TOPICAL REVIEW: Human soft tissue analysis using x-ray or gamma-ray techniques
NASA Astrophysics Data System (ADS)
Theodorakou, C.; Farquharson, M. J.
2008-06-01
This topical review is intended to describe the x-ray techniques used for human soft tissue analysis. X-ray techniques have been applied to human soft tissue characterization and interesting results have been presented over the last few decades. The motivation behind such studies is to provide improved patient outcome by using the data obtained to better understand a disease process and improve diagnosis. An overview of theoretical background as well as a complete set of references is presented. For each study, a brief summary of the methodology and results is given. The x-ray techniques include x-ray diffraction, x-ray fluorescence, Compton scattering, Compton to coherent scattering ratio and attenuation measurements. The soft tissues that have been classified using x-rays or gamma rays include brain, breast, colon, fat, kidney, liver, lung, muscle, prostate, skin, thyroid and uterus.
Report on the 18th International Conference on X-ray and Inner-Shell Processes (X99).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gemmell, D. S.; Physics
2000-01-01
The 18th conference of the series served as a forum for discussing fundamental issues in the field of x-ray and inner-shell processes and their application in various disciplines of science and technology. Special emphasis was given to the opportunities offered by modern synchrotron x-ray sources. The program included plenary talks, progress reports and poster presentations relating to new developments in the field of x-ray and inner-shell processes. The range of topics included: X-ray interactions with atoms, molecules, clusters, surfaces and solids; Decay processes for inner-shell vacancies; X-ray absorption and emission spectroscopy - Photoionization processes; Phenomena associated with highly charged ionsmore » and collisions with energetic particles; Electron-spin and -momentum spectroscopy; X-ray scattering and spectroscopy in the study of magnetic systems; Applications in materials science, biology, geosciences, and other disciplines; Elastic and inelastic x-ray scattering processes in atoms and molecules; Threshold phenomena (post-collision interaction, resonant Raman processes, etc.); Nuclear absorption and scattering of x-rays; 'Fourth-generation' x-ray sources; Processes exploiting the polarization and coherence properties of x-ray beams; Developments in experimental techniques (x-ray optics, temporal techniques, detectors); Microscopy, spectromicroscopy, and various imaging techniques; Non-linear processes and x-ray lasers; Ionization and excitation induced by charged particles and by x-rays; and Exotic atoms (including 'hollow' atoms and atoms that contain 'exotic' particles).« less
Transmission X-ray microscopy for full-field nano-imaging of biomaterials
ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO
2010-01-01
Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Y. M., E-mail: yxiao@carnegiescience.edu; Chow, P.; Boman, G.
The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.
Transmission X-ray microscopy for full-field nano imaging of biomaterials.
Andrews, Joy C; Meirer, Florian; Liu, Yijin; Mester, Zoltan; Pianetta, Piero
2011-07-01
Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure imaging. These techniques are discussed and compared in light of results from the imaging of biological materials including microorganisms, bone and mineralized tissue, and plants, with a focus on hard X-ray TXM at ≤ 40-nm resolution. Copyright © 2010 Wiley-Liss, Inc.
X-Ray Backscatter Imaging for Aerospace Applications
NASA Astrophysics Data System (ADS)
Shedlock, Daniel; Edwards, Talion; Toh, Chin
2011-06-01
Scatter x-ray imaging (SXI) is a real time, digital, x-ray backscatter imaging technique that allows radiographs to be taken from one side of an object. This x-ray backscatter imaging technique offers many advantages over conventional transmission radiography that include single-sided access and extremely low radiation fields compared to conventional open source industrial radiography. Examples of some applications include the detection of corrosion, foreign object debris, water intrusion, cracking, impact damage and leak detection in a variety of material such as aluminum, composites, honeycomb structures, and titanium.
Studies of electrode structures and dynamics using coherent X-ray scattering and imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
You, H.; Liu, Y.; Ulvestad, A.
2017-08-01
Electrochemical systems studied in situ with advanced surface X-ray scattering techniques are reviewed. The electrochemical systems covered include interfaces of single-crystals and nanocrystals with respect to surface modification, aqueous dissolution, surface reconstruction, and electrochemical double layers. An emphasis will be given on recent results by coherent X-ray techniques such as X-ray photon correlation spectroscopy, Bragg coherent diffraction imaging, and surface ptychography.
An update on X-ray reflection gratings developed for future missions
NASA Astrophysics Data System (ADS)
Miles, Drew
2018-01-01
X-ray reflection gratings are a key technology being studied for future X-ray spectroscopy missions, including the Lynx X-ray mission under consideration for the 2020 Decadal Survey. We present an update on the status of X-ray reflection gratings being developed at Penn State University, including current fabrication techniques and mass-replication processes and the latest diffraction efficiency results and resolving power measurements. Individual off-plane X-ray reflection gratings have exceeded the current Lynx requirements for both effective area and resolving power. Finally, we discuss internal projects that will advance the technology readiness level of these gratings.
A whole-system approach to x-ray spectroscopy in cargo inspection systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langeveld, Willem G. J.; Gozani, Tsahi; Ryge, Peter
The bremsstrahlung x-ray spectrum used in high-energy, high-intensity x-ray cargo inspection systems is attenuated and modified by the materials in the cargo in a Z-dependent way. Therefore, spectroscopy of the detected x rays yields information about the Z of the x-rayed cargo material. It has previously been shown that such ZSpectroscopy (Z-SPEC) is possible under certain circumstances. A statistical approach, Z-SCAN (Z-determination by Statistical Count-rate ANalysis), has also been shown to be effective, and it can be used either by itself or in conjunction with Z-SPEC when the x-ray count rate is too high for individual x-ray spectroscopy. Both techniquesmore » require fast x-ray detectors and fast digitization electronics. It is desirable (and possible) to combine all techniques, including x-ray imaging of the cargo, in a single detector array, to reduce costs, weight, and overall complexity. In this paper, we take a whole-system approach to x-ray spectroscopy in x-ray cargo inspection systems, and show how the various parts interact with one another. Faster detectors and read-out electronics are beneficial for both techniques. A higher duty-factor x-ray source allows lower instantaneous count rates at the same overall x-ray intensity, improving the range of applicability of Z-SPEC in particular. Using an intensity-modulated advanced x-ray source (IMAXS) allows reducing the x-ray count rate for cargoes with higher transmission, and a stacked-detector approach may help material discrimination for the lowest attenuations. Image processing and segmentation allow derivation of results for entire objects, and subtraction of backgrounds. We discuss R and D performed under a number of different programs, showing progress made in each of the interacting subsystems. We discuss results of studies into faster scintillation detectors, including ZnO, BaF{sub 2} and PbWO{sub 4}, as well as suitable photo-detectors, read-out and digitization electronics. We discuss high-duty-factor linear-accelerator x-ray sources and their associated requirements, and how such sources improve spectroscopic techniques. We further discuss how image processing techniques help in correcting for backgrounds and overlapping materials. In sum, we present an integrated picture of how to optimize a cargo inspection system for x-ray spectroscopy.« less
In-situ X-ray diffraction system using sources and detectors at fixed angular positions
Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY
2007-06-26
An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.
Advances in photographic X-ray imaging for solar astronomy
NASA Technical Reports Server (NTRS)
Moses, J. Daniel; Schueller, R.; Waljeski, K.; Davis, John M.
1989-01-01
The technique of obtaining quantitative data from high resolution soft X-ray photographic images produced by grazing incidence optics was successfully developed to a high degree during the Solar Research Sounding Rocket Program and the S-054 X-Ray Spectrographic Telescope Experiment Program on Skylab. Continued use of soft X-ray photographic imaging in sounding rocket flights of the High Resolution Solar Soft X-Ray Imaging Payload has provided opportunities to further develop these techniques. The developments discussed include: (1) The calibration and use of an inexpensive, commercially available microprocessor controlled drum type film processor for photometric film development; (2) The use of Kodak Technical Pan 2415 film and Kodak SO-253 High Speed Holographic film for improved resolution; and (3) The application of a technique described by Cook, Ewing, and Sutton for determining the film characteristics curves from density histograms of the flight film. Although the superior sensitivity, noise level, and linearity of microchannel plate and CCD detectors attracts the development efforts of many groups working in soft X-ray imaging, the high spatial resolution and dynamic range as well as the reliability and ease of application of photographic media assures the continued use of these techniques in solar X-ray astronomy observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Jaejin; Woo, Jong-Hak; Mulchaey, John S.
We perform a comprehensive study of X-ray cavities using a large sample of X-ray targets selected from the Chandra archive. The sample is selected to cover a large dynamic range including galaxy clusters, groups, and individual galaxies. Using β -modeling and unsharp masking techniques, we investigate the presence of X-ray cavities for 133 targets that have sufficient X-ray photons for analysis. We detect 148 X-ray cavities from 69 targets and measure their properties, including cavity size, angle, and distance from the center of the diffuse X-ray gas. We confirm the strong correlation between cavity size and distance from the X-raymore » center similar to previous studies. We find that the detection rates of X-ray cavities are similar among galaxy clusters, groups and individual galaxies, suggesting that the formation mechanism of X-ray cavities is independent of environment.« less
NASA Technical Reports Server (NTRS)
Goldstein, J. I.; Williams, D. B.
1992-01-01
This paper reviews and discusses future directions in analytical electron microscopy for microchemical analysis using X-ray and Electron Energy Loss Spectroscopy (EELS). The technique of X-ray microanalysis, using the ratio method and k(sub AB) factors, is outlined. The X-ray absorption correction is the major barrier to the objective of obtaining I% accuracy and precision in analysis. Spatial resolution and Minimum Detectability Limits (MDL) are considered with present limitations of spatial resolution in the 2 to 3 microns range and of MDL in the 0.1 to 0.2 wt. % range when a Field Emission Gun (FEG) system is used. Future directions of X-ray analysis include improvement in X-ray spatial resolution to the I to 2 microns range and MDL as low as 0.01 wt. %. With these improvements the detection of single atoms in the analysis volume will be possible. Other future improvements include the use of clean room techniques for thin specimen preparation, quantification available at the I% accuracy and precision level with light element analysis quantification available at better than the 10% accuracy and precision level, the incorporation of a compact wavelength dispersive spectrometer to improve X-ray spectral resolution, light element analysis and MDL, and instrument improvements including source stability, on-line probe current measurements, stage stability, and computerized stage control. The paper reviews the EELS technique, recognizing that it has been slow to develop and still remains firmly in research laboratories rather than in applications laboratories. Consideration of microanalysis with core-loss edges is given along with a discussion of the limitations such as specimen thickness. Spatial resolution and MDL are considered, recognizing that single atom detection is already possible. Plasmon loss analysis is discussed as well as fine structure analysis. New techniques for energy-loss imaging are also summarized. Future directions in the EELS technique will be the development of new spectrometers and improvements in thin specimen preparation. The microanalysis technique needs to be simplified and software developed so that the EELS technique approaches the relative simplicity of the X-ray technique. Finally, one can expect major improvements in EELS imaging as data storage and processing improvements occur.
Gold nanoparticle contrast agents in advanced X-ray imaging technologies.
Ahn, Sungsook; Jung, Sung Yong; Lee, Sang Joon
2013-05-17
Recently, there has been significant progress in the field of soft- and hard-X-ray imaging for a wide range of applications, both technically and scientifically, via developments in sources, optics and imaging methodologies. While one community is pursuing extensive applications of available X-ray tools, others are investigating improvements in techniques, including new optics, higher spatial resolutions and brighter compact sources. For increased image quality and more exquisite investigation on characteristic biological phenomena, contrast agents have been employed extensively in imaging technologies. Heavy metal nanoparticles are excellent absorbers of X-rays and can offer excellent improvements in medical diagnosis and X-ray imaging. In this context, the role of gold (Au) is important for advanced X-ray imaging applications. Au has a long-history in a wide range of medical applications and exhibits characteristic interactions with X-rays. Therefore, Au can offer a particular advantage as a tracer and a contrast enhancer in X-ray imaging technologies by sensing the variation in X-ray attenuation in a given sample volume. This review summarizes basic understanding on X-ray imaging from device set-up to technologies. Then this review covers recent studies in the development of X-ray imaging techniques utilizing gold nanoparticles (AuNPs) and their relevant applications, including two- and three-dimensional biological imaging, dynamical processes in a living system, single cell-based imaging and quantitative analysis of circulatory systems and so on. In addition to conventional medical applications, various novel research areas have been developed and are expected to be further developed through AuNP-based X-ray imaging technologies.
Development of XAFS Into a Structure Determination Technique
NASA Astrophysics Data System (ADS)
Stern, E. A.
After the detection of diffraction of x-rays by M. Laue in 1912, the technique was soon applied to structure determination by Bragg within a year. On the other hand, although the edge steps in X-Ray absorption were discovered even earlier by Barkla and both the near edge (XANES) and extended X-Ray fine structure (EXAFS) past the edge were detected by 1929, it still took over 40 years to realize the structure information contained in this X-Ray absorption fine structure (XAFS). To understand this delay a brief historical review of the development of the scientific ideas that transformed XAFS into the premiere technique for local structure determination is given. The development includes both advances in theoretical understanding and calculational capabilities, and in experimental facilities, especially synchrotron radiation sources. The present state of the XAFS technique and its capabilities are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingold, G., E-mail: gerhard.ingold@psi.ch; Rittmann, J., E-mail: jochen.rittmann@psi.ch; Beaud, P.
The ESB instrument at the SwissFEL ARAMIS hard X-ray free electron laser is designed to perform pump-probe experiments in condensed matter and material science employing photon-in and photon-out techniques. It includes a femtosecond optical laser system to generate a variety of pump beams, a X-ray optical scheme to tailor the X-ray probe beam, shot-to-shot diagnostics to monitor the X-ray intensity and arrival time, and two endstations operated at a single focus position that include multi-purpose sample environments and 2D pixel detectors for data collection.
NASA Astrophysics Data System (ADS)
Wuhrer, R.; Moran, K.
2014-03-01
Quantitative X-ray mapping with silicon drift detectors and multi-EDS detector systems have become an invaluable analysis technique and one of the most useful methods of X-ray microanalysis today. The time to perform an X-ray map has reduced considerably with the ability to map minor and trace elements very accurately due to the larger detector area and higher count rate detectors. Live X-ray imaging can now be performed with a significant amount of data collected in a matter of minutes. A great deal of information can be obtained from X-ray maps. This includes; elemental relationship or scatter diagram creation, elemental ratio mapping, chemical phase mapping (CPM) and quantitative X-ray maps. In obtaining quantitative x-ray maps, we are able to easily generate atomic number (Z), absorption (A), fluorescence (F), theoretical back scatter coefficient (η), and quantitative total maps from each pixel in the image. This allows us to generate an image corresponding to each factor (for each element present). These images allow the user to predict and verify where they are likely to have problems in our images, and are especially helpful to look at possible interface artefacts. The post-processing techniques to improve the quantitation of X-ray map data and the development of post processing techniques for improved characterisation are covered in this paper.
Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle.
Iwamoto, Hiroyuki
2018-06-13
X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.
Spectroscopic imaging, diffraction, and holography with x-ray photoemission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-02-01
X-ray probes are capable of determining the spatial structure of an atom in a specific chemical state, over length scales from about a micron all the way down to atomic resolution. Examples of these probes include photoemission microscopy, energy-dependent photoemission diffraction, photoelectron holography, and X-ray absorption microspectroscopy. Although the method of image formation, chemical-state sensitivity, and length scales can be very different, these X-ray techniques share a common goal of combining a capability for structure determination with chemical-state specificity. This workshop will address recent advances in holographic, diffraction, and direct imaging techniques using X-ray photoemission on both theoretical and experimentalmore » fronts. A particular emphasis will be on novel structure determinations with atomic resolution using photoelectrons.« less
SOR Lithography in West Germany
NASA Astrophysics Data System (ADS)
Heuberger, Anton
1989-08-01
The 64 Mbit DRAM will represent the first generation of integrated circuits which cannot be produced reasonably by means of optical lithography techniques. X-ray lithography using synchrotron radiation seems to be the most promising method in overcoming the problems in the sub-0.5 micron range. The first year of production of the 64 Mbit DRAM will be 1995 or 1996. This means that X-ray lithography has to show its applicability in an industrial environment by 1992 and has to prove that the specifications of a 64 Mbit DRAM technology can actually be achieved. Part of this task is a demonstration of production suitable equipment such as the X-ray stepper, including an appropriate X-ray source and measurement and inspection tools. The most important bottlenecks on the way toward reaching these goals are linked to the 1 x scale mask technology, especially the pattern definition accuracy and zero level of printing defects down to the order of magnitude of 50 nm. Specifically, fast defect detection methods on the basis of high resolution e-beam techniques and repair methods have to be developed. The other problems of X-ray lithography, such as high quality single layer X-ray resists, X-ray sources and stepper including alignment are either well on the way or are already solved.
MICROANALYSIS OF MATERIALS USING SYNCHROTRON RADIATION.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JONES,K.W.; FENG,H.
2000-12-01
High intensity synchrotron radiation produces photons with wavelengths that extend from the infrared to hard x rays with energies of hundreds of keV with uniquely high photon intensities that can be used to determine the composition and properties of materials using a variety of techniques. Most of these techniques represent extensions of earlier work performed with ordinary tube-type x-ray sources. The properties of the synchrotron source such as the continuous range of energy, high degree of photon polarization, pulsed beams, and photon flux many orders of magnitude higher than from x-ray tubes have made possible major advances in the possiblemore » chemical applications. We describe here ways that materials analyses can be made using the high intensity beams for measurements with small beam sizes and/or high detection sensitivity. The relevant characteristics of synchrotron x-ray sources are briefly summarized to give an idea of the x-ray parameters to be exploited. The experimental techniques considered include x-ray fluorescence, absorption, and diffraction. Examples of typical experimental apparatus used in these experiments are considered together with descriptions of actual applications.« less
Surface degradation of uranium tetrafluoride
Tobin, J. G.; Duffin, A. M.; Yu, S. -W.; ...
2017-05-01
A detailed analysis of a single crystal of uranium tetrafluoride has been carried out. The techniques include x-ray absorption spectroscopy, as well as x-ray photoelectron spectroscopy and x-ray emission spectroscopy. Evidence will be presented for the presence of a uranyl species, possibly UO 2F 2, as a product of, or participant in the surface degradation.
All-Sky Monitoring of Variable Sources with Fermi GBM
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Finger, Mark; Camero-Arranz, Ascension; Becklen, Elif; Jenke, Peter; Cpe. K/ K/; Steele, Iain; Case, Gary; Cherry, Mike; Rodi, James;
2011-01-01
Using the Gamma ray Burst Monitor (GBM) on Fermi, we monitor the transient hard X-ray/soft gamma ray sky. The twelve GBM NaI detectors span 8 keV to 1 MeV, while the two BGO detectors span 150 keV to 40 MeV. We use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. Our monitoring reveals predictable and unpredictable phenomena such as transient outbursts and state changes. With GBM we also track the pulsed flux and spin frequency of accretion powered pulsars using epoch-folding techniques. Searches for quasi-periodic oscillations and X-ray bursts are also possible with GBM all-sky monitoring. Highlights from the Earth Occultation and Pulsar projects will be presented including our recent surprising discovery of variations in the total flux from the Crab. Inclusion of an all-sky monitor is crucial for a successful future X-ray timing mission.
NASA Technical Reports Server (NTRS)
Palmer, David; Prince, Thomas A.
1987-01-01
A laboratory imaging system has been developed to study the use of Fourier-transform techniques in high-resolution hard X-ray and gamma-ray imaging, with particular emphasis on possible applications to high-energy astronomy. Considerations for the design of a Fourier-transform imager and the instrumentation used in the laboratory studies is described. Several analysis methods for image reconstruction are discussed including the CLEAN algorithm and maximum entropy methods. Images obtained using these methods are presented.
NASA Astrophysics Data System (ADS)
Wrobel, P. M.; Bogovac, M.; Sghaier, H.; Leani, J. J.; Migliori, A.; Padilla-Alvarez, R.; Czyzycki, M.; Osan, J.; Kaiser, R. B.; Karydas, A. G.
2016-10-01
A new synchrotron beamline end-station for multipurpose X-ray spectrometry applications has been recently commissioned and it is currently accessible by end-users at the XRF beamline of Elettra Sincrotrone Trieste. The end-station consists of an ultra-high vacuum chamber that includes as main instrument a seven-axis motorized manipulator for sample and detectors positioning, different kinds of X-ray detectors and optical cameras. The beamline end-station allows performing measurements in different X-ray spectrometry techniques such as Microscopic X-Ray Fluorescence analysis (μXRF), Total Reflection X-Ray Fluorescence analysis (TXRF), Grazing Incidence/Exit X-Ray Fluorescence analysis (GI-XRF/GE-XRF), X-Ray Reflectometry (XRR), and X-Ray Absorption Spectroscopy (XAS). A LabVIEW Graphical User Interface (GUI) bound with Tango control system consisted of many custom made software modules is utilized as a user-friendly tool for control of the entire end-station hardware components. The present work describes this advanced Tango and LabVIEW software platform that utilizes in an optimal synergistic manner the merits and functionality of these well-established programming and equipment control tools.
X-ray microscopy of live biological micro-organisms
NASA Astrophysics Data System (ADS)
Raja Al-Ani, Ma'an Nassar
Real-time, compact x-ray microscopy has the potential to benefit many scientific fields, including microbiology, pharmacology, organic chemistry, and physics. Single frame x-ray micro-radiography, produced by a compact, solid-state laser plasma source, allows scientists to use x-ray emission for elemental analysis, and to observe biological specimens in their natural state. In this study, x-ray images of mouse kidney tissue, live bacteria, Pseudomonas aeruginosa and Burkholderia cepacia, and the bacteria's interaction with the antibiotic gentamicin, are examined using x-ray microscopy. For the purposes of comparing between confocal microscopy and x-ray microscopy, we introduced to our work the technique of gold labeling. Indirect immunofluorescence staining and immuno-gold labeling were applied on human lymphocytes and human tumor cells. Differential interference contrast microscopy (DIC) showed the lymphocyte body and nucleus, as did x-ray microscopy. However, the high resolution of x-ray microscopy allows us to differentiate between the gold particles bound to the antibodies and the free gold. A compact, tabletop Nd: glass laser is used in this study to produce x-rays from an Yttrium target. An atomic force microscope is used to scan the x-ray images from the developed photo-resist. The use of compact, tabletop laser plasma sources, in conjunction with x-ray microscopy, is a new technique that has great potential as a flexible, user-friendly scientific research tool.
Flash X-ray with image enhancement applied to combustion events
NASA Astrophysics Data System (ADS)
White, K. J.; McCoy, D. G.
1983-10-01
Flow visualization of interior ballistic processes by use of X-rays has placed more stringent requirements on flash X-ray techniques. The problem of improving radiographic contrast of propellants in X-ray transparent chambers was studied by devising techniques for evaluating, measuring and reducing the effects of scattering from both the test object and structures in the test area. X-ray film and processing is reviewed and techniques for evaluating and calibrating these are outlined. Finally, after X-ray techniques were optimized, the application of image enhancement processing which can improve image quality is described. This technique was applied to X-ray studies of the combustion of very high burning rate (VHBR) propellants and stick propellant charges.
A System Approach to Navy Medical Education and Training. Appendix 13. Dental Technician.
1974-08-31
BOOKLET 26 ISELECT ALTERNATIVE TECHNIQUES IN SETTING X-PAY ONIT 27 IWRITE EXoOSURE TECHNIQUE CHAPT FOR X-RAY 28 ITAKE X-RAYS WITH A CEPHALID TUBE TILT...29 ITAKE X-PAYS WITH A CAUDAL TUBE TILT 30 ITAKE X-RAYS USING SCREEN TECHNIQUE 31 ITAKE X-RAYS USING FIXED GRID TECHNIQUE 32 ITAKE X-RAYS USING...MOULDS 31 IFABRICATE PLASTIC HEAD CAPS 32 IFABRICATE INTERNAL FACIAL PROSTHESIS 33 100 PROSTHETIC RECONSTRUCTION OF THE NOSE 34 IFABRICATE CUSTOM OCULAR
High-pressure studies with x-rays using diamond anvil cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Guoyin; Mao, Ho Kwang
2016-11-22
Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. Thesemore » HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.« less
High-pressure studies with x-rays using diamond anvil cells
NASA Astrophysics Data System (ADS)
Shen, Guoyin; Mao, Ho Kwang
2017-01-01
Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials’ properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.
Fabricating Blazed Diffraction Gratings by X-Ray Lithography
NASA Technical Reports Server (NTRS)
Mouroulis, Pantazis; Hartley, Frank; Wilson, Daniel
2004-01-01
Gray-scale x-ray lithography is undergoing development as a technique for fabricating blazed diffraction gratings. As such, gray-scale x-ray lithography now complements such other grating-fabrication techniques as mechanical ruling, holography, ion etching, laser ablation, laser writing, and electron-beam lithography. Each of these techniques offers advantages and disadvantages for implementing specific grating designs; no single one of these techniques can satisfy the design requirements for all applications. Gray-scale x-ray lithography is expected to be advantageous for making gratings on steeper substrates than those that can be made by electron-beam lithography. This technique is not limited to sawtooth groove profiles and flat substrates: various groove profiles can be generated on arbitrarily shaped (including highly curved) substrates with the same ease as sawtooth profiles can be generated on flat substrates. Moreover, the gratings fabricated by this technique can be made free of ghosts (spurious diffraction components attributable to small spurious periodicities in the locations of grooves). The first step in gray-scale x-ray lithography is to conformally coat a substrate with a suitable photoresist. An x-ray mask (see Figure 1) is generated, placed between the substrate and a source of collimated x-rays, and scanned over the substrate so as to create a spatial modulation in the exposure of the photoresist. Development of the exposed photoresist results in a surface corrugation that corresponds to the spatial modulation and that defines the grating surface. The grating pattern is generated by scanning an appropriately shaped x-ray area mask along the substrate. The mask example of Figure 1 would generate a blazed grating profile when scanned in the perpendicular direction at constant speed, assuming the photoresist responds linearly to incident radiation. If the resist response is nonlinear, then the mask shape can be modified to account for the nonlinearity and produce a desired groove profile. An example of grating grooves generated by this technique is shown in Figure 2. A maximum relative efficiency of 88 percent has been demonstrated.
Enhanced renal image contrast by ethanol fixation in phase-contrast X-ray computed tomography.
Shirai, Ryota; Kunii, Takuya; Yoneyama, Akio; Ooizumi, Takahito; Maruyama, Hiroko; Lwin, Thet Thet; Hyodo, Kazuyuki; Takeda, Tohoru
2014-07-01
Phase-contrast X-ray imaging using a crystal X-ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase-contrast X-ray system was used, fitted with a two-crystal X-ray interferometer at 35 keV X-ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol-fixed kidney could be visualized more clearly than that of formalin-fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol-fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7-3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol-fixation technique enables the image contrast to be enhanced in phase-contrast X-ray imaging.
NASA Astrophysics Data System (ADS)
McAfee, Terry Richard
Due to the growing global need for cheap, flexible, and portable electronics, numerous research groups from mechanical and electrical engineering, material science, chemistry, and physics have increasingly turned to organic electronics research over the last ˜5--10 years. Largely, the focus of researchers in this growing field have sought to obtain the next record holding device, allowing a heuristic approach of trial and error to become dominant focus of research rather than a fundamental understanding. Rather than working with the latest high performance organic semiconducting materials and film processing techniques, I have chosen to investigate and control the fundamental self-assembly interactions of organic photovoltaic thin films using simplified systems. Specifically, I focus on organic photovoltaic research using two of the oldest and well studies semiconducting materials, namely "sphere-like" electron donor material Buckminsterfullerene C60 and "disklike" electron acceptor material Copper(II) Phthalocyanine. I manufactured samples using the well-known technique of physical vapor deposition using a high vacuum chamber that I designed and built to accommodate my need of precise material deposition control, with codeposition capability. Films were characterized using microscopy and spectroscopy techniques locally at NCSU, including Atomic Force Microscopy, scanning tunneling microscopy, X-ray photoelectron spectroscopy, and Ultraviolet-visible spectroscopy, as well as at National Laboratory based synchrotron x-ray techniques, including Carbon and Nitrogen k-edge Total Electron Yield and Transmission Near Edge X-ray absorption fine structure spectroscopy, Carbon k-edge Resonant Soft x-ray Microscopy, Resonant Soft x-ray reflectivity, and Grazing Incidence Wide-Angle X-ray scattering.
Toward in situ x-ray diffraction imaging at the nanometer scale
NASA Astrophysics Data System (ADS)
Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami
2008-08-01
We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.
2005-04-22
An updated version of the ASTM guide E1523 to the methods to charge control and charge referencing techniques in x-ray photoelectron spectroscopy has been released by ASTM. The guide is meant to acquaint x-ray photoelectron spectroscopy (XPS) users with the various charge control and charge referencing techniques that are and have been used in the acquisition and interpretation of XPS data from surfaces of insulating specimens. The current guide has been expanded to include new references as well as recommendations for reporting information on charge control and charge referencing. The previous version of the document had been published in 1997.
Image processing for x-ray inspection of pistachio nuts
NASA Astrophysics Data System (ADS)
Casasent, David P.
2001-03-01
A review is provided of image processing techniques that have been applied to the inspection of pistachio nuts using X-ray images. X-ray sensors provide non-destructive internal product detail not available from other sensors. The primary concern in this data is detecting the presence of worm infestations in nuts, since they have been linked to the presence of aflatoxin. We describe new techniques for segmentation, feature selection, selection of product categories (clusters), classifier design, etc. Specific novel results include: a new segmentation algorithm to produce images of isolated product items; preferable classifier operation (the classifier with the best probability of correct recognition Pc is not best); higher-order discrimination information is present in standard features (thus, high-order features appear useful); classifiers that use new cluster categories of samples achieve improved performance. Results are presented for X-ray images of pistachio nuts; however, all techniques have use in other product inspection applications.
Phase-contrast x-ray computed tomography for biological imaging
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji
1997-10-01
We have shown so far that 3D structures in biological sot tissues such as cancer can be revealed by phase-contrast x- ray computed tomography using an x-ray interferometer. As a next step, we aim at applications of this technique to in vivo observation, including radiographic applications. For this purpose, the size of view field is desired to be more than a few centimeters. Therefore, a larger x-ray interferometer should be used with x-rays of higher energy. We have evaluated the optimal x-ray energy from an aspect of does as a function of sample size. Moreover, desired spatial resolution to an image sensor is discussed as functions of x-ray energy and sample size, basing on a requirement in the analysis of interference fringes.
Chemical imaging analysis of the brain with X-ray methods
NASA Astrophysics Data System (ADS)
Collingwood, Joanna F.; Adams, Freddy
2017-04-01
Cells employ various metal and metalloid ions to augment the structure and the function of proteins and to assist with vital biological processes. In the brain they mediate biochemical processes, and disrupted metabolism of metals may be a contributing factor in neurodegenerative disorders. In this tutorial review we will discuss the particular role of X-ray methods for elemental imaging analysis of accumulated metal species and metal-containing compounds in biological materials, in the context of post-mortem brain tissue. X-rays have the advantage that they have a short wavelength and can penetrate through a thick biological sample. Many of the X-ray microscopy techniques that provide the greatest sensitivity and specificity for trace metal concentrations in biological materials are emerging at synchrotron X-ray facilities. Here, the extremely high flux available across a wide range of soft and hard X-rays, combined with state-of-the-art focusing techniques and ultra-sensitive detectors, makes it viable to undertake direct imaging of a number of elements in brain tissue. The different methods for synchrotron imaging of metals in brain tissues at regional, cellular, and sub-cellular spatial resolution are discussed. Methods covered include X-ray fluorescence for elemental imaging, X-ray absorption spectrometry for speciation imaging, X-ray diffraction for structural imaging, phase contrast for enhanced contrast imaging and scanning transmission X-ray microscopy for spectromicroscopy. Two- and three-dimensional (confocal and tomographic) imaging methods are considered as well as the correlation of X-ray microscopy with other imaging tools.
X-ray/VUV transmission gratings for astrophysical and laboratory applications
NASA Technical Reports Server (NTRS)
Schattenburg, M. L.; Anderson, E. H.; Smith, Henry I.
1990-01-01
This paper describes the techniques used to fabricate deep-submicron-period transmission gratings for astrophysical and laboratory applications, with special attention given to the major steps involved in the transmission grating fabrication. These include the holographic lithography procedure used to pattern the master transmission grating, the fabrication of X-ray mask, the X-ray lithography step used to transfer the X-ray mask pattern into a substrate, and the electroplating of the substrate to form the final grating pattern. The various ways in which transmission gratings can be used in X-ray and VUV spectroscopy are discussed together with some examples of experiments reported in the literature.
1993-11-01
Despite the emergence of several alternative angiographic imaging techniques (i.e., magnetic resonance imaging, computed tomography, and ultrasound angiography), x-ray angiography remains the predominant vascular imaging modality, generating over $4 billion in revenue a year in U.S. hospitals. In this issue, we provide a brief overview of the various angiographic imaging techniques, comparing them with x-ray angiography, and discuss the clinical aspects of x-ray vascular imaging, including catheterization and clinical applications. Clinical, cost, usage, and legal issues related to contrast media are discussed in "Contrast Media: Ionic versus Nonionic and Low-osmolality Agents." We also provide a technical overview and selection guidance for a basic x-ray angiography imaging system, including the gantry and table system, x-ray generator, x-ray tube, image intensifier, video camera and display monitors, image-recording devices, and digital acquisition and processing systems. This issue also contains our Evaluation of the GE Advantx L/C cardiac angiography system and the GE Advantx AFM general-purpose angiography system; the AFM can be used for peripheral, pulmonary, and cerebral vascular studied, among others, and can also be configured for cardiac angiography. Many features of the Advantx L/C system, including generator characteristics and ease of use, also apply to the Advantx AFM as configured for cardiac angiography. Our ratings are based on the systems' ability to provide the best possible image quality for diagnosis and therapy while minimizing patient and personnel exposure to radiation, as well as its ability to minimize operator effort and inconvenience. Both units are rated Acceptable. In the Guidance Section, "Radiation Safety and Protection," we discuss the importance of keeping patient and personnel exposures to radiation as low as reasonably possible, especially in procedures such as cardiac catheterization, angiographic imaging for special procedures, and interventional radiology, which produce among the highest radiation exposure of all x-ray imaging techniques. We also provide recommendations for minimizing personnel and patient exposures to radiation. For more information about x-ray angiography systems and similar devices, as well as for additional perspectives on which we based this study, see the following Health Devices Evaluations: "Mobile C-arm Units" (19[8], August 1990) and "Noninvasive Electronic Quality Control Devices for X-ray Generator Testing" (21[6-7], June-July 1992).(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Zimina, A.; Dardenne, K.; Denecke, M. A.; Grunwaldt, J. D.; Huttel, E.; Lichtenberg, H.; Mangold, S.; Pruessmann, T.; Rothe, J.; Steininger, R.; Vitova, T.
2016-05-01
A new hard X-ray beamline for CATalysis and ACTinide research has been built at the synchrotron radiation facility ANKA. The beamline design is dedicated to X-ray spectroscopy, including ‘flux hungry’ photon-in/photon-out and correlative techniques with a special infrastructure for radionuclide and catalysis research. The CAT-ACT beamline will help serve the growing need for high flux/hard X-ray spectroscopy in these communities. The design, the first spectra and the current status of this project are reported.
ID16B: a hard X-ray nanoprobe beamline at the ESRF for nano-analysis
Martínez-Criado, Gema; Villanova, Julie; Tucoulou, Rémi; Salomon, Damien; Suuronen, Jussi-Petteri; Labouré, Sylvain; Guilloud, Cyril; Valls, Valentin; Barrett, Raymond; Gagliardini, Eric; Dabin, Yves; Baker, Robert; Bohic, Sylvain; Cohen, Cédric; Morse, John
2016-01-01
Within the framework of the ESRF Phase I Upgrade Programme, a new state-of-the-art synchrotron beamline ID16B has been recently developed for hard X-ray nano-analysis. The construction of ID16B was driven by research areas with major scientific and societal impact such as nanotechnology, earth and environmental sciences, and bio-medical research. Based on a canted undulator source, this long beamline provides hard X-ray nanobeams optimized mainly for spectroscopic applications, including the combination of X-ray fluorescence, X-ray diffraction, X-ray excited optical luminescence, X-ray absorption spectroscopy and 2D/3D X-ray imaging techniques. Its end-station re-uses part of the apparatus of the earlier ID22 beamline, while improving and enlarging the spectroscopic capabilities: for example, the experimental arrangement offers improved lateral spatial resolution (∼50 nm), a larger and more flexible capability for in situ experiments, and monochromatic nanobeams tunable over a wider energy range which now includes the hard X-ray regime (5–70 keV). This paper describes the characteristics of this new facility, short-term technical developments and the first scientific results. PMID:26698084
Charged particle induced delayed X-rays (DEX) for the analysis of intermediate and heavy elements
NASA Astrophysics Data System (ADS)
Pillay, A. E.; Erasmus, C. S.; Andeweg, A. H.; Sellschop, J. P. F.; Annegarn, H. J.; Dunn, J.
1988-12-01
The emission of K X-rays from proton-rich and metastable radionuclides, following proton activation of the stable isotopes of the elements of interest, has not been widely used as a means of analysis. The thrust of this paper proposes a nuclear technique using delayed X-rays for the analysis of low concentrations of intermediate and heavy elements. The method is similar to the delayed gamma-ray technique. Proton bombardment induces mainly (p, n) reactions whereas the delayed X-rays originate largely from e --capture and isomeric transition. Samples of rare earth and platinum group elements (PGE), in the form of compacted powders, were irradiated with an 11 MeV proton beam and delayed X-rays detected with a 100 mm 2 Ge detector. Single element spectra for a range of rare earths and PGEs are presented. Analytical conditions are demonstrated for Pd in the range 0.1-5%. Spectra from actual geological samples of a PGE ore, preconcentrated by fire-assay, and monazite are presented. All six platinum group elements are visible and interference-free in a single spectrum, a marked advance on other nuclear techniques for these elements, including PIXE and neutron activation analysis (NAA).
Observational techniques for solar flare gamma-rays, hard X-rays, and neutrons
NASA Technical Reports Server (NTRS)
Lin, Robert P.
1989-01-01
The development of new instrumentation and techniques for solar hard X-ray, gamma ray and neutron observations from spacecraft and/or balloon-borne platforms is examined. The principal accomplishments are: (1) the development of a two segment germanium detector which is near ideal for solar hard X-ray and gamma ray spectroscopy; (2) the development of long duration balloon flight techniques and associated instrumentation; and (3) the development of innovative new position sensitive detectors for hard X-ray and gamma rays.
Characterization of Metal Powders Used for Additive Manufacturing.
Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A
2014-01-01
Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.
Synchrotron applications in wood preservation and deterioration
Barbara L. Illman
2003-01-01
Several non-intrusive synchrotron techniques are being used to detect and study wood decay. The techniques use high intensity synchrotron-generated X-rays to determine the atomic structure of materials with imaging, diffraction, and absorption. Some of the techniques are X-ray absorption near edge structure (XANES), X-ray fluorescence spectroscopy (XFS), X-ray...
NASA Astrophysics Data System (ADS)
Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; Wands, Jack R.; Rose-Petruck, Christoph
2015-10-01
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form an image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. The enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.
Performance of chest ultrasound in pediatric pneumonia.
Claes, Anne-Sophie; Clapuyt, Philippe; Menten, Renaud; Michoux, Nicolas; Dumitriu, Dana
2017-03-01
The objective of this study was to evaluate the performance of ultrasound in detecting lung consolidation in children suspected of pneumonia, in comparison to the current gold standard, chest X-rays. From September 2013 to June 2014, a monocentric prospective study was performed on all children between 0 and 16 years-old, referred for chest X-ray for suspected pneumonia. Each child was examined by chest ultrasound by an examiner blinded to the chest X-ray. The presence or absence of areas of consolidation, their number and location were noted for each technique. The size of the consolidations identified only on ultrasound was compared with that of consolidations visible on both techniques. 143 children (mean age 3 years; limits between 8days and 14 years) were included. Ultrasound detected at least one area of consolidation in 44 out of 45 patients with positive X-rays. Of the 59 areas of consolidation on X-ray, ultrasound identified 54. In the 8 patients with negative X-ray, ultrasound revealed 17 areas of consolidation. The mean size of consolidations visible only on ultrasound was 9.4mm; for consolidations visible on both techniques the mean size was 26mm (p<0.0001). The sensitivity and specificity of ultrasound were calculated at 98% and 92%. PPV and NPV were 85% and 99%, respectively. Chest ultrasound is a fast, non-ionizing and feasible technique. With its high negative predictive value, it can replace X-rays in order to exclude lung consolidation in children, thus reducing radiation exposure in this population. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Measurement techniques for trace metals in coal-plant effluents: A brief review
NASA Technical Reports Server (NTRS)
Singh, J. J.
1979-01-01
The strong features and limitations of techniques for determining trace elements in aerosols emitted from coal plants are discussed. Techniques reviewed include atomic absorption spectroscopy, charged particle scattering and activation, instrumental neutron activation analysis, gas/liquid chromatography, gas chromatographic/mass spectrometric methods, X-ray fluorescence, and charged-particle-induced X-ray emission. The latter two methods are emphasized. They provide simultaneous, sensitive multielement analyses and lend themselves readily to depth profiling. It is recommended that whenever feasible, two or more complementary techniques should be used for analyzing environmental samples.
X-ray power and yield measurements at the refurbished Z machine
Jones, M. C.; Ampleford, D. J.; Cuneo, M. E.; ...
2014-08-04
Advancements have been made in the diagnostic techniques to measure accurately the total radiated x-ray yield and power from z-pinch loads at the Z Machine with high accuracy. The Z-accelerator is capable of outputting 2MJ and 330 TW of x-ray yield and power, and accurately measuring these quantities is imperative. We will describe work over the past several years which include the development of new diagnostics, improvements to existing diagnostics, and implementation of automated data analysis routines. A set of experiments were conducted on the Z machine where the load and machine configuration were held constant. During this shot series,more » it was observed that total z-pinch x-ray emission power determined from the two common techniques for inferring the x-ray power, Kimfol filtered x-ray diode diagnostic and the Total Power and Energy diagnostic gave 450 TW and 327 TW respectively. Our analysis shows the latter to be the more accurate interpretation. More broadly, the comparison demonstrates the necessity to consider spectral response and field of view when inferring xray powers from z-pinch sources.« less
Development Of A Dynamic Radiographic Capability Using High-Speed Video
NASA Astrophysics Data System (ADS)
Bryant, Lawrence E.
1985-02-01
High-speed video equipment can be used to optically image up to 2,000 full frames per second or 12,000 partial frames per second. X-ray image intensifiers have historically been used to image radiographic images at 30 frames per second. By combining these two types of equipment, it is possible to perform dynamic x-ray imaging of up to 2,000 full frames per second. The technique has been demonstrated using conventional, industrial x-ray sources such as 150 Kv and 300 Kv constant potential x-ray generators, 2.5 MeV Van de Graaffs, and linear accelerators. A crude form of this high-speed radiographic imaging has been shown to be possible with a cobalt 60 source. Use of a maximum aperture lens makes best use of the available light output from the image intensifier. The x-ray image intensifier input and output fluors decay rapidly enough to allow the high frame rate imaging. Data are presented on the maximum possible video frame rates versus x-ray penetration of various thicknesses of aluminum and steel. Photographs illustrate typical radiographic setups using the high speed imaging method. Video recordings show several demonstrations of this technique with the played-back x-ray images slowed down up to 100 times as compared to the actual event speed. Typical applications include boiling type action of liquids in metal containers, compressor operation with visualization of crankshaft, connecting rod and piston movement and thermal battery operation. An interesting aspect of this technique combines both the optical and x-ray capabilities to observe an object or event with both external and internal details with one camera in a visual mode and the other camera in an x-ray mode. This allows both kinds of video images to appear side by side in a synchronized presentation.
X-ray generation using carbon nanotubes
NASA Astrophysics Data System (ADS)
Parmee, Richard J.; Collins, Clare M.; Milne, William I.; Cole, Matthew T.
2015-01-01
Since the discovery of X-rays over a century ago the techniques applied to the engineering of X-ray sources have remained relatively unchanged. From the inception of thermionic electron sources, which, due to simplicity of fabrication, remain central to almost all X-ray applications, there have been few fundamental technological advances. However, with the emergence of ever more demanding medical and inspection techniques, including computed tomography and tomosynthesis, security inspection, high throughput manufacturing and radiotherapy, has resulted in a considerable level of interest in the development of new fabrication methods. The use of conventional thermionic sources is limited by their slow temporal response and large physical size. In response, field electron emission has emerged as a promising alternative means of deriving a highly controllable electron beam of a well-defined distribution. When coupled to the burgeoning field of nanomaterials, and in particular, carbon nanotubes, such systems present a unique technological opportunity. This review provides a summary of the current state-of-the-art in carbon nanotube-based field emission X-ray sources. We detail the various fabrication techniques and functional advantages associated with their use, including the ability to produce ever smaller electron beam assembles, shaped cathodes, enhanced temporal stability and emergent fast-switching pulsed sources. We conclude with an overview of some of the commercial progress made towards the realisation of an innovative and disruptive technology.
Recent developments of x-ray lithography in Canada
NASA Astrophysics Data System (ADS)
Chaker, Mohamed; Boily, Stephane; Ginovker, A.; Jean, Alain; Kieffer, Jean-Claude; Mercier, P. P.; Pepin, Henri; Leung, Pak; Currie, John F.; Lafontaine, Hugues
1991-08-01
An overview of current activities in Canada is reported, including x-ray lithography studies based on laser plasma sources and x-ray mask development. In particular, the application of laser plasma sources for x-ray lithography is discussed, taking into account the industrial requirement and the present state of laser technology. The authors describe the development of silicon carbide membranes for x-ray lithography application. SiC films were prepared using either a 100 kHz plasma-enhanced chemical vapor deposition (PECVD) system or a laser ablation technique. These membranes have a relatively large diameter (> 1 in.) and a high optical transparency (> 50%). Experimental studies on stresses in tungsten films deposited with triode sputtering are reported.
GBM Observations of Be X-Ray Binary Outbursts
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Finger, M. H.; Jenke, P. A.
2014-01-01
Since 2008 we have been monitoring accreting pulsars using the Gamma ray Burst Monitor (GBM) on Fermi. This monitoring program includes daily blind full sky searches for previously unknown or previously quiescent pulsars and source specific analysis to track the frequency evolution of all detected pulsars. To date we have detected outbursts from 23 transient accreting pulsars, including 21 confirmed or likely Be/X-ray binaries. I will describe our techniques and highlight results for selected pulsars.
Potential for Imaging Engineered Tissues with X-Ray Phase Contrast
Appel, Alyssa; Anastasio, Mark A.
2011-01-01
As the field of tissue engineering advances, it is crucial to develop imaging methods capable of providing detailed three-dimensional information on tissue structure. X-ray imaging techniques based on phase-contrast (PC) have great potential for a number of biomedical applications due to their ability to provide information about soft tissue structure without exogenous contrast agents. X-ray PC techniques retain the excellent spatial resolution, tissue penetration, and calcified tissue contrast of conventional X-ray techniques while providing drastically improved imaging of soft tissue and biomaterials. This suggests that X-ray PC techniques are very promising for evaluation of engineered tissues. In this review, four different implementations of X-ray PC imaging are described and applications to tissues of relevance to tissue engineering reviewed. In addition, recent applications of X-ray PC to the evaluation of biomaterial scaffolds and engineered tissues are presented and areas for further development and application of these techniques are discussed. Imaging techniques based on X-ray PC have significant potential for improving our ability to image and characterize engineered tissues, and their continued development and optimization could have significant impact on the field of tissue engineering. PMID:21682604
Cone-beam volume CT mammographic imaging: feasibility study
NASA Astrophysics Data System (ADS)
Chen, Biao; Ning, Ruola
2001-06-01
X-ray projection mammography, using a film/screen combination or digital techniques, has proven to be the most effective imaging modality for early detection of breast cancer currently available. However, the inherent superimposition of structures makes small carcinoma (a few millimeters in size) difficult to detect in the occultation case or in dense breasts, resulting in a high false positive biopsy rate. The cone-beam x-ray projection based volume imaging using flat panel detectors (FPDs) makes it possible to obtain three-dimensional breast images. This may benefit diagnosis of the structure and pattern of the lesion while eliminating hard compression of the breast. This paper presents a novel cone-beam volume CT mammographic imaging protocol based on the above techniques. Through computer simulation, the key issues of the system and imaging techniques, including the x-ray imaging geometry and corresponding reconstruction algorithms, x-ray characteristics of breast tissues, x-ray setting techniques, the absorbed dose estimation and the quantitative effect of x-ray scattering on image quality, are addressed. The preliminary simulation results support the proposed cone-beam volume CT mammographic imaging modality in respect to feasibility and practicability for mammography. The absorbed dose level is comparable to that of current two-view mammography and would not be a prominent problem for this imaging protocol. Compared to traditional mammography, the proposed imaging protocol with isotropic spatial resolution will potentially provide significantly better low contrast detectability of breast tumors and more accurate location of breast lesions.
Flight programs and X-ray optics development at MSFC
NASA Astrophysics Data System (ADS)
Gubarev, M.; Ramsey, B.; O'Dell, S.; Elsner, R.; Kilaru, K.; Atkins, C.; Swartz, D.; Gaskin, J.; Weisskopf, M.
The X-ray astronomy group at the Marshall Space Flight Center (MSFC) is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X sounding rocket experiments and the HEROES balloon payload. Our current orbital program is the fabrication of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG). A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin-shell optics to the arcsecond-level.
Vlachogiannis, J G
2003-01-01
Taguchi's technique is a helpful tool to achieve experimental optimization of a large number of decision variables with a small number of off-line experiments. The technique appears to be an ideal tool for improving the performance of X-ray medical radiographic screens under a noise source. Currently there are very many guides available for improving the efficiency of X-ray medical radiographic screens. These guides can be refined using a second-stage parameter optimization. based on Taguchi's technique, selecting the optimum levels of controllable X-ray radiographic screen factors. A real example of the proposed technique is presented giving certain performance criteria. The present research proposes the reinforcement of X-ray radiography by Taguchi's technique as a novel hardware mechanism.
NASA Astrophysics Data System (ADS)
Sakurai, Kenji
2010-12-01
This special issue is devoted to describing recent applications of x-ray and neutron scattering techniques to the exploration of surfaces and buried interfaces of various functional materials. Unlike many other surface-sensitive methods, these techniques do not require ultra high vacuum, and therefore, a variety of real and complicated surfaces fall within the scope of analysis. It must be particularly emphasized that the techniques are capable of seeing even buried function interfaces as well as the surface. Furthermore, the information, which ranges from the atomic to mesoscopic scale, is highly quantitative and reproducible. The non-destructive nature of the techniques is another important advantage of using x-rays and neutrons, when compared with other atomic-scale analyses. This ensures that the same specimen can be measured by other techniques. Such features are fairly attractive when exploring multilayered materials with nanostructures (dots, tubes, wires, etc), which are finding applications in electronic, magnetic, optical and other devices. The Japan Applied Physics Society has established a group to develop the research field of studying buried function interfaces with x-rays and neutrons. As the methods can be applied to almost all types of materials, from semiconductor and electronic devices to soft materials, participants have fairly different backgrounds but share a common interest in state-of-the-art x-ray and neutron techniques and sophisticated applications. A series of workshops has been organized almost every year since 2001. Some international interactions have been continued intensively, although the community is part of a Japanese society. This special issue does not report the proceedings of the recent workshop, although all the authors are in some way involved in the activities of the above society. Initially, we intended to collect quite long overview papers, including the authors' latest and most important original results, as well as updates on recent progress and global trends in the field. We planned to cover quite a wide area of surface and buried interface science with x-rays and neutrons. Following a great deal of discussion during the editing process, we have decided to change direction. As we intend to publish similar special issues on a frequent basis, we will not insist on editing this issue as systematic and complete collections of research. Many authors decided to write an ordinary research paper rather than an article including systematic accounts. Due to this change in policy, some authors declined to contribute, and the number of papers is now just 12. However, readers will find that the special issue gives an interesting collection of new original research in surface and buried interface studies with x-rays and neutrons. The 12 papers cover the following research topics: (1) polymer analysis by diffuse scattering; (2) discussion of the electrochemical solid--liquid interface by synchrotron x-ray diffraction; (3) analysis of capped nanodots by grazing incidence small-angle x-ray scattering (GISAXS); (4) discussion of the strain distribution in silicon by high-resolution x-ray diffraction; (5) study of mesoporous structures by a combination of x-ray reflectivity and GISAXS; (6) discussion of energy-dispersive x-ray reflectometry and its applications; (7) neutron reflectivity studies on hydrogen terminated silicon interface; (8) the fabrication and performance of a special mirror for water windows; (9) depth selective analysis by total-reflection x-ray diffraction; (10) nanoparticle thin films prepared by a gas deposition technique; (11) discussion of crystal truncation rod (CTR) scattering of semiconductor nanostructures; (12) magnetic structure analysis of thin films by polarized neutron reflectivity. While not discussed in the present special issue, x-ray and neutron techniques have made great progress. The most important steps forward have been in 2D/3D real-space imaging, and realtime measurement. Advances in such technologies are bringing with them new opportunities in surface and buried interface science. In the not too distant future, we will publish a special issue or a book detailing such progress. Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques contents Lateral uniformity in chemical composition along a buried reaction front in polymers using off-specular reflectivity Kristopher A Lavery, Vivek M Prabhu, Sushil Satija and Wen-li Wu Orientation dependence of Pd growth on Au electrode surfaces M Takahasi, K Tamura, J Mizuki, T Kondo and K Uosaki A grazing incidence small-angle x-ray scattering analysis on capped Ge nanodots in layer structures Hiroshi Okuda, Masayuki Kato, Keiji Kuno, Shojiro Ochiai, Noritaka Usami, Kazuo Nakajima and Osami Sakata High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer Kazuhiko Omote X-ray analysis of mesoporous silica thin films templated by Brij58 surfactant S Fall, M Kulij and A Gibaud Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures Kouichi Hayashi Epitaxial growth of largely mismatched crystals on H-terminated Si(111) surfaces Hidehito Asaoka Novel TiO2/ZnO multilayer mirrors at 'water-window' wavelengths fabricated by atomic layer epitaxy H Kumagai, Y Tanaka, M Murata, Y Masuda and T Shinagawa Depth-selective structural analysis of thin films using total-external-reflection x-ray diffraction Tomoaki Kawamura and Hiroo Omi Structures of Yb nanoparticle thin films grown by deposition in He and N2 gas atmospheres: AFM and x-ray reflectivity studies Martin Jerab and Kenji Sakurai Ga and As composition profiles in InP/GaInAs/InP heterostructures—x-ray CTR scattering and cross-sectional STM measurements Yoshikazu Takeda, Masao Tabuchi and Arao Nakamura Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system Naoki Awaji, Toyoo Miyajima, Shuuichi Doi and Kenji Nomura
Coherent X-ray imaging across length scales
NASA Astrophysics Data System (ADS)
Munro, P. R. T.
