Sample records for technological innovation capability

  1. Technological innovation capability in Malaysian-owned resource-based manufacturing companies: Early findings

    NASA Astrophysics Data System (ADS)

    Razali, Nur Fhathyhah; Mohd Suradi, Nur Riza; Ahmad Shahabuddin, Faridatul Azna; Ismail, Wan Rosmanira; Abidin, Norkisme Zainal; Ahmad, Nor Amalina; Mustafa, Zainol

    2013-04-01

    This study aims to identify the determinants of technological innovation capability of Malaysian-owned companies in the resources-based manufacturing, to identify the relationship between technological innovation capability (TIC) and technological innovation performance (TIP) for the resource-based manufacturing. Furthermore, this study also aims to identify innovation capability factors that need more emphasis and improvements from the respective authority. The scope of the study covers four industries which are petrochemical industries, pharmaceutical industries, palm oil-based industries and food processing industries which are located in the state of Selangor. Descriptive analysis, correlation analysis and performance capability analysis were used in this study. It was found that, technological innovation capabilities (TIC) for companies in the resource-based manufacturing are moderate. Factors such as policies capability, human resources capability and facilities capability have a positive relationship with the performance of technological innovation (TIP). These findings will help the government in making decisions and better implementation of policies to strengthen the competitiveness of the company, particularly in resource-based manufacturing.

  2. An Action Learning Method for Increased Innovation Capability in Organisations

    ERIC Educational Resources Information Center

    Olsson, Annika; Wadell, Carl; Odenrick, Per; Norell Bergendahl, Margareta

    2010-01-01

    Product innovation in highly complex and technological areas, such as medical technology, puts high requirements on the innovation capability of an organisation. Previous research and publications have highlighted organisational issues and learning matters as important and necessary for the development of innovation capability. Action learning…

  3. Innovation Value of Information Technology: Impact of Information Technology--Intensity on Innovation Capability and Firm Performance

    ERIC Educational Resources Information Center

    Ramamani, Mahesh Kumar

    2010-01-01

    Though information technology adoptions have been always referred to as innovations in firms, much of the business value literature has concentrated on the tangible and immediately measurable impacts of information technology (IT) adoptions. This study aims to explore the impact of information technology investments on the innovativeness of a…

  4. What drives successful implementation of pollution prevention and cleaner technology strategy? The role of innovative capability.

    PubMed

    Bhupendra, Kumar Verma; Sangle, Shirish

    2015-05-15

    Firms that are dynamic and prepared to implement environmental strategies have a potential competitive advantage over their industry counterparts. Therefore, it is important to understand, what capabilities are required to implement proactive environmental strategies. The paper discusses the attributes of innovative capability required by firms in order to adopt pollution prevention and cleaner technology strategies. Empirical results show that process and behavioral innovativeness are required by firms to implement a pollution prevention strategy. In addition to process and behavioral innovativeness, firms need a top management with high risk-taking ability as well as market, product, and strategic innovativeness to implement a cleaner technology strategy. The paper proposes some important managerial implications on the basis of the above research findings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Change, Technology and Higher Education: Are Universities Capable of Organisational Change?

    ERIC Educational Resources Information Center

    Marshall, Stephen

    2010-01-01

    Technology and change are so closely related that the use of the word innovation seems synonymous with technology in many contexts, including that of higher education. This paper contends that university culture and existing capability constrain such innovation and to a large extent determine the nature and extent of organisational change. In the…

  6. Change, Technology and Higher Education: Are Universities Capable of Organisational Change?

    ERIC Educational Resources Information Center

    Marshall, Stephen

    2011-01-01

    Technology and change are so closely related that the use of the word innovation seems synonymous with technology in many contexts, including that of higher education. This paper contends that university culture and existing capability constrain such innovation and to a large extent determine the nature and extent of organisational change. In the…

  7. Composites Manufacturing Education and Technology Facility Expedites Manufacturing Innovation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Composites Manufacturing Education and Technology facility (CoMET) at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) paves the way for innovative wind turbine components and accelerated manufacturing. Available for use by industry partners and university researchers, the 10,000-square-foot facility expands NREL's composite manufacturing research capabilities by enabling researchers to design, prototype, and test composite wind turbine blades and other components -- and then manufacture them onsite. Designed to work in conjunction with NREL's design, analysis, and structural testing capabilities, the CoMET facility expedites manufacturing innovation.

  8. Navy/Marine Corps innovative science and technology developments for future enhanced mine detection capabilities

    NASA Astrophysics Data System (ADS)

    Holloway, John H., Jr.; Witherspoon, Ned H.; Miller, Richard E.; Davis, Kenn S.; Suiter, Harold R.; Hilton, Russell J.

    2000-08-01

    JMDT is a Navy/Marine Corps 6.2 Exploratory Development program that is closely coordinated with the 6.4 COBRA acquisition program. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. The objective of the program is to develop innovative science and technology to enhance future mine detection capabilities. Prior to transition to acquisition, the COBRA ATD was extremely successful in demonstrating a passive airborne multispectral video sensor system operating in the tactical Pioneer unmanned aerial vehicle (UAV), combined with an integrated ground station subsystem to detect and locate minefields from surf zone to inland areas. JMDT is investigating advanced technology solutions for future enhancements in mine field detection capability beyond the current COBRA ATD demonstrated capabilities. JMDT has recently been delivered next- generation, innovative hardware which was specified by the Coastal System Station and developed under contract. This hardware includes an agile-tuning multispectral, polarimetric, digital video camera and advanced multi wavelength laser illumination technologies to extend the same sorts of multispectral detections from a UAV into the night and over shallow water and other difficult littoral regions. One of these illumination devices is an ultra- compact, highly-efficient near-IR laser diode array. The other is a multi-wavelength range-gateable laser. Additionally, in conjunction with this new technology, algorithm enhancements are being developed in JMDT for future naval capabilities which will outperform the already impressive record of automatic detection of minefields demonstrated by the COBAR ATD.

  9. Battlefield innovation: a case-study of remote sensor development

    NASA Astrophysics Data System (ADS)

    Orson, Jay A.; Hague, Tyler N.

    2007-10-01

    Evolving threats encountered by coalition forces in Operation Iraqi Freedom drive the need for innovations in airborne intelligence, surveillance, and reconnaissance capabilities. In many cases, disruptive capabilities are created by linking existing technologies and new radical technologies in a novel way. Some of the radical technologies used in achieving these disruptive capabilities are existing prototypes or one-of-a-kind systems that are thrust into the field to quickly react to emerging threats. Horned Owl is one such rapidly developed innovative technical solution designed to meet immediate battlefield needs. This paper focuses on two key areas of this initiative. The first is the innovation champion establishing a collaborative environment which fosters creativity and allows the project to mature the disruptive capability. The second is the practical implication, or challenges of deploying experimental systems in a battlefield environment. Discussions of these two areas provide valuable lessons to guide future innovation champions when presented with the dual task of balancing system maturation with meeting operational demand. Contents of this paper are not necessarily the official views of, or endorsed by the U.S. Government, the Department of Defense, or the Department of the Air Force.

  10. Demonstration and Evaluation of an Innovative Water Main Rehabilitation Technology: Spray-on Polymeric Lining

    EPA Science Inventory

    Many utilities are seeking innovative rehabilitation technologies to extend the life and fix larger portions of their water distribution systems with current funding levels. The information on the capabilities and applicability of new technologies is not always readily available...

  11. The Threat of the Premium Tank: The Product and Process of the Soviet Experience

    DTIC Science & Technology

    1992-06-05

    one of the Soviet Army’s most significant developments in land warfare remains. The demonstrated capability to develop, produce, and field innovative ...T-34, it clearly did not display the innovations and advanced capabilities that would bring Soviet post-war heavy tanks and the modern premium tank on...antitank warfare caused by the historically demonstrated capability to develop, produce, and field innovative and high technology tanks must be prevented

  12. Science Programs

    Science.gov Websites

    Research Library Science Briefs Science News Science Highlights Lab Organizations Science Programs Applied Innovation Research Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los Laboratory Delivering science and technology to protect our nation and promote world stability Science &

  13. Demonstration and evaluation of an innovative water main rehabilitation technology: Cured-in-Place Pipe (CIPP) lining

    EPA Science Inventory

    As many water utilities are seeking new and innovative rehabilitation technologies to extend the life of their water distribution systems, information on the capabilities and applicability of new technologies is not always readily available from an independent source. The U.S. E...

  14. Information Technology Adoption for Service Innovation Practices and Competitive Advantage: The Case of Financial Firms

    ERIC Educational Resources Information Center

    Chen, J. S.; Tsou, H. T.

    2007-01-01

    Background: The importance of information technology to current business practices has long drawn the attention of practitioners and academicians. Aim: This paper aims to broaden understanding about service innovation as a critical organizational capability through which information technology adoption influences the competitive advantage of a…

  15. Youth Participatory Action Research (YPAR) 2.0: How Technological Innovation and Digital Organizing Sparked a Food Revolution in East Oakland

    ERIC Educational Resources Information Center

    Akom, Antwi; Shah, Aekta; Nakai, Aaron; Cruz, Tessa

    2016-01-01

    This article argues that technological innovation is transforming the flow of information, the fluidity of social action, and is giving birth to new forms of bottom up innovation that are capable of expanding and exploding old theories of reproduction and resistance because "smart mobs," "street knowledge," and "social…

  16. Technology for Physics Instruction

    ERIC Educational Resources Information Center

    Bryan, Joel

    2006-01-01

    Although technological innovations have the capability to significantly change how scientific investigations are done and greatly enhance the teaching and learning of science, its use is no more effective than any other resource or innovation when researched-based effective teaching practices are not followed. This paper reviews established…

  17. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  18. Building Innovation: Learning with Technologies. Australian Education Review Number 56

    ERIC Educational Resources Information Center

    Moyle, Kathryn

    2010-01-01

    Australian Education Review (AER) 56 explores national and international policy priorities for building students' innovation capabilities through information and communication technologies (ICT) in Australian schools. Section 1 sets out the Australian policy context for digital education and highlights some of the emerging challenges. It provides…

  19. Bridging Technometric Method and Innovation Process: An Initial Study

    NASA Astrophysics Data System (ADS)

    Rumanti, A. A.; Reynaldo, R.; Samadhi, T. M. A. A.; Wiratmadja, I. I.; Dwita, A. C.

    2018-03-01

    The process of innovation is one of ways utilized to increase the capability of a technology component that reflects the need of SME. Technometric method can be used to identify to what extent the level of technology advancement in a SME is, and also which technology component that needs to be maximized in order to significantly deliver an innovation. This paper serves as an early study, which lays out a conceptual framework that identifies and elaborates the principles of innovation process from a well-established innovation model by Martin with the technometric method, based on the initial background research conducted at SME Ira Silver in Jogjakarta, Indonesia.

  20. An Examination of the Navy’s Future Naval Capability Technology Transition Process

    DTIC Science & Technology

    2004-12-01

    managing innovation , innovation is a lot of art and a little science. b. Innovation Skills The President of the small manufacturing company...34 managing innovation ", the breakthroughs do not come from managed, tightly structured programs. The development of those breakthroughs into truly useful

  1. Photos

    Science.gov Websites

    Skip to Content Skip to Search Skip to Utility Navigation Skip to Top Navigation Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Alamos National Innovation Research Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los

  2. Newsroom

    Science.gov Websites

    Skip to Content Skip to Search Skip to Utility Navigation Skip to Top Navigation Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Alamos National Innovation Research Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los

  3. Horizon Missions Methodology - Using new paradigms to overcome conceptual blocks to innovation

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1993-01-01

    The Horizon Mission Methodology was developed to provide a systematic analytical approach for evaluating and identifying technological requirements for breakthrough technology options (BTOs) and for assessing their potential to provide revolutionary capabilities for advanced space missions. Here, attention is given to the further use of the methodology as a new tool for a broader range of studies dealing with technology innovation and new technology paradigms.

  4. An innovative approach to capability-based emergency operations planning

    PubMed Central

    Keim, Mark E

    2013-01-01

    This paper describes the innovative use information technology for assisting disaster planners with an easily-accessible method for writing and improving evidence-based emergency operations plans. This process is used to identify all key objectives of the emergency response according to capabilities of the institution, community or society. The approach then uses a standardized, objective-based format, along with a consensus-based method for drafting capability-based operational-level plans. This information is then integrated within a relational database to allow for ease of access and enhanced functionality to search, sort and filter and emergency operations plan according to user need and technological capacity. This integrated approach is offered as an effective option for integrating best practices of planning with the efficiency, scalability and flexibility of modern information and communication technology. PMID:28228987

  5. An innovative approach to capability-based emergency operations planning.

    PubMed

    Keim, Mark E

    2013-01-01

    This paper describes the innovative use information technology for assisting disaster planners with an easily-accessible method for writing and improving evidence-based emergency operations plans. This process is used to identify all key objectives of the emergency response according to capabilities of the institution, community or society. The approach then uses a standardized, objective-based format, along with a consensus-based method for drafting capability-based operational-level plans. This information is then integrated within a relational database to allow for ease of access and enhanced functionality to search, sort and filter and emergency operations plan according to user need and technological capacity. This integrated approach is offered as an effective option for integrating best practices of planning with the efficiency, scalability and flexibility of modern information and communication technology.

