrieval processes. Here, we demonstrate that by merging the pixel super-resolution framework into the demultiplexing process, such color artifacts can be greatly suppressed. This novel technique, termed demosaiced pixel super-resolution (D-PSR) for digital holographic imaging, achieves very similar color imaging performance compared to conventional sequential R,G,B illumination, with 3-fold improvement in image acquisition time and data-efficiency. We successfully demonstrated the color imaging performance of this approach by imaging stained Pap smears. The D-PSR technique is broadly applicable to high-throughput, high-resolution digital holographic color microscopy techniques that can be used in resource-limited-settings and point-of-care offices.

  20. Vision-based obstacle recognition system for automated lawn mower robot development

    NASA Astrophysics Data System (ADS)

    Mohd Zin, Zalhan; Ibrahim, Ratnawati

    2011-06-01

    Digital image processing techniques (DIP) have been widely used in various types of application recently. Classification and recognition of a specific object using vision system require some challenging tasks in the field of image processing and artificial intelligence. The ability and efficiency of vision system to capture and process the images is very important for any intelligent system such as autonomous robot. This paper gives attention to the development of a vision system that could contribute to the development of an automated vision based lawn mower robot. The works involve on the implementation of DIP techniques to detect and recognize three different types of obstacles that usually exist on a football field. The focus was given on the study on different types and sizes of obstacles, the development of vision based obstacle recognition system and the evaluation of the system's performance. Image processing techniques such as image filtering, segmentation, enhancement and edge detection have been applied in the system. The results have shown that the developed system is able to detect and recognize various types of obstacles on a football field with recognition rate of more 80%.

  1. Onboard Image Processing for Autonomous Spacecraft Detection of Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    Thompson, D. R.; Bunte, M.; Castaño, R.; Chien, S.; Greeley, R.

    2011-03-01

    Onboard spacecraft image processing could enable long-term monitoring for volcanic plume activity in the outer planets. A new plume detection technique shows strong performance on images of Enceladus and Io taken by Cassini, Voyager, and Galileo.

  2. Quantitative imaging of volcanic plumes — Results, needs, and future trends

    USGS Publications Warehouse

    Platt, Ulrich; Lübcke, Peter; Kuhn, Jonas; Bobrowski, Nicole; Prata, Fred; Burton, Mike; Kern, Christoph

    2015-01-01

    Recent technology allows two-dimensional “imaging” of trace gas distributions in plumes. In contrast to older, one-dimensional remote sensing techniques, that are only capable of measuring total column densities, the new imaging methods give insight into details of transport and mixing processes as well as chemical transformation within plumes. We give an overview of gas imaging techniques already being applied at volcanoes (SO2cameras, imaging DOAS, FT-IR imaging), present techniques where first field experiments were conducted (LED-LIDAR, tomographic mapping), and describe some techniques where only theoretical studies with application to volcanology exist (e.g. Fabry–Pérot Imaging, Gas Correlation Spectroscopy, bi-static LIDAR). Finally, we discuss current needs and future trends in imaging technology.

  3. Weighted image de-fogging using luminance dark prior

    NASA Astrophysics Data System (ADS)

    Kansal, Isha; Kasana, Singara Singh

    2017-10-01

    In this work, the weighted image de-fogging process based upon dark channel prior is modified by using luminance dark prior. Dark channel prior estimates the transmission by using three colour channels whereas luminance dark prior does the same by making use of only Y component of YUV colour space. For each pixel in a patch of ? size, the luminance dark prior uses ? pixels, rather than ? pixels used in DCP technique, which speeds up the de-fogging process. To estimate the transmission map, weighted approach based upon difference prior is used which mitigates halo artefacts at the time of transmission estimation. The major drawback of weighted technique is that it does not maintain the constancy of the transmission in a local patch even if there are no significant depth disruptions, due to which the de-fogged image looks over smooth and has low contrast. Apart from this, in some images, weighted transmission still carries less visible halo artefacts. Therefore, Gaussian filter is used to blur the estimated weighted transmission map which enhances the contrast of de-fogged images. In addition to this, a novel approach is proposed to remove the pixels belonging to bright light source(s) during the atmospheric light estimation process based upon histogram of YUV colour space. To show the effectiveness, the proposed technique is compared with existing techniques. This comparison shows that the proposed technique performs better than the existing techniques.

  4. Double Density Dual Tree Discrete Wavelet Transform implementation for Degraded Image Enhancement

    NASA Astrophysics Data System (ADS)

    Vimala, C.; Aruna Priya, P.

    2018-04-01

    Wavelet transform is a main tool for image processing applications in modern existence. A Double Density Dual Tree Discrete Wavelet Transform is used and investigated for image denoising. Images are considered for the analysis and the performance is compared with discrete wavelet transform and the Double Density DWT. Peak Signal to Noise Ratio values and Root Means Square error are calculated in all the three wavelet techniques for denoised images and the performance has evaluated. The proposed techniques give the better performance when comparing other two wavelet techniques.

  5. Stereo Image Ranging For An Autonomous Robot Vision System

    NASA Astrophysics Data System (ADS)

    Holten, James R.; Rogers, Steven K.; Kabrisky, Matthew; Cross, Steven

    1985-12-01

    The principles of stereo vision for three-dimensional data acquisition are well-known and can be applied to the problem of an autonomous robot vehicle. Coincidental points in the two images are located and then the location of that point in a three-dimensional space can be calculated using the offset of the points and knowledge of the camera positions and geometry. This research investigates the application of artificial intelligence knowledge representation techniques as a means to apply heuristics to relieve the computational intensity of the low level image processing tasks. Specifically a new technique for image feature extraction is presented. This technique, the Queen Victoria Algorithm, uses formal language productions to process the image and characterize its features. These characterized features are then used for stereo image feature registration to obtain the required ranging information. The results can be used by an autonomous robot vision system for environmental modeling and path finding.

  6. Using deep learning in image hyper spectral segmentation, classification, and detection

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuying; Su, Zhenyu

    2018-02-01

    Recent years have shown that deep learning neural networks are a valuable tool in the field of computer vision. Deep learning method can be used in applications like remote sensing such as Land cover Classification, Detection of Vehicle in Satellite Images, Hyper spectral Image classification. This paper addresses the use of the deep learning artificial neural network in Satellite image segmentation. Image segmentation plays an important role in image processing. The hue of the remote sensing image often has a large hue difference, which will result in the poor display of the images in the VR environment. Image segmentation is a pre processing technique applied to the original images and splits the image into many parts which have different hue to unify the color. Several computational models based on supervised, unsupervised, parametric, probabilistic region based image segmentation techniques have been proposed. Recently, one of the machine learning technique known as, deep learning with convolution neural network has been widely used for development of efficient and automatic image segmentation models. In this paper, we focus on study of deep neural convolution network and its variants for automatic image segmentation rather than traditional image segmentation strategies.

  7. Diagnostic Radiology--The Impact of New Technology.

    ERIC Educational Resources Information Center

    Harrison, R. M.

    1989-01-01

    Discussed are technological advances applying computer techniques for image acquisition and processing, including digital radiography, computed tomography, and nuclear magnetic resonance imaging. Several diagrams and pictures showing the use of each technique are presented. (YP)

  8. A study for watermark methods appropriate to medical images.

    PubMed

    Cho, Y; Ahn, B; Kim, J S; Kim, I Y; Kim, S I

    2001-06-01

    The network system, including the picture archiving and communication system (PACS), is essential in hospital and medical imaging fields these days. Many medical images are accessed and processed on the web, as well as in PACS. Therefore, any possible accidents caused by the illegal modification of medical images must be prevented. Digital image watermark techniques have been proposed as a method to protect against illegal copying or modification of copyrighted material. Invisible signatures made by a digital image watermarking technique can be a solution to these problems. However, medical images have some different characteristics from normal digital images in that one must not corrupt the information contained in the original medical images. In this study, we suggest modified watermark methods appropriate for medical image processing and communication system that prevent clinically important data contained in original images from being corrupted.

  9. Image processing on the image with pixel noise bits removed

    NASA Astrophysics Data System (ADS)

    Chuang, Keh-Shih; Wu, Christine

    1992-06-01

    Our previous studies used statistical methods to assess the noise level in digital images of various radiological modalities. We separated the pixel data into signal bits and noise bits and demonstrated visually that the removal of the noise bits does not affect the image quality. In this paper we apply image enhancement techniques on noise-bits-removed images and demonstrate that the removal of noise bits has no effect on the image property. The image processing techniques used are gray-level look up table transformation, Sobel edge detector, and 3-D surface display. Preliminary results show no noticeable difference between original image and noise bits removed image using look up table operation and Sobel edge enhancement. There is a slight enhancement of the slicing artifact in the 3-D surface display of the noise bits removed image.

  10. Processing techniques for digital sonar images from GLORIA.

    USGS Publications Warehouse

    Chavez, P.S.

    1986-01-01

    Image processing techniques have been developed to handle data from one of the newest members of the remote sensing family of digital imaging systems. This paper discusses software to process data collected by the GLORIA (Geological Long Range Inclined Asdic) sonar imaging system, designed and built by the Institute of Oceanographic Sciences (IOS) in England, to correct for both geometric and radiometric distortions that exist in the original 'raw' data. Preprocessing algorithms that are GLORIA-specific include corrections for slant-range geometry, water column offset, aspect ratio distortion, changes in the ship's velocity, speckle noise, and shading problems caused by the power drop-off which occurs as a function of range.-from Author

  11. Applications of process improvement techniques to improve workflow in abdominal imaging.

    PubMed

    Tamm, Eric Peter

    2016-03-01

    Major changes in the management and funding of healthcare are underway that will markedly change the way radiology studies will be reimbursed. The result will be the need to deliver radiology services in a highly efficient manner while maintaining quality. The science of process improvement provides a practical approach to improve the processes utilized in radiology. This article will address in a step-by-step manner how to implement process improvement techniques to improve workflow in abdominal imaging.

  12. Cognitive issues in searching images with visual queries

    NASA Astrophysics Data System (ADS)

    Yu, ByungGu; Evens, Martha W.

    1999-01-01

    In this paper, we propose our image indexing technique and visual query processing technique. Our mental images are different from the actual retinal images and many things, such as personal interests, personal experiences, perceptual context, the characteristics of spatial objects, and so on, affect our spatial perception. These private differences are propagated into our mental images and so our visual queries become different from the real images that we want to find. This is a hard problem and few people have tried to work on it. In this paper, we survey the human mental imagery system, the human spatial perception, and discuss several kinds of visual queries. Also, we propose our own approach to visual query interpretation and processing.

  13. Voyager Cartography

    NASA Technical Reports Server (NTRS)

    Batson, R. M.; Bridges, P. M.; Mullins, K. F.

    1985-01-01

    The Jovian and Saturnian satellites are being mapped at several scales from Voyager 1 and 2 data. The maps include specially formatted color mosaics, controlled photomosaics, and airbrush maps. More than 500 Voyager images of the Jovian and Saturnian satellites were radiometrically processed in preparation for cartographic processing. Of these images, 235 were geometrically transformed to map projections for base mosaic compilations. Special techniques for producing hybrid photomosaic/airbrush maps of Callisto are under investigation. The techniques involve making controlled computer mosaics of all available images with highest resolution images superimposed on lowest resolution images. The mosaics are then improved by airbrushing: seams and artifacts are removed, and image details enhanced that had been lost by saturation in some images. A controlled mosaic of the northern hemisphere of Rhea is complete, as is all processing for a similar mosaic of the equatorial region. Current plans and status of the various series are shown in a table.

  14. Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue

    NASA Astrophysics Data System (ADS)

    Sawyer, Travis W.; Rice, Photini F. S.; Sawyer, David M.; Koevary, Jennifer W.; Barton, Jennifer K.

    2018-02-01

    Ovarian cancer has the lowest survival rate among all gynecologic cancers due to predominantly late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that provides depthresolved, high-resolution images of biological tissue in real time and demonstrates great potential for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must rst be separated from the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing techniques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imaging, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the retina. To address these challenges, we evaluated a set of algorithms to segment OCT images of mouse ovaries. We examined ve preprocessing techniques and six segmentation algorithms. While all pre-processing methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32% +/- 1.2%. Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 0.948 +/- 0.012 compared with manual segmentation (1.0 being identical). Nonetheless, further optimization could lead to maximizing the performance for segmenting OCT images of the ovaries.

  15. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.

    PubMed

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades

    2015-01-01

    DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA gel electrophoresis images, called GELect, which was written in Java and made available through the imageJ framework. With a novel automated image processing workflow, the tool can accurately segment lanes from a gel matrix, intelligently extract distorted and even doublet bands that are difficult to identify by existing image processing tools. Consequently, genotyping from DNA gel electrophoresis can be performed automatically allowing users to efficiently conduct large scale DNA fingerprinting via DNA gel electrophoresis. The software is freely available from http://www.biotec.or.th/gi/tools/gelect.

  16. Rank-based decompositions of morphological templates.

    PubMed

    Sussner, P; Ritter, G X

    2000-01-01

    Methods for matrix decomposition have found numerous applications in image processing, in particular for the problem of template decomposition. Since existing matrix decomposition techniques are mainly concerned with the linear domain, we consider it timely to investigate matrix decomposition techniques in the nonlinear domain with applications in image processing. The mathematical basis for these investigations is the new theory of rank within minimax algebra. Thus far, only minimax decompositions of rank 1 and rank 2 matrices into outer product expansions are known to the image processing community. We derive a heuristic algorithm for the decomposition of matrices having arbitrary rank.

  17. A new scanning electron microscopy approach to image aerogels at the nanoscale

    NASA Astrophysics Data System (ADS)

    Solá, F.; Hurwitz, F.; Yang, J.

    2011-04-01

    A new scanning electron microscopy (SEM) technique to image poor electrically conductive aerogels is presented. The process can be performed by non-expert SEM users. We showed that negative charging effects on aerogels can be minimized significantly by inserting dry nitrogen gas close to the region of interest. The process involves the local recombination of accumulated negative charges with positive ions generated from ionization processes. This new technique made possible the acquisition of images of aerogels with pores down to approximately 3 nm in diameter using a positively biased Everhart-Thornley (ET) detector.

  18. Documentation of procedures for textural/spatial pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Bryant, W. F.

    1976-01-01

    A C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude to collect multispectral scanner (MSS) data. Existing textural and spatial automatic processing techniques were used to classify the MSS imagery into specified timber categories. Several classification experiments were performed on this data using features selected from the spectral bands and a textural transform band. The results indicate that (1) spatial post-processing a classified image can cut the classification error to 1/2 or 1/3 of its initial value, (2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features and (3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features.

  19. Computer image processing in marine resource exploration

    NASA Technical Reports Server (NTRS)

    Paluzzi, P. R.; Normark, W. R.; Hess, G. R.; Hess, H. D.; Cruickshank, M. J.

    1976-01-01

    Pictographic data or imagery is commonly used in marine exploration. Pre-existing image processing techniques (software) similar to those used on imagery obtained from unmanned planetary exploration were used to improve marine photography and side-scan sonar imagery. Features and details not visible by conventional photo processing methods were enhanced by filtering and noise removal on selected deep-sea photographs. Information gained near the periphery of photographs allows improved interpretation and facilitates construction of bottom mosaics where overlapping frames are available. Similar processing techniques were applied to side-scan sonar imagery, including corrections for slant range distortion, and along-track scale changes. The use of digital data processing and storage techniques greatly extends the quantity of information that can be handled, stored, and processed.

  20. An application of stereoscopy and image processing in forensics: recovering obliterated firearms serial number

    NASA Astrophysics Data System (ADS)

    da Silva Nunes, L. C.; dos Santos, Paulo Acioly M.

    2004-10-01

    We present an application of the use of stereoscope to recovering obliterated firearms serial number. We investigate a promising new combined cheap method using both non-destructive and destructive techniques. With the use of a stereomicroscope coupled with a digital camera and a flexible cold light source, we can capture the image of the damaged area, and with continuous polishing and sometimes with the help of image processing techniques we could enhance the observed images and they can also be recorded as evidence. This method has already proven to be useful, in certain cases, in aluminum dotted pistol frames, whose serial number is printed with a laser, when etching techniques are not successful. We can also observe acid treated steel surfaces and enhance the images of recovered serial numbers, which sometimes lack of definition.

  1. Automated Reduction of Data from Images and Holograms

    NASA Technical Reports Server (NTRS)

    Lee, G. (Editor); Trolinger, James D. (Editor); Yu, Y. H. (Editor)

    1987-01-01

    Laser techniques are widely used for the diagnostics of aerodynamic flow and particle fields. The storage capability of holograms has made this technique an even more powerful. Over 60 researchers in the field of holography, particle sizing and image processing convened to discuss these topics. The research program of ten government laboratories, several universities, industry and foreign countries were presented. A number of papers on holographic interferometry with applications to fluid mechanics were given. Several papers on combustion and particle sizing, speckle velocimetry and speckle interferometry were given. A session on image processing and automated fringe data reduction techniques and the type of facilities for fringe reduction was held.

  2. Application of digital image processing techniques to astronomical imagery, 1979

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.

    1979-01-01

    Several areas of applications of image processing to astronomy were identified and discussed. These areas include: (1) deconvolution for atmospheric seeing compensation; a comparison between maximum entropy and conventional Wiener algorithms; (2) polarization in galaxies from photographic plates; (3) time changes in M87 and methods of displaying these changes; (4) comparing emission line images in planetary nebulae; and (5) log intensity, hue saturation intensity, and principal component color enhancements of M82. Examples are presented of these techniques applied to a variety of objects.

  3. Evidential Reasoning in Expert Systems for Image Analysis.

    DTIC Science & Technology

    1985-02-01

    techniques to image analysis (IA). There is growing evidence that these techniques offer significant improvements in image analysis , particularly in the...2) to provide a common framework for analysis, (3) to structure the ER process for major expert-system tasks in image analysis , and (4) to identify...approaches to three important tasks for expert systems in the domain of image analysis . This segment concluded with an assessment of the strengths

  4. Enhanced visualization of MR angiogram with modified MIP and 3D image fusion

    NASA Astrophysics Data System (ADS)

    Kim, JongHyo; Yeon, Kyoung M.; Han, Man Chung; Lee, Dong Hyuk; Cho, Han I.

    1997-05-01

    We have developed a 3D image processing and display technique that include image resampling, modification of MIP, volume rendering, and fusion of MIP image with volumetric rendered image. This technique facilitates the visualization of the 3D spatial relationship between vasculature and surrounding organs by overlapping the MIP image on the volumetric rendered image of the organ. We applied this technique to a MR brain image data to produce an MRI angiogram that is overlapped with 3D volume rendered image of brain. MIP technique was used to visualize the vasculature of brain, and volume rendering was used to visualize the other structures of brain. The two images are fused after adjustment of contrast and brightness levels of each image in such a way that both the vasculature and brain structure are well visualized either by selecting the maximum value of each image or by assigning different color table to each image. The resultant image with this technique visualizes both the brain structure and vasculature simultaneously, allowing the physicians to inspect their relationship more easily. The presented technique will be useful for surgical planning for neurosurgery.

  5. Semi-automated Image Processing for Preclinical Bioluminescent Imaging.

    PubMed

    Slavine, Nikolai V; McColl, Roderick W

    Bioluminescent imaging is a valuable noninvasive technique for investigating tumor dynamics and specific biological molecular events in living animals to better understand the effects of human disease in animal models. The purpose of this study was to develop and test a strategy behind automated methods for bioluminescence image processing from the data acquisition to obtaining 3D images. In order to optimize this procedure a semi-automated image processing approach with multi-modality image handling environment was developed. To identify a bioluminescent source location and strength we used the light flux detected on the surface of the imaged object by CCD cameras. For phantom calibration tests and object surface reconstruction we used MLEM algorithm. For internal bioluminescent sources we used the diffusion approximation with balancing the internal and external intensities on the boundary of the media and then determined an initial order approximation for the photon fluence we subsequently applied a novel iterative deconvolution method to obtain the final reconstruction result. We find that the reconstruction techniques successfully used the depth-dependent light transport approach and semi-automated image processing to provide a realistic 3D model of the lung tumor. Our image processing software can optimize and decrease the time of the volumetric imaging and quantitative assessment. The data obtained from light phantom and lung mouse tumor images demonstrate the utility of the image reconstruction algorithms and semi-automated approach for bioluminescent image processing procedure. We suggest that the developed image processing approach can be applied to preclinical imaging studies: characteristics of tumor growth, identify metastases, and potentially determine the effectiveness of cancer treatment.

  6. Fast Image Subtraction Using Multi-cores and GPUs

    NASA Astrophysics Data System (ADS)

    Hartung, Steven; Shukla, H.

    2013-01-01

    Many important image processing techniques in astronomy require a massive number of computations per pixel. Among them is an image differencing technique known as Optimal Image Subtraction (OIS), which is very useful for detecting and characterizing transient phenomena. Like many image processing routines, OIS computations increase proportionally with the number of pixels being processed, and the number of pixels in need of processing is increasing rapidly. Utilizing many-core graphical processing unit (GPU) technology in a hybrid conjunction with multi-core CPU and computer clustering technologies, this work presents a new astronomy image processing pipeline architecture. The chosen OIS implementation focuses on the 2nd order spatially-varying kernel with the Dirac delta function basis, a powerful image differencing method that has seen limited deployment in part because of the heavy computational burden. This tool can process standard image calibration and OIS differencing in a fashion that is scalable with the increasing data volume. It employs several parallel processing technologies in a hierarchical fashion in order to best utilize each of their strengths. The Linux/Unix based application can operate on a single computer, or on an MPI configured cluster, with or without GPU hardware. With GPU hardware available, even low-cost commercial video cards, the OIS convolution and subtraction times for large images can be accelerated by up to three orders of magnitude.

  7. Cell-Detection Technique for Automated Patch Clamping

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth

    2008-01-01

    A unique and customizable machinevision and image-data-processing technique has been developed for use in automated identification of cells that are optimal for patch clamping. [Patch clamping (in which patch electrodes are pressed against cell membranes) is an electrophysiological technique widely applied for the study of ion channels, and of membrane proteins that regulate the flow of ions across the membranes. Patch clamping is used in many biological research fields such as neurobiology, pharmacology, and molecular biology.] While there exist several hardware techniques for automated patch clamping of cells, very few of those techniques incorporate machine vision for locating cells that are ideal subjects for patch clamping. In contrast, the present technique is embodied in a machine-vision algorithm that, in practical application, enables the user to identify good and bad cells for patch clamping in an image captured by a charge-coupled-device (CCD) camera attached to a microscope, within a processing time of one second. Hence, the present technique can save time, thereby increasing efficiency and reducing cost. The present technique involves the utilization of cell-feature metrics to accurately make decisions on the degree to which individual cells are "good" or "bad" candidates for patch clamping. These metrics include position coordinates (x,y) in the image plane, major-axis length, minor-axis length, area, elongation, roundness, smoothness, angle of orientation, and degree of inclusion in the field of view. The present technique does not require any special hardware beyond commercially available, off-the-shelf patch-clamping hardware: A standard patchclamping microscope system with an attached CCD camera, a personal computer with an imagedata- processing board, and some experience in utilizing imagedata- processing software are all that are needed. A cell image is first captured by the microscope CCD camera and image-data-processing board, then the image data are analyzed by software that implements the present machine-vision technique. This analysis results in the identification of cells that are "good" candidates for patch clamping (see figure). Once a "good" cell is identified, a patch clamp can be effected by an automated patchclamping apparatus or by a human operator. This technique has been shown to enable reliable identification of "good" and "bad" candidate cells for patch clamping. The ultimate goal in further development of this technique is to combine artificial-intelligence processing with instrumentation and controls in order to produce a complete "turnkey" automated patch-clamping system capable of accurately and reliably patch clamping cells with a minimum intervention by a human operator. Moreover, this technique can be adapted to virtually any cellular-analysis procedure that includes repetitive operation of microscope hardware by a human.

  8. Tchebichef moment transform on image dithering for mobile applications

    NASA Astrophysics Data System (ADS)

    Ernawan, Ferda; Abu, Nur Azman; Rahmalan, Hidayah

    2012-04-01

    Currently, mobile image applications spend a lot of computing process to display images. A true color raw image contains billions of colors and it consumes high computational power in most mobile image applications. At the same time, mobile devices are only expected to be equipped with lower computing process and minimum storage space. Image dithering is a popular technique to reduce the numbers of bit per pixel at the expense of lower quality image displays. This paper proposes a novel approach on image dithering using 2x2 Tchebichef moment transform (TMT). TMT integrates a simple mathematical framework technique using matrices. TMT coefficients consist of real rational numbers. An image dithering based on TMT has the potential to provide better efficiency and simplicity. The preliminary experiment shows a promising result in term of error reconstructions and image visual textures.

  9. The AAPM/RSNA physics tutorial for residents: digital fluoroscopy.

    PubMed

    Pooley, R A; McKinney, J M; Miller, D A

    2001-01-01

    A digital fluoroscopy system is most commonly configured as a conventional fluoroscopy system (tube, table, image intensifier, video system) in which the analog video signal is converted to and stored as digital data. Other methods of acquiring the digital data (eg, digital or charge-coupled device video and flat-panel detectors) will become more prevalent in the future. Fundamental concepts related to digital imaging in general include binary numbers, pixels, and gray levels. Digital image data allow the convenient use of several image processing techniques including last image hold, gray-scale processing, temporal frame averaging, and edge enhancement. Real-time subtraction of digital fluoroscopic images after injection of contrast material has led to widespread use of digital subtraction angiography (DSA). Additional image processing techniques used with DSA include road mapping, image fade, mask pixel shift, frame summation, and vessel size measurement. Peripheral angiography performed with an automatic moving table allows imaging of the peripheral vasculature with a single contrast material injection.

  10. Estimation of the Scatterer Distribution of the Cirrhotic Liver using Ultrasonic Image

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Tadashi; Hachiya, Hiroyuki

    1998-05-01

    In the B-mode image of the liver obtained by an ultrasonic imaging system, the speckled pattern changes with the progression of the disease such as liver cirrhosis.In this paper we present the statistical characteristics of the echo envelope of the liver, and the technique to extract information of the scatterer distribution from the normal and cirrhotic liver images using constant false alarm rate (CFAR) processing.We analyze the relationship between the extracted scatterer distribution and the stage of liver cirrhosis. The ratio of the area in which the amplitude of the processing signal is more than the threshold to the entire processed image area is related quantitatively to the stage of liver cirrhosis.It is found that the proposed technique is valid for the quantitative diagnosis of liver cirrhosis.

  11. MULTIPLE IMAGING TECHNIQUES DEMONSTRATE THE MANIPULATION OF SURFACES TO REDUCE BACTERIAL CONTAMINATION

    EPA Science Inventory

    Surface imaging techniques were combined to determine appropriate manipulation of technologically important surfaces for commercial applications. Stainless steel surfaces were engineered to reduce bacterial contamination, biofilm formation, and corrosion during product processing...

  12. Viking image processing. [digital stereo imagery and computer mosaicking

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1977-01-01

    The paper discusses the camera systems capable of recording black and white and color imagery developed for the Viking Lander imaging experiment. Each Viking Lander image consisted of a matrix of numbers with 512 rows and an arbitrary number of columns up to a maximum of about 9,000. Various techniques were used in the processing of the Viking Lander images, including: (1) digital geometric transformation, (2) the processing of stereo imagery to produce three-dimensional terrain maps, and (3) computer mosaicking of distinct processed images. A series of Viking Lander images is included.

  13. Fast optically sectioned fluorescence HiLo endomicroscopy.

    PubMed

    Ford, Tim N; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  14. Fast optically sectioned fluorescence HiLo endomicroscopy

    NASA Astrophysics Data System (ADS)

    Ford, Tim N.; Lim, Daryl; Mertz, Jerome

    2012-02-01

    We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies.

  15. Image resolution enhancement via image restoration using neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Shuangteng; Lu, Yihong

    2011-04-01

    Image super-resolution aims to obtain a high-quality image at a resolution that is higher than that of the original coarse one. This paper presents a new neural network-based method for image super-resolution. In this technique, the super-resolution is considered as an inverse problem. An observation model that closely follows the physical image acquisition process is established to solve the problem. Based on this model, a cost function is created and minimized by a Hopfield neural network to produce high-resolution images from the corresponding low-resolution ones. Not like some other single frame super-resolution techniques, this technique takes into consideration point spread function blurring as well as additive noise and therefore generates high-resolution images with more preserved or restored image details. Experimental results demonstrate that the high-resolution images obtained by this technique have a very high quality in terms of PSNR and visually look more pleasant.

  16. Improving the quality of reconstructed X-ray CT images of polymer gel dosimeters: zero-scan coupled with adaptive mean filtering.

    PubMed

    Kakakhel, M B; Jirasek, A; Johnston, H; Kairn, T; Trapp, J V

    2017-03-01

    This study evaluated the feasibility of combining the 'zero-scan' (ZS) X-ray computed tomography (CT) based polymer gel dosimeter (PGD) readout with adaptive mean (AM) filtering for improving the signal to noise ratio (SNR), and to compare these results with available average scan (AS) X-ray CT readout techniques. NIPAM PGD were manufactured, irradiated with 6 MV photons, CT imaged and processed in Matlab. AM filter for two iterations, with 3 × 3 and 5 × 5 pixels (kernel size), was used in two scenarios (a) the CT images were subjected to AM filtering (pre-processing) and these were further employed to generate AS and ZS gel images, and (b) the AS and ZS images were first reconstructed from the CT images and then AM filtering was carried out (post-processing). SNR was computed in an ROI of 30 × 30 for different pre and post processing cases. Results showed that the ZS technique combined with AM filtering resulted in improved SNR. Using the previously-recommended 25 images for reconstruction the ZS pre-processed protocol can give an increase of 44% and 80% in SNR for 3 × 3 and 5 × 5 kernel sizes respectively. However, post processing using both techniques and filter sizes introduced blur and a reduction in the spatial resolution. Based on this work, it is possible to recommend that the ZS method may be combined with pre-processed AM filtering using appropriate kernel size, to produce a large increase in the SNR of the reconstructed PGD images.

  17. Artificial intelligence and signal processing for infrastructure assessment

    NASA Astrophysics Data System (ADS)

    Assaleh, Khaled; Shanableh, Tamer; Yehia, Sherif

    2015-04-01

    The Ground Penetrating Radar (GPR) is being recognized as an effective nondestructive evaluation technique to improve the inspection process. However, data interpretation and complexity of the results impose some limitations on the practicality of using this technique. This is mainly due to the need of a trained experienced person to interpret images obtained by the GPR system. In this paper, an algorithm to classify and assess the condition of infrastructures utilizing image processing and pattern recognition techniques is discussed. Features extracted form a dataset of images of defected and healthy slabs are used to train a computer vision based system while another dataset is used to evaluate the proposed algorithm. Initial results show that the proposed algorithm is able to detect the existence of defects with about 77% success rate.

  18. Pulsed-neutron imaging by a high-speed camera and center-of-gravity processing

    NASA Astrophysics Data System (ADS)

    Mochiki, K.; Uragaki, T.; Koide, J.; Kushima, Y.; Kawarabayashi, J.; Taketani, A.; Otake, Y.; Matsumoto, Y.; Su, Y.; Hiroi, K.; Shinohara, T.; Kai, T.

    2018-01-01

    Pulsed-neutron imaging is attractive technique in the research fields of energy-resolved neutron radiography and RANS (RIKEN) and RADEN (J-PARC/JAEA) are small and large accelerator-driven pulsed-neutron facilities for its imaging, respectively. To overcome the insuficient spatial resolution of the conunting type imaging detectors like μ NID, nGEM and pixelated detectors, camera detectors combined with a neutron color image intensifier were investigated. At RANS center-of-gravity technique was applied to spots image obtained by a CCD camera and the technique was confirmed to be effective for improving spatial resolution. At RADEN a high-frame-rate CMOS camera was used and super resolution technique was applied and it was recognized that the spatial resolution was futhermore improved.

  19. Digital techniques for processing Landsat imagery

    NASA Technical Reports Server (NTRS)

    Green, W. B.

    1978-01-01

    An overview of the basic techniques used to process Landsat images with a digital computer, and the VICAR image processing software developed at JPL and available to users through the NASA sponsored COSMIC computer program distribution center is presented. Examples of subjective processing performed to improve the information display for the human observer, such as contrast enhancement, pseudocolor display and band rationing, and of quantitative processing using mathematical models, such as classification based on multispectral signatures of different areas within a given scene and geometric transformation of imagery into standard mapping projections are given. Examples are illustrated by Landsat scenes of the Andes mountains and Altyn-Tagh fault zone in China before and after contrast enhancement and classification of land use in Portland, Oregon. The VICAR image processing software system which consists of a language translator that simplifies execution of image processing programs and provides a general purpose format so that imagery from a variety of sources can be processed by the same basic set of general applications programs is described.

  20. Multispectral image sharpening using wavelet transform techniques and spatial correlation of edges

    USGS Publications Warehouse

    Lemeshewsky, George P.; Schowengerdt, Robert A.

    2000-01-01

    Several reported image fusion or sharpening techniques are based on the discrete wavelet transform (DWT). The technique described here uses a pixel-based maximum selection rule to combine respective transform coefficients of lower spatial resolution near-infrared (NIR) and higher spatial resolution panchromatic (pan) imagery to produce a sharpened NIR image. Sharpening assumes a radiometric correlation between the spectral band images. However, there can be poor correlation, including edge contrast reversals (e.g., at soil-vegetation boundaries), between the fused images and, consequently, degraded performance. To improve sharpening, a local area-based correlation technique originally reported for edge comparison with image pyramid fusion is modified for application with the DWT process. Further improvements are obtained by using redundant, shift-invariant implementation of the DWT. Example images demonstrate the improvements in NIR image sharpening with higher resolution pan imagery.

  1. Computer assisted analysis of auroral images obtained from high altitude polar satellites

    NASA Technical Reports Server (NTRS)

    Samadani, Ramin; Flynn, Michael

    1993-01-01

    Automatic techniques that allow the extraction of physically significant parameters from auroral images were developed. This allows the processing of a much larger number of images than is currently possible with manual techniques. Our techniques were applied to diverse auroral image datasets. These results were made available to geophysicists at NASA and at universities in the form of a software system that performs the analysis. After some feedback from users, an upgraded system was transferred to NASA and to two universities. The feasibility of user-trained search and retrieval of large amounts of data using our automatically derived parameter indices was demonstrated. Techniques based on classification and regression trees (CART) were developed and applied to broaden the types of images to which the automated search and retrieval may be applied. Our techniques were tested with DE-1 auroral images.

  2. Performance enhancement of various real-time image processing techniques via speculative execution

    NASA Astrophysics Data System (ADS)

    Younis, Mohamed F.; Sinha, Purnendu; Marlowe, Thomas J.; Stoyenko, Alexander D.

    1996-03-01

    In real-time image processing, an application must satisfy a set of timing constraints while ensuring the semantic correctness of the system. Because of the natural structure of digital data, pure data and task parallelism have been used extensively in real-time image processing to accelerate the handling time of image data. These types of parallelism are based on splitting the execution load performed by a single processor across multiple nodes. However, execution of all parallel threads is mandatory for correctness of the algorithm. On the other hand, speculative execution is an optimistic execution of part(s) of the program based on assumptions on program control flow or variable values. Rollback may be required if the assumptions turn out to be invalid. Speculative execution can enhance average, and sometimes worst-case, execution time. In this paper, we target various image processing techniques to investigate applicability of speculative execution. We identify opportunities for safe and profitable speculative execution in image compression, edge detection, morphological filters, and blob recognition.

  3. Monitoring the effect of low-level laser therapy in healing process of skin with second harmonic generation imaging techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoman; Yu, Biying; Weng, Cuncheng; Li, Hui

    2014-11-01

    The 632nm wavelength low intensity He-Ne laser was used to irradiated on 15 mice which had skin wound. The dynamic changes and wound healing processes were observed with nonlinear spectral imaging technology. We observed that:(1)The wound healing process was accelerated by the low-level laser therapy(LLLT);(2)The new tissues produced second harmonic generation (SHG) signals. Collagen content and microstructure differed dramatically at different time pointed along the wound healing. Our observation shows that the low intensity He-Ne laser irradiation can accelerate the healing process of skin wound in mice, and SHG imaging technique can be used to observe wound healing process, which is useful for quantitative characterization of wound status during wound healing process.

  4. An Automatic Phase-Change Detection Technique for Colloidal Hard Sphere Suspensions

    NASA Technical Reports Server (NTRS)

    McDowell, Mark; Gray, Elizabeth; Rogers, Richard B.

    2005-01-01

    Colloidal suspensions of monodisperse spheres are used as physical models of thermodynamic phase transitions and as precursors to photonic band gap materials. However, current image analysis techniques are not able to distinguish between densely packed phases within conventional microscope images, which are mainly characterized by degrees of randomness or order with similar grayscale value properties. Current techniques for identifying the phase boundaries involve manually identifying the phase transitions, which is very tedious and time consuming. We have developed an intelligent machine vision technique that automatically identifies colloidal phase boundaries. The algorithm utilizes intelligent image processing techniques that accurately identify and track phase changes vertically or horizontally for a sequence of colloidal hard sphere suspension images. This technique is readily adaptable to any imaging application where regions of interest are distinguished from the background by differing patterns of motion over time.

  5. A window on disease pathogenesis and potential therapeutic strategies: molecular imaging for arthritis

    PubMed Central

    2011-01-01

    Novel molecular imaging techniques are at the forefront of both preclinical and clinical imaging strategies. They have significant potential to offer visualisation and quantification of molecular and cellular changes in health and disease. This will help to shed light on pathobiology and underlying disease processes and provide further information about the mechanisms of action of novel therapeutic strategies. This review explores currently available molecular imaging techniques that are available for preclinical studies with a focus on optical imaging techniques and discusses how current and future advances will enable translation into the clinic for patients with arthritis. PMID:21345267

  6. Comparison of Photoluminescence Imaging on Starting Multi-Crystalline Silicon Wafers to Finished Cell Performance: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, S.; Yan, F.; Dorn, D.

    2012-06-01

    Photoluminescence (PL) imaging techniques can be applied to multicrystalline silicon wafers throughout the manufacturing process. Both band-to-band PL and defect-band emissions, which are longer-wavelength emissions from sub-bandgap transitions, are used to characterize wafer quality and defect content on starting multicrystalline silicon wafers and neighboring wafers processed at each step through completion of finished cells. Both PL imaging techniques spatially highlight defect regions that represent dislocations and defect clusters. The relative intensities of these imaged defect regions change with processing. Band-to-band PL on wafers in the later steps of processing shows good correlation to cell quality and performance. The defect bandmore » images show regions that change relative intensity through processing, and better correlation to cell efficiency and reverse-bias breakdown is more evident at the starting wafer stage as opposed to later process steps. We show that thermal processing in the 200 degrees - 400 degrees C range causes impurities to diffuse to different defect regions, changing their relative defect band emissions.« less

  7. Current advances in molecular imaging: noninvasive in vivo bioluminescent and fluorescent optical imaging in cancer research.

    PubMed

    Choy, Garry; Choyke, Peter; Libutti, Steven K

    2003-10-01

    Recently, there has been tremendous interest in developing techniques such as MRI, micro-CT, micro-PET, and SPECT to image function and processes in small animals. These technologies offer deep tissue penetration and high spatial resolution, but compared with noninvasive small animal optical imaging, these techniques are very costly and time consuming to implement. Optical imaging is cost-effective, rapid, easy to use, and can be readily applied to studying disease processes and biology in vivo. In vivo optical imaging is the result of a coalescence of technologies from chemistry, physics, and biology. The development of highly sensitive light detection systems has allowed biologists to use imaging in studying physiological processes. Over the last few decades, biochemists have also worked to isolate and further develop optical reporters such as GFP, luciferase, and cyanine dyes. This article reviews the common types of fluorescent and bioluminescent optical imaging, the typical system platforms and configurations, and the applications in the investigation of cancer biology.

  8. An advanced software suite for the processing and analysis of silicon luminescence images

    NASA Astrophysics Data System (ADS)

    Payne, D. N. R.; Vargas, C.; Hameiri, Z.; Wenham, S. R.; Bagnall, D. M.

    2017-06-01

    Luminescence imaging is a versatile characterisation technique used for a broad range of research and industrial applications, particularly for the field of photovoltaics where photoluminescence and electroluminescence imaging is routinely carried out for materials analysis and quality control. Luminescence imaging can reveal a wealth of material information, as detailed in extensive literature, yet these techniques are often only used qualitatively instead of being utilised to their full potential. Part of the reason for this is the time and effort required for image processing and analysis in order to convert image data to more meaningful results. In this work, a custom built, Matlab based software suite is presented which aims to dramatically simplify luminescence image processing and analysis. The suite includes four individual programs which can be used in isolation or in conjunction to achieve a broad array of functionality, including but not limited to, point spread function determination and deconvolution, automated sample extraction, image alignment and comparison, minority carrier lifetime calibration and iron impurity concentration mapping.

  9. Digital processing of radiographic images

    NASA Technical Reports Server (NTRS)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  10. Digital image processing of Seabeam bathymetric data for structural studies of seamounts near the East Pacific Rise

    NASA Technical Reports Server (NTRS)

    Edwards, M. H.; Arvidson, R. E.; Guinness, E. A.