2017-04-01
Contemporary X-ray imaging techniques span a uniquely wide range of spatial resolutions, covering five orders of magnitude. The evolution of X-ray sources, from the earliest laboratory sources through to highly brilliant and coherent free-electron lasers, has been key to the development of these imaging techniques. This review surveys the predominant coherent X-ray imaging techniques with fields of view ranging from that of entire biological organs, down to that of biomolecules. We introduce the fundamental principles necessary to understand the image formation for each technique as well as briefly reviewing coherent X-ray source development. We present example images acquired using a selection of techniques, by leaders in the field.
Characterization of Metal Powders Used for Additive Manufacturing
Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA
2014-01-01
Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040
NASA Technical Reports Server (NTRS)
Dunphy, P. P.; Forrest, D. J.
1985-01-01
The photofraction of a 5.1 cm x 2.0 cm bismuth germanate (BGO) scintillator was measured over a gamma-ray energy range of 0.2 to 6.1 MeV. Several methods, used to minimize the effect of room scattering on the measurement, are discussed. These include a gamma-gamma coincidence technique, a beta-gamma coincidence technique, and the use of sources calibrated with a standard 7.6 cm x 7.6 cm sodium iodide scintillator.
NASA Astrophysics Data System (ADS)
Kolkoori, S.; Wrobel, N.; Osterloh, K.; Zscherpel, U.; Ewert, U.
2013-09-01
Radiological inspections, in general, are the nondestructive testing (NDT) methods to detect the bulk of explosives in large objects. In contrast to personal luggage, cargo or building components constitute a complexity that may significantly hinder the detection of a threat by conventional X-ray transmission radiography. In this article, a novel X-ray backscatter technique is presented for detecting suspicious objects in a densely packed large object with only a single sided access. It consists of an X-ray backscatter camera with a special twisted slit collimator for imaging backscattering objects. The new X-ray backscatter camera is not only imaging the objects based on their densities but also by including the influences of surrounding objects. This unique feature of the X-ray backscatter camera provides new insights in identifying the internal features of the inspected object. Experimental mock-ups were designed imitating containers with threats among a complex packing as they may be encountered in reality. We investigated the dependence of the quality of the X-ray backscatter image on (a) the exposure time, (b) multiple exposures, (c) the distance between object and slit camera, and (d) the width of the slit. At the end, the significant advantages of the presented X-ray backscatter camera in the context of aviation and port security are discussed.
Rand, Danielle; Derdak, Zoltan; Carlson, Rolf; ...
2015-10-29
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is almost uniformly fatal. Current methods of detection include ultrasound examination and imaging by CT scan or MRI; however, these techniques are problematic in terms of sensitivity and specificity, and the detection of early tumors (<1 cm diameter) has proven elusive. Better, more specific, and more sensitive detection methods are therefore urgently needed. Here we discuss the application of a newly developed x-ray imaging technique called Spatial Frequency Heterodyne Imaging (SFHI) for the early detection of HCC. SFHI uses x-rays scattered by an object to form anmore » image and is more sensitive than conventional absorption-based x-radiography. We show that tissues labeled in vivo with gold nanoparticle contrast agents can be detected using SFHI. We also demonstrate that directed targeting and SFHI of HCC tumors in a mouse model is possible through the use of HCC-specific antibodies. As a result, the enhanced sensitivity of SFHI relative to currently available techniques enables the x-ray imaging of tumors that are just a few millimeters in diameter and substantially reduces the amount of nanoparticle contrast agent required for intravenous injection relative to absorption-based x-ray imaging.« less
X-ray elemental mapping techniques for elucidating the ecophysiology of hyperaccumulator plants.
van der Ent, Antony; Przybyłowicz, Wojciech J; de Jonge, Martin D; Harris, Hugh H; Ryan, Chris G; Tylko, Grzegorz; Paterson, David J; Barnabas, Alban D; Kopittke, Peter M; Mesjasz-Przybyłowicz, Jolanta
2018-04-01
Contents Summary 432 I. Introduction 433 II. Preparation of plant samples for X-ray micro-analysis 433 III. X-ray elemental mapping techniques 438 IV. X-ray data analysis 442 V. Case studies 443 VI. Conclusions 446 Acknowledgements 449 Author contributions 449 References 449 SUMMARY: Hyperaccumulators are attractive models for studying metal(loid) homeostasis, and probing the spatial distribution and coordination chemistry of metal(loid)s in their tissues is important for advancing our understanding of their ecophysiology. X-ray elemental mapping techniques are unique in providing in situ information, and with appropriate sample preparation offer results true to biological conditions of the living plant. The common platform of these techniques is a reliance on characteristic X-rays of elements present in a sample, excited either by electrons (scanning/transmission electron microscopy), protons (proton-induced X-ray emission) or X-rays (X-ray fluorescence microscopy). Elucidating the cellular and tissue-level distribution of metal(loid)s is inherently challenging and accurate X-ray analysis places strict demands on sample collection, preparation and analytical conditions, to avoid elemental redistribution, chemical modification or ultrastructural alterations. We compare the merits and limitations of the individual techniques, and focus on the optimal field of applications for inferring ecophysiological processes in hyperaccumulator plants. X-ray elemental mapping techniques can play a key role in answering questions at every level of metal(loid) homeostasis in plants, from the rhizosphere interface, to uptake pathways in the roots and shoots. Further improvements in technological capabilities offer exciting perspectives for the study of hyperaccumulator plants into the future. © 2017 University of Queensland. New Phytologist © 2017 New Phytologist Trust.
Use of a priori spectral information in the measurement of x-ray flux with filtered diode arrays
Marrs, R. E.; Widmann, K.; Brown, G. V.; ...
2015-10-29
Filtered x-ray diode (XRD) arrays are often used to measure x-ray spectra vs. time from spectrally continuous x-ray sources such as hohlraums. A priori models of the incident x-ray spectrum enable a more accurate unfolding of the x-ray flux as compared to the standard technique of modifying a thermal Planckian with spectral peaks or dips at the response energy of each filtered XRD channel. A model x-ray spectrum consisting of a thermal Planckian, a Gaussian at higher energy, and (in some cases) a high energy background provides an excellent fit to XRD-array measurements of x-ray emission from laser heated hohlraums.more » If high-resolution measurements of part of the x-ray emission spectrum are available, that information can be included in the a priori model. In cases where the x-ray emission spectrum is not Planckian, candidate x-ray spectra can be allowed or excluded by fitting them to measured XRD voltages. Here, examples are presented from the filtered XRD arrays, named Dante, at the National Ignition Facility and the Laboratory for Laser Energetics.« less
Physical Limitations in Lithography for Microelectronics.
ERIC Educational Resources Information Center
Flavin, P. G.
1981-01-01
Describes techniques being used in the production of microelectronics kits which have replaced traditional optical lithography, including contact and optical projection printing, and X-ray and electron beam lithography. Also includes limitations of each technique described. (SK)
Ducic, Tanja; Paunesku, Tatjana; Chen, Si; ...
2016-12-09
The glioblastoma (GBM) is characterized by a short median survival and an almost 100% tumor related mortality. GBM cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores application of X-ray and visible light microscopy to display the elemental and structural images of cells from 3 patient derived GMB samples and an established GMB cell line. Slight differences in elemental concentrations, in actin cytoskeleton organization and cell morphology were noted between all cells types by X-ray fluorescence and full field soft X-ray microscopy, as well as the Structured Illumination Super-resolution Microscope (SIM). Different samplemore » preparation approaches were used to match each imaging technique. While preparation for SIM included cell fixation and staining, intact frozen hydrated cells were used for the trace element imaging by hard X-ray fluorescence and exploration of the structural features by soft X-ray absorption tomography. In conclusion, each technique documented differences between samples with regard to morphology and elemental composition and underscored the importance of use of multiple patient derived samples for detailed GBM study.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ducic, Tanja; Paunesku, Tatjana; Chen, Si
The glioblastoma (GBM) is characterized by a short median survival and an almost 100% tumor related mortality. GBM cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores application of X-ray and visible light microscopy to display the elemental and structural images of cells from 3 patient derived GMB samples and an established GMB cell line. Slight differences in elemental concentrations, in actin cytoskeleton organization and cell morphology were noted between all cells types by X-ray fluorescence and full field soft X-ray microscopy, as well as the Structured Illumination Super-resolution Microscope (SIM). Different samplemore » preparation approaches were used to match each imaging technique. While preparation for SIM included cell fixation and staining, intact frozen hydrated cells were used for the trace element imaging by hard X-ray fluorescence and exploration of the structural features by soft X-ray absorption tomography. In conclusion, each technique documented differences between samples with regard to morphology and elemental composition and underscored the importance of use of multiple patient derived samples for detailed GBM study.« less
Soft X-Ray Second Harmonic Generation as an Interfacial Probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, R. K.; Raj, S. L.; Pascal, T. A.
Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less
Soft X-Ray Second Harmonic Generation as an Interfacial Probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lam, R. K.; Raj, S. L.; Pascal, T. A.
Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. Here, this technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less
An experimental evaluation of monochromatic x-ray beam position monitors at diamond light source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bloomer, Chris, E-mail: chris.bloomer@diamond.ac.uk; Rehm, Guenther; Dolbnya, Igor P.
Maintaining the stability of the X-ray beam relative to the sample point is of paramount importance for beamlines and users wanting to perform cutting-edge experiments. The ability to detect, and subsequently compensate for, variations in X-ray beam position with effective diagnostics has multiple benefits: a reduction in commissioning and start-up time, less ‘down-time’, and an improvement in the quality of acquired data. At Diamond Light Source a methodical evaluation of a selection of monochromatic X-ray Beam Position Monitors (XBPMs), using a range of position detection techniques, and from a range of suppliers, was carried out. The results of these experimentsmore » are presented, showing the measured RMS noise on the position measurement of each device for a given flux, energy, beam size, and bandwidth. A discussion of the benefits and drawbacks of each of the various devices and techniques is also included.« less
NASA Technical Reports Server (NTRS)
Walker, A. B. C., Jr.
1975-01-01
Techniques for the study of the solar corona are reviewed as an introduction to a discussion of modifications required for the study of cosmic sources. Spectroscopic analysis of individual sources and the interstellar medium is considered. The latter was studied via analysis of its effect on the spectra of selected individual sources. The effects of various characteristics of the ISM, including the presence of grains, molecules, and ionization, are first discussed, and the development of ISM models is described. The expected spectral structure of individual cosmic sources is then reviewed with emphasis on supernovae remnants and binary X-ray sources. The observational and analytical requirements imposed by the characteristics of these sources are identified, and prospects for the analysis of abundances and the study of physical parameters within them are assessed. Prospects for the spectroscopic study of other classes of X-ray sources are also discussed.
Soft X-Ray Second Harmonic Generation as an Interfacial Probe
Lam, R. K.; Raj, S. L.; Pascal, T. A.; ...
2018-01-08
Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (~284 eV) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from themore » first atomic layer at the open surface. Here, this technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.« less
Soft X-Ray Second Harmonic Generation as an Interfacial Probe
NASA Astrophysics Data System (ADS)
Lam, R. K.; Raj, S. L.; Pascal, T. A.; Pemmaraju, C. D.; Foglia, L.; Simoncig, A.; Fabris, N.; Miotti, P.; Hull, C. J.; Rizzuto, A. M.; Smith, J. W.; Mincigrucci, R.; Masciovecchio, C.; Gessini, A.; Allaria, E.; De Ninno, G.; Diviacco, B.; Roussel, E.; Spampinati, S.; Penco, G.; Di Mitri, S.; Trovò, M.; Danailov, M.; Christensen, S. T.; Sokaras, D.; Weng, T.-C.; Coreno, M.; Poletto, L.; Drisdell, W. S.; Prendergast, D.; Giannessi, L.; Principi, E.; Nordlund, D.; Saykally, R. J.; Schwartz, C. P.
2018-01-01
Nonlinear optical processes at soft x-ray wavelengths have remained largely unexplored due to the lack of available light sources with the requisite intensity and coherence. Here we report the observation of soft x-ray second harmonic generation near the carbon K edge (˜284 eV ) in graphite thin films generated by high intensity, coherent soft x-ray pulses at the FERMI free electron laser. Our experimental results and accompanying first-principles theoretical analysis highlight the effect of resonant enhancement above the carbon K edge and show the technique to be interfacially sensitive in a centrosymmetric sample with second harmonic intensity arising primarily from the first atomic layer at the open surface. This technique and the associated theoretical framework demonstrate the ability to selectively probe interfaces, including those that are buried, with elemental specificity, providing a new tool for a range of scientific problems.
Submicron x-ray diffraction and its applications to problems in materials and environmental science
NASA Astrophysics Data System (ADS)
Tamura, N.; Celestre, R. S.; MacDowell, A. A.; Padmore, H. A.; Spolenak, R.; Valek, B. C.; Meier Chang, N.; Manceau, A.; Patel, J. R.
2002-03-01
The availability of high brilliance third generation synchrotron sources together with progress in achromatic focusing optics allows us to add submicron spatial resolution to the conventional century-old x-ray diffraction technique. The new capabilities include the possibility to map in situ, grain orientations, crystalline phase distribution, and full strain/stress tensors at a very local level, by combining white and monochromatic x-ray microbeam diffraction. This is particularly relevant for high technology industry where the understanding of material properties at a microstructural level becomes increasingly important. After describing the latest advances in the submicron x-ray diffraction techniques at the Advanced Light Source, we will give some examples of its application in material science for the measurement of strain/stress in metallic thin films and interconnects. Its use in the field of environmental science will also be discussed.
Flight Programs and X-ray Optics Development at MSFC
NASA Technical Reports Server (NTRS)
Gubarev, M.; Ramsey, B.; O'Dell, S. L.; Elsner, R.; Kilaru, K.; Atkins, C.; Swartz, D.; Gaskin, J.; Weisskopf, Martin
2012-01-01
The X-ray astronomy group at the Marshall Space Flight Center is developing electroformed nickel/cobalt x-ray optics for suborbital and orbital experiments. Suborbital instruments include the Focusing X-ray Solar Imager (FOXSI) and Micro-X sounding rocket experiments and the HERO balloon payload. Our current orbital program is the fabrication of a series of mirror modules for the Astronomical Roentgen Telescope (ART) to be launched on board the Russian-German Spectrum Roentgen Gamma Mission (SRG.) The details and status of these various programs are presented. A second component of our work is the development of fabrication techniques and optical metrology to improve the angular resolution of thin shell optics to the arcsecond-level. The status of these x-ray optics technology developments is also presented.
X-Ray Spectroscopic Laboratory Experiments in Support of the X-Ray Astronomy Program
NASA Technical Reports Server (NTRS)
Kahn, Steven M.
1997-01-01
Our program is to perform a series of laboratory investigations designed to resolved significant atomic physics uncertainties that limit the interpretation of cosmic X-ray spectra. Specific goals include a quantitative characterization of Fe L-shell spectra; the development of new techniques to simulate Maxwellian plasmas using an Electron Beam Ion Trap (EBIT); and the measurement of dielectronic recombination rates for photoionized gas. New atomic calculations have also been carried out in parallel with the laboratory investigations.
Projection x-ray topography system at 1-BM x-ray optics test beamline at the advanced photon source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoupin, Stanislav, E-mail: sstoupin@aps.anl.gov; Liu, Zunping; Trakhtenberg, Emil
2016-07-27
Projection X-ray topography of single crystals is a classic technique for the evaluation of intrinsic crystal quality of large crystals. In this technique a crystal sample and an area detector (e.g., X-ray film) collecting intensity of a chosen crystallographic reflection are translated simultaneously across an X-ray beam collimated in the diffraction scattering plane (e.g., [1, 2]). A bending magnet beamline of a third-generation synchrotron source delivering x-ray beam with a large horizontal divergence, and therefore, a large horizontal beam size at a crystal sample position offers an opportunity to obtain X-ray topographs of large crystalline samples (e.g., 6-inch wafers) inmore » just a few exposures. Here we report projection X-ray topography system implemented recently at 1-BM beamline of the Advanced Photon Source. A selected X-ray topograph of a 6-inch wafer of 4H-SiC illustrates capabilities and limitations of the technique.« less
Emoto, T; Akimoto, K; Ichimiya, A
1998-05-01
A new X-ray diffraction technique has been developed in order to measure the strain field near a solid surface under ultrahigh vacuum (UHV) conditions. The X-ray optics use an extremely asymmetric Bragg-case bulk reflection. The glancing angle of the X-rays can be set near the critical angle of total reflection by tuning the X-ray energy. Using this technique, rocking curves for Si surfaces with different surface structures, i.e. a native oxide surface, a slightly oxide surface and an Si(111) 7 x 7 surface, were measured. It was found that the widths of the rocking curves depend on the surface structures. This technique is efficient in distinguishing the strain field corresponding to each surface structure.
NASA Astrophysics Data System (ADS)
Bewer, Brian E.
Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These X-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing a large change in intensity for a small angle change introduced by the X-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultra small angle X-ray scattering (USAXS) contrast thus improving visualization and extending the utility of X-ray imaging. To improve on the current DEI technique this body of work describes the design of an X-ray prism (XRP) included in the imaging system which allows the analyzer crystal to be aligned anywhere on the rocking curve without moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from muradians for direct mechanical movement of the analyzer crystal to milliradian control for movement the XRP angle. In addition to using an XRP for the traditional DEI acquisition method of two scans on opposite sides of the rocking curve preliminary tests will be presented showing the potential of using an XRP to scan quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single fast measurement thus removing the occurrence of motion artifacts for each point or line used during a scan. The XRP design is also intended to be compatible with combined imaging systems where more than one technique is used to investigate a sample. Candidates for complimentary techniques are investigated and measurements from a combined X-ray imaging system are presented.
Emerging surface characterization techniques for carbon steel corrosion: a critical brief review.
Dwivedi, D; Lepkova, K; Becker, T
2017-03-01
Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.
Emerging surface characterization techniques for carbon steel corrosion: a critical brief review
NASA Astrophysics Data System (ADS)
Dwivedi, D.; Lepkova, K.; Becker, T.
2017-03-01
Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed.
Emerging surface characterization techniques for carbon steel corrosion: a critical brief review
Dwivedi, D.; Becker, T.
2017-01-01
Carbon steel is a preferred construction material in many industrial and domestic applications, including oil and gas pipelines, where corrosion mitigation using film-forming corrosion inhibitor formulations is a widely accepted method. This review identifies surface analytical techniques that are considered suitable for analysis of thin films at metallic substrates, but are yet to be applied to analysis of carbon steel surfaces in corrosive media or treated with corrosion inhibitors. The reviewed methods include time of flight-secondary ion mass spectrometry, X-ray absorption spectroscopy methods, particle-induced X-ray emission, Rutherford backscatter spectroscopy, Auger electron spectroscopy, electron probe microanalysis, near-edge X-ray absorption fine structure spectroscopy, X-ray photoemission electron microscopy, low-energy electron diffraction, small-angle neutron scattering and neutron reflectometry, and conversion electron Moessbauer spectrometry. Advantages and limitations of the analytical methods in thin-film surface investigations are discussed. Technical parameters of nominated analytical methods are provided to assist in the selection of suitable methods for analysis of metallic substrates deposited with surface films. The challenges associated with the applications of the emerging analytical methods in corrosion science are also addressed. PMID:28413351
NASA Astrophysics Data System (ADS)
Yamazaki, Takaharu; Futai, Kazuma; Tomita, Tetsuya; Sato, Yoshinobu; Yoshikawa, Hideki; Tamura, Shinichi; Sugamoto, Kazuomi
2011-03-01
To achieve 3D kinematic analysis of total knee arthroplasty (TKA), 2D/3D registration techniques, which use X-ray fluoroscopic images and computer-aided design (CAD) model of the knee implant, have attracted attention in recent years. These techniques could provide information regarding the movement of radiopaque femoral and tibial components but could not provide information of radiolucent polyethylene insert, because the insert silhouette on X-ray image did not appear clearly. Therefore, it was difficult to obtain 3D kinemaitcs of polyethylene insert, particularly mobile-bearing insert that move on the tibial component. This study presents a technique and the accuracy for 3D kinematic analysis of mobile-bearing insert in TKA using X-ray fluoroscopy, and finally performs clinical applications. For a 3D pose estimation technique of the mobile-bearing insert in TKA using X-ray fluoroscopy, tantalum beads and CAD model with its beads are utilized, and the 3D pose of the insert model is estimated using a feature-based 2D/3D registration technique. In order to validate the accuracy of the present technique, experiments including computer simulation test were performed. The results showed the pose estimation accuracy was sufficient for analyzing mobile-bearing TKA kinematics (the RMS error: about 1.0 mm, 1.0 degree). In the clinical applications, seven patients with mobile-bearing TKA in deep knee bending motion were studied and analyzed. Consequently, present technique enables us to better understand mobile-bearing TKA kinematics, and this type of evaluation was thought to be helpful for improving implant design and optimizing TKA surgical techniques.
Apparatus for use in examining the lattice of a semiconductor wafer by X-ray diffraction
NASA Technical Reports Server (NTRS)
Parker, D. L.; Porter, W. A. (Inventor)
1978-01-01
An improved apparatus for examining the crystal lattice of a semiconductor wafer utilizing X-ray diffraction techniques was presented. The apparatus is employed in a method which includes the step of recording the image of a wafer supported in a bent configuration conforming to a compound curve, produced through the use of a vacuum chuck provided for an X-ray camera. The entire surface thereof is illuminated simultaneously by a beam of incident X-rays which are projected from a distant point-source and satisfy conditions of the Bragg Law for all points on the surface of the water.
Development of an x-ray prism for analyzer based imaging systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bewer, Brian; Chapman, Dean
Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP)more » was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.« less
Development of an x-ray prism for analyzer based imaging systems
NASA Astrophysics Data System (ADS)
Bewer, Brian; Chapman, Dean
2010-08-01
Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.
Development of an x-ray prism for analyzer based imaging systems.
Bewer, Brian; Chapman, Dean
2010-08-01
Analyzer crystal based imaging techniques such as diffraction enhanced imaging (DEI) and multiple imaging radiography (MIR) utilize the Bragg peak of perfect crystal diffraction to convert angular changes into intensity changes. These x-ray techniques extend the capability of conventional radiography, which derives image contrast from absorption, by providing large intensity changes for small angle changes introduced from the x-ray beam traversing the sample. Objects that have very little absorption contrast may have considerable refraction and ultrasmall angle x-ray scattering contrast improving visualization and extending the utility of x-ray imaging. To improve on the current DEI technique an x-ray prism (XRP) was designed and included in the imaging system. The XRP allows the analyzer crystal to be aligned anywhere on the rocking curve without physically moving the analyzer from the Bragg angle. By using the XRP to set the rocking curve alignment rather than moving the analyzer crystal physically the needed angle sensitivity is changed from submicroradians for direct mechanical movement of the analyzer crystal to tens of milliradians for movement of the XRP angle. However, this improvement in angle positioning comes at the cost of absorption loss in the XRP and depends on the x-ray energy. In addition to using an XRP for crystal alignment it has the potential for scanning quickly through the entire rocking curve. This has the benefit of collecting all the required data for image reconstruction in a single measurement thereby removing some problems with motion artifacts which remain a concern in current DEI/MIR systems especially for living animals.
Ethanol fixed brain imaging by phase-contrast X-ray technique
NASA Astrophysics Data System (ADS)
Takeda, Tohoru; Thet-Thet-Lwin; Kunii, Takuya; Sirai, Ryota; Ohizumi, Takahito; Maruyama, Hiroko; Hyodo, Kazuyuki; Yoneyama, Akio; Ueda, Kazuhiro
2013-03-01
The two-crystal phase-contrast X-ray imaging technique using an X-ray crystal interferometer can depict the fine structures of rat's brain such as cerebral cortex, white matter, and basal ganglia. Image quality and contrast by ethanol fixed brain showed significantly better than those by usually used formalin fixation at 35 keV X-ray energy. Image contrast of cortex by ethanol fixation was more than 3-times higher than that by formalin fixation. Thus, the technique of ethanol fixation might be better suited to image cerebral structural detail at 35 keV X-ray energy.
Coded mask telescopes for X-ray astronomy
NASA Astrophysics Data System (ADS)
Skinner, G. K.; Ponman, T. J.
1987-04-01
The principle of the coded mask techniques are discussed together with the methods of image reconstruction. The coded mask telescopes built at the University of Birmingham, including the SL 1501 coded mask X-ray telescope flown on the Skylark rocket and the Coded Mask Imaging Spectrometer (COMIS) projected for the Soviet space station Mir, are described. A diagram of a coded mask telescope and some designs for coded masks are included.
Chantler, C T; Islam, M T; Rae, N A; Tran, C Q; Glover, J L; Barnea, Z
2012-03-01
An extension of the X-ray extended-range technique is described for measuring X-ray mass attenuation coefficients by introducing absolute measurement of a number of foils - the multiple independent foil technique. Illustrating the technique with the results of measurements for gold in the 38-50 keV energy range, it is shown that its use enables selection of the most uniform and well defined of available foils, leading to more accurate measurements; it allows one to test the consistency of independently measured absolute values of the mass attenuation coefficient with those obtained by the thickness transfer method; and it tests the linearity of the response of the counter and counting chain throughout the range of X-ray intensities encountered in a given experiment. In light of the results for gold, the strategy to be ideally employed in measuring absolute X-ray mass attenuation coefficients, X-ray absorption fine structure and related quantities is discussed.
NASA Astrophysics Data System (ADS)
Mao, H.; Mao, W. L.
2005-12-01
Multiple x-ray and allied probes have been recently developed and integrated with diamond-anvil cells at synchrotron facilities. They have effectively opened up the vast field area of the Earth's interior to direct, in-situ study. For instance, x-ray emission spectroscopy identifies the high-spin-low-spin transition that governs Fe-Mg partitioning, the most important factor in element differentiation in the mantle. Inelastic x-ray near-edge spectroscopy reveals the bonding nature of light elements that control the phase transitions, structure and partitioning of these elements (e.g., carbon bonding changes as an element, and in oxides, carbonates, and silicates). X-ray diffraction combined with laser-heated diamond anvil cell determines crystal structures and P-V-T equations of state. Shear moduli, single-crystal elasticity, and phonon dynamics can be measured to the core pressures with newly-enabled, complementary techniques, including radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, non-resonant inelastic x-ray scattering, high-temperature Raman spectroscopy, and Brillouin scattering spectroscopy. The nonhydrostatic stress in solid samples which was previously regarded as a nuisance that degraded the experiments, can now be used for extracting important rheological information, including deformation mechanisms, preferred orientation, slip systems, plasticity, failure, and shear strength of major mantle and core minerals at high pressures. With the new arsenal of experimental techniques over the extended P-T-x regimes at we can now address questions that were not conceivable only a decade ago. Knowledge of the high P-T properties is leading to fundamental improvements in interpreting seismological observations and understanding the structure, dynamics, and evolution of the Earth's deep interior.
Next Generation X-Ray Optics: High-Resolution, Light-Weight, and Low-Cost
NASA Technical Reports Server (NTRS)
Zhang, William W.
2012-01-01
X-ray telescopes are essential to the future of x-ray astronomy. In this talk I will describe a comprehensive program to advance the technology for x-ray telescopes well beyond the state of the art represented by the three currently operating missions: Chandra, XMM-Newton, and Suzaku. This program will address the three key issues in making an x-ray telescope: (1) angular resolution, (2) effective area per unit mass, and (3) cost per unit effective area. The objectives of this technology program are (1) in the near term, to enable Explorer-class x-ray missions and an IXO-type mission, and (2) in the long term, to enable a flagship x-ray mission with sub-arcsecond angular resolution and multi-square-meter effective area, at an affordable cost. We pursue two approaches concurrently, emphasizing the first approach in the near term (2-5 years) and the second in the long term (4-10 years). The first approach is precision slumping of borosilicate glass sheets. By design and choice at the outset, this technique makes lightweight and low-cost mirrors. The development program will continue to improve angular resolution, to enable the production of 5-arcsecond x-ray telescopes, to support Explorer-class missions and one or more missions to supersede the original IXO mission. The second approach is precision polishing and light-weighting of single-crystal silicon mirrors. This approach benefits from two recent commercial developments: (1) the inexpensive and abundant availability of large blocks of monocrystalline silicon, and (2) revolutionary advances in deterministic, precision polishing of mirrors. By design and choice at the outset, this technique is capable of producing lightweight mirrors with sub-arcsecond angular resolution. The development program will increase the efficiency and reduce the cost of the polishing and the light-weighting processes, to enable the production of lightweight sub-arcsecond x-ray telescopes. Concurrent with the fabrication of lightweight mirror segments is the continued development and perfection of alignment and integration techniques, for incorporating individual mirror segments into a precision mirror assembly. Recently, we have been developing a technique called edge-bonding, which has achieved an accuracy to enable 10-arcsecond x-ray telescopes. Currently, we are investigating and improving the long-term alignment stability of so-bonded mirrors. Next, we shall refine this process to enable 5-arsecond x-ray telescopes. This technology development program includes all elements to demonstrate progress toward TRL-6: metrology; x-ray performance tests; coupled structural, thermal, and optical performance analysis, and environmental testing.
Next Generation X-Ray Optics: High-Resolution, Light-Weight, and Low-Cost
NASA Technical Reports Server (NTRS)
Zhang, William W.
2011-01-01
X-ray telescopes are essential to the future of x-ray astronomy. This paper describes a comprehensive program to advance the technology for x-ray telescopes well beyond the state of the art represented by the three currently operating missions: Chandra, XMM-Newton , and Suzaku . This program will address the three key issues in making an x-ray telescope: (I) angular resolution, (2) effective area per unit mass, and (3) cost per unit effective area. The objectives of this technology program are (1) in the near term, to enable Explorer-class x-ray missions and an IXO type mission, and (2) in the long term, to enable a flagship x-ray mission with sub-arcsecond angular resolution and multi-square-meter effective area, at an affordable cost. We pursue two approaches concurrently, emphasizing the first approach in the near term (2-5 years) and the second in the long term (4-10 years). The first approach is precision slumping of borosilicate glass sheets. By design and choice at the outset, this technique makes lightweight and low-cost mirrors. The development program will continue to improve angular resolution, to enable the production of 5-arcsecond x-ray telescopes, to support Explorer-class missions and one or more missions to supersede the original IXO mission. The second approach is precision polishing and light-weighting of single-crystal silicon mirrors. This approach benefits from two recent commercial developments: (1) the inexpensive and abundant availability of large blocks of mono crystalline silicon, and (2) revolutionary advances in deterministic, precision polishing of mirrors. By design and choice at the outset, this technique is capable of producing lightweight mirrors with sub-arcsecond angular resolution. The development program will increase the efficiency and reduce the cost of the polishing and the lightweighting processes, to enable the production of lightweight sub-arcsecond x-ray telescopes. Concurrent with the fabrication of lightweight mirror segments is the continued development and perfection of alignment and integration techniques, for incorporating individual mirror segments into a precision mirror assembly. Recently, we have been developing a technique called edge-bonding, which has achieved an accuracy to enable 10- arcsecond x-ray telescopes. Currently, we are investigating and improving the long-term alignment stability of so-bonded mirrors. Next, we shall refine this process to enable 5-arsecond x-ray telescopes. This technology development program includes all elements to demonstrate progress toward TRL-6: metrology; x-ray performance tests; coupled structural, thermal, and optical performance analysis, and environmental testing.
Recent Advances in X-ray Cone-beam Computed Laminography.
O'Brien, Neil S; Boardman, Richard P; Sinclair, Ian; Blumensath, Thomas
2016-10-06
X-ray computed tomography is an established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art.
Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials.
Zhu, Ying; Cai, Xiaoqing; Li, Jiang; Zhong, Zengtao; Huang, Qing; Fan, Chunhai
2014-04-01
There have been increasing interests in studying biological effects of nanomaterials, which are nevertheless faced up with many challenges due to the nanoscale dimensions and unique chemical properties of nanomaterials. Synchrotron-based X-ray microscopy, an advanced imaging technology with high spatial resolution and excellent elemental specificity, provides a new platform for studying interactions between nanomaterials and living systems. In this article, we review the recent progress of X-ray microscopic studies on bioeffects of nanomaterials in several living systems including cells, model organisms, animals and plants. We aim to provide an overview of the state of the art, and the advantages of using synchrotron-based X-ray microscopy for characterizing in vitro and in vivo behaviors and biodistribution of nanomaterials. We also expect that the use of a combination of new synchrotron techniques should offer unprecedented opportunities for better understanding complex interactions at the nano-biological interface and accounting for unique bioeffects of nanomaterials. Synchrotron-based X-ray microscopy is a non-destructive imaging technique that enables high resolution spatial mapping of metals with elemental level detection methods. This review summarizes the current use and perspectives of this novel technique in studying the biology and tissue interactions of nanomaterials. Copyright © 2014 Elsevier Inc. All rights reserved.
Nonlinear X-Ray and Auger Spectroscopy at X-Ray Free-Electron Laser Sources
NASA Astrophysics Data System (ADS)
Rohringer, Nina
2015-05-01
X-ray free-electron lasers (XFELs) open the pathway to transfer non-linear spectroscopic techniques to the x-ray domain. A promising all x-ray pump probe technique is based on coherent stimulated electronic x-ray Raman scattering, which was recently demonstrated in atomic neon. By tuning the XFEL pulse to core-excited resonances, a few seed photons in the spectral tail of the XFEL pulse drive an avalanche of resonant inelastic x-ray scattering events, resulting in exponential amplification of the scattering signal by of 6-7 orders of magnitude. Analysis of the line profile of the emitted radiation permits to demonstrate the cross over from amplified spontaneous emission to coherent stimulated resonance scattering. In combination with statistical covariance mapping, a high-resolution spectrum of the resonant inelastic scattering process can be obtained, opening the path to coherent stimulated x-ray Raman spectroscopy. An extension of these ideas to molecules and a realistic feasibility study of stimulated electronic x-ray Raman scattering in CO will be presented. Challenges to realizing stimulated electronic x-ray Raman scattering at present-day XFEL sources will be discussed, corroborated by results of a recent experiment at the LCLS XFEL. Due to the small gain cross section in molecular targets, other nonlinear spectroscopic techniques such as nonlinear Auger spectroscopy could become a powerful alternative. Theory predictions of a novel pump probe technique based on resonant nonlinear Auger spectroscopic will be discussed and the method will be compared to stimulated x-ray Raman spectroscopy.
Research study on stellar X-ray imaging experiment, volume 2
NASA Technical Reports Server (NTRS)
Wilson, H. H.; Vanspeybroeck, L. P.
1972-01-01
A review of the scientific objectives of an integrated X-ray orbiting telescope facility is presented. A set of observations to be conducted to achieve the objectives of the research are described. The techniques and equipment used in the experiment are defined. The configuration of the facility and the specifications of the test equipment are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kenik, E.A.
X-ray microanalysis in an analytical electron microscope is a proven technique for the measurement of solute segregation in alloys. Solute segregation under equilibrium or nonequilibrium conditions can strongly influence material performance. X-ray microanalysis in an analytical electron microscope provides an alternative technique to measure grain boundary segregation, as well as segregation to other defects not accessible to Auger analysis. The utility of the technique is demonstrated by measurements of equilibrium segregation to boundaries in an antimony containing stainless steel, including the variation of segregation with boundary character and by measurements of nonequilibrium segregation to boundaries and dislocations in an ion-irradiatedmore » stainless steel.« less
Neutron and X-Ray Diffraction Studies of Advanced Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barabash, Rozaliya; Tiley, Jaimie; Wang, Yandong
2010-01-01
The selection of articles in the special topic 'Neutron and X-Ray Studies of Advanced Materials' is based on the materials presented during the TMS 2009 annual meeting in San Francisco, CA, February 15-19, 2009. The development of ultrabrilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultrasensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternativemore » probes of crystalline structure, orientation, and strain. X-ray microdiffraction is nondestructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Moreover, the high-energy X-ray diffraction technique provides an effective tool for characterizing the mechanical and functional behavior in various environments (temperature, stress, and magnetic field). At the same time, some neutron diffraction instruments constructed mainly for the purpose of engineering applications can be found at nearly all neutron facilities. The first generation-dedicated instruments designed for studying in-situ mechanical behavior have been commissioned and used, and industrial standards for reliable and repeatable measurements have been developed. Furthermore, higher penetration of neutron beams into most engineering materials provides direct measurements on the distribution of various stresses (i.e., types I, II, and III) beneath the surface up to several millimeters, even tens of millimeters for important industrial components. With X-ray and neutron measurements, it is possible to characterize material behavior at different length scales. It is predicted that the application of these techniques, in combination with theoretical simulations and numerical modeling, will lead to major breakthroughs in materials science in the foreseeable future, which will contribute to the development of materials technology and industrial innovation. Specifically, the use of these techniques provides bulk material properties that further augment new characterization tools including the increased use of atom probe tomography and high-resolution transmission electron microscopy systems. The combination of these techniques greatly assists the material property models that address multi-length-scale mechanisms. Different applications of diffuse scattering for understanding the fundamental materials properties are illustrated in the articles of Welberry et al., Goossens and Welberry, Campbell, Abe et al., Gilles et al., and Zhang et al. Analysis of thin films and two-dimensional structures is described in the articles of Gramlich et al., Brock et al., Vigliante et al., Kuzel et al., and Davydok et al. Recent advances in the line profile analysis are represented by the the articles of Scardi et al., Ungar et al., and Woo et al. Characterization of modern alloys is presented by the articles of Wollmershauser et al., Eidenberger et al., Garlea et al., Jia et al., Soulami et al., Wilson et al., and Wang et al. The collected articles are written by different scientific X-ray and neutron research groups. They represent a general trend in the development and application of diffraction techniques all over the world.« less
A compressed sensing X-ray camera with a multilayer architecture
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Iaroshenko, O.; Li, S.; Liu, T.; Parab, N.; Chen, W. W.; Chu, P.; Kenyon, G. T.; Lipton, R.; Sun, K.-X.
2018-01-01
Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, Adam; Piquette, Kathryn E.; Bergmann, Uwe
Ancient Egyptian mummies were often covered with an outer casing, panels and masks made from cartonnage: a lightweight material made from linen, plaster, and recycled papyrus held together with adhesive. Egyptologists, papyrologists, and historians aim to recover and read extant text on the papyrus contained within cartonnage layers, but some methods, such as dissolving mummy casings, are destructive. The use of an advanced range of different imaging modalities was investigated to test the feasibility of non-destructive approaches applied to multi-layered papyrus found in ancient Egyptian mummy cartonnage. Eight different techniques were compared by imaging four synthetic phantoms designed to providemore » robust, well-understood, yet relevant sample standards using modern papyrus and replica inks. The techniques include optical (multispectral imaging with reflection and transillumination, and optical coherence tomography), X-ray (X-ray fluorescence imaging, X-ray fluorescence spectroscopy, X-ray micro computed tomography and phase contrast X-ray) and terahertz-based approaches. Optical imaging techniques were able to detect inks on all four phantoms, but were unable to significantly penetrate papyrus. X-ray-based techniques were sensitive to iron-based inks with excellent penetration but were not able to detect carbon-based inks. However, using terahertz imaging, it was possible to detect carbon-based inks with good penetration but with less sensitivity to iron-based inks. The phantoms allowed reliable and repeatable tests to be made at multiple sites on three continents. Finally, the tests demonstrated that each imaging modality needs to be optimised for this particular application: it is, in general, not sufficient to repurpose an existing device without modification. Furthermore, it is likely that no single imaging technique will to be able to robustly detect and enable the reading of text within ancient Egyptian mummy cartonnage. However, by carefully selecting, optimising and combining techniques, text contained within these fragile and rare artefacts may eventually be open to non-destructive imaging, identification, and interpretation.« less
Gibson, Adam; Piquette, Kathryn E.; Bergmann, Uwe; ...
2018-02-26
Ancient Egyptian mummies were often covered with an outer casing, panels and masks made from cartonnage: a lightweight material made from linen, plaster, and recycled papyrus held together with adhesive. Egyptologists, papyrologists, and historians aim to recover and read extant text on the papyrus contained within cartonnage layers, but some methods, such as dissolving mummy casings, are destructive. The use of an advanced range of different imaging modalities was investigated to test the feasibility of non-destructive approaches applied to multi-layered papyrus found in ancient Egyptian mummy cartonnage. Eight different techniques were compared by imaging four synthetic phantoms designed to providemore » robust, well-understood, yet relevant sample standards using modern papyrus and replica inks. The techniques include optical (multispectral imaging with reflection and transillumination, and optical coherence tomography), X-ray (X-ray fluorescence imaging, X-ray fluorescence spectroscopy, X-ray micro computed tomography and phase contrast X-ray) and terahertz-based approaches. Optical imaging techniques were able to detect inks on all four phantoms, but were unable to significantly penetrate papyrus. X-ray-based techniques were sensitive to iron-based inks with excellent penetration but were not able to detect carbon-based inks. However, using terahertz imaging, it was possible to detect carbon-based inks with good penetration but with less sensitivity to iron-based inks. The phantoms allowed reliable and repeatable tests to be made at multiple sites on three continents. Finally, the tests demonstrated that each imaging modality needs to be optimised for this particular application: it is, in general, not sufficient to repurpose an existing device without modification. Furthermore, it is likely that no single imaging technique will to be able to robustly detect and enable the reading of text within ancient Egyptian mummy cartonnage. However, by carefully selecting, optimising and combining techniques, text contained within these fragile and rare artefacts may eventually be open to non-destructive imaging, identification, and interpretation.« less
Backscatter X-Ray Development for Space Vehicle Thermal Protection Systems
NASA Astrophysics Data System (ADS)
Bartha, Bence B.; Hope, Dale; Vona, Paul; Born, Martin; Corak, Tony
2011-06-01
The Backscatter X-Ray (BSX) imaging technique is used for various single sided inspection purposes. Previously developed BSX techniques for spray-on-foam insulation (SOFI) have been used for detecting defects in Space Shuttle External Tank foam insulation. The developed BSX hardware and techniques are currently being enhanced to advance Non-Destructive Evaluation (NDE) methods for future space vehicle applications. Various Thermal Protection System (TPS) materials were inspected using the enhanced BSX imaging techniques, investigating the capability of the method to detect voids and other discontinuities at various locations within each material. Calibration standards were developed for the TPS materials in order to characterize and develop enhanced BSX inspection capabilities. The ability of the BSX technique to detect both manufactured and natural defects was also studied and compared to through-transmission x-ray techniques. The energy of the x-ray, source to object distance, angle of x-ray, focal spot size and x-ray detector configurations were parameters playing a significant role in the sensitivity of the BSX technique to image various materials and defects. The image processing of the results also showed significant increase in the sensitivity of the technique. The experimental results showed BSX to be a viable inspection technique for space vehicle TPS systems.
Liquid sample delivery techniques for serial femtosecond crystallography
Weierstall, Uwe
2014-01-01
X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques. PMID:24914163
Lunar mineral feedstocks from rocks and soils: X-ray digital imaging in resource evaluation
NASA Technical Reports Server (NTRS)
Chambers, John G.; Patchen, Allan; Taylor, Lawrence A.; Higgins, Stefan J.; Mckay, David S.
1994-01-01
The rocks and soils of the Moon provide raw materials essential to the successful establishment of a lunar base. Efficient exploitation of these resources requires accurate characterization of mineral abundances, sizes/shapes, and association of 'ore' and 'gangue' phases, as well as the technology to generate high-yield/high-grade feedstocks. Only recently have x-ray mapping and digital imaging techniques been applied to lunar resource evaluation. The topics covered include inherent differences between lunar basalts and soils and quantitative comparison of rock-derived and soil-derived ilmenite concentrates. It is concluded that x-ray digital-imaging characterization of lunar raw materials provides a quantitative comparison that is unattainable by traditional petrographic techniques. These data are necessary for accurately determining mineral distributions of soil and crushed rock material. Application of these techniques will provide an important link to choosing the best raw material for mineral beneficiation.
Cameras for semiconductor process control
NASA Technical Reports Server (NTRS)
Porter, W. A.; Parker, D. L.
1977-01-01
The application of X-ray topography to semiconductor process control is described, considering the novel features of the high speed camera and the difficulties associated with this technique. The most significant results on the effects of material defects on device performance are presented, including results obtained using wafers processed entirely within this institute. Defects were identified using the X-ray camera and correlations made with probe data. Also included are temperature dependent effects of material defects. Recent applications and improvements of X-ray topographs of silicon-on-sapphire and gallium arsenide are presented with a description of a real time TV system prototype and of the most recent vacuum chuck design. Discussion is included of our promotion of the use of the camera by various semiconductor manufacturers.
The Advanced Light Source (ALS) Slicing Undulator Beamline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heimann, P. A.; Glover, T. E.; Plate, D.
2007-01-19
A beamline optimized for the bunch slicing technique has been construction at the Advanced Light Source (ALS). This beamline includes an in-vacuum undulator, soft and hard x-ray beamlines and a femtosecond laser system. The soft x-ray beamline may operate in spectrometer mode, where an entire absorption spectrum is accumulated at one time, or in monochromator mode. The femtosecond laser system has a high repetition rate of 20 kHz to improve the average slicing flux. The performance of the soft x-ray branch of the ALS slicing undulator beamline will be presented.
Parametric studies and characterization measurements of x-ray lithography mask membranes
NASA Astrophysics Data System (ADS)
Wells, Gregory M.; Chen, Hector T. H.; Engelstad, Roxann L.; Palmer, Shane R.
1991-08-01
The techniques used in the experimental characterization of thin membranes are considered for their potential use as mask blanks for x-ray lithography. Among the parameters of interest for this evaluation are the film's stress, fracture strength, uniformity of thickness, absorption in the x-ray and visible spectral regions and the modulus and grain structure of the material. The experimental techniques used for measuring these properties are described. The accuracy and applicability of the assumptions used to derive the formulas that relate the experimental measurements to the parameters of interest are considered. Experimental results for silicon carbide and diamond films are provided. Another characteristic needed for an x-ray mask carrier is radiation stability. The number of x-ray exposures expected to be performed in the lifetime of an x-ray mask on a production line is on the order of 107. The dimensional stability requirements placed on the membranes during this period are discussed. Interferometric techniques that provide sufficient sensitivity for these stability measurements are described. A comparison is made between the different techniques that have been developed in term of the information that each technique provides, the accuracy of the various techniques, and the implementation issues that are involved with each technique.
Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging.
Evans, P G; Chahine, G; Grifone, R; Jacques, V L R; Spalenka, J W; Schülli, T U
2013-11-01
X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.
Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging
NASA Astrophysics Data System (ADS)
Evans, P. G.; Chahine, G.; Grifone, R.; Jacques, V. L. R.; Spalenka, J. W.; Schülli, T. U.
2013-11-01
X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.
NASA Astrophysics Data System (ADS)
Xin, Jianting; He, Weihua; Chu, Genbai; Gu, Yuqiu
2017-06-01
Dynamic fragmentation of metal under shock pressure is an important issue for both fundamental science and practical applications. And in recent decades, laser provides a promising shock loading technique for investigating the process of dynamic fragmentation under extreme condition application of high strain rate. Our group has performed experimental investigation of dynamic fragmentation under laser shock loading by soft recovery and X-ray radiography at SGC / ó prototype laser facility. The fragments under different loading pressures were recovered by PMP foam and analyzed by X-ray micro-tomography and the improved watershed method. The experiment result showed that the bilinear exponential distribution is more appropriate for representing the fragment size distribution. We also developed X-ray radiography technique. Owing to its inherent advantage over shadowgraph technique, X-ray radiography can potentially determine quantitatively material densities by measuring the X-ray transmission. Our group investigated dynamic process of microjetting by X-ray radiography technique, the recorded radiographic images show clear microjetting from the triangular grooves in the free surface of tin sample.
SU-C-209-06: Improving X-Ray Imaging with Computer Vision and Augmented Reality
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDougall, R.D.; Scherrer, B; Don, S
Purpose: To determine the feasibility of using a computer vision algorithm and augmented reality interface to reduce repeat rates and improve consistency of image quality and patient exposure in general radiography. Methods: A prototype device, designed for use with commercially available hardware (Microsoft Kinect 2.0) capable of depth sensing and high resolution/frame rate video, was mounted to the x-ray tube housing as part of a Philips DigitalDiagnost digital radiography room. Depth data and video was streamed to a Windows 10 PC. Proprietary software created an augmented reality interface where overlays displayed selectable information projected over real-time video of the patient.more » The information displayed prior to and during x-ray acquisition included: recognition and position of ordered body part, position of image receptor, thickness of anatomy, location of AEC cells, collimated x-ray field, degree of patient motion and suggested x-ray technique. Pre-clinical data was collected in a volunteer study to validate patient thickness measurements and x-ray images were not acquired. Results: Proprietary software correctly identified ordered body part, measured patient motion, and calculated thickness of anatomy. Pre-clinical data demonstrated accuracy and precision of body part thickness measurement when compared with other methods (e.g. laser measurement tool). Thickness measurements provided the basis for developing a database of thickness-based technique charts that can be automatically displayed to the technologist. Conclusion: The utilization of computer vision and commercial hardware to create an augmented reality view of the patient and imaging equipment has the potential to drastically improve the quality and safety of x-ray imaging by reducing repeats and optimizing technique based on patient thickness. Society of Pediatric Radiology Pilot Grant; Washington University Bear Cub Fund.« less
Indus-2 X-ray lithography beamline for X-ray optics and material science applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhamgaye, V. P., E-mail: vishal@rrcat.gov.in; Lodha, G. S., E-mail: vishal@rrcat.gov.in
2014-04-24
X-ray lithography is an ideal technique by which high aspect ratio and high spatial resolution micro/nano structures are fabricated using X-rays from synchrotron radiation source. The technique has been used for fabricating optics (X-ray, visible and infrared), sensors and actuators, fluidics and photonics. A beamline for X-ray lithography is operational on Indus-2. The beamline offers wide lithographic window from 1-40keV photon energy and wide beam for producing microstructures in polymers upto size ∼100mm × 100mm. X-ray exposures are possible in air, vacuum and He gas environment. The air based exposures enables the X-ray irradiation of resist for lithography and alsomore » irradiation of biological and liquid samples.« less
Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.
Asghar, Z; Requena, G; Sket, F
2015-07-01
The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
[Contrast of Z-Pinch X-Ray Yield Measure Technique].