  6. Access from Space: A New Perspective on NASA's Space Transportation Technology Requirements and Opportunities

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    2004-01-01

    The need for robust and reliable access from space is clearly demonstrated by the recent loss of the Space Shuttle Columbia; as well as the NASA s goals to get the Shuttle re-flying and extend its life, build new vehicles for space access, produce successful robotic landers and s a q k retrr? llisrions, and maximize the science content of ambitious outer planets missions that contain nuclear reactors which must be safe for re-entry after possible launch aborts. The technology lynch pin of access from space is hypersonic entry systems such the thermal protection system, along with navigation, guidance and control (NG&C). But it also extends to descent and landing systems such as parachutes, airbags and their control systems. Current space access technology maturation programs such as NASA s Next Generation Launch Technology (NGLT) program or the In-Space Propulsion (ISP) program focus on maturing laboratory demonstrated technologies for potential adoption by specific mission applications. A key requirement for these programs success is a suitable queue of innovative technologies and advanced concepts to mature, including mission concepts enabled by innovative, cross cutting technology advancements. When considering space access, propulsion often dominates the capability requirements, as well as the attention and resources. From the perspective of access from space some new cross cutting technology drivers come into view, along with some new capability opportunities. These include new miniature vehicles (micro, nano, and picosats), advanced automated systems (providing autonomous on-orbit inspection or landing site selection), and transformable aeroshells (to maximize capabilities and minimize weight). This paper provides an assessment of the technology drivers needed to meet future access from space mission requirements, along with the mission capabilities that can be envisioned from innovative, cross cutting access from space technology developments.

  7. FY10 Engineering Innovations, Research and Technology Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, M A; Aceves, S M; Paulson, C N

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less

  8. Regional convergence platforms in Europe—Innovation for space through technology partnerships

    NASA Astrophysics Data System (ADS)

    Bütfering, Peter

    2010-05-01

    Upcoming European and national space exploration programs and projects require new capabilities and scientific-technological solutions, and therefore external contributions to innovation. On the other hand European core (industrial) regions are searching of partners for innovation to strengthen their regional economy. In this context the German-based company European Space Innovation AG (former Adam Alva Neil)—highly experienced in the area of convergence activities between space and other sectors—has developed the model of regional convergence platforms (named 'SpaceInnovation'). These platforms are designed to foster technology partnerships between regional companies and institutes from 'non-space' and the space sector (agencies/industry). The article reflects this regional approach and shows examples in three different directions: SpaceInnovation Saar, an benchmark convergence platform initiated by the Saarland region. SpaceInnovation Europe, an European regions network approach. European SpaceInnovation Agent, an interface approach for systematic and sustainable convergence activities.

  9. Horizon Mission Methodology - A tool for the study of technology innovation and new paradigms

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1993-01-01

    The Horizon Mission (HM) methodology was developed to provide a means of identifying and evaluating highly innovative, breakthrough technology concepts (BTCs) and for assessing their potential impact on advanced space missions. The methodology is based on identifying new capabilities needed by hypothetical 'horizon' space missions having performance requirements that cannot be met even by extrapolating known space technologies. Normal human evaluation of new ideas such as BTCs appears to be governed (and limited) by 'inner models of reality' defined as paradigms. Thus, new ideas are evaluated by old models. This paper describes the use of the HM Methodology to define possible future paradigms that would provide alternatives to evaluation by current paradigms. The approach is to represent a future paradigm by a set of new BTC-based capabilities - called a paradigm abstract. The paper describes methods of constructing and using the abstracts for evaluating BTCs for space applications and for exploring the concept of paradigms and paradigm shifts as a representation of technology innovation.

  10. Comparison of Traditional and Innovative Techniques to Solve Technical Challenges

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele

    2011-01-01

    This slide presentation reviews the use of traditional and innovative techniques to solve technical challenges in food storage technology. The planning for a mission to Mars is underway, and the food storage technology improvements requires that improvements be made. This new technology is required, because current food storage technology is inadequate,refrigerators or freezers are not available for food preservation, and that a shelf life of 5 years is expected. A 10 year effort to improve food packaging technology has not enhanced significantly food packaging capabilities. Two innovation techniques were attempted InnoCentive and Yet2.com and have provided good results, and are still under due diligence for solver verification.

  11. NIST Role in Advancing Innovation

    NASA Astrophysics Data System (ADS)

    Semerjian, Hratch

    2006-03-01

    According to the National Innovation Initiative, a report of the Council on Competitiveness, innovation will be the single most important factor in determining America's success through the 21^st century. NIST mission is to promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology -- in ways that enhance economic security and improve the quality of life for all Americans. NIST innovations in measurement science and technology often become the basis for new industrial capabilities. Several examples of such developments will be discussed, including the development of techniques for manipulation and measurement of biomolecules which may become the building blocks for molecular electronics; expansion of the frontiers of quantum theory to develop the field of quantum computing and communication; development of atomic scale measurement capabilities for future nano- and molecular scale electronic devices; development of a lab-on-a-chip that can detect within seconds trace amounts of toxic chemicals in water, or can be used for rapid DNA analysis; and standards to facilitate supply chain interoperability.

  12. NASA technology investments: building America's future

    NASA Astrophysics Data System (ADS)

    Peck, Mason

    2013-03-01

    Investments in technology and innovation enable new space missions, stimulate the economy, contribute to the nation's global competitiveness, and inspire America's next generation of scientists, engineers and astronauts. Chief Technologist Mason Peck will provide an overview of NASA's ambitious program of space exploration that builds on new technologies, as well as proven capabilities, as it expands humanity's reach into the solar system while providing broadly-applicable benefits here on Earth. Peck also will discuss efforts of the Office of the Chief Technologist to coordinate the agency's overall technology portfolio, identifying development needs, ensuring synergy and reducing duplication, while furthering the national initiatives as outlined by President Obama's Office of Science and Technology Policy. By coordinating technology programs within NASA, Peck's office facilitates integration of available and new technology into operational systems that support specific human-exploration missions, science missions, and aeronautics. The office also engages other government agencies and the larger aerospace community to develop partnerships in areas of mutual interest that could lead to new breakthrough capabilities. NASA technology transfer translates our air and space missions into societal benefits for people everywhere. Peck will highlight NASA's use of technology transfer and commercialization to help American entrepreneurs and innovators develop technological solutions that stimulate the growth of the innovation economy by creating new products and services, new business and industries and high quality, sustainable jobs.

  13. Education, Science and Technology in Mexico: Challenges for Innovation

    ERIC Educational Resources Information Center

    Gómez-Merino, Fernando Carlos; Trejo-Téllez, Libia Iris; Méndez-Cadena, María Esther; Hernández-Cázares, Aleida Selene

    2017-01-01

    The innovation process is founded on a high-quality education system at all levels, which trains scientists and technologists capable of generating innovations. Education is the most decisive factor in human development, yet in Mexico current statistics reveal a critical situation at every educational level, as only 1 out of every 10 children…

  14. Apply

    Science.gov Websites

    linkedin facebook Twitter YouTube Twitter Content Apply now » Los Alamos National Laboratory Search Site submit About Mission Business Newsroom Publications Los Alamos National Laboratory Delivering Capabilities Deploying Innovation Technology Opportunities Innovation in New Mexico Los Alamos Collaboration

  15. Digitalization and the global technology trends

    NASA Astrophysics Data System (ADS)

    Ignat, V.

    2017-08-01

    Digitalization, connected products and services, and shortening innovation cycles are widely discussed topics in management practice and theory and demand for new concepts. We analysed how companies innovated their business models and how are the new the technology trends. We found out, that have a positive approach to digitalization but the technology strategy still runs its original business model. Digitalization forces to new solution orientation. For companies it is necessary to master the digital transformation, new innovations have to be developed. Furthermore, digitalization / Industry 4.0 linking the real-life factory with virtual reality, will play an increasingly important role in global manufacturing. Companies have to obtain new digital capabilities, in order to make their company sustainable for the future. A long term growth and welfare in Europe could be guaranteed only by new technology innovation.

  16. Business model configuration and dynamics for technology commercialization in mature markets.

    PubMed

    Flammini, Serena; Arcese, Gabriella; Lucchetti, Maria Claudia; Mortara, Letizia

    2017-01-01

    The food industry is a well-established and complex industry. New entrants attempting to penetrate it via the commercialization of a new technological innovation could face high uncertainty and constraints. The capability to innovate through collaboration and to identify suitable strategies and innovative business models (BMs) can be particularly important for bringing a technological innovation to this market. However, although the potential for these capabilities has been advocated, we still lack a complete understanding of how new ventures could support the technology commercialization process via the development of BMs. The paper aims to discuss these issues. To address this gap, this paper builds a conceptual framework that knits together the different bodies of extant literature (i.e. entrepreneurship, strategy and innovation) to analyze the BM innovation processes associated with the exploitation of emerging technologies; determines the suitability of the framework using data from the exploratory case study of IT IS 3D - a firm which has started to exploit 3D printing in the food industry; and improves the initial conceptual framework with the findings that emerged in the case study. From this analysis it emerged that: companies could use more than one BM at a time; hence, BM innovation processes could co-exist and be run in parallel; the facing of high uncertainty might lead firms to choose a closed and/or a familiar BM, while explorative strategies could be pursued with open BMs; significant changes in strategies during the technology commercialization process are not necessarily reflected in a radical change in the BM; and firms could deliberately adopt interim strategies and BMs as means to identify the more suitable ones to reach the market. This case study illustrates how firms could innovate the processes of their BM development to face the uncertainties linked with the entry into a mature and highly conservative industry (food).

  17. Low-cost fabrication technologies for nanostructures: state-of-the-art and potential

    NASA Astrophysics Data System (ADS)

    Santos, A.; Deen, M. J.; Marsal, L. F.

    2015-01-01

    In the last decade, some low-cost nanofabrication technologies used in several disciplines of nanotechnology have demonstrated promising results in terms of versatility and scalability for producing innovative nanostructures. While conventional nanofabrication technologies such as photolithography are and will be an important part of nanofabrication, some low-cost nanofabrication technologies have demonstrated outstanding capabilities for large-scale production, providing high throughputs with acceptable resolution and broad versatility. Some of these nanotechnological approaches are reviewed in this article, providing information about the fundamentals, limitations and potential future developments towards nanofabrication processes capable of producing a broad range of nanostructures. Furthermore, in many cases, these low-cost nanofabrication approaches can be combined with traditional nanofabrication technologies. This combination is considered a promising way of generating innovative nanostructures suitable for a broad range of applications such as in opto-electronics, nano-electronics, photonics, sensing, biotechnology or medicine.

  18. The importance of basic factors in innovation processes and their effects on innovation capability of Malaysian-owned manufacturing companies

    NASA Astrophysics Data System (ADS)

    Suradi, Nur Riza Mohd; Omar, Aminuddin; Shahabuddin, Faridatulazna Ahmad

    2015-02-01

    Innovation is the core ingredient in the competitiveness of today's businesses. Any company that cannot innovate will be losing its competitiveness. While the study on innovation at conceptual level is widely available, there is still lack of deep understanding of how innovation factors impact each stage of the processes of innovation that happen in Malaysian companies. This process-factor approach and understanding may help the government focuses its assistance on relevant factors at relevant process according to the size of the company. This study examines how companies are affected by fundamental factors needed in innovation. Based on results of MYTIC Study 2012 on the level of Technological Innovation Capability (TIC) of Malaysian companies using the RDCB framework, the significance of each innovation factor in each innovation process is determined. This study shows that human resource factor gives more impact than other factors in most processes. Also, financial and human resource factors are likely dictated by the size of the company.

  19. Ghost Imaging of Space Objects

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry V.; Erkmen, Baris I.; Yu, Nan

    2016-01-01

    Development of innovative aerospace technologies is critical for our nation to meet its goals to explore and under-stand the Earth, our solar system, and the universe. The spectacular success of many recent NASA missions hinges on the extensive technological innovations that NASA has been supporting for the past decades. To sustain this successful tradition it is very important to identify and stimulate the scientific research that may turn into a viable technology in the decades yet to come. Investment in innovative low-TRL research stimulates the growth of the scientific knowledge and enhances the technical capabilities in a way that answers the new questions and responds to new requirements.

  20. 78 FR 69173 - University Transportation Centers Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... DEPARTMENT OF TRANSPORTATION Research and Innovative Technology Administration University... University Transportation Centers (UTCs) program. Funds for this grant program are authorized beginning on..., technology and education resources, leadership, multi-modal research capability, and commitment to...

  1. Science, Technology and Innovation as Social Goods for Development: Rethinking Research Capacity Building from Sen's Capabilities Approach.