    1984-01-01

    The problem of displaying information on the seafloor morphology is attacked by utilizing digital image processing techniques to generate images for Seabeam data covering three young seamounts on the eastern flank of the East Pacific Rise. Errors in locations between crossing tracks are corrected by interactively identifying features and translating tracks relative to a control track. Spatial interpolation techniques using moving averages are used to interpolate between gridded depth values to produce images in shaded relief and color-coded forms. The digitally processed images clarify the structural control on seamount growth and clearly show the lateral extent of volcanic materials, including the distribution and fault control of subsidiary volcanic constructional features. The image presentations also clearly show artifacts related to both residual navigational errors and to depth or location differences that depend on ship heading relative to slope orientation in regions with steep slopes.

  11. Use of One Time Pad Algorithm for Bit Plane Security Improvement

    NASA Astrophysics Data System (ADS)

    Suhardi; Suwilo, Saib; Budhiarti Nababan, Erna

    2017-12-01

    BPCS (Bit-Plane Complexity Segmentation) which is one of the steganography techniques that utilizes the human vision characteristics that cannot see the change in binary patterns that occur in the image. This technique performs message insertion by making a switch to a high-complexity bit-plane or noise-like regions with bits of secret messages. Bit messages that were previously stored precisely result the message extraction process to be done easily by rearranging a set of previously stored characters in noise-like region in the image. Therefore the secret message becomes easily known by others. In this research, the process of replacing bit plane with message bits is modified by utilizing One Time Pad cryptography technique which aims to increase security in bit plane. In the tests performed, the combination of One Time Pad cryptographic algorithm to the steganography technique of BPCS works well in the insertion of messages into the vessel image, although in insertion into low-dimensional images is poor. The comparison of the original image with the stegoimage looks identical and produces a good quality image with a mean value of PSNR above 30db when using a largedimensional image as the cover messages.

  12. Some advances/results in monitoring road cracks from 2D pavement images within the scope of the collaborative FP7 TRIMM project

    NASA Astrophysics Data System (ADS)

    Baltazart, Vincent; Moliard, Jean-Marc; Amhaz, Rabih; Wright, Dean; Jethwa, Manish

    2015-04-01

    Monitoring road surface conditions is an important issue in many countries. Several projects have looked into this issue in recent years, including TRIMM 2011-2014. The objective of such projects has been to detect surface distresses, like cracking, raveling and water ponding, in order to plan effective road maintenance and to afford a better sustainability of the pavement. The monitoring of cracking conventionally focuses on open cracks on the surface of the pavement, as opposed to reflexive cracks embedded in the pavement materials. For monitoring surface condition, in situ human visual inspection has been gradually replaced by automatic image data collection at traffic speed. Off-line image processing techniques have been developed for monitoring surface condition in support of human visual control. Full automation of crack monitoring has been approached with caution, and depends on a proper manual assessment of the performance. This work firstly presents some aspects of the current state of monitoring that have been reported so far in the literature and in previous projects: imaging technology and image processing techniques. Then, the work presents the two image processing techniques that have been developed within the scope of the TRIMM project to automatically detect pavement cracking from images. The first technique is a heuristic approach (HA) based on the search for gradient within the image. It was originally developed to process pavement images from the French imaging device, Aigle-RN. The second technique, the Minimal Path Selection (MPS) method, has been developed within an ongoing PhD work at IFSTTAR. The proposed new technique provides a fine and accurate segmentation of the crack pattern along with the estimation of the crack width. HA has been assessed against the field data collection provided by Yotta and TRL with the imaging device Tempest 2. The performance assessment has been threefold: first it was performed against the reference data set including 130 km of pavement images over UK roads, second over a few selected short sections of contiguous pavement images, and finally over a few sample images as a case study. The performance of MPS has been assessed against an older image data base. Pixel-based PGT was available to provide the most sensitive performance assessment. MPS has shown its ability to provide a very accurate cracking pattern without reducing the image resolution on the segmented images. Thus, it allows measurement of the crack width; it is found to behave more robustly against the image texture and better matched for dealing with low contrast pavement images. The benchmarking of seven automatic segmentation techniques has been provided at both the pixel and the grid levels. The performance assessment includes three minimal path selection algorithms, namely MPS, Free Form Anisotropy (FFA), one geodesic contour with automatic selection of points of interests (GC-POI), HA, and two Markov-based methods. Among others, MPS approach reached the best performance at the pixel level while it is matched to the FFA approach at the grid level. Finally, the project has emphasized the need for a reliable ground truth data collection. Owing to its accuracy, MPS may serve as a reference benchmark for other methods to provide the automatic segmentation of pavement images at the pixel level and beyond. As a counterpart, MPS requires a reduction in the computing time. Keywords: cracking, automatic segmentation, image processing, pavement, surface distress, monitoring, DICE, performance

  13. Multidimensional Processing and Visual Rendering of Complex 3D Biomedical Images

    NASA Technical Reports Server (NTRS)

    Sams, Clarence F.

    2016-01-01

    The proposed technology uses advanced image analysis techniques to maximize the resolution and utility of medical imaging methods being used during spaceflight. We utilize COTS technology for medical imaging, but our applications require higher resolution assessment of the medical images than is routinely applied with nominal system software. By leveraging advanced data reduction and multidimensional imaging techniques utilized in analysis of Planetary Sciences and Cell Biology imaging, it is possible to significantly increase the information extracted from the onboard biomedical imaging systems. Year 1 focused on application of these techniques to the ocular images collected on ground test subjects and ISS crewmembers. Focus was on the choroidal vasculature and the structure of the optic disc. Methods allowed for increased resolution and quantitation of structural changes enabling detailed assessment of progression over time. These techniques enhance the monitoring and evaluation of crew vision issues during space flight.

  14. Oil Spill Detection in Terma-Side-Looking Airborne Radar Images Using Image Features and Region Segmentation

    PubMed Central

    Alacid, Beatriz

    2018-01-01

    This work presents a method for oil-spill detection on Spanish coasts using aerial Side-Looking Airborne Radar (SLAR) images, which are captured using a Terma sensor. The proposed method uses grayscale image processing techniques to identify the dark spots that represent oil slicks on the sea. The approach is based on two steps. First, the noise regions caused by aircraft movements are detected and labeled in order to avoid the detection of false-positives. Second, a segmentation process guided by a map saliency technique is used to detect image regions that represent oil slicks. The results show that the proposed method is an improvement on the previous approaches for this task when employing SLAR images. PMID:29316716

  15. Automated processing of label-free Raman microscope images of macrophage cells with standardized regression for high-throughput analysis.

    PubMed

    Milewski, Robert J; Kumagai, Yutaro; Fujita, Katsumasa; Standley, Daron M; Smith, Nicholas I

    2010-11-19

    Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively. We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest. The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without compromise in image quality or information loss in associated spectra. These results motivate further use of label free microscopy techniques in real-time imaging of live immune cells.

  16. Image processing for x-ray inspection of pistachio nuts

    NASA Astrophysics Data System (ADS)

    Casasent, David P.

    2001-03-01

    A review is provided of image processing techniques that have been applied to the inspection of pistachio nuts using X-ray images. X-ray sensors provide non-destructive internal product detail not available from other sensors. The primary concern in this data is detecting the presence of worm infestations in nuts, since they have been linked to the presence of aflatoxin. We describe new techniques for segmentation, feature selection, selection of product categories (clusters), classifier design, etc. Specific novel results include: a new segmentation algorithm to produce images of isolated product items; preferable classifier operation (the classifier with the best probability of correct recognition Pc is not best); higher-order discrimination information is present in standard features (thus, high-order features appear useful); classifiers that use new cluster categories of samples achieve improved performance. Results are presented for X-ray images of pistachio nuts; however, all techniques have use in other product inspection applications.

  17. Adaptive multifocus image fusion using block compressed sensing with smoothed projected Landweber integration in the wavelet domain.

    PubMed

    V S, Unni; Mishra, Deepak; Subrahmanyam, G R K S

    2016-12-01

    The need for image fusion in current image processing systems is increasing mainly due to the increased number and variety of image acquisition techniques. Image fusion is the process of combining substantial information from several sensors using mathematical techniques in order to create a single composite image that will be more comprehensive and thus more useful for a human operator or other computer vision tasks. This paper presents a new approach to multifocus image fusion based on sparse signal representation. Block-based compressive sensing integrated with a projection-driven compressive sensing (CS) recovery that encourages sparsity in the wavelet domain is used as a method to get the focused image from a set of out-of-focus images. Compression is achieved during the image acquisition process using a block compressive sensing method. An adaptive thresholding technique within the smoothed projected Landweber recovery process reconstructs high-resolution focused images from low-dimensional CS measurements of out-of-focus images. Discrete wavelet transform and dual-tree complex wavelet transform are used as the sparsifying basis for the proposed fusion. The main finding lies in the fact that sparsification enables a better selection of the fusion coefficients and hence better fusion. A Laplacian mixture model fit is done in the wavelet domain and estimation of the probability density function (pdf) parameters by expectation maximization leads us to the proper selection of the coefficients of the fused image. Using the proposed method compared with the fusion scheme without employing the projected Landweber (PL) scheme and the other existing CS-based fusion approaches, it is observed that with fewer samples itself, the proposed method outperforms other approaches.

  18. SU-E-T-497: Semi-Automated in Vivo Radiochromic Film Dosimetry Using a Novel Image Processing Algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reyhan, M; Yue, N

    Purpose: To validate an automated image processing algorithm designed to detect the center of radiochromic film used for in vivo film dosimetry against the current gold standard of manual selection. Methods: An image processing algorithm was developed to automatically select the region of interest (ROI) in *.tiff images that contain multiple pieces of radiochromic film (0.5x1.3cm{sup 2}). After a user has linked a calibration file to the processing algorithm and selected a *.tiff file for processing, an ROI is automatically detected for all films by a combination of thresholding and erosion, which removes edges and any additional markings for orientation.more » Calibration is applied to the mean pixel values from the ROIs and a *.tiff image is output displaying the original image with an overlay of the ROIs and the measured doses. Validation of the algorithm was determined by comparing in vivo dose determined using the current gold standard (manually drawn ROIs) versus automated ROIs for n=420 scanned films. Bland-Altman analysis, paired t-test, and linear regression were performed to demonstrate agreement between the processes. Results: The measured doses ranged from 0.2-886.6cGy. Bland-Altman analysis of the two techniques (automatic minus manual) revealed a bias of -0.28cGy and a 95% confidence interval of (5.5cGy,-6.1cGy). These values demonstrate excellent agreement between the two techniques. Paired t-test results showed no statistical differences between the two techniques, p=0.98. Linear regression with a forced zero intercept demonstrated that Automatic=0.997*Manual, with a Pearson correlation coefficient of 0.999. The minimal differences between the two techniques may be explained by the fact that the hand drawn ROIs were not identical to the automatically selected ones. The average processing time was 6.7seconds in Matlab on an IntelCore2Duo processor. Conclusion: An automated image processing algorithm has been developed and validated, which will help minimize user interaction and processing time of radiochromic film used for in vivo dosimetry.« less

  19. Automatic Tracking Of Remote Sensing Precipitation Data Using Genetic Algorithm Image Registration Based Automatic Morphing: September 1999 Storm Floyd Case Study

    NASA Astrophysics Data System (ADS)

    Chiu, L.; Vongsaard, J.; El-Ghazawi, T.; Weinman, J.; Yang, R.; Kafatos, M.

    U Due to the poor temporal sampling by satellites, data gaps exist in satellite derived time series of precipitation. This poses a challenge for assimilating rain- fall data into forecast models. To yield a continuous time series, the classic image processing technique of digital image morphing has been used. However, the digital morphing technique was applied manually and that is time consuming. In order to avoid human intervention in the process, an automatic procedure for image morphing is needed for real-time operations. For this purpose, Genetic Algorithm Based Image Registration Automatic Morphing (GRAM) model was developed and tested in this paper. Specifically, automatic morphing technique was integrated with Genetic Algo- rithm and Feature Based Image Metamorphosis technique to fill in data gaps between satellite coverage. The technique was tested using NOWRAD data which are gener- ated from the network of NEXRAD radars. Time series of NOWRAD data from storm Floyd that occurred at the US eastern region on September 16, 1999 for 00:00, 01:00, 02:00,03:00, and 04:00am were used. The GRAM technique was applied to data col- lected at 00:00 and 04:00am. These images were also manually morphed. Images at 01:00, 02:00 and 03:00am were interpolated from the GRAM and manual morphing and compared with the original NOWRAD rainrates. The results show that the GRAM technique outperforms manual morphing. The correlation coefficients between the im- ages generated using manual morphing are 0.905, 0.900, and 0.905 for the images at 01:00, 02:00,and 03:00 am, while the corresponding correlation coefficients are 0.946, 0.911, and 0.913, respectively, based on the GRAM technique. Index terms ­ Remote Sensing, Image Registration, Hydrology, Genetic Algorithm, Morphing, NEXRAD

  20. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    NASA Astrophysics Data System (ADS)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  1. Deep learning with convolutional neural network in radiology.

    PubMed

    Yasaka, Koichiro; Akai, Hiroyuki; Kunimatsu, Akira; Kiryu, Shigeru; Abe, Osamu

    2018-04-01

    Deep learning with a convolutional neural network (CNN) is gaining attention recently for its high performance in image recognition. Images themselves can be utilized in a learning process with this technique, and feature extraction in advance of the learning process is not required. Important features can be automatically learned. Thanks to the development of hardware and software in addition to techniques regarding deep learning, application of this technique to radiological images for predicting clinically useful information, such as the detection and the evaluation of lesions, etc., are beginning to be investigated. This article illustrates basic technical knowledge regarding deep learning with CNNs along the actual course (collecting data, implementing CNNs, and training and testing phases). Pitfalls regarding this technique and how to manage them are also illustrated. We also described some advanced topics of deep learning, results of recent clinical studies, and the future directions of clinical application of deep learning techniques.

  2. Ultrasonic imaging of textured alumina

    NASA Technical Reports Server (NTRS)

    Stang, David B.; Salem, Jonathan A.; Generazio, Edward R.

    1989-01-01

    Ultrasonic images representing the bulk attenuation and velocity of a set of alumina samples were obtained by a pulse-echo contact scanning technique. The samples were taken from larger bodies that were chemically similar but were processed by extrusion or isostatic processing. The crack growth resistance and fracture toughness of the larger bodies were found to vary with processing method and test orientation. The results presented here demonstrate that differences in texture that contribute to variations in structural performance can be revealed by analytic ultrasonic techniques.

  3. Automated Processing of Imaging Data through Multi-tiered Classification of Biological Structures Illustrated Using Caenorhabditis elegans.

    PubMed

    Zhan, Mei; Crane, Matthew M; Entchev, Eugeni V; Caballero, Antonio; Fernandes de Abreu, Diana Andrea; Ch'ng, QueeLim; Lu, Hang

    2015-04-01

    Quantitative imaging has become a vital technique in biological discovery and clinical diagnostics; a plethora of tools have recently been developed to enable new and accelerated forms of biological investigation. Increasingly, the capacity for high-throughput experimentation provided by new imaging modalities, contrast techniques, microscopy tools, microfluidics and computer controlled systems shifts the experimental bottleneck from the level of physical manipulation and raw data collection to automated recognition and data processing. Yet, despite their broad importance, image analysis solutions to address these needs have been narrowly tailored. Here, we present a generalizable formulation for autonomous identification of specific biological structures that is applicable for many problems. The process flow architecture we present here utilizes standard image processing techniques and the multi-tiered application of classification models such as support vector machines (SVM). These low-level functions are readily available in a large array of image processing software packages and programming languages. Our framework is thus both easy to implement at the modular level and provides specific high-level architecture to guide the solution of more complicated image-processing problems. We demonstrate the utility of the classification routine by developing two specific classifiers as a toolset for automation and cell identification in the model organism Caenorhabditis elegans. To serve a common need for automated high-resolution imaging and behavior applications in the C. elegans research community, we contribute a ready-to-use classifier for the identification of the head of the animal under bright field imaging. Furthermore, we extend our framework to address the pervasive problem of cell-specific identification under fluorescent imaging, which is critical for biological investigation in multicellular organisms or tissues. Using these examples as a guide, we envision the broad utility of the framework for diverse problems across different length scales and imaging methods.

  4. IPL Processing of the Viking Orbiter Images of Mars

    NASA Technical Reports Server (NTRS)

    Ruiz, R. M.; Elliott, D. A.; Yagi, G. M.; Pomphrey, R. B.; Power, M. A.; Farrell, W., Jr.; Lorre, J. J.; Benton, W. D.; Dewar, R. E.; Cullen, L. E.

    1977-01-01

    The Viking orbiter cameras returned over 9000 images of Mars during the 6-month nominal mission. Digital image processing was required to produce products suitable for quantitative and qualitative scientific interpretation. Processing included the production of surface elevation data using computer stereophotogrammetric techniques, crater classification based on geomorphological characteristics, and the generation of color products using multiple black-and-white images recorded through spectral filters. The Image Processing Laboratory of the Jet Propulsion Laboratory was responsible for the design, development, and application of the software required to produce these 'second-order' products.

  5. Digital image comparison by subtracting contextual transformations—percentile rank order differentiation

    USGS Publications Warehouse

    Wehde, M. E.

    1995-01-01

    The common method of digital image comparison by subtraction imposes various constraints on the image contents. Precise registration of images is required to assure proper evaluation of surface locations. The attribute being measured and the calibration and scaling of the sensor are also important to the validity and interpretability of the subtraction result. Influences of sensor gains and offsets complicate the subtraction process. The presence of any uniform systematic transformation component in one of two images to be compared distorts the subtraction results and requires analyst intervention to interpret or remove it. A new technique has been developed to overcome these constraints. Images to be compared are first transformed using the cumulative relative frequency as a transfer function. The transformed images represent the contextual relationship of each surface location with respect to all others within the image. The process of differentiating between the transformed images results in a percentile rank ordered difference. This process produces consistent terrain-change information even when the above requirements necessary for subtraction are relaxed. This technique may be valuable to an appropriately designed hierarchical terrain-monitoring methodology because it does not require human participation in the process.

  6. Morphological-transformation-based technique of edge detection and skeletonization of an image using a single spatial light modulator

    NASA Astrophysics Data System (ADS)

    Munshi, Soumika; Datta, A. K.

    2003-03-01

    A technique of optically detecting the edge and skeleton of an image by defining shift operations for morphological transformation is described. A (2 × 2) source array, which acts as the structuring element of morphological operations, casts four angularly shifted optical projections of the input image. The resulting dilated image, when superimposed with the complementary input image, produces the edge image. For skeletonization, the source array casts four partially overlapped output images of the inverted input image, which is negated, and the resultant image is recorded in a CCD camera. This overlapped eroded image is again eroded and then dilated, producing an opened image. The difference between the eroded and opened image is then computed, resulting in a thinner image. This procedure of obtaining a thinned image is iterated until the difference image becomes zero, maintaining the connectivity conditions. The technique has been optically implemented using a single spatial modulator and has the advantage of single-instruction parallel processing of the image. The techniques have been tested both for binary and grey images.

  7. Use of multidimensional, multimodal imaging and PACS to support neurological diagnoses

    NASA Astrophysics Data System (ADS)

    Wong, Stephen T. C.; Knowlton, Robert C.; Hoo, Kent S.; Huang, H. K.

    1995-05-01

    Technological advances in brain imaging have revolutionized diagnosis in neurology and neurological surgery. Major imaging techniques include magnetic resonance imaging (MRI) to visualize structural anatomy, positron emission tomography (PET) to image metabolic function and cerebral blood flow, magnetoencephalography (MEG) to visualize the location of physiologic current sources, and magnetic resonance spectroscopy (MRS) to measure specific biochemicals. Each of these techniques studies different biomedical aspects of the brain, but there lacks an effective means to quantify and correlate the disparate imaging datasets in order to improve clinical decision making processes. This paper describes several techniques developed in a UNIX-based neurodiagnostic workstation to aid the noninvasive presurgical evaluation of epilepsy patients. These techniques include online access to the picture archiving and communication systems (PACS) multimedia archive, coregistration of multimodality image datasets, and correlation and quantitation of structural and functional information contained in the registered images. For illustration, we describe the use of these techniques in a patient case of nonlesional neocortical epilepsy. We also present out future work based on preliminary studies.

  8. Reducing Error Rates for Iris Image using higher Contrast in Normalization process

    NASA Astrophysics Data System (ADS)

    Aminu Ghali, Abdulrahman; Jamel, Sapiee; Abubakar Pindar, Zahraddeen; Hasssan Disina, Abdulkadir; Mat Daris, Mustafa

    2017-08-01

    Iris recognition system is the most secured, and faster means of identification and authentication. However, iris recognition system suffers a setback from blurring, low contrast and illumination due to low quality image which compromises the accuracy of the system. The acceptance or rejection rates of verified user depend solely on the quality of the image. In many cases, iris recognition system with low image contrast could falsely accept or reject user. Therefore this paper adopts Histogram Equalization Technique to address the problem of False Rejection Rate (FRR) and False Acceptance Rate (FAR) by enhancing the contrast of the iris image. A histogram equalization technique enhances the image quality and neutralizes the low contrast of the image at normalization stage. The experimental result shows that Histogram Equalization Technique has reduced FRR and FAR compared to the existing techniques.

  9. MEMS-based system and image processing strategy for epiretinal prosthesis.

    PubMed

    Xia, Peng; Hu, Jie; Qi, Jin; Gu, Chaochen; Peng, Yinghong

    2015-01-01

    Retinal prostheses have the potential to restore some level of visual function to the patients suffering from retinal degeneration. In this paper, an epiretinal approach with active stimulation devices is presented. The MEMS-based processing system consists of an external micro-camera, an information processor, an implanted electrical stimulator and a microelectrode array. The image processing strategy combining image clustering and enhancement techniques was proposed and evaluated by psychophysical experiments. The results indicated that the image processing strategy improved the visual performance compared with direct merging pixels to low resolution. The image processing methods assist epiretinal prosthesis for vision restoration.

  10. An application of computer image-processing and filmy replica technique to the copper electroplating method of stress analysis

    NASA Astrophysics Data System (ADS)

    Sugiura, M.; Seika, M.

    1994-02-01

    In this study, a new technique to measure the density of slip-bands automatically is developed, namely, a TV image of the slip-bands observed through a microscope is directly processed by an image-processing system using a personal computer and an accurate value of the density of slip-bands is measured quickly. In the case of measuring the local stresses in machine parts of large size with the copper plating foil, the direct observation of slip-bands through an optical microscope is difficult. In this study, to facilitate a technique close to the direct microscopic observation of slip-bands in the foil attached to a large-sized specimen, the replica method using a platic film of acetyl cellulose is applied to replicate the slip-bands in the attached foil.

  11. USB video image controller used in CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Wenxuan; Wang, Yuxia; Fan, Hong

    2002-09-01

    CMOS process is mainstream technique in VLSI, possesses high integration. SE402 is multifunction microcontroller, which integrates image data I/O ports, clock control, exposure control and digital signal processing into one chip. SE402 reduces the number of chips and PCB's room. The paper studies emphatically on USB video image controller used in CMOS image sensor and give the application on digital still camera.

  12. Visualizing tissue molecular structure of a black type of canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way.

    PubMed

    Yu, Peiqiang

    2013-02-20

    Heat-related processing of cereal grains, legume seeds, and oil seeds could be used to improve nutrient availability in ruminants. However, different types of processing may have a different impact on intrinsic structure of tissues. To date, there is little research on structure changes after processing within intact tissues. The synchrotron-based molecular imaging technique enables us to detect inherent structure change on a molecular level. The objective of this study was to visualize tissue of black-type canola (Brassica) seed with a thick seed coat after heat-related processing in a chemical way using the synchrotron imaging technique. The results showed that the chemical images of protein amides were obtained through the imaging technique for the raw, wet, and dry heated black type of canola seed tissues. It seems that different types of processing have a different impact on the protein spectral profile in the black type of canola tissues. Wet heating had a greater impact on the protein α-helix to β-sheet ratio than dry heating. Both dry and wet heating resulted in different patterns in amide I, the second derivative, and FSD spectra. However, the exact differences in the tissue images are relatively difficult to be obtained through visual comparison. Future studies should focus on (1) comparing the response and sensitivity of canola seeds to various processing methods between the yellow-type and black-type of canola seeds; (2) developing a sensitive method to compare the image difference between tissues and between treatments; (3) developing a method to link images to nutrient digestion, and (4) revealing how structure changes affect nutrient absorption in humans and animals.

  13. Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping.

    PubMed

    Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing

    2015-07-27

    Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work.

  14. Development and Current Status of Skull-Image Superimposition - Methodology and Instrumentation.

    PubMed

    Lan, Y

    1992-12-01

    This article presents a review of the literature and an evaluation on the development and application of skull-image superimposition technology - both instrumentation and methodology - contributed by a number of scholars since 1935. Along with a comparison of the methodologies involved in the two superimposition techniques - photographic and video - the author characterized the techniques in action and the recent advances in computer image superimposition processing technology. The major disadvantage of conventional approaches is its relying on subjective interpretation. Through painstaking comparison and analysis, computer image processing technology can make more conclusive identifications by direct testing and evaluating the various programmed indices. Copyright © 1992 Central Police University.

  15. Assessing clutter reduction in parallel coordinates using image processing techniques

    NASA Astrophysics Data System (ADS)

    Alhamaydh, Heba; Alzoubi, Hussein; Almasaeid, Hisham

    2018-01-01

    Information visualization has appeared as an important research field for multidimensional data and correlation analysis in recent years. Parallel coordinates (PCs) are one of the popular techniques to visual high-dimensional data. A problem with the PCs technique is that it suffers from crowding, a clutter which hides important data and obfuscates the information. Earlier research has been conducted to reduce clutter without loss in data content. We introduce the use of image processing techniques as an approach for assessing the performance of clutter reduction techniques in PC. We use histogram analysis as our first measure, where the mean feature of the color histograms of the possible alternative orderings of coordinates for the PC images is calculated and compared. The second measure is the extracted contrast feature from the texture of PC images based on gray-level co-occurrence matrices. The results show that the best PC image is the one that has the minimal mean value of the color histogram feature and the maximal contrast value of the texture feature. In addition to its simplicity, the proposed assessment method has the advantage of objectively assessing alternative ordering of PC visualization.

  16. Image processing developments and applications for water quality monitoring and trophic state determination

    NASA Technical Reports Server (NTRS)

    Blackwell, R. J.

    1982-01-01

    Remote sensing data analysis of water quality monitoring is evaluated. Data anaysis and image processing techniques are applied to LANDSAT remote sensing data to produce an effective operational tool for lake water quality surveying and monitoring. Digital image processing and analysis techniques were designed, developed, tested, and applied to LANDSAT multispectral scanner (MSS) data and conventional surface acquired data. Utilization of these techniques facilitates the surveying and monitoring of large numbers of lakes in an operational manner. Supervised multispectral classification, when used in conjunction with surface acquired water quality indicators, is used to characterize water body trophic status. Unsupervised multispectral classification, when interpreted by lake scientists familiar with a specific water body, yields classifications of equal validity with supervised methods and in a more cost effective manner. Image data base technology is used to great advantage in characterizing other contributing effects to water quality. These effects include drainage basin configuration, terrain slope, soil, precipitation and land cover characteristics.

  17. The application of digital techniques to the analysis of metallurgical experiments

    NASA Technical Reports Server (NTRS)

    Rathz, T. J.

    1977-01-01

    The application of a specific digital computer system (known as the Image Data Processing System) to the analysis of three NASA-sponsored metallurgical experiments is discussed in some detail. The basic hardware and software components of the Image Data Processing System are presented. Many figures are presented in the discussion of each experimental analysis in an attempt to show the accuracy and speed that the Image Data Processing System affords in analyzing photographic images dealing with metallurgy, and in particular with material processing.

  18. Exploiting range imagery: techniques and applications

    NASA Astrophysics Data System (ADS)

    Armbruster, Walter

    2009-07-01

    Practically no applications exist for which automatic processing of 2D intensity imagery can equal human visual perception. This is not the case for range imagery. The paper gives examples of 3D laser radar applications, for which automatic data processing can exceed human visual cognition capabilities and describes basic processing techniques for attaining these results. The examples are drawn from the fields of helicopter obstacle avoidance, object detection in surveillance applications, object recognition at high range, multi-object-tracking, and object re-identification in range image sequences. Processing times and recognition performances are summarized. The techniques used exploit the bijective continuity of the imaging process as well as its independence of object reflectivity, emissivity and illumination. This allows precise formulations of the probability distributions involved in figure-ground segmentation, feature-based object classification and model based object recognition. The probabilistic approach guarantees optimal solutions for single images and enables Bayesian learning in range image sequences. Finally, due to recent results in 3D-surface completion, no prior model libraries are required for recognizing and re-identifying objects of quite general object categories, opening the way to unsupervised learning and fully autonomous cognitive systems.

  19. Digital processing of the Mariner 10 images of Venus and Mercury

    NASA Technical Reports Server (NTRS)

    Soha, J. M.; Lynn, D. J.; Mosher, J. A.; Elliot, D. A.

    1977-01-01

    An extensive effort was devoted to the digital processing of the Mariner 10 images of Venus and Mercury at the Image Processing Laboratory of the Jet Propulsion Laboratory. This effort was designed to optimize the display of the considerable quantity of information contained in the images. Several image restoration, enhancement, and transformation procedures were applied; examples of these techniques are included. A particular task was the construction of large mosaics which characterize the surface of Mercury and the atmospheric structure of Venus.

  20. In situ spectroradiometric quantification of ERTS data. [Prescott and Phoenix, Arizona

    NASA Technical Reports Server (NTRS)

    Yost, E. F. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Analyses of ERTS-1 photographic data were made to quantitatively relate ground reflectance measurements to photometric characteristics of the images. Digital image processing of photographic data resulted in a nomograph to correct for atmospheric effects over arid terrain. Optimum processing techniques to derive maximum geologic information from desert areas were established. Additive color techniques to provide quantitative measurements of surface water between different orbits were developed which were accepted as the standard flood mapping techniques using ERTS.

  1. Development Of Polarimetric Decomposition Techniques For Indian Forest Resource Assessment Using Radar Imaging Satellite (Risat-1) Images

    NASA Astrophysics Data System (ADS)

    Sridhar, J.

    2015-12-01

    The focus of this work is to examine polarimetric decomposition techniques primarily focussed on Pauli decomposition and Sphere Di-Plane Helix (SDH) decomposition for forest resource assessment. The data processing methods adopted are Pre-processing (Geometric correction and Radiometric calibration), Speckle Reduction, Image Decomposition and Image Classification. Initially to classify forest regions, unsupervised classification was applied to determine different unknown classes. It was observed K-means clustering method gave better results in comparison with ISO Data method.Using the algorithm developed for Radar Tools, the code for decomposition and classification techniques were applied in Interactive Data Language (IDL) and was applied to RISAT-1 image of Mysore-Mandya region of Karnataka, India. This region is chosen for studying forest vegetation and consists of agricultural lands, water and hilly regions. Polarimetric SAR data possess a high potential for classification of earth surface.After applying the decomposition techniques, classification was done by selecting region of interests andpost-classification the over-all accuracy was observed to be higher in the SDH decomposed image, as it operates on individual pixels on a coherent basis and utilises the complete intrinsic coherent nature of polarimetric SAR data. Thereby, making SDH decomposition particularly suited for analysis of high-resolution SAR data. The Pauli Decomposition represents all the polarimetric information in a single SAR image however interpretation of the resulting image is difficult. The SDH decomposition technique seems to produce better results and interpretation as compared to Pauli Decomposition however more quantification and further analysis are being done in this area of research. The comparison of Polarimetric decomposition techniques and evolutionary classification techniques will be the scope of this work.

  2. Content based image retrieval using local binary pattern operator and data mining techniques.

    PubMed

    Vatamanu, Oana Astrid; Frandeş, Mirela; Lungeanu, Diana; Mihalaş, Gheorghe-Ioan

    2015-01-01

    Content based image retrieval (CBIR) concerns the retrieval of similar images from image databases, using feature vectors extracted from images. These feature vectors globally define the visual content present in an image, defined by e.g., texture, colour, shape, and spatial relations between vectors. Herein, we propose the definition of feature vectors using the Local Binary Pattern (LBP) operator. A study was performed in order to determine the optimum LBP variant for the general definition of image feature vectors. The chosen LBP variant is then subsequently used to build an ultrasound image database, and a database with images obtained from Wireless Capsule Endoscopy. The image indexing process is optimized using data clustering techniques for images belonging to the same class. Finally, the proposed indexing method is compared to the classical indexing technique, which is nowadays widely used.

  3. The magic of image processing

    NASA Astrophysics Data System (ADS)

    Sulentic, Jack W.; Lorre, Jean J.

    1984-05-01

    Digital technology has been used to improve enhancement techniques in astronomical image processing. Continuous tone variations in photographs are assigned density number (DN) values which are arranged in an array. DN locations are processed by computer and turned into pixels which form a reconstruction of the original scene on a television monitor. Digitized data can be manipulated to enhance contrast and filter out gross patterns of light and dark which obscure small scale features. Separate black and white frames exposed at different wavelengths can be digitized and processed individually, then recombined to produce a final image in color. Several examples of the use of the technique are provided, including photographs of spiral galaxy M33; four galaxies in Coma Berenices (NGC 4169, 4173, 4174, and 4175); and Stephens Quintet.

  4. Digital image processing for photo-reconnaissance applications

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1972-01-01

    Digital image-processing techniques developed for processing pictures from NASA space vehicles are analyzed in terms of enhancement, quantitative restoration, and information extraction. Digital filtering, and the action of a high frequency filter in the real and Fourier domain are discussed along with color and brightness.

  5. Image analysis for quantification of bacterial rock weathering.

    PubMed

    Puente, M Esther; Rodriguez-Jaramillo, M Carmen; Li, Ching Y; Bashan, Yoav

    2006-02-01

    A fast, quantitative image analysis technique was developed to assess potential rock weathering by bacteria. The technique is based on reduction in the surface area of rock particles and counting the relative increase in the number of small particles in ground rock slurries. This was done by recording changes in ground rock samples with an electronic image analyzing process. The slurries were previously amended with three carbon sources, ground to a uniform particle size and incubated with rock weathering bacteria for 28 days. The technique was developed and tested, using two rock-weathering bacteria Pseudomonas putida R-20 and Azospirillum brasilense Cd on marble, granite, apatite, quartz, limestone, and volcanic rock as substrates. The image analyzer processed large number of particles (10(7)-10(8) per sample), so that the weathering capacity of bacteria can be detected.

  6. Directional analysis and filtering for dust storm detection in NOAA-AVHRR imagery

    NASA Astrophysics Data System (ADS)

    Janugani, S.; Jayaram, V.; Cabrera, S. D.; Rosiles, J. G.; Gill, T. E.; Rivera Rivera, N.

    2009-05-01

    In this paper, we propose spatio-spectral processing techniques for the detection of dust storms and automatically finding its transport direction in 5-band NOAA-AVHRR imagery. Previous methods that use simple band math analysis have produced promising results but have drawbacks in producing consistent results when low signal to noise ratio (SNR) images are used. Moreover, in seeking to automate the dust storm detection, the presence of clouds in the vicinity of the dust storm creates a challenge in being able to distinguish these two types of image texture. This paper not only addresses the detection of the dust storm in the imagery, it also attempts to find the transport direction and the location of the sources of the dust storm. We propose a spatio-spectral processing approach with two components: visualization and automation. Both approaches are based on digital image processing techniques including directional analysis and filtering. The visualization technique is intended to enhance the image in order to locate the dust sources. The automation technique is proposed to detect the transport direction of the dust storm. These techniques can be used in a system to provide timely warnings of dust storms or hazard assessments for transportation, aviation, environmental safety, and public health.

  7. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging.

    PubMed

    Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R

    2017-11-01

    The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues.

  8. High Resolution Imaging of the Sun with CORONAS-1

    NASA Technical Reports Server (NTRS)

    Karovska, Margarita

    1998-01-01

    We applied several image restoration and enhancement techniques, to CORONAS-I images. We carried out the characterization of the Point Spread Function (PSF) using the unique capability of the Blind Iterative Deconvolution (BID) technique, which recovers the real PSF at a given location and time of observation, when limited a priori information is available on its characteristics. We also applied image enhancement technique to extract the small scale structure imbeded in bright large scale structures on the disk and on the limb. The results demonstrate the capability of the image post-processing to substantially increase the yield from the space observations by improving the resolution and reducing noise in the images.

  9. Segmenting overlapping nano-objects in atomic force microscopy image

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Han, Yuexing; Li, Qing; Wang, Bing; Konagaya, Akihiko

    2018-01-01

    Recently, techniques for nanoparticles have rapidly been developed for various fields, such as material science, medical, and biology. In particular, methods of image processing have widely been used to automatically analyze nanoparticles. A technique to automatically segment overlapping nanoparticles with image processing and machine learning is proposed. Here, two tasks are necessary: elimination of image noises and action of the overlapping shapes. For the first task, mean square error and the seed fill algorithm are adopted to remove noises and improve the quality of the original image. For the second task, four steps are needed to segment the overlapping nanoparticles. First, possibility split lines are obtained by connecting the high curvature pixels on the contours. Second, the candidate split lines are classified with a machine learning algorithm. Third, the overlapping regions are detected with the method of density-based spatial clustering of applications with noise (DBSCAN). Finally, the best split lines are selected with a constrained minimum value. We give some experimental examples and compare our technique with two other methods. The results can show the effectiveness of the proposed technique.

  10. Spline function approximation techniques for image geometric distortion representation. [for registration of multitemporal remote sensor imagery

    NASA Technical Reports Server (NTRS)

    Anuta, P. E.

    1975-01-01

    Least squares approximation techniques were developed for use in computer aided correction of spatial image distortions for registration of multitemporal remote sensor imagery. Polynomials were first used to define image distortion over the entire two dimensional image space. Spline functions were then investigated to determine if the combination of lower order polynomials could approximate a higher order distortion with less computational difficulty. Algorithms for generating approximating functions were developed and applied to the description of image distortion in aircraft multispectral scanner imagery. Other applications of the techniques were suggested for earth resources data processing areas other than geometric distortion representation.

  11. Regionally adaptive histogram equalization of the chest.

    PubMed

    Sherrier, R H; Johnson, G A

    1987-01-01

    Advances in the area of digital chest radiography have resulted in the acquisition of high-quality images of the human chest. With these advances, there arises a genuine need for image processing algorithms specific to the chest, in order to fully exploit this digital technology. We have implemented the well-known technique of histogram equalization, noting the problems encountered when it is adapted to chest images. These problems have been successfully solved with our regionally adaptive histogram equalization method. With this technique histograms are calculated locally and then modified according to both the mean pixel value of that region as well as certain characteristics of the cumulative distribution function. This process, which has allowed certain regions of the chest radiograph to be enhanced differentially, may also have broader implications for other image processing tasks.

  12. Chromosome Analysis

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Perceptive Scientific Instruments, Inc., provides the foundation for the Powergene line of chromosome analysis and molecular genetic instrumentation. This product employs image processing technology from NASA's Jet Propulsion Laboratory and image enhancement techniques from Johnson Space Center. Originally developed to send pictures back to earth from space probes, digital imaging techniques have been developed and refined for use in a variety of medical applications, including diagnosis of disease.

  13. Degraded Imagery/Art Technique for the Handicapped.

    ERIC Educational Resources Information Center

    Agard, Richard

    Developed for handicapped artists, Degraded Imagery is a technique whereby images can be extracted and refined from a photograph or a collage of photographs. The advantage of this process is that it requires a lower degree of fine motor skills to produce a quality image from a photograph than it does to create a quality image on a blank piece of…

  14. Statistical normalization techniques for magnetic resonance imaging.

    PubMed

    Shinohara, Russell T; Sweeney, Elizabeth M; Goldsmith, Jeff; Shiee, Navid; Mateen, Farrah J; Calabresi, Peter A; Jarso, Samson; Pham, Dzung L; Reich, Daniel S; Crainiceanu, Ciprian M

    2014-01-01

    While computed tomography and other imaging techniques are measured in absolute units with physical meaning, magnetic resonance images are expressed in arbitrary units that are difficult to interpret and differ between study visits and subjects. Much work in the image processing literature on intensity normalization has focused on histogram matching and other histogram mapping techniques, with little emphasis on normalizing images to have biologically interpretable units. Furthermore, there are no formalized principles or goals for the crucial comparability of image intensities within and across subjects. To address this, we propose a set of criteria necessary for the normalization of images. We further propose simple and robust biologically motivated normalization techniques for multisequence brain imaging that have the same interpretation across acquisitions and satisfy the proposed criteria. We compare the performance of different normalization methods in thousands of images of patients with Alzheimer's disease, hundreds of patients with multiple sclerosis, and hundreds of healthy subjects obtained in several different studies at dozens of imaging centers.