Li, Mo; Wang, Liang-ping; Sheng, Liang; Lu, Yi
2015-03-01
Resistive bolometer and scintillant detection system are two mainly Z-pinch X-ray yield measure techniques which are based on different diagnostic principles. Contrasting the results from two methods can help with increasing precision of X-ray yield measurement. Experiments with different load material and shape were carried out on the "QiangGuang-I" facility. For Al wire arrays, X-ray yields measured by the two techniques were largely consistent. However, for insulating coating W wire arrays, X-ray yields taken from bolometer changed with load parameters while data from scintillant detection system hardly changed. Simulation and analysis draw conclusions as follows: (1) Scintillant detection system is much more sensitive to X-ray photons with low energy and its spectral response is wider than the resistive bolometer. Thus, results from the former method are always larger than the latter. (2) The responses of the two systems are both flat to Al plasma radiation. Thus, their results are consistent for Al wire array loads. (3) Radiation form planar W wire arrays is mainly composed of sub-keV soft X-ray. X-ray yields measured by the bolometer is supposed to be accurate because of the nickel foil can absorb almost all the soft X-ray. (4) By contrast, using planar W wire arrays, data from scintillant detection system hardly change with load parameters. A possible explanation is that while the distance between wires increases, plasma temperature at stagnation reduces and spectra moves toward the soft X-ray region. Scintillator is much more sensitive to the soft X-ray below 200 eV. Thus, although the total X-ray yield reduces with large diameter load, signal from the scintillant detection system is almost the same. (5) Both Techniques affected by electron beams produced by the loads.
Metal imaging in neurodegenerative diseases
Bourassa, Megan W.
2014-01-01
Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques. PMID:22797194
Femtosecond all-optical synchronization of an X-ray free-electron laser
Schulz, S.; Grguraš, I.; Behrens, C.; ...
2015-01-20
Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarilymore » by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses.« less
Femtosecond all-optical synchronization of an X-ray free-electron laser
Schulz, S.; Grguraš, I.; Behrens, C.; Bromberger, H.; Costello, J. T.; Czwalinna, M. K.; Felber, M.; Hoffmann, M. C.; Ilchen, M.; Liu, H. Y.; Mazza, T.; Meyer, M.; Pfeiffer, S.; Prędki, P.; Schefer, S.; Schmidt, C.; Wegner, U.; Schlarb, H.; Cavalieri, A. L.
2015-01-01
Many advanced applications of X-ray free-electron lasers require pulse durations and time resolutions of only a few femtoseconds. To generate these pulses and to apply them in time-resolved experiments, synchronization techniques that can simultaneously lock all independent components, including all accelerator modules and all external optical lasers, to better than the delivered free-electron laser pulse duration, are needed. Here we achieve all-optical synchronization at the soft X-ray free-electron laser FLASH and demonstrate facility-wide timing to better than 30 fs r.m.s. for 90 fs X-ray photon pulses. Crucially, our analysis indicates that the performance of this optical synchronization is limited primarily by the free-electron laser pulse duration, and should naturally scale to the sub-10 femtosecond level with shorter X-ray pulses. PMID:25600823
Laboratory-based characterization of plutonium in soil particles using micro-XRF and 3D confocal XRF
McIntosh, Kathryn Gallagher; Cordes, Nikolaus Lynn; Patterson, Brian M.; ...
2015-03-29
The investigation of plutonium (Pu) in a soil matrix is of interest in safeguards, nuclear forensics, and environmental remediation activities. The elemental composition of two plutonium contaminated soil particles was characterized nondestructively using a pair of micro X-ray fluorescence spectrometry (micro-XRF) techniques including high resolution X-ray (hiRX) and 3D confocal XRF. The three dimensional elemental imaging capability of confocal XRF permitted the identification two distinct Pu particles within the samples: one external to the Ferich soil matrix and another co-located with Cu within the soil matrix. The size and morphology of the particles was assessed with X-ray transmission microscopy andmore » micro X-ray computed tomography (micro-CT) providing complementary morphological information. Limits of detection for a 30 μm Pu particle are <10 ng for each of the XRF techniques. Ultimately, this study highlights the capability for lab-based, nondestructive, spatially resolved characterization of heterogeneous matrices on the micrometer scale with nanogram sensitivity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Favaro, Marco; Liu, Zhi; Crumlin, Ethan J.
Ambient-pressure X-ray photoelectron spectroscopy (APXPS) has contributed greatly to a wide range of research fields, including environmental science, catalysis, and electrochemistry, to name a few. The use of this technique at synchrotron facilities primarily focused on probing the solid/gas interface; however, it quickly advanced to the probing of liquid/vapor interfaces and solid/liquid interfaces through an X-ray-transparent window. Most recently, combining APXPS with “Tender” X-rays (~2.5 keV to 8 keV) on beamline 9.3.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory (which can generate photoelectrons with much longer inelastic mean free paths) has enabled us to probe the solid/liquidmore » interface without needing a window. This innovation allows us to probe interfacial chemistries of electrochemically controlled solid/liquid interfaces undergoing charge transfer reactions. Lastly, these advancements have transitioned APXPS from a traditional surface science tool to an essential interface science technique.« less
Zhou, Zhongxing; Gao, Feng; Zhao, Huijuan; Zhang, Lixin
2012-11-21
New x-ray phase contrast imaging techniques without using synchrotron radiation confront a common problem from the negative effects of finite source size and limited spatial resolution. These negative effects swamp the fine phase contrast fringes and make them almost undetectable. In order to alleviate this problem, deconvolution procedures should be applied to the blurred x-ray phase contrast images. In this study, three different deconvolution techniques, including Wiener filtering, Tikhonov regularization and Fourier-wavelet regularized deconvolution (ForWaRD), were applied to the simulated and experimental free space propagation x-ray phase contrast images of simple geometric phantoms. These algorithms were evaluated in terms of phase contrast improvement and signal-to-noise ratio. The results demonstrate that the ForWaRD algorithm is most appropriate for phase contrast image restoration among above-mentioned methods; it can effectively restore the lost information of phase contrast fringes while reduce the amplified noise during Fourier regularization.
Favaro, Marco; Liu, Zhi; Crumlin, Ethan J.
2017-03-31
Ambient-pressure X-ray photoelectron spectroscopy (APXPS) has contributed greatly to a wide range of research fields, including environmental science, catalysis, and electrochemistry, to name a few. The use of this technique at synchrotron facilities primarily focused on probing the solid/gas interface; however, it quickly advanced to the probing of liquid/vapor interfaces and solid/liquid interfaces through an X-ray-transparent window. Most recently, combining APXPS with “Tender” X-rays (~2.5 keV to 8 keV) on beamline 9.3.1 at the Advanced Light Source in Lawrence Berkeley National Laboratory (which can generate photoelectrons with much longer inelastic mean free paths) has enabled us to probe the solid/liquidmore » interface without needing a window. This innovation allows us to probe interfacial chemistries of electrochemically controlled solid/liquid interfaces undergoing charge transfer reactions. Lastly, these advancements have transitioned APXPS from a traditional surface science tool to an essential interface science technique.« less
Data needs for X-ray astronomy satellites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallman, T.
I review the current status of atomic data for X-ray astronomy satellites. This includes some of the astrophysical issues which can be addressed, current modeling and analysis techniques, computational tools, the limitations imposed by currently available atomic data, and the validity of standard assumptions. I also discuss the future: challenges associated with future missions and goals for atomic data collection.
Bekas, Marcin; Gajewski, Antoni K; Pachocki, Krzysztof
2013-01-01
Within the medical facilities provided by state healthcare services, a universally applied technique for patient diagnosis and treatment relies on ionising radiation; for example in radiotherapy and X-ray (ie. examination). Human exposure to such radiation is not however entirely free of associated health risks. To determine and estimate the numbers and types of X-ray based medical procedures that are performed in general and dental radiography, mammography and computer tomography on patients from the Mazovian province in Poland, which included children, women and men subjects. The numbers of patient subjects undergoing X-rays was estimated by surveying the patient intake in X-ray testing rooms within the healthcare facilities of the Mazovian province. Questionnaires were either dispatched by mail to such healthcare centres or were completed by the X-ray operating staff during the testing of quality control. Results so obtained from the latter, were compared to entries from the X-ray rooms' register During 2009, the number of X-rays performed were 7612046 equivalent to 1460 examinations per 1000 inhabitants. The majority were done on women ie. 3847961 (50.55%), followed by 3193781 (41.96%) on men and 570 304 (7.49%) for children. Results indicated that the predominating medical procedure used of this type, was for making general diagnoses; especially through using chest radiography. Others included, in descending order; dental X-ray (mainly intra-oral examination), computer tomography (mainly CT head examinations) and mammography procedures. It was also found that the annual numbers of having X-rays has increased compared to previous years.
Using Digital Radiography To Image Liquid Nitrogen in Voids
NASA Technical Reports Server (NTRS)
Cox, Dwight; Blevins, Elana
2007-01-01
Digital radiography by use of (1) a field-portable x-ray tube that emits low-energy x rays and (2) an electronic imaging x-ray detector has been found to be an effective technique for detecting liquid nitrogen inside voids in thermal-insulation panels. The technique was conceived as a means of investigating cryopumping (including cryoingestion) as a potential cause of loss of thermal insulation foam from space-shuttle external fuel tanks. The technique could just as well be used to investigate cryopumping and cryoingestion in other settings. In images formed by use of low-energy x-rays, one can clearly distinguish between voids filled with liquid nitrogen and those filled with gaseous nitrogen or other gases. Conventional film radiography is of some value, but yields only non-real-time still images that do not show time dependences of levels of liquids in voids. In contrast, the present digital radiographic technique yields a succession of images in real time at a rate of about 10 frames per second. The digitized images can be saved for subsequent analysis to extract data on time dependencies of levels of liquids and, hence, of flow paths and rates of filling and draining. The succession of images also amounts to a real-time motion picture that can be used as a guide to adjustment of test conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loo, B.W. Jr.
High resolution x-ray microscopy has been made possible in recent years primarily by two new technologies: microfabricated diffractive lenses for soft x-rays with about 30-50 nm resolution, and high brightness synchrotron x-ray sources. X-ray microscopy occupies a special niche in the array of biological microscopic imaging methods. It extends the capabilities of existing techniques mainly in two areas: a previously unachievable combination of sub-visible resolution and multi-micrometer sample size, and new contrast mechanisms. Because of the soft x-ray wavelengths used in biological imaging (about 1-4 nm), XM is intermediate in resolution between visible light and electron microscopies. Similarly, the penetrationmore » depth of soft x-rays in biological materials is such that the ideal sample thickness for XM falls in the range of 0.25 - 10 {mu}m, between that of VLM and EM. XM is therefore valuable for imaging of intermediate level ultrastructure, requiring sub-visible resolutions, in intact cells and subcellular organelles, without artifacts produced by thin sectioning. Many of the contrast producing and sample preparation techniques developed for VLM and EM also work well with XM. These include, for example, molecule specific staining by antibodies with heavy metal or fluorescent labels attached, and sectioning of both frozen and plastic embedded tissue. However, there is also a contrast mechanism unique to XM that exists naturally because a number of elemental absorption edges lie in the wavelength range used. In particular, between the oxygen and carbon absorption edges (2.3 and 4.4 nm wavelength), organic molecules absorb photons much more strongly than does water, permitting element-specific imaging of cellular structure in aqueous media, with no artifically introduced contrast agents. For three-dimensional imaging applications requiring the capabilities of XM, an obvious extension of the technique would therefore be computerized x-ray microtomography (XMT).« less
Development of x-ray laminography under an x-ray microscopic condition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa
2011-07-15
An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatialmore » resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.« less
Establishing nonlinearity thresholds with ultraintense X-ray pulses
NASA Astrophysics Data System (ADS)
Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; Nachtegaal, Maarten; Błachucki, Wojciech; Kayser, Yves; Sà, Jacinto; Messerschmidt, Marc; Boutet, Sebastien; Williams, Garth J.; David, Christian; Smolentsev, Grigory; van Bokhoven, Jeroen A.; Patterson, Bruce D.; Penfold, Thomas J.; Knopp, Gregor; Pajek, Marek; Abela, Rafael; Milne, Christopher J.
2016-09-01
X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable. Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Herein we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.
Logan, Jonathan; Harder, Ross; Li, Luxi; ...
2016-01-01
Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. Here, the performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd 5Si 2Ge 2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. Thesemore » tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd 5Si 2Ge 2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.« less
NASA Astrophysics Data System (ADS)
Zhong, Xianyun; Hou, Xi; Yang, Jinshan
2016-09-01
Nickel is the unique material in the X-ray telescopes. And it has the typical soft material characteristics with low hardness high surface damage and low stability of thermal. The traditional fabrication techniques are exposed to lots of problems, including great surface scratches, high sub-surface damage and poor surface roughness and so on. The current fabrication technology for the nickel aspheric mainly adopt the single point diamond turning(SPDT), which has lots of advantages such as high efficiency, ultra-precision surface figure, low sub-surface damage and so on. But the residual surface texture of SPDT will cause great scattering losses and fall far short from the requirement in the X-ray applications. This paper mainly investigates the magnetorheological finishing (MRF) techniques for the super-smooth processing on the nickel optics. Through the study of the MRF polishing techniques, we obtained the ideal super-smooth polishing technique based on the self-controlled MRF-fluid NS-1, and finished the high-precision surface figure lower than RMS λ/80 (λ=632.8nm) and super-smooth roughness lower than Ra 0.3nm on the plane reflector and roughness lower than Ra 0.4nm on the convex cone. The studying of the MRF techniques makes a great effort to the state-of-the-art nickel material processing level for the X-ray optical systems applications.
NASA Astrophysics Data System (ADS)
Kajiwara, K.; Shobu, T.; Toyokawa, H.; Sato, M.
2014-04-01
A technique for three-dimensional visualization of grain boundaries was developed at BL28B2 at SPring-8. The technique uses white X-ray microbeam diffraction and a rotating slit. Three-dimensional images of small silicon single crystals filled in a plastic tube were successfully obtained using this technique for demonstration purposes. The images were consistent with those obtained by X-ray computed tomography.
NASA Astrophysics Data System (ADS)
Golosio, Bruno; Schoonjans, Tom; Brunetti, Antonio; Oliva, Piernicola; Masala, Giovanni Luca
2014-03-01
The simulation of X-ray imaging experiments is often performed using deterministic codes, which can be relatively fast and easy to use. However, such codes are generally not suitable for the simulation of even slightly more complex experimental conditions, involving, for instance, first-order or higher-order scattering, X-ray fluorescence emissions, or more complex geometries, particularly for experiments that combine spatial resolution with spectral information. In such cases, simulations are often performed using codes based on the Monte Carlo method. In a simple Monte Carlo approach, the interaction position of an X-ray photon and the state of the photon after an interaction are obtained simply according to the theoretical probability distributions. This approach may be quite inefficient because the final channels of interest may include only a limited region of space or photons produced by a rare interaction, e.g., fluorescent emission from elements with very low concentrations. In the field of X-ray fluorescence spectroscopy, this problem has been solved by combining the Monte Carlo method with variance reduction techniques, which can reduce the computation time by several orders of magnitude. In this work, we present a C++ code for the general simulation of X-ray imaging and spectroscopy experiments, based on the application of the Monte Carlo method in combination with variance reduction techniques, with a description of sample geometry based on quadric surfaces. We describe the benefits of the object-oriented approach in terms of code maintenance, the flexibility of the program for the simulation of different experimental conditions and the possibility of easily adding new modules. Sample applications in the fields of X-ray imaging and X-ray spectroscopy are discussed. Catalogue identifier: AERO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERO_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 83617 No. of bytes in distributed program, including test data, etc.: 1038160 Distribution format: tar.gz Programming language: C++. Computer: Tested on several PCs and on Mac. Operating system: Linux, Mac OS X, Windows (native and cygwin). RAM: It is dependent on the input data but usually between 1 and 10 MB. Classification: 2.5, 21.1. External routines: XrayLib (https://github.com/tschoonj/xraylib/wiki) Nature of problem: Simulation of a wide range of X-ray imaging and spectroscopy experiments using different types of sources and detectors. Solution method: XRMC is a versatile program that is useful for the simulation of a wide range of X-ray imaging and spectroscopy experiments. It enables the simulation of monochromatic and polychromatic X-ray sources, with unpolarised or partially/completely polarised radiation. Single-element detectors as well as two-dimensional pixel detectors can be used in the simulations, with several acquisition options. In the current version of the program, the sample is modelled by combining convex three-dimensional objects demarcated by quadric surfaces, such as planes, ellipsoids and cylinders. The Monte Carlo approach makes XRMC able to accurately simulate X-ray photon transport and interactions with matter up to any order of interaction. The differential cross-sections and all other quantities related to the interaction processes (photoelectric absorption, fluorescence emission, elastic and inelastic scattering) are computed using the xraylib software library, which is currently the most complete and up-to-date software library for X-ray parameters. The use of variance reduction techniques makes XRMC able to reduce the simulation time by several orders of magnitude compared to other general-purpose Monte Carlo simulation programs. Running time: It is dependent on the complexity of the simulation. For the examples distributed with the code, it ranges from less than 1 s to a few minutes.
Probing molecular dynamics in solution with x-ray valence-to-core spectroscopy
NASA Astrophysics Data System (ADS)
Doumy, Gilles; March, Anne Marie; Tu, Ming-Feng; Al Haddad, Andre; Southworth, Stephen; Young, Linda; Walko, Donald; Bostedt, Christoph
2017-04-01
Hard X-ray spectroscopies are powerful tools for probing the electronic and geometric structure of molecules in complex or disordered systems and have been particularly useful for studying molecules in the solution phase. They are element specific, sensitive to the electronic structure and the local arrangements of surrounding atoms of the element being selectively probed. When combined in a pump-probe scheme with ultrafast lasers, X-ray spectroscopies can be used to track the evolution of structural changes that occur after photoexcitation. Efficient use of hard x-ray radiation coming from high brilliance synchrotrons and upcoming high repetition rate X-ray Free Electron Lasers requires MHz repetition rate lasers and data acquisition systems. High information content Valence-to-Core x-ray emission is directly sensitive to the molecular orbitals involved in photochemistry. We report on recent progress towards fully enabling this photon-hungry technique for the study of time-resolved molecular dynamics, including efficient detection and use of polychromatic x-ray micro-probe at the Advanced Photon Source. Work was supported by the U.S. Department of Energy, Office of Science, Chemical Sciences, Geosciences, and Biosciences Division.
All-Sky Monitoring with the Fermi Gamma Ray Burst Monitor
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.
2010-01-01
We are currently monitoring the transient hard X-ray/soft gamma ray sky using the Gamma Ray Burst Monitor (GBM) on-board Fermi. The twelve GBM NaI detectors span 8 keV to 1MeV, while the two GBM BGO detectors span about 150 keV to 40 MeV. With GBM, we detect transient events on multiple timescales. Brief events, such as Gamma Ray Bursts, Solar flares, and magnetar bursts are detected with on-board triggers. On longer timescales, we use the Earth occultation technique to monitor a number of sources, including X-ray binaries, AGN, and solar flaring activity. To date we have detected 7 sources above 100 keV. Transient activity from accretion-powered pulsars is monitored using epoch-folding techniques. With GBM we track the pulsed flux and frequency for a number of pulsars. We will present highlights of GBM observations on various timescales.
NASA Astrophysics Data System (ADS)
Dreißigacker, Anne; Köhler, Eberhard; Fabel, Oliver; van Gasselt, Stephan
2014-05-01
At the Planetary Sciences and Remote Sensing research group at Freie Universität Berlin an SCD-based X-Ray Fluorescence Spectrometer is being developed to be employed on planetary orbiters to conduct direct, passive energy-dispersive x-ray fluorescence measurements of planetary surfaces through measuring the emitted X-Ray fluorescence induced by solar x-rays and high energy particles. Because the Sun is a highly variable radiation source, the intensity of solar X-Ray radiation has to be monitored constantly to allow for comparison and signal calibration of X-Ray radiation from lunar surface materials. Measurements are obtained by indirectly monitoring incident solar x-rays emitted from a calibration sample. This has the additional advantage of minimizing the risk of detector overload and damage during extreme solar events such as high-energy solar flares and particle storms as only the sample targets receive the higher radiation load directly (while the monitor is never directly pointing towards the Sun). Quantitative data are being obtained and can be subsequently analysed through synchronous measurement of fluorescence of the Moon's surface by the XRF-S main instrument and the emitted x-ray fluorescence of calibration samples by the XRF-S-ISM (Indirect Solar Monitor). We are currently developing requirements for 3 sample tiles for onboard correction and calibration of XRF-S, each with an area of 3-9 cm2 and a maximum weight of 45 g. This includes development of design concepts, determination of techniques for sample manufacturing, manufacturing and testing of prototypes and statistical analysis of measurement characteristics and quantification of error sources for the advanced prototypes and final samples. Apart from using natural rock samples as calibration sample, we are currently investigating techniques for sample manufacturing including laser sintering of rock-glass on metals, SiO2-stabilized mineral-powders, or artificial volcanic glass. High precision measurements of the chemical composition of the final samples (EPMA, various energy-dispersive XRF) will serve as calibration standard for XRF-S. Development is funded by the German Aerospace Agency under grant 50 JR 1303.
A compressed sensing X-ray camera with a multilayer architecture
Wang, Zhehui; Laroshenko, O.; Li, S.; ...
2018-01-25
Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. In this work, wemore » first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less
Random On-Board Pixel Sampling (ROPS) X-Ray Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhehui; Iaroshenko, O.; Li, S.
Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustratemore » the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less
A compressed sensing X-ray camera with a multilayer architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhehui; Laroshenko, O.; Li, S.
Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. In this work, wemore » first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.« less
Apparatus and method for nanoflow liquid jet and serial femtosecond x-ray protein crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogan, Michael J.; Laksmono, Hartawan; Sierra, Raymond G.
Techniques for nanoflow serial femtosecond x-ray protein crystallography include providing a sample fluid by mixing a plurality of a first target of interest with a carrier fluid and injecting the sample fluid into a vacuum chamber at a rate less than about 4 microliters per minute. In some embodiments, the carrier fluid has a viscosity greater than about 3 centipoise.
Krupin, O; Trigo, M; Schlotter, W F; Beye, M; Sorgenfrei, F; Turner, J J; Reis, D A; Gerken, N; Lee, S; Lee, W S; Hays, G; Acremann, Y; Abbey, B; Coffee, R; Messerschmidt, M; Hau-Riege, S P; Lapertot, G; Lüning, J; Heimann, P; Soufli, R; Fernández-Perea, M; Rowen, M; Holmes, M; Molodtsov, S L; Föhlisch, A; Wurth, W
2012-05-07
The recent development of x-ray free electron lasers providing coherent, femtosecond-long pulses of high brilliance and variable energy opens new areas of scientific research in a variety of disciplines such as physics, chemistry, and biology. Pump-probe experimental techniques which observe the temporal evolution of systems after optical or x-ray pulse excitation are one of the main experimental schemes currently in use for ultrafast studies. The key challenge in these experiments is to reliably achieve temporal and spatial overlap of the x-ray and optical pulses. Here we present measurements of the x-ray pulse induced transient change of optical reflectivity from a variety of materials covering the soft x-ray photon energy range from 500eV to 2000eV and outline the use of this technique to establish and characterize temporal synchronization of the optical-laser and FEL x-ray pulses.
Coherent x-ray diffraction imaging with nanofocused illumination.
Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C
2008-08-29
Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.
Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source.
Le Gros, Mark A; McDermott, Gerry; Cinquin, Bertrand P; Smith, Elizabeth A; Do, Myan; Chao, Weilun L; Naulleau, Patrick P; Larabell, Carolyn A
2014-11-01
Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with `water window' X-rays (284-543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies.
Forsberg, J; Englund, C-J; Duda, L-C
2009-08-01
We present the design and operation of a versatile soft X-ray transmission system for time resolved in situ microscopy with chemical contrast. The utility of the setup is demonstrated by results from following a corrosion process of iron in saline environment, subjected to a controlled humid atmosphere. The system includes a transmission flow-cell reactor that allows for in situ microscopic probing with soft X-rays. We employ a full field technique by using a nearly collimated X-ray beam that produces an unmagnified projection of the transmitted soft X-rays (below 1.1 keV) which is magnified and recorded by an optical CCD camera. Time lapse series with chemical contrast allow us to follow and interpret the chemical processes in detail. The obtainable lateral resolution is a few mum, sufficient to detect filiform corrosion on iron.
Microfabrication of High Resolution X-ray Magnetic Calorimeters
NASA Astrophysics Data System (ADS)
Hsieh, Wen-Ting; Bandler, Simon R.; Kelly, Daniel P.; Porst, Jan P.; Rotzinger, Hannes; Seidel, George M.; Stevenson, Thomas R.
2009-12-01
Metallic magnetic calorimeter (MMC) is one of the most promising x-ray detector technologies for providing the very high energy resolution needed for future astronomical x-ray imaging spectroscopy. For this purpose, we have developed micro-fabricated 5×5 arrays of MMC of which each individual pixel has excellent energy resolution as good as 3.4 eV at 6 keV x-ray. Here we report on the fabrication techniques developed to achieve good resolution and high efficiency. These include: processing of a thin insulation layer for strong magnetic coupling between the AuEr sensor film and the niobium pick-up coil; production of overhanging absorbers for enhanced efficiency of x-ray absorption; fabrication on SiN membranes to minimize the effects on energy resolution from athermal phonon loss. We have also improved the deposition of the magnetic sensor film such that the film magnetization is nearly completely that is expected from the AuEr sputter target bulk material. In addition, we have included a study of a positional sensitive design, the Hydra design, which allows thermal coupling of four absorbers to a common MMC sensor and circuit.
NASA Astrophysics Data System (ADS)
Wiegart, L.; Rakitin, M.; Fluerasu, A.; Chubar, O.
2017-08-01
We present the application of fully- and partially-coherent synchrotron radiation wavefront propagation simulation functions, implemented in the "Synchrotron Radiation Workshop" computer code, to create a `virtual beamline' mimicking the Coherent Hard X-ray scattering beamline at NSLS-II. The beamline simulation includes all optical beamline components, such as the insertion device, mirror with metrology data, slits, double crystal monochromator and refractive focusing elements (compound refractive lenses and kinoform lenses). A feature of this beamline is the exploitation of X-ray beam coherence, boosted by the low-emittance NSLS-II storage-ring, for techniques such as X-ray Photon Correlation Spectroscopy or Coherent Diffraction Imaging. The key performance parameters are the degree of Xray beam coherence and photon flux, and the trade-off between them needs to guide the beamline settings for specific experimental requirements. Simulations of key performance parameters are compared to measurements obtained during beamline commissioning, and include the spectral flux of the undulator source, the degree of transverse coherence as well as focal spot sizes.
Wu, Jinpeng; Sallis, Shawn; Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Dai, Kehua; Guo, Zixuan; Yang, Wanli
2018-04-17
Energy storage has become more and more a limiting factor of today's sustainable energy applications, including electric vehicles and green electric grid based on volatile solar and wind sources. The pressing demand of developing high-performance electrochemical energy storage solutions, i.e., batteries, relies on both fundamental understanding and practical developments from both the academy and industry. The formidable challenge of developing successful battery technology stems from the different requirements for different energy-storage applications. Energy density, power, stability, safety, and cost parameters all have to be balanced in batteries to meet the requirements of different applications. Therefore, multiple battery technologies based on different materials and mechanisms need to be developed and optimized. Incisive tools that could directly probe the chemical reactions in various battery materials are becoming critical to advance the field beyond its conventional trial-and-error approach. Here, we present detailed protocols for soft X-ray absorption spectroscopy (sXAS), soft X-ray emission spectroscopy (sXES), and resonant inelastic X-ray scattering (RIXS) experiments, which are inherently elemental-sensitive probes of the transition-metal 3d and anion 2p states in battery compounds. We provide the details on the experimental techniques and demonstrations revealing the key chemical states in battery materials through these soft X-ray spectroscopy techniques.
A novel x-ray imaging system and its imaging performance
NASA Astrophysics Data System (ADS)
Yu, Chunyu; Chang, Benkang; Wang, Shiyun; Zhang, Junju; Yao, Xiao
2006-09-01
Since x-ray was discovered and applied to the imaging technology, the x-ray imaging techniques have experienced several improvements, from film-screen, x-ray image intensifier, CR to DR. To store and transmit the image information conveniently, the digital imaging is necessary for the imaging techniques in medicine and biology. Usually as the intensifying screen technique as for concerned, to get the digital image signals, the CCD was lens coupled directly to the screen, but which suffers from a loss of x-ray signal and resulted in the poor x-ray image perfonnance. Therefore, to improve the image performance, we joined the brightness intensifier, which, was named the Low Light Level (LLL) image intensifier in military affairs, between the intensifying screen and the CCD and designed the novel x-ray imaging system. This design method improved the image performance of the whole system thus decreased the x-ray dose. Comparison between two systems with and without the brightness intensifier was given in detail in this paper. Moreover, the main noise source of the image produced by the novel system was analyzed, and in this paper, the original images produced by the novel x-ray imaging system and the processed images were given respectively. It was clear that the image performance was satisfied and the x-ray imaging system can be used in security checking and many other nondestructive checking fields.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
X-ray micro-beam techniques and phase contrast tomography applied to biomaterials
NASA Astrophysics Data System (ADS)
Fratini, Michela; Campi, Gaetano; Bukreeva, Inna; Pelliccia, Daniele; Burghammer, Manfred; Tromba, Giuliana; Cancedda, Ranieri; Mastrogiacomo, Maddalena; Cedola, Alessia
2015-12-01
A deeper comprehension of the biomineralization (BM) process is at the basis of tissue engineering and regenerative medicine developments. Several in-vivo and in-vitro studies were dedicated to this purpose via the application of 2D and 3D diagnostic techniques. Here, we develop a new methodology, based on different complementary experimental techniques (X-ray phase contrast tomography, micro-X-ray diffraction and micro-X-ray fluorescence scanning technique) coupled to new analytical tools. A qualitative and quantitative structural investigation, from the atomic to the micrometric length scale, is obtained for engineered bone tissues. The high spatial resolution achieved by X-ray scanning techniques allows us to monitor the bone formation at the first-formed mineral deposit at the organic-mineral interface within a porous scaffold. This work aims at providing a full comprehension of the morphology and functionality of the biomineralization process, which is of key importance for developing new drugs for preventing and healing bone diseases and for the development of bio-inspired materials.
The 1979 X-ray outburst of Centaurus X-4
NASA Technical Reports Server (NTRS)
Kaluzienski, L. J.; Holt, S. S.; Swank, J. H.
1980-01-01
X-ray observations of the first major outburst of the classical transient X-ray source Centaurus X-4 since its discovery in 1969 are presented. The observations were obtained in May, 1979, with the all-sky monitor on board Ariel 5. The flare light curve is shown to exhibit many of the characteristics of other transients, including a double-peaked maximum, as well as significant, apparently random, variations and a lower peak flux and shorter duration than the 1969 event. Application of a standard epoch-folding technique to data corrected for linear decay trends indicates a possible source modulation at 0.3415 days (8.2 hours). Comparison of the results with previous other data on Cen X-4 and the characteristics of the soft X-ray transients allows a total X-ray output of approximately 3 x 10 to the 43rd ergs to be estimated, and reveals the duration and decay time of the 1979 Cen X-4 outburst to be the shortest yet observed from soft X-ray transients. The observations are explained in terms of episodic mass exchange from a late-type dwarf onto a neutron star companion in a relatively close binary system.
Establishing nonlinearity thresholds with ultraintense X-ray pulses
Szlachetko, Jakub; Hoszowska, Joanna; Dousse, Jean-Claude; ...
2016-09-13
X-ray techniques have evolved over decades to become highly refined tools for a broad range of investigations. Importantly, these approaches rely on X-ray measurements that depend linearly on the number of incident X-ray photons. The advent of X-ray free electron lasers (XFELs) is opening the ability to reach extremely high photon numbers within ultrashort X-ray pulse durations and is leading to a paradigm shift in our ability to explore nonlinear X-ray signals. However, the enormous increase in X-ray peak power is a double-edged sword with new and exciting methods being developed but at the same time well-established techniques proving unreliable.more » Consequently, accurate knowledge about the threshold for nonlinear X-ray signals is essential. Here in this paper we report an X-ray spectroscopic study that reveals important details on the thresholds for nonlinear X-ray interactions. By varying both the incident X-ray intensity and photon energy, we establish the regimes at which the simplest nonlinear process, two-photon X-ray absorption (TPA), can be observed. From these measurements we can extract the probability of this process as a function of photon energy and confirm both the nature and sub-femtosecond lifetime of the virtual intermediate electronic state.« less
Soft X-ray spectroscopy of nanoparticles by velocity map imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostko, O.; Xu, B.; Jacobs, M. I.
Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. Bymore » scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.« less
Soft X-ray spectroscopy of nanoparticles by velocity map imaging
Kostko, O.; Xu, B.; Jacobs, M. I.; ...
2017-05-05
Velocity map imaging (VMI), a technique traditionally used to study chemical dynamics in the gas phase, is applied to study X-ray photoemission from aerosol nanoparticles. Soft X-rays from the Advanced Light Source synchrotron, probe a beam of nanoparticles, and the resulting photoelectrons are velocity mapped to obtain their kinetic energy distributions. A new design of the VMI spectrometer is described. The spectrometer is benchmarked by measuring vacuum ultraviolet photoemission from gas phase xenon and squalene nanoparticles followed by measurements using soft X-rays. It is demonstrated that the photoelectron distribution from X-ray irradiated squalene nanoparticles is dominated by secondary electrons. Bymore » scanning the photon energies and measuring the intensities of these secondary electrons, a near edge X-ray absorption fine structure (NEXAFS) spectrum is obtained. The NEXAFS technique is used to obtain spectra of aqueous nanoparticles at the oxygen K edge. By varying the position of the aqueous nanoparticle beam relative to the incident X-ray beam, evidence is presented such that the VMI technique allows for NEXAFS spectroscopy of water in different physical states. Finally, we discuss the possibility of applying VMI methods to probe liquids and solids via X-ray spectroscopy.« less
Development of the re-emit technique for ICF foot symmetry tuning for indirect drive ignition on NIF
NASA Astrophysics Data System (ADS)
Dewald, Eduard; Milovich, Jose; Edwards, John; Thomas, Cliff; Kalantar, Dan; Meeker, Don; Jones, Ogden
2007-11-01
Tuning of the the symmetry of the hohlraum radiation drive for the first 2 ns of the ICF pulse on NIF will be assessed by the re-emit technique [1] which measures the instantaneous x-ray drive asymmetry based on soft x-ray imaging of the re-emission of a high-Z sphere surrogate capsule. We will discuss the design of re-emit foot symmetry tuning measurements planned on NIF and their surrogacy for ignition experiments, including assessing the residual radiation asymmetry of the patches required for soft x-ray imaging. We will present the tuning strategy and expected accuracies based on calculations, analytical estimates and first results from scaled experiments performed at the Omega laser facility. [1] N. Delamater, G. Magelssen, A. Hauer, Phys. Rev. E 53, 5241 (1996.)
NASA Astrophysics Data System (ADS)
Cheynis, F.; Leroy, F.; Passanante, T.; Müller, P.
2013-04-01
Grazing-incidence small-angle X-ray scattering (GISAXS) and grazing-incidence X-ray diffraction techniques are used to characterise the thermally induced solid-state dewetting of Ge(001) thin films leading to the formation of 3D Ge islands. A quantitative analysis based on the Kolmogorov-Johnson-Mehl-Avrami model is derived. The main physical parameters controlling the dewetting (activation energy and kinetic pre-factors) are determined. Assuming that the dewetting is driven by surface/interface minimisation and limited by surface diffusion, the Ge surface self-diffusion reads as Ds ,0c0 e-Ea/(kBT) ˜3×1018 e-2.6±0.3eV/(kBT) nm2/s. GISAXS technique enables to reconstruct the mean Ge-island shape, including facets.
[Development of the automatic dental X-ray film processor].
Bai, J; Chen, H
1999-07-01
This paper introduces a multiple-point detecting technique of the density of dental X-ray films. With the infrared ray multiple-point detecting technique, a single-chip microcomputer control system is used to analyze the effectiveness of the film-developing in real time in order to achieve a good image. Based on the new technology, We designed the intelligent automatic dental X-ray film processing.
Coherent X-ray diffraction imaging of nanoengineered polymeric capsules
NASA Astrophysics Data System (ADS)
Erokhina, S.; Pastorino, L.; Di Lisa, D.; Kiiamov, A. G.; Faizullina, A. R.; Tayurskii, D. A.; Iannotta, S.; Erokhin, V.
2017-10-01
For the first time, nanoengineered polymeric capsules and their architecture have been studied with coherent X-ray diffraction imaging technique. The use of coherent X-ray diffraction imaging technique allowed us to analyze the samples immersed in a liquid. We report about the significant difference between polymeric capsule architectures under dry and liquid conditions.
Danly, C R; Day, T H; Fittinghoff, D N; Herrmann, H; Izumi, N; Kim, Y H; Martinez, J I; Merrill, F E; Schmidt, D W; Simpson, R A; Volegov, P L; Wilde, C H
2015-04-01
Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstrated on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danly, C. R.; Day, T. H.; Fittinghoff, D. N.
Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstratedmore » on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. Thus, the technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danly, C. R.; Day, T. H.; Herrmann, H.
Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstratedmore » on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. The technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.« less
Danly, C. R.; Day, T. H.; Fittinghoff, D. N.; ...
2015-04-16
Neutron and x-ray imaging provide critical information about the geometry and hydrodynamics of inertial confinement fusion implosions. However, existing diagnostics at Omega and the National Ignition Facility (NIF) cannot produce images in both neutrons and x-rays along the same line of sight. This leads to difficulty comparing these images, which capture different parts of the plasma geometry, for the asymmetric implosions seen in present experiments. Further, even when opposing port neutron and x-ray images are available, they use different detectors and cannot provide positive information about the relative positions of the neutron and x-ray sources. A technique has been demonstratedmore » on implosions at Omega that can capture x-ray images along the same line of sight as the neutron images. Thus, the technique is described, and data from a set of experiments are presented, along with a discussion of techniques for coregistration of the various images. It is concluded that the technique is viable and could provide valuable information if implemented on NIF in the near future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, U. N.; Bolotnikov, A. E.; Camarda, G. S.
2015-02-01
We grew CdTe xSe 1-x crystals with nominal Se concentrations of 5%, 7%, and 10% by the vertical Bridgman technique, and evaluated their compositional homogeneity and structural quality at the NSLS’ X-ray fluorescence and white beam X-ray topography beam lines. Both X-ray fluorescence and photoluminescence mapping revealed very high compositional homogeneity of the CdTe xSe 1-x crystals. Here, we noted that those crystals with higher concentrations of Se were more prone to twinning than those with a lower content. The crystals were fairly free from strains and contained low concentrations of sub-grain boundaries and their networks.
Moore, Katie L; Lombi, Enzo; Zhao, Fang-Jie; Grovenor, Chris R M
2012-04-01
The ability to locate and quantify elemental distributions in plants is crucial to understanding plant metabolisms, the mechanisms of uptake and transport of minerals and how plants cope with toxic elements or elemental deficiencies. High-resolution secondary ion mass spectrometry (SIMS) is emerging as an important technique for the analysis of biological material at the subcellular scale. This article reviews recent work using the CAMECA NanoSIMS to determine elemental distributions in plants. The NanoSIMS is able to map elemental distributions at high resolution, down to 50 nm, and can detect very low concentrations (milligrams per kilogram) for some elements. It is also capable of mapping almost all elements in the periodic table (from hydrogen to uranium) and can distinguish between stable isotopes, which allows the design of tracer experiments. In this review, particular focus is placed upon studying the same or similar specimens with both the NanoSIMS and a wide range of complementary techniques, showing how the advantages of each technique can be combined to provide a fuller data set to address complex scientific questions. Techniques covered include optical microscopy, synchrotron techniques, including X-ray fluorescence and X-ray absorption spectroscopy, transmission electron microscopy, electron probe microanalysis, particle-induced X-ray emission and inductively coupled plasma mass spectrometry. Some of the challenges associated with sample preparation of plant material for SIMS analysis, the artefacts and limitations of the technique and future trends are also discussed.
Techniques for deriving tissue structure from multiple projection dual-energy x-ray absorptiometry
NASA Technical Reports Server (NTRS)
Feldmesser, Howard S. (Inventor); Charles, Jr., Harry K. (Inventor); Beck, Thomas J. (Inventor); Magee, Thomas C. (Inventor)
2004-01-01
Techniques for deriving bone properties from images generated by a dual-energy x-ray absorptiometry apparatus include receiving first image data having pixels indicating bone mineral density projected at a first angle of a plurality of projection angles. Second image data and third image data are also received. The second image data indicates bone mineral density projected at a different second angle. The third image data indicates bone mineral density projected at a third angle. The third angle is different from the first angle and the second angle. Principal moments of inertia for a bone in the subject are computed based on the first image data, the second image data and the third image data. The techniques allow high-precision, high-resolution dual-energy x-ray attenuation images to be used for computing principal moments of inertia and strength moduli of individual bones, plus risk of injury and changes in risk of injury to a patient.
A comparison of techniques for nondestructive composition measurements in CdZnTe substrates
NASA Astrophysics Data System (ADS)
Tobin, S. P.; Tower, J. P.; Norton, P. W.; Chandler-Horowitz, D.; Amirtharaj, P. M.; Lopes, V. C.; Duncan, W. M.; Syllaios, A. J.; Ard, C. K.; Giles, N. C.; Lee, Jaesun; Balasubramanian, R.; Bollong, A. B.; Steiner, T. W.; Thewalt, M. L. W.; Bowen, D. K.; Tanner, B. K.
1995-05-01
We report an overview and a comparison of nondestructive optical techniques for determining alloy composition x in Cd1-xZnxTe substrates for HgCdTe epitaxy. The methods for single-point measurements include a new x-ray diffraction technique for precision lattice parameter measurements using a standard highresolution diffractometer, room-temperature photoreflectance, and low-temperature photoluminescence. We compare measurements on the same set of samples by all three techniques. Comparisons of precision and accuracy, with a discussion of the strengths and weaknesses of different techniques, are presented. In addition, a new photoluminescence excitation technique for full-wafer imaging of composition variations is described.
Edge-illumination x-ray phase contrast imaging with Pt-based metallic glass masks
NASA Astrophysics Data System (ADS)
Saghamanesh, Somayeh; Aghamiri, Seyed Mahmoud-Reza; Olivo, Alessandro; Sadeghilarijani, Maryam; Kato, Hidemi; Kamali-Asl, Alireza; Yashiro, Wataru
2017-06-01
Edge-illumination x-ray phase contrast imaging (EI XPCI) is a non-interferometric phase-sensitive method where two absorption masks are employed. These masks are fabricated through a photolithography process followed by electroplating which is challenging in terms of yield as well as time- and cost-effectiveness. We report on the first implementation of EI XPCI with Pt-based metallic glass masks fabricated by an imprinting method. The new tested alloy exhibits good characteristics including high workability beside high x-ray attenuation. The fabrication process is easy and cheap, and can produce large-size masks for high x-ray energies within minutes. Imaging experiments show a good quality phase image, which confirms the potential of these masks to make the EI XPCI technique widely available and affordable.
3rd International Conference on X-ray Technique
NASA Astrophysics Data System (ADS)
Potrakhov, N. N.; Gryaznov, A. Yu; Lisenkov, A. A.; Kostrin, D. K.
2017-02-01
In this preface a brief history, modern aspects and future tendencies in development of the X-ray technique as seen from the 3rd International Conference on X-ray Technique that was held on 24-25 November 2016 in Saint Petersburg, Russia are described On 24-25 November 2016 in Saint Petersburg on the basis of Saint Petersburg State Electrotechnical University “LETI” n. a. V. I. Ulyanov (Lenin) was held the 3rd International Conference on X-ray Technique. The tradition to hold a similar conference in our country was laid in Soviet times. The last of them, the All-Union Conference on the Prospects of X-ray Tubes and Equipment was organized and held more than a quarter century ago - on 21-23 November 1999, at the initiative and under the leadership of the chief engineer of the Leningrad association of electronic industry “Svetlana” Borovsky Alexander Ivanovich and the chief of special design bureau of X-ray devices of “Svetlana” Shchukin Gennady Anatolievich. The most active part in the organization and work of the conference played members of the department of X-ray and electron beam instruments of Leningrad Electrotechnical Institute “LETI” (the former name of Saint Petersburg State Electrotechnical University “LETI”), represented by head of the department professor Ivanov Stanislav Alekseevich.
Grazing Incidence Wavefront Sensing and Verification of X-Ray Optics Performance
NASA Technical Reports Server (NTRS)
Saha, Timo T.; Rohrbach, Scott; Zhang, William W.
2011-01-01
Evaluation of interferometrically measured mirror metrology data and characterization of a telescope wavefront can be powerful tools in understanding of image characteristics of an x-ray optical system. In the development of soft x-ray telescope for the International X-Ray Observatory (IXO), we have developed new approaches to support the telescope development process. Interferometrically measuring the optical components over all relevant spatial frequencies can be used to evaluate and predict the performance of an x-ray telescope. Typically, the mirrors are measured using a mount that minimizes the mount and gravity induced errors. In the assembly and mounting process the shape of the mirror segments can dramatically change. We have developed wavefront sensing techniques suitable for the x-ray optical components to aid us in the characterization and evaluation of these changes. Hartmann sensing of a telescope and its components is a simple method that can be used to evaluate low order mirror surface errors and alignment errors. Phase retrieval techniques can also be used to assess and estimate the low order axial errors of the primary and secondary mirror segments. In this paper we describe the mathematical foundation of our Hartmann and phase retrieval sensing techniques. We show how these techniques can be used in the evaluation and performance prediction process of x-ray telescopes.
MMX-I: data-processing software for multimodal X-ray imaging and tomography.
Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea
2016-05-01
A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors' knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments.
NASA Astrophysics Data System (ADS)
Sinha, Mangalika; Modi, Mohammed H.
2017-10-01
In-depth compositional analysis of 240 Å thick aluminium oxide thin film has been carried out using soft x-ray reflectivity (SXR) and x-ray photoelectron spectroscopy technique (XPS). The compositional details of the film is estimated by modelling the optical index profile obtained from the SXR measurements over 60-200 Å wavelength region. The SXR measurements are carried out at Indus-1 reflectivity beamline. The method suggests that the principal film region is comprised of Al2O3 and AlOx (x = 1.6) phases whereas the interface region comprised of SiO2 and AlOx (x = 1.6) mixture. The soft x-ray reflectivity technique combined with XPS measurements explains the compositional details of principal layer. Since the interface region cannot be analyzed with the XPS technique in a non-destructive manner in such a case the SXR technique is a powerful tool for nondestructive compositional analysis of interface region.
X-Ray Spectroscopies of Warm Dense Matter
NASA Astrophysics Data System (ADS)
Hoidn, Oliver
This dissertation provides a perspective on the role of x-ray spectroscopy and diffraction diagnostics in experimental studies of warm dense matter (WDM). The primary focus of the work I discuss is the development of techniques to measure the structure and state variables of laboratory-generated WDM with a view towards both phenomenlogy and placing contraints on theoretical models. I present techniques adapted to two experimental venues for WDM studies: large-scale laser plasma facilities and x-ray free electron lasers. My focus is on the latter, in the context of which I have studied a dose enhancement technique that exploits nonlocal heat transport in nanostructured targets and considered several aspects of optimizing x-ray diffraction measurements. This work came into play in beam runs at the Linac Coherent Light Source (LCLS) in which my group performed x-ray diffraction studies of several materials heated to eV-scale temperatures. The results from these experiments include confirmation of the persistence of long-range crystalline order upon heating of metal oxides to tens of eV temperarures on the 40 fs timescale. One material, MgO, additionally manifested a surprising anomalous early onset in delocalization of valence charge density, contradicting predictions of all models based on either ground state electronic structure or (high-energy density) plasma physics. This particular result outlines a future path for studies of ordered insulators heated to temperatures on the order of the band gap. Such experiments will offer strong tests of electronic strucure theory, implementing a scientific approach that sees measurement of real-space charge density via x-ray diffraction (XRD) as a particularly effectve means to constrain density functional theory (DFT)-based modeling of the solid state/plasma transitional regime.
Compton imaging tomography technique for NDE of large nonuniform structures
NASA Astrophysics Data System (ADS)
Grubsky, Victor; Romanov, Volodymyr; Patton, Ned; Jannson, Tomasz
2011-09-01
In this paper we describe a new nondestructive evaluation (NDE) technique called Compton Imaging Tomography (CIT) for reconstructing the complete three-dimensional internal structure of an object, based on the registration of multiple two-dimensional Compton-scattered x-ray images of the object. CIT provides high resolution and sensitivity with virtually any material, including lightweight structures and organics, which normally pose problems in conventional x-ray computed tomography because of low contrast. The CIT technique requires only one-sided access to the object, has no limitation on the object's size, and can be applied to high-resolution real-time in situ NDE of large aircraft/spacecraft structures and components. Theoretical and experimental results will be presented.
Influence of oxygen on growth of carbon thin films
NASA Astrophysics Data System (ADS)
Kumar, Prabhat; Gupta, Mukul; Phase, D. M.; Stahn, Jochen
2018-04-01
In this work we studied the influence of oxygen gas on growth of carbon thin films in a magnetron sputtering process. X-ray absorption spectroscopy (XAS), x-ray and neutron reflectivity techniques were used to probe carbon thin films deposited with and without oxygen at room temperature. XAS in particularly x-ray absorption near edge spectroscopy (XANES) is powerful technique to identify the nature of hybridization of carbon atoms with other elements. In a XANES pattern, presence of C=O and C-O bonds is generally observed in spite of the fact that oxygen has not been deliberately included in the growth process. In order to confirm the presence of such features, we introduced a small amount of oxygen at 1% during the growth of carbon thin films. Though such additions do not affect the number density as observed by x-ray and neutron reflectivity, they severally affect the C K-edge spectra as evidenced by an enhancement in carbon-oxygen hybridization. Observed results are helpful in analyzing the C K-edge spectra more confidently.
Facilities and Techniques for X-Ray Diagnostic Calibration in the 100-eV to 100-keV Energy Range
NASA Astrophysics Data System (ADS)
Gaines, J. L.; Wittmayer, F. J.
1986-08-01
The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well.
C-arm technique using distance driven method for nephrolithiasis and kidney stones detection
NASA Astrophysics Data System (ADS)
Malalla, Nuhad; Sun, Pengfei; Chen, Ying; Lipkin, Michael E.; Preminger, Glenn M.; Qin, Jun
2016-04-01
Distance driven represents a state of art method that used for reconstruction for x-ray techniques. C-arm tomography is an x-ray imaging technique that provides three dimensional information of the object by moving the C-shaped gantry around the patient. With limited view angle, C-arm system was investigated to generate volumetric data of the object with low radiation dosage and examination time. This paper is a new simulation study with two reconstruction methods based on distance driven including: simultaneous algebraic reconstruction technique (SART) and Maximum Likelihood expectation maximization (MLEM). Distance driven is an efficient method that has low computation cost and free artifacts compared with other methods such as ray driven and pixel driven methods. Projection images of spherical objects were simulated with a virtual C-arm system with a total view angle of 40 degrees. Results show the ability of limited angle C-arm technique to generate three dimensional images with distance driven reconstruction.
2011-07-22
L., Upgrading of Existing X - Ray Photoelectron Spectrometer Capabilities for Development and Analysis of Novel Energetic NanoCluster materials (DURIP...References From the Technical Reports database Allara, David L., Pennsylvania State University, Upgrading of Existing X - Ray Photoelectron...Scanning probe X - ray Of these techniques, the most popularly used is the scanning probe, also known as the Dip-Pen Nanolithography (DPN) technique
Large area soft x-ray collimator to facilitate x-ray optics testing
NASA Technical Reports Server (NTRS)
Espy, Samuel L.
1994-01-01
The first objective of this program is to design a nested conical foil x-ray optic which will collimate x-rays diverging from a point source. The collimator could then be employed in a small, inexpensive x-ray test stand which would be used to test various x-ray optics and detector systems. The second objective is to demonstrate the fabrication of the x-ray reflectors for this optic using lacquer-smoothing and zero-stress electroforming techniques.
Status of Mirror Development for the Marshall Grazing Incidence X-ray Spectrometer (MaGIXS)
NASA Astrophysics Data System (ADS)
Champey, P. R.; Winebarger, A. R.; Kobayashi, K.; Savage, S. L.; Ramsey, B.; Kolodziejczak, J.; Speegle, C.; Young, M.; Kester, T.; Cheimets, P.; Hertz, E.
2017-12-01
The Marshall Grazing Incidence X-ray Spectrometer (MaGIXS) is a NASA sounding rocket instrument designed to observe soft X-ray emissions at 0.5 - 2.0 keV energies (24 - 6 Å) from a solar active region. MaGIXS will, for the first time, obtain spatially resolved spectra of high-temperature, low-emission plasma within an active region core. The unique optical design includes a Wolter I telescope and a 3-optic grazing incidence spectrograph. The spectrograph consists of a finite conjugate, stigmatic mirror pair and a planar varied line space grating. The grazing incidence mirrors are being developed at NASA Marshall Space Flight Center (MSFC) and are produced using electroform nickel-replication techniques, employing the same facilities developed for HERO, FOXSI, ART-XC and IXPE. The MaGIXS mirror mandrels have been fabricated, figured, and have completed the first phase of polishing. A set of three test shells were replicated and exposed to X-rays in the Stray Light Facility (SLF) at MSFC. Here we present results from mandrel metrology and X-ray testing at the SLF. We also discuss the development of a new polishing technique for the MaGIXS mirror mandrels, where we plan to use the Zeeko polishing machine.