    PubMed

    Mormina, Maru

    2018-03-01

    Science and technology are key to economic and social development, yet the capacity for scientific innovation remains globally unequally distributed. Although a priority for development cooperation, building or developing research capacity is often reduced in practice to promoting knowledge transfers, for example through North-South partnerships. Research capacity building/development tends to focus on developing scientists' technical competencies through training, without parallel investments to develop and sustain the socioeconomic and political structures that facilitate knowledge creation. This, the paper argues, significantly contributes to the scientific divide between developed and developing countries more than any skills shortage. Using Charles Taylor's concept of irreducibly social goods, the paper extends Sen's Capabilities Approach beyond its traditional focus on individual entitlements to present a view of scientific knowledge as a social good and the capability to produce it as a social capability. Expanding this capability requires going beyond current fragmented approaches to research capacity building to holistically strengthen the different social, political and economic structures that make up a nation's innovation system. This has implications for the interpretation of human rights instruments beyond their current focus on access to knowledge and for focusing science policy and global research partnerships to design approaches to capacity building/development beyond individual training/skills building.

  2. European display scene

    NASA Astrophysics Data System (ADS)

    Bartlett, Christopher T.

    2000-08-01

    The manufacture of Flat Panel Displays (FPDs) is dominated by Far Eastern sources, particularly in Active Matrix Liquid Crystal Displays (AMLCD) and Plasma. The United States has a very powerful capability in micro-displays. It is not well known that Europe has a very active research capability which has lead to many innovations in display technology. In addition there is a capability in display manufacturing of organic technologies as well as the licensed build of Japanese or Korean designs. Finally, Europe has a display systems capability in military products which is world class.

  3. An Overview of SBIR Phase 2 Communications Technology and Development

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Communications Technology and Development which is one of six core competencies at NASA Glenn Research Center. There are eighteen technologies featured with emphasis on a wide spectrum of applications such as with a security-enhanced autonomous network management, secure communications using on-demand single photons, cognitive software-defined radio, spacesuit audio systems, multiband photonic phased-array antenna, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  4. An Overview of SBIR Phase 2 Physical Sciences and Biomedical Technologies in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in physical sciences and biomedical technologies in space, which is one of six core competencies at NASA Glenn Research Center. There are twenty two technologies featured with emphasis on a wide spectrum of applications such as reusable handheld electrolyte, sensor for bone markers, wideband single crystal transducer, mini treadmill for musculoskeletal, and much more. Each article in this report describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  5. A project to transfer technology from NASA centers in support of industrial innovation in the midwest

    NASA Technical Reports Server (NTRS)

    Barr, B. G.

    1986-01-01

    A technology transfer program utilizing graduate students in mechanical engineering at the University of Kansas was initiated in early 1981. The objective of the program was to encourage industrial innovation in the Midwest through improved industry/university cooperation and the utilization of NASA technology. A related and important aspect of the program was the improvement of graduate engineering education through the involvement of students in the identification and accomplishment of technological objectives in cooperation with scientists at NASA centers and engineers in industry. The pilot NASA/University Industrial Innovation Program was an outstanding success based on its ability to: attract top graduate students; secure industry support; and stimulate industry/university cooperation leading to enhanced university capability and utilization of advanced technology by industry.

  6. Space Technology Mission Directorate: Game Changing Development

    NASA Technical Reports Server (NTRS)

    Gaddis, Stephen W.

    2015-01-01

    NASA and the aerospace community have deep roots in manufacturing technology and innovation. Through it's Game Changing Development Program and the Advanced Manufacturing Technology Project NASA develops and matures innovative, low-cost manufacturing processes and products. Launch vehicle propulsion systems are a particular area of interest since they typically comprise a large percentage of the total vehicle cost and development schedule. NASA is currently working to develop and utilize emerging technologies such as additive manufacturing (i.e. 3D printing) and computational materials and processing tools that could dramatically improve affordability, capability, and reduce schedule for rocket propulsion hardware.

  7. Mobile technology in health information systems - a review.

    PubMed

    Zhang, X-Y; Zhang, P-Y

    2016-05-01

    Mobile technology is getting involved in every sphere of life including medical health care. There has been an immense upsurge in mobile phone-based health innovations these days. The expansion of mobile phone networks and the proliferation of inexpensive mobile handsets have made the digital information and communication technology capabilities very handy for the people to exploit if for any utility including health care. The mobile phone based innovations are able to transform weak and under performing health information system into more modern and efficient information system. The present review article will enlighten all these aspects of mobile technology in health care.

  8. Applying Rapid Acquisition Policy Lessons for Defense Innovation

    DTIC Science & Technology

    2017-12-21

    51 Applying Rapid Acquisition Policy Lessons for Defense Innovation Jonathan Wong Abstract: With the Department of Defense’s (DOD) recent focus on ...finds that DOD can incorporate innovation practices by dispersing organizations focused on new capabilities development across the agency to avoid...adjunct political scientist at the Rand Corporation. His research focuses on the intersection of new technology and defense acquisition. Prior to Rand

  9. An Overview of SBIR Phase 2 Airbreathing Propulsion Technologies

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Bitler, Dean W.

    2014-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing areas in Airbreathing Propulsion which is one of six core competencies at NASA Glenn Research Center. There are twenty technologies featured with emphasis on a wide spectrum of applications such as with a Turbo-Brayton cryocooler for aircraft superconducting systems, braided composite rotorcraft structures, engine air brake, combustion control valve, flexible composite driveshaft, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  10. In-home monitoring of persons with dementia: ethical guidelines for technology research and development.

    PubMed

    Mahoney, Diane F; Purtilo, Ruth B; Webbe, Frank M; Alwan, Majd; Bharucha, Ashok J; Adlam, Tim D; Jimison, Holly B; Turner, Beverly; Becker, S Ann

    2007-07-01

    Innovative technologies are rapidly emerging that offer caregivers the support and means to assist older adults with cognitive impairment to continue living "at home." Technology research and development efforts applied to older adults with dementia invoke special grant review and institutional review board concerns, to ensure not only safe but also ethically appropriate interventions. Evidence is emerging, however, that tensions are growing between innovators and reviewers. Reviewers with antitechnology biases are in a position to stifle needed innovation. Technology developers who fail to understand the clinical and caregiving aspects of dementia may design applications that are not in alignment with users' capabilities. To bridge this divide, we offer an analysis of the ethical issues surrounding home monitoring, a model framework, and ethical guidelines for technology research and development for persons with Alzheimer's disease and their caregivers.

  11. EXPERIMENTAL DESIGN CONSIDERATIONS WHEN VERIFYING THE PERFORMANCE OF MONITORING TECHNOLOGIES FOR DIOXIN AND DIOXIN-LIKE COMPOUNDS IN SOILS AND SEDIMENTS

    EPA Science Inventory

    A performance verification demonstration of technologies capable of detecting dioxin and dioxin-like compounds in soil and sediment samples was conducted in April 2004 under the U.S. Environmental Protection Agency's Superfund Innovative Technology Evaluation (SITE) Monitoring an...

  12. Innovative Technologies for Human Exploration: Opportunities for Partnerships and Leveraging Novel Technologies External to NASA

    NASA Technical Reports Server (NTRS)

    Hay, Jason; Mullins, Carie; Graham, Rachael; Williams-Byrd, Julie; Reeves, John D.

    2011-01-01

    Human spaceflight organizations have ambitious goals for expanding human presence throughout the solar system. To meet these goals, spaceflight organizations have to overcome complex technical challenges for human missions to Mars, Near Earth Asteroids, and other distant celestial bodies. Resolving these challenges requires considerable resources and technological innovations, such as advancements in human health and countermeasures for space environments; self-sustaining habitats; advanced power and propulsion systems; and information technologies. Today, government space agencies seek cooperative endeavors to reduce cost burdens, improve human exploration capabilities, and foster knowledge sharing among human spaceflight organizations. This paper looks at potential opportunities for partnerships and spin-ins from economic sectors outside the space industry. It highlights innovative technologies and breakthrough concepts that could have significant impacts on space exploration and identifies organizations throughout the broader economy that specialize in these technologies.

  13. Transport in Heterostructures and Device in Microwave and Millimeter Wave Regimes

    DTIC Science & Technology

    1992-03-31

    a number of technological innovations have been demonstrated and have found their way to the commercialIworld. The URI is at the origin of two spin...studied the carrier dynamics in high-Tc superconductors in the same frequency regime. During the course of the URI a number of technological innovations ...absorption effect in quantum wells, and therefore should be capable of 10-THz bandwidth. This detector is the fastest THz detector yet demonstrated, but

  14. Practice-centred evaluation and the privileging of care in health information technology evaluation.

    PubMed

    Darking, Mary; Anson, Rachel; Bravo, Ferdinand; Davis, Julie; Flowers, Steve; Gillingham, Emma; Goldberg, Lawrence; Helliwell, Paul; Henwood, Flis; Hudson, Claire; Latimer, Simon; Lowes, Paul; Stirling, Ian

    2014-06-05

    Our contribution, drawn from our experience of the case study provided, is a protocol for practice-centred, participative evaluation of technology in the clinical setting that privileges care. In this context 'practice-centred' evaluation acts as a scalable, coordinating framework for evaluation that recognises health information technology supported care as an achievement that is contingent and ongoing. We argue that if complex programmes of technology-enabled service innovation are understood in terms of their contribution to patient care and supported by participative, capability-building evaluation methodologies, conditions are created for practitioners and patients to realise the potential of technologies and make substantive contributions to the evidence base underpinning health innovation programmes. Electronic Patient Records (EPRs) and telemedicine are positioned by policymakers as health information technologies that are integral to achieving improved clinical outcomes and efficiency savings. However, evaluating the extent to which these aims are met poses distinct evaluation challenges, particularly where clinical and cost outcomes form the sole focus of evaluation design. We propose that a practice-centred approach to evaluation - in which those whose day-to-day care practice is altered (or not) by the introduction of new technologies are placed at the centre of evaluation efforts - can complement and in some instances offer advantages over, outcome-centric evaluation models. We carried out a regional programme of innovation in renal services where a participative approach was taken to the introduction of new technologies, including: a regional EPR system and a system to support video clinics. An 'action learning' approach was taken to procurement, pre-implementation planning, implementation, ongoing development and evaluation. Participants included clinicians, technology specialists, patients and external academic researchers. Whilst undergoing these activities we asked: how can a practice-centred approach be embedded into evaluation of health information technologies? Organising EPR and telemedicine evaluation around predetermined outcome measures alone can be impractical given the complex and contingent nature of such projects. It also limits the extent to which unforeseen outcomes and new capabilities are recognised. Such evaluations often fail to improve understanding of 'when' and 'under what conditions' technology-enabled service improvements are realised, and crucially, how such innovation improves care. Our contribution, drawn from our experience of the case study provided, is a protocol for practice-centred, participative evaluation of technology in the clinical setting that privileges care. In this context 'practice-centred' evaluation acts as a scalable, coordinating framework for evaluation that recognises health information technology supported care as an achievement that is contingent and ongoing. We argue that if complex programmes of technology-enabled service innovation are understood in terms of their contribution to patient care and supported by participative, capability-building evaluation methodologies, conditions are created for practitioners and patients to realise the potential of technologies and make substantive contributions to the evidence base underpinning health innovation programmes.

  15. Investigation of enablers of knowledge transfer in the medical industry.

    PubMed

    Tuan, Han-Wen

    2008-01-01

    This paper presents a research model for investigating the relationship between organisational enablers and the Knowledge Transfer (KT) Performance (KTP) in the medical industry. The enablers include leadership, organisational culture, Information Technology (IT) and individual performance measurement, and KTP is determined by individual capability, organisational capability and product/service innovation. This paper chose professional medical personnel as the research subject to determine whether or not these enablers affect KT. The findings show that only leadership directly affects the KTP, with IT also impacting both organisational capability and product/service innovation. The implications of these findings are discussed based on interviews with experts and practitioners.

  16. Design as a Focus for Technology Integration: Lessons Learned from a PT3 Project

    ERIC Educational Resources Information Center

    Nelson, Wayne A.; Thomeczek, Melissa

    2007-01-01

    Plugging in to L.I.T.E.S. project (Leaders in Technology Enhanced Schools--a previously funded Technology Innovation Challenge grant project) at Southern Illinois University Edwardsville (SIUE) has been very successful in its attempts to enhance the technology integration skills of teacher education students, and to improve the capabilities of our…

  17. Trends in Microfabrication Capabilities & Device Architectures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauer, Todd; Jones, Adam; Lentine, Anthony L.

    The last two decades have seen an explosion in worldwide R&D, enabling fundamentally new capabilities while at the same time changing the international technology landscape. The advent of technologies for continued miniaturization and electronics feature size reduction, and for architectural innovations, will have many technical, economic, and national security implications. It is important to anticipate possible microelectronics development directions and their implications on US national interests. This report forecasts and assesses trends and directions for several potentially disruptive microfabrication capabilities and device architectures that may emerge in the next 5-10 years.

  18. SUMMARY REPORT ON RESEARCH RESULTS FROM THE ADVANCE MEASUREMENT INITIATIVE (AMI)

    EPA Science Inventory

    EPA created the Advanced Measurement Initiative (AMI) to permit the early and inexpensive evaluation of innovative advanced technology and to encourage broad and rapid application in EPA operations. The AMI program focused on improving EPA's technological capabilities and acceler...

  19. Emergency Response and Management Activities

    EPA Pesticide Factsheets

    This quarterly report, highlighting accomplishments over the past several months, showcases EPA’s unique emergency response capabilities through the use of cutting-edge technologies and innovative cleanup strategies.