  15. A computational approach to real-time image processing for serial time-encoded amplified microscopy

    NASA Astrophysics Data System (ADS)

    Oikawa, Minoru; Hiyama, Daisuke; Hirayama, Ryuji; Hasegawa, Satoki; Endo, Yutaka; Sugie, Takahisa; Tsumura, Norimichi; Kuroshima, Mai; Maki, Masanori; Okada, Genki; Lei, Cheng; Ozeki, Yasuyuki; Goda, Keisuke; Shimobaba, Tomoyoshi

    2016-03-01

    High-speed imaging is an indispensable technique, particularly for identifying or analyzing fast-moving objects. The serial time-encoded amplified microscopy (STEAM) technique was proposed to enable us to capture images with a frame rate 1,000 times faster than using conventional methods such as CCD (charge-coupled device) cameras. The application of this high-speed STEAM imaging technique to a real-time system, such as flow cytometry for a cell-sorting system, requires successively processing a large number of captured images with high throughput in real time. We are now developing a high-speed flow cytometer system including a STEAM camera. In this paper, we describe our approach to processing these large amounts of image data in real time. We use an analog-to-digital converter that has up to 7.0G samples/s and 8-bit resolution for capturing the output voltage signal that involves grayscale images from the STEAM camera. Therefore the direct data output from the STEAM camera generates 7.0G byte/s continuously. We provided a field-programmable gate array (FPGA) device as a digital signal pre-processor for image reconstruction and finding objects in a microfluidic channel with high data rates in real time. We also utilized graphics processing unit (GPU) devices for accelerating the calculation speed of identification of the reconstructed images. We built our prototype system, which including a STEAM camera, a FPGA device and a GPU device, and evaluated its performance in real-time identification of small particles (beads), as virtual biological cells, owing through a microfluidic channel.

  16. Image processing pipeline for segmentation and material classification based on multispectral high dynamic range polarimetric images.

    PubMed

    Martínez-Domingo, Miguel Ángel; Valero, Eva M; Hernández-Andrés, Javier; Tominaga, Shoji; Horiuchi, Takahiko; Hirai, Keita

    2017-11-27

    We propose a method for the capture of high dynamic range (HDR), multispectral (MS), polarimetric (Pol) images of indoor scenes using a liquid crystal tunable filter (LCTF). We have included the adaptive exposure estimation (AEE) method to fully automatize the capturing process. We also propose a pre-processing method which can be applied for the registration of HDR images after they are already built as the result of combining different low dynamic range (LDR) images. This method is applied to ensure a correct alignment of the different polarization HDR images for each spectral band. We have focused our efforts in two main applications: object segmentation and classification into metal and dielectric classes. We have simplified the segmentation using mean shift combined with cluster averaging and region merging techniques. We compare the performance of our segmentation with that of Ncut and Watershed methods. For the classification task, we propose to use information not only in the highlight regions but also in their surrounding area, extracted from the degree of linear polarization (DoLP) maps. We present experimental results which proof that the proposed image processing pipeline outperforms previous techniques developed specifically for MSHDRPol image cubes.

  17. Visual enhancement of images of natural resources: Applications in geology

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Neto, G.; Araujo, E. O.; Mascarenhas, N. D. A.; Desouza, R. C. M.

    1980-01-01

    The principal components technique for use in multispectral scanner LANDSAT data processing results in optimum dimensionality reduction. A powerful tool for MSS IMAGE enhancement, the method provides a maximum impression of terrain ruggedness; this fact makes the technique well suited for geological analysis.

  18. Fluorescence Imaging Reveals Surface Contamination

    NASA Technical Reports Server (NTRS)

    Schirato, Richard; Polichar, Raulf

    1992-01-01

    In technique to detect surface contamination, object inspected illuminated by ultraviolet light to make contaminants fluoresce; low-light-level video camera views fluorescence. Image-processing techniques quantify distribution of contaminants. If fluorescence of material expected to contaminate surface is not intense, tagged with low concentration of dye.

  19. Image Alignment for Multiple Camera High Dynamic Range Microscopy.

    PubMed

    Eastwood, Brian S; Childs, Elisabeth C

    2012-01-09

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera.

  20. Image Alignment for Multiple Camera High Dynamic Range Microscopy

    PubMed Central

    Eastwood, Brian S.; Childs, Elisabeth C.

    2012-01-01

    This paper investigates the problem of image alignment for multiple camera high dynamic range (HDR) imaging. HDR imaging combines information from images taken with different exposure settings. Combining information from multiple cameras requires an alignment process that is robust to the intensity differences in the images. HDR applications that use a limited number of component images require an alignment technique that is robust to large exposure differences. We evaluate the suitability for HDR alignment of three exposure-robust techniques. We conclude that image alignment based on matching feature descriptors extracted from radiant power images from calibrated cameras yields the most accurate and robust solution. We demonstrate the use of this alignment technique in a high dynamic range video microscope that enables live specimen imaging with a greater level of detail than can be captured with a single camera. PMID:22545028

  1. Quantitative imaging methods in osteoporosis.

    PubMed

    Oei, Ling; Koromani, Fjorda; Rivadeneira, Fernando; Zillikens, M Carola; Oei, Edwin H G

    2016-12-01

    Osteoporosis is characterized by a decreased bone mass and quality resulting in an increased fracture risk. Quantitative imaging methods are critical in the diagnosis and follow-up of treatment effects in osteoporosis. Prior radiographic vertebral fractures and bone mineral density (BMD) as a quantitative parameter derived from dual-energy X-ray absorptiometry (DXA) are among the strongest known predictors of future osteoporotic fractures. Therefore, current clinical decision making relies heavily on accurate assessment of these imaging features. Further, novel quantitative techniques are being developed to appraise additional characteristics of osteoporosis including three-dimensional bone architecture with quantitative computed tomography (QCT). Dedicated high-resolution (HR) CT equipment is available to enhance image quality. At the other end of the spectrum, by utilizing post-processing techniques such as the trabecular bone score (TBS) information on three-dimensional architecture can be derived from DXA images. Further developments in magnetic resonance imaging (MRI) seem promising to not only capture bone micro-architecture but also characterize processes at the molecular level. This review provides an overview of various quantitative imaging techniques based on different radiological modalities utilized in clinical osteoporosis care and research.

  2. High resolution imaging of objects located within a wall

    NASA Astrophysics Data System (ADS)

    Greneker, Eugene F.; Showman, Gregory A.; Trostel, John M.; Sylvester, Vincent

    2006-05-01

    Researchers at Georgia Tech Research Institute have developed a high resolution imaging radar technique that allows large sections of a test wall to be scanned in X and Y dimensions. The resulting images that can be obtained provide information on what is inside the wall, if anything. The scanning homodyne radar operates at a frequency of 24.1 GHz at with an output power level of approximately 10 milliwatts. An imaging technique that has been developed is currently being used to study the detection of toxic mold on the back surface of wallboard using radar as a sensor. The moisture that is associated with the mold can easily be detected. In addition to mold, the technique will image objects as small as a 4 millimeter sphere on the front or rear of the wallboard and will penetrate both sides of a wall made of studs and wallboard. Signal processing is performed on the resulting data to further sharpen the image. Photos of the scanner and images produced by the scanner are presented. A discussion of the signal processing and technical challenges are also discussed.

  3. Fast optically sectioned fluorescence HiLo endomicroscopy

    PubMed Central

    Lim, Daryl; Mertz, Jerome

    2012-01-01

    Abstract. We describe a nonscanning, fiber bundle endomicroscope that performs optically sectioned fluorescence imaging with fast frame rates and real-time processing. Our sectioning technique is based on HiLo imaging, wherein two widefield images are acquired under uniform and structured illumination and numerically processed to reject out-of-focus background. This work is an improvement upon an earlier demonstration of widefield optical sectioning through a flexible fiber bundle. The improved device features lateral and axial resolutions of 2.6 and 17 μm, respectively, a net frame rate of 9.5 Hz obtained by real-time image processing with a graphics processing unit (GPU) and significantly reduced motion artifacts obtained by the use of a double-shutter camera. We demonstrate the performance of our system with optically sectioned images and videos of a fluorescently labeled chorioallantoic membrane (CAM) in the developing G. gallus embryo. HiLo endomicroscopy is a candidate technique for low-cost, high-speed clinical optical biopsies. PMID:22463023

  4. Chain of evidence generation for contrast enhancement in digital image forensics

    NASA Astrophysics Data System (ADS)

    Battiato, Sebastiano; Messina, Giuseppe; Strano, Daniela

    2010-01-01

    The quality of the images obtained by digital cameras has improved a lot since digital cameras early days. Unfortunately, it is not unusual in image forensics to find wrongly exposed pictures. This is mainly due to obsolete techniques or old technologies, but also due to backlight conditions. To extrapolate some invisible details a stretching of the image contrast is obviously required. The forensics rules to produce evidences require a complete documentation of the processing steps, enabling the replication of the entire process. The automation of enhancement techniques is thus quite difficult and needs to be carefully documented. This work presents an automatic procedure to find contrast enhancement settings, allowing both image correction and automatic scripting generation. The technique is based on a preprocessing step which extracts the features of the image and selects correction parameters. The parameters are thus saved through a JavaScript code that is used in the second step of the approach to correct the image. The generated script is Adobe Photoshop compliant (which is largely used in image forensics analysis) thus permitting the replication of the enhancement steps. Experiments on a dataset of images are also reported showing the effectiveness of the proposed methodology.

  5. Robust watermark technique using masking and Hermite transform.

    PubMed

    Coronel, Sandra L Gomez; Ramírez, Boris Escalante; Mosqueda, Marco A Acevedo

    2016-01-01

    The following paper evaluates a watermark algorithm designed for digital images by using a perceptive mask and a normalization process, thus preventing human eye detection, as well as ensuring its robustness against common processing and geometric attacks. The Hermite transform is employed because it allows a perfect reconstruction of the image, while incorporating human visual system properties; moreover, it is based on the Gaussian functions derivates. The applied watermark represents information of the digital image proprietor. The extraction process is blind, because it does not require the original image. The following techniques were utilized in the evaluation of the algorithm: peak signal-to-noise ratio, the structural similarity index average, the normalized crossed correlation, and bit error rate. Several watermark extraction tests were performed, with against geometric and common processing attacks. It allowed us to identify how many bits in the watermark can be modified for its adequate extraction.

  6. A portable detection instrument based on DSP for beef marbling

    NASA Astrophysics Data System (ADS)

    Zhou, Tong; Peng, Yankun

    2014-05-01

    Beef marbling is one of the most important indices to assess beef quality. Beef marbling is graded by the measurement of the fat distribution density in the rib-eye region. However quality grades of beef in most of the beef slaughtering houses and businesses depend on trainees using their visual senses or comparing the beef slice to the Chinese standard sample cards. Manual grading demands not only great labor but it also lacks objectivity and accuracy. Aiming at the necessity of beef slaughtering houses and businesses, a beef marbling detection instrument was designed. The instrument employs Charge-coupled Device (CCD) imaging techniques, digital image processing, Digital Signal Processor (DSP) control and processing techniques and Liquid Crystal Display (LCD) screen display techniques. The TMS320DM642 digital signal processor of Texas Instruments (TI) is the core that combines high-speed data processing capabilities and real-time processing features. All processes such as image acquisition, data transmission, image processing algorithms and display were implemented on this instrument for a quick, efficient, and non-invasive detection of beef marbling. Structure of the system, working principle, hardware and software are introduced in detail. The device is compact and easy to transport. The instrument can determine the grade of beef marbling reliably and correctly.

  7. 3CCD image segmentation and edge detection based on MATLAB

    NASA Astrophysics Data System (ADS)

    He, Yong; Pan, Jiazhi; Zhang, Yun

    2006-09-01

    This research aimed to identify weeds from crops in early stage in the field operation by using image-processing technology. As 3CCD images offer greater binary value difference between weed and crop section than ordinary digital images taken by common cameras. It has 3 channels (green, red, ifred) which takes a snap-photo of the same area, and the three images can be composed into one image, which facilitates the segmentation of different areas. By the application of image-processing toolkit on MATLAB, the different areas in the image can be segmented clearly. As edge detection technique is the first and very important step in image processing, The different result of different processing method was compared. Especially, by using the wavelet packet transform toolkit on MATLAB, An image was preprocessed and then the edge was extracted, and getting more clearly cut image of edge. The segmentation methods include operations as erosion, dilation and other algorithms to preprocess the images. It is of great importance to segment different areas in digital images in field real time, so as to be applied in precision farming, to saving energy and herbicide and many other materials. At present time Large scale software as MATLAB on PC was used, but the computation can be reduced and integrated into a small embed system, which means that the application of this technique in agricultural engineering is feasible and of great economical value.

  8. Detection, location, and quantification of structural damage by neural-net-processed moiré profilometry

    NASA Astrophysics Data System (ADS)

    Grossman, Barry G.; Gonzalez, Frank S.; Blatt, Joel H.; Hooker, Jeffery A.

    1992-03-01

    The development of efficient high speed techniques to recognize, locate, and quantify damage is vitally important for successful automated inspection systems such as ones used for the inspection of undersea pipelines. Two critical problems must be solved to achieve these goals: the reduction of nonuseful information present in the video image and automatic recognition and quantification of extent and location of damage. Artificial neural network processed moire profilometry appears to be a promising technique to accomplish this. Real time video moire techniques have been developed which clearly distinguish damaged and undamaged areas on structures, thus reducing the amount of extraneous information input into an inspection system. Artificial neural networks have demonstrated advantages for image processing, since they can learn the desired response to a given input and are inherently fast when implemented in hardware due to their parallel computing architecture. Video moire images of pipes with dents of different depths were used to train a neural network, with the desired output being the location and severity of the damage. The system was then successfully tested with a second series of moire images. The techniques employed and the results obtained are discussed.

  9. Principles of diffusion kurtosis imaging and its role in early diagnosis of neurodegenerative disorders.

    PubMed

    Arab, Anas; Wojna-Pelczar, Anna; Khairnar, Amit; Szabó, Nikoletta; Ruda-Kucerova, Jana

    2018-05-01

    Pathology of neurodegenerative diseases can be correlated with intra-neuronal as well as extracellular changes which lead to neuronal degeneration. The central nervous system (CNS) is a complex structure comprising of many biological barriers. These microstructural barriers might be affected by a variety of pathological processes. Specifically, changes in the brain tissue's microstructure affect the diffusion of water which can be assessed non-invasively by diffusion weighted (DW) magnetic resonance imaging (MRI) techniques. Diffusion tensor imaging (DTI) is a diffusion MRI technique that considers diffusivity as a Gaussian process, i.e. does not account for any diffusion hindrance. However, environment of the brain tissues is characterized by a non-Gaussian diffusion. Therefore, diffusion kurtosis imaging (DKI) was developed as an extension of DTI method in order to quantify the non-Gaussian distribution of water diffusion. This technique represents a promising approach for early diagnosis of neurodegenerative diseases when the neurodegenerative process starts. Hence, the purpose of this article is to summarize the ongoing clinical and preclinical research on Parkinson's, Alzheimer's and Huntington diseases, using DKI and to discuss the role of this technique as an early stage biomarker of neurodegenerative conditions. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. A three-image algorithm for hard x-ray grating interferometry.

    PubMed

    Pelliccia, Daniele; Rigon, Luigi; Arfelli, Fulvia; Menk, Ralf-Hendrik; Bukreeva, Inna; Cedola, Alessia

    2013-08-12

    A three-image method to extract absorption, refraction and scattering information for hard x-ray grating interferometry is presented. The method comprises a post-processing approach alternative to the conventional phase stepping procedure and is inspired by a similar three-image technique developed for analyzer-based x-ray imaging. Results obtained with this algorithm are quantitatively comparable with phase-stepping. This method can be further extended to samples with negligible scattering, where only two images are needed to separate absorption and refraction signal. Thanks to the limited number of images required, this technique is a viable route to bio-compatible imaging with x-ray grating interferometer. In addition our method elucidates and strengthens the formal and practical analogies between grating interferometry and the (non-interferometric) diffraction enhanced imaging technique.

  11. High data volume and transfer rate techniques used at NASA's image processing facility

    NASA Technical Reports Server (NTRS)

    Heffner, P.; Connell, E.; Mccaleb, F.

    1978-01-01

    Data storage and transfer operations at a new image processing facility are described. The equipment includes high density digital magnetic tape drives and specially designed controllers to provide an interface between the tape drives and computerized image processing systems. The controller performs the functions necessary to convert the continuous serial data stream from the tape drive to a word-parallel blocked data stream which then goes to the computer-based system. With regard to the tape packing density, 1.8 times 10 to the tenth data bits are stored on a reel of one-inch tape. System components and their operation are surveyed, and studies on advanced storage techniques are summarized.

  12. New Approach to Image Aerogels by Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Solá, Francisco; Hurwitz, Frances; Yang, Jijing

    2011-03-01

    A new scanning electron microscopy (SEM) technique to image poor electrically conductive aerogels is presented. The process can be performed by non-expert SEM users. We showed that negative charging effects on aerogels can be minimized significantly by inserting dry nitrogen gas close to the region of interest. The process involves the local recombination of accumulated negative charges with positive ions generated from ionization processes. This new technique made possible the acquisition of images of aerogels with pores down to approximately 3nm in diameter using a positively biased Everhart-Thornley (E-T) detector. Well-founded concepts based on known models will also be presented with the aim to explain the results qualitatively.

  13. Bidirectional light-scattering image processing method for high-concentration jet sprays

    NASA Astrophysics Data System (ADS)

    Shimizu, I.; Emori, Y.; Yang, W.-J.; Shimoda, M.; Suzuki, T.

    1985-01-01

    In order to study the distributions of droplet size and volume density in high-concentration jet sprays, a new technique is developed, which combines the forward and backward light scattering method and an image processing method. A pulsed ruby laser is used as the light source. The Mie scattering theory is applied to the results obtained from image processing on the scattering photographs. The time history is obtained for the droplet size and volume density distributions, and the method is demonstrated by diesel fuel sprays under various injecting conditions. The validity of the technique is verified by a good agreement in the injected fuel volume distributions obtained by the present method and by injection rate measurements.

  14. Video multiple watermarking technique based on image interlacing using DWT.

    PubMed

    Ibrahim, Mohamed M; Abdel Kader, Neamat S; Zorkany, M

    2014-01-01

    Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.

  15. Optical smart packaging to reduce transmitted information.

    PubMed

    Cabezas, Luisa; Tebaldi, Myrian; Barrera, John Fredy; Bolognini, Néstor; Torroba, Roberto

    2012-01-02

    We demonstrate a smart image-packaging optical technique that uses what we believe is a new concept to save byte space when transmitting data. The technique supports a large set of images mapped into modulated speckle patterns. Then, they are multiplexed into a single package. This operation results in a substantial decreasing of the final amount of bytes of the package with respect to the amount resulting from the addition of the images without using the method. Besides, there are no requirements on the type of images to be processed. We present results that proof the potentiality of the technique.

  16. A similarity-based data warehousing environment for medical images.

    PubMed

    Teixeira, Jefferson William; Annibal, Luana Peixoto; Felipe, Joaquim Cezar; Ciferri, Ricardo Rodrigues; Ciferri, Cristina Dutra de Aguiar

    2015-11-01

    A core issue of the decision-making process in the medical field is to support the execution of analytical (OLAP) similarity queries over images in data warehousing environments. In this paper, we focus on this issue. We propose imageDWE, a non-conventional data warehousing environment that enables the storage of intrinsic features taken from medical images in a data warehouse and supports OLAP similarity queries over them. To comply with this goal, we introduce the concept of perceptual layer, which is an abstraction used to represent an image dataset according to a given feature descriptor in order to enable similarity search. Based on this concept, we propose the imageDW, an extended data warehouse with dimension tables specifically designed to support one or more perceptual layers. We also detail how to build an imageDW and how to load image data into it. Furthermore, we show how to process OLAP similarity queries composed of a conventional predicate and a similarity search predicate that encompasses the specification of one or more perceptual layers. Moreover, we introduce an index technique to improve the OLAP query processing over images. We carried out performance tests over a data warehouse environment that consolidated medical images from exams of several modalities. The results demonstrated the feasibility and efficiency of our proposed imageDWE to manage images and to process OLAP similarity queries. The results also demonstrated that the use of the proposed index technique guaranteed a great improvement in query processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Pulse compression favourable aperiodic infrared imaging approach for non-destructive testing and evaluation of bio-materials

    NASA Astrophysics Data System (ADS)

    Mulaveesala, Ravibabu; Dua, Geetika; Arora, Vanita; Siddiqui, Juned A.; Muniyappa, Amarnath

    2017-05-01

    In recent years, aperiodic, transient pulse compression favourable infrared imaging methodologies demonstrated as reliable, quantitative, remote characterization and evaluation techniques for testing and evaluation of various biomaterials. This present work demonstrates a pulse compression favourable aperiodic thermal wave imaging technique, frequency modulated thermal wave imaging technique for bone diagnostics, especially by considering the bone with tissue, skin and muscle over layers. In order to find the capabilities of the proposed frequency modulated thermal wave imaging technique to detect the density variations in a multi layered skin-fat-muscle-bone structure, finite element modeling and simulation studies have been carried out. Further, frequency and time domain post processing approaches have been adopted on the temporal temperature data in order to improve the detection capabilities of frequency modulated thermal wave imaging.

  18. Application of advanced signal processing techniques to the rectification and registration of spaceborne imagery. [technology transfer, data transmission

    NASA Technical Reports Server (NTRS)

    Caron, R. H.; Rifman, S. S.; Simon, K. W.

    1974-01-01

    The development of an ERTS/MSS image processing system responsive to the needs of the user community is discussed. An overview of the TRW ERTS/MSS processor is presented, followed by a more detailed discussion of image processing functions satisfied by the system. The particular functions chosen for discussion are evolved from advanced signal processing techniques rooted in the areas of communication and control. These examples show how classical aerospace technology can be transferred to solve the more contemporary problems confronting the users of spaceborne imagery.

  19. Flame analysis using image processing techniques

    NASA Astrophysics Data System (ADS)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  20. A Q-Ising model application for linear-time image segmentation

    NASA Astrophysics Data System (ADS)

    Bentrem, Frank W.

    2010-10-01

    A computational method is presented which efficiently segments digital grayscale images by directly applying the Q-state Ising (or Potts) model. Since the Potts model was first proposed in 1952, physicists have studied lattice models to gain deep insights into magnetism and other disordered systems. For some time, researchers have realized that digital images may be modeled in much the same way as these physical systems ( i.e., as a square lattice of numerical values). A major drawback in using Potts model methods for image segmentation is that, with conventional methods, it processes in exponential time. Advances have been made via certain approximations to reduce the segmentation process to power-law time. However, in many applications (such as for sonar imagery), real-time processing requires much greater efficiency. This article contains a description of an energy minimization technique that applies four Potts (Q-Ising) models directly to the image and processes in linear time. The result is analogous to partitioning the system into regions of four classes of magnetism. This direct Potts segmentation technique is demonstrated on photographic, medical, and acoustic images.

  1. Synthetic schlieren—application to the visualization and characterization of air convection

    NASA Astrophysics Data System (ADS)

    Taberlet, Nicolas; Plihon, Nicolas; Auzémery, Lucile; Sautel, Jérémy; Panel, Grégoire; Gibaud, Thomas

    2018-05-01

    Synthetic schlieren is a digital image processing optical method relying on the variation of optical index to visualize the flow of a transparent fluid. In this article, we present a step-by-step, easy-to-implement and affordable experimental realization of this technique. The method is applied to air convection caused by a warm surface. We show that the velocity of rising convection plumes can be linked to the temperature of the warm surface and propose a simple physical argument to explain this dependence. Moreover, using this method, one can reveal the tenuous convection plumes rising from one’s hand, a phenomenon invisible to the naked eye. This spectacular result may help students to realize the power of careful data acquisition combined with astute image processing techniques. This spectacular result may help students to realize the power of careful data acquisition combined with astute image processing techniques (refer to the video abstract).

  2. An integrtated approach to the use of Landsat TM data for gold exploration in west central Nevada

    NASA Technical Reports Server (NTRS)

    Mouat, D. A.; Myers, J. S.; Miller, N. L.

    1987-01-01

    This paper represents an integration of several Landsat TM image processing techniques with other data to discriminate the lithologies and associated areas of hydrothermal alteration in the vicinity of the Paradise Peak gold mine in west central Nevada. A microprocessor-based image processing system and an IDIMS system were used to analyze data from a 512 X 512 window of a Landsat-5 TM scene collected on June 30, 1984. Image processing techniques included simple band composites, band ratio composites, principal components composites, and baseline-based composites. These techniques were chosen based on their ability to discriminate the spectral characteristics of the products of hydrothermal alteration as well as of the associated regional lithologies. The simple band composite, ratio composite, two principal components composites, and the baseline-based composites separately can define the principal areas of alteration. Combined, they provide a very powerful exploration tool.

  3. Key management of the double random-phase-encoding method using public-key encryption

    NASA Astrophysics Data System (ADS)

    Saini, Nirmala; Sinha, Aloka

    2010-03-01

    Public-key encryption has been used to encode the key of the encryption process. In the proposed technique, an input image has been encrypted by using the double random-phase-encoding method using extended fractional Fourier transform. The key of the encryption process have been encoded by using the Rivest-Shamir-Adelman (RSA) public-key encryption algorithm. The encoded key has then been transmitted to the receiver side along with the encrypted image. In the decryption process, first the encoded key has been decrypted using the secret key and then the encrypted image has been decrypted by using the retrieved key parameters. The proposed technique has advantage over double random-phase-encoding method because the problem associated with the transmission of the key has been eliminated by using public-key encryption. Computer simulation has been carried out to validate the proposed technique.

  4. A comparison of image processing techniques for bird recognition.

    PubMed

    Nadimpalli, Uma D; Price, Randy R; Hall, Steven G; Bomma, Pallavi

    2006-01-01

    Bird predation is one of the major concerns for fish culture in open ponds. A novel method for dispersing birds is the use of autonomous vehicles. Image recognition software can improve their efficiency. Several image processing techniques for recognition of birds have been tested. A series of morphological operations were implemented. We divided images into 3 types, Type 1, Type 2, and Type 3, based on the level of difficulty of recognizing birds. Type 1 images were clear; Type 2 images were medium clear, and Type 3 images were unclear. Local thresholding has been implemented using HSV (Hue, Saturation, and Value), GRAY, and RGB (Red, Green, and Blue) color models on all three sections of images and results were tabulated. Template matching using normal correlation and artificial neural networks (ANN) are the other methods that have been developed in this study in addition to image morphology. Template matching produced satisfactory results irrespective of the difficulty level of images, but artificial neural networks produced accuracies of 100, 60, and 50% on Type 1, Type 2, and Type 3 images, respectively. Correct classification rate can be increased by further training. Future research will focus on testing the recognition algorithms in natural or aquacultural settings on autonomous boats. Applications of such techniques to industrial, agricultural, or related areas are additional future possibilities.

  5. Classification of rice grain varieties arranged in scattered and heap fashion using image processing

    NASA Astrophysics Data System (ADS)

    Bhat, Sudhanva; Panat, Sreedath; N, Arunachalam

    2017-03-01

    Inspection and classification of food grains is a manual process in many of the food grain processing industries. Automation of such a process is going to be beneficial for industries facing shortage of skilled workforce. Machine Vision techniques are some of the popular approaches for developing such automations. Most of the existing works on the topic deal with identification of the rice variety by analyzing images of well separated and isolated rice grains from which a lot of geometrical features can be extracted. This paper proposes techniques to estimate geometrical parameters from the images of scattered as well as heaped rice grains where the grain boundaries are not clearly identifiable. A methodology based on convexity is proposed to separate touching rice grains in the scattered rice grain images and get their geometrical parameters. And in case of heaped arrangement a Pixel-Distance Contribution Function is defined and is used to get points inside rice grains and then to find the boundary points of rice grains. These points are fit with the equation of an ellipse to estimate their lengths and breadths. The proposed techniques are applied on images of scattered and heaped rice grains of different varieties. It is shown that each variety gives a unique set of results.

  6. Prewarping techniques in imaging: applications in nanotechnology and biotechnology

    NASA Astrophysics Data System (ADS)

    Poonawala, Amyn; Milanfar, Peyman

    2005-03-01

    In all imaging systems, the underlying process introduces undesirable distortions that cause the output signal to be a warped version of the input. When the input to such systems can be controlled, pre-warping techniques can be employed which consist of systematically modifying the input such that it cancels out (or compensates for) the process losses. In this paper, we focus on the mask (reticle) design problem for 'optical micro-lithography', a process similar to photographic printing used for transferring binary circuit patterns onto silicon wafers. We use a pixel-based mask representation and model the above process as a cascade of convolution (aerial image formation) and thresholding (high-contrast recording) operations. The pre-distorted mask is obtained by minimizing the norm of the difference between the 'desired' output image and the 'reproduced' output image. We employ the regularization framework to ensure that the resulting masks are close-to-binary as well as simple and easy to fabricate. Finally, we provide insight into two additional applications of pre-warping techniques. First is 'e-beam lithography', used for fabricating nano-scale structures, and second is 'electronic visual prosthesis' which aims at providing limited vision to the blind by using a prosthetic retinally implanted chip capable of electrically stimulating the retinal neuron cells.

  7. Fetal brain volumetry through MRI volumetric reconstruction and segmentation

    PubMed Central

    Estroff, Judy A.; Barnewolt, Carol E.; Connolly, Susan A.; Warfield, Simon K.

    2013-01-01

    Purpose Fetal MRI volumetry is a useful technique but it is limited by a dependency upon motion-free scans, tedious manual segmentation, and spatial inaccuracy due to thick-slice scans. An image processing pipeline that addresses these limitations was developed and tested. Materials and methods The principal sequences acquired in fetal MRI clinical practice are multiple orthogonal single-shot fast spin echo scans. State-of-the-art image processing techniques were used for inter-slice motion correction and super-resolution reconstruction of high-resolution volumetric images from these scans. The reconstructed volume images were processed with intensity non-uniformity correction and the fetal brain extracted by using supervised automated segmentation. Results Reconstruction, segmentation and volumetry of the fetal brains for a cohort of twenty-five clinically acquired fetal MRI scans was done. Performance metrics for volume reconstruction, segmentation and volumetry were determined by comparing to manual tracings in five randomly chosen cases. Finally, analysis of the fetal brain and parenchymal volumes was performed based on the gestational age of the fetuses. Conclusion The image processing pipeline developed in this study enables volume rendering and accurate fetal brain volumetry by addressing the limitations of current volumetry techniques, which include dependency on motion-free scans, manual segmentation, and inaccurate thick-slice interpolation. PMID:20625848

  8. Multispectral and geomorphic studies of processed Voyager 2 images of Europa

    NASA Technical Reports Server (NTRS)

    Meier, T. A.

    1984-01-01

    High resolution images of Europa taken by the Voyager 2 spacecraft were used to study a portion of Europa's dark lineations and the major white line feature Agenor Linea. Initial image processing of images 1195J2-001 (violet filter), 1198J2-001 (blue filter), 1201J2-001 (orange filter), and 1204J2-001 (ultraviolet filter) was performed at the U.S.G.S. Branch of Astrogeology in Flagstaff, Arizona. Processing was completed through the stages of image registration and color ratio image construction. Pixel printouts were used in a new technique of linear feature profiling to compensate for image misregistration through the mapping of features on the printouts. In all, 193 dark lineation segments were mapped and profiled. The more accurate multispectral data derived by this method was plotted using a new application of the ternary diagram, with orange, blue, and violet relative spectral reflectances serving as end members. Statistical techniques were then applied to the ternary diagram plots. The image products generated at LPI were used mainly to cross-check and verify the results of the ternary diagram analysis.

  9. Visual enhancement of unmixed multispectral imagery using adaptive smoothing

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2004-01-01

    Adaptive smoothing (AS) has been previously proposed as a method to smooth uniform regions of an image, retain contrast edges, and enhance edge boundaries. The method is an implementation of the anisotropic diffusion process which results in a gray scale image. This paper discusses modifications to the AS method for application to multi-band data which results in a color segmented image. The process was used to visually enhance the three most distinct abundance fraction images produced by the Lagrange constraint neural network learning-based unmixing of Landsat 7 Enhanced Thematic Mapper Plus multispectral sensor data. A mutual information-based method was applied to select the three most distinct fraction images for subsequent visualization as a red, green, and blue composite. A reported image restoration technique (partial restoration) was applied to the multispectral data to reduce unmixing error, although evaluation of the performance of this technique was beyond the scope of this paper. The modified smoothing process resulted in a color segmented image with homogeneous regions separated by sharpened, coregistered multiband edges. There was improved class separation with the segmented image, which has importance to subsequent operations involving data classification.

  10. Measurement of segmental lumbar spine flexion and extension using ultrasound imaging.

    PubMed

    Chleboun, Gary S; Amway, Matthew J; Hill, Jesse G; Root, Kara J; Murray, Hugh C; Sergeev, Alexander V

    2012-10-01

    Clinical measurement, technical note. To describe a technique to measure interspinous process distance using ultrasound (US) imaging, to assess the reliability of the technique, and to compare the US imaging measurements to magnetic resonance imaging (MRI) measurements in 3 different positions of the lumbar spine. Segmental spinal motion has been assessed using various imaging techniques, as well as surgically inserted pins. However, some imaging techniques are costly (MRI) and some require ionizing radiation (radiographs and fluoroscopy), and surgical procedures have limited use because of the invasive nature of the technique. Therefore, it is important to have an easily accessible and inexpensive technique for measuring lumbar segmental motion to more fully understand spine motion in vivo, to evaluate the changes that occur with various interventions, and to be able to accurately relate the changes in symptoms to changes in motion of individual vertebral segments. Six asymptomatic subjects participated. The distance between spinous processes at each lumbar segment (L1-2, L2-3, L3-4, L4-5) was measured digitally using MRI and US imaging. The interspinous distance was measured with subjects supine and the lumbar spine in 3 different positions (resting, lumbar flexion, and lumbar extension) for both MRI and US imaging. The differences in distance from neutral to extension, neutral to flexion, and extension to flexion were calculated. The measurement methods had excellent reliability for US imaging (intraclass correlation coefficient [ICC3,3] = 0.94; 95% confidence interval: 0.85, 0.97) and MRI (ICC3,3 = 0.98; 95% confidence interval: 0.95, 0.99). The distance measured was similar between US imaging and MRI (P>.05), except at L3-4 flexion-extension (P = .003). On average, the MRI measurements were 1.3 mm greater than the US imaging measurements. This study describes a new method for the measurement of lumbar spine segmental flexion and extension motion using US imaging. The US method may offer an alternative to other imaging techniques to monitor clinical outcomes because of its ease of use and the consistency of measurements compared to MRI.

  11. MMX-I: A data-processing software for multi-modal X-ray imaging and tomography

    NASA Astrophysics Data System (ADS)

    Bergamaschi, A.; Medjoubi, K.; Messaoudi, C.; Marco, S.; Somogyi, A.

    2017-06-01

    Scanning hard X-ray imaging allows simultaneous acquisition of multimodal information, including X-ray fluorescence, absorption, phase and dark-field contrasts, providing structural and chemical details of the samples. Combining these scanning techniques with the infrastructure developed for fast data acquisition at Synchrotron Soleil permits to perform multimodal imaging and tomography during routine user experiments at the Nanoscopium beamline. A main challenge of such imaging techniques is the online processing and analysis of the generated very large volume (several hundreds of Giga Bytes) multimodal data-sets. This is especially important for the wide user community foreseen at the user oriented Nanoscopium beamline (e.g. from the fields of Biology, Life Sciences, Geology, Geobiology), having no experience in such data-handling. MMX-I is a new multi-platform open-source freeware for the processing and reconstruction of scanning multi-technique X-ray imaging and tomographic datasets. The MMX-I project aims to offer, both expert users and beginners, the possibility of processing and analysing raw data, either on-site or off-site. Therefore we have developed a multi-platform (Mac, Windows and Linux 64bit) data processing tool, which is easy to install, comprehensive, intuitive, extendable and user-friendly. MMX-I is now routinely used by the Nanoscopium user community and has demonstrated its performance in treating big data.

  12. Evaluation of width and width uniformity of near-field electrospinning printed micro and sub-micrometer lines based on optical image processing

    NASA Astrophysics Data System (ADS)

    Zhao, Libo; Xia, Yong; Hebibul, Rahman; Wang, Jiuhong; Zhou, Xiangyang; Hu, Yingjie; Li, Zhikang; Luo, Guoxi; Zhao, Yulong; Jiang, Zhuangde

    2018-03-01

    This paper presents an experimental study using image processing to investigate width and width uniformity of sub-micrometer polyethylene oxide (PEO) lines fabricated by near-filed electrospinning (NFES) technique. An adaptive thresholding method was developed to determine the optimal gray values to accurately extract profiles of printed lines from original optical images. And it was proved with good feasibility. The mechanism of the proposed thresholding method was believed to take advantage of statistic property and get rid of halo induced errors. Triangular method and relative standard deviation (RSD) were introduced to calculate line width and width uniformity, respectively. Based on these image processing methods, the effects of process parameters including substrate speed (v), applied voltage (U), nozzle-to-collector distance (H), and syringe pump flow rate (Q) on width and width uniformity of printed lines were discussed. The research results are helpful to promote the NFES technique for fabricating high resolution micro and sub-micro lines and also helpful to optical image processing at sub-micro level.

  13. Classifying magnetic resonance image modalities with convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Remedios, Samuel; Pham, Dzung L.; Butman, John A.; Roy, Snehashis

    2018-02-01

    Magnetic Resonance (MR) imaging allows the acquisition of images with different contrast properties depending on the acquisition protocol and the magnetic properties of tissues. Many MR brain image processing techniques, such as tissue segmentation, require multiple MR contrasts as inputs, and each contrast is treated differently. Thus it is advantageous to automate the identification of image contrasts for various purposes, such as facilitating image processing pipelines, and managing and maintaining large databases via content-based image retrieval (CBIR). Most automated CBIR techniques focus on a two-step process: extracting features from data and classifying the image based on these features. We present a novel 3D deep convolutional neural network (CNN)- based method for MR image contrast classification. The proposed CNN automatically identifies the MR contrast of an input brain image volume. Specifically, we explored three classification problems: (1) identify T1-weighted (T1-w), T2-weighted (T2-w), and fluid-attenuated inversion recovery (FLAIR) contrasts, (2) identify pre vs postcontrast T1, (3) identify pre vs post-contrast FLAIR. A total of 3418 image volumes acquired from multiple sites and multiple scanners were used. To evaluate each task, the proposed model was trained on 2137 images and tested on the remaining 1281 images. Results showed that image volumes were correctly classified with 97.57% accuracy.

  14. Free Surface Downgoing VSP Multiple Imaging

    NASA Astrophysics Data System (ADS)

    Maula, Fahdi; Dac, Nguyen

    2018-03-01

    The common usage of a vertical seismic profile is to capture the reflection wavefield (upgoing wavefield) so that it can be used for further well tie or other interpretations. Borehole Seismic (VSP) receivers capture the reflection from below the well trajectory, traditionally no seismic image information above trajectory. The non-traditional way of processing the VSP multiple can be used to expand the imaging above the well trajectory. This paper presents the case study of using VSP downgoing multiples for further non-traditional imaging applications. In general, VSP processing, upgoing and downgoing arrivals are separated during processing. The up-going wavefield is used for subsurface illumination, whereas the downgoing wavefield and multiples are normally excluded from the processing. In a situation where the downgoing wavefield passes the reflectors several times (multiple), the downgoing wavefield carries reflection information. Its benefit is that it can be used for seismic tie up to seabed, and possibility for shallow hazards identifications. One of the concepts of downgoing imaging is widely known as mirror-imaging technique. This paper presents a case study from deep water offshore Vietnam. The case study is presented to demonstrate the robustness of the technique, and the limitations encountered during its processing.

  15. An automatic optimum kernel-size selection technique for edge enhancement

    USGS Publications Warehouse

    Chavez, Pat S.; Bauer, Brian P.

    1982-01-01

    Edge enhancement is a technique that can be considered, to a first order, a correction for the modulation transfer function of an imaging system. Digital imaging systems sample a continuous function at discrete intervals so that high-frequency information cannot be recorded at the same precision as lower frequency data. Because of this, fine detail or edge information in digital images is lost. Spatial filtering techniques can be used to enhance the fine detail information that does exist in the digital image, but the filter size is dependent on the type of area being processed. A technique has been developed by the authors that uses the horizontal first difference to automatically select the optimum kernel-size that should be used to enhance the edges that are contained in the image. 

  16. Recent developments at JPL in the application of digital image processing techniques to astronomical images

    NASA Technical Reports Server (NTRS)

    Lorre, J. J.; Lynn, D. J.; Benton, W. D.

    1976-01-01

    Several techniques of a digital image-processing nature are illustrated which have proved useful in visual analysis of astronomical pictorial data. Processed digital scans of photographic plates of Stephans Quintet and NGC 4151 are used as examples to show how faint nebulosity is enhanced by high-pass filtering, how foreground stars are suppressed by linear interpolation, and how relative color differences between two images recorded on plates with different spectral sensitivities can be revealed by generating ratio images. Analyses are outlined which are intended to compensate partially for the blurring effects of the atmosphere on images of Stephans Quintet and to obtain more detailed information about Saturn's ring structure from low- and high-resolution scans of the planet and its ring system. The employment of a correlation picture to determine the tilt angle of an average spectral line in a low-quality spectrum is demonstrated for a section of the spectrum of Uranus.