NASA Astrophysics Data System (ADS)
Battaglia, Marina; Hudson, Hugh S.; Hurford, Gordon J.; Krucker, Säm; Schwartz, Richard A.
2017-07-01
We describe a new technique to measure the height of the X-ray limb with observations from occulted X-ray flare sources as observed by the RHESSI (the Reuven Ramaty High-Energy Spectroscopic Imager) satellite. This method has model dependencies different from those present in traditional observations at optical wavelengths, which depend upon detailed modeling involving radiative transfer in a medium with complicated geometry and flows. It thus provides an independent and more rigorous measurement of the “true” solar radius, which means that of the mass distribution. RHESSI’s measurement makes use of the flare X-ray source’s spatial Fourier components (the visibilities), which are sensitive to the presence of the sharp edge at the lower boundary of the occulted source. We have found a suitable flare event for analysis, SOL2011-10-20T03:25 (M1.7), and report a first result from this novel technique here. Using a four-minute integration over the 3-25 keV photon energy range, we find {R}{{X} - {ray}}=960.11+/- 0.15+/- 0.29 arcsec, at 1 au, where the uncertainties include statistical uncertainties from the method and a systematic error. The standard VAL-C model predicts a value of 959.94 arcsec, which is about 1σ below our value.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Kevin L.
The purpose of this LDRD project was to demonstrate high spatial and temporal resolution x-ray imaging using optical detectors, and in particular the VISAR and OHRV diagnostics on the OMEGA laser. The x-ray source being imaged was a backlighter capsule being imploded by 39 beams of the OMEGA laser. In particular this approach utilized a semiconductor with the side facing the backlighter capsule coated with a thin aluminum layer to allow x rays to pass through the metal layer and then get absorbed in the semiconductor. The other side of the semiconductor was AR coated to allow the VISAR ormore » OHRV probe beam to sample the phase change of the semiconductor as the x rays were absorbed in the semiconductor. This technique is capable of acquiring sub-picosecond 2-D or 1-D x-ray images, detector spatial resolution of better than 10 um and the ability to operate in a high neutron flux environment expected on ignition shots with burning plasmas. In addition to demonstrating this technique on the OMEGA laser, several designs were made to improve the phase sensitivity, temporal resolution and number of frames over the existing diagnostics currently implemented on the OMEGA laser. These designs included both 2-d imaging diagnostics as well as improved 1-D imaging diagnostics which were streaked in time.« less
Infrastructure development for radioactive materials at the NSLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprouster, D. J.; Weidner, R.; Ghose, S. K.
2018-02-01
The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less
Infrastructure development for radioactive materials at the NSLS-II
Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...
2017-11-04
The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less
Non-Intrusive Measurement Techniques Applied to the Hybrid Solid Fuel Degradation
NASA Astrophysics Data System (ADS)
Cauty, F.
2004-10-01
The knowledge of the solid fuel regression rate and the time evolution of the grain geometry are requested for hybrid motor design and control of its operating conditions. Two non-intrusive techniques (NDT) have been applied to hybrid propulsion : both are based on wave propagation, the X-rays and the ultrasounds, through the materials. X-ray techniques allow local thickness measurements (attenuated signal level) using small probes or 2D images (Real Time Radiography), with a link between the size of field of view and accuracy. Beside the safety hazards associated with the high-intensity X-ray systems, the image analysis requires the use of quite complex post-processing techniques. The ultrasound technique is more widely used in energetic material applications, including hybrid fuels. Depending upon the transducer size and the associated equipment, the application domain is large, from tiny samples to the quad-port wagon wheel grain of the 1.1 MN thrust HPDP motor. The effect of the physical quantities has to be taken into account in the wave propagation analysis. With respect to the various applications, there is no unique and perfect experimental method to measure the fuel regression rate. The best solution could be obtained by combining two techniques at the same time, each technique enhancing the quality of the global data.
NASA Astrophysics Data System (ADS)
Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.
2014-04-01
The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called ``molecular movie'' within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.
Gaudin, J.; Fourment, C.; Cho, B. I.; Engelhorn, K.; Galtier, E.; Harmand, M.; Leguay, P. M.; Lee, H. J.; Nagler, B.; Nakatsutsumi, M.; Ozkan, C.; Störmer, M.; Toleikis, S.; Tschentscher, Th; Heimann, P. A.; Dorchies, F.
2014-01-01
The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level of the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes. PMID:24740172
Gaudin, J.; Fourment, C.; Cho, B. I.; ...
2014-04-17
The rapidly growing ultrafast science with X-ray lasers unveils atomic scale processes with unprecedented time resolution bringing the so called “molecular movie” within reach. X-ray absorption spectroscopy is one of the most powerful x-ray techniques providing both local atomic order and electronic structure when coupled with ad-hoc theory. Collecting absorption spectra within few x-ray pulses is possible only in a dispersive setup. We demonstrate ultrafast time-resolved measurements of the LIII-edge x-ray absorption near-edge spectra of irreversibly laser excited Molybdenum using an average of only few x-ray pulses with a signal to noise ratio limited only by the saturation level ofmore » the detector. The simplicity of the experimental set-up makes this technique versatile and applicable for a wide range of pump-probe experiments, particularly in the case of non-reversible processes.« less
Baker, Kevin Louis
2013-01-08
X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.
Wu, Peiwen; Yu, Yang; McGhee, Claire E.; Tan, Li Huey
2014-01-01
In this review, we summarize recent progresses in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed. PMID:25205057
Wu, Peiwen; Yu, Yang; McGhee, Claire E.; ...
2014-09-10
In this paper, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insightsmore » gained from these studies are described and future directions of this field are also discussed.« less
Hard-X-ray dark-field imaging using a grating interferometer.
Pfeiffer, F; Bech, M; Bunk, O; Kraft, P; Eikenberry, E F; Brönnimann, Ch; Grünzweig, C; David, C
2008-02-01
Imaging with visible light today uses numerous contrast mechanisms, including bright- and dark-field contrast, phase-contrast schemes and confocal and fluorescence-based methods. X-ray imaging, on the other hand, has only recently seen the development of an analogous variety of contrast modalities. Although X-ray phase-contrast imaging could successfully be implemented at a relatively early stage with several techniques, dark-field imaging, or more generally scattering-based imaging, with hard X-rays and good signal-to-noise ratio, in practice still remains a challenging task even at highly brilliant synchrotron sources. In this letter, we report a new approach on the basis of a grating interferometer that can efficiently yield dark-field scatter images of high quality, even with conventional X-ray tube sources. Because the image contrast is formed through the mechanism of small-angle scattering, it provides complementary and otherwise inaccessible structural information about the specimen at the micrometre and submicrometre length scale. Our approach is fully compatible with conventional transmission radiography and a recently developed hard-X-ray phase-contrast imaging scheme. Applications to X-ray medical imaging, industrial non-destructive testing and security screening are discussed.
Amorphous boron gasket in diamond anvil cell research
NASA Astrophysics Data System (ADS)
Lin, Jung-Fu; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Shen, Guoyin
2003-11-01
Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Here we introduce amorphous boron as another gasket material in high-pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction, radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, and inelastic x-ray scattering. The high shear strength of the amorphous boron maximizes the thickness of the sample chamber and increases the pressure homogeneity, improving the quality of high-pressure data. Use of amorphous boron avoids unwanted x-ray diffraction peaks and reduces the absorption of incident and x rays exiting the gasket material. The high quality of the diffraction patterns makes it possible to refine the cell parameters with powder x-ray diffraction data under high pressure and high temperature. The reactivity of boron prevents its use at high temperatures, however. When heated, boron may also react with the specimen to produce unwanted phases. The relatively porous boron starting material at ambient conditions also poses some challenges for sample preparation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Feng; Liu, Yijin; Yu, Xiqian
Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications. Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies. In the past decade, advancementmore » of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales. Synchrotron X-ray techniques stand out as one of the most effective methods that allows for nearly nondestructive probing of materials characteristics such as electronic and geometric structures with various depth sensitivities through spectroscopy, scattering, and imaging capabilities. This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools (scattering, spectroscopy and imaging) and their successful applications (ex situ, in situ, and in operando) in gaining fundamental insights into these scientific questions. Furthermore, electron microscopy and spectroscopy complement the detection length scales of synchrotron X-ray tools, and are also discussed towards the end. We highlight the importance of studying battery materials by combining analytical techniques with complementary length sensitivities, such as the combination of X-ray absorption spectroscopy and electron spectroscopy with spatial resolution, because a sole technique may lead to biased and inaccurate conclusions. We then discuss the current progress of experimental design for synchrotron experiments and methods to mitigate beam effects. Finally, a perspective is provided to elaborate how synchrotron techniques can impact the development of next-generation battery chemistries.« less
Lin, Feng; Liu, Yijin; Yu, Xiqian; ...
2017-08-30
Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage. The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials. There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications. Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies. In the past decade, advancementmore » of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales. Synchrotron X-ray techniques stand out as one of the most effective methods that allows for nearly nondestructive probing of materials characteristics such as electronic and geometric structures with various depth sensitivities through spectroscopy, scattering, and imaging capabilities. This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools (scattering, spectroscopy and imaging) and their successful applications (ex situ, in situ, and in operando) in gaining fundamental insights into these scientific questions. Furthermore, electron microscopy and spectroscopy complement the detection length scales of synchrotron X-ray tools, and are also discussed towards the end. We highlight the importance of studying battery materials by combining analytical techniques with complementary length sensitivities, such as the combination of X-ray absorption spectroscopy and electron spectroscopy with spatial resolution, because a sole technique may lead to biased and inaccurate conclusions. We then discuss the current progress of experimental design for synchrotron experiments and methods to mitigate beam effects. Finally, a perspective is provided to elaborate how synchrotron techniques can impact the development of next-generation battery chemistries.« less
Using x-ray mammograms to assist in microwave breast image interpretation.
Curtis, Charlotte; Frayne, Richard; Fear, Elise
2012-01-01
Current clinical breast imaging modalities include ultrasound, magnetic resonance (MR) imaging, and the ubiquitous X-ray mammography. Microwave imaging, which takes advantage of differing electromagnetic properties to obtain image contrast, shows potential as a complementary imaging technique. As an emerging modality, interpretation of 3D microwave images poses a significant challenge. MR images are often used to assist in this task, and X-ray mammograms are readily available. However, X-ray mammograms provide 2D images of a breast under compression, resulting in significant geometric distortion. This paper presents a method to estimate the 3D shape of the breast and locations of regions of interest from standard clinical mammograms. The technique was developed using MR images as the reference 3D shape with the future intention of using microwave images. Twelve breast shapes were estimated and compared to ground truth MR images, resulting in a skin surface estimation accurate to within an average Euclidean distance of 10 mm. The 3D locations of regions of interest were estimated to be within the same clinical area of the breast as corresponding regions seen on MR imaging. These results encourage investigation into the use of mammography as a source of information to assist with microwave image interpretation as well as validation of microwave imaging techniques.
X-ray astronomical spectroscopy
NASA Technical Reports Server (NTRS)
Holt, Stephen S.
1987-01-01
The contributions of the Goddard group to the history of X-ray astronomy are numerous and varied. One role that the group has continued to play involves the pursuit of techniques for the measurement and interpretation of the X-ray spectra of cosmic sources. The latest development is the selection of the X-ray microcalorimeter for the Advanced X-ray Astrophysics Facility (AXAF) study payload. This technology is likely to revolutionize the study of cosmic X-ray spectra.
Use of different spectroscopic techniques in the analysis of Roman age wall paintings.
Agnoli, Francesca; Calliari, Irene; Mazzocchin, Gian-Antonio
2007-01-01
In this paper the analysis of samples of Roman age wall paintings coming from: Pordenone, Vicenza and Verona is carried out by using three different techniques: energy dispersive x-rays spectroscopy (EDS), x-rays fluorescence (XRF) and proton induced x-rays emission (PIXE). The features of the three spectroscopic techniques in the analysis of samples of archaeological interest are discussed. The studied pigments were: cinnabar, yellow ochre, green earth, Egyptian blue and carbon black.
NASA Astrophysics Data System (ADS)
Piriaei, D.; Yousefi, H. R.; Mahabadi, T. D.; SalarElahi, A.; Ghoranneviss, M.
2017-08-01
In this research, the effects of pre-ionization using a shunt resistor on reproducibility of x-ray emission in a Mather type plasma focus device have been studied. This technique increased the intensities of the emitted x-rays from argon as the filling gas of the device and made the x-ray yields with similar intensities reproducible. A Mirnov coil was also used to record the variations of the plasma's magnetic field, and the wavelet spectrums of these recorded signals showed the reduced instabilities due to the application of the pre-ionization technique. Moreover, it was demonstrated that this technique was capable of reducing the number of initial runaway electrons that could increase the impurities and instabilities inside the plasma. In addition to the above-mentioned features, this technique could improve the uniform formation of the current sheath during the breakdown phase that might later lead to a high quality pinch and high intensity emitted x-rays.
Quantitative X-ray Differential Interference Contrast Microscopy
NASA Astrophysics Data System (ADS)
Nakamura, Takashi
Full-field soft x-ray microscopes are widely used in many fields of sciences. Advances in nanofabrication technology enabled short wavelength focusing elements with significantly improved spatial resolution. In the soft x-ray spectral region, samples as small as 12 nm can be resolved using micro zone-plates as the objective lens. In addition to conventional x-ray microscopy in which x-ray absorption difference provides the image contrast, phase contrast mechanisms such as differential phase contrast (DIC) and Zernike phase contrast have also been demonstrated These phase contrast imaging mechanisms are especially attractive at the x-ray wavelengths where phase contrast of most materials is typically 10 times stronger than the absorption contrast. With recent progresses in plasma-based x- ray sources and increasing accessibility to synchrotron user facilities, x-ray microscopes are quickly becoming standard measurement equipment in the laboratory. To further the usefulness of x-ray DIC microscopy this thesis explicitly addresses three known issues with this imaging modality by introducing new techniques and devices First, as opposed to its visible-light counterpart, no quantitative phase imaging technique exists for x-ray DIC microscopy. To address this issue, two nanoscale x-ray quantitative phase imaging techniques, using exclusive OR (XOR) patterns and zone-plate doublets, respectively, are proposed. Unlike existing x-ray quantitative phase imaging techniques such as Talbot interferometry and ptychography, no dedicated experimental setups or stringent illumination coherence are needed for quantitative phase retrieval. Second, to the best of our knowledge, no quantitative performance characterization of DIC microscopy exists to date. Therefore the imaging system's response to sample's spatial frequency is not known In order to gain in-depth understanding of this imaging modality, performance of x-ray DIC microscopy is quantified using modulation transfer function. A new illumination apparatus required for the transfer function analysis under partially coherent illumination is also proposed. Such a characterization is essential for a proper selection of DIC optics for various transparent samples under study. Finally, optical elements used for x-ray DIC microscopy are highly absorptive and high brilliance x-ray sources such as synchrotrons are generally needed for image contrast. To extend the use of x-ray DIC microscopy to a wider variety of applications, a high efficiency large numerical aperture optical element consisting of high reflective Bragg reflectors is proposed. Using Bragg reflectors, which have 70% ˜99% reflectivity at extreme ultraviolet and soft x-rays for all angles of glancing incidence, the first order focusing efficiency is expected to increase by ˜ 8 times compared to that of a typical Fresnel zone-plate. This thesis contributes to current nanoscale x-ray phase contrast imaging research and provides new insights for biological, material, and magnetic sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongchang, E-mail: hongchang.wang@diamond.ac.uk; Kashyap, Yogesh; Sawhney, Kawal
2016-03-21
X-ray dark-field contrast tomography can provide important supplementary information inside a sample to the conventional absorption tomography. Recently, the X-ray speckle based technique has been proposed to provide qualitative two-dimensional dark-field imaging with a simple experimental arrangement. In this letter, we deduce a relationship between the second moment of scattering angle distribution and cross-correlation degradation of speckle and establish a quantitative basis of X-ray dark-field tomography using single directional speckle scanning technique. In addition, the phase contrast images can be simultaneously retrieved permitting tomographic reconstruction, which yields enhanced contrast in weakly absorbing materials. Such complementary tomography technique can allow systematicmore » investigation of complex samples containing both soft and hard materials.« less
MMX-I: data-processing software for multimodal X-ray imaging and tomography
Bergamaschi, Antoine; Medjoubi, Kadda; Messaoudi, Cédric; Marco, Sergio; Somogyi, Andrea
2016-01-01
A new multi-platform freeware has been developed for the processing and reconstruction of scanning multi-technique X-ray imaging and tomography datasets. The software platform aims to treat different scanning imaging techniques: X-ray fluorescence, phase, absorption and dark field and any of their combinations, thus providing an easy-to-use data processing tool for the X-ray imaging user community. A dedicated data input stream copes with the input and management of large datasets (several hundred GB) collected during a typical multi-technique fast scan at the Nanoscopium beamline and even on a standard PC. To the authors’ knowledge, this is the first software tool that aims at treating all of the modalities of scanning multi-technique imaging and tomography experiments. PMID:27140159
X-Ray Micro-Tomography Applied to Nasa's Materials Research: Heat Shields, Parachutes and Asteroids
NASA Technical Reports Server (NTRS)
Panerai, Francesco; Borner, Arnaud; Ferguson, Joseph C.; Mansour, Nagi N.; Stern, Eric C.; Barnard, Harold S.; Macdowell, Alastair A.; Parkinson, Dilworth Y.
2017-01-01
X-ray micro-tomography is used to support the research on materials carried out at NASA Ames Research Center. The technique is applied to a variety of applications, including the ability to characterize heat shield materials for planetary entry, to study the Earth- impacting asteroids, and to improve broadcloths of spacecraft parachutes. From micro-tomography images, relevant morphological and transport properties are determined and validated against experimental data.
X-ray phase contrast tomography by tracking near field speckle
Wang, Hongchang; Berujon, Sebastien; Herzen, Julia; Atwood, Robert; Laundy, David; Hipp, Alexander; Sawhney, Kawal
2015-01-01
X-ray imaging techniques that capture variations in the x-ray phase can yield higher contrast images with lower x-ray dose than is possible with conventional absorption radiography. However, the extraction of phase information is often more difficult than the extraction of absorption information and requires a more sophisticated experimental arrangement. We here report a method for three-dimensional (3D) X-ray phase contrast computed tomography (CT) which gives quantitative volumetric information on the real part of the refractive index. The method is based on the recently developed X-ray speckle tracking technique in which the displacement of near field speckle is tracked using a digital image correlation algorithm. In addition to differential phase contrast projection images, the method allows the dark-field images to be simultaneously extracted. After reconstruction, compared to conventional absorption CT images, the 3D phase CT images show greatly enhanced contrast. This new imaging method has advantages compared to other X-ray imaging methods in simplicity of experimental arrangement, speed of measurement and relative insensitivity to beam movements. These features make the technique an attractive candidate for material imaging such as in-vivo imaging of biological systems containing soft tissue. PMID:25735237
NASA Astrophysics Data System (ADS)
Vievering, J. T.; Glesener, L.; Krucker, S.; Christe, S.; Buitrago-Casas, J. C.; Ishikawa, S. N.; Ramsey, B.; Takahashi, T.; Watanabe, S.
2016-12-01
Observations of the sun in hard x-rays can provide insight into many solar phenomena which are not currently well-understood, including the mechanisms behind particle acceleration in flares. Currently, RHESSI is the only solar-dedicated spacecraft observing in the hard x-ray regime. Though RHESSI has greatly added to our knowledge of flare particle acceleration, the method of rotation modulation collimators is limited in sensitivity and dynamic range. By instead using a direct imaging technique, the structure and evolution of even small flares and active regions can be investigated in greater depth. FOXSI (Focusing Optics X-ray Solar Imager), a hard x-ray instrument flown on two sounding rocket campaigns, seeks to achieve these improved capabilities by using focusing optics for solar observations in the 4-20 keV range. During the second of the FOXSI flights, flown on December 11, 2014, two microflares were observed, estimated as GOES class A0.5 and A2.5 (upper limits). Preliminary analysis of these two flares will be presented, including imaging spectroscopy, light curves, and photon spectra. Through this analysis, we investigate the capabilities of FOXSI in enhancing our knowledge of smaller-scale solar events.
NASA Astrophysics Data System (ADS)
Nagai, Yuichi; Kitagawa, Mayumi; Torii, Jun; Iwase, Takumi; Aso, Tomohiko; Ihara, Kanyu; Fujikawa, Mari; Takeuchi, Yumiko; Suzuki, Katsumi; Ishiguro, Takashi; Hara, Akio
2014-03-01
Recently, the double contrast technique in a gastrointestinal examination and the transbronchial lung biopsy in an examination for the respiratory system [1-3] have made a remarkable progress. Especially in the transbronchial lung biopsy, better quality of x-ray fluoroscopic images is requested because this examination is performed under a guidance of x-ray fluoroscopic images. On the other hand, various image processing methods [4] for x-ray fluoroscopic images have been developed as an x-ray system with a flat panel detector [5-7] is widely used. A recursive filtering is an effective method to reduce a random noise in x-ray fluoroscopic images. However it has a limitation for its effectiveness of a noise reduction in case of a moving object exists in x-ray fluoroscopic images because the recursive filtering is a noise reduction method by adding last few images. After recursive filtering a residual signal was produced if a moving object existed in x-ray images, and this residual signal disturbed a smooth procedure of the examinations. To improve this situation, new noise reduction method has been developed. The Adaptive Noise Reduction [ANR] is the brand-new noise reduction technique which can be reduced only a noise regardless of the moving object in x-ray fluoroscopic images. Therefore the ANR is a very suitable noise reduction method for the transbronchial lung biopsy under a guidance of x-ray fluoroscopic images because the residual signal caused of the moving object in x-ray fluoroscopic images is never produced after the ANR. In this paper, we will explain an advantage of the ANR by comparing of a performance between the ANR images and the conventional recursive filtering images.
Grunwaldt, Jan-Dierk; Schroer, Christian G
2010-12-01
X-ray microscopic techniques are excellent and presently emerging techniques for chemical imaging of heterogeneous catalysts. Spatially resolved studies in heterogeneous catalysis require the understanding of both the macro and the microstructure, since both have decisive influence on the final performance of the industrially applied catalysts. A particularly important aspect is the study of the catalysts during their preparation, activation and under operating conditions, where X-rays have an inherent advantage due to their good penetration length especially in the hard X-ray regime. Whereas reaction cell design for hard X-rays is straightforward, recently smart in situ cells have also been reported for the soft X-ray regime. In the first part of the tutorial review, the constraints from a catalysis view are outlined, then the scanning and full-field X-ray microscopy as well as coherent X-ray diffraction imaging techniques are described together with the challenging design of suitable environmental cells. Selected examples demonstrate the application of X-ray microscopy and tomography to monitor structural gradients in catalytic reactors and catalyst preparation with micrometre resolution but also the possibility to follow structural changes in the sub-100 nm regime. Moreover, the potential of the new synchrotron radiation sources with higher brilliance, recent milestones in focusing of hard X-rays as well as spatiotemporal studies are highlighted. The tutorial review concludes with a view on future developments in the field of X-ray microscopy that will have strong impact on the understanding of catalysts in the future and should be combined with in situ electron microscopic studies on the nanoscale and other spectroscopic studies like microRaman, microIR and microUV-vis on the macroscale.
High-definition X-ray fluorescence elemental mapping of paintings.
Howard, Daryl L; de Jonge, Martin D; Lau, Deborah; Hay, David; Varcoe-Cocks, Michael; Ryan, Chris G; Kirkham, Robin; Moorhead, Gareth; Paterson, David; Thurrowgood, David
2012-04-03
A historical self-portrait painted by Sir Arthur Streeton (1867-1943) has been studied with fast-scanning X-ray fluorescence microscopy using synchrotron radiation. One of the technique's unique strengths is the ability to reveal metal distributions in the pigments of underlying brushstrokes, thus providing information critical to the interpretation of a painting. We have applied the nondestructive technique with the event-mode Maia X-ray detector, which has the capability to record elemental maps at megapixels per hour with the full X-ray fluorescence spectrum collected per pixel. The painting poses a difficult challenge to conventional X-ray analysis, because it was completely obscured with heavy brushstrokes of highly X-ray absorptive lead white paint (2PbCO(3)·Pb(OH)(2)) by the artist, making it an excellent candidate for the application of the synchrotron-based technique. The 25 megapixel elemental maps were successfully observed through the lead white paint across the 200 × 300 mm(2) scan area. The sweeping brushstrokes of the lead white overpaint contributed significant detrimental structure to the elemental maps. A corrective procedure was devised to enhance the visualization of the elemental maps by using the elastic X-ray scatter as a proxy for the lead white overpaint. We foresee the technique applied to the most demanding of culturally significant artworks where conventional analytical methods are inadequate.
A Multivariate Analysis of Galaxy Cluster Properties
NASA Astrophysics Data System (ADS)
Ogle, P. M.; Djorgovski, S.
1993-05-01
We have assembled from the literature a data base on on 394 clusters of galaxies, with up to 16 parameters per cluster. They include optical and x-ray luminosities, x-ray temperatures, galaxy velocity dispersions, central galaxy and particle densities, optical and x-ray core radii and ellipticities, etc. In addition, derived quantities, such as the mass-to-light ratios and x-ray gas masses are included. Doubtful measurements have been identified, and deleted from the data base. Our goal is to explore the correlations between these parameters, and interpret them in the framework of our understanding of evolution of clusters and large-scale structure, such as the Gott-Rees scaling hierarchy. Among the simple, monovariate correlations we found, the most significant include those between the optical and x-ray luminosities, x-ray temperatures, cluster velocity dispersions, and central galaxy densities, in various mutual combinations. While some of these correlations have been discussed previously in the literature, generally smaller samples of objects have been used. We will also present the results of a multivariate statistical analysis of the data, including a principal component analysis (PCA). Such an approach has not been used previously for studies of cluster properties, even though it is much more powerful and complete than the simple monovariate techniques which are commonly employed. The observed correlations may lead to powerful constraints for theoretical models of formation and evolution of galaxy clusters. P.M.O. was supported by a Caltech graduate fellowship. S.D. acknowledges a partial support from the NASA contract NAS5-31348 and the NSF PYI award AST-9157412.
Phonon spectroscopy with sub-meV resolution by femtosecond x-ray diffuse scattering
Zhu, Diling; Robert, Aymeric; Henighan, Tom; ...
2015-08-10
We present a reconstruction of the transverse acoustic phonon dispersion of germanium from femtosecond time-resolved x-ray diffuse scattering measurements at the Linac Coherent Light Source. We demonstrate an energy resolution of 0.3 meV with a momentum resolution of 0.01 nm -1 using 10-keV x rays with a bandwidth of ~ 1 eV. This high resolution was achieved simultaneously for a large section of reciprocal space including regions closely following three of the principal symmetry directions. The phonon dispersion was reconstructed with less than 3 h of measurement time, during which neither the x-ray energy, the sample orientation, nor the detectormore » position were scanned. In conclusion, these results demonstrate how time-domain measurements can complement conventional frequency domain inelastic-scattering techniques.« less
Advanced x-ray imaging spectrometer
NASA Technical Reports Server (NTRS)
Callas, John L. (Inventor); Soli, George A. (Inventor)
1998-01-01
An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jungho
Hard x-ray resonant inelastic x-ray scattering (RIXS) is a promising x-ray spectroscopic tool for measuring low-energy excitation spectra at high pressure which have been stymied heretofore by the technical difficulties inherent in measuring a sample held at high pressure in a diamond anvil cell. The currently available facilities of high resolution (< 200 meV) RIXS has been used to probe low-energy excitation spectra from the diamond anvil cell, by virtue of advanced photon detection instrumentations of high-brilliance synchrotron x-ray radiation sources. Compared to a structural elastic scattering and x-ray emission, RIXS is a photon hungry technique and high-resolution RIXS undermore » high pressure is at its infancy stage. In this review, the fundamentals of RIXS including instrumentation of high-resolution RIXS are presented and then experimental details of diamond anvil cell, sample preparation and measurement geometry are discussed. Experimental data of 3d and 5d transition metal oxides are presented. Finally, future improvements in high-resolution RIXS instrumentation for the high pressure experiment is discussed.« less
Biological soft X-ray tomography on beamline 2.1 at the Advanced Light Source
Le Gros, Mark A.; McDermott, Gerry; Cinquin, Bertrand P.; Smith, Elizabeth A.; Do, Myan; Chao, Weilun L.; Naulleau, Patrick P.; Larabell, Carolyn A.
2014-01-01
Beamline 2.1 (XM-2) is a transmission soft X-ray microscope in sector 2 of the Advanced Light Source at Lawrence Berkeley National Laboratory. XM-2 was designed, built and is now operated by the National Center for X-ray Tomography as a National Institutes of Health Biomedical Technology Research Resource. XM-2 is equipped with a cryogenic rotation stage to enable tomographic data collection from cryo-preserved cells, including large mammalian cells. During data collection the specimen is illuminated with ‘water window’ X-rays (284–543 eV). Illuminating photons are attenuated an order of magnitude more strongly by biomolecules than by water. Consequently, differences in molecular composition generate quantitative contrast in images of the specimen. Soft X-ray tomography is an information-rich three-dimensional imaging method that can be applied either as a standalone technique or as a component modality in correlative imaging studies. PMID:25343808
X-ray near-field speckle: implementation and critical analysis
Lu, Xinhui; Mochrie, S. G. J.; Narayanan, S.; Sandy, A. R.; Sprung, M.
2011-01-01
The newly introduced coherence-based technique of X-ray near-field speckle (XNFS) has been implemented at 8-ID-I at the Advanced Photon Source. In the near-field regime of high-brilliance synchrotron X-rays scattered from a sample of interest, it turns out that, when the scattered radiation and the main beam both impinge upon an X-ray area detector, the measured intensity shows low-contrast speckles, resulting from interference between the incident and scattered beams. A micrometer-resolution XNFS detector with a high numerical aperture microscope objective has been built and its capability for studying static structures and dynamics at longer length scales than traditional far-field X-ray scattering techniques is demonstrated. Specifically, the dynamics of dilute silica and polystyrene colloidal samples are characterized. This study reveals certain limitations of the XNFS technique, especially in the characterization of static structures, which is discussed. PMID:21997906
Lu, Hui-Meng; Yin, Da-Chuan; Ye, Ya-Jing; Luo, Hui-Min; Geng, Li-Qiang; Li, Hai-Sheng; Guo, Wei-Hong; Shang, Peng
2009-01-01
As the most widely utilized technique to determine the 3-dimensional structure of protein molecules, X-ray crystallography can provide structure of the highest resolution among the developed techniques. The resolution obtained via X-ray crystallography is known to be influenced by many factors, such as the crystal quality, diffraction techniques, and X-ray sources, etc. In this paper, the authors found that the protein sequence could also be one of the factors. We extracted information of the resolution and the sequence of proteins from the Protein Data Bank (PDB), classified the proteins into different clusters according to the sequence similarity, and statistically analyzed the relationship between the sequence similarity and the best resolution obtained. The results showed that there was a pronounced correlation between the sequence similarity and the obtained resolution. These results indicate that protein structure itself is one variable that may affect resolution when X-ray crystallography is used.
Alignment and Integration of Lightweight Mirror Segments
NASA Technical Reports Server (NTRS)
Evans, Tyler; Biskach, Michael; Mazzarella, Jim; McClelland, Ryan; Saha, Timo; Zhang, Will; Chan, Kai-Wing
2011-01-01
The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it difficult not to impart distortion at the sub-arc-second level. This paper outlines the precise alignment, permanent bonding, and verification testing techniques developed at NASA's Goddard Space Flight Center (GSFC). Improvements in alignment include new hardware and automation software. Improvements in bonding include two module new simulators to bond mirrors into, a glass housing for proving single pair bonding, and a Kovar module for bonding multiple pairs of mirrors. Three separate bonding trials were x-ray tested producing results meeting the requirement of sub ten arc-second alignment. This paper will highlight these recent advances in alignment, testing, and bonding techniques and the exciting developments in thin x-ray optic technology development.
Nanosecond time resolved x-ray diagnostics of relativistic electron beam initiated events
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuswa, Glenn W.; Chang, James
The dynamic behavior of a test sample during aid shortly after it has teen irradiated by an intense relativistic electron beam (REB) is of great interest to the study of team energy deposition. Since the sample densities are far beyond the cutoff in the optical region, flash x-radiography techniques have been developed to diagnose the evolution of the samples. The conventional approach of analyzing the dynamic behavior of solid densities utilizes one or more short x-ray bursts to record images on photographic emulsion. This technique is not useful in the presence of the intense x-rays from the REB interacting withmore » the sample. We report two techniques for isolating the film package from the REB x-ray pulse.« less
Motionless phase stepping in X-ray phase contrast imaging with a compact source
Miao, Houxun; Chen, Lei; Bennett, Eric E.; Adamo, Nick M.; Gomella, Andrew A.; DeLuca, Alexa M.; Patel, Ajay; Morgan, Nicole Y.; Wen, Han
2013-01-01
X-ray phase contrast imaging offers a way to visualize the internal structures of an object without the need to deposit significant radiation, and thereby alleviate the main concern in X-ray diagnostic imaging procedures today. Grating-based differential phase contrast imaging techniques are compatible with compact X-ray sources, which is a key requirement for the majority of clinical X-ray modalities. However, these methods are substantially limited by the need for mechanical phase stepping. We describe an electromagnetic phase-stepping method that eliminates mechanical motion, thus removing the constraints in speed, accuracy, and flexibility. The method is broadly applicable to both projection and tomography imaging modes. The transition from mechanical to electromagnetic scanning should greatly facilitate the translation of X-ray phase contrast techniques into mainstream applications. PMID:24218599
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubeck, J., E-mail: janin.lubeck@ptb.de; Fliegauf, R.; Holfelder, I.
A novel type of ultra-high vacuum instrument for X-ray reflectometry and spectrometry-related techniques for nanoanalytics by means of synchrotron radiation (SR) has been constructed and commissioned at BESSY II. This versa-tile instrument was developed by the PTB, Germany’s national metrology institute, and includes a 9-axis manipulator that allows for an independent alignment of the samples with respect to all degrees of freedom. In addition, it integrates a rotational and translational movement of several photodiodes as well as a translational movement of a beam-geometry-defining aperture system. Thus, the new instrument enables various analytical techniques based on energy dispersive X-ray detectors suchmore » as reference-free X-Ray Fluorescence (XRF) analysis, total-reflection XRF, grazing-incidence XRF, in addition to optional X-Ray Reflectometry (XRR) measurements or polarization-dependent X-ray absorption fine structure analyses (XAFS). Samples having a size of up to (100 × 100) mm{sup 2}; can be analyzed with respect to their mass deposition, elemental, spatial or species composition. Surface contamination, nanolayer composition and thickness, depth pro-file of matrix elements or implants, nanoparticles or buried interfaces as well as molecular orientation of bonds can be accessed. Three technology transfer projects of adapted instruments have enhanced X-Ray Spectrometry (XRS) research activities within Europe at the synchrotron radiation facilities ELETTRA (IAEA) and SOLEIL (CEA/LNE-LNHB) as well as at the X-ray innovation laboratory BLiX (TU Berlin) where different laboratory sources are used. Here, smaller chamber requirements led PTB in cooperation with TU Berlin to develop a modified instrument equipped with a 7-axis manipulator: reduced freedom in the choice of experimental geometry modifications (absence of out-of-SR-plane and reference-free XRS options) has been compensated by encoder-enhanced angular accuracy for GIXRF and XRR.« less
Gueriau, Pierre; Rueff, Jean -Pascal; Bernard, Sylvain; ...
2017-09-13
Carbon compounds are ubiquitous and occur in a diversity of chemical forms in many systems including ancient and historic materials ranging from cultural heritage to paleontology. Determining their speciation cannot only provide unique information on their origin but may also elucidate degradation processes. Synchrotron-based X-ray absorption near-edge structure (XANES) spectroscopy at the carbon K-edge (280–350 eV) is a very powerful method to probe carbon speciation. However, the short penetration depth of soft X-rays imposes stringent constraints on sample type, preparation, and analytical environment. A hard X-ray probe such as X-ray Raman scattering (XRS) can overcome many of these difficulties. Heremore » we report the use of XRS at ~6 keV incident energy to collect carbon K-edge XANES data and probe the speciation of organic carbon in several specimens relevant to cultural heritage and natural history. This methodology enables the measurement to be done in a nondestructive way, in air, and provides information that is not compromised by surface contamination by ensuring that the dominant signal contribution is from the bulk of the probed material. Using the backscattering geometry at large photon momentum transfer maximizes the XRS signal at the given X-ray energy and enhances nondipole contributions compared to conventional XANES, thereby augmenting the speciation sensitivity. The capabilities and limitations of the technique are discussed. As a result, we show that despite its small cross section, for a range of systems the XRS method can provide satisfactory signals at realistic experimental conditions. XRS constitutes a powerful complement to FT-IR, Raman, and conventional XANES spectroscopy, overcoming some of the limitations of these techniques.« less
NASA Astrophysics Data System (ADS)
Zimina, A.; Dardenne, K.; Denecke, M. A.; Doronkin, D. E.; Huttel, E.; Lichtenberg, H.; Mangold, S.; Pruessmann, T.; Rothe, J.; Spangenberg, Th.; Steininger, R.; Vitova, T.; Geckeis, H.; Grunwaldt, J.-D.
2017-11-01
CAT-ACT—the hard X-ray beamline for CATalysis and ACTinide/radionuclide research at the KIT synchrotron radiation facility ANKA—is dedicated to X-ray spectroscopy, including "flux hungry" photon-in/photon-out and correlative techniques and combines state-of-the-art optics with a unique infrastructure for radionuclide and catalysis research. Measurements can be performed at photon energies varying between 3.4 keV and 55 keV, thus encompassing the actinide M- and L-edge or potassium K-edge up to the K-edges of the lanthanide series such as cerium. Well-established X-ray absorption fine structure spectroscopy in transmission and fluorescence detection modes is available in combination with high energy-resolution X-ray emission spectroscopy or X-ray diffraction techniques. The modular beamline design with two alternately operated in-line experimental stations enables sufficient flexibility to adapt sample environments and detection systems to many scientific challenges. The ACT experimental station focuses on various aspects of nuclear waste disposal within the mission of the Helmholtz association to contribute to the solution of one of the greatest scientific and social challenges of our time—the safe disposal of heat producing, highly radioactive waste forms from nuclear energy production. It augments present capabilities at the INE-Beamline by increasing the flux and extending the energy range into the hard X-ray regime. The CAT experimental station focuses on catalytic materials, e.g., for energy-related and exhaust gas catalysis. Characterization of catalytically active materials under realistic reaction conditions and the development of in situ and operando cells for sample environments close to industrial reactors are essential aspects at CAT.
Zimina, A; Dardenne, K; Denecke, M A; Doronkin, D E; Huttel, E; Lichtenberg, H; Mangold, S; Pruessmann, T; Rothe, J; Spangenberg, Th; Steininger, R; Vitova, T; Geckeis, H; Grunwaldt, J-D
2017-11-01
CAT-ACT-the hard X-ray beamline for CATalysis and ACTinide/radionuclide research at the KIT synchrotron radiation facility ANKA-is dedicated to X-ray spectroscopy, including "flux hungry" photon-in/photon-out and correlative techniques and combines state-of-the-art optics with a unique infrastructure for radionuclide and catalysis research. Measurements can be performed at photon energies varying between 3.4 keV and 55 keV, thus encompassing the actinide M- and L-edge or potassium K-edge up to the K-edges of the lanthanide series such as cerium. Well-established X-ray absorption fine structure spectroscopy in transmission and fluorescence detection modes is available in combination with high energy-resolution X-ray emission spectroscopy or X-ray diffraction techniques. The modular beamline design with two alternately operated in-line experimental stations enables sufficient flexibility to adapt sample environments and detection systems to many scientific challenges. The ACT experimental station focuses on various aspects of nuclear waste disposal within the mission of the Helmholtz association to contribute to the solution of one of the greatest scientific and social challenges of our time-the safe disposal of heat producing, highly radioactive waste forms from nuclear energy production. It augments present capabilities at the INE-Beamline by increasing the flux and extending the energy range into the hard X-ray regime. The CAT experimental station focuses on catalytic materials, e.g., for energy-related and exhaust gas catalysis. Characterization of catalytically active materials under realistic reaction conditions and the development of in situ and operando cells for sample environments close to industrial reactors are essential aspects at CAT.
Collection of wood quality data by X-ray densitometry: a case study with three southern pines
Thomas L. Eberhardt; Lisa J. Samuelson
2015-01-01
X-ray densitometry is a technique often used in tree growth and wood quality studies to incrementally measure density (specific gravity) along a radial strip of wood. Protocols for this technique vary between laboratories because of differences in species, equipment, tree age, and other factors. Here, the application of X-ray densitometry is discussed in terms of a...
Sensing Applied Load and Damage Effects in Composites with Nondestructive Techniques
2017-05-01
evaluation (NDE) techniques. Evaluation using piezoelectrically induced guided waves, acoustic emission, thermography, and X-ray imaging were compared...nondestructive inspection to further understanding of the material itself and the capabilities of various nondestructive evaluation (NDE) techniques...materials because of their inherent differences. NDE techniques exist that can evaluate composite structures for damage including C-Scan
Room temperature chemical synthesis of lead selenide thin films with preferred orientation
NASA Astrophysics Data System (ADS)
Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan
2006-11-01
Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.
Fast fluorescence techniques for crystallography beamlines
Stepanov, Sergey; Hilgart, Mark; Yoder, Derek W.; Makarov, Oleg; Becker, Michael; Sanishvili, Ruslan; Ogata, Craig M.; Venugopalan, Nagarajan; Aragão, David; Caffrey, Martin; Smith, Janet L.; Fischetti, Robert F.
2011-01-01
This paper reports on several developments of X-ray fluorescence techniques for macromolecular crystallography recently implemented at the National Institute of General Medical Sciences and National Cancer Institute beamlines at the Advanced Photon Source. These include (i) three-band on-the-fly energy scanning around absorption edges with adaptive positioning of the fine-step band calculated from a coarse pass; (ii) on-the-fly X-ray fluorescence rastering over rectangular domains for locating small and invisible crystals with a shuttle-scanning option for increased speed; (iii) fluorescence rastering over user-specified multi-segmented polygons; and (iv) automatic signal optimization for reduced radiation damage of samples. PMID:21808424
Kono, Yoshio; Kenney-Benson, Curtis; Shibazaki, Yuki; Park, Changyong; Wang, Yanbin; Shen, Guoyin
2015-07-01
Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10(5) frames/second (fps) in air and up to ∼10(4) fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.
The X-Ray Surveyor Mission: A Concept Study
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Weisskopf, Martin C.; Vikhlinin, Alexey; Tananbaum, Harvey D.; Bandler, Simon R.; Bautz, Marshall W.; Burrows, David N.; Falcone, Abraham D.; Harrison, Fiona A.; Heilmann, Ralf K.;
2015-01-01
NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions-such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development-including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhawan, Rajnish, E-mail: rajnish@rrcat.gov.in; Rai, Sanjay
2016-05-23
W/Si multilayers four samples have been deposited on silicon substrate using ion beam sputtering system. Thickness of tungsten (W) varies from around 10 Å to 40 Å while the silicon (Si) thickness remains constant at around 30 Å in multilayers [W-Si]{sub x4}. The samples have been characterized by grazing incidence X-ray diffraction (GIXRD) and X-ray reflectivity technique (XRR). GIXRD study shows the crystalline behaviour of W/Si multilayer by varying W thickness and it is found that above 20 Å the W film transform from amorphous to crystalline phase and X-ray reflectivity data shows that the roughnesses of W increases onmore » increasing the W thicknesses in W/Si multilayers.« less
Advances in functional X-ray imaging techniques and contrast agents
Chen, Hongyu; Rogalski, Melissa M.
2012-01-01
X-rays have been used for non-invasive high-resolution imaging of thick biological specimens since their discovery in 1895. They are widely used for structural imaging of bone, metal implants, and cavities in soft tissue. Recently, a number of new contrast methodologies have emerged which are expanding X-ray’s biomedical applications to functional as well as structural imaging. These techniques are promising to dramatically improve our ability to study in situ biochemistry and disease pathology. In this review, we discuss how X-ray absorption, X-ray fluorescence, and X-ray excited optical luminescence can be used for physiological, elemental, and molecular imaging of vasculature, tumours, pharmaceutical distribution, and the surface of implants. Imaging of endogenous elements, exogenous labels, and analytes detected with optical indicators will be discussed. PMID:22962667
The application of soft X-ray imaging techniques to auroral research
NASA Technical Reports Server (NTRS)
1981-01-01
The feasibility of building and operating a grazing incidence X-ray telescope for auroral zone studies from the Polar Plasma Laboratory (PPL) is discussed. A detailed structural analysis of the preferred design, an array of seven nested Wolter mirrors, is presented. An engineering evaluation of the requirements for the instrumental configuration, power, weight and telemetry is included. The problems of radiation hardening and thermal control are discussed. The resulting strawman instrument is presented.
Incoherent Diffractive Imaging via Intensity Correlations of Hard X Rays
NASA Astrophysics Data System (ADS)
Classen, Anton; Ayyer, Kartik; Chapman, Henry N.; Röhlsberger, Ralf; von Zanthier, Joachim
2017-08-01
Established x-ray diffraction methods allow for high-resolution structure determination of crystals, crystallized protein structures, or even single molecules. While these techniques rely on coherent scattering, incoherent processes like fluorescence emission—often the predominant scattering mechanism—are generally considered detrimental for imaging applications. Here, we show that intensity correlations of incoherently scattered x-ray radiation can be used to image the full 3D arrangement of the scattering atoms with significantly higher resolution compared to conventional coherent diffraction imaging and crystallography, including additional three-dimensional information in Fourier space for a single sample orientation. We present a number of properties of incoherent diffractive imaging that are conceptually superior to those of coherent methods.
Characterization of Colloidal Quantum Dot Ligand Exchange by X-ray Photoelectron Spectroscopy
NASA Astrophysics Data System (ADS)
Atewologun, Ayomide; Ge, Wangyao; Stiff-Roberts, Adrienne D.
2013-05-01
Colloidal quantum dots (CQDs) are chemically synthesized semiconductor nanoparticles with size-dependent wavelength tunability. Chemical synthesis of CQDs involves the attachment of long organic surface ligands to prevent aggregation; however, these ligands also impede charge transport. Therefore, it is beneficial to exchange longer surface ligands for shorter ones for optoelectronic devices. Typical characterization techniques used to analyze surface ligand exchange include Fourier-transform infrared spectroscopy, x-ray diffraction, transmission electron microscopy, and nuclear magnetic resonance spectroscopy, yet these techniques do not provide a simultaneously direct, quantitative, and sensitive method for evaluating surface ligands on CQDs. In contrast, x-ray photoelectron spectroscopy (XPS) can provide nanoscale sensitivity for quantitative analysis of CQD surface ligand exchange. A unique aspect of this work is that a fingerprint is identified for shorter surface ligands by resolving the regional XPS spectrum corresponding to different types of carbon bonds. In addition, a deposition technique known as resonant infrared matrix-assisted pulsed laser evaporation is used to improve the CQD film uniformity such that stronger XPS signals are obtained, enabling more accurate analysis of the ligand exchange process.
Majumdar, Sanghamitra; Peralta-Videa, Jose R; Castillo-Michel, Hiram; Hong, Jie; Rico, Cyren M; Gardea-Torresdey, Jorge L
2012-11-28
Environmental matrices including soils, sediments, and living organisms are reservoirs of several essential as well as non-essential elements. Accurate qualitative and quantitative information on the distribution and interaction of biologically significant elements is vital to understand the role of these elements in environmental and biological samples. Synchrotron micro-X-ray fluorescence (μ-SXRF) allows in situ mapping of biologically important elements at nanometer to sub-micrometer scale with high sensitivity, negligible sample damage and enable tuning of the incident energy as desired. Beamlines in the synchrotron facilities are rapidly increasing their analytical versatility in terms of focusing optics, detector technologies, incident energy, and sample environment. Although extremely competitive, it is now feasible to find stations offering complimentary techniques like micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption spectroscopy (μ-XAS) that will allow a more complete characterization of complex matrices. This review includes the most recent literature on the emerging applications and challenges of μ-SXRF in studying the distribution of biologically important elements and manufactured nanoparticles in soils, sediments, plants, and microbes. The advantages of using μ-SXRF and complimentary techniques in contrast to conventional techniques used for the respective studies are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Alignment and Integration Techniques for Mirror Segment Pairs on the Constellation X Telescope
NASA Technical Reports Server (NTRS)
Hadjimichael, Theo; Lehan, John; Olsen, Larry; Owens, Scott; Saha, Timo; Wallace, Tom; Zhang, Will
2007-01-01
We present the concepts behind current alignment and integration techniques for testing a Constellation-X primary-secondary mirror segment pair in an x-ray beam line test. We examine the effects of a passive mount on thin glass x-ray mirror segments, and the issues of mount shape and environment on alignment. We also investigate how bonding and transfer to a permanent housing affects the quality of the final image, comparing predicted results to a full x-ray test on a primary secondary pair.
Rise time measurement for ultrafast X-ray pulses
Celliers, Peter M [Berkeley, CA; Weber, Franz A [Oakland, CA; Moon, Stephen J [Tracy, CA
2005-04-05
A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.
Rise Time Measurement for Ultrafast X-Ray Pulses
Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.
2005-04-05
A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.
Nho, Hyun Woo; Kalegowda, Yogesh; Shin, Hyun-Joon; Yoon, Tae Hyun
2016-01-01
For the structural characterization of the polystyrene (PS)-based photonic crystals (PCs), fast and direct imaging capabilities of full field transmission X-ray microscopy (TXM) were demonstrated at soft X-ray energy. PS-based PCs were prepared on an O2-plasma treated Si3N4 window and their local structures and defects were investigated using this label-free TXM technique with an image acquisition speed of ~10 sec/frame and marginal radiation damage. Micro-domains of face-centered cubic (FCC (111)) and hexagonal close-packed (HCP (0001)) structures were dominantly found in PS-based PCs, while point and line defects, FCC (100), and 12-fold symmetry structures were also identified as minor components. Additionally, in situ observation capability for hydrated samples and 3D tomographic reconstruction of TXM images were also demonstrated. This soft X-ray full field TXM technique with faster image acquisition speed, in situ observation, and 3D tomography capability can be complementally used with the other X-ray microscopic techniques (i.e., scanning transmission X-ray microscopy, STXM) as well as conventional characterization methods (e.g., electron microscopic and optical/fluorescence microscopic techniques) for clearer structure identification of self-assembled PCs and better understanding of the relationship between their structures and resultant optical properties. PMID:27087141
Correlative analysis of hard and soft x ray observations of solar flares
NASA Technical Reports Server (NTRS)
Zarro, Dominic M.
1994-01-01
We have developed a promising new technique for jointly analyzing BATSE hard X-ray observations of solar flares with simultaneous soft X-ray observations. The technique is based upon a model in which electric currents and associated electric fields are responsible for the respective heating and particle acceleration that occur in solar flares. A useful by-product of this technique is the strength and evolution of the coronal electric field. The latter permits one to derive important flare parameters such as the current density, the number of current filaments composing the loop, and ultimately the hard X-ray spectrum produced by the runaway electrons. We are continuing to explore the technique by applying it to additional flares for which we have joint BATSE/Yohkoh observations. A central assumption of our analysis is the constant of proportionality alpha relating the hard X-ray flux above 50 keV and the rate of electron acceleration. For a thick-target model of hard X-ray production, it can be shown that cv is in fact related to the spectral index and low-energy cutoff of precipitating electrons. The next step in our analysis is to place observational constraints on the latter parameters using the joint BATSE/Yohkoh data.
Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk
2016-05-15
X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicabilitymore » in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.« less
Radiation exposure in X-ray-based imaging techniques used in osteoporosis
Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.