  20. A Measurement Framework for Team Level Assessment of Innovation Capability in Early Requirements Engineering

    NASA Astrophysics Data System (ADS)

    Regnell, Björn; Höst, Martin; Nilsson, Fredrik; Bengtsson, Henrik

    When developing software-intensive products for a market-place it is important for a development organisation to create innovative features for coming releases in order to achieve advantage over competitors. This paper focuses on assessment of innovation capability at team level in relation to the requirements engineering that is taking place before the actual product development projects are decided, when new business models, technology opportunities and intellectual property rights are created and investigated through e.g. prototyping and concept development. The result is a measurement framework focusing on four areas: innovation elicitation, selection, impact and ways-of-working. For each area, candidate measurements were derived from interviews to be used as inspiration in the development of a tailored measurement program. The framework is based on interviews with participants of a software team with specific innovation responsibilities and validated through cross-case analysis and feedback from practitioners.

  1. Women as a resource for the flexibility required for high technology innovation

    NASA Technical Reports Server (NTRS)

    Marlaire, Ruth Dasso

    1994-01-01

    What do women scientists need to know for career advancement into senior level positions? Our declining economic conditions have been the cause for major political and technological changes. The U.S. Congress is turning toward technology to increase our competitive edge in the world. Allowing women scientists, and women engineers in particular, more voice in the decision making process may be an innovative alternative for the diversity and flexibility needed for the unknown technological problems of the future. But first women scientists need to know how the system measures scientific achievement and how to identify the processes needed to increase our technological capability in order for them to formidably compete and win higher ranking positions.

  2. An Overview of SBIR Phase 2 In-Space Propulsion and Cryogenic Fluids Management

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in In-Space Propulsion and Cryogenic Fluids Management which is one of six core competencies at NASA Glenn Research Center. There are nineteen technologies featured with emphasis on a wide spectrum of applications such as high-performance Hall thruster support system, thruster discharge power converter, high-performance combustion chamber, ion thruster design tool, green liquid monopropellant thruster, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  3. An Overview of SBIR Phase 2 Materials Structures for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2015-01-01

    Technological innovation is the overall focus of NASA's Small Business Innovation Research (SBIR) program. The program invests in the development of innovative concepts and technologies to help NASA's mission directorates address critical research and development needs for agency projects. This report highlights innovative SBIR Phase II projects from 2007-2012 specifically addressing Areas in Materials and Structures for Extreme Environments which is one of six core competencies at NASA Glenn Research Center. There are twenty three technologies featured with emphasis on a wide spectrum of applications such as fine-filament superconductor wire, composite oxide cathode materials, nano-composites, high radiation solar cell, wrapped multilayer insulation, thin aerogel, and much more. Each article in this booklet describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report serves as an opportunity for NASA personnel including engineers, researchers, and program managers to learn of NASA SBIR's capabilities that might be crosscutting into this technology area. As the result, it would cause collaborations and partnerships between the small companies and NASA Programs and Projects resulting in benefit to both SBIR companies and NASA.

  4. Partnering with NASA: An Overview

    NASA Technical Reports Server (NTRS)

    Martin, Gary

    2017-01-01

    Partnerships is an important part of doing business at NASA. NASA partners with external organizations to access capabilities under collaborative agreements; enters into agreements for partner access to NASA capabilities; expand overall landscape of space activity; and spurring innovation. NASA partnerships consist of Reimbursable and Non-Reimbursable Space Act Agreements. Partnerships at Ames aligns with Ames' core competencies, and Partners often office in the NASA Research Park, which is an established regional innovation cluster that facilitates commercialization and services as a technology accelerator via onsite collaborations between NASA and its partners.

  5. An Introduction to Intelligent Processing Programs Developed by the Air Force Manufacturing Technology Directorate

    NASA Technical Reports Server (NTRS)

    Sampson, Paul G.; Sny, Linda C.

    1992-01-01

    The Air Force has numerous on-going manufacturing and integration development programs (machine tools, composites, metals, assembly, and electronics) which are instrumental in improving productivity in the aerospace industry, but more importantly, have identified strategies and technologies required for the integration of advanced processing equipment. An introduction to four current Air Force Manufacturing Technology Directorate (ManTech) manufacturing areas is provided. Research is being carried out in the following areas: (1) machining initiatives for aerospace subcontractors which provide for advanced technology and innovative manufacturing strategies to increase the capabilities of small shops; (2) innovative approaches to advance machine tool products and manufacturing processes; (3) innovative approaches to advance sensors for process control in machine tools; and (4) efforts currently underway to develop, with the support of industry, the Next Generation Workstation/Machine Controller (Low-End Controller Task).

  6. Assistive Technologies and Issues Relating to Privacy, Ethics and Security

    NASA Astrophysics Data System (ADS)

    Martin, Suzanne; Bengtsson, Johan E.; Dröes, Rose-Marie

    Emerging technologies provide the opportunity to develop innovative sustainable service models, capable of supporting adults with dementia at home. Devices range from simple stand-alone components that can generate a responsive alarm call to complex interoperable systems that even can be remotely controlled. From these complex systems the paradigm of the ubiquitous or ambient smart home has emerged, integrating technology, environmental design and traditional care provision. The service context is often complex, involving a variety of stakeholders and a range of interested agencies. Against this backdrop, as anecdotal evidence and government policies spawn further innovation it is critical that due consideration is given to the potential ethical ramifications at an individual, organisational and societal level. Well-grounded ethical thinking and proactive ethical responses to this innovation are required. Explicit policy and practice should therefore emerge which engenders confidence in existing supported living option schemes for adults with dementia and informs further innovation.

  7. China’s Emerging Capabilities in Energy Technology Innovation and Development

    DTIC Science & Technology

    2015-01-22

    management of tempo, scaling, and cost reduction. For particularly complex energy technology systems, such as civilian nuclear power plants , the...technology systems, such as civilian nuclear power plants , the greatest challenges often involve not so much new technology development (a...are far more complex phenomena unfolding than simply technology transfer, duplication, and mimicry . Our work has opened up a series of new

  8. Imagining value, imagining users: academic technology transfer for health innovation.

    PubMed

    Miller, Fiona Alice; Sanders, Carrie B; Lehoux, Pascale

    2009-04-01

    Governments have invested heavily in the clinical and economic promise of health innovation and express increasing concern with the efficacy and efficiency of the health innovation system. In considering strategies for 'better' health innovation, policy makers and researchers have taken a particular interest in the work of universities and related public research organizations: How do these organizations identify and transfer promising innovations to market, and do these efforts make best use of public sector investments? We conducted an ethnographic study of technology transfer offices (TTOs) in Ontario and British Columbia, Canada, to consider the place of health and health system imperatives in judgments of value in early-stage health innovation. Our analysis suggests that the valuation process is poorly specified as a set of task-specific judgments. Instead, we argue that technology transfer professionals are active participants in the construction of the innovation and assign value by 'imagining' the end product in its 'context of use'. Oriented as they are to the commercialization of health technology, TTOs understand users primarily as market players. The immediate users of TTOs' efforts are commercial partners (i.e., licensees, investors) who are capable of translating current discoveries into future commodities. The ultimate end users - patients, clinicians, health systems - are the future consumers of the products to be sold. Attention to these proximate and more distal users in the valuation process is a complex and constitutive feature of the work of health technology transfer. At the same time, judgements about individual technologies are made in relation to a broader imperative through which TTOs seek to imagine and construct sustainable innovation systems. Judgments of value are rendered sensible in relation to the logic of valuation for systems of innovation that, in turn, configure users of health innovation in systemic ways.

  9. The Regional Structure of Technical Innovation

    NASA Astrophysics Data System (ADS)

    O'Neale, Dion

    2014-03-01

    There is strong evidence that the productivity per capita of cities and regions increases with population. One likely explanation for this phenomenon is that densely populated regions bring together otherwise unlikely combinations of individuals and organisations with diverse, specialised capabilities, leading to increased innovation and productivity. We have used the REGPAT patent database to construct a bipartite network of geographic regions and the patent classes for which those regions display a revealed comparative advantage. By analysing this network, we can infer relationships between different types of patent classes - and hence the structure of (patentable) technology. The network also provides a novel perspective for studying the combinations of technical capabilities in different geographic regions. We investigate measures such as the diversity and ubiquity of innovations within regions and find that diversity (resp. ubiquity) is positively (resp. negatively) correlated with population. We also find evidence of a nested structure for technical innovation. That is, specialised innovations tend to occur only when other more general innovations are already present.

  10. Hybrid Electrostatic/Flextensional Mirror for Lightweight, Large-Aperture, and Cryogenic Space Telescopes

    NASA Technical Reports Server (NTRS)

    Patrick, Brian; Moore, James; Hackenberger, Wesley; Jiang, Xiaoning

    2013-01-01

    A lightweight, cryogenically capable, scalable, deformable mirror has been developed for space telescopes. This innovation makes use of polymer-based membrane mirror technology to enable large-aperture mirrors that can be easily launched and deployed. The key component of this innovation is a lightweight, large-stroke, cryogenic actuator array that combines the high degree of mirror figure control needed with a large actuator influence function. The latter aspect of the innovation allows membrane mirror figure correction with a relatively low actuator density, preserving the lightweight attributes of the system. The principal components of this technology are lightweight, low-profile, high-stroke, cryogenic-capable piezoelectric actuators based on PMN-PT (piezoelectric lead magnesium niobate-lead titanate) single-crystal configured in a flextensional actuator format; high-quality, low-thermal-expansion polymer membrane mirror materials developed by NeXolve; and electrostatic coupling between the membrane mirror and the piezoelectric actuator assembly to minimize problems such as actuator print-through.

  11. MODIFICATIONS TO REDUCE DRAG OUT AT A PRINTED CIRCUIT BOARD MANUFACTURER

    EPA Science Inventory

    This MnTAP/EPA Waste Reduction Innovative Technology Evaluation project at Micom, Inc., demonstrated the waste reducing capability of two simple rinsing modifications on an etchant and an electroless copper process. he simple, tow (or no) cost, low technology changes that were ma...

  12. 77 FR 8324 - Applications for the Environment: Real-Time Information Synthesis (AERIS) User Needs Workshop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... (AERIS) User Needs Workshop; Notice of Public Meeting AGENCY: Research and Innovative Technology... transformative capabilities of wireless technology to make surface transportation safer, smarter, and greener... significant environmental benefits. The AERIS Transformative Concepts include: (1) Eco-signal operations, (2...

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team KuuKulgur waits to begin the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. Innovation strategy management survey of the Chilean biomedical industry. Assessment of windows of opportunities to reduce technological gaps.

    PubMed

    Bas, Tomas Gabriel; Oliu, Carolina Alejandra

    2018-04-01

    The convergence of different theories (ie, catch-up effect and windows of opportunities) allows for the interpretation of different "technological innovation gaps" in Chile's biomedical industry. It is common knowledge that Chile has always had an economy almost exclusively based on services, commodities, and mainly in the exploitation of natural resources with low value added. The literature confirms that countries that concentrate their economies on the knowledge, research, development, and commercialization of technology and innovation have a better and more stable growth rate in the medium and long run. The "Asian Tigers" are a good example of this. Analyzing the technological gaps that affect the Chilean biomedical industry, it is possible to find windows of opportunities to catch up. This could allow the country to take its knowledge, skills, and capabilities further, thus enabling Chile to not just depend on its unpredictable natural resources. For the first time, a quantitative diagnosis of the Chilean biomedical industry was made. This study considered the Chilean biomedical industry and its innovation and entrepreneurship environment, taking into account its productive capacities and its potential to make progress in technological innovation and, as a result, dramatically reducing technological gaps through windows of opportunities. Copyright © 2018 John Wiley & Sons, Ltd.

  15. Technology Resource, Distribution, and Development Characteristics of Global Influenza Virus Vaccine: A Patent Bibliometric Analysis.

    PubMed

    Chen, Ning; Liu, Yun; Cheng, Yijie; Liu, Long; Yan, Zhe; Tao, Lixin; Guo, Xiuhua; Luo, Yanxia; Yan, Aoshuang

    2015-01-01

    Influenza virus vaccine (IVV) is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this paper (a) designs the technology classification system and search strategy for the identification of IVV; and (b) presents a longitudinal analysis of the global IVV development based on the European Patent Office (EPO) patents. Bibliometric analysis is used to rank countries, institutions, inventors and technology subfields contributing to IVV technical progress. The results show that the global trends of IVV are a multi-developing feature of variety but an uneven technical resource distribution. Although the synthetic peptide vaccine is a comparatively young field, it already demonstrates the powerful vitality and the enormous development space. With the worldwide competition increasing, all nations especially China should be looking to increase devotion, enhance capability and regard effectiveness of technological innovation.