  17. Dictionary-based image reconstruction for superresolution in integrated circuit imaging.

    PubMed

    Cilingiroglu, T Berkin; Uyar, Aydan; Tuysuzoglu, Ahmet; Karl, W Clem; Konrad, Janusz; Goldberg, Bennett B; Ünlü, M Selim

    2015-06-01

    Resolution improvement through signal processing techniques for integrated circuit imaging is becoming more crucial as the rapid decrease in integrated circuit dimensions continues. Although there is a significant effort to push the limits of optical resolution for backside fault analysis through the use of solid immersion lenses, higher order laser beams, and beam apodization, signal processing techniques are required for additional improvement. In this work, we propose a sparse image reconstruction framework which couples overcomplete dictionary-based representation with a physics-based forward model to improve resolution and localization accuracy in high numerical aperture confocal microscopy systems for backside optical integrated circuit analysis. The effectiveness of the framework is demonstrated on experimental data.

  18. Dietary Assessment on a Mobile Phone Using Image Processing and Pattern Recognition Techniques: Algorithm Design and System Prototyping

    PubMed Central

    Probst, Yasmine; Nguyen, Duc Thanh; Tran, Minh Khoi; Li, Wanqing

    2015-01-01

    Dietary assessment, while traditionally based on pen-and-paper, is rapidly moving towards automatic approaches. This study describes an Australian automatic food record method and its prototype for dietary assessment via the use of a mobile phone and techniques of image processing and pattern recognition. Common visual features including scale invariant feature transformation (SIFT), local binary patterns (LBP), and colour are used for describing food images. The popular bag-of-words (BoW) model is employed for recognizing the images taken by a mobile phone for dietary assessment. Technical details are provided together with discussions on the issues and future work. PMID:26225994

  19. Imaging Study of Multi-Crystalline Silicon Wafers Throughout the Manufacturing Process: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, S.; Yan, F.; Zaunbracher, K.

    2011-07-01

    Imaging techniques are applied to multi-crystalline silicon bricks, wafers at various process steps, and finished solar cells. Photoluminescence (PL) imaging is used to characterize defects and material quality on bricks and wafers. Defect regions within the wafers are influenced by brick position within an ingot and height within the brick. The defect areas in as-cut wafers are compared to imaging results from reverse-bias electroluminescence and dark lock-in thermography and cell parameters of near-neighbor finished cells. Defect areas are also characterized by defect band emissions. The defect areas measured by these techniques on as-cut wafers are shown to correlate to finishedmore » cell performance.« less

  20. Acoustical holographic recording with coherent optical read-out and image processing

    NASA Astrophysics Data System (ADS)

    Liu, H. K.

    1980-10-01

    New acoustic holographic wave memory devices have been designed for real-time in-situ recording applications. The basic operating principles of these devices and experimental results through the use of some of the prototypes of the devices are presented. Recording media used in the device include thermoplastic resin, Crisco vegetable oil, and Wilson corn oil. In addition, nonlinear coherent optical image processing techniques including equidensitometry, A-D conversion, and pseudo-color, all based on the new contact screen technique, are discussed with regard to the enhancement of the normally poor-resolved acoustical holographic images.

  1. An evolution of image source camera attribution approaches.

    PubMed

    Jahanirad, Mehdi; Wahab, Ainuddin Wahid Abdul; Anuar, Nor Badrul

    2016-05-01

    Camera attribution plays an important role in digital image forensics by providing the evidence and distinguishing characteristics of the origin of the digital image. It allows the forensic analyser to find the possible source camera which captured the image under investigation. However, in real-world applications, these approaches have faced many challenges due to the large set of multimedia data publicly available through photo sharing and social network sites, captured with uncontrolled conditions and undergone variety of hardware and software post-processing operations. Moreover, the legal system only accepts the forensic analysis of the digital image evidence if the applied camera attribution techniques are unbiased, reliable, nondestructive and widely accepted by the experts in the field. The aim of this paper is to investigate the evolutionary trend of image source camera attribution approaches from fundamental to practice, in particular, with the application of image processing and data mining techniques. Extracting implicit knowledge from images using intrinsic image artifacts for source camera attribution requires a structured image mining process. In this paper, we attempt to provide an introductory tutorial on the image processing pipeline, to determine the general classification of the features corresponding to different components for source camera attribution. The article also reviews techniques of the source camera attribution more comprehensively in the domain of the image forensics in conjunction with the presentation of classifying ongoing developments within the specified area. The classification of the existing source camera attribution approaches is presented based on the specific parameters, such as colour image processing pipeline, hardware- and software-related artifacts and the methods to extract such artifacts. The more recent source camera attribution approaches, which have not yet gained sufficient attention among image forensics researchers, are also critically analysed and further categorised into four different classes, namely, optical aberrations based, sensor camera fingerprints based, processing statistics based and processing regularities based, to present a classification. Furthermore, this paper aims to investigate the challenging problems, and the proposed strategies of such schemes based on the suggested taxonomy to plot an evolution of the source camera attribution approaches with respect to the subjective optimisation criteria over the last decade. The optimisation criteria were determined based on the strategies proposed to increase the detection accuracy, robustness and computational efficiency of source camera brand, model or device attribution. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Spotlight-Mode Synthetic Aperture Radar Processing for High-Resolution Lunar Mapping

    NASA Technical Reports Server (NTRS)

    Harcke, Leif; Weintraub, Lawrence; Yun, Sang-Ho; Dickinson, Richard; Gurrola, Eric; Hensley, Scott; Marechal, Nicholas

    2010-01-01

    During the 2008-2009 year, the Goldstone Solar System Radar was upgraded to support radar mapping of the lunar poles at 4 m resolution. The finer resolution of the new system and the accompanying migration through resolution cells called for spotlight, rather than delay-Doppler, imaging techniques. A new pre-processing system supports fast-time Doppler removal and motion compensation to a point. Two spotlight imaging techniques which compensate for phase errors due to i) out of focus-plane motion of the radar and ii) local topography, have been implemented and tested. One is based on the polar format algorithm followed by a unique autofocus technique, the other is a full bistatic time-domain backprojection technique. The processing system yields imagery of the specified resolution. Products enabled by this new system include topographic mapping through radar interferometry, and change detection techniques (amplitude and coherent change) for geolocation of the NASA LCROSS mission impact site.

  3. An image-processing method to detect sub-optical features based on understanding noise in intensity measurements.

    PubMed

    Bhatia, Tripta

    2018-07-01

    Accurate quantitative analysis of image data requires that we distinguish between fluorescence intensity (true signal) and the noise inherent to its measurements to the extent possible. We image multilamellar membrane tubes and beads that grow from defects in the fluid lamellar phase of the lipid 1,2-dioleoyl-sn-glycero-3-phosphocholine dissolved in water and water-glycerol mixtures by using fluorescence confocal polarizing microscope. We quantify image noise and determine the noise statistics. Understanding the nature of image noise also helps in optimizing image processing to detect sub-optical features, which would otherwise remain hidden. We use an image-processing technique "optimum smoothening" to improve the signal-to-noise ratio of features of interest without smearing their structural details. A high SNR renders desired positional accuracy with which it is possible to resolve features of interest with width below optical resolution. Using optimum smoothening, the smallest and the largest core diameter detected is of width [Formula: see text] and [Formula: see text] nm, respectively, discussed in this paper. The image-processing and analysis techniques and the noise modeling discussed in this paper can be used for detailed morphological analysis of features down to sub-optical length scales that are obtained by any kind of fluorescence intensity imaging in the raster mode.

  4. Rotation covariant image processing for biomedical applications.

    PubMed

    Skibbe, Henrik; Reisert, Marco

    2013-01-01

    With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  5. Image processing techniques for digital orthophotoquad production

    USGS Publications Warehouse

    Hood, Joy J.; Ladner, L. J.; Champion, Richard A.

    1989-01-01

    Orthophotographs have long been recognized for their value as supplements or alternatives to standard maps. Recent trends towards digital cartography have resulted in efforts by the US Geological Survey to develop a digital orthophotoquad production system. Digital image files were created by scanning color infrared photographs on a microdensitometer. Rectification techniques were applied to remove tile and relief displacement, thereby creating digital orthophotos. Image mosaicking software was then used to join the rectified images, producing digital orthophotos in quadrangle format.

  6. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    NASA Astrophysics Data System (ADS)

    Jünger, Felix; Olshausen, Philipp V.; Rohrbach, Alexander

    2016-07-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes.

  7. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    PubMed Central

    Jünger, Felix; Olshausen, Philipp v.; Rohrbach, Alexander

    2016-01-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes. PMID:27465033

  8. Techniques of Photometry and Astrometry with APASS, Gaia, and Pan-STARRs Results (Abstract)

    NASA Astrophysics Data System (ADS)

    Green, W.

    2017-12-01

    (Abstract only) The databases with the APASS DR9, Gaia DR1, and the Pan-STARRs 3pi DR1 data releases are publicly available for use. There is a bit of data-mining involved to download and manage these reference stars. This paper discusses the use of these databases to acquire accurate photometric references as well as techniques for improving results. Images are prepared in the usual way: zero, dark, flat-fields, and WCS solutions with Astrometry.net. Images are then processed with Sextractor to produce an ASCII table of identifying photometric features. The database manages photometics catalogs and images converted to ASCII tables. Scripts convert the files into SQL and assimilate them into database tables. Using SQL techniques, each image star is merged with reference data to produce publishable results. The VYSOS has over 13,000 images of the ONC5 field to process with roughly 100 total fields in the campaign. This paper provides the overview for this daunting task.

  9. A smart technique for attendance system to recognize faces through parallelism

    NASA Astrophysics Data System (ADS)

    Prabhavathi, B.; Tanuja, V.; Madhu Viswanatham, V.; Rajashekhara Babu, M.

    2017-11-01

    Major part of recognising a person is face with the help of image processing techniques we can exploit the physical features of a person. In the old approach method that is used in schools and colleges it is there that the professor calls the student name and then the attendance for the students marked. Here in paper want to deviate from the old approach and go with the new approach by using techniques that are there in image processing. In this paper we presenting spontaneous presence for students in classroom. At first classroom image has been in use and after that image is kept in data record. For the images that are stored in the database we apply system algorithm which includes steps such as, histogram classification, noise removal, face detection and face recognition methods. So by using these steps we detect the faces and then compare it with the database. The attendance gets marked automatically if the system recognizes the faces.

  10. Validating a Geographical Image Retrieval System.

    ERIC Educational Resources Information Center

    Zhu, Bin; Chen, Hsinchun

    2000-01-01

    Summarizes a prototype geographical image retrieval system that demonstrates how to integrate image processing and information analysis techniques to support large-scale content-based image retrieval. Describes an experiment to validate the performance of this image retrieval system against that of human subjects by examining similarity analysis…

  11. Development of an imaging system for single droplet characterization using a droplet generator.

    PubMed

    Minov, S Vulgarakis; Cointault, F; Vangeyte, J; Pieters, J G; Hijazi, B; Nuyttens, D

    2012-01-01

    The spray droplets generated by agricultural nozzles play an important role in the application accuracy and efficiency of plant protection products. The limitations of the non-imaging techniques and the recent improvements in digital image acquisition and processing increased the interest in using high speed imaging techniques in pesticide spray characterisation. The goal of this study was to develop an imaging technique to evaluate the characteristics of a single spray droplet using a piezoelectric single droplet generator and a high speed imaging technique. Tests were done with different camera settings, lenses, diffusers and light sources. The experiments have shown the necessity for having a good image acquisition and processing system. Image analysis results contributed in selecting the optimal set-up for measuring droplet size and velocity which consisted of a high speed camera with a 6 micros exposure time, a microscope lens at a working distance of 43 cm resulting in a field of view of 1.0 cm x 0.8 cm and a Xenon light source without diffuser used as a backlight. For measuring macro-spray characteristics as the droplet trajectory, the spray angle and the spray shape, a Macro Video Zoom lens at a working distance of 14.3 cm with a bigger field of view of 7.5 cm x 9.5 cm in combination with a halogen spotlight with a diffuser and the high speed camera can be used.

  12. Schlieren technique in soap film flows

    NASA Astrophysics Data System (ADS)

    Auliel, M. I.; Hebrero, F. Castro; Sosa, R.; Artana, G.

    2017-05-01

    We propose the use of the Schlieren technique as a tool to analyse the flows in soap film tunnels. The technique enables to visualize perturbations of the film produced by the interposition of an object in the flow. The variations of intensity of the image are produced as a consequence of the deviations of the light beam traversing the deformed surfaces of the film. The quality of the Schlieren image is compared to images produced by the conventional interferometric technique. The analysis of Schlieren images of a cylinder wake flow indicates that this technique enables an easy visualization of vortex centers. Post-processing of series of two successive images of a grid turbulent flow with a dense motion estimator is used to derive the velocity fields. The results obtained with this self-seeded flow show good agreement with the statistical properties of the 2D turbulent flows reported on the literature.

  13. A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms

    PubMed Central

    Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein

    2017-01-01

    Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts’ Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2–100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms. PMID:28487831

  14. A New Parallel Approach for Accelerating the GPU-Based Execution of Edge Detection Algorithms.

    PubMed

    Emrani, Zahra; Bateni, Soroosh; Rabbani, Hossein

    2017-01-01

    Real-time image processing is used in a wide variety of applications like those in medical care and industrial processes. This technique in medical care has the ability to display important patient information graphi graphically, which can supplement and help the treatment process. Medical decisions made based on real-time images are more accurate and reliable. According to the recent researches, graphic processing unit (GPU) programming is a useful method for improving the speed and quality of medical image processing and is one of the ways of real-time image processing. Edge detection is an early stage in most of the image processing methods for the extraction of features and object segments from a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts' Cross technique are some examples of edge detection algorithms that are widely used in image processing and machine vision. In this work, these algorithms are implemented using the Compute Unified Device Architecture (CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. An existing parallel method for Canny approach has been modified further to run in a fully parallel manner. This has been achieved by replacing the breadth- first search procedure with a parallel method. These algorithms have been compared by testing them on a database of optical coherence tomography images. The comparison of results shows that the proposed implementation of the Canny method on GPU using the CUDA platform improves the speed of execution by 2-100× compared to the central processing unit-based implementation using the OpenCV and MATLAB platforms.

  15. Image processing based detection of lung cancer on CT scan images

    NASA Astrophysics Data System (ADS)

    Abdillah, Bariqi; Bustamam, Alhadi; Sarwinda, Devvi

    2017-10-01

    In this paper, we implement and analyze the image processing method for detection of lung cancer. Image processing techniques are widely used in several medical problems for picture enhancement in the detection phase to support the early medical treatment. In this research we proposed a detection method of lung cancer based on image segmentation. Image segmentation is one of intermediate level in image processing. Marker control watershed and region growing approach are used to segment of CT scan image. Detection phases are followed by image enhancement using Gabor filter, image segmentation, and features extraction. From the experimental results, we found the effectiveness of our approach. The results show that the best approach for main features detection is watershed with masking method which has high accuracy and robust.

  16. Use of multidimensional, multimodal imaging and PACS to support neurological diagnoses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, S.T.C.; Knowlton, R.; Hoo, K.S.

    1995-12-31

    Technological advances in brain imaging have revolutionized diagnosis in neurology and neurological surgery. Major imaging techniques include magnetic resonance imaging (MRI) to visualize structural anatomy, positron emission tomography (PET) to image metabolic function and cerebral blood flow, magnetoencephalography (MEG) to visualize the location of physiologic current sources, and magnetic resonance spectroscopy (MRS) to measure specific biochemicals. Each of these techniques studies different biomedical aspects of the grain, but there lacks an effective means to quantify and correlate the disparate imaging datasets in order to improve clinical decision making processes. This paper describes several techniques developed in a UNIX-based neurodiagnostic workstationmore » to aid the non-invasive presurgical evaluation of epilepsy patients. These techniques include on-line access to the picture archiving and communication systems (PACS) multimedia archive, coregistration of multimodality image datasets, and correlation and quantitative of structural and functional information contained in the registered images. For illustration, the authors describe the use of these techniques in a patient case of non-lesional neocortical epilepsy. They also present the future work based on preliminary studies.« less

  17. Digital processing of radiographic images for print publication.

    PubMed

    Cockerill, James W

    2002-01-01

    Digital imaging of X-rays yields high quality, evenly exposed negatives and prints. This article outlines the method used, materials and methods of this technique and discusses the advantages of digital radiographic images.

  18. [Computer-assisted image processing for quantifying histopathologic variables in the healing of colonic anastomosis in dogs].

    PubMed

    Novelli, M D; Barreto, E; Matos, D; Saad, S S; Borra, R C

    1997-01-01

    The authors present the experimental results of the computerized quantifying of tissular structures involved in the reparative process of colonic anastomosis performed by manual suture and biofragmentable ring. The quantified variables in this study were: oedema fluid, myofiber tissue, blood vessel and cellular nuclei. An image processing software developed at Laboratório de Informática Dedicado à Odontologia (LIDO) was utilized to quantifying the pathognomonic alterations in the inflammatory process in colonic anastomosis performed in 14 dogs. The results were compared to those obtained through traditional way diagnosis by two pathologists in view of counterproof measures. The criteria for these diagnoses were defined in levels represented by absent, light, moderate and intensive which were compared to analysis performed by the computer. There was significant statistical difference between two techniques: the biofragmentable ring technique exhibited low oedema fluid, organized myofiber tissue and higher number of alongated cellular nuclei in relation to manual suture technique. The analysis of histometric variables through computational image processing was considered efficient and powerful to quantify the main tissular inflammatory and reparative changing.

  19. Correcting the planar perspective projection in geometric structures applied to forensic facial analysis.

    PubMed

    Baldasso, Rosane Pérez; Tinoco, Rachel Lima Ribeiro; Vieira, Cristina Saft Matos; Fernandes, Mário Marques; Oliveira, Rogério Nogueira

    2016-10-01

    The process of forensic facial analysis may be founded on several scientific techniques and imaging modalities, such as digital signal processing, photogrammetry and craniofacial anthropometry. However, one of the main limitations in this analysis is the comparison of images acquired with different angles of incidence. The present study aimed to explore a potential approach for the correction of the planar perspective projection (PPP) in geometric structures traced from the human face. A technique for the correction of the PPP was calibrated within photographs of two geometric structures obtained with angles of incidence distorted in 80°, 60° and 45°. The technique was performed using ImageJ ® 1.46r (National Institutes of Health, Bethesda, Maryland). The corrected images were compared with photographs of the same object obtained in 90° (reference). In a second step, the technique was validated in a digital human face created using MakeHuman ® 1.0.2 (Free Software Foundation, Massachusetts, EUA) and Blender ® 2.75 (Blender ® Foundation, Amsterdam, Nederland) software packages. The images registered with angular distortion presented a gradual decrease in height when compared to the reference. The digital technique for the correction of the PPP is a valuable tool for forensic applications using photographic imaging modalities, such as forensic facial analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Advanced image based methods for structural integrity monitoring: Review and prospects

    NASA Astrophysics Data System (ADS)

    Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.

    2018-02-01

    There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.

  1. Multispectral image sharpening using a shift-invariant wavelet transform and adaptive processing of multiresolution edges

    USGS Publications Warehouse

    Lemeshewsky, G.P.; Rahman, Z.-U.; Schowengerdt, R.A.; Reichenbach, S.E.

    2002-01-01

    Enhanced false color images from mid-IR, near-IR (NIR), and visible bands of the Landsat thematic mapper (TM) are commonly used for visually interpreting land cover type. Described here is a technique for sharpening or fusion of NIR with higher resolution panchromatic (Pan) that uses a shift-invariant implementation of the discrete wavelet transform (SIDWT) and a reported pixel-based selection rule to combine coefficients. There can be contrast reversals (e.g., at soil-vegetation boundaries between NIR and visible band images) and consequently degraded sharpening and edge artifacts. To improve performance for these conditions, I used a local area-based correlation technique originally reported for comparing image-pyramid-derived edges for the adaptive processing of wavelet-derived edge data. Also, using the redundant data of the SIDWT improves edge data generation. There is additional improvement because sharpened subband imagery is used with the edge-correlation process. A reported technique for sharpening three-band spectral imagery used forward and inverse intensity, hue, and saturation transforms and wavelet-based sharpening of intensity. This technique had limitations with opposite contrast data, and in this study sharpening was applied to single-band multispectral-Pan image pairs. Sharpening used simulated 30-m NIR imagery produced by degrading the spatial resolution of a higher resolution reference. Performance, evaluated by comparison between sharpened and reference image, was improved when sharpened subband data were used with the edge correlation.

  2. An earth imaging camera simulation using wide-scale construction of reflectance surfaces

    NASA Astrophysics Data System (ADS)

    Murthy, Kiran; Chau, Alexandra H.; Amin, Minesh B.; Robinson, M. Dirk

    2013-10-01

    Developing and testing advanced ground-based image processing systems for earth-observing remote sensing applications presents a unique challenge that requires advanced imagery simulation capabilities. This paper presents an earth-imaging multispectral framing camera simulation system called PayloadSim (PaySim) capable of generating terabytes of photorealistic simulated imagery. PaySim leverages previous work in 3-D scene-based image simulation, adding a novel method for automatically and efficiently constructing 3-D reflectance scenes by draping tiled orthorectified imagery over a geo-registered Digital Elevation Map (DEM). PaySim's modeling chain is presented in detail, with emphasis given to the techniques used to achieve computational efficiency. These techniques as well as cluster deployment of the simulator have enabled tuning and robust testing of image processing algorithms, and production of realistic sample data for customer-driven image product development. Examples of simulated imagery of Skybox's first imaging satellite are shown.

  3. Speckle reduction in echocardiography by temporal compounding and anisotropic diffusion filtering

    NASA Astrophysics Data System (ADS)

    Giraldo-Guzmán, Jader; Porto-Solano, Oscar; Cadena-Bonfanti, Alberto; Contreras-Ortiz, Sonia H.

    2015-01-01

    Echocardiography is a medical imaging technique based on ultrasound signals that is used to evaluate heart anatomy and physiology. Echocardiographic images are affected by speckle, a type of multiplicative noise that obscures details of the structures, and reduces the overall image quality. This paper shows an approach to enhance echocardiography using two processing techniques: temporal compounding and anisotropic diffusion filtering. We used twenty echocardiographic videos that include one or three cardiac cycles to test the algorithms. Two images from each cycle were aligned in space and averaged to obtain the compound images. These images were then processed using anisotropic diffusion filters to further improve their quality. Resultant images were evaluated using quality metrics and visual assessment by two medical doctors. The average total improvement on signal-to-noise ratio was up to 100.29% for videos with three cycles, and up to 32.57% for videos with one cycle.

  4. 3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azpiroz, J.; Krafft, J.; Cadena, M.

    2006-09-08

    Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualizationmore » allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.« less

  5. 3D visualization of Thoraco-Lumbar Spinal Lesions in German Shepherd Dog

    NASA Astrophysics Data System (ADS)

    Azpiroz, J.; Krafft, J.; Cadena, M.; Rodríguez, A. O.

    2006-09-01

    Computed tomography (CT) has been found to be an excellent imaging modality due to its sensitivity to characterize the morphology of the spine in dogs. This technique is considered to be particularly helpful for diagnosing spinal cord atrophy and spinal stenosis. The three-dimensional visualization of organs and bones can significantly improve the diagnosis of certain diseases in dogs. CT images were acquired of a German shepherd's dog spinal cord to generate stacks and digitally process them to arrange them in a volume image. All imaging experiments were acquired using standard clinical protocols on a clinical CT scanner. The three-dimensional visualization allowed us to observe anatomical structures that otherwise are not possible to observe with two-dimensional images. The combination of an imaging modality like CT together with imaging processing techniques can be a powerful tool for the diagnosis of a number of animal diseases.

  6. Advanced imaging in COPD: insights into pulmonary pathophysiology

    PubMed Central

    Milne, Stephen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings. PMID:25478198

  7. Spectral imaging applications: Remote sensing, environmental monitoring, medicine, military operations, factory automation and manufacturing

    NASA Technical Reports Server (NTRS)

    Gat, N.; Subramanian, S.; Barhen, J.; Toomarian, N.

    1996-01-01

    This paper reviews the activities at OKSI related to imaging spectroscopy presenting current and future applications of the technology. The authors discuss the development of several systems including hardware, signal processing, data classification algorithms and benchmarking techniques to determine algorithm performance. Signal processing for each application is tailored by incorporating the phenomenology appropriate to the process, into the algorithms. Pixel signatures are classified using techniques such as principal component analyses, generalized eigenvalue analysis and novel very fast neural network methods. The major hyperspectral imaging systems developed at OKSI include the Intelligent Missile Seeker (IMS) demonstration project for real-time target/decoy discrimination, and the Thermal InfraRed Imaging Spectrometer (TIRIS) for detection and tracking of toxic plumes and gases. In addition, systems for applications in medical photodiagnosis, manufacturing technology, and for crop monitoring are also under development.

  8. Integrated circuit layer image segmentation

    NASA Astrophysics Data System (ADS)

    Masalskis, Giedrius; Petrauskas, Romas

    2010-09-01

    In this paper we present IC layer image segmentation techniques which are specifically created for precise metal layer feature extraction. During our research we used many samples of real-life de-processed IC metal layer images which were obtained using optical light microscope. We have created sequence of various image processing filters which provides segmentation results of good enough precision for our application. Filter sequences were fine tuned to provide best possible results depending on properties of IC manufacturing process and imaging technology. Proposed IC image segmentation filter sequences were experimentally tested and compared with conventional direct segmentation algorithms.

  9. Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule

    NASA Astrophysics Data System (ADS)

    Tesařová, M.; Zikmund, T.; Kaucká, M.; Adameyko, I.; Jaroš, J.; Paloušek, D.; Škaroupka, D.; Kaiser, J.

    2016-03-01

    Imaging of increasingly complex cartilage in vertebrate embryos is one of the key tasks of developmental biology. This is especially important to study shape-organizing processes during initial skeletal formation and growth. Advanced imaging techniques that are reflecting biological needs give a powerful impulse to push the boundaries of biological visualization. Recently, techniques for contrasting tissues and organs have improved considerably, extending traditional 2D imaging approaches to 3D . X-ray micro computed tomography (μCT), which allows 3D imaging of biological objects including their internal structures with a resolution in the micrometer range, in combination with contrasting techniques seems to be the most suitable approach for non-destructive imaging of embryonic developing cartilage. Despite there are many software-based ways for visualization of 3D data sets, having a real solid model of the studied object might give novel opportunities to fully understand the shape-organizing processes in the developing body. In this feasibility study we demonstrated the full procedure of creating a real 3D object of mouse embryo nasal capsule, i.e. the staining, the μCT scanning combined by the advanced data processing and the 3D printing.

  10. Validation of nonlinear interferometric vibrational imaging as a molecular OCT technique by the use of Raman microscopy

    NASA Astrophysics Data System (ADS)

    Benalcazar, Wladimir A.; Jiang, Zhi; Marks, Daniel L.; Geddes, Joseph B.; Boppart, Stephen A.

    2009-02-01

    We validate a molecular imaging technique called Nonlinear Interferometric Vibrational Imaging (NIVI) by comparing vibrational spectra with those acquired from Raman microscopy. This broadband coherent anti-Stokes Raman scattering (CARS) technique uses heterodyne detection and OCT acquisition and design principles to interfere a CARS signal generated by a sample with a local oscillator signal generated separately by a four-wave mixing process. These are mixed and demodulated by spectral interferometry. Its confocal configuration allows the acquisition of 3D images based on endogenous molecular signatures. Images from both phantom and mammary tissues have been acquired by this instrument and its spectrum is compared with its spontaneous Raman signatures.

  11. Wood industrial application for quality control using image processing

    NASA Astrophysics Data System (ADS)

    Ferreira, M. J. O.; Neves, J. A. C.

    1994-11-01

    This paper describes an application of image processing for the furniture industry. It uses an input data, images acquired directly from wood planks where defects were previously marked by an operator. A set of image processing algorithms separates and codes each defect and detects a polygonal approach of the line representing them. For such a purpose we developed a pattern classification algorithm and a new technique of segmenting defects by carving the convex hull of the binary shape representing each isolated defect.

  12. Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning

    PubMed Central

    Silva, Susana F.; Domingues, José Paulo

    2018-01-01

    Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed. PMID:29599938

  13. Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning.

    PubMed

    Silva, Susana F; Domingues, José Paulo; Morgado, António Miguel

    2018-01-01

    Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed.

  14. Improving lateral resolution and image quality of optical coherence tomography by the multi-frame superresolution technique for 3D tissue imaging

    PubMed Central

    Shen, Kai; Lu, Hui; Baig, Sarfaraz; Wang, Michael R.

    2017-01-01

    The multi-frame superresolution technique is introduced to significantly improve the lateral resolution and image quality of spectral domain optical coherence tomography (SD-OCT). Using several sets of low resolution C-scan 3D images with lateral sub-spot-spacing shifts on different sets, the multi-frame superresolution processing of these sets at each depth layer reconstructs a higher resolution and quality lateral image. Layer by layer processing yields an overall high lateral resolution and quality 3D image. In theory, the superresolution processing including deconvolution can solve the diffraction limit, lateral scan density and background noise problems together. In experiment, the improved lateral resolution by ~3 times reaching 7.81 µm and 2.19 µm using sample arm optics of 0.015 and 0.05 numerical aperture respectively as well as doubling the image quality has been confirmed by imaging a known resolution test target. Improved lateral resolution on in vitro skin C-scan images has been demonstrated. For in vivo 3D SD-OCT imaging of human skin, fingerprint and retina layer, we used the multi-modal volume registration method to effectively estimate the lateral image shifts among different C-scans due to random minor unintended live body motion. Further processing of these images generated high lateral resolution 3D images as well as high quality B-scan images of these in vivo tissues. PMID:29188089

  15. Syntactic Processing in Bilinguals: An fNIRS Study

    ERIC Educational Resources Information Center

    Scherer, Lilian Cristine; Fonseca, Rochele Paz; Amiri, Mahnoush; Adrover-Roig, Daniel; Marcotte, Karine; Giroux, Francine; Senhadji, Noureddine; Benali, Habib; Lesage, Frederic; Ansaldo, Ana Ines

    2012-01-01

    The study of the neural basis of syntactic processing has greatly benefited from neuroimaging techniques. Research on syntactic processing in bilinguals has used a variety of techniques, including mainly functional magnetic resonance imaging (fMRI) and event-related potentials (ERP). This paper reports on a functional near-infrared spectroscopy…

  16. Unsupervised Detection of Planetary Craters by a Marked Point Process

    NASA Technical Reports Server (NTRS)

    Troglio, G.; Benediktsson, J. A.; Le Moigne, J.; Moser, G.; Serpico, S. B.

    2011-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images is being acquired. Preferably, automatic and robust processing techniques need to be used for data analysis because of the huge amount of the acquired data. Here, the aim is to achieve a robust and general methodology for crater detection. A novel technique based on a marked point process is proposed. First, the contours in the image are extracted. The object boundaries are modeled as a configuration of an unknown number of random ellipses, i.e., the contour image is considered as a realization of a marked point process. Then, an energy function is defined, containing both an a priori energy and a likelihood term. The global minimum of this function is estimated by using reversible jump Monte-Carlo Markov chain dynamics and a simulated annealing scheme. The main idea behind marked point processes is to model objects within a stochastic framework: Marked point processes represent a very promising current approach in the stochastic image modeling and provide a powerful and methodologically rigorous framework to efficiently map and detect objects and structures in an image with an excellent robustness to noise. The proposed method for crater detection has several feasible applications. One such application area is image registration by matching the extracted features.

  17. Optimization of digital image processing to determine quantum dots' height and density from atomic force microscopy.

    PubMed

    Ruiz, J E; Paciornik, S; Pinto, L D; Ptak, F; Pires, M P; Souza, P L

    2018-01-01

    An optimized method of digital image processing to interpret quantum dots' height measurements obtained by atomic force microscopy is presented. The method was developed by combining well-known digital image processing techniques and particle recognition algorithms. The properties of quantum dot structures strongly depend on dots' height, among other features. Determination of their height is sensitive to small variations in their digital image processing parameters, which can generate misleading results. Comparing the results obtained with two image processing techniques - a conventional method and the new method proposed herein - with the data obtained by determining the height of quantum dots one by one within a fixed area, showed that the optimized method leads to more accurate results. Moreover, the log-normal distribution, which is often used to represent natural processes, shows a better fit to the quantum dots' height histogram obtained with the proposed method. Finally, the quantum dots' height obtained were used to calculate the predicted photoluminescence peak energies which were compared with the experimental data. Again, a better match was observed when using the proposed method to evaluate the quantum dots' height. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A conceptual study of automatic and semi-automatic quality assurance techniques for round image processing

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This report summarizes the results of a study conducted by Engineering and Economics Research (EER), Inc. under NASA Contract Number NAS5-27513. The study involved the development of preliminary concepts for automatic and semiautomatic quality assurance (QA) techniques for ground image processing. A distinction is made between quality assessment and the more comprehensive quality assurance which includes decision making and system feedback control in response to quality assessment.

  19. [Bone drilling simulation by three-dimensional imaging].

    PubMed

    Suto, Y; Furuhata, K; Kojima, T; Kurokawa, T; Kobayashi, M

    1989-06-01

    The three-dimensional display technique has a wide range of medical applications. Pre-operative planning is one typical application: in orthopedic surgery, three-dimensional image processing has been used very successfully. We have employed this technique in pre-operative planning for orthopedic surgery, and have developed a simulation system for bone-drilling. Positive results were obtained by pre-operative rehearsal; when a region of interest is indicated by means of a mouse on the three-dimensional image displayed on the CRT, the corresponding region appears on the slice image which is displayed simultaneously. Consequently, the status of the bone-drilling is constantly monitored. In developing this system, we have placed emphasis on the quality of the reconstructed three-dimensional images, on fast processing, and on the easy operation of the surgical planning simulation.

  20. Northern Everglades, Florida, satellite image map

    USGS Publications Warehouse

    Thomas, Jean-Claude; Jones, John W.

    2002-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program with support from the Everglades National Park. The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  1. VIP: Vortex Image Processing Package for High-contrast Direct Imaging

    NASA Astrophysics Data System (ADS)

    Gomez Gonzalez, Carlos Alberto; Wertz, Olivier; Absil, Olivier; Christiaens, Valentin; Defrère, Denis; Mawet, Dimitri; Milli, Julien; Absil, Pierre-Antoine; Van Droogenbroeck, Marc; Cantalloube, Faustine; Hinz, Philip M.; Skemer, Andrew J.; Karlsson, Mikael; Surdej, Jean

    2017-07-01

    We present the Vortex Image Processing (VIP) library, a python package dedicated to astronomical high-contrast imaging. Our package relies on the extensive python stack of scientific libraries and aims to provide a flexible framework for high-contrast data and image processing. In this paper, we describe the capabilities of VIP related to processing image sequences acquired using the angular differential imaging (ADI) observing technique. VIP implements functionalities for building high-contrast data processing pipelines, encompassing pre- and post-processing algorithms, potential source position and flux estimation, and sensitivity curve generation. Among the reference point-spread function subtraction techniques for ADI post-processing, VIP includes several flavors of principal component analysis (PCA) based algorithms, such as annular PCA and incremental PCA algorithms capable of processing big datacubes (of several gigabytes) on a computer with limited memory. Also, we present a novel ADI algorithm based on non-negative matrix factorization, which comes from the same family of low-rank matrix approximations as PCA and provides fairly similar results. We showcase the ADI capabilities of the VIP library using a deep sequence on HR 8799 taken with the LBTI/LMIRCam and its recently commissioned L-band vortex coronagraph. Using VIP, we investigated the presence of additional companions around HR 8799 and did not find any significant additional point source beyond the four known planets. VIP is available at http://github.com/vortex-exoplanet/VIP and is accompanied with Jupyter notebook tutorials illustrating the main functionalities of the library.

  2. Mapping accuracy via spectrally and structurally based filtering techniques: comparisons through visual observations

    NASA Astrophysics Data System (ADS)

    Chockalingam, Letchumanan

    2005-01-01

    The data of Gunung Ledang region of Malaysia acquired through LANDSAT are considered to map certain hydrogeolocial features. To map these significant features, image-processing tools such as contrast enhancement, edge detection techniques are employed. The advantages of these techniques over the other methods are evaluated from the point of their validity in properly isolating features of hydrogeolocial interest are discussed. As these techniques take the advantage of spectral aspects of the images, these techniques have several limitations to meet the objectives. To discuss these limitations, a morphological transformation, which generally considers the structural aspects rather than spectral aspects from the image, are applied to provide comparisons between the results derived from spectral based and the structural based filtering techniques.

  3. Determination of toxigenic fungi and aflatoxins in nuts and dried fruits using imaging and spectroscopic techniques.

    PubMed

    Wu, Qifang; Xie, Lijuan; Xu, Huirong

    2018-06-30

    Nuts and dried fruits contain rich nutrients and are thus highly vulnerable to contamination with toxigenic fungi and aflatoxins because of poor weather, processing and storage conditions. Imaging and spectroscopic techniques have proven to be potential alternative tools to wet chemistry methods for efficient and non-destructive determination of contamination with fungi and toxins. Thus, this review provides an overview of the current developments and applications in frequently used food safety testing techniques, including near infrared spectroscopy (NIRS), mid-infrared spectroscopy (MIRS), conventional imaging techniques (colour imaging (CI) and hyperspectral imaging (HSI)), and fluorescence spectroscopy and imaging (FS/FI). Interesting classification and determination results can be found in both static and on/in-line real-time detection for contaminated nuts and dried fruits. Although these techniques offer many benefits over conventional methods, challenges remain in terms of heterogeneous distribution of toxins, background constituent interference, model robustness, detection limits, sorting efficiency, as well as instrument development. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Charged-particle emission tomography

    PubMed Central

    Ding, Yijun; Caucci, Luca; Barrett, Harrison H.

    2018-01-01

    Purpose Conventional charged-particle imaging techniques —such as autoradiography —provide only two-dimensional (2D) black ex vivo images of thin tissue slices. In order to get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick tissue sections, thus increasing laboratory throughput and eliminating distortions due to registration. CPET also has the potential to enable in vivo charged-particle imaging with a window chamber or an endoscope. Methods Our approach to charged-particle emission tomography uses particle-processing detectors (PPDs) to estimate attributes of each detected particle. The attributes we estimate include location, direction of propagation, and/or the energy deposited in the detector. Estimated attributes are then fed into a reconstruction algorithm to reconstruct the 3D distribution of charged-particle-emitting radionuclides. Several setups to realize PPDs are designed. Reconstruction algorithms for CPET are developed. Results Reconstruction results from simulated data showed that a PPD enables CPET if the PPD measures more attributes than just the position from each detected particle. Experiments showed that a two-foil charged-particle detector is able to measure the position and direction of incident alpha particles. Conclusions We proposed a new volumetric imaging technique for charged-particle-emitting radionuclides, which we have called charged-particle emission tomography (CPET). We also proposed a new class of charged-particle detectors, which we have called particle-processing detectors (PPDs). When a PPD is used to measure the direction and/or energy attributes along with the position attributes, CPET is feasible. PMID:28370094

  5. Charged-particle emission tomography.

    PubMed

    Ding, Yijun; Caucci, Luca; Barrett, Harrison H

    2017-06-01

    Conventional charged-particle imaging techniques - such as autoradiography - provide only two-dimensional (2D) black ex vivo images of thin tissue slices. In order to get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick tissue sections, thus increasing laboratory throughput and eliminating distortions due to registration. CPET also has the potential to enable in vivo charged-particle imaging with a window chamber or an endoscope. Our approach to charged-particle emission tomography uses particle-processing detectors (PPDs) to estimate attributes of each detected particle. The attributes we estimate include location, direction of propagation, and/or the energy deposited in the detector. Estimated attributes are then fed into a reconstruction algorithm to reconstruct the 3D distribution of charged-particle-emitting radionuclides. Several setups to realize PPDs are designed. Reconstruction algorithms for CPET are developed. Reconstruction results from simulated data showed that a PPD enables CPET if the PPD measures more attributes than just the position from each detected particle. Experiments showed that a two-foil charged-particle detector is able to measure the position and direction of incident alpha particles. We proposed a new volumetric imaging technique for charged-particle-emitting radionuclides, which we have called charged-particle emission tomography (CPET). We also proposed a new class of charged-particle detectors, which we have called particle-processing detectors (PPDs). When a PPD is used to measure the direction and/or energy attributes along with the position attributes, CPET is feasible. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  6. A comparison of ordinary fuzzy and intuitionistic fuzzy approaches in visualizing the image of flat electroencephalography

    NASA Astrophysics Data System (ADS)

    Zenian, Suzelawati; Ahmad, Tahir; Idris, Amidora

    2017-09-01

    Medical imaging is a subfield in image processing that deals with medical images. It is very crucial in visualizing the body parts in non-invasive way by using appropriate image processing techniques. Generally, image processing is used to enhance visual appearance of images for further interpretation. However, the pixel values of an image may not be precise as uncertainty arises within the gray values of an image due to several factors. In this paper, the input and output images of Flat Electroencephalography (fEEG) of an epileptic patient at varied time are presented. Furthermore, ordinary fuzzy and intuitionistic fuzzy approaches are implemented to the input images and the results are compared between these two approaches.