2010-01-01
Recent advances in medical X-ray imaging have enabled the development of new techniques capable of assessing not only bone quantity but also structure. This article provides (a) a brief review of the current X-ray methods used for quantitative assessment of the skeleton, (b) data on the levels of radiation exposure associated with these methods and (c) information about radiation safety issues. Radiation doses associated with dual-energy X-ray absorptiometry are very low. However, as with any X-ray imaging technique, each particular examination must always be clinically justified. When an examination is justified, the emphasis must be on dose optimisation of imaging protocols. Dose optimisation is more important for paediatric examinations because children are more vulnerable to radiation than adults. Methods based on multi-detector CT (MDCT) are associated with higher radiation doses. New 3D volumetric hip and spine quantitative computed tomography (QCT) techniques and high-resolution MDCT for evaluation of bone structure deliver doses to patients from 1 to 3 mSv. Low-dose protocols are needed to reduce radiation exposure from these methods and minimise associated health risks. PMID:20559834
NASA Astrophysics Data System (ADS)
Astolfo, Alberto; Arfelli, Fulvia; Schültke, Elisabeth; James, Simon; Mancini, Lucia; Menk, Ralf-Hendrik
2013-03-01
In the present study complementary high-resolution imaging techniques on different length scales are applied to elucidate a cellular loading protocol of gold nanoparticles and subsequently its impact on long term and high-resolution cell-tracking utilizing X-ray technology. Although demonstrated for malignant cell lines the results can be applied to non-malignant cell lines as well. In particular the accumulation of the gold marker per cell has been assessed quantitatively by virtue of electron microscopy, two-dimensional X-ray fluorescence imaging techniques and X-ray CT with micrometric and sub-micrometric resolution. Moreover, utilizing these techniques the three dimensional distribution of the incorporated nanoparticles, which are sequestered in lysosomes as a permanent marker, could be determined. The latter allowed elucidation of the gold partition during mitosis and the cell size, which subsequently enabled us to define the optimal instrument settings of a compact microCT system to visualize gold loaded cells. The results obtained demonstrate the feasibility of cell-tracking using X-ray CT with compact sources.
3D X-ray ultra-microscopy of bone tissue.
Langer, M; Peyrin, F
2016-02-01
We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features.
Autonomous Modelling of X-ray Spectra Using Robust Global Optimization Methods
NASA Astrophysics Data System (ADS)
Rogers, Adam; Safi-Harb, Samar; Fiege, Jason
2015-08-01
The standard approach to model fitting in X-ray astronomy is by means of local optimization methods. However, these local optimizers suffer from a number of problems, such as a tendency for the fit parameters to become trapped in local minima, and can require an involved process of detailed user intervention to guide them through the optimization process. In this work we introduce a general GUI-driven global optimization method for fitting models to X-ray data, written in MATLAB, which searches for optimal models with minimal user interaction. We directly interface with the commonly used XSPEC libraries to access the full complement of pre-existing spectral models that describe a wide range of physics appropriate for modelling astrophysical sources, including supernova remnants and compact objects. Our algorithm is powered by the Ferret genetic algorithm and Locust particle swarm optimizer from the Qubist Global Optimization Toolbox, which are robust at finding families of solutions and identifying degeneracies. This technique will be particularly instrumental for multi-parameter models and high-fidelity data. In this presentation, we provide details of the code and use our techniques to analyze X-ray data obtained from a variety of astrophysical sources.
Combining X-ray and neutron crystallography with spectroscopy.
Kwon, Hanna; Smith, Oliver; Raven, Emma Lloyd; Moody, Peter C E
2017-02-01
X-ray protein crystallography has, through the determination of the three-dimensional structures of enzymes and their complexes, been essential to the understanding of biological chemistry. However, as X-rays are scattered by electrons, the technique has difficulty locating the presence and position of H atoms (and cannot locate H + ions), knowledge of which is often crucially important for the understanding of enzyme mechanism. Furthermore, X-ray irradiation, through photoelectronic effects, will perturb the redox state in the crystal. By using single-crystal spectrophotometry, reactions taking place in the crystal can be monitored, either to trap intermediates or follow photoreduction during X-ray data collection. By using neutron crystallography, the positions of H atoms can be located, as it is the nuclei rather than the electrons that scatter neutrons, and the scattering length is not determined by the atomic number. Combining the two techniques allows much greater insight into both reaction mechanism and X-ray-induced photoreduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alp, E.E.; Mini, S.M.; Ramanathan, M.
1990-04-01
The x-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. It has also played an important role in the discovery and systematization of rare-earth elements. The discovery of synchrotron radiation in 1952, and later the availability of broadly tunable synchrotron based x-ray sources have revitalized this technique since the 1970's. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge by Sayers et. al. has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-raymore » Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. An excellent description of the principles and data analysis techniques of EXAFS is given by Teo. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, we will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and samples limitations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butterworth, A.L.; Becker, N.; Gainsforth, Z.
2012-03-13
Quantification of synchrotron XRF analyses is typically done through comparisons with measurements on the NIST SRM 1832/1833 thin film standards. Unfortunately, these standards are inhomogeneous on small scales at the tens of percent level. We are synthesizing new homogeneous multilayer standards using the Atomic Layer Deposition technique and characterizing them using multiple analytical methods, including ellipsometry, Rutherford Back Scattering at Evans Analytical, Synchrotron X-ray Fluorescence (SXRF) at Advanced Photon Source (APS) Beamline 13-ID, Synchrotron X-ray Absorption Spectroscopy (XAS) at Advanced Light Source (ALS) Beamlines 11.0.2 and 5.3.2.1 and by electron microscopy techniques. Our motivation for developing much-needed cross-calibration of synchrotronmore » techniques is borne from coordinated analyses of particles captured in the aerogel of the NASA Stardust Interstellar Dust Collector (SIDC). The Stardust Interstellar Dust Preliminary Examination (ISPE) team have characterized three sub-nanogram, {approx}1{micro}m-sized fragments considered as candidates to be the first contemporary interstellar dust ever collected, based on their chemistries and trajectories. The candidates were analyzed in small wedges of aerogel in which they were extracted from the larger collector, using high sensitivity, high spatial resolution >3 keV synchrotron x-ray fluorescence spectroscopy (SXRF) and <2 keV synchrotron x-ray transmission microscopy (STXM) during Stardust ISPE. The ISPE synchrotron techniques have complementary capabilities. Hard X-ray SXRF is sensitive to sub-fg mass of elements Z {ge} 20 (calcium) and has a spatial resolution as low as 90nm. X-ray Diffraction data were collected simultaneously with SXRF data. Soft X-ray STXM at ALS beamline 11.0.2 can detect fg-mass of most elements, including cosmochemically important oxygen, magnesium, aluminum and silicon, which are invisible to SXRF in this application. ALS beamline 11.0.2 has spatial resolution better than 25 nm. Limiting factors for Stardust STXM analyses were self-imposed limits of photon dose due to radiation damage concerns, and significant attenuation of <1500 eV X-rays by {approx}80{micro}m thick, {approx}25 mg/cm{sup 3} density silica aerogel capture medium. In practice, the ISPE team characterized the major, light elements using STXM (O, Mg, Al, Si) and the heavier minor and trace elements using SXRF. The two data sets overlapped only with minor Fe and Ni ({approx}1% mass abundance), providing few quantitative cross-checks. New improved standards for cross calibration are essential for consortium-based analyses of Stardust interstellar and cometary particles, IDPs. Indeed, they have far reaching application across the whole synchrotron-based analytical community. We have synthesized three ALD multilayers simultaneously on silicon nitride membranes and silicon and characterized them using RBS (on Si), XRF (on Si{sub 3}N{sub 4}) and STXM/XAS (holey Si{sub 3}N{sub 4}). The systems we have started to work with are Al-Zn-Fe and Y-Mg-Er. We have found these ALD multi-layers to be uniform at {micro}m- to nm scales, and have found excellent consistency between four analytical techniques so far. The ALD films can also be used as a standard for e-beam instruments, eg., TEM EELS or EDX. After some early issues with the consistency of coatings to the back-side of the membrane windows, we are confident to be able to show multi-analytical agreement to within 10%. As the precision improves, we can use the new standards to verify or improve the tabulated cross-sections.« less
Ren, Kuan; Liu, Shenye; Du, Huabing; Hou, Lifei; Jing, Longfei; Zhao, Yang; Yang, Zhiwen; Wei, Minxi; Deng, Keli; Yao, Li; Yang, Guohong; Li, Sanwei; Lan, Ke; Liu, Jie; Zhu, Xiaoli; Ding, Yongkun; Yi, Lin
2015-10-01
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). The different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Kuan; Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-986, Mianyang 621900; Liu, Shenye, E-mail: lsye1029@163.com
2015-10-15
The space-resolving measurement of X-ray flux from a specific area (laser spot, re-emitting wall, or capsule) inside the hohlraum is an ongoing and critical problem in indirectly driven inertial-confinement fusion experiments. In this work, we developed a new two-dimensional space-resolving flux detection technique to measure the X-ray flux from specific areas inside the hohlraum by using the time- and space-resolving flux detector (SRFD). In two typical hohlraum experiments conducted at the Shenguang-III prototype laser facility, the X-ray flux and radiation temperature from an area 0.2 mm in diameter inside the hohlraum were measured through the laser entrance hole (LEH). Themore » different flux intensities and radiation temperatures detected using the SRFD from the inner area of the LEH were compared with the result measured using the flat-response X-ray detector from the entire LEH. This comparison was also analyzed theoretically. The inner area detected using the SRFD was found to be the re-emitting wall area alone. This important improvement in space-resolving X-ray flux measurement will enhance the current X-ray flux space characterization techniques, thereby furthering the quantitative understanding of X-ray flux space behavior in the hohlraum.« less
From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper
NASA Astrophysics Data System (ADS)
Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal
2016-02-01
X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.
NASA Technical Reports Server (NTRS)
Worrall, Diana M.
1994-01-01
This report summarizes the activities related to two ROSAT investigations: (1) x-ray properties of radio galaxies thought to contain BL Lac type nuclei; and (2) x-ray spectra of a complete sample of flat-spectrum radio sources. The following papers describing the research are provided as attachments: Multiple X-ray Emission Components in Low Power Radio Galaxies; New X-ray Results on Radio Galaxies; Analysis Techniques for a Multiwavelength Study of Radio Galaxies; Separation of X-ray Emission Components in Radio Galaxies; X-ray Emission in Powerful Radio Galaxies and Quasars; Extended and Compact X-ray Emission in Powerful Radio Galaxies; and X-ray Spectra of a Complete Sample of Extragalactic Core-dominated Radio Sources.
New developments of X-ray fluorescence imaging techniques in laboratory
NASA Astrophysics Data System (ADS)
Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki
2015-11-01
X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.
MMX-I: A data-processing software for multi-modal X-ray imaging and tomography
NASA Astrophysics Data System (ADS)
Bergamaschi, A.; Medjoubi, K.; Messaoudi, C.; Marco, S.; Somogyi, A.
2017-06-01
Scanning hard X-ray imaging allows simultaneous acquisition of multimodal information, including X-ray fluorescence, absorption, phase and dark-field contrasts, providing structural and chemical details of the samples. Combining these scanning techniques with the infrastructure developed for fast data acquisition at Synchrotron Soleil permits to perform multimodal imaging and tomography during routine user experiments at the Nanoscopium beamline. A main challenge of such imaging techniques is the online processing and analysis of the generated very large volume (several hundreds of Giga Bytes) multimodal data-sets. This is especially important for the wide user community foreseen at the user oriented Nanoscopium beamline (e.g. from the fields of Biology, Life Sciences, Geology, Geobiology), having no experience in such data-handling. MMX-I is a new multi-platform open-source freeware for the processing and reconstruction of scanning multi-technique X-ray imaging and tomographic datasets. The MMX-I project aims to offer, both expert users and beginners, the possibility of processing and analysing raw data, either on-site or off-site. Therefore we have developed a multi-platform (Mac, Windows and Linux 64bit) data processing tool, which is easy to install, comprehensive, intuitive, extendable and user-friendly. MMX-I is now routinely used by the Nanoscopium user community and has demonstrated its performance in treating big data.
Digital enhancement of X-rays for NDT
NASA Technical Reports Server (NTRS)
Butterfield, R. L.
1980-01-01
Report is "cookbook" for digital processing of industrial X-rays. Computer techniques, previously used primarily in laboratory and developmental research, have been outlined and codified into step by step procedures for enhancing X-ray images. Those involved in nondestructive testing should find report valuable asset, particularly is visual inspection is method currently used to process X-ray images.
NASA Astrophysics Data System (ADS)
Bradley, D. A.; Farquharson, M. J.; Gundogdu, O.; Al-Ebraheem, Alia; Che Ismail, Elna; Kaabar, W.; Bunk, O.; Pfeiffer, F.; Falkenberg, G.; Bailey, M.
2010-02-01
The investigations reported herein link tissue structure and elemental presence with issues of environmental health and disease, exemplified by uptake and storage of potentially toxic elements in the body, the osteoarthritic condition and malignancy in the breast and other soft tissues. Focus is placed on application of state-of-the-art ionizing radiation techniques, including, micro-synchrotron X-ray fluorescence (μ-SXRF) and particle-induced X-ray emission/Rutherford backscattering mapping (μ-PIXE/RBS), coherent small-angle X-ray scattering (cSAXS) and X-ray phase-contrast imaging, providing information on elemental make-up, the large-scale organisation of collagen and anatomical features of moderate and low atomic number media. For the particular situations under investigation, use of such facilities is allowing information to be obtained at an unprecedented level of detail, yielding new understanding of the affected tissues and the progression of disease.
Dental Radiology I Student Guide [and Instructor Guide].
ERIC Educational Resources Information Center
Fox Valley Technical Coll., Appleton, WI.
The dental radiology student and instructor guides provide instruction in the following units: (1) x-ray physics; (2) x-ray production; (3) radiation health and safety; (4) radiographic anatomy and pathology; (5) darkroom setup and chemistry; (6) bisecting angle technique; (7) paralleling technique; (8) full mouth survey technique--composition and…
NASA Technical Reports Server (NTRS)
Donahue, Megan; Scharf, Caleb A.; Mack, Jennifer; Lee, Y. Paul; Postman, Marc; Rosait, Piero; Dickinson, Mark; Voit, G. Mark; Stocke, John T.
2002-01-01
We present and analyze the optical and X-ray catalogs of moderate-redshift cluster candidates from the ROSA TOptical X-Ray Survey, or ROXS. The survey covers the sky area contained in the fields of view of 23 deep archival ROSA T PSPC pointings, 4.8 square degrees. The cross-correlated cluster catalogs were con- structed by comparing two independent catalogs extracted from the optical and X-ray bandpasses, using a matched-filter technique for the optical data and a wavelet technique for the X-ray data. We cross-identified cluster candidates in each catalog. As reported in Paper 1, the matched-filter technique found optical counter- parts for at least 60% (26 out of 43) of the X-ray cluster candidates; the estimated redshifts from the matched filter algorithm agree with at least 7 of 1 1 spectroscopic confirmations (Az 5 0.10). The matched filter technique. with an imaging sensitivity of ml N 23, identified approximately 3 times the number of candidates (155 candidates, 142 with a detection confidence >3 u) found in the X-ray survey of nearly the same area. There are 57 X-ray candidates, 43 of which are unobscured by scattered light or bright stars in the optical images. Twenty-six of these have fairly secure optical counterparts. We find that the matched filter algorithm, when applied to images with galaxy flux sensitivities of mI N 23, is fairly well-matched to discovering z 5 1 clusters detected by wavelets in ROSAT PSPC exposures of 8000-60,000 s. The difference in the spurious fractions between the optical and X-ray (30%) and IO%, respectively) cannot account for the difference in source number. In Paper I, we compared the optical and X-ray cluster luminosity functions and we found that the luminosity functions are consistent if the relationship between X-ray and optical luminosities is steep (Lx o( L&f). Here, in Paper 11, we present the cluster catalogs and a numerical simulation of the ROXS. We also present color-magnitude plots for several of the cluster candidates, and examine the prominence of the red sequence in each. We find that the X-ray clusters in our survey do not all have a prominent red sequence. We conclude that while the red sequence may be a distinct feature in the color-magnitude plots for virialized massive clusters, it may be less distinct in lower mass clusters of galaxies at even moderate redshifts. Multiple, complementary methods of selecting and defining clusters may be essential, particularly at high redshift where all methods start to run into completeness limits, incomplete understanding of physical evolution, and projection effects.
New X-Ray Technique to Characterize Nanoscale Precipitates in Aged Aluminum Alloys
NASA Astrophysics Data System (ADS)
Sitdikov, V. D.; Murashkin, M. Yu.; Valiev, R. Z.
2017-10-01
This paper puts forward a new technique for measurement of x-ray patterns, which enables to solve the problem of identification and determination of precipitates (nanoscale phases) in metallic alloys of the matrix type. The minimum detection limit of precipitates in the matrix of the base material provided by this technique constitutes as little as 1%. The identification of precipitates in x-ray patterns and their analysis are implemented through a transmission mode with a larger radiation area, longer holding time and higher diffractometer resolution as compared to the conventional reflection mode. The presented technique has been successfully employed to identify and quantitatively describe precipitates formed in the Al alloy of the Al-Mg-Si system as a result of artificial aging. For the first time, the x-ray phase analysis has been used to identify and measure precipitates formed during the alloy artificial aging.
Nondestructive Evaluation (NDE) for Inspection of Composite Sandwich Structures
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Parker, F. Raymond
2014-01-01
Composite honeycomb structures are widely used in aerospace applications due to their low weight and high strength advantages. Developing nondestructive evaluation (NDE) inspection methods are essential for their safe performance. Flash thermography is a commonly used technique for composite honeycomb structure inspections due to its large area and rapid inspection capability. Flash thermography is shown to be sensitive for detection of face sheet impact damage and face sheet to core disbond. Data processing techniques, using principal component analysis to improve the defect contrast, are discussed. Limitations to the thermal detection of the core are investigated. In addition to flash thermography, X-ray computed tomography is used. The aluminum honeycomb core provides excellent X-ray contrast compared to the composite face sheet. The X-ray CT technique was used to detect impact damage, core crushing, and skin to core disbonds. Additionally, the X-ray CT technique is used to validate the thermography results.
Methods for coherent lensless imaging and X-ray wavefront measurements
NASA Astrophysics Data System (ADS)
Guizar Sicairos, Manuel
X-ray diffractive imaging is set apart from other high-resolution imaging techniques (e.g. scanning electron or atomic force microscopy) for its high penetration depth, which enables tomographic 3D imaging of thick samples and buried structures. Furthermore, using short x-ray pulses, it enables the capability to take ultrafast snapshots, giving a unique opportunity to probe nanoscale dynamics at femtosecond time scales. In this thesis we present improvements to phase retrieval algorithms, assess their performance through numerical simulations, and develop new methods for both imaging and wavefront measurement. Building on the original work by Faulkner and Rodenburg, we developed an improved reconstruction algorithm for phase retrieval with transverse translations of the object relative to the illumination beam. Based on gradient-based nonlinear optimization, this algorithm is capable of estimating the object, and at the same time refining the initial knowledge of the incident illumination and the object translations. The advantages of this algorithm over the original iterative transform approach are shown through numerical simulations. Phase retrieval has already shown substantial success in wavefront sensing at optical wavelengths. Although in principle the algorithms can be used at any wavelength, in practice the focus-diversity mechanism that makes optical phase retrieval robust is not practical to implement for x-rays. In this thesis we also describe the novel application of phase retrieval with transverse translations to the problem of x-ray wavefront sensing. This approach allows the characterization of the complex-valued x-ray field in-situ and at-wavelength and has several practical and algorithmic advantages over conventional focused beam measurement techniques. A few of these advantages include improved robustness through diverse measurements, reconstruction from far-field intensity measurements only, and significant relaxation of experimental requirements over other beam characterization approaches. Furthermore, we show that a one-dimensional version of this technique can be used to characterize an x-ray line focus produced by a cylindrical focusing element. We provide experimental demonstrations of the latter at hard x-ray wavelengths, where we have characterized the beams focused by a kinoform lens and an elliptical mirror. In both experiments the reconstructions exhibited good agreement with independent measurements, and in the latter a small mirror misalignment was inferred from the phase retrieval reconstruction. These experiments pave the way for the application of robust phase retrieval algorithms for in-situ alignment and performance characterization of x-ray optics for nanofocusing. We also present a study on how transverse translations help with the well-known uniqueness problem of one-dimensional phase retrieval. We also present a novel method for x-ray holography that is capable of reconstructing an image using an off-axis extended reference in a non-iterative computation, greatly generalizing an earlier approach by Podorov et al. The approach, based on the numerical application of derivatives on the field autocorrelation, was developed from first mathematical principles. We conducted a thorough theoretical study to develop technical and intuitive understanding of this technique and derived sufficient separation conditions required for an artifact-free reconstruction. We studied the effects of missing information in the Fourier domain, and of an imperfect reference, and we provide a signal-to-noise ratio comparison with the more traditional approach of Fourier transform holography. We demonstrated this new holographic approach through proof-of-principle optical experiments and later experimentally at soft x-ray wavelengths, where we compared its performance to Fourier transform holography, iterative phase retrieval and state-of-the-art zone-plate x-ray imaging techniques (scanning and full-field). Finally, we present a demonstration of the technique using a single 20 fs pulse from a high-harmonic table-top source. Holography with an extended reference is shown to provide fast, good quality images that are robust to noise and artifacts that arise from missing information due to a beam stop. (Abstract shortened by UMI.)
Bismuth Passivation Technique for High-Resolution X-Ray Detectors
NASA Technical Reports Server (NTRS)
Chervenak, James; Hess, Larry
2013-01-01
The Athena-plus team requires X-ray sensors with energy resolution of better than one part in 3,000 at 6 keV X-rays. While bismuth is an excellent material for high X-ray stopping power and low heat capacity (for large signal when an X-ray is stopped by the absorber), oxidation of the bismuth surface can lead to electron traps and other effects that degrade the energy resolution. Bismuth oxide reduction and nitride passivation techniques analogous to those used in indium passivation are being applied in a new technique. The technique will enable improved energy resolution and resistance to aging in bismuth-absorber-coupled X-ray sensors. Elemental bismuth is lithographically integrated into X-ray detector circuits. It encounters several steps where the Bi oxidizes. The technology discussed here will remove oxide from the surface of the Bi and replace it with nitridized surface. Removal of the native oxide and passivating to prevent the growth of the oxide will improve detector performance and insulate the detector against future degradation from oxide growth. Placing the Bi coated sensor in a vacuum system, a reduction chemistry in a plasma (nitrogen/hydrogen (N2/H2) + argon) is used to remove the oxide and promote nitridization of the cleaned Bi surface. Once passivated, the Bi will perform as a better X-ray thermalizer since energy will not be trapped in the bismuth oxides on the surface. A simple additional step, which can be added at various stages of the current fabrication process, can then be applied to encapsulate the Bi film. After plasma passivation, the Bi can be capped with a non-diffusive layer of metal or dielectric. A non-superconducting layer is required such as tungsten or tungsten nitride (WNx).
Laboratory-size three-dimensional water-window x-ray microscope with Wolter type I mirror optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohsuka, Shinji; The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202; Ohba, Akira
2016-01-28
We constructed a laboratory-size three-dimensional water-window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques. It consists of an electron-impact x-ray source emitting oxygen Kα x-rays, Wolter type I grazing incidence mirror optics, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit better than 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm-scale three-dimensional fine structures were resolved.
Phase-contrast x-ray computed tomography for observing biological specimens and organic materials
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji
1995-02-01
A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.
The Expanding Role of the Atom in the Humanities
ERIC Educational Resources Information Center
Seaborg, Glenn T.
1970-01-01
The techniques of radioactive dating, thermoluminescence dating, cesium magnetometer detecting, x-ray flourescence analysis, and neutron radiography are briefly explained. Examples are given in the use of techniques in determining age and composition of paintings, ceramics, and archeological finds. Included is a history of Lawrence Radiation…
Elementary review of electron microprobe techniques and correction requirements
NASA Technical Reports Server (NTRS)
Hart, R. K.
1968-01-01
Report contains requirements for correction of instrumented data on the chemical composition of a specimen, obtained by electron microprobe analysis. A condensed review of electron microprobe techniques is presented, including background material for obtaining X ray intensity data corrections and absorption, atomic number, and fluorescence corrections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Młyńczak, J.; Sawicz-Kryniger, K.; Fry, A. R.
2014-01-01
The Linac coherent light source (LCLS) at the SLAC National Accelerator Laboratory (SLAC) is the world’s first hard X-ray free electron laser (XFEL) and is capable of producing high-energy, femtosecond duration X-ray pulses. A common technique to study fast timescale physical phenomena, various “pump/probe” techniques are used. In these techniques there are two lasers, one optical and one X-ray, that work as a pump and as a probe to study dynamic processes in atoms and molecules. In order to resolve phenomena that occur on femtosecond timescales, it is imperative to have very precise timing between the optical lasers and X-raysmore » (on the order of ~ 20 fs or better). The lasers are synchronized to the same RF source that drives the accelerator and produces the X-ray laser. However, elements in the lasers cause some drift and time jitter, thereby de-synchronizing the system. This paper considers cross-correlation technique as a way to quantify the drift and jitter caused by the regenerative amplifier of the ultrafast optical laser.« less
Calcium measurements with electron probe X-ray and electron energy loss analysis.
LeFurgey, A; Ingram, P
1990-03-01
This paper presents a broad survey of the rationale for electron probe X-ray microanalysis (EPXMA) and the various methods for obtaining qualitative and quantitative information on the distribution and amount of elements, particularly calcium, in cryopreserved cells and tissues. Essential in an introductory consideration of microanalysis in biological cryosections is the physical basis for the instrumentation, fundamentals of X-ray spectrometry, and various analytical modes such as static probing and X-ray imaging. Some common artifacts are beam damage and contamination. Inherent pitfalls of energy dispersive X-ray systems include Si escape peaks, doublets, background, and detector calibration shifts. Quantitative calcium analysis of thin cryosections is carried out in real time using a multiple least squares fitting program on filtered X-ray spectra and normalizing the calcium peak to a portion of the continuum. Recent work includes the development of an X-ray imaging system where quantitative data can be retrieved off-line. The minimum detectable concentration of calcium in biological cryosections is approximately 300 mumole kg dry weight with a spatial resolution of approximately 100 A. The application of electron energy loss (EELS) techniques to the detection of calcium offers the potential for greater sensitivity and spatial resolution in measurement and imaging. Determination of mass thickness with EELS can facilitate accurate calculation of wet weight concentrations from frozen hydrated and freeze-dried specimens. Calcium has multiple effects on cell metabolism, membrane transport and permeability and, thus, on overall cell physiology or pathophysiology. Cells can be rapidly frozen for EPXMA during basal or altered functional conditions to delineate the location and amount of calcium within cells and the changes in location and concentration of cations or anions accompanying calcium redistribution. Recent experiments in our laboratory document that EPXMA in combination with other biochemical and electrophysiological techniques can be used to study, for example, sodium and calcium compartmentation in cultured cardiac cells. Such analyses can also be used to clarify the role of calcium in anoxic renal cell injury and to evaluate proposed ionic defects in cells of individuals with cystic fibrosis.
Illicit drug detection using energy dispersive x-ray diffraction
NASA Astrophysics Data System (ADS)
Cook, E. J.; Griffiths, J. A.; Koutalonis, M.; Gent, C.; Pani, S.; Horrocks, J. A.; George, L.; Hardwick, S.; Speller, R.
2009-05-01
Illicit drugs are imported into countries in myriad ways, including via the postal system and courier services. An automated system is required to detect drugs in parcels for which X-ray diffraction is a suitable technique as it is non-destructive, material specific and uses X-rays of sufficiently high energy to penetrate parcels containing a range of attenuating materials. A database has been constructed containing the measured powder diffraction profiles of several thousand materials likely to be found in parcels. These include drugs, cutting agents, packaging and other innocuous materials. A software model has been developed using these data to predict the diffraction profiles which would be obtained by X-ray diffraction systems with a range of suggested detector (high purity germanium, CZT and scintillation), source and collimation options. The aim of the model was to identify the most promising system geometries, which was done with the aid of multivariate analysis (MVA). The most promising systems were constructed and tested. The diffraction profiles of a range of materials have been measured and used to both validate the model and to identify the presence of drugs in sample packages.
2009-07-01
detection, and management of breast cancer today. A variety of imaging methods including screening and diagnostic x- ray mammography and resonance...profile of a tumor. In addition, techniques such as x- ray imaging and MRI are not able to detect small early cancers or pre-cancerous breast...227 (2007). 18. S. Oldenburg , J. Jackson, S. Westcott, and N. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75, 2897
One body, many heads; the Cerberus of catalysis. A new multipurpose in-situ cell for XAS at ALBA
NASA Astrophysics Data System (ADS)
Guilera, G.; Rey, F.; Hernández-Fenollosa, J.; Cortés-Vergaz, J. J.
2013-04-01
A new multi-purpose in-situ cell and its control system have been developed for synchrotron-based techniques as are X-Ray Absorption spectroscopy (XAS) and X-Ray Diffraction (XRD). The cell is made of a stainless steel 'body' and three different exchangeable 'heads' to tackle different scientific areas that include solid-gas catalysis, solid-liquid catalysis and electrocatalysis. The different versions of the cell are herein described and their functionality is exemplified by some case studies.
1990-01-01
schedule soon, while in the percutaneous one auto-fluorescence spectroscopy could be the closest technique to be effectively included in the angioplasty...experiments Dashed line: Amplifier mode experiments ( scheduled ) Fig. 3 Schematic of laser, pulsed power, and X-ray preionizer 3. Pulsed Power 4. X-Ray...of KrF Amplifier * scheduled ** estimated value 120 CONDENSED PHASE RARE GAS HALIDE EXCIPLEX LASERS V. Ara Apkarian Professor of Chemistry Department
A three-image algorithm for hard x-ray grating interferometry.
Pelliccia, Daniele; Rigon, Luigi; Arfelli, Fulvia; Menk, Ralf-Hendrik; Bukreeva, Inna; Cedola, Alessia
2013-08-12
A three-image method to extract absorption, refraction and scattering information for hard x-ray grating interferometry is presented. The method comprises a post-processing approach alternative to the conventional phase stepping procedure and is inspired by a similar three-image technique developed for analyzer-based x-ray imaging. Results obtained with this algorithm are quantitatively comparable with phase-stepping. This method can be further extended to samples with negligible scattering, where only two images are needed to separate absorption and refraction signal. Thanks to the limited number of images required, this technique is a viable route to bio-compatible imaging with x-ray grating interferometer. In addition our method elucidates and strengthens the formal and practical analogies between grating interferometry and the (non-interferometric) diffraction enhanced imaging technique.
Munro, Peter R.T.; Ignatyev, Konstantin; Speller, Robert D.; Olivo, Alessandro
2013-01-01
X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation. PMID:20389424
Munro, Peter R T; Ignatyev, Konstantin; Speller, Robert D; Olivo, Alessandro
2010-03-01
X-ray phase contrast imaging is a very promising technique which may lead to significant advancements in medical imaging. One of the impediments to the clinical implementation of the technique is the general requirement to have an x-ray source of high coherence. The radiation physics group at UCL is currently developing an x-ray phase contrast imaging technique which works with laboratory x-ray sources. Validation of the system requires extensive modelling of relatively large samples of tissue. To aid this, we have undertaken a study of when geometrical optics may be employed to model the system in order to avoid the need to perform a computationally expensive wave optics calculation. In this paper, we derive the relationship between the geometrical and wave optics model for our system imaging an infinite cylinder. From this model we are able to draw conclusions regarding the general applicability of the geometrical optics approximation.
Demonstration of the feasibility of an integrated x ray laboratory for planetary exploration
NASA Technical Reports Server (NTRS)
Franco, E. D.; Kerner, J. A.; Koppel, L. N.; Boyle, M. J.
1993-01-01
The identification of minerals and elemental compositions is an important component in the geological and exobiological exploration of the solar system. X ray diffraction and fluorescence are common techniques for obtaining these data. The feasibility of combining these analytical techniques in an integrated x ray laboratory compatible with the volume, mass, and power constraints imposed by many planetary missions was demonstrated. Breadboard level hardware was developed to cover the range of diffraction lines produced by minerals, clays, and amorphous; and to detect the x ray fluorescence emissions of elements from carbon through uranium. These breadboard modules were fabricated and used to demonstrate the ability to detect elements and minerals. Additional effort is required to establish the detection limits of the breadboard modules and to integrate diffraction and fluorescence techniques into a single unit. It was concluded that this integrated x ray laboratory capability will be a valuable tool in the geological and exobiological exploration of the solar system.
Synchrotron x-ray imaging of acoustic cavitation bubbles induced by acoustic excitation
NASA Astrophysics Data System (ADS)
Jung, Sung Yong; Park, Han Wook; Park, Sung Ho; Lee, Sang Joon
2017-04-01
The cavitation induced by acoustic excitation has been widely applied in various biomedical applications because cavitation bubbles can enhance the exchanges of mass and energy. In order to minimize the hazardous effects of the induced cavitation, it is essential to understand the spatial distribution of cavitation bubbles. The spatial distribution of cavitation bubbles visualized by the synchrotron x-ray imaging technique is compared to that obtained with a conventional x-ray tube. Cavitation bubbles with high density in the region close to the tip of the probe are visualized using the synchrotron x-ray imaging technique, however, the spatial distribution of cavitation bubbles in the whole ultrasound field is not detected. In this study, the effects of the ultrasound power of acoustic excitation and working medium on the shape and density of the induced cavitation bubbles are examined. As a result, the synchrotron x-ray imaging technique is useful for visualizing spatial distributions of cavitation bubbles, and it could be used for optimizing the operation conditions of acoustic cavitation.
Spectra of cosmic X-ray sources
NASA Technical Reports Server (NTRS)
Holt, S. S.; Mccray, R.
1982-01-01
X-ray measurements provide the most direct probes of astrophysical environments with temperatures exceeding one million K. Progress in experimental research utilizing dispersive techniques (e.g., Bragg and grating spectroscopy) is considerably slower than that in areas utilizing photometric techniques, because of the relative inefficiency of the former for the weak X-ray signals from celestial sources. As a result, the term "spectroscopy" as applied to X-ray astronomy has traditionally satisfied a much less restrictive definition (in terms of resolving power) than it has in other wavebands. Until quite recently, resolving powers of order unity were perfectly respectable, and still provide (in most cases) the most useful spectroscopic data. In the broadest sense, X-ray photometric measurements are spectroscopic, insofar as they represent samples of the overall electromagnetic continua of celestial objects.
Simultaneous parameter optimization of x-ray and neutron reflectivity data using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Surendra, E-mail: surendra@barc.gov.in; Basu, Saibal
2016-05-23
X-ray and neutron reflectivity are two non destructive techniques which provide a wealth of information on thickness, structure and interracial properties in nanometer length scale. Combination of X-ray and neutron reflectivity is well suited for obtaining physical parameters of nanostructured thin films and superlattices. Neutrons provide a different contrast between the elements than X-rays and are also sensitive to the magnetization depth profile in thin films and superlattices. The real space information is extracted by fitting a model for the structure of the thin film sample in reflectometry experiments. We have applied a Genetic Algorithms technique to extract depth dependentmore » structure and magnetic in thin film and multilayer systems by simultaneously fitting X-ray and neutron reflectivity data.« less
2011 U.S. National School on Neutron and X-ray Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, Jonathan; te Vethuis, Suzanne; Ekkebus, Allen E
The 13th annual U.S. National School on Neutron and X-ray Scattering was held June 11 to 25, 2011, at both Oak Ridge and Argonne National Laboratories. This school brought together 65 early career graduate students from 56 different universities in the US and provided them with a broad introduction to the techniques available at the major large-scale neutron and synchrotron x-ray facilities. This school is focused primarily on techniques relevant to the physical sciences, but also touches on cross-disciplinary bio-related scattering measurements. During the school, students received lectures by over 30 researchers from academia, industry, and national laboratories and participatedmore » in a number of short demonstration experiments at Argonne's Advanced Photon Source (APS) and Oak Ridge's Spallation neutron Source (SNS) and High Flux Isotope Reactor (HFIR) facilities to get hands-on experience in using neutron and synchrotron sources. The first week of this year's school was held at Oak Ridge National Lab, where Lab director Thom Mason welcomed the students and provided a shitorical perspective of the neutron and x-ray facilities both at Oak Ridge and Argonne. The first few days of the school were dedicated to lectures laying out the basics of scattering theory and the differences and complementarity between the neutron and x-ray probes given by Sunil Sinha. Jack Carpenter provided an introduction into how neutrons are generated and detected. After this basic introduction, the students received lectures each morning on specific techniques and conducted demonstration experiments each afternoon on one of 15 different instruments at either the SNS or HFIR. Some of the topics covered during this week of the school included inelastic neutron scattering by Bruce Gaulin, x-ray and neutron reflectivity by Chuck Majkrazak, small-angle scattering by Volker Urban, powder diffraction by Ashfia Huq and diffuse scattering by Gene Ice.« less
O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data
NASA Astrophysics Data System (ADS)
Cohen, David
O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra in order to determine the values of physically meaningful model parameters, and to place confidence limits on them. We have incorporated second-order effects into our models, including resonance scattering. We have also developed tools for modeling the X-ray opacity of the cold, X-ray absorbing wind component, which is a crucial ingredient of the technique we have developed for determining wind mass-loss rates from analyzing the ensemble of emission lines from a given star's X-ray spectrum. In addition to testing state-of-the-art wind shock models and measuring O star mass-loss rates, an important component of our proposed research program is the education of talented undergraduates. Swarthmore undergraduates have made significant contributions to the development of our line profile modeling, the wind opacity modeling, and related research topics such as laboratory astrophysics before going on to PhD programs. Two have been named as finalists for the APS's Apker prize. The research we propose here will involve two undergraduates and will likely lead to honors theses, refereed papers, and the opportunity to present their research results at national and international meetings. By measuring mass-loss rates for all the O stars for which high-resolution X-ray spectra exist and by constraining X-ray production mechanisms, we will address issues important to our understanding of stellar and galactic evolution: including the frequency of core collapse supernovae, the energetics of the Galactic interstellar medium, and the radiation conditions in star formation regions where not only new, solar-type stars form, but also where their planetary systems form and are subject to effects of high-energy emission from nearby stars. In this way, the work we are proposing in this project will make a contribution to NASA's mission to understand cosmic evolution and the conditions for generating and sustaining life in the Universe.
Using acoustic levitation in synchrotron based laser pump hard x-ray probe experiments
NASA Astrophysics Data System (ADS)
Hu, Bin; Lerch, Jason; Suthar, Kamlesh; Dichiara, Anthony
Acoustic levitation provides a platform to trap and hold a small amount of material by using standing pressure waves without a container. The technique has a potential to be used for laser pump x-ray probe experiments; x-ray scattering and laser distortion from the container can be avoided, sample consumption can be minimized, and unwanted chemistry that may occur at the container interface can be avoided. The method has been used at synchrotron sources for studying protein and pharmaceutical solutions using x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). However, pump-probe experiments require homogeneously excited samples, smaller than the absorption depth of the material that must be held stably at the intersection of both the laser and x-ray beams. We discuss 1) the role of oscillations in acoustic levitation and the optimal acoustic trapping conditions for x-ray/laser experiments, 2) opportunities to automate acoustic levitation for fast sample loading and manipulation, and 3) our experimental results using SAXS to monitor laser induced thermal expansion in gold nanoparticles solution. We also performed Finite Element Analysis to optimize the trapping performance and stability of droplets ranging from 0.4 mm to 2 mm. Our early x-ray/laser demonstrated the potential of the technique for time-resolved X-ray science.
NASA Astrophysics Data System (ADS)
Dooraghi, Alex A.; Tringe, Joseph W.
2018-04-01
To evaluate conventional munition, we simulated an x-ray computed tomography (CT) system for generating radiographs from nominal x-ray energies of 6 or 9 megaelectron volts (MeV). CT simulations, informed by measured data, allow for optimization of both system design and acquisition techniques necessary to enhance image quality. MCNP6 radiographic simulation tools were used to model ideal detector responses (DR) that assume either (1) a detector response proportional to photon flux (N) or (2) a detector response proportional to energy flux (E). As scatter may become significant with MeV x-ray systems, simulations were performed with and without the inclusion of object scatter. Simulations were compared against measurements of a cylindrical munition component principally composed of HMX, tungsten and aluminum encased in carbon fiber. Simulations and measurements used a 6 MeV peak energy x-ray spectrum filtered with 3.175 mm of tantalum. A detector response proportional to energy which includes object scatter agrees to within 0.6 % of the measured line integral of the linear attenuation coefficient. Exclusion of scatter increases the difference between measurement and simulation to 5 %. A detector response proportional to photon flux agrees to within 20 % when object scatter is included in the simulation and 27 % when object scatter is excluded.
Neutron star evolution and emission
NASA Astrophysics Data System (ADS)
Epstein, R. I.; Edwards, B. C.; Haines, T. J.
1997-01-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors investigated the evolution and radiation characteristics of individual neutron stars and stellar systems. The work concentrated on phenomena where new techniques and observations are dramatically enlarging the understanding of stellar phenomena. Part of this project was a study of x-ray and gamma-ray emission from neutron stars and other compact objects. This effort included calculating the thermal x-ray emission from young neutron stars, deriving the radio and gamma-ray emission from active pulsars and modeling intense gamma-ray bursts in distant galaxies. They also measured periodic optical and infrared fluctuations from rotating neutron stars and search for high-energy TeV gamma rays from discrete celestial sources.
High-pressure-assisted X-ray-induced damage as a new route for materials synthesis
Evlyukhin, Egor; Kim, Eunja; Goldberger, David; ...
2018-01-01
X-ray radiation induced damage has been known for decades and has largely been viewed as a tremendous nuisance; e.g., most X-ray-related studies of organic and inorganic materials suffer X-ray damage to varying degrees. Although, recent theoretical and experimental investigation of the response of simple chemical systems to X-rays offered better understanding of the mechanistic details of X-ray induced damage, the question about useful applicability of this technique is still unclear. Furthermore we experimentally demonstrate that by tuning pressure and X-ray energy, the radiation induced damage can be controlled and used for synthesis of novel materials.
ERIC Educational Resources Information Center
Markowicz, Andrzej A.; Van Grieken, Rene E.
1984-01-01
Provided is a selective literature survey of X-ray spectrometry from late 1981 to late 1983. Literature examined focuses on: excitation (photon and electron excitation and particle-induced X-ray emission; detection (wavelength-dispersive and energy-dispersive spectrometry); instrumentation and techniques; and on such quantitative analytical…
Analysis of photographic X-ray images. [S-054 telescope on Skylab
NASA Technical Reports Server (NTRS)
Krieger, A. S.
1977-01-01
Some techniques used to extract quantitative data from the information contained in photographic images produced by grazing incidence soft X-ray optical systems are described. The discussion is focussed on the analysis of the data returned by the S-054 X-Ray Spectrographic Telescope Experiment on Skylab. The parameters of the instrument and the procedures used for its calibration are described. The technique used to convert photographic density to focal plane X-ray irradiance is outlined. The deconvolution of the telescope point response function from the image data is discussed. Methods of estimating the temperature, pressure, and number density of coronal plasmas are outlined.
Commeau, R.F.; Reynolds, Leslie A.; Poag, C.W.
1985-01-01
The composition of agglutinated foraminiferal tests vary remarkably in response to local substrate characteristics, physiochemical properties of the water column and species- dependant selectivity of test components. We have employed a technique that combines a scanning electron microscope with an energy dispersive X-ray spectrometer system to identify major and minor elemental constituents of agglutinated foraminiferal walls. As a sample is bombarded with a beam of high energy electrons, X-rays are generated that are characteristic of the elements present. As a result, X- ray density maps can be produced for each of several elements present in the tests of agglutinated foraminifers.
Very high resolution UV and X-ray spectroscopy and imagery of solar active regions
NASA Technical Reports Server (NTRS)
Bruner, M.; Brown, W. A.; Haisch, B. M.
1987-01-01
A scientific investigation of the physics of the solar atmosphere, which uses the techniques of high resolution soft X-ray spectroscopy and high resolution UV imagery, is described. The experiments were conducted during a series of three sounding rocket flights. All three flights yielded excellent images in the UV range, showing unprecedented spatial resolution. The second flight recorded the X-ray spectrum of a solar flare, and the third that of an active region. A normal incidence multi-layer mirror was used during the third flight to make the first astronomical X-ray observations using this new technique.
High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation
NASA Technical Reports Server (NTRS)
Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)
2000-01-01
We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.
Echo-Enabled X-Ray Vortex Generation
NASA Astrophysics Data System (ADS)
Hemsing, E.; Marinelli, A.
2012-11-01
A technique to generate high-brightness electromagnetic vortices with tunable topological charge at extreme ultraviolet and x-ray wavelengths is described. Based on a modified version of echo-enabled harmonic generation for free-electron lasers, the technique uses two lasers and two chicanes to produce high-harmonic microbunching of a relativistic electron beam with a corkscrew distribution that matches the instantaneous helical phase structure of the x-ray vortex. The strongly correlated electron distribution emerges from an efficient three-dimensional recoherence effect in the echo-enabled harmonic generation transport line and can emit fully coherent vortices in a downstream radiator for access to new research in x-ray science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong
2015-07-15
Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at framemore » rates up to ∼10{sup 5} frames/second (fps) in air and up to ∼10{sup 4} fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.« less
Development of a 3-D X-ray system
NASA Astrophysics Data System (ADS)
Evans, James Paul Owain
The interpretation of standard two-dimensional x-ray images by humans is often very difficult. This is due to the lack of visual cues to depth in an image which has been produced by transmitted radiation. The solution put forward in this research is to introduce binocular parallax, a powerful physiological depth cue, into the resultant shadowgraph x-ray image. This has been achieved by developing a binocular stereoscopic x-ray imaging technique, which can be used for both visual inspection by human observers and also for the extraction of three-dimensional co-ordinate information. The technique is implemented in the design and development of two experimental x-ray systems and also the development of measurement algorithms. The first experimental machine is based on standard linear x-ray detector arrays and was designed as an optimum configuration for visual inspection by human observers. However, it was felt that a combination of the 3-D visual inspection capability together with a measurement facility would enhance the usefulness of the technique. Therefore, both a theoretical and an empirical analysis of the co-ordinate measurement capability of the machine has been carried out. The measurement is based on close-range photogrammetric techniques. The accuracy of the measurement has been found to be of the order of 4mm in x, 3mm in y and 6mm in z. A second experimental machine was developed and based on the same technique as that used for the first machine. However, a major departure has been the introduction of a dual energy linear x-ray detector array which will allow, in general, the discrimination between organic and inorganic substances. The second design is a compromise between ease of visual inspection for human observers and optimum three-dimensional co-ordinate measurement capability. The system is part of an on going research programme into the possibility of introducing psychological depth cues into the resultant x-ray images. The research presented in this thesis was initiated to enhance the visual interpretation of complex x-ray images, specifically in response to problems encountered in the routine screening of freight by HM. Customs and Excise. This phase of the work culminated in the development of the first experimental machine. During this work the security industry was starting to adopt a new type of x-ray detector, namely the dual energy x-ray sensor. The Department of Transport made available funding to the Police Scientific Development Branch (P.S.D.B.), part of The Home Office Science and Technology Group, to investigate the possibility of utilising the dual energy sensor in a 3-D x-ray screening system. This phase of the work culminated in the development of the second experimental machine.
A potentiometric biosensor for the detection of notch 3 using functionalized ZnO nanorods.
Ibupoto, Z H; Khun, K; Liu, X; Willander, M
2014-09-01
The notch signalling plays a vital and radical role for the activity of cellular proliferation, differentiation and apoptosis. In this study, for the first time a particular biosensor is developed for the detection of notch 3. ZnO nanorods were fabricated on the gold coated glass substrate by hydrothermal method and afterwards were decorated with the gold nanoparticles by electrodepositing technique. Scanning electron microscopy (SEM) has shown the perpendicular to the substrate growth pattern of ZnO nanorods. X-ray diffraction (XRD) studies showed the c-axis oriented growth direction with wurtzite crystal structure of ZnO nanorods. X-ray Photoelectron Spectroscopy (XPS) and energy dispersive X-ray (EDX) techniques have shown the presence of Zn, O and Au atoms in the prepared functional material. Furthermore, the anti-notch 3 was physically adsorbed on the gold nanoparticles functionalized ZnO nanorods. The developed potentiometric immunosensor has shown response to the wide range of notch 3 molecules. The detected range included 1.00 x 10(-5)-1.50 x 10(0 ) μg/mL with a sensitivity of 23.15 ± 0.31 mV/decade. The analytical parameters including reproducibility, stability, and selectivity were also investigated and the observed results indicate the acceptable performance of the notch 3 biosensor. Moreover, the proposed notch 3 biosensor exhibited a fast response time of 10 s.
Calculation of density of states of transition metals: From bulk sample to nanocluster
NASA Astrophysics Data System (ADS)
Krasavin, Andrey V.; Borisyuk, Petr V.; Vasiliev, Oleg S.; Zhumagulov, Yaroslav V.; Kashurnikov, Vladimir A.; Kurelchuk, Uliana N.; Lebedinskii, Yuriy Yu.
2018-03-01
A technique is presented of restoring the electronic density of states of the valence band from data of X-ray photoelectron spectroscopy (XPS). The originality of the technique consists in using a stochastic procedure to solve an integral equation relating the density of states and the experimental X-ray photoelectron spectra via the broadening function. To obtain the broadening function, only the XPS spectra of the core levels are needed. The results are presented for bulk sample of gold and tungsten and nanoclusters of tantalum; the possibility of using the results to determine the density of states of low-dimensional structures, including ensembles of metal nanoclusters, is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Jordan M.; Walton, Ian M.; Bateman, Gage
2017-07-25
Understanding the processes by which porous solid-state materials adsorb and release guest molecules would represent a significant step towards developing rational design principles for functional porous materials. To elucidate the process of liquid exchange in these materials, dynamicin situX-ray diffraction techniques have been developed which utilize liquid-phase chemical stimuli. Using these time-resolved diffraction techniques, the ethanol solvation process in a flexible metal–organic framework [Co(AIP)(bpy) 0.5(H 2O)]·2H 2O was examined. The measurements provide important insight into the nature of the chemical transformation in this system including the presence of a previously unreported neat ethanol solvate structure.
Grünbein, Marie Luise; Shoeman, Robert L; Doak, R Bruce
2018-03-19
To conduct X-ray Free-Electron Laser (XFEL) measurements at megahertz (MHz) repetition rates, sample solution must be delivered in a micron-sized liquid free-jet moving at up to 100 m/s. This exceeds by over a factor of two the jet speeds measurable with current high-speed camera techniques. Accordingly we have developed and describe herein an alternative jet velocimetry based on dual-pulse nanosecond laser illumination. Three separate implementations are described, including a small laser-diode system that is inexpensive and highly portable. We have also developed and describe analysis techniques to automatically and rapidly extract jet speed from dual-pulse images.
NASA Astrophysics Data System (ADS)
Huh, Jangyong; Ji, Yunseo; Lee, Rena
2018-05-01
An X-ray control algorithm to modulate the X-ray intensity distribution over the FOV (field of view) has been developed by using numerical analysis and MCNP5, a particle transport simulation code on the basis of the Monte Carlo method. X-rays, which are widely used in medical diagnostic imaging, should be controlled in order to maximize the performance of the X-ray imaging system. However, transporting X-rays, like a liquid or a gas is conveyed through a physical form such as pipes, is not possible. In the present study, an X-ray control algorithm and technique to uniformize the Xray intensity projected on the image sensor were developed using a flattening filter and a collimator in order to alleviate the anisotropy of the distribution of X-rays due to intrinsic features of the X-ray generator. The proposed method, which is combined with MCNP5 modeling and numerical analysis, aimed to optimize a flattening filter and a collimator for a uniform distribution of X-rays. Their size and shape were estimated from the method. The simulation and the experimental results both showed that the method yielded an intensity distribution over an X-ray field of 6×4 cm2 at SID (source to image-receptor distance) of 5 cm with a uniformity of more than 90% when the flattening filter and the collimator were mounted on the system. The proposed algorithm and technique are not only confined to flattening filter development but can also be applied for other X-ray related research and development efforts.
Tutorial on X-ray photon counting detector characterization.
Ren, Liqiang; Zheng, Bin; Liu, Hong
2018-01-01
Recent advances in photon counting detection technology have led to significant research interest in X-ray imaging. As a tutorial level review, this paper covers a wide range of aspects related to X-ray photon counting detector characterization. The tutorial begins with a detailed description of the working principle and operating modes of a pixelated X-ray photon counting detector with basic architecture and detection mechanism. Currently available methods and techniques for charactering major aspects including energy response, noise floor, energy resolution, count rate performance (detector efficiency), and charge sharing effect of photon counting detectors are comprehensively reviewed. Other characterization aspects such as point spread function (PSF), line spread function (LSF), contrast transfer function (CTF), modulation transfer function (MTF), noise power spectrum (NPS), detective quantum efficiency (DQE), bias voltage, radiation damage, and polarization effect are also remarked. A cadmium telluride (CdTe) pixelated photon counting detector is employed for part of the characterization demonstration and the results are presented. This review can serve as a tutorial for X-ray imaging researchers and investigators to understand, operate, characterize, and optimize photon counting detectors for a variety of applications.
A survey of hard X-ray imaging concepts currently proposed for viewing solar flares
NASA Technical Reports Server (NTRS)
Campbell, Jonathan W.; Davis, John M.; Emslie, A. G.