  16. Technology Resource, Distribution, and Development Characteristics of Global Influenza Virus Vaccine: A Patent Bibliometric Analysis

    PubMed Central

    Liu, Long; Yan, Zhe; Tao, Lixin; Guo, Xiuhua; Luo, Yanxia; Yan, Aoshuang

    2015-01-01

    Influenza virus vaccine (IVV) is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this paper (a) designs the technology classification system and search strategy for the identification of IVV; and (b) presents a longitudinal analysis of the global IVV development based on the European Patent Office (EPO) patents. Bibliometric analysis is used to rank countries, institutions, inventors and technology subfields contributing to IVV technical progress. The results show that the global trends of IVV are a multi-developing feature of variety but an uneven technical resource distribution. Although the synthetic peptide vaccine is a comparatively young field, it already demonstrates the powerful vitality and the enormous development space. With the worldwide competition increasing, all nations especially China should be looking to increase devotion, enhance capability and regard effectiveness of technological innovation. PMID:26372160

  17. KSC-2013-2865

    NASA Image and Video Library

    2013-06-21

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, students from University of Colorado describe a robotic capability for growing a variety of plants, both for consumption as well as the benefit of oxygen-carbon dioxide cycling. Considerations range from monitoring and nutrient supply to selection of plants and autonomy. The activity is part of the eXploration Habitat, or X-Hab, Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in Science, Technology, Engineering and Math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Jim Grossmann

  18. KSC-2013-2864

    NASA Image and Video Library

    2013-06-21

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, students from University of Colorado describe a robotic capability for growing a variety of plants, both for consumption as well as the benefit of oxygen-carbon dioxide cycling. Considerations range from monitoring and nutrient supply to selection of plants and autonomy. The activity is part of the eXploration Habitat, or X-Hab, Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in Science, Technology, Engineering and Math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Jim Grossmann

  19. Competition among states: Case studies in the political role of remote sensing capabilities

    NASA Astrophysics Data System (ADS)

    Ammons, Audrey Ann

    International politics is a competitive realm. One of the most powerful modern advantages in this competitive world is the ownership of independent and autonomous remote sensing satellites. Few have this venue for competition and those that do belong to a very exclusive groups of states. Kenneth Waltz, author of Theory of International Politics, theorized that states emulate the innovations, strategies and practices of those countries with the greatest capability and ingenuity. As Waltz explains, states will emulate the leader in an anarchic realm to attain the same capabilities that helped the hegemon attain or maintain its status. Waltz referred to this as a tendency toward sameness of the competitors. Modern-day states that pursue global preeminence often exhibit exceptional risk-taking and significant technological innovation. They also challenge the recognized hegemon in an area of expertise and leadership. Realists would say that these states are emulating the behavior of the states they view as successful in order to maintain or improve their position in the world order. Realists also point out that strategic interests lead states to try to gain or at least neutralize those areas that, if controlled by an adversary, could menace them. Realist writers suggest that states will be reluctant to cede control of an important new technology to another state, even a friendly one, lest they find themselves permanently disadvantaged in an on-going contest for wealth, influence and even preeminence. The purpose of this research is to investigate if remote sensing capabilities are a venue of competition among modern states and one that they view as a potential path to global preeminence. Why do some states expend scarce resources to develop and maintain an indigenous remote sensing capability when it appears that they can acquire much of the end product from other sources at a reasonable cost? If this is true, it should be possible to confirm that states acquire end-to-end remote sensing capabilities as a means to maintain or improve their position in the world order. These states are willing to devote significant resources in order to control this technology because they believe successful states have used remote sensing technology as a means to acquire and maintain their preeminent position. States that own and operate remote sensing capabilities must take considerable risks and apply technological innovation to succeed. Whether the technology is an historical example such as a sixteenth century ship or its modern equivalent---a twenty-first century satellite---the potential rewards are the same: military advantage, commercial markets, and global recognition.

  20. Medical simulation technology: educational overview, industry leaders, and what's missing.

    PubMed

    Spooner, Nicholas; Hurst, Stephen; Khadra, Mohamed

    2012-01-01

    Modern medical simulation technology (MST) debuted in 1960 with the development of Resusci Annie (Laerdal 2007), which assisted students in the acquisition of proper ventilation and compression techniques used during basic life support. Following a steady stream of subsequent technological advances and innovations, MST manufacturers are now able to offer training aids capable of facilitating innovative learning in such diverse areas as human patient simulators, simulated clinical environments, virtual procedure stations, virtual medical environments, electronic tutors, and performance recording. The authors list a number of the most popular MSTs presently available while citing evaluative efforts undertaken to date regarding the efficacy of MST to the medical profession. They conclude by proposing a variety of simulation innovations of prospective interest to both medical and technology personnel while offering healthcare administrators a series of recommended considerations when planning to integrate MST into existing medical systems.

  1. Naval open systems architecture

    NASA Astrophysics Data System (ADS)

    Guertin, Nick; Womble, Brian; Haskell, Virginia

    2013-05-01

    For the past 8 years, the Navy has been working on transforming the acquisition practices of the Navy and Marine Corps toward Open Systems Architectures to open up our business, gain competitive advantage, improve warfighter performance, speed innovation to the fleet and deliver superior capability to the warfighter within a shrinking budget1. Why should Industry care? They should care because we in Government want the best Industry has to offer. Industry is in the business of pushing technology to greater and greater capabilities through innovation. Examples of innovations are on full display at this conference, such as exploring the impact of difficult environmental conditions on technical performance. Industry is creating the tools which will continue to give the Navy and Marine Corps important tactical advantages over our adversaries.

  2. Sedimentary and Enhanced Geothermal Systems | Geothermal Technologies |

    Science.gov Websites

    NREL Sedimentary and Enhanced Geothermal Systems Sedimentary and Enhanced Geothermal Systems To innovative technologies, such as sedimentary and enhanced geothermal systems (EGS). Photo of a geothermal power plant in Imperial California. Capabilities To advance EGS and sedimentary geothermal systems, NREL

  3. Processes and Planning Structure Required for Implementing a Collegewide Area Network.

    ERIC Educational Resources Information Center

    Lapenta, Susan; Lutz, Todd

    Since 1984, Arizona's Mohave Community College (MCC) has implemented innovative educational technology to better serve students, including an instructional television system to serve remote locations and a distance learning program. In 1993, the college initiated a project to upgrade its technological capabilities through the establishment of a…

  4. Portable MP3 players: innovative devices for recording qualitative interviews.

    PubMed

    Fernandez, Ritin S; Griffiths, Rhonda

    2007-01-01

    Digital technology has provided a new way of recording qualitative interviews, surpassing the clarity, usability and storage capabilities of conventional tape recorders. Ritin Fernandez and Rhonda Griffiths examine a technological resource that pervades modern social life and which can be used effectively for digitally recording interviews for qualitative research.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Birchard P; Michel, Kelly D; Few, Douglas A

    From stereophonic, positional sound to high-definition imagery that is crisp and clean, high fidelity computer graphics enhance our view, insight, and intuition regarding our environments and conditions. Contemporary 3-D modeling tools offer an open architecture framework that enables integration with other technologically innovative arenas. One innovation of great interest is Augmented Reality, the merging of virtual, digital environments with physical, real-world environments creating a mixed reality where relevant data and information augments the real or actual experience in real-time by spatial or semantic context. Pairing 3-D virtual immersive models with a dynamic platform such as semi-autonomous robotics or personnel odometrymore » systems to create a mixed reality offers a new and innovative design information verification inspection capability, evaluation accuracy, and information gathering capability for nuclear facilities. Our paper discusses the integration of two innovative technologies, 3-D visualizations with inertial positioning systems, and the resulting augmented reality offered to the human inspector. The discussion in the paper includes an exploration of human and non-human (surrogate) inspections of a nuclear facility, integrated safeguards knowledge within a synchronized virtual model operated, or worn, by a human inspector, and the anticipated benefits to safeguards evaluations of facility operations.« less

  6. The effects of innovation factors on smartphone adoption among nurses in community hospitals.

    PubMed

    Putzer, Gavin J; Park, Yangil

    2010-01-01

    A relatively new mobile technological device is the smartphone-a phone with advanced features such as Windows Mobile software, access to the Internet, and other computer processing capabilities. This article investigates the decision to adopt a smartphone among healthcare professionals, specifically nurses. The study examines constructs that affect an individual's decision to adopt a smartphone by employing innovation attributes leading to perceived attitudes. We hypothesize that individual intentions to use a smartphone are mostly determined by attitudes toward using a smartphone, which in turn are affected by innovation characteristics. Innovation characteristics are factors that help explain whether a user will adopt a new technology. The study consisted of a survey disseminated to 200 practicing nurses selected from two community hospitals in the southeastern United States. In our model, the innovation characteristics of observability, compatibility, job relevance, internal environment, and external environment were significant predictors of attitude toward using a smartphone.

  7. Technology for Building Systems Integration and Optimization – Landscape Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetzler, William; Guernsey, Matt; Bargach, Youssef

    BTO's Commercial Building Integration (CBI) program helps advance a range of innovative building integration and optimization technologies and solutions, paving the way for high-performing buildings that could use 50-70% less energy than typical buildings. CBI’s work focuses on early stage technology innovation, with an emphasis on how components and systems work together and how whole buildings are integrated and optimized. This landscape study outlines the current body of knowledge, capabilities, and the broader array of solutions supporting integration and optimization in commercial buildings. CBI seeks to support solutions for both existing buildings and new construction, which often present very differentmore » challenges.« less

  8. National Systems of Innovation and Technological Differentiation:. a Multi-Country Model

    NASA Astrophysics Data System (ADS)

    Ribeiro, Leonardo C.; Ruiz, Ricardo M.; Albuquerque, Eduardo M.; Bernardes, Américo T.

    Science and technology have a fundamental role in the economic development. Although this statement is generally well accepted, the internal mechanisms which are responsible for these interactions are not clear. In the last decade, dealing with this problem, many models have been proposed. In this paper, we introduce a model that creates an artificial world economy that is a network of countries. Each country has its own national system of innovation and the interactions between countries are given by functions that connect the competitiveness of their prices and their technological capabilities. Starting from different configurations, the artificial world economy self-organizes itself and creates a hierarchies of countries.

  9. The capability approach: a guiding framework to improve population health and the attainment of the Sustainable Developmental Goals.

    PubMed

    Hirani, Shela Akbar Ali; Richter, Solina

    2017-02-21

    The world is progressing in terms of communication, innovative technology and cure of various diseases through advanced pharmacological preparations. Unfortunately, populations are still struggling with ill-health, disabilities, poverty, hunger, inequality, gender disparities and conflicts. Several questions come to mind in this regard: why are prosperity, health, peace and progress not evenly distributed and what is the best approach to address the issues associated with population health? The capability approach may offer a possible model. This approach is a blend of 5 key concepts: capabilities, functioning, agency, endowment, and conversion factors. It proposes an innovative approach to examine and enhance the quality of life and wellbeing of individuals. This reflective paper provides an overview of the capability approach, critically analyses population health from the theoretical lens of the capability approach and highlights the relevance of this approach to achieving the Sustainable Developmental Goals.

  10. 15 CFR 917.21 - National needs and problems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... potential of marine organisms to communicate disease to humans. (24) Develop innovations that would promote... American ports in the face of rapid technological and social change. (31) Improve the capability of...

  11. Innovative railroad information displays : executive summary

    DOT National Transportation Integrated Search

    1998-01-01

    The objectives ofthis study were to explore the potential of advanced digital technology, : novel concepts of information management, geographic information databases and : display capabilities in order to enhance planning and decision-making process...

  12. Advanced Digital Forensic and Steganalysis Methods

    DTIC Science & Technology

    2009-02-01

    investigation is simultaneously cropped, scaled, and processed, extending the technology when the digital image is printed, developing technology capable ...or other common processing operations). TECNOLOGY APPLICATIONS 1. Determining the origin of digital images 2. Matching an image to a camera...Technology Transfer and Innovation Partnerships Division of Research P.O. Box 6000 State University of New York Binghamton, NY 13902-6000 Phone: 607-777

  13. Thermo-Mechanical Methodology for Stabilizing Shape Memory Alloy Response

    NASA Technical Reports Server (NTRS)

    Padula, Santo

    2013-01-01

    This innovation is capable of significantly reducing the amount of time required to stabilize the strain-temperature response of a shape memory alloy (SMA). Unlike traditional stabilization processes that take days to weeks to achieve stabilized response, this innovation accomplishes stabilization in a matter of minutes, thus making it highly useful for the successful and practical implementation of SMA-based technologies in real-world applications. The innovation can also be applied to complex geometry components, not just simple geometries like wires or rods.

  14. Reconfigurable microwave photonic repeater for broadband telecom missions: concepts and technologies

    NASA Astrophysics Data System (ADS)

    Aveline, M.; Sotom, M.; Barbaste, R.; Benazet, B.; Le Kernec, A.; Magnaval, J.; Ginestet, P.; Navasquillo, O.; Piqueras, M. A.

    2017-11-01

    Thales Alenia Space has elaborated innovative telecom payload concepts taking benefit from the capabilities of photonics and so-called microwave photonics. The latter consists in transferring RF/microwave signals on optical carriers and performing processing in the optical domain so as to benefit from specific attributes such as wavelength-division multiplexing or switching capabilities.

  15. Innovative railroad information displays : video guide

    DOT National Transportation Integrated Search

    1998-01-01

    The objectives of this study were to explore the potential of advanced digital technology, : novel concepts of information management, geographic information databases and : display capabilities in order to enhance planning and decision-making proces...