  7. Automatic Coregistration and orthorectification (ACRO) and subsequent mosaicing of NASA high-resolution imagery over the Mars MC11 quadrangle, using HRSC as a baseline

    NASA Astrophysics Data System (ADS)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter; Watson, Gillian; Michael, Gregory; Walter, Sebastian

    2018-02-01

    This work presents the coregistered, orthorectified and mosaiced high-resolution products of the MC11 quadrangle of Mars, which have been processed using novel, fully automatic, techniques. We discuss the development of a pipeline that achieves fully automatic and parameter independent geometric alignment of high-resolution planetary images, starting from raw input images in NASA PDS format and following all required steps to produce a coregistered geotiff image, a corresponding footprint and useful metadata. Additionally, we describe the development of a radiometric calibration technique that post-processes coregistered images to make them radiometrically consistent. Finally, we present a batch-mode application of the developed techniques over the MC11 quadrangle to validate their potential, as well as to generate end products, which are released to the planetary science community, thus assisting in the analysis of Mars static and dynamic features. This case study is a step towards the full automation of signal processing tasks that are essential to increase the usability of planetary data, but currently, require the extensive use of human resources.

  8. A Versatile Mounting Method for Long Term Imaging of Zebrafish Development.

    PubMed

    Hirsinger, Estelle; Steventon, Ben

    2017-01-26

    Zebrafish embryos offer an ideal experimental system to study complex morphogenetic processes due to their ease of accessibility and optical transparency. In particular, posterior body elongation is an essential process in embryonic development by which multiple tissue deformations act together to direct the formation of a large part of the body axis. In order to observe this process by long-term time-lapse imaging it is necessary to utilize a mounting technique that allows sufficient support to maintain samples in the correct orientation during transfer to the microscope and acquisition. In addition, the mounting must also provide sufficient freedom of movement for the outgrowth of the posterior body region without affecting its normal development. Finally, there must be a certain degree in versatility of the mounting method to allow imaging on diverse imaging set-ups. Here, we present a mounting technique for imaging the development of posterior body elongation in the zebrafish D. rerio. This technique involves mounting embryos such that the head and yolk sac regions are almost entirely included in agarose, while leaving out the posterior body region to elongate and develop normally. We will show how this can be adapted for upright, inverted and vertical light-sheet microscopy set-ups. While this protocol focuses on mounting embryos for imaging for the posterior body, it could easily be adapted for the live imaging of multiple aspects of zebrafish development.

  9. DIRECT IMAGE PROCESSING OF CORRODING SURFACES APPLIED TO FRICTION STIR WELDING.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ISAACS,H.S.ET AL.

    An in situ process for visually locating corrosion is presented. The process visually displays image differences obtained by subtracting one digitized image from another. The difference image shows only where changes have taken place during period between the recording of the two images. Changes are due to both corrosion attack of the surface and concentration changes of dissolved corrosion products in solution. Indicators added to the solution assist by decorating sites of corrosion as diffusion and convection of the dissolved products increase the size of the affected region. A study of the initial stages of corrosion of a friction stirmore » welded Al alloy 7075 has been performed using this imaging technique. Pitting potential measurements suggest that there was an initial increased sensitivity to corrosion. The difference image technique demonstrated that it was due to a reformation of the passive film that occurs with Zn containing Al alloys which occurs preferentially along flow protected regions. The most susceptible region of the weld was found to be where both limited deformation and thermal transients are produced during welding.« less

  10. EVALUATION OF REGISTRATION, COMPRESSION AND CLASSIFICATION ALGORITHMS

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R.

    1994-01-01

    Several types of algorithms are generally used to process digital imagery such as Landsat data. The most commonly used algorithms perform the task of registration, compression, and classification. Because there are different techniques available for performing registration, compression, and classification, imagery data users need a rationale for selecting a particular approach to meet their particular needs. This collection of registration, compression, and classification algorithms was developed so that different approaches could be evaluated and the best approach for a particular application determined. Routines are included for six registration algorithms, six compression algorithms, and two classification algorithms. The package also includes routines for evaluating the effects of processing on the image data. This collection of routines should be useful to anyone using or developing image processing software. Registration of image data involves the geometrical alteration of the imagery. Registration routines available in the evaluation package include image magnification, mapping functions, partitioning, map overlay, and data interpolation. The compression of image data involves reducing the volume of data needed for a given image. Compression routines available in the package include adaptive differential pulse code modulation, two-dimensional transforms, clustering, vector reduction, and picture segmentation. Classification of image data involves analyzing the uncompressed or compressed image data to produce inventories and maps of areas of similar spectral properties within a scene. The classification routines available include a sequential linear technique and a maximum likelihood technique. The choice of the appropriate evaluation criteria is quite important in evaluating the image processing functions. The user is therefore given a choice of evaluation criteria with which to investigate the available image processing functions. All of the available evaluation criteria basically compare the observed results with the expected results. For the image reconstruction processes of registration and compression, the expected results are usually the original data or some selected characteristics of the original data. For classification processes the expected result is the ground truth of the scene. Thus, the comparison process consists of determining what changes occur in processing, where the changes occur, how much change occurs, and the amplitude of the change. The package includes evaluation routines for performing such comparisons as average uncertainty, average information transfer, chi-square statistics, multidimensional histograms, and computation of contingency matrices. This collection of routines is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 662K of 8 bit bytes. This collection of image processing and evaluation routines was developed in 1979.

  11. MEMS scanning micromirror for optical coherence tomography.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y

    2015-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique.

  12. MEMS scanning micromirror for optical coherence tomography

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G.; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y.

    2014-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique. PMID:25657887

  13. Edge Detection Method Based on Neural Networks for COMS MI Images

    NASA Astrophysics Data System (ADS)

    Lee, Jin-Ho; Park, Eun-Bin; Woo, Sun-Hee

    2016-12-01

    Communication, Ocean And Meteorological Satellite (COMS) Meteorological Imager (MI) images are processed for radiometric and geometric correction from raw image data. When intermediate image data are matched and compared with reference landmark images in the geometrical correction process, various techniques for edge detection can be applied. It is essential to have a precise and correct edged image in this process, since its matching with the reference is directly related to the accuracy of the ground station output images. An edge detection method based on neural networks is applied for the ground processing of MI images for obtaining sharp edges in the correct positions. The simulation results are analyzed and characterized by comparing them with the results of conventional methods, such as Sobel and Canny filters.

  14. Functional Imaging Biomarkers: Potential to Guide an Individualised Approach to Radiotherapy.

    PubMed

    Prestwich, R J D; Vaidyanathan, S; Scarsbrook, A F

    2015-10-01

    The identification of robust prognostic and predictive biomarkers would transform the ability to implement an individualised approach to radiotherapy. In this regard, there has been a surge of interest in the use of functional imaging to assess key underlying biological processes within tumours and their response to therapy. Importantly, functional imaging biomarkers hold the potential to evaluate tumour heterogeneity/biology both spatially and temporally. An ever-increasing range of functional imaging techniques is now available primarily involving positron emission tomography and magnetic resonance imaging. Small-scale studies across multiple tumour types have consistently been able to correlate changes in functional imaging parameters during radiotherapy with disease outcomes. Considerable challenges remain before the implementation of functional imaging biomarkers into routine clinical practice, including the inherent temporal variability of biological processes within tumours, reproducibility of imaging, determination of optimal imaging technique/combinations, timing during treatment and design of appropriate validation studies. Copyright © 2015 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  15. Standardizing Quality Assessment of Fused Remotely Sensed Images

    NASA Astrophysics Data System (ADS)

    Pohl, C.; Moellmann, J.; Fries, K.

    2017-09-01

    The multitude of available operational remote sensing satellites led to the development of many image fusion techniques to provide high spatial, spectral and temporal resolution images. The comparison of different techniques is necessary to obtain an optimized image for the different applications of remote sensing. There are two approaches in assessing image quality: 1. Quantitatively by visual interpretation and 2. Quantitatively using image quality indices. However an objective comparison is difficult due to the fact that a visual assessment is always subject and a quantitative assessment is done by different criteria. Depending on the criteria and indices the result varies. Therefore it is necessary to standardize both processes (qualitative and quantitative assessment) in order to allow an objective image fusion quality evaluation. Various studies have been conducted at the University of Osnabrueck (UOS) to establish a standardized process to objectively compare fused image quality. First established image fusion quality assessment protocols, i.e. Quality with No Reference (QNR) and Khan's protocol, were compared on varies fusion experiments. Second the process of visual quality assessment was structured and standardized with the aim to provide an evaluation protocol. This manuscript reports on the results of the comparison and provides recommendations for future research.

  16. Applied photo interpretation for airbrush cartography

    NASA Technical Reports Server (NTRS)

    Inge, J. L.; Bridges, P. M.

    1976-01-01

    New techniques of cartographic portrayal have been developed for the compilation of maps of lunar and planetary surfaces. Conventional photo interpretation methods utilizing size, shape, shadow, tone, pattern, and texture are applied to computer processed satellite television images. The variety of the image data allows the illustrator to interpret image details by inter-comparison and intra-comparison of photographs. Comparative judgements are affected by illumination, resolution, variations in surface coloration, and transmission or processing artifacts. The validity of the interpretation process is tested by making a representational drawing by an airbrush portrayal technique. Production controls insure the consistency of a map series. Photo interpretive cartographic portrayal skills are used to prepare two kinds of map series and are adaptable to map products of different kinds and purposes.

  17. Multifocus watermarking approach based on discrete cosine transform.

    PubMed

    Waheed, Safa Riyadh; Alkawaz, Mohammed Hazim; Rehman, Amjad; Almazyad, Abdulaziz S; Saba, Tanzila

    2016-05-01

    Image fusion process consolidates data and information from various images of same sight into a solitary image. Each of the source images might speak to a fractional perspective of the scene, and contains both "pertinent" and "immaterial" information. In this study, a new image fusion method is proposed utilizing the Discrete Cosine Transform (DCT) to join the source image into a solitary minimized image containing more exact depiction of the sight than any of the individual source images. In addition, the fused image comes out with most ideal quality image without bending appearance or loss of data. DCT algorithm is considered efficient in image fusion. The proposed scheme is performed in five steps: (1) RGB colour image (input image) is split into three channels R, G, and B for source images. (2) DCT algorithm is applied to each channel (R, G, and B). (3) The variance values are computed for the corresponding 8 × 8 blocks of each channel. (4) Each block of R of source images is compared with each other based on the variance value and then the block with maximum variance value is selected to be the block in the new image. This process is repeated for all channels of source images. (5) Inverse discrete cosine transform is applied on each fused channel to convert coefficient values to pixel values, and then combined all the channels to generate the fused image. The proposed technique can potentially solve the problem of unwanted side effects such as blurring or blocking artifacts by reducing the quality of the subsequent image in image fusion process. The proposed approach is evaluated using three measurement units: the average of Q(abf), standard deviation, and peak Signal Noise Rate. The experimental results of this proposed technique have shown good results as compared with older techniques. © 2016 Wiley Periodicals, Inc.

  18. Toward dynamic magnetic resonance imaging of the vocal tract during speech production.

    PubMed

    Ventura, Sandra M Rua; Freitas, Diamantino Rui S; Tavares, João Manuel R S

    2011-07-01

    The most recent and significant magnetic resonance imaging (MRI) improvements allow for the visualization of the vocal tract during speech production, which has been revealed to be a powerful tool in dynamic speech research. However, a synchronization technique with enhanced temporal resolution is still required. The study design was transversal in nature. Throughout this work, a technique for the dynamic study of the vocal tract with MRI by using the heart's signal to synchronize and trigger the imaging-acquisition process is presented and described. The technique in question is then used in the measurement of four speech articulatory parameters to assess three different syllables (articulatory gestures) of European Portuguese Language. The acquired MR images are automatically reconstructed so as to result in a variable sequence of images (slices) of different vocal tract shapes in articulatory positions associated with Portuguese speech sounds. The knowledge obtained as a result of the proposed technique represents a direct contribution to the improvement of speech synthesis algorithms, thereby allowing for novel perceptions in coarticulation studies, in addition to providing further efficient clinical guidelines in the pursuit of more proficient speech rehabilitation processes. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  19. Digital radiography: spatial and contrast resolution

    NASA Astrophysics Data System (ADS)

    Bjorkholm, Paul; Annis, M.; Frederick, E.; Stein, J.; Swift, R.

    1981-07-01

    The addition of digital image collection and storage to standard and newly developed x-ray imaging techniques has allowed spectacular improvements in some diagnostic procedures. There is no reason to expect that the developments in this area are yet complete. But no matter what further developments occur in this field, all the techniques will share a common element, digital image storage and processing. This common element alone determines some of the important imaging characteristics. These will be discussed using one system, the Medical MICRODOSE System as an example.

  20. Feature tracking cardiac magnetic resonance imaging: A review of a novel non-invasive cardiac imaging technique

    PubMed Central

    Rahman, Zia Ur; Sethi, Pooja; Murtaza, Ghulam; Virk, Hafeez Ul Hassan; Rai, Aitzaz; Mahmod, Masliza; Schoondyke, Jeffrey; Albalbissi, Kais

    2017-01-01

    Cardiovascular disease is a leading cause of morbidity and mortality globally. Early diagnostic markers are gaining popularity for better patient care disease outcomes. There is an increasing interest in noninvasive cardiac imaging biomarkers to diagnose subclinical cardiac disease. Feature tracking cardiac magnetic resonance imaging is a novel post-processing technique that is increasingly being employed to assess global and regional myocardial function. This technique has numerous applications in structural and functional diagnostics. It has been validated in multiple studies, although there is still a long way to go for it to become routine standard of care. PMID:28515849

  1. Road boundary detection

    NASA Technical Reports Server (NTRS)

    Sowers, J.; Mehrotra, R.; Sethi, I. K.

    1989-01-01

    A method for extracting road boundaries using the monochrome image of a visual road scene is presented. The statistical information regarding the intensity levels present in the image along with some geometrical constraints concerning the road are the basics of this approach. Results and advantages of this technique compared to others are discussed. The major advantages of this technique, when compared to others, are its ability to process the image in only one pass, to limit the area searched in the image using only knowledge concerning the road geometry and previous boundary information, and dynamically adjust for inconsistencies in the located boundary information, all of which helps to increase the efficacy of this technique.

  2. Quantitative Aspects of Single Molecule Microscopy

    PubMed Central

    Ober, Raimund J.; Tahmasbi, Amir; Ram, Sripad; Lin, Zhiping; Ward, E. Sally

    2015-01-01

    Single molecule microscopy is a relatively new optical microscopy technique that allows the detection of individual molecules such as proteins in a cellular context. This technique has generated significant interest among biologists, biophysicists and biochemists, as it holds the promise to provide novel insights into subcellular processes and structures that otherwise cannot be gained through traditional experimental approaches. Single molecule experiments place stringent demands on experimental and algorithmic tools due to the low signal levels and the presence of significant extraneous noise sources. Consequently, this has necessitated the use of advanced statistical signal and image processing techniques for the design and analysis of single molecule experiments. In this tutorial paper, we provide an overview of single molecule microscopy from early works to current applications and challenges. Specific emphasis will be on the quantitative aspects of this imaging modality, in particular single molecule localization and resolvability, which will be discussed from an information theoretic perspective. We review the stochastic framework for image formation, different types of estimation techniques and expressions for the Fisher information matrix. We also discuss several open problems in the field that demand highly non-trivial signal processing algorithms. PMID:26167102

  3. Comparative study of quantitative phase imaging techniques for refractometry of optical fibers

    NASA Astrophysics Data System (ADS)

    de Dorlodot, Bertrand; Bélanger, Erik; Bérubé, Jean-Philippe; Vallée, Réal; Marquet, Pierre

    2018-02-01

    The refractive index difference profile of optical fibers is the key design parameter because it determines, among other properties, the insertion losses and propagating modes. Therefore, an accurate refractive index profiling method is of paramount importance to their development and optimization. Quantitative phase imaging (QPI) is one of the available tools to retrieve structural characteristics of optical fibers, including the refractive index difference profile. Having the advantage of being non-destructive, several different QPI methods have been developed over the last decades. Here, we present a comparative study of three different available QPI techniques, namely the transport-of-intensity equation, quadriwave lateral shearing interferometry and digital holographic microscopy. To assess the accuracy and precision of those QPI techniques, quantitative phase images of the core of a well-characterized optical fiber have been retrieved for each of them and a robust image processing procedure has been applied in order to retrieve their refractive index difference profiles. As a result, even if the raw images for all the three QPI methods were suffering from different shortcomings, our robust automated image-processing pipeline successfully corrected these. After this treatment, all three QPI techniques yielded accurate, reliable and mutually consistent refractive index difference profiles in agreement with the accuracy and precision of the refracted near-field benchmark measurement.

  4. TU-F-CAMPUS-J-04: Evaluation of Metal Artifact Reduction Technique for the Radiation Therapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, K; Kuo, H; Ritter, J

    Purpose: To evaluate the feasibility of using a metal artifact reduction technique in depleting metal artifact and its application in improving dose calculation in External Radiation Therapy Planning. Methods: CIRS electron density phantom was scanned with and without steel drill bits placed in some plug holes. Meta artifact reduction software with Metal Deletion Technique (MDT) was used to remove metal artifacts for scanned image with metal. Hounsfield units of electron density plugs from artifact free reference image and MDT processed images were compared. To test the dose calculation improvement after the MDT processed images, clinically approved head and neck planmore » with manual dental artifact correction was tested. Patient images were exported and processed with MDT and plan was recalculated with new MDT image without manual correction. Dose profiles near the metal artifacts were compared. Results: The MDT used in this study effectively reduced the metal artifact caused by beam hardening and scatter. The windmill around the metal drill was greatly improved with smooth rounded view. Difference of the mean HU in each density plug between reference and MDT images were less than 10 HU in most of the plugs. Dose difference between original plan and MDT images were minimal. Conclusion: Most metal artifact reduction methods were developed for diagnostic improvement purpose. Hence Hounsfield unit accuracy was not rigorously tested before. In our test, MDT effectively eliminated metal artifacts with good HU reproduciblity. However, it can introduce new mild artifacts so the MDT images should be checked with original images.« less

  5. Towards real-time medical diagnostics using hyperspectral imaging technology

    NASA Astrophysics Data System (ADS)

    Bjorgan, Asgeir; Randeberg, Lise L.

    2015-07-01

    Hyperspectral imaging provides non-contact, high resolution spectral images which has a substantial diagnostic potential. This can be used for e.g. diagnosis and early detection of arthritis in finger joints. Processing speed is currently a limitation for clinical use of the technique. A real-time system for analysis and visualization using GPU processing and threaded CPU processing is presented. Images showing blood oxygenation, blood volume fraction and vessel enhanced images are among the data calculated in real-time. This study shows the potential of real-time processing in this context. A combination of the processing modules will be used in detection of arthritic finger joints from hyperspectral reflectance and transmittance data.

  6. Bright field segmentation tomography (BFST) for use as surface identification in stereomicroscopy

    NASA Astrophysics Data System (ADS)

    Thiesse, Jacqueline R.; Namati, Eman; de Ryk, Jessica; Hoffman, Eric A.; McLennan, Geoffrey

    2004-07-01

    Stereomicroscopy is an important method for use in image acquisition because it provides a 3D image of an object when other microscopic techniques can only provide the image in 2D. One challenge that is being faced with this type of imaging is determining the top surface of a sample that has otherwise indistinguishable surface and planar characteristics. We have developed a system that creates oblique illumination and in conjunction with image processing, the top surface can be viewed. The BFST consists of the Leica MZ12 stereomicroscope with a unique attached lighting source. The lighting source consists of eight light emitting diodes (LED's) that are separated by 45-degree angles. Each LED in this system illuminates with a 20-degree viewing angle once per cycle with a shadow over the rest of the sample. Subsequently, eight segmented images are taken per cycle. After the images are captured they are stacked through image addition to achieve the full field of view, and the surface is then easily identified. Image processing techniques, such as skeletonization can be used for further enhancement and measurement. With the use of BFST, advances can be made in detecting surface features from metals to tissue samples, such as in the analytical assessment of pulmonary emphysema using the technique of mean linear intercept.

  7. Technology for Elevated Temperature Tests of Structural Panels

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.

    1999-01-01

    A technique for full-field measurement of surface temperature and in-plane strain using a single grid imaging technique was demonstrated on a sample subjected to thermally-induced strain. The technique is based on digital imaging of a sample marked by an alternating line array of La2O2S:Eu(+3) thermographic phosphor and chromium illuminated by a UV lamp. Digital images of this array in unstrained and strained states were processed using a modified spin filter. Normal strain distribution was determined by combining unstrained and strained grid images using a single grid digital moire technique. Temperature distribution was determined by ratioing images of phosphor intensity at two wavelengths. Combined strain and temperature measurements demonstrated on the thermally heated sample were DELTA-epsilon = +/- 250 microepsilon and DELTA-T = +/- 5 K respectively with a spatial resolution of 0.8 mm.

  8. Intelligent Vision On The SM9O Mini-Computer Basis And Applications

    NASA Astrophysics Data System (ADS)

    Hawryszkiw, J.

    1985-02-01

    Distinction has to be made between image processing and vision Image processing finds its roots in the strong tradition of linear signal processing and promotes geometrical transform techniques, such as fi I tering , compression, and restoration. Its purpose is to transform an image for a human observer to easily extract from that image information significant for him. For example edges after a gradient operator, or a specific direction after a directional filtering operation. Image processing consists in fact in a set of local or global space-time transforms. The interpretation of the final image is done by the human observer. The purpose of vision is to extract the semantic content of the image. The machine can then understand that content, and run a process of decision, which turns into an action. Thus, intel I i gent vision depends on - Image processing - Pattern recognition - Artificial intel I igence

  9. Designing Image Analysis Pipelines in Light Microscopy: A Rational Approach.

    PubMed

    Arganda-Carreras, Ignacio; Andrey, Philippe

    2017-01-01

    With the progress of microscopy techniques and the rapidly growing amounts of acquired imaging data, there is an increased need for automated image processing and analysis solutions in biological studies. Each new application requires the design of a specific image analysis pipeline, by assembling a series of image processing operations. Many commercial or free bioimage analysis software are now available and several textbooks and reviews have presented the mathematical and computational fundamentals of image processing and analysis. Tens, if not hundreds, of algorithms and methods have been developed and integrated into image analysis software, resulting in a combinatorial explosion of possible image processing sequences. This paper presents a general guideline methodology to rationally address the design of image processing and analysis pipelines. The originality of the proposed approach is to follow an iterative, backwards procedure from the target objectives of analysis. The proposed goal-oriented strategy should help biologists to better apprehend image analysis in the context of their research and should allow them to efficiently interact with image processing specialists.

  10. Auto-SEIA: simultaneous optimization of image processing and machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Negro Maggio, Valentina; Iocchi, Luca

    2015-02-01

    Object classification from images is an important task for machine vision and it is a crucial ingredient for many computer vision applications, ranging from security and surveillance to marketing. Image based object classification techniques properly integrate image processing and machine learning (i.e., classification) procedures. In this paper we present a system for automatic simultaneous optimization of algorithms and parameters for object classification from images. More specifically, the proposed system is able to process a dataset of labelled images and to return a best configuration of image processing and classification algorithms and of their parameters with respect to the accuracy of classification. Experiments with real public datasets are used to demonstrate the effectiveness of the developed system.

  11. Image processing in digital pathology: an opportunity to solve inter-batch variability of immunohistochemical staining

    NASA Astrophysics Data System (ADS)

    van Eycke, Yves-Rémi; Allard, Justine; Salmon, Isabelle; Debeir, Olivier; Decaestecker, Christine

    2017-02-01

    Immunohistochemistry (IHC) is a widely used technique in pathology to evidence protein expression in tissue samples. However, this staining technique is known for presenting inter-batch variations. Whole slide imaging in digital pathology offers a possibility to overcome this problem by means of image normalisation techniques. In the present paper we propose a methodology to objectively evaluate the need of image normalisation and to identify the best way to perform it. This methodology uses tissue microarray (TMA) materials and statistical analyses to evidence the possible variations occurring at colour and intensity levels as well as to evaluate the efficiency of image normalisation methods in correcting them. We applied our methodology to test different methods of image normalisation based on blind colour deconvolution that we adapted for IHC staining. These tests were carried out for different IHC experiments on different tissue types and targeting different proteins with different subcellular localisations. Our methodology enabled us to establish and to validate inter-batch normalization transforms which correct the non-relevant IHC staining variations. The normalised image series were then processed to extract coherent quantitative features characterising the IHC staining patterns.

  12. Image processing in digital pathology: an opportunity to solve inter-batch variability of immunohistochemical staining

    PubMed Central

    Van Eycke, Yves-Rémi; Allard, Justine; Salmon, Isabelle; Debeir, Olivier; Decaestecker, Christine

    2017-01-01

    Immunohistochemistry (IHC) is a widely used technique in pathology to evidence protein expression in tissue samples. However, this staining technique is known for presenting inter-batch variations. Whole slide imaging in digital pathology offers a possibility to overcome this problem by means of image normalisation techniques. In the present paper we propose a methodology to objectively evaluate the need of image normalisation and to identify the best way to perform it. This methodology uses tissue microarray (TMA) materials and statistical analyses to evidence the possible variations occurring at colour and intensity levels as well as to evaluate the efficiency of image normalisation methods in correcting them. We applied our methodology to test different methods of image normalisation based on blind colour deconvolution that we adapted for IHC staining. These tests were carried out for different IHC experiments on different tissue types and targeting different proteins with different subcellular localisations. Our methodology enabled us to establish and to validate inter-batch normalization transforms which correct the non-relevant IHC staining variations. The normalised image series were then processed to extract coherent quantitative features characterising the IHC staining patterns. PMID:28220842

  13. Spectral Analysis and Experimental Modeling of Ice Accretion Roughness

    NASA Technical Reports Server (NTRS)

    Orr, D. J.; Breuer, K. S.; Torres, B. E.; Hansman, R. J., Jr.

    1996-01-01

    A self-consistent scheme for relating wind tunnel ice accretion roughness to the resulting enhancement of heat transfer is described. First, a spectral technique of quantitative analysis of early ice roughness images is reviewed. The image processing scheme uses a spectral estimation technique (SET) which extracts physically descriptive parameters by comparing scan lines from the experimentally-obtained accretion images to a prescribed test function. Analysis using this technique for both streamwise and spanwise directions of data from the NASA Lewis Icing Research Tunnel (IRT) are presented. An experimental technique is then presented for constructing physical roughness models suitable for wind tunnel testing that match the SET parameters extracted from the IRT images. The icing castings and modeled roughness are tested for enhancement of boundary layer heat transfer using infrared techniques in a "dry" wind tunnel.

  14. 3D Image Analysis of Geomaterials using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Mulukutla, G.; Proussevitch, A.; Sahagian, D.

    2009-05-01

    Confocal microscopy is one of the most significant advances in optical microscopy of the last century. It is widely used in biological sciences but its application to geomaterials lingers due to a number of technical problems. Potentially the technique can perform non-invasive testing on a laser illuminated sample that fluoresces using a unique optical sectioning capability that rejects out-of-focus light reaching the confocal aperture. Fluorescence in geomaterials is commonly induced using epoxy doped with a fluorochrome that is impregnated into the sample to enable discrimination of various features such as void space or material boundaries. However, for many geomaterials, this method cannot be used because they do not naturally fluoresce and because epoxy cannot be impregnated into inaccessible parts of the sample due to lack of permeability. As a result, the confocal images of most geomaterials that have not been pre-processed with extensive sample preparation techniques are of poor quality and lack the necessary image and edge contrast necessary to apply any commonly used segmentation techniques to conduct any quantitative study of its features such as vesicularity, internal structure, etc. In our present work, we are developing a methodology to conduct a quantitative 3D analysis of images of geomaterials collected using a confocal microscope with minimal amount of prior sample preparation and no addition of fluorescence. Two sample geomaterials, a volcanic melt sample and a crystal chip containing fluid inclusions are used to assess the feasibility of the method. A step-by-step process of image analysis includes application of image filtration to enhance the edges or material interfaces and is based on two segmentation techniques: geodesic active contours and region competition. Both techniques have been applied extensively to the analysis of medical MRI images to segment anatomical structures. Preliminary analysis suggests that there is distortion in the shapes of the segmented vesicles, vapor bubbles, and void spaces due to the optical measurements, so corrective actions are being explored. This will establish a practical and reliable framework for an adaptive 3D image processing technique for the analysis of geomaterials using confocal microscopy.

  15. Zero source insertion technique to account for undersampling in GPR imaging

    DOEpatents

    Chambers, David H; Mast, Jeffrey E; Paglieroni, David W

    2014-02-25

    A method and system for detecting the presence of subsurface objects within a medium is provided. In some embodiments, the imaging and detection system operates in a multistatic mode to collect radar return signals generated by an array of transceiver antenna pairs that is positioned across the surface and that travels down the surface. The imaging and detection system pre-processes the return signal to suppress certain undesirable effects. The imaging and detection system then generates synthetic aperture radar images from real aperture radar images generated from the pre-processed return signal. The imaging and detection system then post-processes the synthetic aperture radar images to improve detection of subsurface objects. The imaging and detection system identifies peaks in the energy levels of the post-processed image frame, which indicates the presence of a subsurface object.

  16. An adaptive technique to maximize lossless image data compression of satellite images

    NASA Technical Reports Server (NTRS)

    Stewart, Robert J.; Lure, Y. M. Fleming; Liou, C. S. Joe

    1994-01-01

    Data compression will pay an increasingly important role in the storage and transmission of image data within NASA science programs as the Earth Observing System comes into operation. It is important that the science data be preserved at the fidelity the instrument and the satellite communication systems were designed to produce. Lossless compression must therefore be applied, at least, to archive the processed instrument data. In this paper, we present an analysis of the performance of lossless compression techniques and develop an adaptive approach which applied image remapping, feature-based image segmentation to determine regions of similar entropy and high-order arithmetic coding to obtain significant improvements over the use of conventional compression techniques alone. Image remapping is used to transform the original image into a lower entropy state. Several techniques were tested on satellite images including differential pulse code modulation, bi-linear interpolation, and block-based linear predictive coding. The results of these experiments are discussed and trade-offs between computation requirements and entropy reductions are used to identify the optimum approach for a variety of satellite images. Further entropy reduction can be achieved by segmenting the image based on local entropy properties then applying a coding technique which maximizes compression for the region. Experimental results are presented showing the effect of different coding techniques for regions of different entropy. A rule-base is developed through which the technique giving the best compression is selected. The paper concludes that maximum compression can be achieved cost effectively and at acceptable performance rates with a combination of techniques which are selected based on image contextual information.

  17. A high performance biometric signal and image processing method to reveal blood perfusion towards 3D oxygen saturation mapping

    NASA Astrophysics Data System (ADS)

    Imms, Ryan; Hu, Sijung; Azorin-Peris, Vicente; Trico, Michaël.; Summers, Ron

    2014-03-01

    Non-contact imaging photoplethysmography (PPG) is a recent development in the field of physiological data acquisition, currently undergoing a large amount of research to characterize and define the range of its capabilities. Contact-based PPG techniques have been broadly used in clinical scenarios for a number of years to obtain direct information about the degree of oxygen saturation for patients. With the advent of imaging techniques, there is strong potential to enable access to additional information such as multi-dimensional blood perfusion and saturation mapping. The further development of effective opto-physiological monitoring techniques is dependent upon novel modelling techniques coupled with improved sensor design and effective signal processing methodologies. The biometric signal and imaging processing platform (bSIPP) provides a comprehensive set of features for extraction and analysis of recorded iPPG data, enabling direct comparison with other biomedical diagnostic tools such as ECG and EEG. Additionally, utilizing information about the nature of tissue structure has enabled the generation of an engineering model describing the behaviour of light during its travel through the biological tissue. This enables the estimation of the relative oxygen saturation and blood perfusion in different layers of the tissue to be calculated, which has the potential to be a useful diagnostic tool.

  18. Statistical Techniques for Efficient Indexing and Retrieval of Document Images

    ERIC Educational Resources Information Center

    Bhardwaj, Anurag

    2010-01-01

    We have developed statistical techniques to improve the performance of document image search systems where the intermediate step of OCR based transcription is not used. Previous research in this area has largely focused on challenges pertaining to generation of small lexicons for processing handwritten documents and enhancement of poor quality…

  19. [Advance in interferogram data processing technique].

    PubMed

    Jing, Juan-Juan; Xiangli, Bin; Lü, Qun-Bo; Huang, Min; Zhou, Jin-Song

    2011-04-01

    Fourier transform spectrometry is a type of novel information obtaining technology, which integrated the functions of imaging and spectra, but the data that the instrument acquired is the interference data of the target, which is an intermediate data and couldn't be used directly, so data processing must be adopted for the successful application of the interferometric data In the present paper, data processing techniques are divided into two classes: general-purpose and special-type. First, the advance in universal interferometric data processing technique is introduced, then the special-type interferometric data extracting method and data processing technique is illustrated according to the classification of Fourier transform spectroscopy. Finally, the trends of interferogram data processing technique are discussed.

  20. Image processing methods used to simulate flight over remotely sensed data

    NASA Technical Reports Server (NTRS)

    Mortensen, H. B.; Hussey, K. J.; Mortensen, R. A.

    1988-01-01

    It has been demonstrated that image processing techniques can provide an effective means of simulating flight over remotely sensed data (Hussey et al. 1986). This paper explains the methods used to simulate and animate three-dimensional surfaces from two-dimensional imagery. The preprocessing techniques used on the input data, the selection of the animation sequence, the generation of the animation frames, and the recording of the animation is covered. The software used for all steps is discussed.

  1. Enhanced FIB-SEM systems for large-volume 3D imaging.

    PubMed

    Xu, C Shan; Hayworth, Kenneth J; Lu, Zhiyuan; Grob, Patricia; Hassan, Ahmed M; García-Cerdán, José G; Niyogi, Krishna K; Nogales, Eva; Weinberg, Richard J; Hess, Harald F

    2017-05-13

    Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) can automatically generate 3D images with superior z-axis resolution, yielding data that needs minimal image registration and related post-processing. Obstacles blocking wider adoption of FIB-SEM include slow imaging speed and lack of long-term system stability, which caps the maximum possible acquisition volume. Here, we present techniques that accelerate image acquisition while greatly improving FIB-SEM reliability, allowing the system to operate for months and generating continuously imaged volumes > 10 6 µm 3 . These volumes are large enough for connectomics, where the excellent z resolution can help in tracing of small neuronal processes and accelerate the tedious and time-consuming human proofreading effort. Even higher resolution can be achieved on smaller volumes. We present example data sets from mammalian neural tissue, Drosophila brain, and Chlamydomonas reinhardtii to illustrate the power of this novel high-resolution technique to address questions in both connectomics and cell biology.

  2. The Commercial Challenges Of Pacs

    NASA Astrophysics Data System (ADS)

    Vanden Brink, John A.

    1984-08-01

    The increasing use of digital imaging techniques create a need for improved methods of digital processing, communication and archiving. However, the commercial opportunity is dependent on the resolution of a number of issues. These issues include proof that digital processes are more cost effective than present techniques, implementation of information system support in the imaging activity, implementation of industry standards, conversion of analog images to digital formats, definition of clinical needs, the implications of the purchase decision and technology requirements. In spite of these obstacles, a market is emerging, served by new and existing companies, that may become a $500 million market (U.S.) by 1990 for equipment and supplies.

  3. Towards Automatic Image Segmentation Using Optimised Region Growing Technique

    NASA Astrophysics Data System (ADS)

    Alazab, Mamoun; Islam, Mofakharul; Venkatraman, Sitalakshmi

    Image analysis is being adopted extensively in many applications such as digital forensics, medical treatment, industrial inspection, etc. primarily for diagnostic purposes. Hence, there is a growing interest among researches in developing new segmentation techniques to aid the diagnosis process. Manual segmentation of images is labour intensive, extremely time consuming and prone to human errors and hence an automated real-time technique is warranted in such applications. There is no universally applicable automated segmentation technique that will work for all images as the image segmentation is quite complex and unique depending upon the domain application. Hence, to fill the gap, this paper presents an efficient segmentation algorithm that can segment a digital image of interest into a more meaningful arrangement of regions and objects. Our algorithm combines region growing approach with optimised elimination of false boundaries to arrive at more meaningful segments automatically. We demonstrate this using X-ray teeth images that were taken for real-life dental diagnosis.

  4. Quantification of chromatin condensation level by image processing.

    PubMed

    Irianto, Jerome; Lee, David A; Knight, Martin M

    2014-03-01

    The level of chromatin condensation is related to the silencing/activation of chromosomal territories and therefore impacts on gene expression. Chromatin condensation changes during cell cycle, progression and differentiation, and is influenced by various physicochemical and epigenetic factors. This study describes a validated experimental technique to quantify chromatin condensation. A novel image processing procedure is developed using Sobel edge detection to quantify the level of chromatin condensation from nuclei images taken by confocal microscopy. The algorithm was developed in MATLAB and used to quantify different levels of chromatin condensation in chondrocyte nuclei achieved through alteration in osmotic pressure. The resulting chromatin condensation parameter (CCP) is in good agreement with independent multi-observer qualitative visual assessment. This image processing technique thereby provides a validated unbiased parameter for rapid and highly reproducible quantification of the level of chromatin condensation. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Color separation in forensic image processing using interactive differential evolution.

    PubMed

    Mushtaq, Harris; Rahnamayan, Shahryar; Siddiqi, Areeb

    2015-01-01

    Color separation is an image processing technique that has often been used in forensic applications to differentiate among variant colors and to remove unwanted image interference. This process can reveal important information such as covered text or fingerprints in forensic investigation procedures. However, several limitations prevent users from selecting the appropriate parameters pertaining to the desired and undesired colors. This study proposes the hybridization of an interactive differential evolution (IDE) and a color separation technique that no longer requires users to guess required control parameters. The IDE algorithm optimizes these parameters in an interactive manner by utilizing human visual judgment to uncover desired objects. A comprehensive experimental verification has been conducted on various sample test images, including heavily obscured texts, texts with subtle color variations, and fingerprint smudges. The advantage of IDE is apparent as it effectively optimizes the color separation parameters at a level indiscernible to the naked eyes. © 2014 American Academy of Forensic Sciences.

  6. Analysis on unevenness of skin color using the melanin and hemoglobin components separated by independent component analysis of skin color image

    NASA Astrophysics Data System (ADS)

    Ojima, Nobutoshi; Fujiwara, Izumi; Inoue, Yayoi; Tsumura, Norimichi; Nakaguchi, Toshiya; Iwata, Kayoko

    2011-03-01

    Uneven distribution of skin color is one of the biggest concerns about facial skin appearance. Recently several techniques to analyze skin color have been introduced by separating skin color information into chromophore components, such as melanin and hemoglobin. However, there are not many reports on quantitative analysis of unevenness of skin color by considering type of chromophore, clusters of different sizes and concentration of the each chromophore. We propose a new image analysis and simulation method based on chromophore analysis and spatial frequency analysis. This method is mainly composed of three techniques: independent component analysis (ICA) to extract hemoglobin and melanin chromophores from a single skin color image, an image pyramid technique which decomposes each chromophore into multi-resolution images, which can be used for identifying different sizes of clusters or spatial frequencies, and analysis of the histogram obtained from each multi-resolution image to extract unevenness parameters. As the application of the method, we also introduce an image processing technique to change unevenness of melanin component. As the result, the method showed high capabilities to analyze unevenness of each skin chromophore: 1) Vague unevenness on skin could be discriminated from noticeable pigmentation such as freckles or acne. 2) By analyzing the unevenness parameters obtained from each multi-resolution image for Japanese ladies, agerelated changes were observed in the parameters of middle spatial frequency. 3) An image processing system modulating the parameters was proposed to change unevenness of skin images along the axis of the obtained age-related change in real time.

  7. Single molecule image formation, reconstruction and processing: introduction.

    PubMed

    Ashok, Amit; Piestun, Rafael; Stallinga, Sjoerd

    2016-07-01

    The ability to image at the single molecule scale has revolutionized research in molecular biology. This feature issue presents a collection of articles that provides new insights into the fundamental limits of single molecule imaging and reports novel techniques for image formation and analysis.