1991-01-01
Several approaches to imaging hard X-rays emitted from solar flares have been proposed. These include the fixed modulation collimator, the rotating modulation collimator, the spiral fresnel zone pattern, and the redundantly coded aperture. These techniques are under consideration for use in the Solar Maximum '91 balloon program, the Japanese Solar-A satellite, the Controls, Astrophysics, and Structures Experiment in Space, and the Pinhole/Occulter Facility and are outlined and discussed in the context of preliminary results from numerical modeling and the requirements derived from current ideas as to the expected hard X-ray structures in the impulsive phase of solar flares. Preliminary indications are that all of the approaches are promising, but each has its own unique set of limitations.
Application of dual-energy x-ray techniques for automated food container inspection
NASA Astrophysics Data System (ADS)
Shashishekhar, N.; Veselitza, D.
2016-02-01
Manufacturing for plastic food containers often results in small metal particles getting into the containers during the production process. Metal detectors are usually not sensitive enough to detect these metal particles (0.5 mm or lesser), especially when the containers are stacked in large sealed shipping packages; X-ray inspection of these packages provides a viable alternative. This paper presents the results of an investigation into dual-energy X-ray techniques for automated detection of small metal particles in plastic food container packages. The sample packages consist of sealed cardboard boxes containing stacks of food containers: plastic cups for food, and Styrofoam cups for noodles. The primary goal of the investigation was to automatically identify small metal particles down to 0.5 mm diameter in size or less, randomly located within the containers. The multiple container stacks in each box make it virtually impossible to reliably detect the particles with single-energy X-ray techniques either visually or with image processing. The stacks get overlaid in the X-ray image and create many indications almost identical in contrast and size to real metal particles. Dual-energy X-ray techniques were investigated and found to result in a clear separation of the metal particles from the food container stack-ups. Automated image analysis of the resulting images provides reliable detection of the small metal particles.
The AXAF technology program: The optical flats tests
NASA Technical Reports Server (NTRS)
Williams, A. C.; Harper, J. D.; Reily, J. C.; Weisskopf, M. C.; Wyman, C. L.; Zombeck, M.
1984-01-01
The results of a technology program aimed at determining the limits of surface polishing for reflecting X-ray telescopes is presented. This program is part of the major task of developing the Advanced X-ray Astrophysical Facility (AXAF). By studying the optical properties of state-of-the-art polished flat surfaces, conclusions were drawn as to the potential capability of AXAF. Surface microtopography of the flats as well as their figure are studied by X-ray, visual, and mechanical techniques. These techniques and their results are described. The employed polishing techniques are more than adequate for the specifications of the AXAF mirrors.
Real-time phase-contrast x-ray imaging: a new technique for the study of animal form and function
Socha, John J; Westneat, Mark W; Harrison, Jon F; Waters, James S; Lee, Wah-Keat
2007-01-01
Background Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography. However, because higher quality images require greater x-ray fluxes, there exists an inherent tradeoff between image quality and tissue damage. Results We evaluated the tradeoff between image quality and harm to the animal by determining the impact of targeted synchrotron x-rays on insect physiology, behavior and survival. Using 25 keV x-rays at a flux density of 80 μW/mm-2, high quality video-rate images can be obtained without major detrimental effects on the insects for multiple minutes, a duration sufficient for many physiological studies. At this setting, insects do not heat up. Additionally, we demonstrate the range of uses of synchrotron phase-contrast imaging by showing high-resolution images of internal anatomy and observations of labeled food movement during ingestion and digestion. Conclusion Synchrotron x-ray phase contrast imaging has the potential to revolutionize the study of physiology and internal biomechanics in small animals. This is the only generally applicable technique that has the necessary spatial and temporal resolutions, penetrating power, and sensitivity to soft tissue that is required to visualize the internal physiology of living animals on the scale from millimeters to microns. PMID:17331247
Kim, Jeongho; Kim, Kyung Hwan; Oang, Key Young; Lee, Jae Hyuk; Hong, Kiryong; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Kim, Tae Kyu; Ihee, Hyotcherl
2016-03-07
Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump-probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive to changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions.
Simulation of a compact analyzer-based imaging system with a regular x-ray source
NASA Astrophysics Data System (ADS)
Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.
2017-03-01
Analyzer-based Imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray techniques. PC measures X-ray deflection phenomena when interacting with a sample, which is known to provide higher contrast images of soft tissue than other X-ray methods. This is of high interest in the medical field, in particular for mammogram applications. This paper presents a simulation tool for table-top ABI systems using a conventional polychromatic X-ray source.
Thermal x-ray diffraction and near-field phase contrast imaging
NASA Astrophysics Data System (ADS)
Li, Zheng; Classen, Anton; Peng, Tao; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N.; Shih, Yanhua
2017-10-01
Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.
Thermal x-ray diffraction and near-field phase contrast imaging
Li, Zheng; Classen, Anton; Peng, Tao; ...
2017-12-27
Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. Here in this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.
Formation and Evolution of X-ray Binaries
NASA Astrophysics Data System (ADS)
Fragkos, Anastasios
X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in black hole X-ray binaries. The accuracy of these techniques depend on misalignment of the black hole spin with respect to the orbital angular momentum. In black hole X-ray binaries, this misalignment can occur during the supernova explosion that forms the compact object. In this study, I presented population synthesis models of Galactic black hole X-ray binaries, and examined the distribution of misalignment angles, and its dependence on the model parameters.
High resolution, multiple-energy linear sweep detector for x-ray imaging
Perez-Mendez, Victor; Goodman, Claude A.
1996-01-01
Apparatus for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels.
High resolution, multiple-energy linear sweep detector for x-ray imaging
Perez-Mendez, V.; Goodman, C.A.
1996-08-20
Apparatus is disclosed for generating plural electrical signals in a single scan in response to incident X-rays received from an object. Each electrical signal represents an image of the object at a different range of energies of the incident X-rays. The apparatus comprises a first X-ray detector, a second X-ray detector stacked upstream of the first X-ray detector, and an X-ray absorber stacked upstream of the first X-ray detector. The X-ray absorber provides an energy-dependent absorption of the incident X-rays before they are incident at the first X-ray detector, but provides no absorption of the incident X-rays before they are incident at the second X-ray detector. The first X-ray detector includes a linear array of first pixels, each of which produces an electrical output in response to the incident X-rays in a first range of energies. The first X-ray detector also includes a circuit that generates a first electrical signal in response to the electrical output of each of the first pixels. The second X-ray detector includes a linear array of second pixels, each of which produces an electrical output in response to the incident X-rays in a second range of energies, broader than the first range of energies. The second X-ray detector also includes a circuit that generates a second electrical signal in response to the electrical output of each of the second pixels. 12 figs.
Direct in situ observation of ZnO nucleation and growth via transmission X-ray microscopy
NASA Astrophysics Data System (ADS)
Tay, S. E. R.; Goode, A. E.; Nelson Weker, J.; Cruickshank, A. A.; Heutz, S.; Porter, A. E.; Ryan, M. P.; Toney, M. F.
2016-01-01
The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation.The nucleation and growth of a nanostructure controls its size and morphology, and ultimately its functional properties. Hence it is crucial to investigate growth mechanisms under relevant growth conditions at the nanometer length scale. Here we image the nucleation and growth of electrodeposited ZnO nanostructures in situ, using a transmission X-ray microscope and specially designed electrochemical cell. We show that this imaging technique leads to new insights into the nucleation and growth mechanisms in electrodeposited ZnO including direct, in situ observations of instantaneous versus delayed nucleation. Electronic supplementary information (ESI) available: Methods and videos of nanoparticle growth. See DOI: 10.1039/c5nr07019h
X-ray Fluorescence Holography: Principles, Apparatus, and Applications
NASA Astrophysics Data System (ADS)
Hayashi, Kouichi; Korecki, Pawel
2018-06-01
X-ray fluorescence holography (XFH) is an atomic structure determination technique that combines the capabilities of X-ray diffraction and X-ray fluorescence spectroscopy. It provides a unique means of gaining fully three-dimensional information about the local atomic structure and lattice site positions of selected elements inside compound samples. In this work, we discuss experimental and theoretical aspects that are essential for the efficient recording and analysis of X-ray fluorescence holograms and review the most recent advances in XFH. We describe experiments performed with brilliant synchrotron radiation as well as with tabletop setups that employ conventional X-ray tubes.
Complementary uses of small angle X-ray scattering and X-ray crystallography.
Pillon, Monica C; Guarné, Alba
2017-11-01
Most proteins function within networks and, therefore, protein interactions are central to protein function. Although stable macromolecular machines have been extensively studied, dynamic protein interactions remain poorly understood. Small-angle X-ray scattering probes the size, shape and dynamics of proteins in solution at low resolution and can be used to study samples in a large range of molecular weights. Therefore, it has emerged as a powerful technique to study the structure and dynamics of biomolecular systems and bridge fragmented information obtained using high-resolution techniques. Here we review how small-angle X-ray scattering can be combined with other structural biology techniques to study protein dynamics. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 Elsevier B.V. All rights reserved.
Bras, Wim; Koizumi, Satoshi; Terrill, Nicholas J
2014-11-01
Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments.
Bras, Wim; Koizumi, Satoshi; Terrill, Nicholas J
2014-01-01
Small- and wide-angle X-ray scattering (SAXS, WAXS) are standard tools in materials research. The simultaneous measurement of SAXS and WAXS data in time-resolved studies has gained popularity due to the complementary information obtained. Furthermore, the combination of these data with non X-ray based techniques, via either simultaneous or independent measurements, has advanced understanding of the driving forces that lead to the structures and morphologies of materials, which in turn give rise to their properties. The simultaneous measurement of different data regimes and types, using either X-rays or neutrons, and the desire to control parameters that initiate and control structural changes have led to greater demands on sample environments. Examples of developments in technique combinations and sample environment design are discussed, together with a brief speculation about promising future developments. PMID:25485128
González, Gabriela B.
2012-01-01
Transparent conducting oxide (TCO) materials are implemented into a wide variety of commercial devices because they possess a unique combination of high optical transparency and high electrical conductivity. Created during the processing of the TCOs, defects within the atomic-scale structure are responsible for their desirable optical and electrical properties. Therefore, studying the defect structure is essential to a better understanding of the behavior of transparent conductors. X-ray and neutron scattering techniques are powerful tools to investigate the atomic lattice structural defects in these materials. This review paper presents some of the current developments in the study of structural defects in n-type TCOs using x-ray diffraction (XRD), neutron diffraction, extended x-ray absorption fine structure (EXAFS), pair distribution functions (PDFs), and x-ray fluorescence (XRF). PMID:28817010
Higher Sensitivity in X-Ray Photography
NASA Technical Reports Server (NTRS)
Buggle, R. N.
1986-01-01
Hidden defects revealed if X-ray energy decreased as exposure progresses. Declining-potential X-ray photography detects fractures in thin metal sheet covered by unbroken sheet of twice thickness. Originally developed to check solder connections on multilayer circuit boards, technique has potential for other nondestructive testing.
Photon-in photon-out hard X-ray spectroscopy at the Linac Coherent Light Source
Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; ...
2015-04-15
X-ray free-electron lasers (FELs) have opened unprecedented possibilities to study the structure and dynamics of matter at an atomic level and ultra-fast timescale. Many of the techniques routinely used at storage ring facilities are being adapted for experiments conducted at FELs. In order to take full advantage of these new sources several challenges have to be overcome. They are related to the very different source characteristics and its resulting impact on sample delivery, X-ray optics, X-ray detection and data acquisition. Here it is described how photon-in photon-out hard X-ray spectroscopy techniques can be applied to study the electronic structure andmore » its dynamics of transition metal systems with ultra-bright and ultra-short FEL X-ray pulses. In particular, some of the experimental details that are different compared with synchrotron-based setups are discussed and illustrated by recent measurements performed at the Linac Coherent Light Source.« less
X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser
Kroll, Thomas; Kern, Jan; Kubin, Markus; ...
2016-09-19
X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. But, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. We compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based onmore » self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. Lastly, we show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.« less
X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser
Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe
2016-01-01
X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements. PMID:27828320
Fresh-slice multicolour X-ray free-electron lasers
Lutman, Alberto A.; Maxwell, Timothy J.; MacArthur, James P.; ...
2016-10-24
X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses with a narrow energy bandwidth and unprecedented brightness. Ultrafast physical and chemical dynamics, initiated with a site-specific X-ray pulse, can be explored using XFELs with a second ultrashort X-ray probe pulse. However, existing double-pulse schemes are complicated, difficult to customize or provide only low-intensity pulses. Here we present the novel fresh-slice technique for multicolour pulse production, wherein different temporal slices of an electron bunch lase to saturation in separate undulator sections. This method combines electron bunch tailoring from a passive wakefield device with trajectory control to provide multicolour pulses. The fresh-slice schememore » outperforms existing techniques at soft X-ray wavelengths. It produces femtosecond pulses with a power of tens of gigawatts and flexible colour separation. The pulse delay can be varied from temporal overlap to almost one picosecond. As a result, we also demonstrate the first three-colour XFEL and variably polarized two-colour pulses.« less
Effects of X-Ray Dose On Rhizosphere Studies Using X-Ray Computed Tomography
Zappala, Susan; Helliwell, Jonathan R.; Tracy, Saoirse R.; Mairhofer, Stefan; Sturrock, Craig J.; Pridmore, Tony; Bennett, Malcolm; Mooney, Sacha J.
2013-01-01
X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored. PMID:23840640
Energy distribution measurement of narrow-band ultrashort x-ray beams via K-edge filters subtraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardarelli, Paolo; Di Domenico, Giovanni; Marziani, Michele
2012-10-01
The characterization of novel x-ray sources includes the measurement of the photon flux and the energy distribution of the produced beam. The aim of BEATS2 experiment at the SPARC-LAB facility of the INFN National Laboratories of Frascati (Rome, Italy) is to investigate possible medical applications of an x-ray source based on Thomson relativistic back-scattering. This source is expected to produce a pulsed quasi-monochromatic x-ray beam with an instantaneous flux of 10{sup 20} ph/s in pulses 10 ps long and with an average energy of about 20 keV. A direct measurement of energy distribution of this beam is very difficult withmore » traditional detectors because of the extremely high photon flux. In this paper, we present a method for the evaluation of the energy distribution of quasi-monochromatic x-ray beams based on beam filtration with K-edge absorbing foils in the energy range of interest (16-22 keV). The technique was tested measuring the energy distribution of an x-ray beam having a spectrum similar to the expected one (SPARC-LAB Thomson source) by using a tungsten anode x-ray tube properly filtered and powered. The energy distribution obtained has been compared with the one measured with a HPGe detector showing very good agreement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Jianqiu; Yang, Yu; Wu, Fangzhen
Synchrotron X-ray Topography is a powerful technique to study defects structures particularly dislocation configurations in single crystals. Complementing this technique with geometrical and contrast analysis can enhance the efficiency of quantitatively characterizing defects. In this study, the use of Synchrotron White Beam X-ray Topography (SWBXT) to determine the line directions of threading dislocations in 4H–SiC axial slices (sample cut parallel to the growth axis from the boule) is demonstrated. This technique is based on the fact that the projected line directions of dislocations on different reflections are different. Another technique also discussed is the determination of the absolute Burgers vectorsmore » of threading mixed dislocations (TMDs) using Synchrotron Monochromatic Beam X-ray Topography (SMBXT). This technique utilizes the fact that the contrast from TMDs varies on SMBXT images as their Burgers vectors change. By comparing observed contrast with the contrast from threading dislocations provided by Ray Tracing Simulations, the Burgers vectors can be determined. Thereafter the distribution of TMDs with different Burgers vectors across the wafer is mapped and investigated.« less
NASA Technical Reports Server (NTRS)
Ming, D. W.; Morris, R. V.; Rampe, E. B.; Golden, D. C.; Quinn, J. E.
2015-01-01
The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 weight percentage) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater, Mars. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 weight percentage in the upper horizon to as high as 15 weight percentage in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soils had lower X-ray amorphous contents of about 5 weight percentage in the lowest horizon. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials may have been physically and chemical altered during soil formation, however, the limited interaction with water and low temperatures may result in the formation of "immature" X-ray amorphous or SRO materials. Perhaps, a similar process contributes to the formation of the high content of X-ray amorphous materials detected on Mars.
NASA Astrophysics Data System (ADS)
Pfeiffer, Franz
2018-01-01
X-ray ptychographic microscopy combines the advantages of raster scanning X-ray microscopy with the more recently developed techniques of coherent diffraction imaging. It is limited neither by the fabricational challenges associated with X-ray optics nor by the requirements of isolated specimen preparation, and offers in principle wavelength-limited resolution, as well as stable access and solution to the phase problem. In this Review, we discuss the basic principles of X-ray ptychography and summarize the main milestones in the evolution of X-ray ptychographic microscopy and tomography over the past ten years, since its first demonstration with X-rays. We also highlight the potential for applications in the life and materials sciences, and discuss the latest advanced concepts and probable future developments.
Sub-10-ms X-ray tomography using a grating interferometer
NASA Astrophysics Data System (ADS)
Yashiro, Wataru; Noda, Daiji; Kajiwara, Kentaro
2017-05-01
An X-ray phase tomogram was successfully obtained with an exposure time of less than 10 ms by X-ray grating interferometry, an X-ray phase imaging technique that enables high-sensitivity X-ray imaging even of materials consisting of light elements. This high-speed X-ray imaging experiment was performed at BL28B2, SPring-8, where a white X-ray beam is available, and the tomogram was reconstructed from projection images recorded at a frame rate of 100,000 fps. The setup of the experiment will make it possible to realize three-dimensional observation of unrepeatable high-speed phenomena with a time resolution of less than 10 ms.
X-ray filter for x-ray powder diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.
Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and wallsmore » defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hettiarachchi, Ganga M.; Donner, Erica; Doelsch, Emmanuel
To understand the biogeochemistry of nutrients and contaminants in environmental media, their speciation and behavior under different conditions and at multiple scales must be determined. Synchrotron radiation-based X-ray techniques allow scientists to elucidate the underlying mechanisms responsible for nutrient and contaminant mobility, bioavailability, and behavior. The continuous improvement of synchrotron light sources and X-ray beamlines around the world has led to a profound transformation in the field of environmental biogeochemistry and, subsequently, to significant scientific breakthroughs. Following this introductory paper, this special collection includes 10 papers that either present targeted reviews of recent advancements in spectroscopic methods that are applicablemore » to environmental biogeochemistry or describe original research studies conducted on complex environmental samples that have been significantly enhanced by incorporating synchrotron radiation-based X-ray technique(s). We believe that the current focus on improving the speciation of ultra-dilute elements in environmental media through the ongoing optimization of synchrotron technologies (e.g., brighter light sources, improved monochromators, more efficient detectors) will help to significantly push back the frontiers of environmental biogeochemistry research. As many of the relevant techniques produce extremely large datasets, we also identify ongoing improvements in data processing and analysis (e.g., software improvements and harmonization of analytical methods) as a significant requirement for environmental biogeochemists to maximize the information that can be gained using these powerful tools.« less
Patient exposure dose for chest and skull radiographies in Mazandaran hospitals.
Etemadinezhad, Siavash; Rahimi, Seyed Ali
2010-01-01
Radiographic techniques are essential methods of diagnosis, and their use has been increased, especially with the development of the new technologies. Inappropriate administration of these techniques may put both the patients and personnel at unnecessary risks. The objective of this research was to measure the skin dose of chest and skull radiographies used in Mazandaran hospitals and to compare these doses with national and international standards. In this cross-sectional study, six X-ray generators at six hospitals affiliated to Mazandaran University of Medical Sciences were included. One hundred and twenty patients referred to the radiology wards for radiographic examinations of chest and skull with normal body mass index (BMI) were selected (20 patients for each radiography unit). The generators were matched for mAs, kvp, type of amplifier sheets, and technical conditions as much as possible. Calibrated thermo luminescence dosimeters (TLD-USA, Lif-100) were used to measure the skin dose by placing them on the patients' back and the absorbed doses by TLDs were read by a TLD reader (model: Harshuu, TLD3500, Japan). The mean values of the skin dose were 0.51 mGray for posteroanterior (PA), chest X-ray (CXR), 3.36 mGray for lateral CXR, 7.25 mGray for anterroposterior (AP) or PA skull X-rays, and 7.59 mGray for lateral skull X-rays. The measured values were higher than the national and international standards. The results of this research revealed that the conditions of the X-ray generators should be monitored and modified periodically. Modifying the X-ray generators plus improving technicians' skills would, to some extent, reduce the radiation exposure of the patients.
A Comparison of Two Methods for Estimating Black Hole Spin in Active Galactic Nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Capellupo, Daniel M.; Haggard, Daryl; Wafflard-Fernandez, Gaylor, E-mail: danielc@physics.mcgill.ca
Angular momentum, or spin, is a fundamental property of black holes (BHs), yet it is much more difficult to estimate than mass or accretion rate (for actively accreting systems). In recent years, high-quality X-ray observations have allowed for detailed measurements of the Fe K α emission line, where relativistic line broadening allows constraints on the spin parameter (the X-ray reflection method). Another technique uses accretion disk models to fit the AGN continuum emission (the continuum-fitting, or CF, method). Although each technique has model-dependent uncertainties, these are the best empirical tools currently available and should be vetted in systems where bothmore » techniques can be applied. A detailed comparison of the two methods is also useful because neither method can be applied to all AGN. The X-ray reflection technique targets mostly local ( z ≲ 0.1) systems, while the CF method can be applied at higher redshift, up to and beyond the peak of AGN activity and growth. Here, we apply the CF method to two AGN with X-ray reflection measurements. For both the high-mass AGN, H1821+643, and the Seyfert 1, NGC 3783, we find a range in spin parameter consistent with the X-ray reflection measurements. However, the near-maximal spin favored by the reflection method for NGC 3783 is more probable if we add a disk wind to the model. Refinement of these techniques, together with improved X-ray measurements and tighter BH mass constraints, will permit this comparison in a larger sample of AGN and increase our confidence in these spin estimation techniques.« less
ERIC Educational Resources Information Center
Eaton, Bruce G., Ed.
1982-01-01
Presents a technique to produce samples for x-ray diffraction studies on the Tel-X-Ometer 80 x-ray apparatus from readily available crystalline powders and discusses observations of transverse modes of an optical resonator. (SK)
Fabricating High-Resolution X-Ray Collimators
NASA Technical Reports Server (NTRS)
Appleby, Michael; Atkinson, James E.; Fraser, Iain; Klinger, Jill
2008-01-01
A process and method for fabricating multi-grid, high-resolution rotating modulation collimators for arcsecond and sub-arcsecond x-ray and gamma-ray imaging involves photochemical machining and precision stack lamination. The special fixturing and etching techniques that have been developed are used for the fabrication of multiple high-resolution grids on a single array substrate. This technology has application in solar and astrophysics and in a number of medical imaging applications including mammography, computed tomography (CT), single photon emission computed tomography (SPECT), and gamma cameras used in nuclear medicine. This collimator improvement can also be used in non-destructive testing, hydrodynamic weapons testing, and microbeam radiation therapy.
Synthesis of samarium doped gadolinium oxide nanorods, its spectroscopic and physical properties
NASA Astrophysics Data System (ADS)
Boopathi, G.; Gokul Raj, S.; Ramesh Kumar, G.; Mohan, R.; Mohan, S.
2018-06-01
One-dimensional samarium doped gadolinium oxide [Sm:Gd2O3] nanorods have been synthesized successfully through co-precipitation technique in aqueous solution. The as-synthesized and calcined products were characterized by using powder X-ray diffraction pattern, Fourier transform Raman spectroscopy, thermogravimetric/differential thermal analysis, scanning electron microscopy with energy-dispersive X-ray analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, Ultraviolet-Visible spectrometry, photoluminescence spectrophotometer and X-ray photoelectron spectroscopy techniques. The obtained results are discussed in detailed manner.
Usage of CO2 microbubbles as flow-tracing contrast media in X-ray dynamic imaging of blood flows.
Lee, Sang Joon; Park, Han Wook; Jung, Sung Yong
2014-09-01
X-ray imaging techniques have been employed to visualize various biofluid flow phenomena in a non-destructive manner. X-ray particle image velocimetry (PIV) was developed to measure velocity fields of blood flows to obtain hemodynamic information. A time-resolved X-ray PIV technique that is capable of measuring the velocity fields of blood flows under real physiological conditions was recently developed. However, technical limitations still remained in the measurement of blood flows with high image contrast and sufficient biocapability. In this study, CO2 microbubbles as flow-tracing contrast media for X-ray PIV measurements of biofluid flows was developed. Human serum albumin and CO2 gas were mechanically agitated to fabricate CO2 microbubbles. The optimal fabricating conditions of CO2 microbubbles were found by comparing the size and amount of microbubbles fabricated under various operating conditions. The average size and quantity of CO2 microbubbles were measured by using a synchrotron X-ray imaging technique with a high spatial resolution. The quantity and size of the fabricated microbubbles decrease with increasing speed and operation time of the mechanical agitation. The feasibility of CO2 microbubbles as a flow-tracing contrast media was checked for a 40% hematocrit blood flow. Particle images of the blood flow were consecutively captured by the time-resolved X-ray PIV system to obtain velocity field information of the flow. The experimental results were compared with a theoretically amassed velocity profile. Results show that the CO2 microbubbles can be used as effective flow-tracing contrast media in X-ray PIV experiments.
NASA Astrophysics Data System (ADS)
Ishii, Masashi; Crowe, Iain F.; Halsall, Matthew P.; Hamilton, Bruce; Hu, Yongfeng; Sham, Tsun-Kong; Harako, Susumu; Zhao, Xin-Wei; Komuro, Shuji
2013-10-01
The local structure of luminescent Sm dopants was investigated using an X-ray absorption fine-structure technique with X-ray-excited optical luminescence. Because this technique evaluates X-ray absorption from luminescence, only optically active sites are analyzed. The Sm L3 near-edge spectrum contains split 5d states and a shake-up transition that are specific to luminescent Sm. Theoretical calculations using cluster models identified an atomic-scale distortion that can reproduce the split 5d states. The model with C4v local symmetry and compressive bond length of Sm-O of a six-fold oxygen (SmO6) cluster is most consistent with the experimental results.
NASA Astrophysics Data System (ADS)
Izumi, N.; Meezan, N. B.; Divol, L.; Hall, G. N.; Barrios, M. A.; Jones, O.; Landen, O. L.; Kroll, J. J.; Vonhof, S. A.; Nikroo, A.; Jaquez, J.; Bailey, C. G.; Hardy, C. M.; Ehrlich, R. B.; Town, R. P. J.; Bradley, D. K.; Hinkel, D. E.; Moody, J. D.
2016-11-01
The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.
NASA Astrophysics Data System (ADS)
Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua
2008-10-01
In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.
Izumi, N; Meezan, N B; Divol, L; Hall, G N; Barrios, M A; Jones, O; Landen, O L; Kroll, J J; Vonhof, S A; Nikroo, A; Jaquez, J; Bailey, C G; Hardy, C M; Ehrlich, R B; Town, R P J; Bradley, D K; Hinkel, D E; Moody, J D
2016-11-01
The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Alyssa A.; Larson, Jeffery C.; Garson, III, Alfred B.
2014-11-04
Tissues engineered in bioreactor systems have been used clinically to replace damaged tissues and organs. In addition, these systems are under continued development for many tissue engineering applications. The ability to quantitatively assess material structure and tissue formation is critical for evaluating bioreactor efficacy and for preimplantation assessment of tissue quality. These techniques allow for the nondestructive and longitudinal monitoring of large engineered tissues within the bioreactor systems and will be essential for the translation of these strategies to viable clinical therapies. X-ray Phase Contrast (XPC) imaging techniques have shown tremendous promise for a number of biomedical applications owing tomore » their ability to provide image contrast based on multiple X-ray properties, including absorption, refraction, and scatter. In this research, mesenchymal stem cell-seeded alginate hydrogels were prepared and cultured under osteogenic conditions in a perfusion bioreactor. The constructs were imaged at various time points using XPC microcomputed tomography (µCT). Imaging was performed with systems using both synchrotron- and tube-based X-ray sources. XPC µCT allowed for simultaneous three-dimensional (3D) quantification of hydrogel size and mineralization, as well as spatial information on hydrogel structure and mineralization. Samples were processed for histological evaluation and XPC showed similar features to histology and quantitative analysis consistent with the histomorphometry. Furthermore, these results provide evidence of the significant potential of techniques based on XPC for noninvasive 3D imaging engineered tissues grown in bioreactors.« less
Takashima, Kenta; Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto; Matsuda, Shojiro; Nakahira, Atsushi; Osumi, Noriko; Kohzuki, Masahiro; Onodera, Hiroshi
2015-01-01
Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies. PMID:25537600
Method of photon spectral analysis
Gehrke, Robert J.; Putnam, Marie H.; Killian, E. Wayne; Helmer, Richard G.; Kynaston, Ronnie L.; Goodwin, Scott G.; Johnson, Larry O.
1993-01-01
A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and .gamma.-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2000 keV), as well as high-energy .gamma. rays (>1 MeV). A 8192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The .gamma.-ray portion of each spectrum is analyzed by a standard Ge .gamma.-ray analysis program. This method can be applied to any analysis involving x- and .gamma.-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the .gamma.-ray analysis and accommodated during the x-ray analysis.
Method of photon spectral analysis
Gehrke, R.J.; Putnam, M.H.; Killian, E.W.; Helmer, R.G.; Kynaston, R.L.; Goodwin, S.G.; Johnson, L.O.
1993-04-27
A spectroscopic method to rapidly measure the presence of plutonium in soils, filters, smears, and glass waste forms by measuring the uranium L-shell x-ray emissions associated with the decay of plutonium. In addition, the technique can simultaneously acquire spectra of samples and automatically analyze them for the amount of americium and [gamma]-ray emitting activation and fission products present. The samples are counted with a large area, thin-window, n-type germanium spectrometer which is equally efficient for the detection of low-energy x-rays (10-2,000 keV), as well as high-energy [gamma] rays (>1 MeV). A 8,192- or 16,384 channel analyzer is used to acquire the entire photon spectrum at one time. A dual-energy, time-tagged pulser, that is injected into the test input of the preamplifier to monitor the energy scale, and detector resolution. The L x-ray portion of each spectrum is analyzed by a linear-least-squares spectral fitting technique. The [gamma]-ray portion of each spectrum is analyzed by a standard Ge [gamma]-ray analysis program. This method can be applied to any analysis involving x- and [gamma]-ray analysis in one spectrum and is especially useful when interferences in the x-ray region can be identified from the [gamma]-ray analysis and accommodated during the x-ray analysis.
Advances in high energy astronomy from space
NASA Technical Reports Server (NTRS)
Giacconi, R.
1972-01-01
Observational techniques, derived through space technology, and examples of what can be learned from X-ray observations of a few astronomical objects are given. Astronomical phenomena observed include the sun, stellar objects, and galactic objects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cohn, S.H.; Ellis, K.J.; Vartsky, D.
1981-01-01
A series of technical developments and their clinical applications in various nuclear technologies at Brookhaven National Laboratory is described. These include the development of a portable neutron activation facility for measuring cadmium in vivo in kidney and liver, a technique for the measurement of body iron utilizing nuclear resonant scattering of gamma rays, a non-invasive measure of the skeletal levels of lead by an x-ray fluorescence technique, and the development of a pulsed Van de Graaff generator as a source of pulsed neutrons for the measurement of lung silicon. (ACR)
NASA Astrophysics Data System (ADS)
Benedetti, Laura Robin; Eggert, J. H.; Kilkenny, J. D.; Bradley, D. K.; Bell, P. M.; Palmer, N. E.; Rygg, J. R.; Boehly, T. R.; Collins, G. W.; Sorce, C.
2017-06-01
Since X-ray diffraction is the most definitive method for identifying crystalline phases of a material, it is an important technique for probing high-energy-density materials during laser-driven compression experiments. We are developing a design for collecting several x-ray diffraction datasets during a single laser-driven experiment, with a goal of achieving temporal resolution better than 1ns. The design combines x-ray streak cameras, for a continuous temporal record of diffraction, with fast x-ray imagers, to collect several diffraction patterns with sufficient solid angle range and resolution to identify crystalline texture. Preliminary experiments will be conducted at the Omega laser and then implemented at the National Ignition Facility. We will describe the status of the conceptual design, highlighting tradeoffs in the design process. We will also discuss the technical issues that must be addressed in order to develop a successful experimental platform. These include: Facility-specific geometric constraints such as unconverted laser light and target alignment; EMP issues when electronic diagnostics are close to the target; X-ray source requirements; and detector capabilities. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, LLNL-ABS-725146.
Trends in hard X-ray fluorescence mapping: environmental applications in the age of fast detectors.
Lombi, E; de Jonge, M D; Donner, E; Ryan, C G; Paterson, D
2011-06-01
Environmental samples are extremely diverse but share a tendency for heterogeneity and complexity. This heterogeneity poses methodological challenges when investigating biogeochemical processes. In recent years, the development of analytical tools capable of probing element distribution and speciation at the microscale have allowed this challenge to be addressed. Of these available tools, laterally resolved synchrotron techniques such as X-ray fluorescence mapping are key methods for the in situ investigation of micronutrients and inorganic contaminants in environmental samples. This article demonstrates how recent advances in X-ray fluorescence detector technology are bringing new possibilities to environmental research. Fast detectors are helping to circumvent major issues such as X-ray beam damage of hydrated samples, as dwell times during scanning are reduced. They are also helping to reduce temporal beamtime requirements, making particularly time-consuming techniques such as micro X-ray fluorescence (μXRF) tomography increasingly feasible. This article focuses on μXRF mapping of nutrients and metalloids in environmental samples, and suggests that the current divide between mapping and speciation techniques will be increasingly blurred by the development of combined approaches.
NASA Astrophysics Data System (ADS)
Katsuyama, Kozo; Nagamine, Tsuyoshi; Furuya, Hirotaka
2010-10-01
In order to observe the structural change in the interior of irradiated fuel assemblies, a non-destructive post-irradiation examination (PIE) technique using X-ray computer tomography (X-ray CT) was developed. This X-ray CT technique was applied to observe the central void formations and fuel pin deformations of fuel assemblies which had been irradiated at high linear heat rating. The central void sizes in all fuel pins were measured on five cross sections of the core fuel column as a parameter for evaluating fuel thermal performance. In addition, the fuel pin deformations were analyzed from X-ray CT images obtained along the axial direction of a fuel assembly at the same separation interval. A dependence of void size on the linear heat rating was seen in the fuel assembly irradiated at high linear heat rating. In addition, significant undulations of the fuel pin were observed along the axial direction, coinciding with the wrapping wire pitch in the core fuel column. Application of the developed technique should provide enhanced resolution of measurements and simplify fuel PIEs.
Emerging nondestructive inspection methods for aging aircraft
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beattie, A; Dahlke, L; Gieske, J
This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with amore » discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.« less
Sedano-Portillo, Ismael; Ochoa-León, Gastón; Fuentes-Orozco, Clotilde; Irusteta-Jiménez, Leire; Michel-Espinoza, Luis Rodrigo; Salazar-Parra, Marcela; Cuesta-Márquez, Lizbeth; González-Ojeda, Alejandro
2017-01-01
Percutaneous nephrolithotomy is an efficient approach for treatment of different types of kidney stones. Various types of access techniques have been described like sequential dilatation and one-shot procedure. To determine the differences in time of exposure to X-rays and hemoglobin levels between techniques. Controlled clinical trial. Patients older than 18 years with complex/uncomplicated kidney stones, without urine infection were included. They were assigned randomly to one of the two techniques. Response variables were determined before and 24 h after procedures. 59 patients were included: 30 underwent one-shot procedure (study-group) and 29 sequential dilatation (control-group). Baseline characteristics were similar. Study group had a lower postoperative hemoglobin decline than control group (0.81 vs. 2.03 g/dl, respectively; p < 0.001); X-ray exposure time (69.6 vs. 100.62 s; p < 0.001) and postoperative creatinine serum levels (0.93 ± 0.29 vs. 1.13 ± 0.4 mg/dl; p = 0.039). No significant differences in postoperative morbidity were found. One-shot technique demonstrated better results compared to sequential dilatation.
Micro X-ray diffraction analysis of thin films using grazing-exit conditions.
Noma, T; Iida, A
1998-05-01
An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.
Simulations of multi-contrast x-ray imaging using near-field speckles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zdora, Marie-Christine; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE, United Kingdom and Department of Physics & Astronomy, University College London, London, WC1E 6BT; Thibault, Pierre
2016-01-28
X-ray dark-field and phase-contrast imaging using near-field speckles is a novel technique that overcomes limitations inherent in conventional absorption x-ray imaging, i.e. poor contrast for features with similar density. Speckle-based imaging yields a wealth of information with a simple setup tolerant to polychromatic and divergent beams, and simple data acquisition and analysis procedures. Here, we present a simulation software used to model the image formation with the speckle-based technique, and we compare simulated results on a phantom sample with experimental synchrotron data. Thorough simulation of a speckle-based imaging experiment will help for better understanding and optimising the technique itself.
THE EFFECT OF SATELLITE LINES FROM THE X-RAY SOURCE ON X-RAY DIFFRACTION PEAKS
The article discusses the development of a method for relating reactivity to crystallite size and strain parameters obtained by the Warren-Averbach technique. EPA has been using crystallite size and strain data obtained from x-ray diffraction (XRD) peak profile analysis to predic...
Building lab-scale x-ray tube based irradiators
USDA-ARS?s Scientific Manuscript database
The construction of economical x-ray tube based irradiators in a variety of configurations is described using 1000 Watt x-ray tubes. Single tube, double tube, and four tube designs are described, as well as various cabinet construction techniques. Relatively high dose rates were achieved for small s...
NASA Technical Reports Server (NTRS)
Pelling, M.
1985-01-01
The technical activities, scientific results, related space hardware projects and personnel of the high energy astrophysics program are reported. The development of observational and instrumental techniques in hard X-ray (0.001 to 100 keV) and medium energy gamma-ray (0.1 to 10 MeV) astronomy are examined. Many of these techniques were developed explicitly for use on high altitude balloons where most of the scientific results were obtained. The extensive observational activity using balloons are tabulated. Virtually every research activity will eventually result in a major space hardware development effort.
NASA Technical Reports Server (NTRS)
Langer, S. H.; Petrosian, V.
1976-01-01
A Monte Carlo method is described for evaluation of the spectrum, directivity and polarization of X-rays diffusely reflected from stellar photospheres. the accuracy of the technique is evaluated through comparison with analytic results. Using the characteristics of the incident X-rays of the model for solar X-ray flares, the spectrum, directivity and polarization of the reflected and the total X-ray fluxes are evaluated. The results are compared with observations.
Review of progress in quantitative NDE. [Nondestructive Evaluation (NDE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
This booklet is composed of abstracts from papers submitted at a meeting on quantitative NDE. A multitude of topics are discussed including analysis of composite materials, NMR uses, x-ray instruments and techniques, manufacturing uses, neural networks, eddy currents, stress measurements, magnetic materials, adhesive bonds, signal processing, NDE of mechanical structures, tomography,defect sizing, NDE of plastics and ceramics, new techniques, optical and electromagnetic techniques, and nonlinear techniques. (GHH)
Crystal structure and density of helium to 232 kbar
NASA Technical Reports Server (NTRS)
Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.
1988-01-01
The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.
NASA Technical Reports Server (NTRS)
Moses, J. Daniel
1989-01-01
Three improvements in photographic x-ray imaging techniques for solar astronomy are presented. The testing and calibration of a new film processor was conducted; the resulting product will allow photometric development of sounding rocket flight film immediately upon recovery at the missile range. Two fine grained photographic films were calibrated and flight tested to provide alternative detector choices when the need for high resolution is greater than the need for high sensitivity. An analysis technique used to obtain the characteristic curve directly from photographs of UV solar spectra were applied to the analysis of soft x-ray photographic images. The resulting procedure provides a more complete and straightforward determination of the parameters describing the x-ray characteristic curve than previous techniques. These improvements fall into the category of refinements instead of revolutions, indicating the fundamental suitability of the photographic process for x-ray imaging in solar astronomy.
Planar techniques for fabricating X-ray diffraction gratings and zone plates
NASA Technical Reports Server (NTRS)
Smith, H. I.; Anderson, E. H.; Hawryluk, A. M.; Schattenburg, M. L.
1984-01-01
The state of current planar techniques in the fabrication of Fresnel zone plates and diffraction gratings is reviewed. Among the fabrication techniques described are multilayer resist techniques; scanning electron beam lithography; and holographic lithography. Consideration is also given to: X-ray lithography; ion beam lithography; and electroplating. SEM photographs of the undercut profiles obtained in a type AZ 135OB photoresistor by holographic lithography are provided.
NASA Astrophysics Data System (ADS)
Endrizzi, Marco
2018-01-01
X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.
Feasibility of Valence-to-Core X-ray Emission Spectroscopy for Tracking Transient Species
March, Anne Marie; Assefa, Tadesse A.; Bressler, Christian; ...
2015-02-09
X-ray spectroscopies, when combined in laser-pump, X-ray-probe measurement schemes, can be powerful tools for tracking the electronic and geometric structural changes that occur during the course of a photoinitiated chemical reaction. X-ray absorption spectroscopy (XAS) is considered an established technique for such measurements, and X-ray emission spectroscopy (XES) of the strongest core-to-core emission lines (Kα and Kβ) is now being utilized. Flux demanding valence-to-core XES promises to be an important addition to the time-resolved spectroscopic toolkit. Here In this paper we present measurements and density functional theory calculations on laser-excited, solution-phase ferrocyanide that demonstrate the feasibility of valence-to-core XES formore » time-resolved experiments. Lastly, we discuss technical improvements that will make valence-to-core XES a practical pump–probe technique.« less
High-Sensitivity X-ray Polarimetry with Amorphous Silicon Active-Matrix Pixel Proportional Counters
NASA Technical Reports Server (NTRS)
Black, J. K.; Deines-Jones, P.; Jahoda, K.; Ready, S. E.; Street, R. A.
2003-01-01
Photoelectric X-ray polarimeters based on pixel micropattern gas detectors (MPGDs) offer order-of-magnitude improvement in sensitivity over more traditional techniques based on X-ray scattering. This new technique places some of the most interesting astronomical observations within reach of even a small, dedicated mission. The most sensitive instrument would be a photoelectric polarimeter at the focus of 2 a very large mirror, such as the planned XEUS. Our efforts are focused on a smaller pathfinder mission, which would achieve its greatest sensitivity with large-area, low-background, collimated polarimeters. We have recently demonstrated a MPGD polarimeter using amorphous silicon thin-film transistor (TFT) readout suitable for the focal plane of an X-ray telescope. All the technologies used in the demonstration polarimeter are scalable to the areas required for a high-sensitivity collimated polarimeter. Leywords: X-ray polarimetry, particle tracking, proportional counter, GEM, pixel readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarapata, A.; Chabior, M.; Zanette, I.
2014-10-15
Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between amore » monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.« less
New contrasts for x-ray imaging and synergy with optical imaging
NASA Astrophysics Data System (ADS)
Wang, Ge
2017-02-01
Due to its penetrating power, fine resolution, unique contrast, high-speed, and cost-effectiveness, x-ray imaging is one of the earliest and most popular imaging modalities in biomedical applications. Current x-ray radiographs and CT images are mostly on gray-scale, since they reflect overall energy attenuation. Recent advances in x-ray detection, contrast agent, and image reconstruction technologies have changed our perception and expectation of x-ray imaging capabilities, and generated an increasing interest in imaging biological soft tissues in terms of energy-sensitive material decomposition, phase-contrast, small angle scattering (also referred to as dark-field), x-ray fluorescence and luminescence properties. These are especially relevant to preclinical and mesoscopic studies, and potentially mendable for hybridization with optical molecular tomography. In this article, we review new x-ray imaging techniques as related to optical imaging, suggest some combined x-ray and optical imaging schemes, and discuss our ideas on micro-modulated x-ray luminescence tomography (MXLT) and x-ray modulated opto-genetics (X-Optogenetics).
Simultaneous small- and wide-angle scattering at high X-ray energies.
Daniels, J E; Pontoni, D; Hoo, Rui Ping; Honkimäki, V
2010-07-01
Combined small- and wide-angle X-ray scattering (SAXS/WAXS) is a powerful technique for the study of materials at length scales ranging from atomic/molecular sizes (a few angstroms) to the mesoscopic regime ( approximately 1 nm to approximately 1 microm). A set-up to apply this technique at high X-ray energies (E > 50 keV) has been developed. Hard X-rays permit the execution of at least three classes of investigations that are significantly more difficult to perform at standard X-ray energies (8-20 keV): (i) in situ strain analysis revealing anisotropic strain behaviour both at the atomic (WAXS) as well as at the mesoscopic (SAXS) length scales, (ii) acquisition of WAXS patterns to very large q (>20 A(-1)) thus allowing atomic pair distribution function analysis (SAXS/PDF) of micro- and nano-structured materials, and (iii) utilization of complex sample environments involving thick X-ray windows and/or samples that can be penetrated only by high-energy X-rays. Using the reported set-up a time resolution of approximately two seconds was demonstrated. It is planned to further improve this time resolution in the near future.
X-ray verification of an optically aligned off-plane grating module
NASA Astrophysics Data System (ADS)
Donovan, Benjamin D.; McEntaffer, Randall L.; Tutt, James H.; DeRoo, Casey T.; Allured, Ryan; Gaskin, Jessica A.; Kolodziejczak, Jeffery J.
2018-01-01
Off-plane x-ray reflection gratings are theoretically capable of achieving high resolution and high diffraction efficiencies over the soft x-ray bandpass, making them an ideal technology to implement on upcoming x-ray spectroscopy missions. To achieve high effective area, these gratings must be aligned into grating modules. X-ray testing was performed on an aligned grating module to assess the current optical alignment methods. Results indicate that the grating module achieved the desired alignment for an upcoming x-ray spectroscopy suborbital rocket payload with modest effective area and resolving power. These tests have also outlined a pathway towards achieving the stricter alignment tolerances of future x-ray spectrometer payloads, which require improvements in alignment metrology, grating fabrication, and testing techniques.
Locating Stardust-like Particles in Aerogel Using X-Ray Techniques
NASA Technical Reports Server (NTRS)
Jurewicz, A. J. G.; Jones, S. M.; Tsapin, A.; Mih, D. T.; Connolly, H. C., Jr.; Graham, G. A.
2003-01-01
Silica aerogel is the material that the spacecraft STARDUST is using to collect interstellar and cometary silicates. Anticipating the return of the samples to earth in January of 2006, MANY individual investigators and, especially, the investigators in NASA's SRLIDAP program are studying means of both in situ analysis of particles, as well as particle extraction. To help individual PI's with extraction of particles from aerogel in their own laboratories, we are exploring the use of standard laboratory x-ray equipment and commercial techniques for precisely locating specific particles in aerogel. We approached the evaluation of commercial x-ray techniques as follows. First, we determined the most appropriate detector for use with aerogel and particulates. Then, we compared and contrasted techniques useful for university laboratories.
High-energy synchrotron x-ray techniques for studying irradiated materials
Park, Jun-Sang; Zhang, Xuan; Sharma, Hemant; ...
2015-03-20
High performance materials that can withstand radiation, heat, multiaxial stresses, and corrosive environment are necessary for the deployment of advanced nuclear energy systems. Nondestructive in situ experimental techniques utilizing high energy x-rays from synchrotron sources can be an attractive set of tools for engineers and scientists to investigate the structure–processing–property relationship systematically at smaller length scales and help build better material models. In this paper, two unique and interconnected experimental techniques, namely, simultaneous small-angle/wide-angle x-ray scattering (SAXS/WAXS) and far-field high-energy diffraction microscopy (FF-HEDM) are presented. Finally, the changes in material state as Fe-based alloys are heated to high temperatures ormore » subject to irradiation are examined using these techniques.« less
Hayashi, Kouichi
2010-12-01
Based on our previous work, I review the applications of x-ray refraction and the x-ray waveguide phenomenon to organic and inorganic thin films in the present paper. Under grazing incidence conditions, observations of refracted x-rays and guided x-rays due to the x-ray waveguide phenomenon provide information about thin film structures, and thus have potential as alternative methods to x-ray reflectivity. To date, we have measured the spectra of the refracted x-rays and guided x-rays from end faces of thin films using white incident x-ray beams, and utilized them for the determination of film density and thickness. Some of this work is summarized in the present paper. At the end of this paper, I describe our recent achievement in this field, namely the in situ measurement of guided x-rays during the film degradation process due to strong synchrotron radiation damage. Moreover, I discuss the perspective of the present technique from the viewpoint of micro-characterization and real-time estimation of thin films.
Active galactic nuclei as cosmological probes.
NASA Astrophysics Data System (ADS)
Lusso, Elisabeta; Risaliti, Guido
2018-01-01
I will present the latest results on our analysis of the non-linear X-ray to UV relation in a sample of optically selected quasars from the Sloan Digital Sky Survey, cross-matched with the most recent XMM-Newton and Chandra catalogues. I will show that this correlation is not only very tight, but can be potentially even tighter by including a further dependence on the emission line full-width half maximum. This result imply that the non-linear X-ray to optical-ultraviolet luminosity relation is the manifestation of an ubiquitous physical mechanism, whose details are still unknown, that regulates the energy transfer from the accretion disc to the X-ray emitting corona in quasars. I will discuss what the perspectives of AGN in the context of observational cosmology are. I will introduce a novel technique to test the cosmological model using quasars as “standard candles” by employing the non-linear X-ray to UV relation as an absolute distance indicator.
The impulsive hard X-rays from solar flares
NASA Technical Reports Server (NTRS)
Leach, J.
1984-01-01
A technique for determining the physical arrangement of a solar flare during the impulsive phase was developed based upon a nonthermal model interpretation of the emitted hard X-rays. Accurate values are obtained for the flare parameters, including those which describe the magnetic field structure and the beaming of the energetic electrons, parameters which have hitherto been mostly inaccessible. The X-ray intensity height structure can be described readily with a single expression based upon a semi-empirical fit to the results from many models. Results show that the degree of linear polarization of the X-rays from a flaring loop does not exceed 25 percent and can easily and naturally be as low as the polarization expected from a thermal model. This is a highly significant result in that it supersedes those based upon less thorough calculations of the electron beam dynamics and requires that a reevaluation of hopes of using polarization measurements to discriminate between categories of flare models.
Allen, Andrew J.; Zhang, Fan; Kline, R. Joseph; ...
2017-03-07
The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008–0.25 Å –1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments thatmore » employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. As a result, the validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, Andrew J.; Zhang, Fan; Kline, R. Joseph
The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008–0.25 Å –1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments thatmore » employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. As a result, the validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.« less
Allen, Andrew J; Zhang, Fan; Kline, R Joseph; Guthrie, William F; Ilavsky, Jan
2017-04-01
The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008-0.25 Å -1 , together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments that employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. The validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.
Phase contrast imaging of cochlear soft tissue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, S.; Hwang, M.; Rau, C.
A noninvasive technique to image soft tissue could expedite diagnosis and disease management in the auditory system. We propose inline phase contrast imaging with hard X-rays as a novel method that overcomes the limitations of conventional absorption radiography for imaging soft tissue. In this study, phase contrast imaging of mouse cochleae was performed at the Argonne National Laboratory Advanced Photon Source. The phase contrast tomographic reconstructions show soft tissue structures of the cochlea, including the inner pillar cells, the inner spiral sulcus, the tectorial membrane, the basilar membrane, and the Reissner's membrane. The results suggest that phase contrast X-ray imagingmore » and tomographic techniques hold promise to noninvasively image cochlear structures at an unprecedented cellular level.« less
Doan-Nguyen, Vicky V.T.; Su, Dong; Zhang, Sen; ...
2015-07-14
Low temperature fuel cells are clean, effective alternative fuel conversion technology. Oxygen reduction reaction (ORR) at the fuel cell cathode has required Pt as the electrocatalyst for high activity and selectivity of the four-electron reaction pathway. Targeting a less expensive, earth abundant alternative, we have developed the synthesis of cobalt phosphide (Co₂P) nanorods for ORR. Characterization techniques that include total X-ray scattering and extended X-ray absorption fine structure revealed a deviation of the nanorods from bulk crystal structure with a contraction along the b orthorhombic lattice parameter. The carbon supported nanorods have comparable activity but are remarkably more stable thanmore » conventional Pt catalysts for the oxygen reduction reaction in alkaline environments.« less
Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation
NASA Astrophysics Data System (ADS)
Borowiec, Joanna; Gillin, William P.; Willis, Maureen A. C.; Boi, Filippo S.; He, Y.; Wen, J. Q.; Wang, S. L.; Schulz, Leander
2018-02-01
In this study, a direct sulfidation reaction of ammonium perrhenate (NH4ReO4) leading to a synthesis of rhenium disulfide (ReS2) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS2. The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1Tʹ) ReS2 with a low degree of layer stacking.
Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation.