  16. Fuel Cycle Technologies 2014 Achievement Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Bonnie C.

    2015-01-01

    The Fuel Cycle Technologies (FCT) program supports the Department of Energy’s (DOE’s) mission to: “Enhance U.S. security and economic growth through transformative science, technology innovation, and market solutions to meet our energy, nuclear security, and environmental challenges.” Goal 1 of DOE’s Strategic Plan is to innovate energy technologies that enhance U.S. economic growth and job creation, energy security, and environmental quality. FCT does this by investing in advanced technologies that could transform the nuclear fuel cycle in the decades to come. Goal 2 of DOE’s Strategic Plan is to strengthen national security by strengthening key science, technology, and engineering capabilities.more » FCT does this by working closely with the National Nuclear Security Administration and the U.S Department of State to develop advanced technologies that support the Nation’s nuclear nonproliferation goals.« less

  17. Composites for Exploration Upper Stage

    NASA Technical Reports Server (NTRS)

    Fikes, J. C.; Jackson, J. R.; Richardson, S. W.; Thomas, A. D.; Mann, T. O.; Miller, S. G.

    2016-01-01

    The Composites for Exploration Upper Stage (CEUS) was a 3-year, level III project within the Technology Demonstration Missions program of the NASA Space Technology Mission Directorate. Studies have shown that composites provide important programmatic enhancements, including reduced weight to increase capability and accelerated expansion of exploration and science mission objectives. The CEUS project was focused on technologies that best advanced innovation, infusion, and broad applications for the inclusion of composites on future large human-rated launch vehicles and spacecraft. The benefits included near- and far-term opportunities for infusion (NASA, industry/commercial, Department of Defense), demonstrated critical technologies and technically implementable evolvable innovations, and sustained Agency experience. The initial scope of the project was to advance technologies for large composite structures applicable to the Space Launch System (SLS) Exploration Upper Stage (EUS) by focusing on the affordability and technical performance of the EUS forward and aft skirts. The project was tasked to develop and demonstrate critical composite technologies with a focus on full-scale materials, design, manufacturing, and test using NASA in-house capabilities. This would have demonstrated a major advancement in confidence and matured the large-scale composite technology to a Technology Readiness Level 6. This project would, therefore, have bridged the gap for providing composite application to SLS upgrades, enabling future exploration missions.

  18. Machine learning and new vital signs monitoring in civilian en route care: A systematic review of the literature and future implications for the military.

    PubMed

    Liu, Nehemiah T; Salinas, Jose

    2016-11-01

    Although air transport medical services are today an integral part of trauma systems in most developed countries, to date, there are no reviews on recent innovations in civilian en route care. The purpose of this systematic review was to identify potential machine learning and new vital signs monitoring technologies in civilian en route care that could help close civilian and military capability gaps in monitoring and the early detection and treatment of various trauma injuries. MEDLINE, the Cochrane Database of Systematic Reviews, and citation review of relevant primary and review articles were searched for studies involving civilian en route care, air medical transport, and technologies from January 2005 to November 2015. Data were abstracted on study design, population, year, sponsors, innovation category, details of technologies, and outcomes. Thirteen observational studies involving civilian medical transport met inclusion criteria. Studies either focused on machine learning and software algorithms (n = 5), new vital signs monitoring (n = 6), or both (n = 2). Innovations involved continuous digital acquisition of physiologic data and parameter extraction. Importantly, all studies (n = 13) demonstrated improved outcomes where applicable and potential use during civilian and military en route care. However, almost all studies required further validation in prospective and/or randomized controlled trials. Potential machine learning technologies and monitoring of novel vital signs such as heart rate variability and complexity in civilian en route care could help enhance en route care for our nation's war fighters. In a complex global environment, they could potentially fill capability gaps such as monitoring and the early detection and treatment of various trauma injuries. However, the impact of these innovations and technologies will require further validation before widespread acceptance and prehospital use. Systematic review, level V.

  19. Radical Software. Number One. The Alternate Television Movement.

    ERIC Educational Resources Information Center

    Korot, Beryl, Ed.; Gershuny, Phyllis, Ed.

    1970-01-01

    Some innovative ideas and applications for new television technology are described in this tabloid format periodical. Most of these ideas support the periodical's contention that broadcast television is the most limited use of a developing television technology which has the capability of being a responsive medium and a valuable social tool and,…

  20. Innovative Clinical Assessment Technologies: Challenges and Opportunities in Neuroimaging

    ERIC Educational Resources Information Center

    Miller, Gregory A.; Elbert, Thomas; Sutton, Bradley P.; Heller, Wendy

    2007-01-01

    The authors review the reasons for the contrast between the remarkable advances that hemodynamic and electromagnetic imaging of the human brain appear capable of delivering in clinical practice in psychology and their very limited penetration into practice to date. Both the heritages of the relevant technologies and the historical orientation of…

  1. Design Implications of Real-Time Feedback in Continuous Combinatorial Auctions: An Experimental Investigation

    ERIC Educational Resources Information Center

    Sanyal, Pallab

    2009-01-01

    Information Technology (IT) has spawned the growth of novel and innovative market mechanisms (such as online auctions) and associated businesses (such as eBay and Priceline) that were not feasible without the capabilities and reach of these modern information technologies. Previous studies on designing trading mechanisms for online markets…

  2. Entrepreneurial Capabilities and Organizational Transformation: Entrepreneurial Evolution at the Federal University of Rio de Janeiro

    ERIC Educational Resources Information Center

    Renault, Thiago; Carvalho de Mello, Jose Manoel

    2013-01-01

    The Brazilian government has been fostering innovation through policies aimed at transferring technology from publicly funded science and technology organizations to the market. One response to this initiative has been an attempt by some universities to transform themselves into entrepreneurial institutions. In this paper the authors use a…

  3. Transformational Systems Concepts and Technologies for Our Future in Space

    NASA Technical Reports Server (NTRS)

    Howell, J. T.; George,P.; Mankins, J. C. (Editor); Christensen, C. B.

    2004-01-01

    NASA is constantly searching for new ideas and approaches yielding opportunities for assuring maximum returns on space infrastructure investments. Perhaps the idea of transformational innovation in developing space systems is long overdue. However, the concept of utilizing modular space system designs combined with stepping-stone development processes has merit and promises to return several times the original investment since each new space system or component is not treated as a unique and/or discrete design and development challenge. New space systems can be planned and designed so that each builds on the technology of previous systems and provides capabilities to support future advanced systems. Subsystems can be designed to use common modular components and achieve economies of scale, production, and operation. Standards, interoperability, and "plug and play" capabilities, when implemented vigorously and consistently, will result in systems that can be upgraded effectively with new technologies. This workshop explored many building-block approaches via way of example across a broad spectrum of technology discipline areas for potentially transforming space systems and inspiring future innovation. Details describing the workshop structure, process, and results are contained in this Conference Publication.

  4. KSC-2013-2866

    NASA Image and Video Library

    2013-06-21

    CAPE CANAVERAL, Fla. -- Kennedy Space Center Director Bob Cabana listens as a student from University of Colorado describes a robotic capability for growing a variety of plants, both for consumption as well as the benefit of oxygen-carbon dioxide cycling. Considerations range from monitoring and nutrient supply to selection of plants and autonomy. The activity is part of the eXploration Habitat, or X-Hab, Academic Innovation Challenge. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in Science, Technology, Engineering and Math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Jim Grossmann

  5. Innovative Commercialization Efforts Underway at the National Renewable Energy Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheesbrough, Kate; Bader, Meghan

    New clean energy and energy efficiency technology solutions hold the promise of significant reductions in energy consumption. However, proven barriers for these technologies, including the technological and commercialization valleys of death, result in promising technologies falling to the wayside. To address these gaps, NREL's Innovation & Entrepreneurship Center designs and manages advanced programs aimed at supporting the development and commercialization of early stage clean energy technologies with the goal of accelerating new technologies to market. These include: Innovation Incubator (IN2) in partnership with Wells Fargo: this technology incubator supports energy efficiency building-related startups to overcome market gaps by providing accessmore » to technical support at NREL; Small Business Voucher Pilot: this program offers paid vouchers for applicants to access a unique skill, capability, or facility at any of the 17 DOE National Laboratories to bring next-generation clean energy technologies to market; Energy Innovation Portal: NREL designed and developed the Energy Innovation Portal, providing access to EERE focused intellectual property available for licensing from all of the DOE National Laboratories; Lab-Corps: Lab-Corps aims to better train and empower national lab researchers to understand market drivers and successfully transition their discoveries into high-impact, real world technologies in the private sector; Incubatenergy Network: the Network provides nationwide coordination of clean energy business incubators, share best practices, support clean energy entrepreneurs, and help facilitate a smoother transition to a more sustainable clean energy economy; Industry Growth Forum: the Forum is the perfect venue for clean energy innovators to maximize their exposure to receptive capital and strategic partners. Since 2003, presenting companies have collectively raised more than $5 billion in growth financing.« less

  6. On-line process analysis innovation: DiComp (tm) shunting dielectric sensor technology

    NASA Technical Reports Server (NTRS)

    Davis, Craig R.; Waldman, Frank A.

    1993-01-01

    The DiComp Shunting Dielectric Sensor (SDS) is a new patent-pending technology developed under the Small Business Innovation Research Program (SBIR) for NASA's Kennedy Space Center. The incorporation of a shunt electrode into a conventional fringing field dielectric sensor makes the SDS uniquely sensitive to changes in material dielectric properties in the KHz to MHz range which were previously detectable only at GHz measurement frequencies. The initial NASA application of the SDS for Nutrient Delivery Control has demonstrated SDS capabilities for thickness and concentration measurement of Hoagland nutrient solutions. The commercial introduction of DiComp SDS technology for concentration and percent solids measurements in dispersions, emulsions and solutions represents a new technology for process measurements for liquids in a variety of industries.

  7. A Comparison of Problems at the Grassroots Level in India Identified by Adults and Children: Implications for Design and Technology Education

    ERIC Educational Resources Information Center

    Datt, Sachin; Chunawala, Sugra

    2018-01-01

    The focus of Design and Technology (D&T) education (Wilson & Harris, 2004) has been on designing and making activities and in developing technological capabilities amongst students. Innovation is an important aspect of D&T that helps in creating new products and artefacts to overcome the limitations of existing ones. Problem solving…

  8. Learning from Our Global Competitors: A Comparative Analysis of Science, Technology, Engineering and Mathematics (STEM) Education Pipelines in the United States, Mainland China and Taiwan

    ERIC Educational Resources Information Center

    Chow, Christina M.

    2011-01-01

    Maintaining a competitive edge within the 21st century is dependent on the cultivation of human capital, producing qualified and innovative employees capable of competing within the new global marketplace. Technological advancements in communications technology as well as large scale, infrastructure development has led to a leveled playing field…

  9. Group-multicast capable optical virtual private ring with contention avoidance

    NASA Astrophysics Data System (ADS)

    Peng, Yunfeng; Du, Shu; Long, Keping

    2008-11-01

    A ring based optical virtual private network (OVPN) employing contention sensing and avoidance is proposed to deliver multiple-to-multiple group-multicast traffic. The network architecture is presented and its operation principles as well as performance are investigated. The main contribution of this article is the presentation of an innovative group-multicast capable OVPN architecture with technologies available today.

  10. Small Business Innovation Research. Program solicitation. Closing date: July 21, 1992

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The National Aeronautics and Space Administration (NASA) invites small businesses to submit Phase 1 proposals in response to its Small Business Innovation Research (SBIR) Program Solicitation 92-1. Firms with research or research and development capabilities (R/R&D) in science or engineering in any of the areas listed are encouraged to participate. This, the tenth annual SBIR solicitation by NASA, describes the program, identifies eligibility requirements, describes the proposal evaluation and award selection process, and provides other information to assist those interested in participating in NASA's SBIR program. It also identifies, in Section 8.0, the technical topics and subtopics in which SBIR Phase 1 proposals are solicited in 1992. These topics and subtopics cover a broad range of current NASA interests but do not necessarily include all areas in which NASA plans or currently conducts research. The NASA SBIR program seeks innovative approaches that respond to the needs, technical requirements, and new opportunities described in the subtopics. The focus is on innovation through the use of emerging technologies, novel applications of existing technologies, exploitation of scientific breakthroughs, or new capabilities or major improvements to existing technologies. NASA plans to select about 320 high-quality research or research and development proposals for Phase 1 contract awards on the basis of this Solicitation. Phase 1 contracts are normally six months in duration and funded up to $50,000, including profit. Selections will be based on the competitive merits of the offers and on NASA needs and priorities.

  11. Seismographs, sensors, and satellites: Better technology for safer communities

    USGS Publications Warehouse

    Groat, C.G.

    2004-01-01

    In the past 25 years, our ability to measure, monitor, and model the processes that lead to natural disasters has increased dramatically. Equally important has been the improvement in our technological capability to communicate information about hazards to those whose lives may be affected. These innovations in tracking and communicating the changes-floods, earthquakes, wildfires, volcanic eruptions-in our dynamic planet, supported by a deeper understanding of earth processes, enable us to expand our predictive capabilities and point the way to a safer future. ?? 2004 Elsevier Ltd. All rights reserved.