  8. Search Radar Track-Before-Detect Using the Hough Transform.

    DTIC Science & Technology

    1995-03-01

    before - detect processing method which allows previous data to help in target detection. The technique provides many advantages compared to...improved target detection scheme, applicable to search radars, using the Hough transform image processing technique. The system concept involves a track

  9. Image-Processing Techniques for the Creation of Presentation-Quality Astronomical Images

    NASA Astrophysics Data System (ADS)

    Rector, Travis A.; Levay, Zoltan G.; Frattare, Lisa M.; English, Jayanne; Pu'uohau-Pummill, Kirk

    2007-02-01

    The quality of modern astronomical data and the agility of current image-processing software enable the visualization of data in a way that exceeds the traditional definition of an astronomical image. Two developments in particular have led to a fundamental change in how astronomical images can be assembled. First, the availability of high-quality multiwavelength and narrowband data allow for images that do not correspond to the wavelength sensitivity of the human eye, thereby introducing ambiguity in the usage and interpretation of color. Second, many image-processing software packages now use a layering metaphor that allows for any number of astronomical data sets to be combined into a color image. With this technique, images with as many as eight data sets have been produced. Each data set is intensity-scaled and colorized independently, creating an immense parameter space that can be used to assemble the image. Since such images are intended for data visualization, scaling and color schemes must be chosen that best illustrate the science. A practical guide is presented on how to use the layering metaphor to generate publication-ready astronomical images from as many data sets as desired. A methodology is also given on how to use intensity scaling, color, and composition to create contrasts in an image that highlight the scientific detail. Examples of image creation are discussed.

  10. Efficient generation of discontinuity-preserving adaptive triangulations from range images.

    PubMed

    Garcia, Miguel Angel; Sappa, Angel Domingo

    2004-10-01

    This paper presents an efficient technique for generating adaptive triangular meshes from range images. The algorithm consists of two stages. First, a user-defined number of points is adaptively sampled from the given range image. Those points are chosen by taking into account the surface shapes represented in the range image in such a way that points tend to group in areas of high curvature and to disperse in low-variation regions. This selection process is done through a noniterative, inherently parallel algorithm in order to gain efficiency. Once the image has been subsampled, the second stage applies a two and one half-dimensional Delaunay triangulation to obtain an initial triangular mesh. To favor the preservation of surface and orientation discontinuities (jump and crease edges) present in the original range image, the aforementioned triangular mesh is iteratively modified by applying an efficient edge flipping technique. Results with real range images show accurate triangular approximations of the given range images with low processing times.

  11. Automatic Feature Extraction from Planetary Images

    NASA Technical Reports Server (NTRS)

    Troglio, Giulia; Le Moigne, Jacqueline; Benediktsson, Jon A.; Moser, Gabriele; Serpico, Sebastiano B.

    2010-01-01

    With the launch of several planetary missions in the last decade, a large amount of planetary images has already been acquired and much more will be available for analysis in the coming years. The image data need to be analyzed, preferably by automatic processing techniques because of the huge amount of data. Although many automatic feature extraction methods have been proposed and utilized for Earth remote sensing images, these methods are not always applicable to planetary data that often present low contrast and uneven illumination characteristics. Different methods have already been presented for crater extraction from planetary images, but the detection of other types of planetary features has not been addressed yet. Here, we propose a new unsupervised method for the extraction of different features from the surface of the analyzed planet, based on the combination of several image processing techniques, including a watershed segmentation and the generalized Hough Transform. The method has many applications, among which image registration and can be applied to arbitrary planetary images.

  12. Image processing for optical mapping.

    PubMed

    Ravindran, Prabu; Gupta, Aditya

    2015-01-01

    Optical Mapping is an established single-molecule, whole-genome analysis system, which has been used to gain a comprehensive understanding of genomic structure and to study structural variation of complex genomes. A critical component of Optical Mapping system is the image processing module, which extracts single molecule restriction maps from image datasets of immobilized, restriction digested and fluorescently stained large DNA molecules. In this review, we describe robust and efficient image processing techniques to process these massive datasets and extract accurate restriction maps in the presence of noise, ambiguity and confounding artifacts. We also highlight a few applications of the Optical Mapping system.

  13. White-Light Optical Information Processing and Holography.

    DTIC Science & Technology

    1984-06-22

    Processing, Image Deblurring , Source Encoding, Signal Sampling, Coherence Measurement, Noise Performance, / Pseudocolor Encoding. , ’ ’ * .~ 10.ASS!RACT...o 2.1 Broad Spectral Band Color Image Deblurring .. . 4 2.2 Noise Performance ...... ...... .. . 4 2.3 Pseudocolor Encoding with Three Primary...spectra. This technique is particularly suitable for linear smeared color image deblurring . 2.2 Noise Performance In this period, we have also

  14. Low level image processing techniques using the pipeline image processing engine in the flight telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Nashman, Marilyn; Chaconas, Karen J.

    1988-01-01

    The sensory processing system for the NASA/NBS Standard Reference Model (NASREM) for telerobotic control is described. This control system architecture was adopted by NASA of the Flight Telerobotic Servicer. The control system is hierarchically designed and consists of three parallel systems: task decomposition, world modeling, and sensory processing. The Sensory Processing System is examined, and in particular the image processing hardware and software used to extract features at low levels of sensory processing for tasks representative of those envisioned for the Space Station such as assembly and maintenance are described.

  15. An array processing system for lunar geochemical and geophysical data

    NASA Technical Reports Server (NTRS)

    Eliason, E. M.; Soderblom, L. A.

    1977-01-01

    A computerized array processing system has been developed to reduce, analyze, display, and correlate a large number of orbital and earth-based geochemical, geophysical, and geological measurements of the moon on a global scale. The system supports the activities of a consortium of about 30 lunar scientists involved in data synthesis studies. The system was modeled after standard digital image-processing techniques but differs in that processing is performed with floating point precision rather than integer precision. Because of flexibility in floating-point image processing, a series of techniques that are impossible or cumbersome in conventional integer processing were developed to perform optimum interpolation and smoothing of data. Recently color maps of about 25 lunar geophysical and geochemical variables have been generated.

  16. Clinical applications of advanced magnetic resonance imaging techniques for arthritis evaluation

    PubMed Central

    Martín Noguerol, Teodoro; Luna, Antonio; Gómez Cabrera, Marta; Riofrio, Alexie D

    2017-01-01

    Magnetic resonance imaging (MRI) has allowed a comprehensive evaluation of articular disease, increasing the detection of early cartilage involvement, bone erosions, and edema in soft tissue and bone marrow compared to other imaging techniques. In the era of functional imaging, new advanced MRI sequences are being successfully applied for articular evaluation in cases of inflammatory, infectious, and degenerative arthropathies. Diffusion weighted imaging, new fat suppression techniques such as DIXON, dynamic contrast enhanced-MRI, and specific T2 mapping cartilage sequences allow a better understanding of the physiopathological processes that underlie these different arthropathies. They provide valuable quantitative information that aids in their differentiation and can be used as potential biomarkers of articular disease course and treatment response. PMID:28979849

  17. True Color Image Analysis For Determination Of Bone Growth In Fluorochromic Biopsies

    NASA Astrophysics Data System (ADS)

    Madachy, Raymond J.; Chotivichit, Lee; Huang, H. K.; Johnson, Eric E.

    1989-05-01

    A true color imaging technique has been developed for analysis of microscopic fluorochromic bone biopsy images to quantify new bone growth. The technique searches for specified colors in a medical image for quantification of areas of interest. Based on a user supplied training set, a multispectral classification of pixel values is performed and used for segmenting the image. Good results were obtained when compared to manual tracings of new bone growth performed by an orthopedic surgeon. At a 95% confidence level, the hypothesis that there is no difference between the two methods can be accepted. Work is in progress to test bone biopsies with different colored stains and further optimize the analysis process using three-dimensional spectral ordering techniques.

  18. Image smoothing and enhancement via min/max curvature flow

    NASA Astrophysics Data System (ADS)

    Malladi, Ravikanth; Sethian, James A.

    1996-03-01

    We present a class of PDE-based algorithms suitable for a wide range of image processing applications. The techniques are applicable to both salt-and-pepper gray-scale noise and full- image continuous noise present in black and white images, gray-scale images, texture images and color images. At the core, the techniques rely on a level set formulation of evolving curves and surfaces and the viscosity in profile evolution. Essentially, the method consists of moving the isointensity contours in an image under curvature dependent speed laws to achieve enhancement. Compared to existing techniques, our approach has several distinct advantages. First, it contains only one enhancement parameter, which in most cases is automatically chosen. Second, the scheme automatically stops smoothing at some optimal point; continued application of the scheme produces no further change. Third, the method is one of the fastest possible schemes based on a curvature-controlled approach.

  19. Contribution of non-negative matrix factorization to the classification of remote sensing images

    NASA Astrophysics Data System (ADS)

    Karoui, M. S.; Deville, Y.; Hosseini, S.; Ouamri, A.; Ducrot, D.

    2008-10-01

    Remote sensing has become an unavoidable tool for better managing our environment, generally by realizing maps of land cover using classification techniques. The classification process requires some pre-processing, especially for data size reduction. The most usual technique is Principal Component Analysis. Another approach consists in regarding each pixel of the multispectral image as a mixture of pure elements contained in the observed area. Using Blind Source Separation (BSS) methods, one can hope to unmix each pixel and to perform the recognition of the classes constituting the observed scene. Our contribution consists in using Non-negative Matrix Factorization (NMF) combined with sparse coding as a solution to BSS, in order to generate new images (which are at least partly separated images) using HRV SPOT images from Oran area, Algeria). These images are then used as inputs of a supervised classifier integrating textural information. The results of classifications of these "separated" images show a clear improvement (correct pixel classification rate improved by more than 20%) compared to classification of initial (i.e. non separated) images. These results show the contribution of NMF as an attractive pre-processing for classification of multispectral remote sensing imagery.

  20. A Synthesis of Star Calibration Techniques for Ground-Based Narrowband Electron-Multiplying Charge-Coupled Device Imagers Used in Auroral Photometry

    NASA Technical Reports Server (NTRS)

    Grubbs, Guy II; Michell, Robert; Samara, Marilia; Hampton, Don; Jahn, Jorg-Micha

    2016-01-01

    A technique is presented for the periodic and systematic calibration of ground-based optical imagers. It is important to have a common system of units (Rayleighs or photon flux) for cross comparison as well as self-comparison over time. With the advancement in technology, the sensitivity of these imagers has improved so that stars can be used for more precise calibration. Background subtraction, flat fielding, star mapping, and other common techniques are combined in deriving a calibration technique appropriate for a variety of ground-based imager installations. Spectral (4278, 5577, and 8446 A ) ground-based imager data with multiple fields of view (19, 47, and 180 deg) are processed and calibrated using the techniques developed. The calibration techniques applied result in intensity measurements in agreement between different imagers using identical spectral filtering, and the intensity at each wavelength observed is within the expected range of auroral measurements. The application of these star calibration techniques, which convert raw imager counts into units of photon flux, makes it possible to do quantitative photometry. The computed photon fluxes, in units of Rayleighs, can be used for the absolute photometry between instruments or as input parameters for auroral electron transport models.

  1. Enhancing hyperspectral spatial resolution using multispectral image fusion: A wavelet approach

    NASA Astrophysics Data System (ADS)

    Jazaeri, Amin

    High spectral and spatial resolution images have a significant impact in remote sensing applications. Because both spatial and spectral resolutions of spaceborne sensors are fixed by design and it is not possible to further increase the spatial or spectral resolution, techniques such as image fusion must be applied to achieve such goals. This dissertation introduces the concept of wavelet fusion between hyperspectral and multispectral sensors in order to enhance the spectral and spatial resolution of a hyperspectral image. To test the robustness of this concept, images from Hyperion (hyperspectral sensor) and Advanced Land Imager (multispectral sensor) were first co-registered and then fused using different wavelet algorithms. A regression-based fusion algorithm was also implemented for comparison purposes. The results show that the fused images using a combined bi-linear wavelet-regression algorithm have less error than other methods when compared to the ground truth. In addition, a combined regression-wavelet algorithm shows more immunity to misalignment of the pixels due to the lack of proper registration. The quantitative measures of average mean square error show that the performance of wavelet-based methods degrades when the spatial resolution of hyperspectral images becomes eight times less than its corresponding multispectral image. Regardless of what method of fusion is utilized, the main challenge in image fusion is image registration, which is also a very time intensive process. Because the combined regression wavelet technique is computationally expensive, a hybrid technique based on regression and wavelet methods was also implemented to decrease computational overhead. However, the gain in faster computation was offset by the introduction of more error in the outcome. The secondary objective of this dissertation is to examine the feasibility and sensor requirements for image fusion for future NASA missions in order to be able to perform onboard image fusion. In this process, the main challenge of image registration was resolved by registering the input images using transformation matrices of previously acquired data. The composite image resulted from the fusion process remarkably matched the ground truth, indicating the possibility of real time onboard fusion processing.

  2. Flood mapping from Sentinel-1 and Landsat-8 data: a case study from river Evros, Greece

    NASA Astrophysics Data System (ADS)

    Kyriou, Aggeliki; Nikolakopoulos, Konstantinos

    2015-10-01

    Floods are suddenly and temporary natural events, affecting areas which are not normally covered by water. The influence of floods plays a significant role both in society and the natural environment, therefore flood mapping is crucial. Remote sensing data can be used to develop flood map in an efficient and effective way. This work is focused on expansion of water bodies overtopping natural levees of the river Evros, invading the surroundings areas and converting them in flooded. Different techniques of flood mapping were used using data from active and passive remote sensing sensors like Sentinlel-1 and Landsat-8 respectively. Space borne pairs obtained from Sentinel-1 were processed in this study. Each pair included an image during the flood, which is called "crisis image" and another one before the event, which is called "archived image". Both images covering the same area were processed producing a map, which shows the spread of the flood. Multispectral data From Landsat-8 were also processed in order to detect and map the flooded areas. Different image processing techniques were applied and the results were compared to the respective results of the radar data processing.

  3. South Florida Everglades: satellite image map

    USGS Publications Warehouse

    Jones, John W.; Thomas, Jean-Claude; Desmond, G.B.

    2001-01-01

    These satellite image maps are one product of the USGS Land Characteristics from Remote Sensing project, funded through the USGS Place-Based Studies Program (http://access.usgs.gov/) with support from the Everglades National Park (http://www.nps.gov/ever/). The objective of this project is to develop and apply innovative remote sensing and geographic information system techniques to map the distribution of vegetation, vegetation characteristics, and related hydrologic variables through space and over time. The mapping and description of vegetation characteristics and their variations are necessary to accurately simulate surface hydrology and other surface processes in South Florida and to monitor land surface changes. As part of this research, data from many airborne and satellite imaging systems have been georeferenced and processed to facilitate data fusion and analysis. These image maps were created using image fusion techniques developed as part of this project.

  4. Architectures and algorithms for digital image processing; Proceedings of the Meeting, Cannes, France, December 5, 6, 1985

    NASA Technical Reports Server (NTRS)

    Duff, Michael J. B. (Editor); Siegel, Howard J. (Editor); Corbett, Francis J. (Editor)

    1986-01-01

    The conference presents papers on the architectures, algorithms, and applications of image processing. Particular attention is given to a very large scale integration system for image reconstruction from projections, a prebuffer algorithm for instant display of volume data, and an adaptive image sequence filtering scheme based on motion detection. Papers are also presented on a simple, direct practical method of sensing local motion and analyzing local optical flow, image matching techniques, and an automated biological dosimetry system.

  5. Imaging of the meninges and the extra-axial spaces.

    PubMed

    Kirmi, Olga; Sheerin, Fintan; Patel, Neel

    2009-12-01

    The separate meningeal layers and extraaxial spaces are complex and can only be differentiated by pathologic processes on imaging. Differentiation of the location of such processes can be achieved using different imaging modalities. In this pictorial review we address the imaging techniques, enhancement and location patterns, and disease spread that will promote accurate localization of the pathology, thus improving accuracy of diagnosis. Typical and unusual magnetic resonance (MR), computed tomography (CT), and ultrasound imaging findings of many conditions affecting these layers and spaces are described.

  6. Binary Detection using Multi-Hypothesis Log-Likelihood, Image Processing

    DTIC Science & Technology

    2014-03-27

    geosynchronous orbit and other scenarios important to the USAF. 2 1.3 Research objectives The question posed in this thesis is how well, if at all, can a...is important to compare them to another modern technique. The third objective is to compare results from another image detection method, specifically...Although adaptive optics is an important technique in moving closer to diffraction limited imaging, it is not currently a practical solution for all

  7. Detection and Evaluation of Skin Disorders by One of Photogrammetric Image Analysis Methods

    NASA Astrophysics Data System (ADS)

    Güçin, M.; Patias, P.; Altan, M. O.

    2012-08-01

    Abnormalities on skin may vary from simple acne to painful wounds which affect a person's life quality. Detection of these kinds of disorders in early stages, followed by the evaluation of abnormalities is of high importance. At this stage, photogrammetry offers a non-contact solution to this concern by providing geometric highly accurate data. Photogrammetry, which has been used for firstly topographic purposes, in virtue of terrestrial photogrammetry became useful technique in non-topographic applications also (Wolf et al., 2000). Moreover the extension of usage of photogrammetry, in parallel with the development in technology, analogue photographs are replaced with digital images and besides digital image processing techniques, it provides modification of digital images by using filters, registration processes etc. Besides, photogrammetry (using same coordinate system by registration of images) can serve as a tool for the comparison of temporal imaging data. The aim of this study is to examine several digital image processing techniques, in particular the digital filters, which might be useful to determine skin disorders. In our study we examine affordable to purchase, user friendly software which needs neither expertise nor pre-training. Since it is a pre-work for subsequent and deeper studies, Adobe Photoshop 7.0 is used as a present software. In addition to that Adobe Photoshop released a DesAcc plug-ins with CS3 version and provides full compatibility with DICOM (Digital Imaging and Communications in Medicine) and PACS (Picture Archiving and Communications System) that enables doctors to store all medical data together with relevant images and share if necessary.

  8. Rotation Covariant Image Processing for Biomedical Applications

    PubMed Central

    Reisert, Marco

    2013-01-01

    With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences. PMID:23710255

  9. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, J.; Papenberg, C.

    2012-03-01

    Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV) to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  10. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals

    PubMed Central

    Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O.; Zhao, Mingrui; Daniel, Andy G. S.; Zhou, Zhiping; Bruno, Randy M.; Berwick, Jason; Schwartz, Theodore H.

    2014-01-01

    Abstract. In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required. PMID:25525611

  11. Wide-field in vivo neocortical calcium dye imaging using a convection-enhanced loading technique combined with simultaneous multiwavelength imaging of voltage-sensitive dyes and hemodynamic signals.

    PubMed

    Ma, Hongtao; Harris, Samuel; Rahmani, Redi; Lacefield, Clay O; Zhao, Mingrui; Daniel, Andy G S; Zhou, Zhiping; Bruno, Randy M; Berwick, Jason; Schwartz, Theodore H

    2014-07-24

    In vivo calcium imaging is an incredibly powerful technique that provides simultaneous information on fast neuronal events, such as action potentials and subthreshold synaptic activity, as well as slower events that occur in the glia and surrounding neuropil. Bulk-loading methods that involve multiple injections can be used for single-cell as well as wide-field imaging studies. However, multiple injections result in inhomogeneous loading as well as multiple sites of potential cortical injury. We used convection-enhanced delivery to create smooth, continuous loading of a large area of the cortical surface through a solitary injection site and demonstrated the efficacy of the technique using confocal microscopy imaging of single cells and physiological responses to single-trial events of spontaneous activity, somatosensory-evoked potentials, and epileptiform events. Combinations of calcium imaging with voltage-sensitive dye and intrinsic signal imaging demonstrate the utility of this technique in neurovascular coupling investigations. Convection-enhanced loading of calcium dyes may be a useful technique to advance the study of cortical processing when widespread loading of a wide-field imaging is required.

  12. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications

    PubMed Central

    Park, Keunyeol; Song, Minkyu

    2018-01-01

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm2 with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency. PMID:29495273

  13. The Design of a Single-Bit CMOS Image Sensor for Iris Recognition Applications.

    PubMed

    Park, Keunyeol; Song, Minkyu; Kim, Soo Youn

    2018-02-24

    This paper presents a single-bit CMOS image sensor (CIS) that uses a data processing technique with an edge detection block for simple iris segmentation. In order to recognize the iris image, the image sensor conventionally captures high-resolution image data in digital code, extracts the iris data, and then compares it with a reference image through a recognition algorithm. However, in this case, the frame rate decreases by the time required for digital signal conversion of multi-bit digital data through the analog-to-digital converter (ADC) in the CIS. In order to reduce the overall processing time as well as the power consumption, we propose a data processing technique with an exclusive OR (XOR) logic gate to obtain single-bit and edge detection image data instead of multi-bit image data through the ADC. In addition, we propose a logarithmic counter to efficiently measure single-bit image data that can be applied to the iris recognition algorithm. The effective area of the proposed single-bit image sensor (174 × 144 pixel) is 2.84 mm² with a 0.18 μm 1-poly 4-metal CMOS image sensor process. The power consumption of the proposed single-bit CIS is 2.8 mW with a 3.3 V of supply voltage and 520 frame/s of the maximum frame rates. The error rate of the ADC is 0.24 least significant bit (LSB) on an 8-bit ADC basis at a 50 MHz sampling frequency.

  14. Observation of the Earth by radar

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1982-01-01

    Techniques and applications of radar observation from Earth satellites are discussed. Images processing and analysis of these images are discussed. Also discussed is radar imaging from aircraft. Uses of this data include ocean wave analysis, surface water evaluation, and topographic analysis.

  15. Imaging initial formation processes of nanobubbles at the graphite-water interface through high-speed atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Liao, Hsien-Shun; Yang, Chih-Wen; Ko, Hsien-Chen; Hwu, En-Te; Hwang, Ing-Shouh

    2018-03-01

    The initial formation process of nanobubbles at solid-water interfaces remains unclear because of the limitations of current imaging techniques. To directly observe the formation process, an astigmatic high-speed atomic force microscope (AFM) was modified to enable imaging in the liquid environment. By using a customized cantilever holder, the resonance of small cantilevers was effectively enhanced in water. The proposed high-speed imaging technique yielded highly dynamic quasi-two-dimensional (2D) gas structures (thickness: 20-30 nm) initially at the graphite-water interface. The 2D structures were laterally mobile mainly within certain areas, but occasionally a gas structure might extensively migrate and settle in a new area. The 2D structures were often confined by substrate step edges in one lateral dimension. Eventually, all quasi-2D gas structures were transformed into cap-shaped nanobubbles of higher heights and reduced lateral dimensions. These nanobubbles were immobile and remained stable under continuous AFM imaging. This study demonstrated that nanobubbles could be stably imaged at a scan rate of 100 lines per second (640 μm/s).

  16. Smart cloud system with image processing server in diagnosing brain diseases dedicated for hospitals with limited resources.

    PubMed

    Fahmi, Fahmi; Nasution, Tigor H; Anggreiny, Anggreiny

    2017-01-01

    The use of medical imaging in diagnosing brain disease is growing. The challenges are related to the big size of data and complexity of the image processing. High standard of hardware and software are demanded, which can only be provided in big hospitals. Our purpose was to provide a smart cloud system to help diagnosing brain diseases for hospital with limited infrastructure. The expertise of neurologists was first implanted in cloud server to conduct an automatic diagnosis in real time using image processing technique developed based on ITK library and web service. Users upload images through website and the result, in this case the size of tumor was sent back immediately. A specific image compression technique was developed for this purpose. The smart cloud system was able to measure the area and location of tumors, with average size of 19.91 ± 2.38 cm2 and an average response time 7.0 ± 0.3 s. The capability of the server decreased when multiple clients accessed the system simultaneously: 14 ± 0 s (5 parallel clients) and 27 ± 0.2 s (10 parallel clients). The cloud system was successfully developed to process and analyze medical images for diagnosing brain diseases in this case for tumor.

  17. Multi-Mission Laser Altimeter Data Processing and Co-Registration of Image and Laser Data at DLR

    NASA Astrophysics Data System (ADS)

    Stark, A.; Matz, K.-D.; Roatsch, T.

    2018-04-01

    We designed a system for the processing and storage of large laser altimeter data sets for various past and operating laser altimeter instruments. Furthermore, we developed a technique to accurately co-register multi-mission laser and image data.

  18. Social process and the assessment of a new imaging technique.

    PubMed

    Blume, S S

    1993-01-01

    Each group involved in the development of a new medical technology constantly assesses the value of the emergent technique in terms of the group's own specific goals and conventions. The history of infrared thermography demonstrates the social nature of this assessment process.

  19. NeuroSeek dual-color image processing infrared focal plane array

    NASA Astrophysics Data System (ADS)

    McCarley, Paul L.; Massie, Mark A.; Baxter, Christopher R.; Huynh, Buu L.

    1998-09-01

    Several technologies have been developed in recent years to advance the state of the art of IR sensor systems including dual color affordable focal planes, on-focal plane array biologically inspired image and signal processing techniques and spectral sensing techniques. Pacific Advanced Technology (PAT) and the Air Force Research Lab Munitions Directorate have developed a system which incorporates the best of these capabilities into a single device. The 'NeuroSeek' device integrates these technologies into an IR focal plane array (FPA) which combines multicolor Midwave IR/Longwave IR radiometric response with on-focal plane 'smart' neuromorphic analog image processing. The readout and processing integrated circuit very large scale integration chip which was developed under this effort will be hybridized to a dual color detector array to produce the NeuroSeek FPA, which will have the capability to fuse multiple pixel-based sensor inputs directly on the focal plane. Great advantages are afforded by application of massively parallel processing algorithms to image data in the analog domain; the high speed and low power consumption of this device mimic operations performed in the human retina.

  20. Digital image processing: a primer for JVIR authors and readers: Part 3: Digital image editing.

    PubMed

    LaBerge, Jeanne M; Andriole, Katherine P

    2003-12-01

    This is the final installment of a three-part series on digital image processing intended to prepare authors for online submission of manuscripts. In the first two articles of the series, the fundamentals of digital image architecture were reviewed and methods of importing images to the computer desktop were described. In this article, techniques are presented for editing images in preparation for online submission. A step-by-step guide to basic editing with use of Adobe Photoshop is provided and the ethical implications of this activity are explored.

  1. Image feature detection and extraction techniques performance evaluation for development of panorama under different light conditions

    NASA Astrophysics Data System (ADS)

    Patil, Venkat P.; Gohatre, Umakant B.

    2018-04-01

    The technique of obtaining a wider field-of-view of an image to get high resolution integrated image is normally required for development of panorama of a photographic images or scene from a sequence of part of multiple views. There are various image stitching methods developed recently. For image stitching five basic steps are adopted stitching which are Feature detection and extraction, Image registration, computing homography, image warping and Blending. This paper provides review of some of the existing available image feature detection and extraction techniques and image stitching algorithms by categorizing them into several methods. For each category, the basic concepts are first described and later on the necessary modifications made to the fundamental concepts by different researchers are elaborated. This paper also highlights about the some of the fundamental techniques for the process of photographic image feature detection and extraction methods under various illumination conditions. The Importance of Image stitching is applicable in the various fields such as medical imaging, astrophotography and computer vision. For comparing performance evaluation of the techniques used for image features detection three methods are considered i.e. ORB, SURF, HESSIAN and time required for input images feature detection is measured. Results obtained finally concludes that for daylight condition, ORB algorithm found better due to the fact that less tome is required for more features extracted where as for images under night light condition it shows that SURF detector performs better than ORB/HESSIAN detectors.

  2. An efficient sampling algorithm for uncertain abnormal data detection in biomedical image processing and disease prediction.

    PubMed

    Liu, Fei; Zhang, Xi; Jia, Yan

    2015-01-01

    In this paper, we propose a computer information processing algorithm that can be used for biomedical image processing and disease prediction. A biomedical image is considered a data object in a multi-dimensional space. Each dimension is a feature that can be used for disease diagnosis. We introduce a new concept of the top (k1,k2) outlier. It can be used to detect abnormal data objects in the multi-dimensional space. This technique focuses on uncertain space, where each data object has several possible instances with distinct probabilities. We design an efficient sampling algorithm for the top (k1,k2) outlier in uncertain space. Some improvement techniques are used for acceleration. Experiments show our methods' high accuracy and high efficiency.

  3. Multimodal molecular 3D imaging for the tumoral volumetric distribution assessment of folate-based biosensors.

    PubMed

    Ramírez-Nava, Gerardo J; Santos-Cuevas, Clara L; Chairez, Isaac; Aranda-Lara, Liliana

    2017-12-01

    The aim of this study was to characterize the in vivo volumetric distribution of three folate-based biosensors by different imaging modalities (X-ray, fluorescence, Cerenkov luminescence, and radioisotopic imaging) through the development of a tridimensional image reconstruction algorithm. The preclinical and multimodal Xtreme imaging system, with a Multimodal Animal Rotation System (MARS), was used to acquire bidimensional images, which were processed to obtain the tridimensional reconstruction. Images of mice at different times (biosensor distribution) were simultaneously obtained from the four imaging modalities. The filtered back projection and inverse Radon transformation were used as main image-processing techniques. The algorithm developed in Matlab was able to calculate the volumetric profiles of 99m Tc-Folate-Bombesin (radioisotopic image), 177 Lu-Folate-Bombesin (Cerenkov image), and FolateRSense™ 680 (fluorescence image) in tumors and kidneys of mice, and no significant differences were detected in the volumetric quantifications among measurement techniques. The imaging tridimensional reconstruction algorithm can be easily extrapolated to different 2D acquisition-type images. This characteristic flexibility of the algorithm developed in this study is a remarkable advantage in comparison to similar reconstruction methods.

  4. The Ansel Adams zone system: HDR capture and range compression by chemical processing

    NASA Astrophysics Data System (ADS)

    McCann, John J.

    2010-02-01

    We tend to think of digital imaging and the tools of PhotoshopTM as a new phenomenon in imaging. We are also familiar with multiple-exposure HDR techniques intended to capture a wider range of scene information, than conventional film photography. We know about tone-scale adjustments to make better pictures. We tend to think of everyday, consumer, silver-halide photography as a fixed window of scene capture with a limited, standard range of response. This description of photography is certainly true, between 1950 and 2000, for instant films and negatives processed at the drugstore. These systems had fixed dynamic range and fixed tone-scale response to light. All pixels in the film have the same response to light, so the same light exposure from different pixels was rendered as the same film density. Ansel Adams, along with Fred Archer, formulated the Zone System, staring in 1940. It was earlier than the trillions of consumer photos in the second half of the 20th century, yet it was much more sophisticated than today's digital techniques. This talk will describe the chemical mechanisms of the zone system in the parlance of digital image processing. It will describe the Zone System's chemical techniques for image synthesis. It also discusses dodging and burning techniques to fit the HDR scene into the LDR print. Although current HDR imaging shares some of the Zone System's achievements, it usually does not achieve all of them.

  5. A novel image processing technique for 3D volumetric analysis of severely resorbed alveolar sockets with CBCT.

    PubMed

    Manavella, Valeria; Romano, Federica; Garrone, Federica; Terzini, Mara; Bignardi, Cristina; Aimetti, Mario

    2017-06-01

    The aim of this study was to present and validate a novel procedure for the quantitative volumetric assessment of extraction sockets that combines cone-beam computed tomography (CBCT) and image processing techniques. The CBCT dataset of 9 severely resorbed extraction sockets was analyzed by means of two image processing software, Image J and Mimics, using manual and automated segmentation techniques. They were also applied on 5-mm spherical aluminum markers of known volume and on a polyvinyl chloride model of one alveolar socket scanned with Micro-CT to test the accuracy. Statistical differences in alveolar socket volume were found between the different methods of volumetric analysis (P<0.0001). The automated segmentation using Mimics was the most reliable and accurate method with a relative error of 1.5%, considerably smaller than the error of 7% and of 10% introduced by the manual method using Mimics and by the automated method using ImageJ. The currently proposed automated segmentation protocol for the three-dimensional rendering of alveolar sockets showed more accurate results, excellent inter-observer similarity and increased user friendliness. The clinical application of this method enables a three-dimensional evaluation of extraction socket healing after the reconstructive procedures and during the follow-up visits.

  6. Reduce Fluid Experiment System: Flight data from the IML-1 Mission

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Harper, Sabrina

    1995-01-01

    Processing and data reduction of holographic images from the International Microgravity Laboratory 1 (IML-1) presents some interesting challenges in determining the effects of microgravity on crystal growth processes. Use of several processing techniques, including the Computerized Holographic Image Processing System and the Software Development Package (SDP-151) will provide fundamental information for holographic and schlieren analysis of the space flight data.

  7. Angular relational signature-based chest radiograph image view classification.

    PubMed

    Santosh, K C; Wendling, Laurent

    2018-01-22

    In a computer-aided diagnosis (CAD) system, especially for chest radiograph or chest X-ray (CXR) screening, CXR image view information is required. Automatically separating CXR image view, frontal and lateral can ease subsequent CXR screening process, since the techniques may not equally work for both views. We present a novel technique to classify frontal and lateral CXR images, where we introduce angular relational signature through force histogram to extract features and apply three different state-of-the-art classifiers: multi-layer perceptron, random forest, and support vector machine to make a decision. We validated our fully automatic technique on a set of 8100 images hosted by the U.S. National Library of Medicine (NLM), National Institutes of Health (NIH), and achieved an accuracy close to 100%. Our method outperforms the state-of-the-art methods in terms of processing time (less than or close to 2 s for the whole test data) while the accuracies can be compared, and therefore, it justifies its practicality. Graphical Abstract Interpreting chest X-ray (CXR) through the angular relational signature.

  8. Mass Detection in Mammographic Images Using Wavelet Processing and Adaptive Threshold Technique.

    PubMed

    Vikhe, P S; Thool, V R

    2016-04-01

    Detection of mass in mammogram for early diagnosis of breast cancer is a significant assignment in the reduction of the mortality rate. However, in some cases, screening of mass is difficult task for radiologist, due to variation in contrast, fuzzy edges and noisy mammograms. Masses and micro-calcifications are the distinctive signs for diagnosis of breast cancer. This paper presents, a method for mass enhancement using piecewise linear operator in combination with wavelet processing from mammographic images. The method includes, artifact suppression and pectoral muscle removal based on morphological operations. Finally, mass segmentation for detection using adaptive threshold technique is carried out to separate the mass from background. The proposed method has been tested on 130 (45 + 85) images with 90.9 and 91 % True Positive Fraction (TPF) at 2.35 and 2.1 average False Positive Per Image(FP/I) from two different databases, namely Mammographic Image Analysis Society (MIAS) and Digital Database for Screening Mammography (DDSM). The obtained results show that, the proposed technique gives improved diagnosis in the early breast cancer detection.

  9. Calibration of a polarimetric imaging SAR

    NASA Technical Reports Server (NTRS)

    Sarabandi, K.; Pierce, L. E.; Ulaby, F. T.

    1991-01-01

    Calibration of polarimetric imaging Synthetic Aperture Radars (SAR's) using point calibration targets is discussed. The four-port network calibration technique is used to describe the radar error model. The polarimetric ambiguity function of the SAR is then found using a single point target, namely a trihedral corner reflector. Based on this, an estimate for the backscattering coefficient of the terrain is found by a deconvolution process. A radar image taken by the JPL Airborne SAR (AIRSAR) is used for verification of the deconvolution calibration method. The calibrated responses of point targets in the image are compared both with theory and the POLCAL technique. Also, response of a distributed target are compared using the deconvolution and POLCAL techniques.

  10. Visual pattern image sequence coding

    NASA Technical Reports Server (NTRS)

    Silsbee, Peter; Bovik, Alan C.; Chen, Dapang

    1990-01-01

    The visual pattern image coding (VPIC) configurable digital image-coding process is capable of coding with visual fidelity comparable to the best available techniques, at compressions which (at 30-40:1) exceed all other technologies. These capabilities are associated with unprecedented coding efficiencies; coding and decoding operations are entirely linear with respect to image size and entail a complexity that is 1-2 orders of magnitude faster than any previous high-compression technique. The visual pattern image sequence coding to which attention is presently given exploits all the advantages of the static VPIC in the reduction of information from an additional, temporal dimension, to achieve unprecedented image sequence coding performance.

  11. Optimal focal-plane restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1989-01-01

    Image restoration can be implemented efficiently by calculating the convolution of the digital image and a small kernel during image acquisition. Processing the image in the focal-plane in this way requires less computation than traditional Fourier-transform-based techniques such as the Wiener filter and constrained least-squares filter. Here, the values of the convolution kernel that yield the restoration with minimum expected mean-square error are determined using a frequency analysis of the end-to-end imaging system. This development accounts for constraints on the size and shape of the spatial kernel and all the components of the imaging system. Simulation results indicate the technique is effective and efficient.

  12. Hyperspectral imaging technique for detection of poultry fecal residues on food processing equipments

    NASA Astrophysics Data System (ADS)

    Cho, Byoung-Kwan; Kim, Moon S.; Chen, Yud-Ren

    2005-11-01

    Emerging concerns about safety and security in current mass production of food products necessitate rapid and reliable inspection for contaminant-free products. Diluted fecal residues on poultry processing plant equipment surface, not easily discernable from water by human eye, are contamination sources for poultry carcasses. Development of sensitive detection methods for fecal residues is essential to ensure safe production of poultry carcasses. Hyperspectral imaging techniques have shown good potential for detecting of the presence of fecal and other biological substances on food and processing equipment surfaces. In this study, use of high spatial resolution hyperspectral reflectance and fluorescence imaging (with UV-A excitation) is presented as a tool for selecting a few multispectral bands to detect diluted fecal and ingesta residues on materials used for manufacturing processing equipment. Reflectance and fluorescence imaging methods were compared for potential detection of a range of diluted fecal residues on the surfaces of processing plant equipment. Results showed that low concentrations of poultry feces and ingesta, diluted up to 1:100 by weight with double distilled water, could be detected using hyperspectral fluorescence images with an accuracy of 97.2%. Spectral bands determined in this study could be used for developing a real-time multispectral inspection device for detection of harmful organic residues on processing plant equipment.

  13. Feminist Pedagogy, Body Image, and the Dance Technique Class

    ERIC Educational Resources Information Center

    Barr, Sherrie; Oliver, Wendy

    2016-01-01

    This paper investigates the evolution of feminist consciousness in dance technique class as related to body image, the myth of the perfect body, and the development of feminist pedagogy. Western concert dance forms have often been taught in a manner where imitating the teacher is primary in the learning process. In this traditional scenario,…

  14. Oceanographic satellite remote sensing: Registration, rectification, and data integration requirements

    NASA Technical Reports Server (NTRS)

    Nichols, D. A.

    1982-01-01

    The problem of data integration in oceanography is discussed. Recommendations are made for technique development and evaluation, understanding requirements, and packaging techniques for speed, efficiency and ease of use. The primary satellite sensors of interest to oceanography are summarized. It is concluded that imaging type sensors make image processing an important tool for oceanographic studies.

  15. Use of letter writing as a means of integrating an altered body image: a case study.

    PubMed

    Rancour, Patricia; Brauer, Kathryn

    2003-01-01

    To describe the use of letter writing as a technique to assist patients in adjusting to an altered body image after dramatic cancer treatment. Published articles and books. Gestalt therapy, psychosynthesis, and journaling techniques evolve into a technique that can assist patients who are challenged to accept altered body parts. Described in a case study presentation, letter writing was found to assist female patients with recurrent breast cancer in adjusting to reconstruction of lost breasts. Nurses can use letter writing as a means of assisting patients through the grief process associated with body image alterations.

  16. Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.

    PubMed

    Ashraf, Rehan; Ahmed, Mudassar; Jabbar, Sohail; Khalid, Shehzad; Ahmad, Awais; Din, Sadia; Jeon, Gwangil

    2018-01-25

    Due to recent development in technology, the complexity of multimedia is significantly increased and the retrieval of similar multimedia content is a open research problem. Content-Based Image Retrieval (CBIR) is a process that provides a framework for image search and low-level visual features are commonly used to retrieve the images from the image database. The basic requirement in any image retrieval process is to sort the images with a close similarity in term of visually appearance. The color, shape and texture are the examples of low-level image features. The feature plays a significant role in image processing. The powerful representation of an image is known as feature vector and feature extraction techniques are applied to get features that will be useful in classifying and recognition of images. As features define the behavior of an image, they show its place in terms of storage taken, efficiency in classification and obviously in time consumption also. In this paper, we are going to discuss various types of features, feature extraction techniques and explaining in what scenario, which features extraction technique will be better. The effectiveness of the CBIR approach is fundamentally based on feature extraction. In image processing errands like object recognition and image retrieval feature descriptor is an immense among the most essential step. The main idea of CBIR is that it can search related images to an image passed as query from a dataset got by using distance metrics. The proposed method is explained for image retrieval constructed on YCbCr color with canny edge histogram and discrete wavelet transform. The combination of edge of histogram and discrete wavelet transform increase the performance of image retrieval framework for content based search. The execution of different wavelets is additionally contrasted with discover the suitability of specific wavelet work for image retrieval. The proposed algorithm is prepared and tried to implement for Wang image database. For Image Retrieval Purpose, Artificial Neural Networks (ANN) is used and applied on standard dataset in CBIR domain. The execution of the recommended descriptors is assessed by computing both Precision and Recall values and compared with different other proposed methods with demonstrate the predominance of our method. The efficiency and effectiveness of the proposed approach outperforms the existing research in term of average precision and recall values.

  17. Oximetry using multispectral imaging: theory and application

    NASA Astrophysics Data System (ADS)

    MacKenzie, Lewis E.; Harvey, Andrew R.