Borowiec, Joanna; Gillin, William P; Willis, Maureen A C; Boi, Filippo S; He, Y; Wen, J Q; Wang, S L; Schulz, Leander
2018-01-11
In this study, a direct sulfidation reaction of ammonium perrhenate (NH 4 ReO 4 ) leading to a synthesis of rhenium disulfide (ReS 2 ) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS 2 . The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1T') ReS 2 with a low degree of layer stacking.
Using the EXIST Active Shields for Earth Occultation Observations of X-Ray Sources
NASA Technical Reports Server (NTRS)
Wilson, Colleen A.; Fishman, Gerald; Hong, Jae-Sub; Gridlay, Jonathan; Krawczynski, Henric
2005-01-01
The EXIST active shields, now being planned for the main detectors of the coded aperture telescope, will have approximately 15 times the area of the BATSE detectors; and they will have a good geometry on the spacecraft for viewing both the leading and training Earth's limb for occultation observations. These occultation observations will complement the imaging observations of EXIST and can extend them to higher energies. Earth occultatio observations of the hard X-ray sky with BATSE on the Compton Gamma Ray Observatory developed and demonstrated the capabilities of large, flat, uncollimated detectors for this method. With BATSE, a catalog of 179 X-ray sources was monitored twice every spacecraft orbit for 9 years at energies above about 25 keV, resulting in 83 definite detections and 36 possible detections with 5-sigma detection sensitivities of 3.5-20 mcrab (20-430 keV) depending on the sky location. This catalog included four transients discovered with this technique and many variable objects (galactic and extragalactic). This poster will describe the Earth occultation technique, summarize the BATSE occultation observations, and compare the basic observational parameters of the occultation detector elements of BATSE and EXIST.
Edge enhancement algorithm for low-dose X-ray fluoroscopic imaging.
Lee, Min Seok; Park, Chul Hee; Kang, Moon Gi
2017-12-01
Low-dose X-ray fluoroscopy has continually evolved to reduce radiation risk to patients during clinical diagnosis and surgery. However, the reduction in dose exposure causes quality degradation of the acquired images. In general, an X-ray device has a time-average pre-processor to remove the generated quantum noise. However, this pre-processor causes blurring and artifacts within the moving edge regions, and noise remains in the image. During high-pass filtering (HPF) to enhance edge detail, this noise in the image is amplified. In this study, a 2D edge enhancement algorithm comprising region adaptive HPF with the transient improvement (TI) method, as well as artifacts and noise reduction (ANR), was developed for degraded X-ray fluoroscopic images. The proposed method was applied in a static scene pre-processed by a low-dose X-ray fluoroscopy device. First, the sharpness of the X-ray image was improved using region adaptive HPF with the TI method, which facilitates sharpening of edge details without overshoot problems. Then, an ANR filter that uses an edge directional kernel was developed to remove the artifacts and noise that can occur during sharpening, while preserving edge details. The quantitative and qualitative results obtained by applying the developed method to low-dose X-ray fluoroscopic images and visually and numerically comparing the final images with images improved using conventional edge enhancement techniques indicate that the proposed method outperforms existing edge enhancement methods in terms of objective criteria and subjective visual perception of the actual X-ray fluoroscopic image. The developed edge enhancement algorithm performed well when applied to actual low-dose X-ray fluoroscopic images, not only by improving the sharpness, but also by removing artifacts and noise, including overshoot. Copyright © 2017 Elsevier B.V. All rights reserved.
Shu, Deming; Shvydko, Yuri; Stoupin, Stanislav A.; Khachatryan, Ruben; Goetze, Kurt A.; Roberts, Timothy
2015-04-14
A method and an ultrahigh-resolution spectrometer including a precision mechanical structure for positioning inelastic X-ray scattering optics are provided. The spectrometer includes an X-ray monochromator and an X-ray analyzer, each including X-ray optics of a collimating (C) crystal, a pair of dispersing (D) element crystals, anomalous transmission filter (F) and a wavelength (W) selector crystal. A respective precision mechanical structure is provided with the X-ray monochromator and the X-ray analyzer. The precision mechanical structure includes a base plate, such as an aluminum base plate; positioning stages for D-crystal alignment; positioning stages with an incline sensor for C/F/W-crystal alignment, and the positioning stages including flexure-based high-stiffness structure.
Czjzek, Mirjam; Ficko-Blean, Elizabeth
2017-01-01
The various modules in multimodular carbohydrate-active enzymes (CAZymes) may function in catalysis, carbohydrate binding, protein-protein interactions or as linkers. Here, we describe how combining the biophysical techniques of Small Angle X-ray Scattering (SAXS) and macromolecular X-ray crystallography (XRC) provides a powerful tool for examination into questions related to overall structural organization of ultra multimodular CAZymes.
Resonant soft X-ray scattering for polymer materials
Liu, Feng; Brady, Michael A.; Wang, Cheng
2016-04-16
Resonant Soft X-ray Scattering (RSoXS) was developed within the last few years, and the first dedicated resonant soft X-ray scattering beamline for soft materials was constructed at the Advanced Light Source, LBNL. RSoXS combines soft X-ray spectroscopy with X-ray scattering and thus offers statistical information for 3D chemical morphology over a large length scale range from nanometers to micrometers. Using RSoXS to characterize multi-length scale soft materials with heterogeneous chemical structures, we have demonstrated that soft X-ray scattering is a unique complementary technique to conventional hard X-ray and neutron scattering. Its unique chemical sensitivity, large accessible size scale, molecular bondmore » orientation sensitivity with polarized X-rays, and high coherence have shown great potential for chemically specific structural characterization for many classes of materials.« less
Ben-Sira, Liat; Shiran, Shelly I; Pratt, Li-Tal; Precel, Ronit; Ovadia, Dror; Constantini, Shlomi; Roth, Jonathan
2018-05-04
Shunt series (SS) are a common diagnostic tool used to verify shunt integrity. SS include X-ray films of the skull, chest, and abdomen and often are performed either when a shunted patient presents with suspected shunt malfunction or as a screening test to identify shunt disconnections or dislodgment. EOS low-dose biplanar X-rays are associated with significantly reduced radiation doses compared with ordinary X-rays and are used for various indications. This is the first publication on the use of EOS as a SS technique. Over a period of 6 months, EOS were performed at our center for various orthopedic indications, mostly for scoliosis evaluation. Nine children (<20 years of age) had a ventriculoperitoneal shunt and served as the study group. We retrospectively reviewed shunt visibility and integrity in the EOS scans as well as regular SS or plain spinal X-rays. Three patients had bilateral shunts, and 8 had previous X-rays for comparison. In all patients, the shunt integrity was easily demonstrated on the EOS images. Two patients had an identified shunt disconnection confirmed on the EOS images. No shunt-related information was missed on the EOS compared with the other X-ray images. These preliminary results suggest that EOS may be used as an alternative technology to demonstrate shunt integrity instead of regular X-ray SS. Favorable shunt visibility without the need for multiple radiation exposures and image processing (such as stitching) results in a significantly shorter examination time and significant less radiation. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Imara, Nia; Di Stefano, Rosanne
2018-05-01
We recommend that the search for exoplanets around binary stars be extended to include X-ray binaries (XRBs) in which the accretor is a white dwarf, neutron star, or black hole. We present a novel idea for detecting planets bound to such mass transfer binaries, proposing that the X-ray light curves of these binaries be inspected for signatures of transiting planets. X-ray transits may be the only way to detect planets around some systems, while providing a complementary approach to optical and/or radio observations in others. Any planets associated with XRBs must be in stable orbits. We consider the range of allowable separations and find that orbital periods can be hours or longer, while transit durations extend upward from about a minute for Earth-radius planets, to hours for Jupiter-radius planets. The search for planets around XRBs could begin at once with existing X-ray observations of these systems. If and when a planet is detected around an X-ray binary, the size and mass of the planet may be readily measured, and it may also be possible to study the transmission and absorption of X-rays through its atmosphere. Finally, a noteworthy application of our proposal is that the same technique could be used to search for signals from extraterrestrial intelligence. If an advanced exocivilization placed a Dyson sphere or similar structure in orbit around the accretor of an XRB in order to capture energy, such an artificial structure might cause detectable transits in the X-ray light curve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shear, Trevor A.
This literature review will focus on both laboratory and synchrotron based X-ray tomography of materials and highlight the inner workings of these instruments. X-ray fluorescence spectroscopy will also be reviewed and applications of the tandem use of these techniques will be explored. The real world application of these techniques during the internship will also be discussed.
Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M
2014-04-01
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.
X-ray biosignature of bacteria in terrestrial and extra-terrestrial rocks
NASA Astrophysics Data System (ADS)
Lemelle, L.; Simionovici, A.; Susini, J.; Oger, P.; Chukalina, M.; Rau, Ch.; Golosio, B.; Gillet, P.
2003-04-01
X-ray imaging techniques at the best spatial resolution and using synchrotron facilities are put forth as powerful techniques for the search of small life forms in extraterrestrial rocks under quarantine conditions (Lemelle et al. 2003). Samples, which may be collected in situ on the martian surface or on a cometary surface, will be brought back and finally stored in a container. We tested on the ID22 beamline, the possibilities of the X-ray absorption and fluorescence tomographies on sub-mm grains of NWA817 (Lemelle et al. submitted) and Tatahouine (Simionovici et al. 2001) meteorites stored in a 10 micrometer silica capillary, full of air, mimicking such containers. Studies of the X-ray microtomographies carried on reveal the positions, the 3D textures and mineralogies of the microenvironments where traces of life should be looked for in priority (with a submicrometer spatial resolution). Limitations with respect to bacterial detection are due to the difficulties to obtain information about light elements (Z <= 14), major constituents of biological and silicate samples. At this stage, traces of life were not detected, nor identified such as, on all the studied meteorites through the capillary. Theoretical developments of an internal elemental microanalysis combining X-ray fluorescence, Compton and Transmission tomographies will soon allow improvements of 3D detection of life by X-ray techniques (Golosio et al. submitted). We tested on the ID21 beamline, the possibilities of the X-ray imaging techniques on bacteria/silicate assemblages prepared in the laboratory and directly placed in the beam. The X-ray signature of a "present" bacteria on a silicate surface was defined by X-ray mapping, out of a container, as coincident micrometer and oval zones having strong P and S fluorescence lines (S-fluorescence being slightly lower than P-fluorescence) and an amino-linked sulfur redox speciation. The X-ray signature of a single bacteria can now be applied to test the bacterial origin of nanostructures observed on some meteorite surfaces. Lemelle et al. (2003a) accepted to Journal de Physique, b submitted to Am. Min., Simionovici et al. (2001) Proc. SPIE, vol 4503, ed. U. BONSE, San Diego, August. Golosio et al. submitted to Phys. Rev. B
A reassessment of absolute energies of the x-ray L lines of lanthanide metals
NASA Astrophysics Data System (ADS)
Fowler, J. W.; Alpert, B. K.; Bennett, D. A.; Doriese, W. B.; Gard, J. D.; Hilton, G. C.; Hudson, L. T.; Joe, Y.-I.; Morgan, K. M.; O'Neil, G. C.; Reintsema, C. D.; Schmidt, D. R.; Swetz, D. S.; Szabo, C. I.; Ullom, J. N.
2017-08-01
We introduce a new technique for determining x-ray fluorescence line energies and widths, and we present measurements made with this technique of 22 x-ray L lines from lanthanide-series elements. The technique uses arrays of transition-edge sensors, microcalorimeters with high energy-resolving power that simultaneously observe both calibrated x-ray standards and the x-ray emission lines under study. The uncertainty in absolute line energies is generally less than 0.4 eV in the energy range of 4.5 keV to 7.5 keV. Of the seventeen line energies of neodymium, samarium, and holmium, thirteen are found to be consistent with the available x-ray reference data measured after 1990; only two of the four lines for which reference data predate 1980, however, are consistent with our results. Five lines of terbium are measured with uncertainties that improve on those of existing data by factors of two or more. These results eliminate a significant discrepancy between measured and calculated x-ray line energies for the terbium L l line (5.551 keV). The line widths are also measured, with uncertainties of 0.6 eV or less on the full-width at half-maximum in most cases. These measurements were made with an array of approximately one hundred superconducting x-ray microcalorimeters, each sensitive to an energy band from 1 keV to 8 keV. No energy-dispersive spectrometer has previously been used for absolute-energy estimation at this level of accuracy. Future spectrometers, with superior linearity and energy resolution, will allow us to improve on these results and expand the measurements to more elements and a wider range of line energies.
Quantitative Electron Probe Microanalysis: State of the Art
NASA Technical Reports Server (NTRS)
Carpernter, P. K.
2005-01-01
Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete treatment of the continuum X-ray fluorescence correction.
Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation
NASA Astrophysics Data System (ADS)
Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao
1998-08-01
We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.
High-pressure pair distribution function (PDF) measurement using high-energy focused x-ray beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Ehm, Lars
In this paper, we report recent development of the high-pressure pair distribution function (HP-PDF) measurement technique using a focused high-energy X-ray beam coupled with a diamond anvil cell (DAC). The focusing optics consist of a sagittally bent Laue monochromator and Kirkpatrick-Baez (K–B) mirrors. This combination provides a clean high-energy X-ray beam suitable for HP-PDF research. Demonstration of the HP-PDF technique for nanocrystalline platinum under quasi-hydrostatic condition above 30 GPa is presented.
Three-dimensional x-ray inspection of food products
NASA Astrophysics Data System (ADS)
Graves, Mark; Batchelor, Bruce G.; Palmer, Stephen C.
1994-09-01
Modern food production techniques operate at high speed and sometimes fill several containers simultaneously; individual containers never become available for inspection by conventional x- ray systems. There is a constant demand for improved methods for detecting foreign bodies, such as glass, plastic, wood, stone, animal remains, etc. These requirements lead to significant problems with existing inspection techniques, which are susceptible to noise and are unable to detect long thin contaminants reliably. Experimental results demonstrate these points. The paper proposes the use of two x-ray inspection systems, with orthogonal beams to overcome these difficulties.
NASA Astrophysics Data System (ADS)
Olivero, P.; Manfredotti, C.; Vittone, E.; Fizzotti, F.; Paolini, C.; Lo Giudice, A.; Barrett, R.; Tucoulou, R.
2004-10-01
Tracking detectors have become an important ingredient in high-energy physics experiments. In order to survive the harsh detection environment of the large hadron collider (LHC), trackers need to have special properties. They must be radiation hard, provide fast collection of charge, be as thin as possible and remove heat from readout electronics. The unique properties of diamond allow it to fulfill these requirements. In this work we present an investigation of the charge transport and luminescence properties of "detector grade" artificial chemical vapour deposition (CVD) diamond devices developed within the CERN RD42 collaboration, performed by means of X-ray micro-beam induced current collection (XBICC) and X-ray micro-beam induced luminescence (XBIL) techniques. XBICC technique allows quantitative estimates of the transport parameters of the material to be evaluated and mapped with micrometric spatial resolution. In particular, the high resolution and sensitivity of the technique has allowed a quantitative study of the inhomogeneity of the charge transport parameter defined as the product of mobility and lifetime for both electron and holes. XBIL represents a technique complementary to ion beam induced luminescence (IBIL), which has already been used by our group, since X-ray energy loss profile in the material is different from that of MeV ions. X-ray induced luminescence maps have been performed simultaneously with induced photocurrent maps, to correlate charge transport and induced luminescence properties of diamond. Simultaneous XBICC and XBIL maps exhibit features of partial complementarity that have been interpreted on the basis of considerations on radiative and non-radiative recombination processes which compete with charge transport efficiency.
NASA Astrophysics Data System (ADS)
Pitney, John Allen
Conventional x-ray diffraction has historically been done under conditions such that the measured signal consists of an incoherent addition of scattering which is coherent only on a length scale determined by the properties of the beam. The result of the incoherent summation is a statistical averaging over the whole illuminated volume of the sample, which yields certain kinds of information with a high degree of precision and has been key to the success of x-ray diffraction in a variety of applications. Coherent x-ray scattering techniques, such as coherent x-ray diffraction (CXD) and x-ray intensity fluctuation spectroscopy (XIFS), attempt to reduce or eliminate any incoherent averaging so that specific, local structures couple to the measurement without being averaged out. In the case of XIFS, the result is analogous to dynamical light scattering, but with sensitivity to length scales less than 200 nm and time scales from 10-3 s to 103 s. When combined with phase retrieval, CXD represents an imaging technique with the penetration, in situ capabilities, and contrast mechanisms associated with x-rays and with a spatial resolution ultimately limited by the x-ray wavelength. In practice, however, the spatial resolution of CXD imaging is limited by exposure to about 100 A. This thesis describes CXD measurements of the binary alloy Cu3Au and the adaptation of phase retrieval methods for the reconstruction of real-space images of Cu3Au antiphase domains. The theoretical foundations of CXD are described in Chapter 1 as derived from the kinematical formulation for x-ray diffraction and from the temporal and spatial coherence of radiation. The antiphase domain structure of Cu 3Au is described, along with the associated reciprocal-space structure which is measured by CXD. CXD measurements place relatively stringent requirements on the coherence properties of the beam and on the detection mechanism of the experiment; these requirements and the means by which they have been met are delineated in Chapter 2. The results and interpretation of a set of Cu 3Au measurements are presented in Chapter 3. Chapter 4 describes the Gerchberg-Saxton and the hybrid input-output (HIO) algorithms for phase retrieval and shows the results of image reconstruction tests with simulated Cu 3Au CXD, including the effect of oversampling in reciprocal space.
X-Ray Detection Visits the Classroom
ERIC Educational Resources Information Center
Peralta, Luis; Farinha, Ana; Pinto, Ana
2008-01-01
Film has been used to detect x-rays since the early days of their discovery by Rontgen. Although nowadays superseded by other techniques, film still provides a cheap means of x-ray detection, making it attractive in high-school or undergraduate university courses. If some sort of quantitative result is required, the film's optical absorbance or…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocur, P.; Duggan, J.L.; McDaniel, F.D.
1983-04-01
In a recent series of studies of M-shell ionization induced by protons, alpha particles, and fluorine ions, an unmanageable background of low energy contaminant x rays was observed. These K-shell x rays were primarily from Ca, K, Cl, S, P, Si and Na. The energy range of these contaminants is from 3.691 to 1.041 keV. The M-shell x rays being studied were for various elements from U ( about 3.5 keV) down to Eu (1.5 keV). In order to evaluate and reduce the problem, the contaminants for carbon foils from a number of different manufacturers and a wide variety ofmore » foil float-off procedures have been studied. Carbon foils have been produced in our laboratory using carbon rods from several different manufacturers. In this paper, techniques will be described that are most appropriate to reduce the above contaminants to a reasonable level. These techniques should be useful in trace element analysis (PIXE) studies and fundamental ionization measurements for low x-ray energies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceglio, N.M.; George, E.V.; Brooks, K.M.
The first successful demonstration of high resolution, tomographic imaging of a laboratory plasma using coded imaging techniques is reported. ZPCI has been used to image the x-ray emission from laser compressed DT filled microballoons. The zone plate camera viewed an x-ray spectral window extending from below 2 keV to above 6 keV. It exhibited a resolution approximately 8 ..mu..m, a magnification factor approximately 13, and subtended a radiation collection solid angle at the target approximately 10/sup -2/ sr. X-ray images using ZPCI were compared with those taken using a grazing incidence reflection x-ray microscope. The agreement was excellent. In addition,more » the zone plate camera produced tomographic images. The nominal tomographic resolution was approximately 75 ..mu..m. This allowed three dimensional viewing of target emission from a single shot in planar ''slices''. In addition to its tomographic capability, the great advantage of the coded imaging technique lies in its applicability to hard (greater than 10 keV) x-ray and charged particle imaging. Experiments involving coded imaging of the suprathermal x-ray and high energy alpha particle emission from laser compressed microballoon targets are discussed.« less
Yeast cell metabolism investigated by CO{_2} production and soft X-ray irradiation
NASA Astrophysics Data System (ADS)
Masini, A.; Batani, D.; Previdi, F.; Milani, M.; Pozzi, A.; Turcu, E.; Huntington, S.; Takeyasu, H.
1999-01-01
Results obtained using a new technique for studying cell metabolism are presented. The technique, consisting in CO2 production monitoring, has been applied to Saccharomyces cerevisiae yeast cells. Also the cells were irradiated using the soft X-ray laser-plasma source at Rutherford Appleton Laboratory with the aim of producing a damage of metabolic processes at the wall level, responsible for fermentation, without great interference with respiration, taking place in mitochondria, and DNA activity. The source was calibrated with PIN diodes and X-ray spectrometers and used Teflon stripes as target, emitting X-rays at about 0.9 keV, with a very low penetration in biological material. X-ray doses delivered to the different cell compartments were calculated following a Lambert-Bouguet-Beer law. Immediately after irradiation, the damage to metabolic activity was measured again by monitoring CO2 production. Results showed a general reduction in gas production by irradiated samples, together with non-linear and non-monotone response to dose. There was also evidence of oscillations in cell metabolic activity and of X-ray induced changes in oscillation frequency.
Broadband X-ray Imaging in the Near-Field Region of an Airblast Atomizer
NASA Astrophysics Data System (ADS)
Li, Danyu; Bothell, Julie; Morgan, Timothy; Heindel, Theodore
2017-11-01
The atomization process has a close connection to the efficiency of many spray applications. Examples include improved fuel atomization increasing the combustion efficiency of aircraft engines, or controlled droplet size and spray angle enhancing the quality and speed of the painting process. Therefore, it is vital to understand the physics of the atomization process, but the near-field region is typically optically dense and difficult to probe with laser-based or intrusive measurement techniques. In this project, broadband X-ray radiography and X-ray computed tomography (CT) imaging were performed in the near-field region of a canonical coaxial airblast atomizer. The X-ray absorption rate was enhanced by adding 20% by weight of Potassium Iodide to the liquid phase to increase image contrast. The radiographs provided an estimate of the liquid effective mean path length and spray angle at the nozzle exit for different flow conditions. The reconstructed CT images provided a 3D map of the time-average liquid spray distribution. X-ray imaging was used to quantify the changes in the near-field spray characteristics for various coaxial airblast atomizer flow conditions. Office of Naval Research.
Equally sloped tomography based X-ray full-field nano-CT at Shanghai Synchrotron Radiation Facility
NASA Astrophysics Data System (ADS)
Wang, Yudan; Ren, Yuqi; Zhou, Guangzhao; Du, Guohao; Xie, Honglan; Deng, Biao; Xiao, Tiqiao
2018-07-01
X-ray full-field nano-computed tomography (nano-CT) has non-destructive three-dimensional imaging capabilities with high spatial resolution, and has been widely applied to investigate morphology and structures in various areas. Conventional tomography reconstructs a 3D object from a large number of equal-angle projections. For nano-CT, it takes long collecting time due to the large projection numbers and long exposure time. Here, equally-sloped tomography (EST) based nano-CT was implemented and constructed on X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility (SSRF) to overcome or alleviate these difficulties. Preliminary results show that hard TXM with the spatial resolution of 100 nm and the EST-based nano-CT with the ability of 3D nano non-destructive characterization have been realized. This technique promotes hard X-ray imaging capability to nano scales at SSRF and could have applications in many fields including nanomaterials, new energy and life sciences. The study will be helpful for the construction of the new full field X-ray nano-imaging beamline with the spatial resolution of 20 nm at SSRF phase II project.
In Situ 3D Coherent X-ray Diffraction Imaging of Shock Experiments: Possible?
NASA Astrophysics Data System (ADS)
Barber, John
2011-03-01
In traditional coherent X-ray diffraction imaging (CXDI), a 2D or quasi-2D object is illuminated by a beam of coherent X-rays to produce a diffraction pattern, which is then manipulated via a process known as iterative phase retrieval to reconstruct an image of the original 2D sample. Recently, there have been dramatic advances in methods for performing fully 3D CXDI of a sample from a single diffraction pattern [Raines et al, Nature 463 214-7 (2010)], and these methods have been used to image samples tens of microns in size using soft X-rays. In this work, I explore the theoretical possibility of applying 3D CXDI techniques to the in situ imaging of the interaction between a shock front and a polycrystal, a far more stringent problem. A delicate trade-off is required between photon energy, spot size, imaging resolution, and the dimensions of the experimental setup. In this talk, I will outline the experimental and computational requirements for performing such an experiment, and I will present images and movies from simulations of one such hypothetical experiment, including both the time-resolved X-ray diffraction patterns and the time-resolved sample imagery.
NASA Technical Reports Server (NTRS)
Tiede, D. A.
1972-01-01
A program was conducted to evaluate nondestructive analysis techniques for the detection of defects in rigidized surface insulation (a candidate material for the Space Shuttle thermal protection system). Uncoated, coated, and coated and bonded samples with internal defects (voids, cracks, delaminations, density variations, and moisture content), coating defects (holes, cracks, thickness variations, and loss of adhesion), and bondline defects (voids and unbonds) were inspected by X-ray radiography, acoustic, microwave, high-frequency ultrasonic, beta backscatter, thermal, holographic, and visual techniques. The detectability of each type of defect was determined for each technique (when applicable). A possible relationship between microwave reflection measurements (or X-ray-radiography density measurements) and the tensile strength was established. A possible approach for in-process inspection using a combination of X-ray radiography, acoustic, microwave, and holographic techniques was recommended.
Search for Hard X-Ray Emission from the Soft X-Ray Transient Aquila X-1
NASA Astrophysics Data System (ADS)
Harmon, B. A.; Zhang, S. N.; Paciesas, W. S.; Tavani, M.; Kaaret, P.; Ford, E.
1994-12-01
We are investigating the possibility of hard x-ray emission from the recurrent soft x-ray transient and x-ray burst source Aquila X-1 (Aql X-1). Outbursts of this source are relatively frequent with a spacing of ~ 4-10 months (Kitamoto, S. et al. 1993, ApJ, 403, 315). The recent detections of hard tails (\\(>\\)20 keV) in low luminosity x-ray bursters (Barret, D. & Vedrenne, G. 1994, ApJ Supp. S. 92, 505) suggest that neutron star transient systems such as Aql X-1 can produce hard x-ray emission which is detectable by BATSE. We are correlating reported optical and soft x-ray observations since 1991 of Aql X-1 with BATSE observations in order to search for hard x-ray emission episodes, and to study their temporal and spectral evolution. We will present preliminary results of this search in the 20-1000 keV band using the Earth occultation technique applied to the large area detectors. If this work is successful, we hope to alert the astronomical community for the next Aql X-1 outburst expected in 1995. Simultaneous x-ray/hard x-ray and optical observations of Aql X-1 during outburst would be of great importance for the modeling of soft x-ray transients and related systems.
X-ray detectors in medical imaging
NASA Astrophysics Data System (ADS)
Spahn, Martin
2013-12-01
Healthcare systems are subject to continuous adaptation, following trends such as the change of demographic structures, the rise of life-style related and chronic diseases, and the need for efficient and outcome-oriented procedures. This also influences the design of new imaging systems as well as their components. The applications of X-ray imaging in the medical field are manifold and have led to dedicated modalities supporting specific imaging requirements, for example in computed tomography (CT), radiography, angiography, surgery or mammography, delivering projection or volumetric imaging data. Depending on the clinical needs, some X-ray systems enable diagnostic imaging while others support interventional procedures. X-ray detector design requirements for the different medical applications can vary strongly with respect to size and shape, spatial resolution, frame rates and X-ray flux, among others. Today, integrating X-ray detectors are in common use. They are predominantly based on scintillators (e.g. CsI or Gd2O2S) and arrays of photodiodes made from crystalline silicon (Si) or amorphous silicon (a-Si) or they employ semiconductors (e.g. Se) with active a-Si readout matrices. Ongoing and future developments of X-ray detectors will include optimization of current state-of-the-art integrating detectors in terms of performance and cost, will enable the usage of large size CMOS-based detectors, and may facilitate photon counting techniques with the potential to further enhance performance characteristics and foster the prospect of new clinical applications.
HPHT growth and x-ray characterization of high-quality type IIa diamond.
Burns, R C; Chumakov, A I; Connell, S H; Dube, D; Godfried, H P; Hansen, J O; Härtwig, J; Hoszowska, J; Masiello, F; Mkhonza, L; Rebak, M; Rommevaux, A; Setshedi, R; Van Vaerenbergh, P
2009-09-09
The trend in synchrotron radiation (x-rays) is towards higher brilliance. This may lead to a very high power density, of the order of hundreds of watts per square millimetre at the x-ray optical elements. These elements are, typically, windows, polarizers, filters and monochromators. The preferred material for Bragg diffracting optical elements at present is silicon, which can be grown to a very high crystal perfection and workable size as well as rather easily processed to the required surface quality. This allows x-ray optical elements to be built with a sufficient degree of lattice perfection and crystal processing that they may preserve transversal coherence in the x-ray beam. This is important for the new techniques which include phase-sensitive imaging experiments like holo-tomography, x-ray photon correlation spectroscopy, coherent diffraction imaging and nanofocusing. Diamond has a lower absorption coefficient than silicon, a better thermal conductivity and lower thermal expansion coefficient which would make it the preferred material if the crystal perfection (bulk and surface) could be improved. Synthetic HPHT-grown (high pressure, high temperature) type Ib material can readily be produced in the necessary sizes of 4-8 mm square and with a nitrogen content of typically a few hundred parts per million. This material has applications in the less demanding roles such as phase plates: however, in a coherence-preserving beamline, where all elements must be of the same high quality, its quality is far from sufficient. Advances in HPHT synthesis methods have allowed the growth of type IIa diamond crystals of the same size as type Ib, but with substantially lower nitrogen content. Characterization of this high purity type IIa material has been carried out with the result that the crystalline (bulk) perfection of some of the HPHT-grown materials is approaching the quality required for the more demanding applications such as imaging applications and imaging applications with coherence preservation. The targets for further development of the type IIa diamond are size, crystal perfection, as measured by the techniques of white beam and monochromatic x-ray diffraction imaging (historically called x-ray topography), and also surface quality. Diamond plates extracted from the cubic growth sector furthest from the seed of the new low strain material produces no measurable broadening of the x-ray rocking curve width. One measures essentially the crystal reflectivity as defined by the intrinsic reflectivity curve (Darwin curve) width of a perfect crystal. In these cases the more sensitive technique of plane wave topography has been used to establish a local upper limit of the strain at the level of an 'effective misorientation' of 10(-7) rad.
NASA Astrophysics Data System (ADS)
Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao
2014-09-01
We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.
Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao
2014-09-01
We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Gangadhar, E-mail: gdas@rrcat.gov.in; Tiwari, M. K.; Singh, A. K.
The Compton and elastic scattering radiations are the major contributor to the spectral background of an x-ray fluorescence spectrum, which eventually limits the element detection sensitivities of the technique to µg/g (ppm) range. In the present work, we provide a detail mathematical descriptions and show that how polarization properties of the synchrotron radiation influence the spectral background in the x-ray fluorescence technique. We demonstrate our theoretical understandings through experimental observations using total x-ray fluorescence measurements on standard reference materials. Interestingly, the azimuthal anisotropy of the scattered radiation is shown to have a vital role on the significance of the x-raymore » fluorescence detection sensitivities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Michael W. M.; Phillips, Nicholas W.; van Riessen, Grant A.
2016-08-11
Owing to its extreme sensitivity, quantitative mapping of elemental distributionsviaX-ray fluorescence microscopy (XFM) has become a key microanalytical technique. The recent realisation of scanning X-ray diffraction microscopy (SXDM) meanwhile provides an avenue for quantitative super-resolved ultra-structural visualization. The similarity of their experimental geometries indicates excellent prospects for simultaneous acquisition. Here, in both step- and fly-scanning modes, robust, simultaneous XFM-SXDM is demonstrated.
A laser driven pulsed X-ray backscatter technique for enhanced penetrative imaging.
Deas, R M; Wilson, L A; Rusby, D; Alejo, A; Allott, R; Black, P P; Black, S E; Borghesi, M; Brenner, C M; Bryant, J; Clarke, R J; Collier, J C; Edwards, B; Foster, P; Greenhalgh, J; Hernandez-Gomez, C; Kar, S; Lockley, D; Moss, R M; Najmudin, Z; Pattathil, R; Symes, D; Whittle, M D; Wood, J C; McKenna, P; Neely, D
2015-01-01
X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.
Application of X-ray imaging techniques to auroral monitoring
NASA Technical Reports Server (NTRS)
Rust, D. M.; Burstein, P.
1981-01-01
The precipitation of energetic particles into the ionosphere produces bremsstrahlung X-rays and K-alpha line emission from excited oxygen and nitrogen. If viewed from a spacecraft in a highly elliptical polar orbit, this soft (0.3 - 3.0 keV) X-radiation will provide an almost uninterrupted record of dayside and nightside auroras. A grazing incidence X-ray telescope especially designed for such auroral monitoring is described. High photon collection efficiency will permit exposure times of approximately 100 seconds during substorms. Spectrophotometry will allow users to derive the energy spectrum of the precipitating particles. If placed in a 15 earth-radius orbit, the telescope can produce auroral X-ray images with 30 km resolution. Absolute position of X-ray auroras can be established with a small optical telescope co-aligned with the X-ray telescope. Comparison of X-ray and optical images will establish the height and global distribution of X-ray aurorae, relative to well-known optical auroras, thus melding the new X-ray results with knowledge of optical auroras.
NASA Technical Reports Server (NTRS)
Malina, Roger F.; Jelinsky, Patrick; Bowyer, Stuart
1986-01-01
The calibration facilities and techniques for the Extreme Ultraviolet Explorer (EUVE) from 44 to 2500 A are described. Key elements include newly designed radiation sources and a collimated monochromatic EUV beam. Sample results for the calibration of the EUVE filters, detectors, gratings, collimators, and optics are summarized.
Digital Dental X-ray Database for Caries Screening
NASA Astrophysics Data System (ADS)
Rad, Abdolvahab Ehsani; Rahim, Mohd Shafry Mohd; Rehman, Amjad; Saba, Tanzila
2016-06-01
Standard database is the essential requirement to compare the performance of image analysis techniques. Hence the main issue in dental image analysis is the lack of available image database which is provided in this paper. Periapical dental X-ray images which are suitable for any analysis and approved by many dental experts are collected. This type of dental radiograph imaging is common and inexpensive, which is normally used for dental disease diagnosis and abnormalities detection. Database contains 120 various Periapical X-ray images from top to bottom jaw. Dental digital database is constructed to provide the source for researchers to use and compare the image analysis techniques and improve or manipulate the performance of each technique.
Robinson, James B.; Brown, Leon D.; Jervis, Rhodri; Taiwo, Oluwadamilola O.; Millichamp, Jason; Mason, Thomas J.; Neville, Tobias P.; Eastwood, David S.; Reinhard, Christina; Lee, Peter D.; Brett, Daniel J. L.; Shearing, Paul R.
2014-01-01
A new technique combining in situ X-ray diffraction using synchrotron radiation and infrared thermal imaging is reported. The technique enables the application, generation and measurement of significant thermal gradients, and furthermore allows the direct spatial correlation of thermal and crystallographic measurements. The design and implementation of a novel furnace enabling the simultaneous thermal and X-ray measurements is described. The technique is expected to have wide applicability in material science and engineering; here it has been applied to the study of solid oxide fuel cells at high temperature. PMID:25178003
NASA Astrophysics Data System (ADS)
Daengsakul, Sujittra; Saengplot, Saowalak; Kidkhunthod, Pinit; Pimsawat, Adulphan; Maensiri, Santi
2018-04-01
This work presents the structural study of La0.99-xSrx(Na, K, Ba)0.01MnO3 or LSAM nanoparticles synthesized using thermal-hydro decomposition method where A denotes Na, K, Sr and Ba, respectively. The effect of ionic radii size of A dopants or rA from the substitution of A for La and Sr on the MnO6 octrahedral structure, where the average size of the cations occupying in A-site or 〈rA〉 is fixed at ∼ 1.24 Å, is focused. The LSAM nanoparticles are carefully studied using X-ray diffraction (XRD) including Rietveld refinement and X-ray Absorption Spectroscopy (XAS) including X-ray Absorption Near edge Structure (XANES) and X-ray Absorption Fine Structure (EXAFS). The Rietveld refinement shows all nano-powder samples have rhombohedral structure. By XANES technique we found that the effect of A substitutions at A-site causes a slight change of mean oxidation state of Mn between 3.54 and 3.60. Furthermore, the structural distortion of MnO6 octrahedral in samples is analysed and obtained from EXAFS. The observed trend of ferromagnetism for all LSAM samples can be clearly explained by evidences of A-site doping, structural distortion around Mn atoms and mixing Mn3+/Mn4+ valence states.
Techniques for the analysis of data from coded-mask X-ray telescopes
NASA Technical Reports Server (NTRS)
Skinner, G. K.; Ponman, T. J.; Hammersley, A. P.; Eyles, C. J.
1987-01-01
Several techniques useful in the analysis of data from coded-mask telescopes are presented. Methods of handling changes in the instrument pointing direction are reviewed and ways of using FFT techniques to do the deconvolution considered. Emphasis is on techniques for optimally-coded systems, but it is shown that the range of systems included in this class can be extended through the new concept of 'partial cycle averaging'.
Densitometry and temperature measurement of combustion gas by X-ray Compton scattering
Sakurai, Hiroshi; Kawahara, Nobuyuki; Itou, Masayoshi; Tomita, Eiji; Suzuki, Kosuke; Sakurai, Yoshiharu
2016-01-01
Measurement of combustion gas by high-energy X-ray Compton scattering is reported. The intensity of Compton-scattered X-rays has shown a position dependence across the flame of the combustion gas, allowing us to estimate the temperature distribution of the combustion flame. The energy spectra of Compton-scattered X-rays have revealed a significant difference across the combustion reaction zone, which enables us to detect the combustion reaction. These results demonstrate that high-energy X-ray Compton scattering can be employed as an in situ technique to probe inside a combustion reaction. PMID:26917151
Densitometry and temperature measurement of combustion gas by X-ray Compton scattering.
Sakurai, Hiroshi; Kawahara, Nobuyuki; Itou, Masayoshi; Tomita, Eiji; Suzuki, Kosuke; Sakurai, Yoshiharu
2016-03-01
Measurement of combustion gas by high-energy X-ray Compton scattering is reported. The intensity of Compton-scattered X-rays has shown a position dependence across the flame of the combustion gas, allowing us to estimate the temperature distribution of the combustion flame. The energy spectra of Compton-scattered X-rays have revealed a significant difference across the combustion reaction zone, which enables us to detect the combustion reaction. These results demonstrate that high-energy X-ray Compton scattering can be employed as an in situ technique to probe inside a combustion reaction.
High resolution imaging and lithography with hard x rays using parabolic compound refractive lenses
NASA Astrophysics Data System (ADS)
Schroer, C. G.; Benner, B.; Günzler, T. F.; Kuhlmann, M.; Zimprich, C.; Lengeler, B.; Rau, C.; Weitkamp, T.; Snigirev, A.; Snigireva, I.; Appenzeller, J.
2002-03-01
Parabolic compound refractive lenses are high quality optical components for hard x rays. They are particularly suited for full field imaging, with applications in microscopy and x-ray lithography. Taking advantage of the large penetration depth of hard x rays, the interior of opaque samples can be imaged with submicrometer resolution. To obtain the three-dimensional structure of a sample, microscopy is combined with tomographic techniques. In a first hard x-ray lithography experiment, parabolic compound refractive lenses have been used to project the reduced image of a lithography mask onto a resist. Future developments are discussed.
Fast ultrasonic wavelength tuning in X-ray experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blagov, A. E., E-mail: blagov-ae@mail.ru; Pisarevskii, Yu. V.; Koval’chuk, M. V.
2016-03-15
A method of tuning (scanning) X-ray beam wavelength based on modulation of the lattice parameter of X-ray optical crystal by an ultrasonic standing wave excited in it has been proposed and experimentally implemented. The double-crystal antiparallel scheme of X-ray diffraction, in which an ultrasonic wave is excited in the second crystal, is used in the experiment. The profile of characteristic line k{sub α1} of an X-ray tube with a molybdenum anode is recorded using both the proposed tuning scheme and conventional mechanical rotation of crystal. The results obtained by both techniques are in good agreement.
DISTRIBUTION SYSTEM SOLIDS - A RESEARCH APPROACH
The U.S. EPA's AWBERC research facility is equipped with capabilities to analyze a variety of solids in support many Laboratory-wide research studies. Techniques available on site include X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microsco...
Analytical Chemistry and the Microchip.
ERIC Educational Resources Information Center
Lowry, Robert K.
1986-01-01
Analytical techniques used at various points in making microchips are described. They include: Fourier transform infrared spectrometry (silicon purity); optical emission spectroscopy (quantitative thin-film composition); X-ray photoelectron spectroscopy (chemical changes in thin films); wet chemistry, instrumental analysis (process chemicals);…
Lucian A. Lucia; Hiroki Nanko; Alan W. Rudie; Doug G. Mancosky; Sue Wirick
2006-01-01
The research presented elucidates the oxidation chemistry occurring in hydrogen peroxide bleached kraft pulp fibers by employing carbon near edge x-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft x-ray technique that selectively interrogates atomic moieties using photoelectrons (Xrays) of variable energies. The X1A beam line at the National...
NASA Astrophysics Data System (ADS)
Collingwood, J. F.; Mikhaylova, A.; Davidson, M. R.; Batich, C.; Streit, W. J.; Eskin, T.; Terry, J.; Barrea, R.; Underhill, R. S.; Dobson, J.
2005-01-01
Fluorescence mapping and microfocus X-ray absorption spectroscopy are used to detect, locate and identify iron biominerals and other inorganic metal accumulations in neurodegenerative brain tissue at sub-cellular resolution (<5 microns). Recent progress in developing the technique is reviewed. Synchrotron X-rays are used to map tissue sections for metals of interest, and XANES and XAFS are used to characterise anomalous concentrations of the metals in-situ so that they can be correlated with tissue structures and disease pathology. Iron anomalies associated with biogenic magnetite, ferritin and haemoglobin are located and identified in an avian tissue model with a pixel resolution ~5 microns. Subsequent studies include brain tissue sections from transgenic Huntington's mice, and the first high-resolution mapping and identification of iron biominerals in human Alzheimer's and control autopsy brain tissue. Technical developments include use of microfocus diffraction to obtain structural information about biominerals in-situ, and depositing sample location grids by lithography for the location of anomalies by conventional microscopy. The combined techniques provide a breakthrough in the study of both intra- and extra-cellular iron compounds and related metals in tissue. The information to be gained from this approach has implications for future diagnosis and treatment of neurodegeneration, and for our understanding of the mechanisms involved.
Bentrup, Ursula
2010-12-01
Several in situ techniques are known which allow investigations of catalysts and catalytic reactions under real reaction conditions using different spectroscopic and X-ray methods. In recent years, specific set-ups have been established which combine two or more in situ methods in order to get a more detailed understanding of catalytic systems. This tutorial review will give a summary of currently available set-ups equipped with multiple techniques for in situ catalyst characterization, catalyst preparation, and reaction monitoring. Besides experimental and technical aspects of method coupling including X-ray techniques, spectroscopic methods (Raman, UV-vis, FTIR), and magnetic resonance spectroscopies (NMR, EPR), essential results will be presented to demonstrate the added value of multitechnique in situ approaches. A special section is focussed on selected examples of use which show new developments and application fields.
Automated X-Ray Diffraction of Irradiated Materials
Rodman, John; Lin, Yuewei; Sprouster, David; ...
2017-10-26
Synchrotron-based X-ray diffraction (XRD) and small-angle Xray scattering (SAXS) characterization techniques used on unirradiated and irradiated reactor pressure vessel steels yield large amounts of data. Machine learning techniques, including PCA, offer a novel method of analyzing and visualizing these large data sets in order to determine the effects of chemistry and irradiation conditions on the formation of radiation induced precipitates. In order to run analysis on these data sets, preprocessing must be carried out to convert the data to a usable format and mask the 2-D detector images to account for experimental variations. Once the data has been preprocessed, itmore » can be organized and visualized using principal component analysis (PCA), multi-dimensional scaling, and k-means clustering. In conclusion, from these techniques, it is shown that sample chemistry has a notable effect on the formation of the radiation induced precipitates in reactor pressure vessel steels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Cheng-Jun, E-mail: cjsun@aps.anl.gov; Brewe, Dale L.; Heald, Steve M.
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorptionmore » near edge structure for Pr{sub 0.67}Sr{sub 0.33}MnO{sub 3} film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.« less
High energy X-ray phase and dark-field imaging using a random absorption mask.
Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal
2016-07-28
High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.
Fujioka, Shinsuke; Fujiwara, Takashi; Tanabe, Minoru; Nishimura, Hiroaki; Nagatomo, Hideo; Ohira, Shinji; Inubushi, Yuichi; Shiraga, Hiroyuki; Azechi, Hiroshi
2010-10-01
Ultrafast, two-dimensional x-ray imaging is an important diagnostics for the inertial fusion energy research, especially in investigating implosion dynamics at the final stage of the fuel compression. Although x-ray radiography was applied to observing the implosion dynamics, intense x-rays emitted from the high temperature and dense fuel core itself are often superimposed on the radiograph. This problem can be solved by coupling the x-ray radiography with monochromatic x-ray imaging technique. In the experiment, 2.8 or 5.2 keV backlight x-rays emitted from laser-irradiated polyvinyl chloride or vanadium foils were selectively imaged by spherically bent quartz crystals with discriminating the out-of-band emission from the fuel core. This x-ray radiography system achieved 24 μm and 100 ps of spatial and temporal resolutions, respectively.
NASA Astrophysics Data System (ADS)
Ishii, M.; Rigopoulos, N.; Poolton, N. R. J.; Hamilton, B.
2007-02-01
A new technique named X-EFM that measures the x-ray absorption fine structure (XAFS) of nanometer objects was developed. In X-EFM, electrostatic force microscopy (EFM) is used as an x-ray absorption detector, and photoionization induced by x-ray absorption of surface electron trapping sites is detected by EFM. An EFM signal with respect to x-ray photon energy provides the XAFS spectra of the trapping sites. We adopted X-EFM to observe Si oxide thin films. An edge jump shift intrinsic to the X-EFM spectrum was found, and it was explained with a model where an electric field between the trapping site and probe deepens the energy level of the inner-shell. A scanning probe under x-rays with fixed photon energy provided the chemical state mapping on the surface.
NASA Astrophysics Data System (ADS)
Matsushima, U.; Graf, W.; Zabler, S.; Manke, I.; Dawson, M.; Choinka, G.; Hilger, A.; Herppich, W. B.
2013-01-01
Synchrotron X-ray computer microtomography was used to analyze the microstructure of rose peduncles. Samples from three rose cultivars, differing in anatomy, were scanned to study the relation between tissue structure and peduncles mechanical strength. Additionally, chlorophyll fluorescence imaging and conventional light microscopy was applied to quantify possible irradiation-induced damage to plant physiology and tissue structure. The spatial resolution of synchrotron X-ray computer microtomography was sufficiently high to investigate the complex tissues of intact rose peduncles without the necessity of any preparation. However, synchrotron X-radiation induces two different types of damage on irradiated tissues. First, within a few hours after first X-ray exposure, there is a direct physical destruction of cell walls. In addition, a slow and delayed destruction of chlorophyll and, consequently, of photosynthetic activity occurred within hours/ days after the exposure. The results indicate that synchrotron X-ray computer microtomography is well suited for three-dimensional visualization of the microstructure of rose peduncles. However, in its current technique, synchrotron X-ray computer microtomography is not really non-destructive but induce tissue damage. Hence, this technique needs further optimization before it can be applied for time-series investigations of living plant materials
Apparatus and method to enhance X-ray production in laser produced plasmas
Augustoni, Arnold L.; Gerardo, James B.; Raymond, Thomas D.
1992-01-01
Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser.
X-Ray Fluorescence Imaging of Ancient Artifacts
NASA Astrophysics Data System (ADS)
Thorne, Robert; Geil, Ethan; Hudson, Kathryn; Crowther, Charles
2011-03-01
Many archaeological artifacts feature inscribed and/or painted text or figures which, through erosion and aging, have become difficult or impossible to read with conventional methods. Often, however, the pigments in paints contain metallic elements, and traces may remain even after visible markings are gone. A promising non-destructive technique for revealing these remnants is X-ray fluorescence (XRF) imaging, in which a tightly focused beam of monochromatic synchrotron radiation is raster scanned across a sample. At each pixel, an energy-dispersive detector records a fluorescence spectrum, which is then analyzed to determine element concentrations. In this way, a map of various elements is made across a region of interest. We have succesfully XRF imaged ancient Greek, Roman, and Mayan artifacts, and in many cases, the element maps have revealed significant new information, including previously invisible painted lines and traces of iron from tools used to carve stone tablets. X-ray imaging can be used to determine an object's provenance, including the region where it was produced and whether it is authentic or a copy.
The S-054 X-ray telescope experiment on Skylab
NASA Technical Reports Server (NTRS)
Vaiana, G. S.; Van Speybroeck, L.; Zombeck, M. V.; Krieger, A. S.; Silk, J. K.; Timothy, A.
1977-01-01
A description of the S-054 X-ray telescope on Skylab is presented with a discussion of the experimental objectives, observing program, data reduction and analysis. Some results from the Skylab mission are given. The telescope photographically records high-resolution images of the solar corona in several broadband regions of the soft X-ray spectrum. It includes an objective grating used to study the line spectrum. The spatial resolution, sensitivity, dynamic range and time resolution of the instrument were chosen to survey a wide variety of solar phenomena. It embodies improvements in design, fabrication, and calibration techniques which were developed over a ten-year period. The observing program was devised to optimize the use of the instrument and to provide studies on a wide range of time scales. The data analysis program includes morphological studies and quantitative analysis using digitized images. A small sample of the data obtained in the mission is presented to demonstrate the type of information that is available and the kinds of results that can be obtained from it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Young S.
2015-02-12
The research accomplishments during the award involved experimental studies of correlated electron systems and quantum magnetism. The techniques of crystal growth, neutron scattering, x-ray scattering, and thermodynamic & transport measurements were employed, and graduate students and postdoctoral research associates were trained in these techniques.
Structural Order-Disorder Transformations Monitored by X-Ray Diffraction and Photoluminescence
ERIC Educational Resources Information Center
Lima, R. C.; Paris, E. C.; Leite, E. R.; Espinosa, J. W. M.; Souza, A. G.; Longo, E.
2007-01-01
A study was conducted to examine the structural order-disorder transformation promoted by controlled heat treatment using X-ray diffraction technique (XRD) and photoluminescence (PL) techniques as tools to monitor the degree of structural order. The experiment was observed to be versatile and easily achieved with low cost which allowed producing…
Grohmann, J; Taetzner, S; Theuss, T; Kuehnel, F; Buchwald, U; Einspanier, A
2012-04-01
Although common marmosets seem to be appropriate animal models to examine bone diseases, no data about the conclusiveness of less-invasive techniques are available. Therefore, the aim was to combine different techniques to analyse changes in bone metabolism of common marmosets with bone diseases. Five monkeys were examined by X-ray, computer tomography (CT), histology and immunohistochemistry (IHC). Monkeys with lowest bone mineral density (BMD) showed increased bone marrow, decreased cancellous bone and decreased contrast in X-ray. Highest alkaline phosphatase (AP)-levels were detected in bones with low elastic modulus. Expression of osteopontin (OPN), osteocalcin (OC) and runt-related transcriptions factor 2 (RUNX 2) was detected in bones with high modulus. No expression was present in bones with lower modulus. Collagen type I and V were found in every bone. In conclusion, CT, X-ray and AP are useful techniques to detect bone diseases in common marmosets. These observations could be confirmed by IHC. © 2012 John Wiley & Sons A/S.
NASA Astrophysics Data System (ADS)
Hemsing, E.; Dunning, M.; Hast, C.; Raubenheimer, T. O.; Weathersby, S.; Xiang, D.
2014-07-01
X-ray free-electron lasers are enabling access to new science by producing ultrafast and intense x rays that give researchers unparalleled power and precision in examining the fundamental nature of matter. In the quest for fully coherent x rays, the echo-enabled harmonic generation technique is one of the most promising methods. In this technique, coherent radiation at the high harmonic frequencies of two seed lasers is generated from the recoherence of electron beam phase space memory. Here we report on the generation of highly coherent and stable vacuum ultraviolet radiation at the 15th harmonic of an infrared seed laser with this technique. The experiment demonstrates two distinct advantages that are intrinsic to the highly nonlinear phase space gymnastics of echo-enabled harmonic generation in a new regime, i.e., high frequency up-conversion efficiency and insensitivity to electron beam phase space imperfections. Our results allow comparison and confirmation of predictive models and scaling laws, and mark a significant step towards fully coherent x-ray free-electron lasers that will open new scientific research.
NASA Technical Reports Server (NTRS)
Hoover, R. B.; Thomas, R. J.; Underwood, J. H.