  12. Responsible healthcare innovation: anticipatory governance of nanodiagnostics for theranostics medicine.

    PubMed

    Fisher, Erik; Boenink, Marianne; van der Burg, Simone; Woodbury, Neal

    2012-11-01

    Theranostics signals the integrated application of molecular diagnostics, therapeutic treatment and patient response monitoring. Such integration has hitherto neglected another crucial dimension: coproduction of theranostic scientific knowledge, novel technological development and broader sociopolitical systems whose boundaries are highly porous. Nanodiagnostics applications to theranostics are one of the most contested and potentially volatile postgenomics innovation trajectories as they build on past and current tensions and promises surrounding both nanotechnology and personalized medicine. Recent science policy research suggests that beneficial outcomes of innovations do not simply flow from the generation of scientific knowledge and technological capability in a linear or automatic fashion. Thus, attempts to offset public concerns about controversial emerging technologies by expert risk assurances can be unproductive. Anticipation provides a more robust basis for governance that supports genuine healthcare progress. This article presents a synthesis of novel policy approaches that directly inform theranostics medicine and the future(s) of postgenomics healthcare.

  13. Technology and Knowledge Transfer in the Graz Region Ten Years of Experience

    ERIC Educational Resources Information Center

    Hofer, Franz; Adametz, Christoph; Holzer, Franz

    2004-01-01

    Technology and knowledge transfer from universities to small and medium-sized enterprises (SMEs) is seen as one way to strengthen a region's innovation capability. But what if SMEs do not want to play along? Looking back at some 10 years' experience of supporting SMEs, the authors describe in detail the 'Active Knowledge Transfer' programme, which…

  14. New Capabilities for Cyber Charter School Leadership: An Emerging Imperative for Integrating Educational Technology and Educational Leadership Knowledge

    ERIC Educational Resources Information Center

    Kowch, Eugene

    2009-01-01

    Cyber charter schools (CCS) and cyber schools may soon become the most "disruptive innovation" in the education system (Christensen, Horn & Johnson, 2008) so the author urges educational technologists to take up the imperative to develop new administration knowledge among the students along with educational technology skills to support future…

  15. Innovative Leadership by School Principals: Embedding Information Communication and Technology in Kuwaiti Schools

    ERIC Educational Resources Information Center

    Al Sharija, Mohammed; Watters, James J.

    2012-01-01

    Kuwait is an oil rich country planning for a future that is not dependent on exploiting natural resources. A major policy initiative has been the introduction of Information Communication and Technology (ICT) to schools. However, contextual issues and teacher capabilities in the use of ICT have limited the success of this initiative. The study…

  16. The Impact of E-Learning on Medical Education in Russia

    ERIC Educational Resources Information Center

    Trukhacheva, N.; Tchernysheva, S.; Krjaklina, T.

    2011-01-01

    New educational technologies prove to be capable of solving many problems in medical training. Students do not see e-learning as replacing traditional instructor-led training but as a complement to it, forming part of a blended-learning strategy. Innovations in e-learning technologies point toward a revolution in education, allowing learning to be…

  17. Development of AN Innovative Three-Dimensional Complete Body Screening Device - 3D-CBS

    NASA Astrophysics Data System (ADS)

    Crosetto, D. B.

    2004-07-01

    This article describes an innovative technological approach that increases the efficiency with which a large number of particles (photons) can be detected and analyzed. The three-dimensional complete body screening (3D-CBS) combines the functional imaging capability of the Positron Emission Tomography (PET) with those of the anatomical imaging capability of Computed Tomography (CT). The novel techniques provide better images in a shorter time with less radiation to the patient. A primary means of accomplishing this is the use of a larger solid angle, but this requires a new electronic technique capable of handling the increased data rate. This technique, combined with an improved and simplified detector assembly, enables executing complex real-time algorithms and allows more efficiently use of economical crystals. These are the principal features of this invention. A good synergy of advanced techniques in particle detection, together with technological progress in industry (latest FPGA technology) and simple, but cost-effective ideas provide a revolutionary invention. This technology enables over 400 times PET efficiency improvement at once compared to two to three times improvements achieved every five years during the past decades. Details of the electronics are provided, including an IBM PC board with a parallel-processing architecture implemented in FPGA, enabling the execution of a programmable complex real-time algorithm for best detection of photons.

  18. Research and application of knowledge resources network for product innovation.

    PubMed

    Li, Chuan; Li, Wen-qiang; Li, Yan; Na, Hui-zhen; Shi, Qian

    2015-01-01

    In order to enhance the capabilities of knowledge service in product innovation design service platform, a method of acquiring knowledge resources supporting for product innovation from the Internet and providing knowledge active push is proposed. Through knowledge modeling for product innovation based on ontology, the integrated architecture of knowledge resources network is put forward. The technology for the acquisition of network knowledge resources based on focused crawler and web services is studied. Knowledge active push is provided for users by user behavior analysis and knowledge evaluation in order to improve users' enthusiasm for participation in platform. Finally, an application example is illustrated to prove the effectiveness of the method.

  19. Application of bluetooth technology to rural freeway speed data collection.

    DOT National Transportation Integrated Search

    2012-10-01

    Bluetooth data collection devices are an innovative technique for measuring travel times and speeds on roadway segments. This project developed a system capable of recording Bluetooth MAC addresses with a timestamp and determining the space mean spee...

  20. NASA Johnson Space Center SBIR STTR Program Technology Innovations

    NASA Technical Reports Server (NTRS)

    Krishen, Kumar

    2007-01-01

    The Small Business Innovation Research (SBIR) Program increases opportunities for small businesses to participate in research and development (R&D), increases employment, and improves U.S. competitiveness. Specifically the program stimulates U.S. technological innovation by using small businesses to meet federal R&D needs, increasing private-sector commercialization of innovations derived from federal R&D, and fostering and encouraging the participation of socially disadvantaged businesses. In 2000, the Small Business Technology Transfer (STTR) Program extended and strengthened the SBIR Program, increasing its emphasis on pursuing commercial applications by awarding contracts to small business concerns for cooperative R&D with a nonprofit research institution. Modeled after the SBIR Program, STTR is nevertheless a separately funded activity. Technologies that have resulted from the Johnson Space Center SBIR STTR Program include: a device for regenerating iodinated resin beds; laser-assisted in-situ keratomileusis or LASIK; a miniature physiological monitoring device capable of collecting and analyzing a multitude of real-time signals to transmit medical data from remote locations to medical centers for diagnosis and intervention; a new thermal management system for fibers and fabrics giving rise to new line of garments and thermal-enhancing environments; and a highly electropositive material that attracts and retains electronegative particles in water.

  1. Computational Materials Science and Chemistry: Accelerating Discovery and Innovation through Simulation-Based Engineering and Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, George; Glotzer, Sharon; McCurdy, Bill

    This report is based on a SC Workshop on Computational Materials Science and Chemistry for Innovation on July 26-27, 2010, to assess the potential of state-of-the-art computer simulations to accelerate understanding and discovery in materials science and chemistry, with a focus on potential impacts in energy technologies and innovation. The urgent demand for new energy technologies has greatly exceeded the capabilities of today's materials and chemical processes. To convert sunlight to fuel, efficiently store energy, or enable a new generation of energy production and utilization technologies requires the development of new materials and processes of unprecedented functionality and performance. Newmore » materials and processes are critical pacing elements for progress in advanced energy systems and virtually all industrial technologies. Over the past two decades, the United States has developed and deployed the world's most powerful collection of tools for the synthesis, processing, characterization, and simulation and modeling of materials and chemical systems at the nanoscale, dimensions of a few atoms to a few hundred atoms across. These tools, which include world-leading x-ray and neutron sources, nanoscale science facilities, and high-performance computers, provide an unprecedented view of the atomic-scale structure and dynamics of materials and the molecular-scale basis of chemical processes. For the first time in history, we are able to synthesize, characterize, and model materials and chemical behavior at the length scale where this behavior is controlled. This ability is transformational for the discovery process and, as a result, confers a significant competitive advantage. Perhaps the most spectacular increase in capability has been demonstrated in high performance computing. Over the past decade, computational power has increased by a factor of a million due to advances in hardware and software. This rate of improvement, which shows no sign of abating, has enabled the development of computer simulations and models of unprecedented fidelity. We are at the threshold of a new era where the integrated synthesis, characterization, and modeling of complex materials and chemical processes will transform our ability to understand and design new materials and chemistries with predictive power. In turn, this predictive capability will transform technological innovation by accelerating the development and deployment of new materials and processes in products and manufacturing. Harnessing the potential of computational science and engineering for the discovery and development of materials and chemical processes is essential to maintaining leadership in these foundational fields that underpin energy technologies and industrial competitiveness. Capitalizing on the opportunities presented by simulation-based engineering and science in materials and chemistry will require an integration of experimental capabilities with theoretical and computational modeling; the development of a robust and sustainable infrastructure to support the development and deployment of advanced computational models; and the assembly of a community of scientists and engineers to implement this integration and infrastructure. This community must extend to industry, where incorporating predictive materials science and chemistry into design tools can accelerate the product development cycle and drive economic competitiveness. The confluence of new theories, new materials synthesis capabilities, and new computer platforms has created an unprecedented opportunity to implement a "materials-by-design" paradigm with wide-ranging benefits in technological innovation and scientific discovery. The Workshop on Computational Materials Science and Chemistry for Innovation was convened in Bethesda, Maryland, on July 26-27, 2010. Sponsored by the Department of Energy (DOE) Offices of Advanced Scientific Computing Research and Basic Energy Sciences, the workshop brought together 160 experts in materials science, chemistry, and computational science representing more than 65 universities, laboratories, and industries, and four agencies. The workshop examined seven foundational challenge areas in materials science and chemistry: materials for extreme conditions, self-assembly, light harvesting, chemical reactions, designer fluids, thin films and interfaces, and electronic structure. Each of these challenge areas is critical to the development of advanced energy systems, and each can be accelerated by the integrated application of predictive capability with theory and experiment. The workshop concluded that emerging capabilities in predictive modeling and simulation have the potential to revolutionize the development of new materials and chemical processes. Coupled with world-leading materials characterization and nanoscale science facilities, this predictive capability provides the foundation for an innovation ecosystem that can accelerate the discovery, development, and deployment of new technologies, including advanced energy systems. Delivering on the promise of this innovation ecosystem requires the following: Integration of synthesis, processing, characterization, theory, and simulation and modeling. Many of the newly established Energy Frontier Research Centers and Energy Hubs are exploiting this integration. Achieving/strengthening predictive capability in foundational challenge areas. Predictive capability in the seven foundational challenge areas described in this report is critical to the development of advanced energy technologies. Developing validated computational approaches that span vast differences in time and length scales. This fundamental computational challenge crosscuts all of the foundational challenge areas. Similarly challenging is coupling of analytical data from multiple instruments and techniques that are required to link these length and time scales. Experimental validation and quantification of uncertainty in simulation and modeling. Uncertainty quantification becomes increasingly challenging as simulations become more complex. Robust and sustainable computational infrastructure, including software and applications. For modeling and simulation, software equals infrastructure. To validate the computational tools, software is critical infrastructure that effectively translates huge arrays of experimental data into useful scientific understanding. An integrated approach for managing this infrastructure is essential. Efficient transfer and incorporation of simulation-based engineering and science in industry. Strategies for bridging the gap between research and industrial applications and for widespread industry adoption of integrated computational materials engineering are needed.« less

  2. Unterdruck-Verdampfer-Brunnen (UVB): An in situ system for remediation of contaminated aquifers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, M.A.; Argus, R.R.; Hough, B.L.

    Traditionally, contaminated groundwater is pumped to a surface facility for treatment, often by air stripping. An innovative technology, the Unterdruck-Verdampfer-Brunnen (UVB), German for Vacuum Vaporizing Well, is an in situ groundwater remediation technology that combines air-lift pumping and air stripping to clean aquifers contaminated with volatile compounds. Additionally, the developer claims that in some cases the technology is capable of simultaneous recovery of soil gas from the vadose zone. An evaluation of this process is discussed in this abstract. The UVB technology is a process patented by IEG mbH in Reutlingen, Germany. IEG Technologies, Inc., located in Charlotte, NC, marketsmore » the technology in North America. IEG teamed with Roy F. Weston, Inc. to demonstrate the UVB technology at March Air Force Base (AFB), CA. March AFB allowed the US EPA Superfund Innovative Technology Evaluation (SITE) program to evaluate the technology. The SITE program retained PRC Environmental, Inc. to evaluate the performance of the UVB system at March.« less

  3. Innovations for competitiveness: European views on "better-faster-cheaper"

    NASA Astrophysics Data System (ADS)

    Atzei, A.; Groepper, P.; Novara, M.; Pseiner, K.