    2018-06-01

    Multispectral imaging (MSI) is a technique for measurement of blood oxygen saturation in vivo that can be applied using various imaging modalities to provide new insights into physiology and disease development. This tutorial aims to provide a thorough introduction to the theory and application of MSI oximetry for researchers new to the field, whilst also providing detailed information for more experienced researchers. The optical theory underlying two-wavelength oximetry, three-wavelength oximetry, pulse oximetry, and multispectral oximetry algorithms are described in detail. The varied challenges of applying MSI oximetry to in vivo applications are outlined and discussed, covering: the optical properties of blood and tissue, optical paths in blood vessels, tissue auto-fluorescence, oxygen diffusion, and common oximetry artefacts. Essential image processing techniques for MSI are discussed, in particular, image acquisition, image registration strategies, and blood vessel line profile fitting. Calibration and validation strategies for MSI are discussed, including comparison techniques, physiological interventions, and phantoms. The optical principles and unique imaging capabilities of various cutting-edge MSI oximetry techniques are discussed, including photoacoustic imaging, spectroscopic optical coherence tomography, and snapshot MSI.

  18. Identification of Age-Related Macular Degeneration Using OCT Images

    NASA Astrophysics Data System (ADS)

    Arabi, Punal M., Dr; Krishna, Nanditha; Ashwini, V.; Prathibha, H. M.

    2018-02-01

    Age-related Macular Degeneration is the most leading retinal disease in the recent years. Macular degeneration occurs when the central portion of the retina, called macula deteriorates. As the deterioration occurs with the age, it is commonly referred as Age-related Macular Degeneration. This disease can be visualized by several imaging modalities such as Fundus imaging technique, Optical Coherence Tomography (OCT) technique and many other. Optical Coherence Tomography is the widely used technique for screening the Age-related Macular Degeneration disease, because it has an ability to detect the very minute changes in the retina. The Healthy and AMD affected OCT images are classified by extracting the Retinal Pigmented Epithelium (RPE) layer of the images using the image processing technique. The extracted layer is sampled, the no. of white pixels in each of the sample is counted and the mean value of the no. of pixels is calculated. The average mean value is calculated for both the Healthy and the AMD affected images and a threshold value is fixed and a decision rule is framed to classify the images of interest. The proposed method showed an accuracy of 75%.

  19. From nociception to pain perception: imaging the spinal and supraspinal pathways

    PubMed Central

    Brooks, Jonathan; Tracey, Irene

    2005-01-01

    Functional imaging techniques have allowed researchers to look within the brain, and revealed the cortical representation of pain. Initial experiments, performed in the early 1990s, revolutionized pain research, as they demonstrated that pain was not processed in a single cortical area, but in several distributed brain regions. Over the last decade, the roles of these pain centres have been investigated and a clearer picture has emerged of the medial and lateral pain system. In this brief article, we review the imaging literature to date that has allowed these advances to be made, and examine the new frontiers for pain imaging research: imaging the brainstem and other structures involved in the descending control of pain; functional and anatomical connectivity studies of pain processing brain regions; imaging models of neuropathic pain-like states; and going beyond the brain to image spinal function. The ultimate goal of such research is to take these new techniques into the clinic, to investigate and provide new remedies for chronic pain sufferers. PMID:16011543

  20. MRI Superresolution Using Self-Similarity and Image Priors

    PubMed Central

    Manjón, José V.; Coupé, Pierrick; Buades, Antonio; Collins, D. Louis; Robles, Montserrat

    2010-01-01

    In Magnetic Resonance Imaging typical clinical settings, both low- and high-resolution images of different types are routinarily acquired. In some cases, the acquired low-resolution images have to be upsampled to match with other high-resolution images for posterior analysis or postprocessing such as registration or multimodal segmentation. However, classical interpolation techniques are not able to recover the high-frequency information lost during the acquisition process. In the present paper, a new superresolution method is proposed to reconstruct high-resolution images from the low-resolution ones using information from coplanar high resolution images acquired of the same subject. Furthermore, the reconstruction process is constrained to be physically plausible with the MR acquisition model that allows a meaningful interpretation of the results. Experiments on synthetic and real data are supplied to show the effectiveness of the proposed approach. A comparison with classical state-of-the-art interpolation techniques is presented to demonstrate the improved performance of the proposed methodology. PMID:21197094

  1. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2005-01-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  2. A novel methodology for querying web images

    NASA Astrophysics Data System (ADS)

    Prabhakara, Rashmi; Lee, Ching Cheng

    2004-12-01

    Ever since the advent of Internet, there has been an immense growth in the amount of image data that is available on the World Wide Web. With such a magnitude of image availability, an efficient and effective image retrieval system is required to make use of this information. This research presents an effective image matching and indexing technique that improvises on existing integrated image retrieval methods. The proposed technique follows a two-phase approach, integrating query by topic and query by example specification methods. The first phase consists of topic-based image retrieval using an improved text information retrieval (IR) technique that makes use of the structured format of HTML documents. It consists of a focused crawler that not only provides for the user to enter the keyword for the topic-based search but also, the scope in which the user wants to find the images. The second phase uses the query by example specification to perform a low-level content-based image match for the retrieval of smaller and relatively closer results of the example image. Information related to the image feature is automatically extracted from the query image by the image processing system. A technique that is not computationally intensive based on color feature is used to perform content-based matching of images. The main goal is to develop a functional image search and indexing system and to demonstrate that better retrieval results can be achieved with this proposed hybrid search technique.

  3. A comprehensive statistical investigation of schlieren image velocimetry (SIV) using high-velocity helium jet

    NASA Astrophysics Data System (ADS)

    Biswas, Sayan; Qiao, Li

    2017-03-01

    A detailed statistical assessment of seedless velocity measurement using Schlieren Image Velocimetry (SIV) was explored using open source Robust Phase Correlation (RPC) algorithm. A well-known flow field, an axisymmetric turbulent helium jet, was analyzed near and intermediate region (0≤ x/d≤ 20) for two different Reynolds numbers, Re d = 11,000 and Re d = 22,000 using schlieren with horizontal knife-edge, schlieren with vertical knife-edge and shadowgraph technique, and the resulted velocity fields from SIV techniques were compared to traditional Particle Image Velocimetry (PIV) measurements. A novel, inexpensive, easy to setup two-camera SIV technique had been demonstrated to measure high-velocity turbulent jet, with jet exit velocities 304 m/s (Mach = 0.3) and 611 m/s (Mach = 0.6), respectively. Several image restoration and enhancement techniques were tested to improve signal to noise ratio (SNR) in schlieren and shadowgraph images. Processing and post-processing parameters for SIV techniques were examined in detail. A quantitative comparison between self-seeded SIV techniques and traditional PIV had been made using correlation statistics. While the resulted flow field from schlieren with horizontal knife-edge and shadowgraph showed excellent agreement with PIV measurements, schlieren with vertical knife-edge performed poorly. The performance of spatial cross-correlations at different jet locations using SIV techniques and PIV was evaluated. Turbulence quantities like turbulence intensity, mean velocity fields, Reynolds shear stress influenced spatial correlations and correlation plane SNR heavily. Several performance metrics such as primary peak ratio (PPR), peak to correlation energy (PCE), the probability distribution of signal and noise were used to compare capability and potential of different SIV techniques.

  4. MO-C-18A-01: Advances in Model-Based 3D Image Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G; Pan, X; Stayman, J

    2014-06-15

    Recent years have seen the emergence of CT image reconstruction techniques that exploit physical models of the imaging system, photon statistics, and even the patient to achieve improved 3D image quality and/or reduction of radiation dose. With numerous advantages in comparison to conventional 3D filtered backprojection, such techniques bring a variety of challenges as well, including: a demanding computational load associated with sophisticated forward models and iterative optimization methods; nonlinearity and nonstationarity in image quality characteristics; a complex dependency on multiple free parameters; and the need to understand how best to incorporate prior information (including patient-specific prior images) within themore » reconstruction process. The advantages, however, are even greater – for example: improved image quality; reduced dose; robustness to noise and artifacts; task-specific reconstruction protocols; suitability to novel CT imaging platforms and noncircular orbits; and incorporation of known characteristics of the imager and patient that are conventionally discarded. This symposium features experts in 3D image reconstruction, image quality assessment, and the translation of such methods to emerging clinical applications. Dr. Chen will address novel methods for the incorporation of prior information in 3D and 4D CT reconstruction techniques. Dr. Pan will show recent advances in optimization-based reconstruction that enable potential reduction of dose and sampling requirements. Dr. Stayman will describe a “task-based imaging” approach that leverages models of the imaging system and patient in combination with a specification of the imaging task to optimize both the acquisition and reconstruction process. Dr. Samei will describe the development of methods for image quality assessment in such nonlinear reconstruction techniques and the use of these methods to characterize and optimize image quality and dose in a spectrum of clinical applications. Learning Objectives: Learn the general methodologies associated with model-based 3D image reconstruction. Learn the potential advantages in image quality and dose associated with model-based image reconstruction. Learn the challenges associated with computational load and image quality assessment for such reconstruction methods. Learn how imaging task can be incorporated as a means to drive optimal image acquisition and reconstruction techniques. Learn how model-based reconstruction methods can incorporate prior information to improve image quality, ease sampling requirements, and reduce dose.« less

  5. Techniques for Microwave Imaging.

    DTIC Science & Technology

    1981-01-18

    reduce cross-range sidelobes in tht subsequent -’ FT and the array was padd ,,d with 64 additional r,wis containing zeros . The configuration of the array is...of microwave imagery obtained by synthetic aperture processing described in reference 1-2. This type of image. generated by processing radar data...1,000 wavelengths. Althouigh these are the intended applications, the imaging methods con- sidered have general applicability to environments outside

  6. DICOMGrid: a middleware to integrate PACS and EELA-2 grid infrastructure

    NASA Astrophysics Data System (ADS)

    Moreno, Ramon A.; de Sá Rebelo, Marina; Gutierrez, Marco A.

    2010-03-01

    Medical images provide lots of information for physicians, but the huge amount of data produced by medical image equipments in a modern Health Institution is not completely explored in its full potential yet. Nowadays medical images are used in hospitals mostly as part of routine activities while its intrinsic value for research is underestimated. Medical images can be used for the development of new visualization techniques, new algorithms for patient care and new image processing techniques. These research areas usually require the use of huge volumes of data to obtain significant results, along with enormous computing capabilities. Such qualities are characteristics of grid computing systems such as EELA-2 infrastructure. The grid technologies allow the sharing of data in large scale in a safe and integrated environment and offer high computing capabilities. In this paper we describe the DicomGrid to store and retrieve medical images, properly anonymized, that can be used by researchers to test new processing techniques, using the computational power offered by grid technology. A prototype of the DicomGrid is under evaluation and permits the submission of jobs into the EELA-2 grid infrastructure while offering a simple interface that requires minimal understanding of the grid operation.

  7. Space imaging infrared optical guidance for autonomous ground vehicle

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kobayashi, Nobuaki; Mutoh, Eiichiro; Kumagai, Hideo; Yamada, Hirofumi; Ishii, Hiromitsu

    2008-08-01

    We have developed the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle based on the uncooled infrared camera and focusing technique to detect the objects to be evaded and to set the drive path. For this purpose we made servomotor drive system to control the focus function of the infrared camera lens. To determine the best focus position we use the auto focus image processing of Daubechies wavelet transform technique with 4 terms. From the determined best focus position we transformed it to the distance of the object. We made the aluminum frame ground vehicle to mount the auto focus infrared unit. Its size is 900mm long and 800mm wide. This vehicle mounted Ackerman front steering system and the rear motor drive system. To confirm the guidance ability of the Space Imaging Infrared Optical Guidance for Autonomous Ground Vehicle we had the experiments for the detection ability of the infrared auto focus unit to the actual car on the road and the roadside wall. As a result the auto focus image processing based on the Daubechies wavelet transform technique detects the best focus image clearly and give the depth of the object from the infrared camera unit.

  8. A trillion frames per second: the techniques and applications of light-in-flight photography.

    PubMed

    Faccio, Daniele; Velten, Andreas

    2018-06-14

    Cameras capable of capturing videos at a trillion frames per second allow to freeze light in motion, a very counterintuitive capability when related to our everyday experience in which light appears to travel instantaneously. By combining this capability with computational imaging techniques, new imaging opportunities emerge such as three dimensional imaging of scenes that are hidden behind a corner, the study of relativistic distortion effects, imaging through diffusive media and imaging of ultrafast optical processes such as laser ablation, supercontinuum and plasma generation. We provide an overview of the main techniques that have been developed for ultra-high speed photography with a particular focus on `light in flight' imaging, i.e. applications where the key element is the imaging of light itself at frame rates that allow to freeze it's motion and therefore extract information that would otherwise be blurred out and lost. . © 2018 IOP Publishing Ltd.

  9. Demodulation techniques for the amplitude modulated laser imager

    NASA Astrophysics Data System (ADS)

    Mullen, Linda; Laux, Alan; Cochenour, Brandon; Zege, Eleonora P.; Katsev, Iosif L.; Prikhach, Alexander S.

    2007-10-01

    A new technique has been found that uses in-phase and quadrature phase (I/Q) demodulation to optimize the images produced with an amplitude-modulated laser imaging system. An I/Q demodulator was used to collect the I/Q components of the received modulation envelope. It was discovered that by adjusting the local oscillator phase and the modulation frequency, the backscatter and target signals can be analyzed separately via the I/Q components. This new approach enhances image contrast beyond what was achieved with a previous design that processed only the composite magnitude information.

  10. Automated and unsupervised detection of malarial parasites in microscopic images.

    PubMed

    Purwar, Yashasvi; Shah, Sirish L; Clarke, Gwen; Almugairi, Areej; Muehlenbachs, Atis

    2011-12-13

    Malaria is a serious infectious disease. According to the World Health Organization, it is responsible for nearly one million deaths each year. There are various techniques to diagnose malaria of which manual microscopy is considered to be the gold standard. However due to the number of steps required in manual assessment, this diagnostic method is time consuming (leading to late diagnosis) and prone to human error (leading to erroneous diagnosis), even in experienced hands. The focus of this study is to develop a robust, unsupervised and sensitive malaria screening technique with low material cost and one that has an advantage over other techniques in that it minimizes human reliance and is, therefore, more consistent in applying diagnostic criteria. A method based on digital image processing of Giemsa-stained thin smear image is developed to facilitate the diagnostic process. The diagnosis procedure is divided into two parts; enumeration and identification. The image-based method presented here is designed to automate the process of enumeration and identification; with the main advantage being its ability to carry out the diagnosis in an unsupervised manner and yet have high sensitivity and thus reducing cases of false negatives. The image based method is tested over more than 500 images from two independent laboratories. The aim is to distinguish between positive and negative cases of malaria using thin smear blood slide images. Due to the unsupervised nature of method it requires minimal human intervention thus speeding up the whole process of diagnosis. Overall sensitivity to capture cases of malaria is 100% and specificity ranges from 50-88% for all species of malaria parasites. Image based screening method will speed up the whole process of diagnosis and is more advantageous over laboratory procedures that are prone to errors and where pathological expertise is minimal. Further this method provides a consistent and robust way of generating the parasite clearance curves.

  11. Three-dimensional near-field MIMO array imaging using range migration techniques.

    PubMed

    Zhuge, Xiaodong; Yarovoy, Alexander G

    2012-06-01

    This paper presents a 3-D near-field imaging algorithm that is formulated for 2-D wideband multiple-input-multiple-output (MIMO) imaging array topology. The proposed MIMO range migration technique performs the image reconstruction procedure in the frequency-wavenumber domain. The algorithm is able to completely compensate the curvature of the wavefront in the near-field through a specifically defined interpolation process and provides extremely high computational efficiency by the application of the fast Fourier transform. The implementation aspects of the algorithm and the sampling criteria of a MIMO aperture are discussed. The image reconstruction performance and computational efficiency of the algorithm are demonstrated both with numerical simulations and measurements using 2-D MIMO arrays. Real-time 3-D near-field imaging can be achieved with a real-aperture array by applying the proposed MIMO range migration techniques.

  12. Deformable Medical Image Registration: A Survey

    PubMed Central

    Sotiras, Aristeidis; Davatzikos, Christos; Paragios, Nikos

    2013-01-01

    Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this paper, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this paper is to provide an extensive account of registration techniques in a systematic manner. PMID:23739795

  13. False colors removal on the YCr-Cb color space

    NASA Astrophysics Data System (ADS)

    Tomaselli, Valeria; Guarnera, Mirko; Messina, Giuseppe

    2009-01-01

    Post-processing algorithms are usually placed in the pipeline of imaging devices to remove residual color artifacts introduced by the demosaicing step. Although demosaicing solutions aim to eliminate, limit or correct false colors and other impairments caused by a non ideal sampling, post-processing techniques are usually more powerful in achieving this purpose. This is mainly because the input of post-processing algorithms is a fully restored RGB color image. Moreover, post-processing can be applied more than once, in order to meet some quality criteria. In this paper we propose an effective technique for reducing the color artifacts generated by conventional color interpolation algorithms, in YCrCb color space. This solution efficiently removes false colors and can be executed while performing the edge emphasis process.

  14. Digital Compositing Techniques for Coronal Imaging (Invited review)

    NASA Astrophysics Data System (ADS)

    Espenak, F.

    2000-04-01

    The solar corona exhibits a huge range in brightness which cannot be captured in any single photographic exposure. Short exposures show the bright inner corona and prominences, while long exposures reveal faint details in equatorial streamers and polar brushes. For many years, radial gradient filters and other analog techniques have been used to compress the corona's dynamic range in order to study its morphology. Such techniques demand perfect pointing and tracking during the eclipse, and can be difficult to calibrate. In the past decade, the speed, memory and hard disk capacity of personal computers have rapidly increased as prices continue to drop. It is now possible to perform sophisticated image processing of eclipse photographs on commercially available CPU's. Software programs such as Adobe Photoshop permit combining multiple eclipse photographs into a composite image which compresses the corona's dynamic range and can reveal subtle features and structures. Algorithms and digital techniques used for processing 1998 eclipse photographs will be discussed which are equally applicable to the recent eclipse of 1999 August 11.

  15. Radar image processing for rock-type discrimination

    NASA Technical Reports Server (NTRS)

    Blom, R. G.; Daily, M.

    1982-01-01

    Image processing and enhancement techniques for improving the geologic utility of digital satellite radar images are reviewed. Preprocessing techniques such as mean and variance correction on a range or azimuth line by line basis to provide uniformly illuminated swaths, median value filtering for four-look imagery to eliminate speckle, and geometric rectification using a priori elevation data. Examples are presented of application of preprocessing methods to Seasat and Landsat data, and Seasat SAR imagery was coregistered with Landsat imagery to form composite scenes. A polynomial was developed to distort the radar picture to fit the Landsat image of a 90 x 90 km sq grid, using Landsat color ratios with Seasat intensities. Subsequent linear discrimination analysis was employed to discriminate rock types from known areas. Seasat additions to the Landsat data improved rock identification by 7%.

  16. Coherent diffractive imaging of time-evolving samples with improved temporal resolution

    DOE PAGES

    Ulvestad, A.; Tripathi, A.; Hruszkewycz, S. O.; ...

    2016-05-19

    Bragg coherent x-ray diffractive imaging is a powerful technique for investigating dynamic nanoscale processes in nanoparticles immersed in reactive, realistic environments. Its temporal resolution is limited, however, by the oversampling requirements of three-dimensional phase retrieval. Here, we show that incorporating the entire measurement time series, which is typically a continuous physical process, into phase retrieval allows the oversampling requirement at each time step to be reduced, leading to a subsequent improvement in the temporal resolution by a factor of 2-20 times. The increased time resolution will allow imaging of faster dynamics and of radiation-dose-sensitive samples. Furthermore, this approach, which wemore » call "chrono CDI," may find use in improving the time resolution in other imaging techniques.« less

  17. Image processing and analysis using neural networks for optometry area

    NASA Astrophysics Data System (ADS)

    Netto, Antonio V.; Ferreira de Oliveira, Maria C.

    2002-11-01

    In this work we describe the framework of a functional system for processing and analyzing images of the human eye acquired by the Hartmann-Shack technique (HS), in order to extract information to formulate a diagnosis of eye refractive errors (astigmatism, hypermetropia and myopia). The analysis is to be carried out using an Artificial Intelligence system based on Neural Nets, Fuzzy Logic and Classifier Combination. The major goal is to establish the basis of a new technology to effectively measure ocular refractive errors that is based on methods alternative those adopted in current patented systems. Moreover, analysis of images acquired with the Hartmann-Shack technique may enable the extraction of additional information on the health of an eye under exam from the same image used to detect refraction errors.

  18. Detection of organic residues on poultry processing equipment surfaces by LED-induced fluorescence imaging

    USDA-ARS?s Scientific Manuscript database

    Organic residues on equipment surfaces in poultry processing plants can generate cross- contamination and increase the risk of unsafe food for consumers. This research was aimed to investigate the potential of LED-induced fluorescence imaging technique for rapid inspection of stainless steel proces...

  19. Study of spin-scan imaging for outer planets missions. [imaging techniques for Jupiter orbiter missions

    NASA Technical Reports Server (NTRS)

    Russell, E. E.; Chandos, R. A.; Kodak, J. C.; Pellicori, S. F.; Tomasko, M. G.

    1974-01-01

    The constraints that are imposed on the Outer Planet Missions (OPM) imager design are of critical importance. Imager system modeling analyses define important parameters and systematic means for trade-offs applied to specific Jupiter orbiter missions. Possible image sequence plans for Jupiter missions are discussed in detail. Considered is a series of orbits that allow repeated near encounters with three of the Jovian satellites. The data handling involved in the image processing is discussed, and it is shown that only minimal processing is required for the majority of images for a Jupiter orbiter mission.

  20. Image Processing for Binarization Enhancement via Fuzzy Reasoning

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A. (Inventor)

    2009-01-01

    A technique for enhancing a gray-scale image to improve conversions of the image to binary employs fuzzy reasoning. In the technique, pixels in the image are analyzed by comparing the pixel's gray scale value, which is indicative of its relative brightness, to the values of pixels immediately surrounding the selected pixel. The degree to which each pixel in the image differs in value from the values of surrounding pixels is employed as the variable in a fuzzy reasoning-based analysis that determines an appropriate amount by which the selected pixel's value should be adjusted to reduce vagueness and ambiguity in the image and improve retention of information during binarization of the enhanced gray-scale image.

  1. Earth Observation Services (Image Processing Software)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    San Diego State University and Environmental Systems Research Institute, with other agencies, have applied satellite imaging and image processing techniques to geographic information systems (GIS) updating. The resulting images display land use and are used by a regional planning agency for applications like mapping vegetation distribution and preserving wildlife habitats. The EOCAP program provides government co-funding to encourage private investment in, and to broaden the use of NASA-developed technology for analyzing information about Earth and ocean resources.

  2. Basic research planning in mathematical pattern recognition and image analysis

    NASA Technical Reports Server (NTRS)

    Bryant, J.; Guseman, L. F., Jr.

    1981-01-01

    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis.

  3. Quantitative fractography by digital image processing: NIH Image macro tools for stereo pair analysis and 3-D reconstruction.

    PubMed

    Hein, L R

    2001-10-01

    A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.

  4. Image interpolation and denoising for division of focal plane sensors using Gaussian processes.

    PubMed

    Gilboa, Elad; Cunningham, John P; Nehorai, Arye; Gruev, Viktor

    2014-06-16

    Image interpolation and denoising are important techniques in image processing. These methods are inherent to digital image acquisition as most digital cameras are composed of a 2D grid of heterogeneous imaging sensors. Current polarization imaging employ four different pixelated polarization filters, commonly referred to as division of focal plane polarization sensors. The sensors capture only partial information of the true scene, leading to a loss of spatial resolution as well as inaccuracy of the captured polarization information. Interpolation is a standard technique to recover the missing information and increase the accuracy of the captured polarization information. Here we focus specifically on Gaussian process regression as a way to perform a statistical image interpolation, where estimates of sensor noise are used to improve the accuracy of the estimated pixel information. We further exploit the inherent grid structure of this data to create a fast exact algorithm that operates in ����(N(3/2)) (vs. the naive ���� (N³)), thus making the Gaussian process method computationally tractable for image data. This modeling advance and the enabling computational advance combine to produce significant improvements over previously published interpolation methods for polarimeters, which is most pronounced in cases of low signal-to-noise ratio (SNR). We provide the comprehensive mathematical model as well as experimental results of the GP interpolation performance for division of focal plane polarimeter.

  5. Qualitative and quantitative interpretation of SEM image using digital image processing.

    PubMed

    Saladra, Dawid; Kopernik, Magdalena

    2016-10-01

    The aim of the this study is improvement of qualitative and quantitative analysis of scanning electron microscope micrographs by development of computer program, which enables automatic crack analysis of scanning electron microscopy (SEM) micrographs. Micromechanical tests of pneumatic ventricular assist devices result in a large number of micrographs. Therefore, the analysis must be automatic. Tests for athrombogenic titanium nitride/gold coatings deposited on polymeric substrates (Bionate II) are performed. These tests include microshear, microtension and fatigue analysis. Anisotropic surface defects observed in the SEM micrographs require support for qualitative and quantitative interpretation. Improvement of qualitative analysis of scanning electron microscope images was achieved by a set of computational tools that includes binarization, simplified expanding, expanding, simple image statistic thresholding, the filters Laplacian 1, and Laplacian 2, Otsu and reverse binarization. Several modifications of the known image processing techniques and combinations of the selected image processing techniques were applied. The introduced quantitative analysis of digital scanning electron microscope images enables computation of stereological parameters such as area, crack angle, crack length, and total crack length per unit area. This study also compares the functionality of the developed computer program of digital image processing with existing applications. The described pre- and postprocessing may be helpful in scanning electron microscopy and transmission electron microscopy surface investigations. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  6. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    PubMed Central

    Appel, Alyssa A.; Larson, Jeffery C.; Jiang, Bin; Zhong, Zhong; Anastasio, Mark A.; Brey, Eric M.

    2015-01-01

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript, we investigate the use of XPC for imaging a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted in a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. There were no differences between invading tissue measurements from XPC and the gold-standard histology. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response. PMID:26487123

  7. X-ray Phase Contrast Allows Three Dimensional, Quantitative Imaging of Hydrogel Implants

    DOE PAGES

    Appel, Alyssa A.; Larson, Jeffrey C.; Jiang, Bin; ...

    2015-10-20

    Three dimensional imaging techniques are needed for the evaluation and assessment of biomaterials used for tissue engineering and drug delivery applications. Hydrogels are a particularly popular class of materials for medical applications but are difficult to image in tissue using most available imaging modalities. Imaging techniques based on X-ray Phase Contrast (XPC) have shown promise for tissue engineering applications due to their ability to provide image contrast based on multiple X-ray properties. In this manuscript we describe results using XPC to image a model hydrogel and soft tissue structure. Porous fibrin loaded poly(ethylene glycol) hydrogels were synthesized and implanted inmore » a rodent subcutaneous model. Samples were explanted and imaged with an analyzer-based XPC technique and processed and stained for histology for comparison. Both hydrogel and soft tissues structures could be identified in XPC images. Structure in skeletal muscle adjacent could be visualized and invading fibrovascular tissue could be quantified. In quantitative results, there were no differences between XPC and the gold-standard histological measurements. These results provide evidence of the significant potential of techniques based on XPC for 3D imaging of hydrogel structure and local tissue response.« less

  8. Tumor or abnormality identification from magnetic resonance images using statistical region fusion based segmentation.

    PubMed

    Subudhi, Badri Narayan; Thangaraj, Veerakumar; Sankaralingam, Esakkirajan; Ghosh, Ashish

    2016-11-01

    In this article, a statistical fusion based segmentation technique is proposed to identify different abnormality in magnetic resonance images (MRI). The proposed scheme follows seed selection, region growing-merging and fusion of multiple image segments. In this process initially, an image is divided into a number of blocks and for each block we compute the phase component of the Fourier transform. The phase component of each block reflects the gray level variation among the block but contains a large correlation among them. Hence a singular value decomposition (SVD) technique is adhered to generate a singular value of each block. Then a thresholding procedure is applied on these singular values to identify edgy and smooth regions and some seed points are selected for segmentation. By considering each seed point we perform a binary segmentation of the complete MRI and hence with all seed points we get an equal number of binary images. A parcel based statistical fusion process is used to fuse all the binary images into multiple segments. Effectiveness of the proposed scheme is tested on identifying different abnormalities: prostatic carcinoma detection, tuberculous granulomas identification and intracranial neoplasm or brain tumor detection. The proposed technique is established by comparing its results against seven state-of-the-art techniques with six performance evaluation measures. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Using Color, Texture and Object-Based Image Analysis of Multi-Temporal Camera Data to Monitor Soil Aggregate Breakdown

    PubMed Central

    Ymeti, Irena; van der Werff, Harald; Shrestha, Dhruba Pikha; Jetten, Victor G.; Lievens, Caroline; van der Meer, Freek

    2017-01-01

    Remote sensing has shown its potential to assess soil properties and is a fast and non-destructive method for monitoring soil surface changes. In this paper, we monitor soil aggregate breakdown under natural conditions. From November 2014 to February 2015, images and weather data were collected on a daily basis from five soils susceptible to detachment (Silty Loam with various organic matter content, Loam and Sandy Loam). Three techniques that vary in image processing complexity and user interaction were tested for the ability of monitoring aggregate breakdown. Considering that the soil surface roughness causes shadow cast, the blue/red band ratio is utilized to observe the soil aggregate changes. Dealing with images with high spatial resolution, image texture entropy, which reflects the process of soil aggregate breakdown, is used. In addition, the Huang thresholding technique, which allows estimation of the image area occupied by soil aggregate, is performed. Our results show that all three techniques indicate soil aggregate breakdown over time. The shadow ratio shows a gradual change over time with no details related to weather conditions. Both the entropy and the Huang thresholding technique show variations of soil aggregate breakdown responding to weather conditions. Using data obtained with a regular camera, we found that freezing–thawing cycles are the cause of soil aggregate breakdown. PMID:28556803

  10. Using Color, Texture and Object-Based Image Analysis of Multi-Temporal Camera Data to Monitor Soil Aggregate Breakdown.

    PubMed

    Ymeti, Irena; van der Werff, Harald; Shrestha, Dhruba Pikha; Jetten, Victor G; Lievens, Caroline; van der Meer, Freek

    2017-05-30

    Remote sensing has shown its potential to assess soil properties and is a fast and non-destructive method for monitoring soil surface changes. In this paper, we monitor soil aggregate breakdown under natural conditions. From November 2014 to February 2015, images and weather data were collected on a daily basis from five soils susceptible to detachment (Silty Loam with various organic matter content, Loam and Sandy Loam). Three techniques that vary in image processing complexity and user interaction were tested for the ability of monitoring aggregate breakdown. Considering that the soil surface roughness causes shadow cast, the blue/red band ratio is utilized to observe the soil aggregate changes. Dealing with images with high spatial resolution, image texture entropy, which reflects the process of soil aggregate breakdown, is used. In addition, the Huang thresholding technique, which allows estimation of the image area occupied by soil aggregate, is performed. Our results show that all three techniques indicate soil aggregate breakdown over time. The shadow ratio shows a gradual change over time with no details related to weather conditions. Both the entropy and the Huang thresholding technique show variations of soil aggregate breakdown responding to weather conditions. Using data obtained with a regular camera, we found that freezing-thawing cycles are the cause of soil aggregate breakdown.

  11. Image Coding Based on Address Vector Quantization.

    NASA Astrophysics Data System (ADS)

    Feng, Yushu

    Image coding is finding increased application in teleconferencing, archiving, and remote sensing. This thesis investigates the potential of Vector Quantization (VQ), a relatively new source coding technique, for compression of monochromatic and color images. Extensions of the Vector Quantization technique to the Address Vector Quantization method have been investigated. In Vector Quantization, the image data to be encoded are first processed to yield a set of vectors. A codeword from the codebook which best matches the input image vector is then selected. Compression is achieved by replacing the image vector with the index of the code-word which produced the best match, the index is sent to the channel. Reconstruction of the image is done by using a table lookup technique, where the label is simply used as an address for a table containing the representative vectors. A code-book of representative vectors (codewords) is generated using an iterative clustering algorithm such as K-means, or the generalized Lloyd algorithm. A review of different Vector Quantization techniques are given in chapter 1. Chapter 2 gives an overview of codebook design methods including the Kohonen neural network to design codebook. During the encoding process, the correlation of the address is considered and Address Vector Quantization is developed for color image and monochrome image coding. Address VQ which includes static and dynamic processes is introduced in chapter 3. In order to overcome the problems in Hierarchical VQ, Multi-layer Address Vector Quantization is proposed in chapter 4. This approach gives the same performance as that of the normal VQ scheme but the bit rate is about 1/2 to 1/3 as that of the normal VQ method. In chapter 5, a Dynamic Finite State VQ based on a probability transition matrix to select the best subcodebook to encode the image is developed. In chapter 6, a new adaptive vector quantization scheme, suitable for color video coding, called "A Self -Organizing Adaptive VQ Technique" is presented. In addition to chapters 2 through 6 which report on new work, this dissertation includes one chapter (chapter 1) and part of chapter 2 which review previous work on VQ and image coding, respectively. Finally, a short discussion of directions for further research is presented in conclusion.

  12. Managing complex processing of medical image sequences by program supervision techniques

    NASA Astrophysics Data System (ADS)

    Crubezy, Monica; Aubry, Florent; Moisan, Sabine; Chameroy, Virginie; Thonnat, Monique; Di Paola, Robert

    1997-05-01

    Our objective is to offer clinicians wider access to evolving medical image processing (MIP) techniques, crucial to improve assessment and quantification of physiological processes, but difficult to handle for non-specialists in MIP. Based on artificial intelligence techniques, our approach consists in the development of a knowledge-based program supervision system, automating the management of MIP libraries. It comprises a library of programs, a knowledge base capturing the expertise about programs and data and a supervision engine. It selects, organizes and executes the appropriate MIP programs given a goal to achieve and a data set, with dynamic feedback based on the results obtained. It also advises users in the development of new procedures chaining MIP programs.. We have experimented the approach for an application of factor analysis of medical image sequences as a means of predicting the response of osteosarcoma to chemotherapy, with both MRI and NM dynamic image sequences. As a result our program supervision system frees clinical end-users from performing tasks outside their competence, permitting them to concentrate on clinical issues. Therefore our approach enables a better exploitation of possibilities offered by MIP and higher quality results, both in terms of robustness and reliability.

  13. Real-time high-velocity resolution color Doppler OCT

    NASA Astrophysics Data System (ADS)

    Westphal, Volker; Yazdanfar, Siavash; Rollins, Andrew M.; Izatt, Joseph A.

    2001-05-01

    Color Doppler optical coherence tomography (CDOCT), also called Optical Doppler Tomography) is a noninvasive optical imaging technique, which allows for micron-scale physiological flow mapping simultaneous with morphological OCT imaging. Current systems for real-time endoscopic optical coherence tomography (EOCT) would be enhanced by the capability to visualize sub-surface blood flow for applications in early cancer diagnosis and the management of bleeding ulcers. Unfortunately, previous implementations of CDOCT have either been sufficiently computationally expensive (employing Fourier or Hilbert transform techniques) to rule out real-time imaging of flow, or have been restricted to imaging of excessively high flow velocities when used in real time. We have developed a novel Doppler OCT signal-processing strategy capable of imaging physiological flow rates in real time. This strategy employs cross-correlation processing of sequential A-scans in an EOCT image, as opposed to autocorrelation processing as described previously. To measure Doppler shifts in the kHz range using this technique, it was necessary to stabilize the EOCT interferometer center frequency, eliminate parasitic phase noise, and to construct a digital cross correlation unit able to correlate signals of megahertz bandwidth by a fixed lag of up to a few ms. The performance of the color Doppler OCT system was demonstrated in a flow phantom, demonstrating a minimum detectable flow velocity of ~0.8 mm/s at a data acquisition rate of 8 images/second (with 480 A-scans/image) using a handheld probe. Dynamic flow as well as using it freehanded was shown. Flow was also detectable in a phantom in combination with a clinical usable endoscopic probe.

  14. Neuroimaging Techniques: a Conceptual Overview of Physical Principles, Contribution and History

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico

    2006-06-01

    This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Given the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.

  15. Automated Coronal Loop Identification using Digital Image Processing Techniques

    NASA Astrophysics Data System (ADS)

    Lee, J. K.; Gary, G. A.; Newman, T. S.

    2003-05-01

    The results of a Master's thesis study of computer algorithms for automatic extraction and identification (i.e., collectively, "detection") of optically-thin, 3-dimensional, (solar) coronal-loop center "lines" from extreme ultraviolet and X-ray 2-dimensional images will be presented. The center lines, which can be considered to be splines, are proxies of magnetic field lines. Detecting the loops is challenging because there are no unique shapes, the loop edges are often indistinct, and because photon and detector noise heavily influence the images. Three techniques for detecting the projected magnetic field lines have been considered and will be described in the presentation. The three techniques used are (i) linear feature recognition of local patterns (related to the inertia-tensor concept), (ii) parametric space inferences via the Hough transform, and (iii) topological adaptive contours (snakes) that constrain curvature and continuity. Since coronal loop topology is dominated by the magnetic field structure, a first-order magnetic field approximation using multiple dipoles provides a priori information that has also been incorporated into the detection process. Synthesized images have been generated to benchmark the suitability of the three techniques, and the performance of the three techniques on both synthesized and solar images will be presented and numerically evaluated in the presentation. The process of automatic detection of coronal loops is important in the reconstruction of the coronal magnetic field where the derived magnetic field lines provide a boundary condition for magnetic models ( cf. , Gary (2001, Solar Phys., 203, 71) and Wiegelmann & Neukirch (2002, Solar Phys., 208, 233)). . This work was supported by NASA's Office of Space Science - Solar and Heliospheric Physics Supporting Research and Technology Program.

  16. Do High Dynamic Range threatments improve the results of Structure from Motion approaches in Geomorphology?

    NASA Astrophysics Data System (ADS)

    Gómez-Gutiérrez, Álvaro; Juan de Sanjosé-Blasco, José; Schnabel, Susanne; de Matías-Bejarano, Javier; Pulido-Fernández, Manuel; Berenguer-Sempere, Fernando

    2015-04-01

    In this work, the hypothesis of improving 3D models obtained with Structure from Motion (SfM) approaches using images pre-processed by High Dynamic Range (HDR) techniques is tested. Photographs of the Veleta Rock Glacier in Spain were captured with different exposure values (EV0, EV+1 and EV-1), two focal lengths (35 and 100 mm) and under different weather conditions for the years 2008, 2009, 2011, 2012 and 2014. HDR images were produced using the different EV steps within Fusion F.1 software. Point clouds were generated using commercial and free available SfM software: Agisoft Photoscan and 123D Catch. Models Obtained using pre-processed images and non-preprocessed images were compared in a 3D environment with a benchmark 3D model obtained by means of a Terrestrial Laser Scanner (TLS). A total of 40 point clouds were produced, georeferenced and compared. Results indicated that for Agisoft Photoscan software differences in the accuracy between models obtained with pre-processed and non-preprocessed images were not significant from a statistical viewpoint. However, in the case of the free available software 123D Catch, models obtained using images pre-processed by HDR techniques presented a higher point density and were more accurate. This tendency was observed along the 5 studied years and under different capture conditions. More work should be done in the near future to corroborate whether the results of similar software packages can be improved by HDR techniques (e.g. ARC3D, Bundler and PMVS2, CMP SfM, Photosynth and VisualSFM).

  17. Characterization of Axial Inducer Cavitation Instabilities via High Speed Video Recordings

    NASA Technical Reports Server (NTRS)

    Arellano, Patrick; Peneda, Marinelle; Ferguson, Thomas; Zoladz, Thomas

    2011-01-01

    Sub-scale water tests were undertaken to assess the viability of utilizing high resolution, high frame-rate digital video recordings of a liquid rocket engine turbopump axial inducer to characterize cavitation instabilities. These high speed video (HSV) images of various cavitation phenomena, including higher order cavitation, rotating cavitation, alternating blade cavitation, and asymmetric cavitation, as well as non-cavitating flows for comparison, were recorded from various orientations through an acrylic tunnel using one and two cameras at digital recording rates ranging from 6,000 to 15,700 frames per second. The physical characteristics of these cavitation forms, including the mechanisms that define the cavitation frequency, were identified. Additionally, these images showed how the cavitation forms changed and transitioned from one type (tip vortex) to another (sheet cavitation) as the inducer boundary conditions (inlet pressures) were changed. Image processing techniques were developed which tracked the formation and collapse of cavitating fluid in a specified target area, both in the temporal and frequency domains, in order to characterize the cavitation instability frequency. The accuracy of the analysis techniques was found to be very dependent on target size for higher order cavitation, but much less so for the other phenomena. Tunnel-mounted piezoelectric, dynamic pressure transducers were present throughout these tests and were used as references in correlating the results obtained by image processing. Results showed good agreement between image processing and dynamic pressure spectral data. The test set-up, test program, and test results including H-Q and suction performance, dynamic environment and cavitation characterization, and image processing techniques and results will be discussed.