1972-01-01
The current status of X-ray astronomy is surveyed by reviewing observational results and theoretical conclusions gained within the past two years in areas dealing with the quiet-sun, slowly-varying, and burst components of solar X-radiation and with the features of cosmic X-ray sources. Thermal and nonthermal processes responsible for a wide variety of X-ray emission mechanisms in nature are explained, and characteristics of X radiation from specific solar structures are described. Attention is given to the effects of interstellar and intergalactic matter on cosmic X-rays; the properties of galactic and extragalactic X-ray sources; and the specifications of such instruments as gas-filled ionization detectors, proportional counters, Geiger counters, scintillation detectors, photoelectric detectors, polarimeters, collimators, spectrometers, and imaging systems.
Dynamic and static structure studies of colloidal suspensions with XPCS, SAXS and XNFS
NASA Astrophysics Data System (ADS)
Lu, Xinhui
In the first project, I studied the onset of structural arrest and glass formation in a suspension of silica nanoparticles in a water-lutidine binary mixture near its consolute point using X-ray Photon Correlation Spectroscopy (XPCS) and Small Angle X-ray Scattering (SAXS). I obtained the temperature evolution of the static and dynamic structure, revealing that glass transitions occur both on cooling and on heating, and an unusual logarithmic relaxation within the intermediate liquid between the two glasses, as predicted by mode-coupling theory. In another project, I implemented and exploited the recently-introduced, coherence-based technique of X-ray Near-Field Speckle (XNFS) to characterize the structure and dynamics of micrometer-sized particles. In XNFS, the measured speckles originate from the interference between the incident and scattered beams, and enable truly ultra-small angle x-ray scattering measurements with a simple setup. We built a micrometer-resolution XNFS detector with a high numerical aperture microscope objective and demonstrated its capability of studying static structures and dynamics in longer length scale than traditional far field x-ray techniques by measuring dilute silica and polystyrene samples. We also discussed the limitation of this technique.
Toward picosecond time-resolved X-ray absorption studies of interfacial photochemistry
NASA Astrophysics Data System (ADS)
Gessner, Oliver; Mahl, Johannes; Neppl, Stefan
2016-05-01
We report on the progress toward developing a novel picosecond time-resolved transient X-ray absorption spectroscopy (TRXAS) capability for time-domain studies of interfacial photochemistry. The technique is based on the combination of a high repetition rate picosecond laser system with a time-resolved X-ray fluorescent yield setup that may be used for the study of radiation sensitive materials and X-ray spectroscopy compatible photoelectrochemical (PEC) cells. The mobile system is currently deployed at the Advanced Light Source (ALS) and may be used in all operating modes (two-bunch and multi-bunch) of the synchrotron. The use of a time-stamping technique enables the simultaneous recording of TRXAS spectra with delays between the exciting laser pulses and the probing X-ray pulses spanning picosecond to nanosecond temporal scales. First results are discussed that demonstrate the viability of the method to study photoinduced dynamics in transition metal-oxide semiconductor (SC) samples under high vacuum conditions and at SC-liquid electrolyte interfaces during photoelectrochemical water splitting. Opportunities and challenges are outlined to capture crucial short-lived intermediates of photochemical processes with the technique. This work was supported by the Department of Energy Office of Science Early Career Research Program.
Characterization of the Roman curse tablet
NASA Astrophysics Data System (ADS)
Liu, Wen; Zhang, Boyang; Fu, Lin
2017-08-01
The Roman curse tablet, produced in ancient Rome period, is a metal plate that inscribed with curses. In this research, several techniques were used to find out the physical structure and chemical composition of the Roman curse tablet, and testified the hypothesis that whether the tablet is made of pure lead or lead alloy. A sample of Roman Curse Tablet from the Johns Hopkins Archaeological Museum was analyzed using several different characterization techniques to determine the physical structure and chemical composition. The characterization techniques used were including optical microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Because of the small sample size, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and X-ray fluorescence (XRF) cannot test the sample. Results from optical microscopy and SEM, enlarged images of the sample surface were studied. The result revealed that the sample surface has a rough, non-uniform, and grainy surface. AFM provides three-dimensional topography of the sample surface, studying the sample surface in atomic level. DSC studies the thermal property, which is most likely a lead-alloy, not a pure lead. However, none of these tests indicated anything about the chemical composition. Future work will be required due to the lack of measures finding out its chemical composition. Therefore, from these characterization techniques above, the Roman curse tablet sample is consisted of lead alloy, not pure lead.
High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xin
1996-12-01
X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). Themore » spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.« less
Allegretta, Ignazio; Porfido, Carlo; Martin, Maria; Barberis, Elisabetta; Terzano, Roberto; Spagnuolo, Matteo
2018-06-24
Arsenic concentration and distribution were studied by combining laboratory X-ray-based techniques (wavelength dispersive X-ray fluorescence (WDXRF), micro X-ray fluorescence (μXRF), and X-ray powder diffraction (XRPD)), field emission scanning electron microscopy equipped with microanalysis (FE-SEM-EDX), and sequential extraction procedure (SEP) coupled to total reflection X-ray fluorescence (TXRF) analysis. This approach was applied to three contaminated soils and one mine tailing collected near the gold extraction plant at the Crocette gold mine (Macugnaga, VB) in the Monte Rosa mining district (Piedmont, Italy). Arsenic (As) concentration, measured with WDXRF, ranged from 145 to 40,200 mg/kg. XRPD analysis evidenced the presence of jarosite and the absence of any As-bearing mineral, suggesting a high weathering grade and strong oxidative conditions. However, small domains of Fe arsenate were identified by combining μXRF with FE-SEM-EDX. SEP results revealed that As was mainly associated to amorphous Fe oxides/hydroxides or hydroxysulfates (50-80%) and the combination of XRPD and FE-SEM-EDX suggested that this phase could be attributed to schwertmannite. On the basis of the reported results, As is scarcely mobile, even if a consistent As fraction (1-3 g As/kg of soil) is still potentially mobilizable. In general, the proposed combination of laboratory X-ray techniques could be successfully employed to unravel environmental issues related to metal(loid) pollution in soil and sediments.
Development of Total Knee Replacement Digital Templating Software
NASA Astrophysics Data System (ADS)
Yusof, Siti Fairuz; Sulaiman, Riza; Thian Seng, Lee; Mohd. Kassim, Abdul Yazid; Abdullah, Suhail; Yusof, Shahril; Omar, Masbah; Abdul Hamid, Hamzaini
In this study, by taking full advantage of digital X-ray and computer technology, we have developed a semi-automated procedure to template knee implants, by making use of digital templating method. Using this approach, a software system called OrthoKneeTMhas been designed and developed. The system is to be utilities as a study in the Department of Orthopaedic and Traumatology in medical faculty, UKM (FPUKM). OrthoKneeTMtemplating process employs uses a technique similar to those used by many surgeons, using acetate templates over X-ray films. Using template technique makes it easy to template various implant from every Implant manufacturers who have with a comprehensive database of templates. The templating functionality includes, template (knee) and manufactures templates (Smith & Nephew; and Zimmer). From an image of patient x-ray OrthoKneeTMtemplates help in quickly and easily reads to the approximate template size needed. The visual templating features then allow us quickly review multiple template sizes against the X-ray and thus obtain the nearly precise view of the implant size required. The system can assist by templating on one patient image and will generate reports that can accompany patient notes. The software system was implemented in Visual basic 6.0 Pro using the object-oriented techniques to manage the graphics and objects. The approaches for image scaling will be discussed. Several of measurement in orthopedic diagnosis process have been studied and added in this software as measurement tools features using mathematic theorem and equations. The study compared the results of the semi-automated (using digital templating) method to the conventional method to demonstrate the accuracy of the system.
NASA Astrophysics Data System (ADS)
Mahmoud, Adel K.; Hammoudi, Zaid S.; Student Samah Rasheed, M. Sc.
2018-02-01
This paper aims to measuring the residual stresses practically in wear protection coatings using the sin2ψ method according to X-ray diffraction technique. The wear protection coatings used in this study was composite coating 95wt% Al2O3-5wt% SiC, while bond coat was AlNi alloy produced by using flame spraying technique on the mild steel substrate. The diffraction angle, 2θ, is measured experimentally and then the lattice spacing is calculated from the diffraction angle, and the known X-ray wavelength using Bragg’s Law. Once the dspacing values are known, they can be plotted versus sin2ψ, (ψ is the tilt angle). In this paper, stress measurement of the samples that exhibit a linear behavior as in the case of a homogenous isotropic sample in a biaxial stress state is included. The plot of dspacing versus sin2ψ is a straight line which slope is proportional to stress. On the other hand, the second set of samples showed oscillatory dspacing versus sin2ψ behaviour. The oscillatory behaviour indicates the presence of inhomogeneous stress distribution. In this case the X-ray elastic constants must be used instead of Young’s modulus (E) and Poisson ratio (ν)values. These constants can be obtained from the literature for a given material and reflection combination. The value of the residual stresses for the present coating calculated was compressive stresses (-325.6758MPa).
Tantau, L J; Chantler, C T; Bourke, J D; Islam, M T; Payne, A T; Rae, N A; Tran, C Q
2015-07-08
We use the x-ray extended range technique (XERT) to experimentally determine the mass attenuation coefficient of silver in the x-ray energy range 11 kev-28 kev including the silver K absorption edge. The results are accurate to better than 0.1%, permitting critical tests of atomic and solid state theory. This is one of the most accurate demonstrations of cross-platform accuracy in synchrotron studies thus far. We derive the mass absorption coefficients and the imaginary component of the form factor over this range. We apply conventional XAFS analytic techniques, extended to include error propagation and uncertainty, yielding bond lengths accurate to approximately 0.24% and thermal Debye-Waller parameters accurate to 30%. We then introduce the FDMX technique for accurate analysis of such data across the full XAFS spectrum, built on full-potential theory, yielding a bond length accuracy of order 0.1% and the demonstration that a single Debye parameter is inadequate and inconsistent across the XAFS range. Two effective Debye-Waller parameters are determined: a high-energy value based on the highly-correlated motion of bonded atoms (σ(DW) = 0.1413(21) Å), and an uncorrelated bulk value (σ(DW) = 0.1766(9) Å) in good agreement with that derived from (room-temperature) crystallography.
Siddiqui, Sanna F; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M; Bartsch, Marion; Raghavan, Seetha
2013-08-01
Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.
NASA Astrophysics Data System (ADS)
Siddiqui, Sanna F.; Knipe, Kevin; Manero, Albert; Meid, Carla; Wischek, Janine; Okasinski, John; Almer, Jonathan; Karlsson, Anette M.; Bartsch, Marion; Raghavan, Seetha
2013-08-01
Measurement techniques to obtain accurate in situ synchrotron strain measurements of thermal barrier coating systems (TBCs) applied to hollow cylindrical specimens are presented in this work. The Electron Beam Physical Vapor Deposition coated specimens with internal cooling were designed to achieve realistic temperature gradients over the TBC coated material such as that occurring in the turbine blades of aeroengines. Effects of the circular cross section on the x-ray diffraction (XRD) measurements in the various layers, including the thermally grown oxide, are investigated using high-energy synchrotron x-rays. Multiple approaches for beam penetration including collection, tangential, and normal to the layers, along with variations in collection parameters are compared for their ability to attain high-resolution XRD data from the internal layers. This study displays the ability to monitor in situ, the response of the internal layers within the TBC, while implementing a thermal gradient across the thickness of the coated sample. The thermal setup maintained coating surface temperatures in the range of operating conditions, while monitoring the substrate cooling, for a controlled thermal gradient. Through variation in measurement location and beam parameters, sufficient intensities are obtained from the internal layers which can be used for depth resolved strain measurements. Results are used to establish the various techniques for obtaining XRD measurements through multi-layered coating systems and their outcomes will pave the way towards goals in achieving realistic in situ testing of these coatings.
Lasers, extreme UV and soft X-ray
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilsen, Joseph
2015-09-20
Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA)more » laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.« less
X-ray chemical analyzer for field applications
Gamba, Otto O. M.
1977-01-01
A self-supporting portable field multichannel X-ray chemical analyzer system comprising a lightweight, flexibly connected, remotely locatable, radioisotope-excited sensing probe utilizing a cryogenically-cooled solid state semi-conductor crystal detector for fast in situ non-destructive, qualitative and quantitative analysis of elements in solid, powder, liquid or slurried form, utilizing an X-ray energy dispersive spectrometry technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocola, L. E.; Sampathkumar, V.; Kasthuri, N.
Here, we show that using infiltration of ZnO metal oxide can be useful for high resolution imaging of biological samples in electron and X-ray microscopy. This method is compatible with standard fixation techniques that leave the sample dry, such as finishing with super critical CO 2 drying, or simple vacuum drying at 95°C. We demonstrate this technique can be applied on tooth and brain tissue samples. We also show that high resolution X-ray tomography can be performed on biological systems using Zn K edge (1s) absorption to enhance internal structures, and obtained the first nanoscale 10 KeV X-ray absorption imagesmore » of the interior regions of a tooth.« less
Ocola, L. E.; Sampathkumar, V.; Kasthuri, N.; ...
2017-07-19
Here, we show that using infiltration of ZnO metal oxide can be useful for high resolution imaging of biological samples in electron and X-ray microscopy. This method is compatible with standard fixation techniques that leave the sample dry, such as finishing with super critical CO 2 drying, or simple vacuum drying at 95°C. We demonstrate this technique can be applied on tooth and brain tissue samples. We also show that high resolution X-ray tomography can be performed on biological systems using Zn K edge (1s) absorption to enhance internal structures, and obtained the first nanoscale 10 KeV X-ray absorption imagesmore » of the interior regions of a tooth.« less
NASA Astrophysics Data System (ADS)
Sneed, D.; Pravica, M.; Kim, E.; Chen, N.; Park, C.; White, M.
2017-10-01
This paper discusses our attempt to synthesize higher oxidation forms of cesium fluoride by pressurizing cesium fluoride in a fluorine-rich environment created via the x-ray decomposition of potassium tetrafluoroborate. This was done in order to confirm recent theoretical predictions of higher oxidation forms of CsFn. We discuss the development of a technique to produce molecular fluorine in situ via useful hard x-ray photochemistry, and the attempt to utilize this technique to form higher oxidation states of cesium fluoride. In order to verify the formation of the novel stoichiometric species of CsFn. X-ray Absorption Near Edge Spectroscopy (XANES) centered on the cesium K-edge was performed to probe the oxidation state of cesium as well as the local molecular coordination around Cs.
THE CHANDRA COSMOS LEGACY SURVEY: OPTICAL/IR IDENTIFICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchesi, S.; Civano, F.; Urry, C. M.
2016-01-20
We present the catalog of optical and infrared counterparts of the Chandra COSMOS-Legacy Survey, a 4.6 Ms Chandra program on the 2.2 deg{sup 2} of the COSMOS field, combination of 56 new overlapping observations obtained in Cycle 14 with the previous C-COSMOS survey. In this Paper we report the i, K, and 3.6 μm identifications of the 2273 X-ray point sources detected in the new Cycle 14 observations. We use the likelihood ratio technique to derive the association of optical/infrared (IR) counterparts for 97% of the X-ray sources. We also update the information for the 1743 sources detected in C-COSMOS,more » using new K and 3.6 μm information not available when the C-COSMOS analysis was performed. The final catalog contains 4016 X-ray sources, 97% of which have an optical/IR counterpart and a photometric redshift, while ≃54% of the sources have a spectroscopic redshift. The full catalog, including spectroscopic and photometric redshifts and optical and X-ray properties described here in detail, is available online. We study several X-ray to optical (X/O) properties: with our large statistics we put better constraints on the X/O flux ratio locus, finding a shift toward faint optical magnitudes in both soft and hard X-ray band. We confirm the existence of a correlation between X/O and the the 2–10 keV luminosity for Type 2 sources. We extend to low luminosities the analysis of the correlation between the fraction of obscured AGNs and the hard band luminosity, finding a different behavior between the optically and X-ray classified obscured fraction.« less
NASA Technical Reports Server (NTRS)
Gorenstein, P.
1985-01-01
A program for the development of high throughput instrumentation for X-ray astronomy based upon focusing optics is being carried out by the Smithsonian Astrophysical Observatory. The instrumentation is applicable to investigations requiring large area focusing optics for direct imaging or dispersive spectroscopy. The long range goals of this program are the development of telescopes and gratings for future major X-ray astronomy facilities, including additions to the LAMAR OSS-2/SHEAL experiment after the initial flights. Tests of the devices and their more immediate utilization in scientific investigations can be carried out with SPARTAN payloads deployed and retrieved by the Space Shuttle. However, the present backlog of approved SPARTAN missions is longer than the three-year duration of the program described in this program. Laboratory studies and breadboarding of instrumentation are discussed.
Leaching behavior and ESEM characterization of water-sensitive mudstone in southwestern Taiwan.
Chen, Hung-Ta; Lin, Tzong-Tzeng; Chang, Juu-En
2003-05-01
This investigation attempts to understand the critical soluble salts in natural mudstone and the leaching, microstructural, and microchemical characteristics in soaked mudstone using scanning electron microscopy (SEM)/energy-dispersive X-ray analysis (EDAX), X-ray fluorescence spectrometry (XRF), X-ray diffractometry (XRD), conductivity measurement, ion chromatography (IC), and environmental scanning electron microscopy (ESEM)/EDAX techniques. Natural mudstone probably includes soluble salts such as Na2SO4, NaCl, NaCO3, and CaCO3. The dissolution of Na2SO4 controls water-sensitive mudstone very susceptible to slaking and dispersion. ESEM micrographs clearly show evidence of mudstone-slaking during soaking since the visible pores are filled with small aggregative masses. A calcium-bearing precipitate from the soaked mudstone is speculated to be attributable to the decomposition of the hydrated product of the fresh mudstone.
Coronal Structures in Cool Stars
NASA Technical Reports Server (NTRS)
Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.
2004-01-01
Many papers have been published that further elucidate the structure of coronas in cool stars as determined from EUVE, HST, FUSE, Chandra, and XMM-Newton observations. In addition we are exploring the effects of coronas on the He I 1083081 transition that is observed in the infrared. Highlights of these are summarized below including publications during this reporting period and presentations. Ground-based magnetic Doppler imaging of cool stars suggests that active stars have active regions located at high latitudes on their surface. We have performed similar imaging in X-ray to locate the sites of enhanced activity using Chandra spectra. Chandra HETG observations of the bright eclipsing contact binary 44i Boo and Chandra LETG observations for the eclipsing binary VW Cep show X-ray line profiles that are Doppler-shifted by orbital motion. After careful analysis of the spectrum of each binary, a composite line-profile is constructed by adding the individual spectral lines. This high signal-to-noise ratio composite line-profile yields orbital velocities for these binaries that are accurate to 30 km/sec and allows their orbital motion to be studied at higher time resolutions. In conjunction with X-ray lightcurves, the phase-binned composite line-profiles constrain coronal structures to be small and located at high latitudes. These observations and techniques show the power of the Doppler Imaging Technique applied to X-ray line emission.
NASA Astrophysics Data System (ADS)
Ong, S. T.; Chaudhary, K.; Ali, J.; Lee, S.
2014-07-01
Numerical experiments using the Lee model were performed to study the neutron yield and soft x-ray emission from the IR-MPF-100 plasma focus using the current fitting technique. The mass sweeping factor and the current factor for the axial and radial phase were used to represent the imperfections encountered in experiments. All gross properties including the yields were realistically simulated once the computed and measured current profiles were well fitted. The computed neutron yield Yn was in agreement with the experimentally measured Yn at 20 kV (E0 ˜ 30 kJ) charging voltage. The optimum computed neutron yield of Yn = 1.238 × 109 neutrons per shot was obtained at optimum physics parameters of the plasma focus operated with deuterium gas. It was also observed that no soft x-rays were emitted from the IR-MPF-100 plasma focus operated with argon gas due to the absence of helium-like and hydrogen-like ions at a low plasma temperature (˜0.094 keV) and axial speed (8.12 cm µs-1). However, the soft x-ray yield can be achieved by increasing the charging voltage, using a higher ratio of outer anode radius to inner anode radius c or shorter anode length z0, or using neon as the operating gas.
Mapping cardiogenic oscillations using synchrotron-based phase contrast CT imaging
NASA Astrophysics Data System (ADS)
Thurgood, Jordan; Dubsky, Stephen; Siu, Karen K. W.; Wallace, Megan; Siew, Melissa; Hooper, Stuart; Fouras, Andreas
2012-10-01
In many animals, including humans, the lungs encase the majority of the heart thus the motion of each organ affects the other. The effects of the motion of the heart on the lungs potentially provides information with regards to both lung and heart health. We present a novel technique that is capable of measuring the effect of the heart on the surrounding lung tissue through the use of advanced synchrotron imaging techniques and recently developed X-ray velocimetry methods. This technique generates 2D frequency response maps of the lung tissue motion at multiple projection angles from projection X-ray images. These frequency response maps are subsequently used to generate 3D reconstructions of the lung tissue exhibiting motion at the frequency of ventilation and the lung tissue exhibiting motion at the frequency of the heart. This technique has a combined spatial and temporal resolution sufficient to observe the dynamic and complex 3D nature of lung-heart interactions.
A radiographic scanning technique for cores
Hill, G.W.; Dorsey, M.E.; Woods, J.C.; Miller, R.J.
1979-01-01
A radiographic scanning technique (RST) can produce single continuous radiographs of cores or core sections up to 1.5 m long and up to 30 cm wide. Changing a portable industrial X-ray unit from the normal still-shot mode to a scanning mode requires simple, inexpensive, easily constructed, and highly durable equipment. Additional components include a conveyor system, antiscatter cylinder-diaphragm, adjustable sample platform, developing tanks, and a contact printer. Complete cores, half cores, sample slabs or peels may be scanned. Converting the X-ray unit from one mode to another is easy and can be accomplished without the use of special tools. RST provides the investigator with a convenient, continuous, high quality radiograph, saves time and money, and decreases the number of times cores have to be handled. ?? 1979.
Large-volume protein crystal growth for neutron macromolecular crystallography.
Ng, Joseph D; Baird, James K; Coates, Leighton; Garcia-Ruiz, Juan M; Hodge, Teresa A; Huang, Sijay
2015-04-01
Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.
NASA Astrophysics Data System (ADS)
Shimura, Kazuo; Nakajima, Nobuyoshi; Tanaka, Hiroshi; Ishida, Masamitsu; Kato, Hisatoyo
1993-09-01
Dual-energy X-ray absorptiometry (DXA) is one of the bone densitometry techniques to diagnose osteoporosis, and has been gradually getting popular due to its high degree of precision. However, DXA involves a time-consuming examination because of its pencil-beam scan, and the equipment is expensive. In this study, we examined a new bone densitometry technique (CR-DXA) utilizing an X-ray imaging system and Computed Radiography (CR) used for medical X-ray image diagnosis. High level of measurement precision and accuracy could be achieved by X-ray rube voltage/filter optimization and various nonuniformity corrections based on simulation and experiment. The phantom study using a bone mineral block showed precision of 0.83% c.v. (coefficient of variation), and accuracy of 0.01 g/cm2, suggesting that a practically equivalent degree of measurement precision and accuracy to that of the DXA approach is achieved. CR-DXA is considered to provide bone mineral densitometry to facilitate simple, quick and precise bone mineral density measurement.
NASA Astrophysics Data System (ADS)
Li, Yi-Gui; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu
2011-03-01
Polymer materials such as transparent thermoplastic poly(methyl methacrylate) (PMMA) have been of great interest in the research and development of integrated circuits and micro-electromechanical systems due to their relatively low cost and easy process. We fabricated PMMA-based polymer hollow microneedle arrays by mask-dragging and aligning x-ray lithography. Techniques for 3D micromachining by direct lithography using x-rays are developed. These techniques are based on using image projection in which the x-ray is used to illuminate an appropriate gold pattern on a polyimide film mask. The mask is imaged onto the PMMA sample. A pattern with an area of up to 100 × 100mm2 can be fabricated with sub-micron resolution and a highly accurate order of a few microns by using a dragging mask. The fabrication technology has several advantages, such as forming complex 3D micro structures, high throughput and low cost.
NASA Astrophysics Data System (ADS)
Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.
2010-12-01
The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.
Monitoring of the Crab Nebula with Chandra and Other Observatories Including HST
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2014-01-01
Subsequent to the detections AGILE and Fermi/LAT of the gamma-ray flares from the Crab Nebula in the fall of 2010, this team has been monitoring the X-Ray emission from the Crab on a regular basis. X-Ray observations have taken place typically once per month when viewing constraints allow and more recently four times per year. There have been notable exceptions, e.g. in April of 2011 and March 2013 when we initiated a set of Chandra Target of opportunity observations in conjunction with bright gamma-ray flares. For much of the time regular HST observations were made in conjunction with the Chandra observations. The aim of this program to further characterize, in depth, the X-Ray and optical variations that take place in the nebula, and by so doing determine the regions which contribute to the harder X-ray variations and, if possible, determine the precise location within the Nebula of the origin of the gamma-ray flares. As part of this project members of the team have developed Singular Value Decomposition techniques to sequences of images in order to more accurately characterize features. The current status of the project will be presented highlighting studies of the inner knot and possible correlations with the flares.
High energy near- and far-field ptychographic tomography at the ESRF
NASA Astrophysics Data System (ADS)
da Silva, Julio C.; Haubrich, Jan; Requena, Guillermo; Hubert, Maxime; Pacureanu, Alexandra; Bloch, Leonid; Yang, Yang; Cloetens, Peter
2017-09-01
In high-resolution tomography, one needs high-resolved projections in order to reconstruct a high-quality 3D map of a sample. X-ray ptychography is a robust technique which can provide such high-resolution 2D projections taking advantage of coherent X-rays. This technique was used in the far-field regime for a fair amount of time, but it can now also be implemented in the near-field regime. In both regimes, the technique enables not only high-resolution imaging, but also high sensitivity to the electron density of the sample. The combination with tomography makes 3D imaging possible via ptychographic X-ray computed tomography (PXCT), which can provide a 3D map of the complex-valued refractive index of the sample. The extension of PXCT to X-ray energies above 15 keV is challenging, but it can allow the imaging of object opaque to lower energy. We present here the implementation and developments of high-energy near- and far-field PXCT at the ESRF.
Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data
Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.
2016-08-09
In this paper, we present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional datamore » cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. Finally, we demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.« less
NASA Astrophysics Data System (ADS)
Wakabayashi, Yusuke; Shirasawa, Tetsuroh; Voegeli, Wolfgang; Takahashi, Toshio
2018-06-01
The recent developments in synchrotron optics, X-ray detectors, and data analysis algorithms have enhanced the capability of the surface X-ray diffraction technique. This technique has been used to clarify the atomic arrangement around surfaces in a non-contact and nondestructive manner. An overview of surface X-ray diffraction, from the historical development to recent topics, is presented. In the early stage of this technique, surface reconstructions of simple semiconductors or metals were studied. Currently, the surface or interface structures of complicated functional materials are examined with sub-Å resolution. As examples, the surface structure determination of organic semiconductors and of a one-dimensional structure on silicon are presented. A new frontier is time-resolved interfacial structure analysis. A recent observation of the structure and dynamics of the electric double layer of ionic liquids, and an investigation of the structural evolution in the wettability transition on a TiO2 surface that utilizes a newly designed time-resolved surface diffractometer, are presented.
Imaging nanoscale lattice variations by machine learning of x-ray diffraction microscopy data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laanait, Nouamane; Zhang, Zhan; Schlepütz, Christian M.
In this paper, we present a novel methodology based on machine learning to extract lattice variations in crystalline materials, at the nanoscale, from an x-ray Bragg diffraction-based imaging technique. By employing a full-field microscopy setup, we capture real space images of materials, with imaging contrast determined solely by the x-ray diffracted signal. The data sets that emanate from this imaging technique are a hybrid of real space information (image spatial support) and reciprocal lattice space information (image contrast), and are intrinsically multidimensional (5D). By a judicious application of established unsupervised machine learning techniques and multivariate analysis to this multidimensional datamore » cube, we show how to extract features that can be ascribed physical interpretations in terms of common structural distortions, such as lattice tilts and dislocation arrays. Finally, we demonstrate this 'big data' approach to x-ray diffraction microscopy by identifying structural defects present in an epitaxial ferroelectric thin-film of lead zirconate titanate.« less
O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il; ...
2017-02-17
The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Neil, Galen C.; Miaja-Avila, Luis; Joe, Young Il
The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. We provide quantitative limits on the Fe–O bond length change. Lastly, we review potential improvements to our measurementmore » technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.« less
Douglas G. Mancosky; Lucian A. Lucia; Hiroki Nanko; Sue Wirick; Alan W. Rudie; Robert Braun
2005-01-01
The research presented herein is the first attempt to probe the chemical nature of lignocellulosic samples by the application of carbon near edge X-ray absorption fine structure spectroscopy (C-NEXAFS). C-NEXAFS is a soft X-ray technique that principally provides selective interrogation of discrete atomic moieties using photoelectrons of variable energies. The X1A beam...
Xie, Miao; Mohammadi, Reza; Turner, Christopher L.; ...
2015-07-29
In this paper, we explore the hardening mechanisms in WB4-based solid solutions upon addition of Ta, Mn, and Cr using in situ radial X-ray diffraction techniques under nonhydrostatic pressure. By examining the lattice-supported differential strain, we provide insights into the mechanism for hardness increase in binary solid solutions at low dopant concentrations. Speculations on the combined effects of electronic structure and atomic size in ternary WB 4 solid solutions containing Ta with Mn or Cr are also included to understand the extremely high hardness of these materials.
NASA Astrophysics Data System (ADS)
Bhattacharya, Souradeep; Heinke, Craig O.; Chugunov, Andrey I.; Freire, Paulo C. C.; Ridolfi, Alessandro; Bogdanov, Slavko
2017-12-01
We combined Chandra ACIS observations of the globular cluster 47 Tucanae (47 Tuc) from 2000, 2002 and 2014-2015 to create a deeper X-ray source list, and study some of the faint radio millisecond pulsars (MSPs) present in this cluster. We have detected 370 X-ray sources within the half-mass radius (2.79 arcsec) of the cluster, 81 of which are newly identified, by including new data and using improved source detection techniques. The majority of the newly identified sources are in the crowded core region, indicating cluster membership. We associate five of the new X-ray sources with chromospherically active BY Dra or W UMa variables identified by Albrow et al. We present alternative positions derived from two methods, centroiding and image reconstruction, for faint, crowded sources. We are able to extract X-ray spectra of the recently discovered MSPs 47 Tuc aa, 47 Tuc ab, the newly timed MSP 47 Tuc Z, and the newly resolved MSPs 47 Tuc S and 47 Tuc F. Generally, they are well fitted by blackbody or neutron star atmosphere models, with temperatures, luminosities and emitting radii similar to those of other known MSPs in 47 Tuc, though 47 Tuc aa and 47 Tuc ab reach lower X-ray luminosities. We limit X-ray emission from the full surface of the rapidly spinning (542 Hz) MSP 47 Tuc aa, and use this limit to put an upper bound for amplitude of r-mode oscillations in this pulsar as α < 2.5 × 10-9 and constrain the shape of the r-mode instability window.
NASA Astrophysics Data System (ADS)
Burns, Jack O.; Datta, Abhirup; Hallman, Eric J.
2016-06-01
Galaxy clusters are assembled through large and small mergers which are the most energetic events ("bangs") since the Big Bang. Cluster mergers "stir" the intracluster medium (ICM) creating shocks and turbulence which are illuminated by ~Mpc-sized radio features called relics and halos. These shocks heat the ICM and are detected in x-rays via thermal emission. Disturbed morphologies in x-ray surface brightness and temperatures are direct evidence for cluster mergers. In the radio, relics (in the outskirts of the clusters) and halos (located near the cluster core) are also clear signposts of recent mergers. Our recent ENZO cosmological simulations suggest that around a merger event, radio emission peaks very sharply (and briefly) while the x-ray emission rises and decays slowly. Hence, a sample of galaxy clusters that shows both luminous x-ray emission and radio relics/halos are good candidates for very recent mergers. We are in the early stages of analyzing a unique sample of 48 galaxy clusters with (i) known radio relics and/or halos and (ii) significant archival x-ray observations (>50 ksec) from Chandra and/or XMM. We have developed a new x-ray data analysis pipeline, implemented on parallel processor supercomputers, to create x-ray surface brightness, high fidelity temperature, and pressure maps of these clusters in order to study merging activity. The temperature maps are made using three different map-making techniques: Weighted Voronoi Tessellation, Adaptive Circular Binning, and Contour Binning. In this talk, we will show preliminary results for several clusters, including Abell 2744 and the Bullet cluster. This work is supported by NASA ADAP grant NNX15AE17G.
X-Ray Reprocessing in Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Begelman, Mitchell C.
2004-01-01
This is the final report for research entitled "X-ray reprocessing in active galactic nuclei," into X-ray absorption and emission in various classes of active galaxy via X-ray spectral signatures. The fundamental goal of the research was to use these signatures as probes of the central engine structure and circumnuclear environment of active galactic nuclei. The most important accomplishment supported by this grant involved the detailed analysis and interpretation of the XMM data for the bright Seyfert 1 galaxy MCG-6-30-15. This work was performed by Drs. Christopher Reynolds and Mitchell Begelman in collaboration with Dr. Jorn Wilms (University of Tubingen, Germany; PI of the XMM observation) and other European scientists. With XMM we obtained medium resolution X-ray spectra of unprecedented quality for this Seyfert galaxy. Modeling the X-ray spectrum within the framework of accretion disk reflection models produced the first evidence for energy extraction from the spin of a black hole. Specifically, we found that the extreme gravitational redshifts required to explain the X-ray spectrum suggests that the bulk of the energy dissipation is concentrated very close to the black hole, in contrast with the expectations of any pure accretion disk model. In a second paper we addressed the low- energy spectral complexity and used RXTE specta to pin down the high-energy spectral index, thus firming up our initial interpretation. Additionally, we carried out detailed spectral and variability analyses of a number of Seyfert and radio galaxies (e.g., NGC 5548 and 3C 111) and developed general techniques that will be useful in performing X-ray reverberation mapping of accretion disks in AGN, once adequate data becomes available. A list of papers supported by this research is included.
Development of a Direct Fabrication Technique for Full-Shell X-Ray Optics
NASA Technical Reports Server (NTRS)
Gubarev, M.; Kolodziejczak, J. K.; Griffith, C.; Roche, J.; Smith, W. S.; Kester, T.; Atkins, C.; Arnold, W.; Ramsey, B.
2016-01-01
Future astrophysical missions will require fabrication technology capable of producing high angular resolution x-ray optics. A full-shell direct fabrication approach using modern robotic polishing machines has the potential for producing high resolution, light-weight and affordable x-ray mirrors that can be nested to produce large collecting area. This approach to mirror fabrication, based on the use of the metal substrates coated with nickel phosphorous alloy, is being pursued at MSFC. The design of the polishing fixtures for the direct fabrication, the surface figure metrology techniques used and the results of the polishing experiments are presented.
Engine materials characterization and damage monitoring by using x ray technologies
NASA Technical Reports Server (NTRS)
Baaklini, George Y.
1993-01-01
X ray attenuation measurement systems that are capable of characterizing density variations in monolithic ceramics and damage due to processing and/or mechanical testing in ceramic and intermetallic matrix composites are developed and applied. Noninvasive monitoring of damage accumulation and failure sequences in ceramic matrix composites is used during room-temperature tensile testing. This work resulted in the development of a point-scan digital radiography system and an in situ x ray material testing system. The former is used to characterize silicon carbide and silicon nitride specimens, and the latter is used to image the failure behavior of silicon-carbide-fiber-reinforced, reaction-bonded silicon nitride matrix composites. State-of-the-art x ray computed tomography is investigated to determine its capabilities and limitations in characterizing density variations of subscale engine components (e.g., a silicon carbide rotor, a silicon nitride blade, and a silicon-carbide-fiber-reinforced beta titanium matrix rod, rotor, and ring). Microfocus radiography, conventional radiography, scanning acoustic microscopy, and metallography are used to substantiate the x ray computed tomography findings. Point-scan digital radiography is a viable technique for characterizing density variations in monolithic ceramic specimens. But it is very limited and time consuming in characterizing ceramic matrix composites. Precise x ray attenuation measurements, reflecting minute density variations, are achieved by photon counting and by using microcollimators at the source and the detector. X ray computed tomography is found to be a unique x ray attenuation measurement technique capable of providing cross-sectional spatial density information in monolithic ceramics and metal matrix composites. X ray computed tomography is proven to accelerate generic composite component development. Radiographic evaluation before, during, and after loading shows the effect of preexisting volume flaws on the fracture behavior of composites. Results from one-, three-, five-, and eight-ply ceramic composite specimens show that x ray film radiography can monitor damage accumulation during tensile loading. Matrix cracking, fiber-matrix debonding, fiber bridging, and fiber pullout are imaged throughout the tensile loading of the specimens. In situ film radiography is found to be a practical technique for estimating interfacial shear strength between the silicon carbide fibers and the reaction-bonded silicon nitride matrix. It is concluded that pretest, in situ, and post-test x ray imaging can provide greater understanding of ceramic matrix composite mechanical behavior.
Apparatus and method to enhance X-ray production in laser produced plasmas
Augustoni, A.L.; Gerardo, J.B.; Raymond, T.D.
1992-12-29
Method and apparatus for generating x-rays for use in, for instance, x-ray photolithography is disclosed. The method of generating x-rays includes the steps of providing a target and irradiating the target with a laser system which produces a train of sub-pulses to generate an x-ray producing plasma. The sub-pulses are of both high intensity and short duration. The apparatus for generating x-rays from a plasma includes a vacuum chamber, a target supported within the chamber and a laser system, including a short storage time laser. 8 figs.
Few-femtosecond time-resolved measurements of X-ray free-electron lasers.
Behrens, C; Decker, F-J; Ding, Y; Dolgashev, V A; Frisch, J; Huang, Z; Krejcik, P; Loos, H; Lutman, A; Maxwell, T J; Turner, J; Wang, J; Wang, M-H; Welch, J; Wu, J
2014-04-30
X-ray free-electron lasers, with pulse durations ranging from a few to several hundred femtoseconds, are uniquely suited for studying atomic, molecular, chemical and biological systems. Characterizing the temporal profiles of these femtosecond X-ray pulses that vary from shot to shot is not only challenging but also important for data interpretation. Here we report the time-resolved measurements of X-ray free-electron lasers by using an X-band radiofrequency transverse deflector at the Linac Coherent Light Source. We demonstrate this method to be a simple, non-invasive technique with a large dynamic range for single-shot electron and X-ray temporal characterization. A resolution of less than 1 fs root mean square has been achieved for soft X-ray pulses. The lasing evolution along the undulator has been studied with the electron trapping being observed as the X-ray peak power approaches 100 GW.
Molecular Dynamics Simulations and XAFS (MD-XAFS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenter, Gregory K.; Fulton, John L.
2017-01-20
MD-XAFS (Molecular Dynamics X-ray Adsorption Fine Structure) makes the connection between simulation techniques that generate an ensemble of molecular configurations and the direct signal observed from X-ray measurement.
NASA Technical Reports Server (NTRS)
Smith, Henry I. (Inventor); Lim, Michael (Inventor); Carter, James (Inventor); Schattenburg, Mark (Inventor)
1998-01-01
X-ray masking apparatus includes a frame having a supporting rim surrounding an x-ray transparent region, a thin membrane of hard inorganic x-ray transparent material attached at its periphery to the supporting rim covering the x-ray transparent region and a layer of x-ray opaque material on the thin membrane inside the x-ray transparent region arranged in a pattern to selectively transmit x-ray energy entering the x-ray transparent region through the membrane to a predetermined image plane separated from the layer by the thin membrane. A method of making the masking apparatus includes depositing back and front layers of hard inorganic x-ray transparent material on front and back surfaces of a substrate, depositing back and front layers of reinforcing material on the back and front layers, respectively, of the hard inorganic x-ray transparent material, removing the material including at least a portion of the substrate and the back layers of an inside region adjacent to the front layer of hard inorganic x-ray transparent material, removing a portion of the front layer of reinforcing material opposite the inside region to expose the surface of the front layer of hard inorganic x-ray transparent material separated from the inside region by the latter front layer, and depositing a layer of x-ray opaque material on the surface of the latter front layer adjacent to the inside region.
Propagation-based x-ray phase contrast imaging using an iterative phase diversity technique
NASA Astrophysics Data System (ADS)
Carroll, Aidan J.; van Riessen, Grant A.; Balaur, Eugeniu; Dolbnya, Igor P.; Tran, Giang N.; Peele, Andrew G.
2018-03-01
Through the use of a phase diversity technique, we demonstrate a near-field in-line x-ray phase contrast algorithm that provides improved object reconstruction when compared to our previous iterative methods for a homogeneous sample. Like our previous methods, the new technique uses the sample refractive index distribution during the reconstruction process. The technique complements existing monochromatic and polychromatic methods and is useful in situations where experimental phase contrast data is affected by noise.
Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results
NASA Technical Reports Server (NTRS)
Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.
2004-01-01
X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.
Industrial applications of automated X-ray inspection
NASA Astrophysics Data System (ADS)
Shashishekhar, N.
2015-03-01
Many industries require that 100% of manufactured parts be X-ray inspected. Factors such as high production rates, focus on inspection quality, operator fatigue and inspection cost reduction translate to an increasing need for automating the inspection process. Automated X-ray inspection involves the use of image processing algorithms and computer software for analysis and interpretation of X-ray images. This paper presents industrial applications and illustrative case studies of automated X-ray inspection in areas such as automotive castings, fuel plates, air-bag inflators and tires. It is usually necessary to employ application-specific automated inspection strategies and techniques, since each application has unique characteristics and interpretation requirements.
NASA Technical Reports Server (NTRS)
Kilaru, Kiranmayee; Ramsey, Brian D.; Gubarev, Mikhail V.
2011-01-01
A coating technique is being developed to correct the surface figure deviations in reflective-grazing-incidence X-ray optics. These optics are typically designed to have precise conic profiles, and any deviation in this profile, as a result of fabrication, results in a degradation of the imaging performance. To correct the mirror profiles, physical vapor deposition has been utilized to selectively deposit a filler material inside the mirror shell. The technique, termed differential deposition, has been implemented as a proof of concept on miniature X-ray optics developed at MSFC for medical-imaging applications. The technique is now being transferred to larger grazing-incidence optics suitable for astronomy and progress to date is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umetani, K.; Fukushima, K.
2013-03-15
An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 {mu}m, yielding sharp images of small arteries. The exposure time has been shortened to around 2 msmore » using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 {mu}m diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 {mu}m was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct investigation of mechanisms of vascular dysfunctions.« less
Lacquer polishing of X-ray optics
NASA Technical Reports Server (NTRS)
Catura, R. C.; Joki, E. G.; Roethig, D. T.; Brookover, W. J.
1987-01-01
Techniques for polishing figured X-ray optics by a lacquer-coating process are described. This acrylic lacquer coating has been applied with an optical quality of an eighth-wave in red light and very effectively covers surface roughness with spatial wavelengths less than about 0.2 mm. Tungsten films have been deposited on the lacquer coatings to provide highly efficient X-ray reflectivity.
Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion
2010-08-24
X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical
Feng, Hao; Ashkar, Rana; Steinke, Nina; ...
2018-02-01
A method dubbed grating-based holography was recently used to determine the structure of colloidal fluids in the rectangular grooves of a diffraction grating from X-ray scattering measurements. Similar grating-based measurements have also been recently made with neutrons using a technique called spin-echo small-angle neutron scattering. The analysis of the X-ray diffraction data was done using an approximation that treats the X-ray phase change caused by the colloidal structure as a small perturbation to the overall phase pattern generated by the grating. In this paper, the adequacy of this weak phase approximation is explored for both X-ray and neutron grating holography.more » Additionally, it is found that there are several approximations hidden within the weak phase approximation that can lead to incorrect conclusions from experiments. In particular, the phase contrast for the empty grating is a critical parameter. Finally, while the approximation is found to be perfectly adequate for X-ray grating holography experiments performed to date, it cannot be applied to similar neutron experiments because the latter technique requires much deeper grating channels.« less
NASA Astrophysics Data System (ADS)
Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit
2017-10-01
Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.
Phase contrast imaging using a micro focus x-ray source
NASA Astrophysics Data System (ADS)
Zhou, Wei; Majidi, Keivan; Brankov, Jovan G.
2014-09-01
Phase contrast x-ray imaging, a new technique to increase the imaging contrast for the tissues with close attenuation coefficients, has been studied since mid 1990s. This technique reveals the possibility to show the clear details of the soft tissues and tumors in small scale resolution. A compact and low cost phase contrast imaging system using a conventional x-ray source is described in this paper. Using the conventional x-ray source is of great importance, because it provides the possibility to use the method in hospitals and clinical offices. Simple materials and components are used in the setup to keep the cost in a reasonable and affordable range.Tungsten Kα1 line with the photon energy 59.3 keV was used for imaging. Some of the system design details are discussed. The method that was used to stabilize the system is introduced. A chicken thigh bone tissue sample was used for imaging followed by the image quality, image acquisition time and the potential clinical application discussion. High energy x-ray beam can be used in phase contrast imaging. Therefore the radiation dose to the patients can be greatly decreased compared to the traditional x-ray radiography.
X ray based displacement measurement for hostile environments
NASA Technical Reports Server (NTRS)
Canistraro, Howard A.; Jordon, Eric H.; Pease, Douglas M.; Fralick, Gustave C.
1992-01-01
A new method on noncontacting, high temperature extensometry based on the focus and scanning of x rays is currently under development and shows great promise of overcoming limitations associated with available techniques. The chief advantage is the ability to make undisturbed measurements through stratified or flowing gases, smoke, and flame. The system is based on the ability to focus and scan low energy, hard x rays such as those emanating from copper or molybdenum sources. The x rays are focused into a narrow and intense line image which can be scanned onto targets that fluoresce secondary x ray radiation. The final goal of the system is the ability to conduct macroscopic strain measurements in hostile environments by utilizing two or more fluorescing targets. Current work is limited to displacement measurement of a single target with a resolution of 1.25 micro-m and a target temperature of 1200 C, directly through an open flame. The main advantage of the technique lies in the penetrating nature of x rays which are not affected by the presence of refracting gas layers, smoke, flame, or intense thermal radiation, all of which could render conventional extensometry methods inoperative or greatly compromise their performance.
Discovery and development of x-ray diffraction
NASA Astrophysics Data System (ADS)
Jeong, Yeuncheol; Yin, Ming; Datta, Timir
2013-03-01
In 1912 Max Laue at University of Munich reasoned x-rays to be short wavelength electromagnetic waves and figured interference would occur when scattered off crystals. Arnold Sommerfeld, W. Wien, Ewald and others, raised objections to Laue's idea, but soon Walter Friedrich succeeded in recording x-ray interference patterns off copper sulfate crystals. But the Laue-Ewald's 3-dimensional formula predicted excess spots. Fewer spots were observed. William Lawrence Bragg then 22 year old studying at Cambridge University heard the Munich results from father William Henry Brag, physics professor at Univ of Leeds. Lawrence figured the spots are 2-d interference of x-ray wavelets reflecting off successive atomic planes and derived a simple eponymous equation, the Bragg equation d*sin(theta) = n*lamda. 1913 onward the Braggs dominated the crystallography. Max Laue was awarded the physics Nobel in 1914 and the Braggs shared the same in 1915. Starting with Rontgen's first ever prize in 1901, the importance of x-ray techniques is evident from the four out of a total 16 physics Nobels between 1901-1917. We will outline the historical back ground and importance of x-ray diffraction giving rise to techniques that even in 2013, remain work horses in laboratories all over the globe.
FOXSI: Properties of optics and detectors for hard-X rays
NASA Astrophysics Data System (ADS)
Buitrago-Casas, Juan Camilo; Glesener, Lindsay; Christe, Steven; Krucker, Sam; Ishikawa, Shin-nosuke; Foster, Natalie
2015-04-01
The Focusing Optics X-ray Solar Imager (FOXSI) is a state-of-the-art direct focusing X-ray telescope designed to observe the Sun. This experiment completed its second flight onboard a sounding rocket last December 11, 2014 from the White Sands Missile Range in New Mexico. The optics use a set of iridium-coated nickel/cobalt mirrors made using a replication technique based on an electroformed perfect polished surface. Since this technique creates full shells that no need to be co-aligned with other segments, an angular resolution of up to ~5 arcsec is gotten. The FOXSI focal plane consists of seven double-sided strip detectors. Five Silicon and 2 CdTe detectors were used during the second flight.We present on various properties of Wolter-I optics that are applicable to solar HXR observation, including ray-tracing simulations of the single-bounce (“ghost ray”) patterns from sources outside the field of view and angular resolution for different source angles and effective area measurements of the FOXSI optics. We also present the detectors calibration results, paying attention to energy resolution (~0.5 keV), energy thresholds (~4-15 keV for Silicon and ~4-20 keV for CdTe detectors), and spatial coherence of these values over the entire detector.
A Synthesis Of Cosmic X-ray And Infrared Background
NASA Astrophysics Data System (ADS)
Shi, Yong; Helou, G.; Armus, L.; Stierwalt, S.
2012-01-01
We present a synthesis model of cosmic IR and X-ray background, with the goal to derive a complete census of cosmic evolution of star formation (SF) and black-hole (BH) growth by complementing advantages of X-ray and IR surveys to each other. By assuming that individual galaxies are experiencing both SF and BH accretion, our model decomposes the total IR LF into SF and BH components while taking into account the luminosity-dependent SED and its dispersion of the SF component, and the extinction-dependent SED of the BH component. The best-fit parameters are derived by fitting to the number counts and redshift distributions at X-ray including both hard and soft bands, and mid-IR to submm bands including IRAS, Spitzer, Herschel, SCUBA, Aztec and MAMBO. Based on the fit result, our models provide a series of predictions on galaxy evolution and black-hole growth. For evolution of infrared galaxies, the model predicts that the total infrared luminosity function is best described through evolution in both luminosity and density. For evolution of AGN populations, the model predicts that the evolution of X-ray LF also shows luminosity and density dependent, that the type-1/type-2 AGN fraction is a function of both luminosity and redshift, and that the Compton-thick AGN number density evolves strongly with redshift, contributing about 20% to the total cosmic BH growth. For BH growth in IR galaxies, the model predicts that the majority of BH growth at z>1 occurs in infrared luminous galaxies and the AGN fraction as a function of IR survey is a strong function of the survey depth, ranging from >50% at bright end to below 10% at faint end. We also evaluates various AGN selection techniques at X-ray and IR wavelengths and offer predictions for future missions at X-ray and IR.
NASA Astrophysics Data System (ADS)
Yoshimura, Satoru; Sugimoto, Satoshi; Takeuchi, Takae; Murai, Kensuke; Kiuchi, Masato
2018-04-01
We mass-selected SiC3H9+ ions from various fragments produced through the decomposition of hexamethyldisilane, and finally produced low-energy SiC3H9+ ion beams. The ion beams were injected into Si(1 0 0) substrates and the dependence of deposited films on injected ion energy was then investigated. Injected ion energies were 20, 100, or 200 eV. Films obtained were investigated with X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy. X-ray diffraction and X-ray photoelectron spectroscopy of the substrates obtained following the injection of 20 eV ions demonstrated the occurrence of silicon carbide film (3C-SiC) deposition. On the other hand, Raman spectroscopy showed that the films deposited by the injection of 100 or 200 eV ions included 3C-SiC plus diamond-like carbon. Ion beam deposition using hexamethyldisilane-derived 20 eV SiC3H9+ ions is an efficient technique for 3C-SiC film formation on Si substrates.
Anatomy-based transmission factors for technique optimization in portable chest x-ray
NASA Astrophysics Data System (ADS)
Liptak, Christopher L.; Tovey, Deborah; Segars, William P.; Dong, Frank D.; Li, Xiang
2015-03-01
Portable x-ray examinations often account for a large percentage of all radiographic examinations. Currently, portable examinations do not employ automatic exposure control (AEC). To aid in the design of a size-specific technique chart, acrylic slabs of various thicknesses are often used to estimate x-ray transmission for patients of various body thicknesses. This approach, while simple, does not account for patient anatomy, tissue heterogeneity, and the attenuation properties of the human body. To better account for these factors, in this work, we determined x-ray transmission factors using computational patient models that are anatomically realistic. A Monte Carlo program was developed to model a portable x-ray system. Detailed modeling was done of the x-ray spectrum, detector positioning, collimation, and source-to-detector distance. Simulations were performed using 18 computational patient models from the extended cardiac-torso (XCAT) family (9 males, 9 females; age range: 2-58 years; weight range: 12-117 kg). The ratio of air kerma at the detector with and without a patient model was calculated as the transmission factor. Our study showed that the transmission factor decreased exponentially with increasing patient thickness. For the range of patient thicknesses examined (12-28 cm), the transmission factor ranged from approximately 21% to 1.9% when the air kerma used in the calculation represented an average over the entire imaging field of view. The transmission factor ranged from approximately 21% to 3.6% when the air kerma used in the calculation represented the average signals from two discrete AEC cells behind the lung fields. These exponential relationships may be used to optimize imaging techniques for patients of various body thicknesses to aid in the design of clinical technique charts.