  18. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  19. Accelerating image recognition on mobile devices using GPGPU

    NASA Astrophysics Data System (ADS)

    Bordallo López, Miguel; Nykänen, Henri; Hannuksela, Jari; Silvén, Olli; Vehviläinen, Markku

    2011-01-01

    The future multi-modal user interfaces of battery-powered mobile devices are expected to require computationally costly image analysis techniques. The use of Graphic Processing Units for computing is very well suited for parallel processing and the addition of programmable stages and high precision arithmetic provide for opportunities to implement energy-efficient complete algorithms. At the moment the first mobile graphics accelerators with programmable pipelines are available, enabling the GPGPU implementation of several image processing algorithms. In this context, we consider a face tracking approach that uses efficient gray-scale invariant texture features and boosting. The solution is based on the Local Binary Pattern (LBP) features and makes use of the GPU on the pre-processing and feature extraction phase. We have implemented a series of image processing techniques in the shader language of OpenGL ES 2.0, compiled them for a mobile graphics processing unit and performed tests on a mobile application processor platform (OMAP3530). In our contribution, we describe the challenges of designing on a mobile platform, present the performance achieved and provide measurement results for the actual power consumption in comparison to using the CPU (ARM) on the same platform.

  20. A real time quality control application for animal production by image processing.

    PubMed

    Sungur, Cemil; Özkan, Halil

    2015-11-01

    Standards of hygiene and health are of major importance in food production, and quality control has become obligatory in this field. Thanks to rapidly developing technologies, it is now possible for automatic and safe quality control of food production. For this purpose, image-processing-based quality control systems used in industrial applications are being employed to analyze the quality of food products. In this study, quality control of chicken (Gallus domesticus) eggs was achieved using a real time image-processing technique. In order to execute the quality control processes, a conveying mechanism was used. Eggs passing on a conveyor belt were continuously photographed in real time by cameras located above the belt. The images obtained were processed by various methods and techniques. Using digital instrumentation, the volume of the eggs was measured, broken/cracked eggs were separated and dirty eggs were determined. In accordance with international standards for classifying the quality of eggs, the class of separated eggs was determined through a fuzzy implication model. According to tests carried out on thousands of eggs, a quality control process with an accuracy of 98% was possible. © 2014 Society of Chemical Industry.

  1. Using AI Planning Techniques to Automatically Generate Image Processing Procedures: A Preliminary Report

    NASA Technical Reports Server (NTRS)

    Chien, S.

    1994-01-01

    This paper describes work on the Multimission VICAR Planner (MVP) system to automatically construct executable image processing procedures for custom image processing requests for the JPL Multimission Image Processing Lab (MIPL). This paper focuses on two issues. First, large search spaces caused by complex plans required the use of hand encoded control information. In order to address this in a manner similar to that used by human experts, MVP uses a decomposition-based planner to implement hierarchical/skeletal planning at the higher level and then uses a classical operator based planner to solve subproblems in contexts defined by the high-level decomposition.

  2. Heuristic Enhancement of Magneto-Optical Images for NDE

    NASA Astrophysics Data System (ADS)

    Cacciola, Matteo; Megali, Giuseppe; Pellicanò, Diego; Calcagno, Salvatore; Versaci, Mario; Morabito, FrancescoCarlo

    2010-12-01

    The quality of measurements in nondestructive testing and evaluation plays a key role in assessing the reliability of different inspection techniques. Each different technique, like the magneto-optic imaging here treated, is affected by some special types of noise which are related to the specific device used for their acquisition. Therefore, the design of even more accurate image processing is often required by relevant applications, for instance, in implementing integrated solutions for flaw detection and characterization. The aim of this paper is to propose a preprocessing procedure based on independent component analysis (ICA) to ease the detection of rivets and/or flaws in the specimens under test. A comparison of the proposed approach with some other advanced image processing methodologies used for denoising magneto-optic images (MOIs) is carried out, in order to show advantages and weakness of ICA in improving the accuracy and performance of the rivets/flaw detection.

  3. Error-proofing test system of industrial components based on image processing

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Huang, Tao

    2018-05-01

    Due to the improvement of modern industrial level and accuracy, conventional manual test fails to satisfy the test standards of enterprises, so digital image processing technique should be utilized to gather and analyze the information on the surface of industrial components, so as to achieve the purpose of test. To test the installation parts of automotive engine, this paper employs camera to capture the images of the components. After these images are preprocessed including denoising, the image processing algorithm relying on flood fill algorithm is used to test the installation of the components. The results prove that this system has very high test accuracy.

  4. Digital image processing for information extraction.

    NASA Technical Reports Server (NTRS)

    Billingsley, F. C.

    1973-01-01

    The modern digital computer has made practical image processing techniques for handling nonlinear operations in both the geometrical and the intensity domains, various types of nonuniform noise cleanup, and the numerical analysis of pictures. An initial requirement is that a number of anomalies caused by the camera (e.g., geometric distortion, MTF roll-off, vignetting, and nonuniform intensity response) must be taken into account or removed to avoid their interference with the information extraction process. Examples illustrating these operations are discussed along with computer techniques used to emphasize details, perform analyses, classify materials by multivariate analysis, detect temporal differences, and aid in human interpretation of photos.

  5. Cardiac imaging: working towards fully-automated machine analysis & interpretation.

    PubMed

    Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido

    2017-03-01

    Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered: This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary: Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation.

  6. World-Wide Web Tools for Locating Planetary Images

    NASA Technical Reports Server (NTRS)

    Kanefsky, Bob; Deiss, Ron (Technical Monitor)

    1995-01-01

    The explosive growth of the World-Wide Web (WWW) in the past year has made it feasible to provide interactive graphical tools to assist scientists in locating planetary images. The highest available resolution images of any site of interest can be quickly found on a map or plot, and, if online, displayed immediately on nearly any computer equipped with a color screen, an Internet connection, and any of the free WWW browsers. The same tools may also be of interest to educators, students, and the general public. Image finding tools have been implemented covering most of the solar system: Earth, Mars, and the moons and planets imaged by Voyager. The Mars image-finder, which plots the footprints of all the high-resolution Viking Orbiter images and can be used to display any that are available online, also contains a complete scrollable atlas and hypertext gazetteer to help locating areas. The Earth image-finder is linked to thousands of Shuttle images stored at NASA/JSC, and displays them as red dots on a globe. The Voyager image-finder plots images as dots, by longitude and apparent target size, linked to online images. The locator (URL) for the top-level page is http: //ic-www.arc.nasa.gov/ic/projects/bayes-group/Atlas/. Through the efforts of the Planetary Data System and other organizations, hundreds of thousands of planetary images are now available on CD-ROM, and many of these have been made available on the WWW. However, locating images of a desired site is still problematic, in practice. For example, many scientists studying Mars use digital image maps, which are one third the resolution of Viking Orbiter survey images. When they douse Viking Orbiter images, they often work with photographically printed hardcopies, which lack the flexibility of digital images: magnification, contrast stretching, and other basic image-processing techniques offered by off-the-shelf software. From the perspective of someone working on an experimental image processing technique for super-resolution, the discovery that potential users are often not using the highest resolution already available, nor using conventional image processing techniques, was surprising. This motivated the present work.

  7. Autofluorescence detection and imaging of bladder cancer realized through a cystoscope

    DOEpatents

    Demos, Stavros G [Livermore, CA; deVere White, Ralph W [Sacramento, CA

    2007-08-14

    Near infrared imaging using elastic light scattering and tissue autofluorescence and utilizing interior examination techniques and equipment are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and/or tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  8. Functional Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Voos, Avery; Pelphrey, Kevin

    2013-01-01

    Functional magnetic resonance imaging (fMRI), with its excellent spatial resolution and ability to visualize networks of neuroanatomical structures involved in complex information processing, has become the dominant technique for the study of brain function and its development. The accessibility of in-vivo pediatric brain-imaging techniques…

  9. Vision based tunnel inspection using non-rigid registration

    NASA Astrophysics Data System (ADS)

    Badshah, Amir; Ullah, Shan; Shahzad, Danish

    2015-04-01

    Growing numbers of long tunnels across the globe has increased the need for safety measurements and inspections of tunnels in these days. To avoid serious damages, tunnel inspection is highly recommended at regular intervals of time to find any deformations or cracks at the right time. While following the stringent safety and tunnel accessibility standards, conventional geodetic surveying using techniques of civil engineering and other manual and mechanical methods are time consuming and results in troublesome of routine life. An automatic tunnel inspection by image processing techniques using non rigid registration has been proposed. There are many other image processing methods used for image registration purposes. Most of the processes are operation of images in its spatial domain like finding edges and corners by Harris edge detection method. These methods are quite time consuming and fail for some or other reasons like for blurred or images with noise. Due to use of image features directly by these methods in the process, are known by the group, correlation by image features. The other method is featureless correlation, in which the images are converted into its frequency domain and then correlated with each other. The shift in spatial domain is the same as in frequency domain, but the processing is order faster than in spatial domain. In the proposed method modified normalized phase correlation has been used to find any shift between two images. As pre pre-processing the tunnel images i.e. reference and template are divided into small patches. All these relative patches are registered by the proposed modified normalized phase correlation. By the application of the proposed algorithm we get the pixel movement of the images. And then these pixels shifts are converted to measuring units like mm, cm etc. After the complete process if there is any shift in the tunnel at described points are located.

  10. Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrove, Cameron

    For synthetic aperture radars radio frequency interference from sources external to the radar system and techniques to mitigate the interference can degrade the quality of the image products. Usually the radar system designer will try to balance the amount of mitigation for an acceptable amount of interference to optimize the image quality. This dissertation examines the effect of interference mitigation upon coherent data products of fine resolution, high frequency synthetic aperture radars using stretch processing. Novel interference mitigation techniques are introduced that operate on single or multiple apertures of data that increase average coherence compared to existing techniques. New metricsmore » are applied to evaluate multiple mitigation techniques for image quality and average coherence. The underlying mechanism for interference mitigation techniques that affect coherence is revealed.« less

  11. Practical issues of hyperspectral imaging analysis of solid dosage forms.

    PubMed

    Amigo, José Manuel

    2010-09-01

    Hyperspectral imaging techniques have widely demonstrated their usefulness in different areas of interest in pharmaceutical research during the last decade. In particular, middle infrared, near infrared, and Raman methods have gained special relevance. This rapid increase has been promoted by the capability of hyperspectral techniques to provide robust and reliable chemical and spatial information on the distribution of components in pharmaceutical solid dosage forms. Furthermore, the valuable combination of hyperspectral imaging devices with adequate data processing techniques offers the perfect landscape for developing new methods for scanning and analyzing surfaces. Nevertheless, the instrumentation and subsequent data analysis are not exempt from issues that must be thoughtfully considered. This paper describes and discusses the main advantages and drawbacks of the measurements and data analysis of hyperspectral imaging techniques in the development of solid dosage forms.

  12. Quantitative Frequency-Domain Passive Cavitation Imaging

    PubMed Central

    Haworth, Kevin J.; Bader, Kenneth B.; Rich, Kyle T.; Holland, Christy K.; Mast, T. Douglas

    2017-01-01

    Passive cavitation detection has been an instrumental technique for measuring cavitation dynamics, elucidating concomitant bioeffects, and guiding ultrasound therapies. Recently, techniques have been developed to create images of cavitation activity to provide investigators with a more complete set of information. These techniques use arrays to record and subsequently beamform received cavitation emissions, rather than processing emissions received on a single-element transducer. In this paper, the methods for performing frequency-domain delay, sum, and integrate passive imaging are outlined. The method can be applied to any passively acquired acoustic scattering or emissions, including cavitation emissions. In order to compare data across different systems, techniques for normalizing Fourier transformed data and converting the data to the acoustic energy received by the array are described. A discussion of hardware requirements and alternative imaging approaches are additionally outlined. Examples are provided in MATLAB. PMID:27992331

  13. The precision-processing subsystem for the Earth Resources Technology Satellite.

    NASA Technical Reports Server (NTRS)

    Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.

    1972-01-01

    Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.

  14. Colour Based Image Processing Method for Recognizing Ribbed Smoked Sheet Grade

    NASA Astrophysics Data System (ADS)

    Fibriani, Ike; Sumardi; Bayu Satriya, Alfredo; Budi Utomo, Satryo

    2017-03-01

    This research proposes a colour based image processing technique to recognize the Ribbed Smoked Sheet (RSS) grade so that the RSS sorting process can be faster and more accurate than the traditional one. The RSS sheet image captured by the camera is transformed into grayscale image to simplify the recognition of rust and mould on the RSS sheet. Then the grayscale image is transformed into binary image using threshold value which is obtained from the RSS 1 reference colour. The grade recognition is determined by counting the white pixel percentage. The result shows that the system has 88% of accuracy. Most faults exist on RSS 2 recognition. This is due to the illumination distribution which is not equal over the RSS image.

  15. Thermal Characterization of Defects in Aircraft Structures Via Spatially Controlled Heat Application

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott; Winfree, William P.

    1997-01-01

    Recent advances in thermal imaging technology have spawned a number of new thermal NDE techniques that provide quantitative information about flaws in aircraft structures. Thermography has a number of advantages as an inspection technique. It is a totally noncontacting, nondestructive, imaging technology capable of inspecting a large area in a matter of a few seconds. The development of fast, inexpensive image processors have aided in the attractiveness of thermography as an NDE technique. These image processors have increased the signal to noise ratio of thermography and facilitated significant advances in post-processing. The resulting digital images enable archival records for comparison with later inspections thus providing a means of monitoring the evolution of damage in a particular structure. The National Aeronautics and Space Administration's Langley Research Center has developed a thermal NDE technique designed to image a number of potential flaws in aircraft structures. The technique involves injecting a small, spatially controlled heat flux into the outer surface of an aircraft. Images of fatigue cracking, bond integrity and material loss due to corrosion are generated from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to analyze the resulting thermal images. Spatial tailoring of the heat coupled with the analysis techniques represent a significant improvement in the delectability of flaws over conventional thermal imaging. Results of laboratory experiments on fabricated crack, disbond and material loss samples will be presented to demonstrate the capabilities of the technique. An integral part of the development of this technology is the use of analytic and computational modeling. The experimental results will be compared with these models to demonstrate the utility of such an approach.

  16. Image gathering, coding, and processing: End-to-end optimization for efficient and robust acquisition of visual information

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Fales, Carl L.

    1990-01-01

    Researchers are concerned with the end-to-end performance of image gathering, coding, and processing. The applications range from high-resolution television to vision-based robotics, wherever the resolution, efficiency and robustness of visual information acquisition and processing are critical. For the presentation at this workshop, it is convenient to divide research activities into the following two overlapping areas: The first is the development of focal-plane processing techniques and technology to effectively combine image gathering with coding, with an emphasis on low-level vision processing akin to the retinal processing in human vision. The approach includes the familiar Laplacian pyramid, the new intensity-dependent spatial summation, and parallel sensing/processing networks. Three-dimensional image gathering is attained by combining laser ranging with sensor-array imaging. The second is the rigorous extension of information theory and optimal filtering to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing.

  17. New techniques for fluorescence background rejection in microscopy and endoscopy

    NASA Astrophysics Data System (ADS)

    Ventalon, Cathie

    2009-03-01

    Confocal microscopy is a popular technique in the bioimaging community, mainly because it provides optical sectioning. However, its standard implementation requires 3-dimensional scanning of focused illumination throughout the sample. Efficient non-scanning alternatives have been implemented, among which the simple and well-established incoherent structured illumination microscopy (SIM) [1]. We recently proposed a similar technique, called Dynamic Speckle Illumination (DSI) microscopy, wherein the incoherent grid illumination pattern is replaced with a coherent speckle illumination pattern from a laser, taking advantage of the fact that speckle contrast is highly maintained in a scattering media, making the technique well adapted to tissue imaging [2]. DSI microscopy relies on the illumination of a sample with a sequence of dynamic speckle patterns and an image processing algorithm based only on an a priori knowledge of speckle statistics. The choice of this post-processing algorithm is crucial to obtain a good sectioning strength: in particular, we developed a novel post-processing algorithm based one wavelet pre-filtering of the raw images and obtained near-confocal fluorescence sectioning in a mouse brain labeled with GFP, with a good image quality maintained throughout a depth of ˜100 μm [3]. In the purpose of imaging fluorescent tissue at higher depth, we recently applied structured illumination to endoscopy. We used a similar set-up wherein the illumination pattern (a one-dimensional grid) is transported to the sample with an imaging fiber bundle with miniaturized objective and the fluorescence image is collected through the same bundle. Using a post-processing algorithm similar to the one previously described [3], we obtained high-quality images of a fluorescein-labeled rat colonic mucosa [4], establishing the potential of our endomicroscope for bioimaging applications. [4pt] Ref: [0pt] [1] M. A. A. Neil et al, Opt. Lett. 22, 1905 (1997) [0pt] [2] C. Ventalon et al, Opt. Lett. 30, 3350 (2005) [0pt] [3] C. Ventalon et al, Opt. Lett. 32, 1417 (2007) [0pt] [4] N. Bozinovic et al, Opt. Express 16, 8016 (2008)

  18. Understanding Subsurface Colloid Behavior: A New Visualization Technique and the Application of Geo-Centrifuge Modeling

    NASA Astrophysics Data System (ADS)

    Yoon, J. S.; Culligan, P. J.; Germaine, J. T.

    2003-12-01

    Subsurface colloid behavior has recently drawn attention because colloids are suspected of enhancing contaminant transport in groundwater systems. To better understand the processes by which colloids move through the subsurface, and in particular the vadose zone, a new technique that enables real-time visualization of colloid particles as they move through a porous medium has been developed. This visualization technique involves the use of laser induced fluorescent particles and digital image processing to directly observe particles moving through a porous medium consisting of soda-lime glass beads and water in a transparent experimental box of 10.0cm\\x9D27.9cm\\x9D2.38cm. Colloid particles are simulated using commercially available micron sized particles that fluoresce under argon-ion laser light. The fluorescent light given off from the particles is captured through a camera filter, which lets through only the emitted wavelength of the colloid particles. The intensity of the emitted light is proportional to the colloid particle concentration. The images of colloid movement are captured by a MagnaFire digital camera; a cooled CCD digital camera produced by Optronics. This camera enables real-time capture of images to a computer, thereby allowing the images to be processed immediately. The images taken by the camera are analyzed by the ImagePro software from Media Cybernetics, which contains a range of counting, sizing, measuring, and image enhancement tools for image processing. Laboratory experiments using the new technique have demonstrated the existence of both irreversible and reversible sites for colloid entrapment during uniform saturated flow in a homogeneous porous medium. These tests have also shown a dependence of colloid entrapment on velocity. Models for colloid transport currently available in the literature have proven to be inadequate predictors for the experimental observations, despite the simplicity of the system studied. To further extend the work, the visualization technique has been developed for use on the geo-centrifuge. The advantage that the geo-centrifuge has for investigating subsurface colloid behavior, is the ability to simulate unsaturated transport mechanisms under well simulated field moisture profiles and in shortened periods of time. A series of tests to investigate colloid transport during uniform saturated flow is being used to examine basic scaling laws for colloid transport under enhanced gravity. The paper will describe the new visualization technique, its use in geo-centrifuge testing and observations on scaling relationships for colloid transport during geo-centrifuge experiments. Although the visualization technique has been developed for investigating subsurface colloid behavior, it does have application in other areas of investigation, including the investigation of microbial behavior in the subsurface.

  19. Studies of soundings and imagings measurements from geostationary satellites

    NASA Technical Reports Server (NTRS)

    Suomi, V. E.

    1973-01-01

    Soundings and imaging measurements from geostationary satellites are presented. The subjects discussed are: (1) meteorological data processing techniques, (2) sun glitter, (3) cloud growth rate study, satellite stability characteristics, and (4) high resolution optics. The use of perturbation technique to obtain the motion of sensors aboard a satellite is described. The most conditions, and measurement errors. Several performance evaluation parameters are proposed.

  20. Surface conversion techniques for low energy neutral atom imagers

    NASA Technical Reports Server (NTRS)

    Quinn, J. M.

    1995-01-01

    This investigation has focused on development of key technology elements for low energy neutral atom imaging. More specifically, we have investigated the conversion of low energy neutral atoms to negatively charged ions upon reflection from specially prepared surfaces. This 'surface conversion' technique appears to offer a unique capability of detecting, and thus imaging, neutral atoms at energies of 0.01 - 1 keV with high enough efficiencies to make practical its application to low energy neutral atom imaging in space. Such imaging offers the opportunity to obtain the first instantaneous global maps of macroscopic plasma features and their temporal variation. Through previous in situ plasma measurements, we have a statistical picture of large scale morphology and local measurements of dynamic processes. However, with in situ techniques it is impossible to characterize or understand many of the global plasma transport and energization processes. A series of global plasma images would greatly advance our understanding of these processes and would provide the context for interpreting previous and future in situ measurements. Fast neutral atoms, created from ions that are neutralized in collisions with exospheric neutrals, offer the means for remotely imaging plasma populations. Energy and mass analysis of these neutrals provides critical information about the source plasma distribution. The flux of neutral atoms available for imaging depends upon a convolution of the ambient plasma distribution with the charge exchange cross section for the background neutral population. Some of the highest signals are at relatively low energies (well below 1 keV). This energy range also includes some of the most important plasma populations to be imaged, for example the base of the cleft ion fountain.

  1. Predicting cotton yield of small field plots in a cotton breeding program using UAV imagery data

    NASA Astrophysics Data System (ADS)

    Maja, Joe Mari J.; Campbell, Todd; Camargo Neto, Joao; Astillo, Philip

    2016-05-01

    One of the major criteria used for advancing experimental lines in a breeding program is yield performance. Obtaining yield performance data requires machine picking each plot with a cotton picker, modified to weigh individual plots. Harvesting thousands of small field plots requires a great deal of time and resources. The efficiency of cotton breeding could be increased significantly while the cost could be decreased with the availability of accurate methods to predict yield performance. This work is investigating the feasibility of using an image processing technique using a commercial off-the-shelf (COTS) camera mounted on a small Unmanned Aerial Vehicle (sUAV) to collect normal RGB images in predicting cotton yield on small plot. An orthonormal image was generated from multiple images and used to process multiple, segmented plots. A Gaussian blur was used to eliminate the high frequency component of the images, which corresponds to the cotton pixels, and used image subtraction technique to generate high frequency pixel images. The cotton pixels were then separated using k-means cluster with 5 classes. Based on the current work, the calculated percentage cotton area was computed using the generated high frequency image (cotton pixels) divided by the total area of the plot. Preliminary results showed (five flights, 3 altitudes) that cotton cover on multiple pre-selected 227 sq. m. plots produce an average of 8% which translate to approximately 22.3 kgs. of cotton. The yield prediction equation generated from the test site was then use on a separate validation site and produced a prediction error of less than 10%. In summary, the results indicate that a COTS camera with an appropriate image processing technique can produce results that are comparable to expensive sensors.

  2. On-line measurement of diameter of hot-rolled steel tube

    NASA Astrophysics Data System (ADS)

    Zhu, Xueliang; Zhao, Huiying; Tian, Ailing; Li, Bin

    2015-02-01

    In order to design a online diameter measurement system for Hot-rolled seamless steel tube production line. On one hand, it can play a stimulate part in the domestic pipe measuring technique. On the other hand, it can also make our domestic hot rolled seamless steel tube enterprises gain a strong product competitiveness with low input. Through the analysis of various detection methods and techniques contrast, this paper choose a CCD camera-based online caliper system design. The system mainly includes the hardware measurement portion and the image processing section, combining with software control technology and image processing technology, which can complete online measurement of heat tube diameter. Taking into account the complexity of the actual job site situation, it can choose a relatively simple and reasonable layout. The image processing section mainly to solve the camera calibration and the application of a function in Matlab, to achieve the diameter size display directly through the algorithm to calculate the image. I build a simulation platform in the design last phase, successfully, collect images for processing, to prove the feasibility and rationality of the design and make error in less than 2%. The design successfully using photoelectric detection technology to solve real work problems

  3. An image compression survey and algorithm switching based on scene activity

    NASA Technical Reports Server (NTRS)

    Hart, M. M.

    1985-01-01

    Data compression techniques are presented. A description of these techniques is provided along with a performance evaluation. The complexity of the hardware resulting from their implementation is also addressed. The compression effect on channel distortion and the applicability of these algorithms to real-time processing are presented. Also included is a proposed new direction for an adaptive compression technique for real-time processing.

  4. Quantitative image fusion in infrared radiometry

    NASA Astrophysics Data System (ADS)

    Romm, Iliya; Cukurel, Beni

    2018-05-01

    Towards high-accuracy infrared radiance estimates, measurement practices and processing techniques aimed to achieve quantitative image fusion using a set of multi-exposure images of a static scene are reviewed. The conventional non-uniformity correction technique is extended, as the original is incompatible with quantitative fusion. Recognizing the inherent limitations of even the extended non-uniformity correction, an alternative measurement methodology, which relies on estimates of the detector bias using self-calibration, is developed. Combining data from multi-exposure images, two novel image fusion techniques that ultimately provide high tonal fidelity of a photoquantity are considered: ‘subtract-then-fuse’, which conducts image subtraction in the camera output domain and partially negates the bias frame contribution common to both the dark and scene frames; and ‘fuse-then-subtract’, which reconstructs the bias frame explicitly and conducts image fusion independently for the dark and the scene frames, followed by subtraction in the photoquantity domain. The performances of the different techniques are evaluated for various synthetic and experimental data, identifying the factors contributing to potential degradation of the image quality. The findings reflect the superiority of the ‘fuse-then-subtract’ approach, conducting image fusion via per-pixel nonlinear weighted least squares optimization.

  5. Ultrasonic Imaging Techniques for Breast Cancer Detection

    NASA Astrophysics Data System (ADS)

    Goulding, N. R.; Marquez, J. D.; Prewett, E. M.; Claytor, T. N.; Nadler, B. R.

    2008-02-01

    Improving the resolution and specificity of current ultrasonic imaging technology is needed to enhance its relevance to breast cancer detection. A novel ultrasonic imaging reconstruction method is described that exploits classical straight-ray migration. This novel method improves signal processing for better image resolution and uses novel staging hardware options using a pulse-echo approach. A breast phantom with various inclusions is imaged using the classical migration method and is compared to standard computed tomography (CT) scans. These innovative ultrasonic methods incorporate ultrasound data acquisition, beam profile characterization, and image reconstruction. For an ultrasonic frequency of 2.25 MHz, imaged inclusions of approximately 1 cm are resolved and identified. Better resolution is expected with minor modifications. Improved image quality and resolution enables earlier detection and more accurate diagnoses of tumors thus reducing the number of biopsies performed, increasing treatment options, and lowering remission percentages. Using these new techniques the inclusions in the phantom are resolved and compared to the results of standard methods. Refinement of this application using other imaging techniques such as time-reversal mirrors (TRM), synthetic aperture focusing technique (SAFT), decomposition of the time reversal operator (DORT), and factorization methods is also discussed.

  6. Geologic interpretation of Seasat SAR imagery near the Rio Lacantum, Mexico

    NASA Technical Reports Server (NTRS)

    Rebillard, PH.; Dixon, T.

    1984-01-01

    A mosaic of the Seasat Synthetic Aperture Radar (SAR) optically processed images over Central America is presented. A SAR image of the Rio Lacantum area (southeastern Mexico) has been digitally processed and its interpretation is presented. The region is characterized by low relief and a dense vegetation canopy. Surface is believed to be indicative of subsurface structural features. The Seasat-SAR system had a steep imaging geometry (incidence angle 23 + or - 3 deg off-nadir) which is favorable for detection of subtle topographic variations. Subtle textural features in the image corresponding to surface topography were enhanced by image processing techniques. A structural and lithologic interpretation of the processed images is presented. Lineaments oriented NE-SW dominate and intersect broad folds trending NW-SE. Distinctive karst topography characterizes one high relief area

  7. Status and Perspectives of Neutron Imaging Facilities

    NASA Astrophysics Data System (ADS)

    Lehmann, E.; Trtik, P.; Ridikas, D.

    The methodology and the application range of neutron imaging techniques have been significantly improved at numerous facilities worldwide in the last decades. This progress has been achieved by new detector systems, the setup of dedicated, optimized and flexible beam lines and the much better understanding of the complete imaging process thanks to complementary simulations. Furthermore, new applications and research topics were found and implemented. However, since the quality and the number of neutron imaging facilities depend much on the access to suitable beam ports, there is still an enormous potential to implement state-of-the-art neutron imaging techniques at many more facilities. On the one hand, there are prominent and powerful sources which do not intend/accept the implementation of neutron imaging techniques due to the priorities set for neutron scattering and irradiation techniques exclusively. On the other hand, there are modern and useful devices which remain under-utilized and have either not the capacity or not the know-how to develop attractive user programs and/or industrial partnerships. In this overview of the international status of neutron imaging facilities, we will specify details about the current situation.

  8. Scaling images using their background ratio. An application in statistical comparisons of images.

    PubMed

    Kalemis, A; Binnie, D; Bailey, D L; Flower, M A; Ott, R J

    2003-06-07

    Comparison of two medical images often requires image scaling as a pre-processing step. This is usually done with the scaling-to-the-mean or scaling-to-the-maximum techniques which, under certain circumstances, in quantitative applications may contribute a significant amount of bias. In this paper, we present a simple scaling method which assumes only that the most predominant values in the corresponding images belong to their background structure. The ratio of the two images to be compared is calculated and its frequency histogram is plotted. The scaling factor is given by the position of the peak in this histogram which belongs to the background structure. The method was tested against the traditional scaling-to-the-mean technique on simulated planar gamma-camera images which were compared using pixelwise statistical parametric tests. Both sensitivity and specificity for each condition were measured over a range of different contrasts and sizes of inhomogeneity for the two scaling techniques. The new method was found to preserve sensitivity in all cases while the traditional technique resulted in significant degradation of sensitivity in certain cases.

  9. Advances in interpretation of subsurface processes with time-lapse electrical imaging

    USGS Publications Warehouse

    Singha, Kaminit; Day-Lewis, Frederick D.; Johnson, Tim B.; Slater, Lee D.

    2015-01-01

    Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.

  10. Advances in interpretation of subsurface processes with time-lapse electrical imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singha, Kamini; Day-Lewis, Frederick D.; Johnson, Timothy C.

    2015-03-15

    Electrical geophysical methods, including electrical resistivity, time-domain induced polarization, and complex resistivity, have become commonly used to image the near subsurface. Here, we outline their utility for time-lapse imaging of hydrological, geochemical, and biogeochemical processes, focusing on new instrumentation, processing, and analysis techniques specific to monitoring. We review data collection procedures, parameters measured, and petrophysical relationships and then outline the state of the science with respect to inversion methodologies, including coupled inversion. We conclude by highlighting recent research focused on innovative applications of time-lapse imaging in hydrology, biology, ecology, and geochemistry, among other areas of interest.

  11. Wavelet Filter Banks for Super-Resolution SAR Imaging

    NASA Technical Reports Server (NTRS)

    Sheybani, Ehsan O.; Deshpande, Manohar; Memarsadeghi, Nargess

    2011-01-01

    This paper discusses Innovative wavelet-based filter banks designed to enhance the analysis of super resolution Synthetic Aperture Radar (SAR) images using parametric spectral methods and signal classification algorithms, SAR finds applications In many of NASA's earth science fields such as deformation, ecosystem structure, and dynamics of Ice, snow and cold land processes, and surface water and ocean topography. Traditionally, standard methods such as Fast-Fourier Transform (FFT) and Inverse Fast-Fourier Transform (IFFT) have been used to extract Images from SAR radar data, Due to non-parametric features of these methods and their resolution limitations and observation time dependence, use of spectral estimation and signal pre- and post-processing techniques based on wavelets to process SAR radar data has been proposed. Multi-resolution wavelet transforms and advanced spectral estimation techniques have proven to offer efficient solutions to this problem.

  12. Combined X-ray CT and mass spectrometry for biomedical imaging applications

    NASA Astrophysics Data System (ADS)

    Schioppa, E., Jr.; Ellis, S.; Bruinen, A. L.; Visser, J.; Heeren, R. M. A.; Uher, J.; Koffeman, E.

    2014-04-01

    Imaging technologies play a key role in many branches of science, especially in biology and medicine. They provide an invaluable insight into both internal structure and processes within a broad range of samples. There are many techniques that allow one to obtain images of an object. Different techniques are based on the analysis of a particular sample property by means of a dedicated imaging system, and as such, each imaging modality provides the researcher with different information. The use of multimodal imaging (imaging with several different techniques) can provide additional and complementary information that is not possible when employing a single imaging technique alone. In this study, we present for the first time a multi-modal imaging technique where X-ray computerized tomography (CT) is combined with mass spectrometry imaging (MSI). While X-ray CT provides 3-dimensional information regarding the internal structure of the sample based on X-ray absorption coefficients, MSI of thin sections acquired from the same sample allows the spatial distribution of many elements/molecules, each distinguished by its unique mass-to-charge ratio (m/z), to be determined within a single measurement and with a spatial resolution as low as 1 μm or even less. The aim of the work is to demonstrate how molecular information from MSI can be spatially correlated with 3D structural information acquired from X-ray CT. In these experiments, frozen samples are imaged in an X-ray CT setup using Medipix based detectors equipped with a CO2 cooled sample holder. Single projections are pre-processed before tomographic reconstruction using a signal-to-thickness calibration. In the second step, the object is sliced into thin sections (circa 20 μm) that are then imaged using both matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) and secondary ion (SIMS) mass spectrometry, where the spatial distribution of specific molecules within the sample is determined. The combination of two vastly different imaging approaches provides complementary information (i.e., anatomical and molecular distributions) that allows the correlation of distinct structural features with specific molecules distributions leading to unique insights in disease development.

  13. Proton magnetic resonance spectroscopy imaging in the study of human brain cancer.

    PubMed

    Martínez-Bisbal, M C; Celda, B

    2009-12-01

    Magnetic resonance spectroscopic imaging (MRSI) is a non-invasive imaging technique that provides metabolic information on brain tumor. This biochemical information can be processed and presented as density maps of several metabolites, among them N-acetylaspartate (marker of neuronal viability), choline (marker of membrane turnover), creatine (related to the energy state of the cells), myo-Inositol (exclusively found in astrocytes), lipids and lactate (observed in necrosis and other pathological processes) which mean relevant information in the context of brain tumors. Thus, this technique is a multiparametrical molecular imaging method that can complete the magnetic resonance imaging (MRI) study enabling the detection of biochemical patterns of different features and aspects of brain tumors. In this article, the role of MRSI as a molecular imaging technique to provide biochemical information on human brain tumors is reviewed. The most frequent questions and situations in the study of human brain tumors in clinical settings will be considered, as well as the distinction of neoplastic lesions from non neoplastic, the tumor type identification, the study of heterogeneity and infiltration of normal appearing white matter and the therapy following with detection of side effects. The great amount of data in MRSI acquisition compared to the single voxel techniques requires the use of automated methods of quantification, but the possibility to obtain self-reference in the non-affected areas allows different strategies for data handling and interpretation, as presented in the literature. The combination of MRSI with other physiological MRI techniques and positron emission tomography is also included in this review.

  14. Computer measurement of particle sizes in electron microscope images

    NASA Technical Reports Server (NTRS)

    Hall, E. L.; Thompson, W. B.; Varsi, G.; Gauldin, R.

    1976-01-01

    Computer image processing techniques have been applied to particle counting and sizing in electron microscope images. Distributions of particle sizes were computed for several images and compared to manually computed distributions. The results of these experiments indicate that automatic particle counting within a reasonable error and computer processing time is feasible. The significance of the results is that the tedious task of manually counting a large number of particles can be eliminated while still providing the scientist with accurate results.

  15. Design Criteria For Networked Image Analysis System

    NASA Astrophysics Data System (ADS)

    Reader, Cliff; Nitteberg, Alan

    1982-01-01

    Image systems design is currently undergoing a metamorphosis from the conventional computing systems of the past into a new generation of special purpose designs. This change is motivated by several factors, notably among which is the increased opportunity for high performance with low cost offered by advances in semiconductor technology. Another key issue is a maturing in understanding of problems and the applicability of digital processing techniques. These factors allow the design of cost-effective systems that are functionally dedicated to specific applications and used in a utilitarian fashion. Following an overview of the above stated issues, the paper presents a top-down approach to the design of networked image analysis systems. The requirements for such a system are presented, with orientation toward the hospital environment. The three main areas are image data base management, viewing of image data and image data processing. This is followed by a survey of the current state of the art, covering image display systems, data base techniques, communications networks and software systems control. The paper concludes with a description of the functional subystems and architectural framework for networked image analysis in a production environment.

  16. Preclinical Biokinetic Modelling of Tc-99m Radiophamaceuticals Obtained from Semi-Automatic Image Processing.

    PubMed

    Cornejo-Aragón, Luz G; Santos-Cuevas, Clara L; Ocampo-García, Blanca E; Chairez-Oria, Isaac; Diaz-Nieto, Lorenza; García-Quiroz, Janice

    2017-01-01

    The aim of this study was to develop a semi automatic image processing algorithm (AIPA) based on the simultaneous information provided by X-ray and radioisotopic images to determine the biokinetic models of Tc-99m radiopharmaceuticals from quantification of image radiation activity in murine models. These radioisotopic images were obtained by a CCD (charge couple device) camera coupled to an ultrathin phosphorous screen in a preclinical multimodal imaging system (Xtreme, Bruker). The AIPA consisted of different image processing methods for background, scattering and attenuation correction on the activity quantification. A set of parametric identification algorithms was used to obtain the biokinetic models that characterize the interaction between different tissues and the radiopharmaceuticals considered in the study. The set of biokinetic models corresponded to the Tc-99m biodistribution observed in different ex vivo studies. This fact confirmed the contribution of the semi-automatic image processing technique developed in this study.

  17. Using quantum filters to process images of diffuse axonal injury

    NASA Astrophysics Data System (ADS)

    Pineda Osorio, Mateo

    2014-06-01

    Some images corresponding to a diffuse axonal injury (DAI) are processed using several quantum filters such as Hermite Weibull and Morse. Diffuse axonal injury is a particular, common and severe case of traumatic brain injury (TBI). DAI involves global damage on microscopic scale of brain tissue and causes serious neurologic abnormalities. New imaging techniques provide excellent images showing cellular damages related to DAI. Said images can be processed with quantum filters, which accomplish high resolutions of dendritic and axonal structures both in normal and pathological state. Using the Laplacian operators from the new quantum filters, excellent edge detectors for neurofiber resolution are obtained. Image quantum processing of DAI images is made using computer algebra, specifically Maple. Quantum filter plugins construction is proposed as a future research line, which can incorporated to the ImageJ software package, making its use simpler for medical personnel.

  18. Wear Detection of Drill Bit by Image-based Technique

    NASA Astrophysics Data System (ADS)

    Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul

    2018-03-01

    Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.

  19. Infrared and visible image fusion using discrete cosine transform and swarm intelligence for surveillance applications

    NASA Astrophysics Data System (ADS)

    Paramanandham, Nirmala; Rajendiran, Kishore

    2018-01-01

    A novel image fusion technique is presented for integrating infrared and visible images. Integration of images from the same or various sensing modalities can deliver the required information that cannot be delivered by viewing the sensor outputs individually and consecutively. In this paper, a swarm intelligence based image fusion technique using discrete cosine transform (DCT) domain is proposed for surveillance application which integrates the infrared image with the visible image for generating a single informative fused image. Particle swarm optimization (PSO) is used in the fusion process for obtaining the optimized weighting factor. These optimized weighting factors are used for fusing the DCT coefficients of visible and infrared images. Inverse DCT is applied for obtaining the initial fused image. An enhanced fused image is obtained through adaptive histogram equalization for a better visual understanding and target detection. The proposed framework is evaluated using quantitative metrics such as standard deviation, spatial frequency, entropy and mean gradient. The experimental results demonstrate the outperformance of the proposed algorithm over many other state- of- the- art techniques reported in literature.

  20. Histology image analysis for carcinoma detection and grading

    PubMed Central

    He, Lei; Long, L. Rodney; Antani, Sameer; Thoma, George R.

    2012-01-01

    This paper presents an overview of the image analysis techniques in the domain of histopathology, specifically, for the objective of automated carcinoma detection and classification. As in other biomedical imaging areas such as radiology, many computer assisted diagnosis (CAD) systems have been implemented to aid histopathologists and clinicians in cancer diagnosis and research, which have been attempted to significantly reduce the labor and subjectivity of traditional manual intervention with histology images. The task of automated histology image analysis is usually not simple due to the unique characteristics of histology imaging, including the variability in image preparation techniques, clinical interpretation protocols, and the complex structures and very large size of the images themselves. In this paper we discuss those characteristics, provide relevant background information about slide preparation and interpretation, and review the application of digital image processing techniques to the field of histology image analysis. In particular, emphasis is given to state-of-the-art image segmentation methods for feature extraction and disease classification. Four major carcinomas of cervix, prostate, breast, and lung are selected to illustrate the functions and capabilities of existing CAD systems. PMID:22436890

Top