    1999-09-01

    The paper elaborates on " lessons learned" from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely: a) the adaptations of industrial and public organisations to the global market needs; b) the understanding of the bottleneck factors limiting competitiveness; c) the trends toward new system architectures and new engineering and production methods; d) the understanding of the role of new technology in the future applications. Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the "better, faster, cheaper" philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes. A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to customers and professional marketing. Having a technological lead allows industry to gain a competitive advantage in performance, cost and opportunities. Instrumental to better competitiveness is an R&D effort based on the adaptation of high technology products, capable of capturing new users, increasing production, decreasing the cost and delivery time and integrating high level of intelligence, information and autonomy. New systems will have to take in to account from the start what types of technologies are being developed or are already available in other areas outside space, and design their system accordingly. The future challenge for "faster, better, cheaper" appears to concern primarily "cost-effective", performant autonomous spacecraft, "cost-effective", reliable launching means and intelligent data fusion technologies and robust software serving mass- market real time services, distributed via EHF bands and Internet. In conclusion, it can be noticed that in the past few years new approaches have considerably enlarged the ways in which space missions can be implemented. They are supported by true innovations in mission concepts, system architecture, development and technologies, in particular for the development of initiatives based on multi-mission mini-satellites platforms for communication and Earth observation missions. There are also definite limits to cost cutting (such as lowering heads counts and increasing efficiency), and therefore the strategic perspective must be shifted from the present emphasis on cost-driven enhancement to revenue-driven improvements for growth. And since the product life-cycle is continuously shortening, competitiveness is linked very strongly with the capability to generate new technology products which enhance cost/benefit performance.

  4. The Virtual Learning Commons: An Emerging Technology for Learning About Emerging Technologies

    NASA Astrophysics Data System (ADS)

    Pennington, D. D.; Del Rio, N.; Fierro, C.; Gandara, A.; Garcia, A.; Garza, J.; Giandoni, M.; Ochoa, O.; Padilla, E.; Salamah, S.

    2013-12-01

    The Virtual Learning Commons (VLC), funded by the National Science Foundation Office of Cyberinfrastructure CI-Team Program, is a combination of semantic, visualization, and social media tools that support knowledge sharing and innovation across research disciplines. The explosion of new scientific tools and techniques challenges the ability of researchers to be aware of emerging technologies that might benefit them. Even when aware, it can be difficult to understand enough about emerging technologies to become potential adopters or re-users. Often, emerging technologies have little documentation, especially about the context of their use. The VLC tackles this challenge by providing mechanisms for individuals and groups of researchers to collectively organize Web resources through social bookmarking, and engage each other around those collections in order to a) learn about potentially relevant technologies that are emerging; and b) get feedback from other researchers on innovative ideas and designs. Concurrently, developers of emerging technologies can learn about potential users and the issues they encounter, and they can analyze the impact of their tools on other projects. The VLC aims to support the 'fuzzy front end' of innovation, where novel ideas emerge and there is the greatest potential for impact on research design. It is during the fuzzy front end that conceptual collisions across disciplines and exposure to diverse perspectives provide opportunity for creative thinking that can lead to inventive outcomes. This presentation will discuss the innovation theories that have informed design of the VLC, and hypotheses about the flow of information in virtual settings that can enable the process of innovation. The presentation will include a brief demonstration of key capabilities within the VLC that enable learning about emerging technologies, including the technologies that are presented in this session.

  5. Modeling of High Capacity Passive Cooling System

    DTIC Science & Technology

    2009-03-01

    Pulsating Heat Pipes : Closed Loop Pulsating Heat Pipes , which is also known as Meandering Capillary Tube Heat Pipe or Closed Loop Oscillating Heat ... Pipe , has emerged in the recent years as a new electronics cooling technology. The Pulsating Heat Pipe is an innovating technology that has gained...horizontal orientation, the operating temperatures are lower. Pulsating heat pipes are capable of higher heat

  6. Rapid Analysis and Manufacturing Propulsion Technology (RAMPT)

    NASA Technical Reports Server (NTRS)

    Fikes, John C.

    2018-01-01

    NASA's strategic plan calls for the development of enabling technologies, improved production methods, and advanced design and analysis tools related to the agency's objectives to expand human presence in the solar system. NASA seeks to advance exploration, science, innovation, benefits to humanity, and international collaboration, as well as facilitate and utilize U.S. commercial capabilities to deliver cargo and crew to space.

  7. Transitioning Science and Technology into Acquisition Programs: Assessing One Government Laboratorys Processes

    DTIC Science & Technology

    2015-12-01

    Accountability Office reports and recommendations, and ARDEC and the program managers established processes. The research indicated that the...Record. This examination was a direct review and comparison of Department of Defense policies, U.S. Government Accountability Office reports and...Government Accountability Office I&TT Innovation and Technology Transition IPT Integrated Product Team JCIDS Joint Capabilities Integration

  8. Manufacturing Technology Program Information System: Functional Description.

    DTIC Science & Technology

    1983-02-01

    D-A27 293 MANUACTURING TECNOLOGY PROGRAM INFORMATIONSSEM: /; FUNCTIONAL DESCRIPTIONU ALOGSTS CsMANAGEMENT NST WASHINGTON DC K WRIGHT ET AL FEB 83...greater use of computer technology in all elements of manu- facturing. - Assure that more effective industrial innovation is stimulated by reducing the...data base. Data communications capabilities (terminals, communications hardware and software) will make it possible for remote users throughout the MT

  9. Exploration Medical Capability - Technology Watch

    NASA Technical Reports Server (NTRS)

    Krihak, Michael; Watkins, Sharmila; Barr, Yael; Barsten, Kristina; Fung, Paul; Baumann, David

    2011-01-01

    The objectives of the Technology Watch process are to identify emerging, high-impact technologies that augment current ExMC development efforts, and to work with academia, industry, and other government agencies to accelerate the development of medical care and research capabilities for the mitigation of potential health issues that could occur during space exploration missions. The establishment of collaborations with these entities is beneficial to technology development, assessment and/or insertion. Such collaborations also further NASA s goal to provide a safe and healthy environment for human exploration. The Tech Watch project addresses requirements and capabilities identified by knowledge and technology gaps that are derived from a discrete set of medical conditions that are most likely to occur on exploration missions. These gaps are addressed through technology readiness level assessments, market surveys, collaborations and distributed innovation opportunities. Ultimately, these gaps need to be closed with respect to exploration missions, and may be achieved through technology development projects. Information management is a key aspect to this process where Tech Watch related meetings, research articles, collaborations and partnerships are tracked by the HRP s Exploration Medical Capabilities (ExMC) Element. In 2011, ExMC will be introducing the Tech Watch external website and evidence wiki that will provide access to ExMC technology and knowledge gaps, technology needs and requirements documents.

  10. Innovative technology for web-based data management during an outbreak

    PubMed Central

    Mukhi, Shamir N; Chester, Tammy L Stuart; Klaver-Kibria, Justine DA; Nowicki, Deborah L; Whitlock, Mandy L; Mahmud, Salah M; Louie, Marie; Lee, Bonita E

    2011-01-01

    Lack of automated and integrated data collection and management, and poor linkage of clinical, epidemiological and laboratory data during an outbreak can inhibit effective and timely outbreak investigation and response. This paper describes an innovative web-based technology, referred to as Web Data, developed for the rapid set-up and provision of interactive and adaptive data management during outbreak situations. We also describe the benefits and limitations of the Web Data technology identified through a questionnaire that was developed to evaluate the use of Web Data implementation and application during the 2009 H1N1 pandemic by Winnipeg Regional Health Authority and Provincial Laboratory for Public Health of Alberta. Some of the main benefits include: improved and secure data access, increased efficiency and reduced error, enhanced electronic collection and transfer of data, rapid creation and modification of the database, conversion of specimen-level to case-level data, and user-defined data extraction and query capabilities. Areas requiring improvement include: better understanding of privacy policies, increased capability for data sharing and linkages between jurisdictions to alleviate data entry duplication. PMID:23569597

  11. National Center for Photovoltaics at NREL

    ScienceCinema

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2018-06-08

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  12. Space Transportation Avionics Technology Symposium. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes, identified during the symposium, are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  13. Space Transportation Avionics Technology Symposium. Volume 2: Conference Proceedings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The focus of the symposium was to examine existing and planned avionics technology processes and products and to recommend necessary changes for strengthening priorities and program emphases. Innovative changes in avionics technology development and design processes are needed to support the increasingly complex, multi-vehicle, integrated, autonomous space-based systems. Key technology advances make such a major initiative viable at this time: digital processing capabilities, integrated on-board test/checkout methods, easily reconfigurable laboratories, and software design and production techniques.

  14. Data-Base Software For Tracking Technological Developments

    NASA Technical Reports Server (NTRS)

    Aliberti, James A.; Wright, Simon; Monteith, Steve K.

    1996-01-01

    Technology Tracking System (TechTracS) computer program developed for use in storing and retrieving information on technology and related patent information developed under auspices of NASA Headquarters and NASA's field centers. Contents of data base include multiple scanned still images and quick-time movies as well as text. TechTracS includes word-processing, report-editing, chart-and-graph-editing, and search-editing subprograms. Extensive keyword searching capabilities enable rapid location of technologies, innovators, and companies. System performs routine functions automatically and serves multiple users.

  15. Exploration Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the downselection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institute's rHEALTH X and Intelligent Optical System's lateral flow assays combined with Holomic's smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements. The technology demonstrations and metrics for success will be finalized in FY16. Also, the downselected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  16. Practice-centred evaluation and the privileging of care in health information technology evaluation

    PubMed Central

    2014-01-01

    Background Electronic Patient Records (EPRs) and telemedicine are positioned by policymakers as health information technologies that are integral to achieving improved clinical outcomes and efficiency savings. However, evaluating the extent to which these aims are met poses distinct evaluation challenges, particularly where clinical and cost outcomes form the sole focus of evaluation design. We propose that a practice-centred approach to evaluation - in which those whose day-to-day care practice is altered (or not) by the introduction of new technologies are placed at the centre of evaluation efforts – can complement and in some instances offer advantages over, outcome-centric evaluation models. Methods We carried out a regional programme of innovation in renal services where a participative approach was taken to the introduction of new technologies, including: a regional EPR system and a system to support video clinics. An ‘action learning’ approach was taken to procurement, pre-implementation planning, implementation, ongoing development and evaluation. Participants included clinicians, technology specialists, patients and external academic researchers. Whilst undergoing these activities we asked: how can a practice-centred approach be embedded into evaluation of health information technologies? Discussion Organising EPR and telemedicine evaluation around predetermined outcome measures alone can be impractical given the complex and contingent nature of such projects. It also limits the extent to which unforeseen outcomes and new capabilities are recognised. Such evaluations often fail to improve understanding of ‘when’ and ‘under what conditions’ technology-enabled service improvements are realised, and crucially, how such innovation improves care. Summary Our contribution, drawn from our experience of the case study provided, is a protocol for practice-centred, participative evaluation of technology in the clinical setting that privileges care. In this context ‘practice-centred’ evaluation acts as a scalable, coordinating framework for evaluation that recognises health information technology supported care as an achievement that is contingent and ongoing. We argue that if complex programmes of technology-enabled service innovation are understood in terms of their contribution to patient care and supported by participative, capability-building evaluation methodologies, conditions are created for practitioners and patients to realise the potential of technologies and make substantive contributions to the evidence base underpinning health innovation programmes. PMID:24903604

  17. New Technologies for the Diagnosis of Sleep Apnea.

    PubMed

    Alshaer, Hisham

    2016-01-01

    Sleep Apnea is a very common condition that has serious cardiovascular sequelae such as hypertension, heart failure, and stroke. Since the advent of modern computers and digital circuits, several streams of new technologies have been introduced to enhance the traditional diagnostic method of polysomnography and offer alternatives that are more accessible, comfortable, and economic. The categories presented in this review include portable polygraphy, mattress-like devices, remote sensing, and acoustic technologies. These innovations are classified as a function of their physical structure and the capabilities of their sensing technologies, due to the importance of these factors in determining the end-user experiences (both patients and medical professionals). Each of those categories offers unique strengths, which then make them particularly suitable for specific applications and end users. To our knowledge, this is a unique approach in presenting and classifying sleep apnea diagnostic innovations.

  18. Technological innovations in tissue removal during rhinologic surgery.

    PubMed

    Sindwani, Raj; Manz, Ryan

    2012-01-01

    The modern rhinologist has a wide variety of technological innovations at his/her disposal for the removal of soft tissue and bone during endoscopic surgery. We identified and critically evaluated four leading tissue removal technologies that have impacted, or are poised to impact, rhinological surgery. A literature review was conducted. Technological functions, strengths and limitations of microdebriders, radio frequency ablation, endoscopic drills, and ultrasonic aspirators were explored. The primary drawback of powered instruments continues to be the higher costs associated with their use, and their main advantage is the ability to accomplish multiple functions such as tissue removal, suction, and irrigation, all with one tool. The effective and safe use of any powered instrument requires an intimate understanding of its function, capabilities, and limitations. Powered instrumentation continues to play a significant and evolving role in soft tissue and bone removal during rhinologic surgery.

  19. Research and Application of Knowledge Resources Network for Product Innovation

    PubMed Central

    Li, Chuan; Li, Wen-qiang; Li, Yan; Na, Hui-zhen; Shi, Qian

    2015-01-01

    In order to enhance the capabilities of knowledge service in product innovation design service platform, a method of acquiring knowledge resources supporting for product innovation from the Internet and providing knowledge active push is proposed. Through knowledge modeling for product innovation based on ontology, the integrated architecture of knowledge resources network is put forward. The technology for the acquisition of network knowledge resources based on focused crawler and web services is studied. Knowledge active push is provided for users by user behavior analysis and knowledge evaluation in order to improve users' enthusiasm for participation in platform. Finally, an application example is illustrated to prove the effectiveness of the method. PMID:25884031

  20. An Analysis of the Potential Use of Red Horse Capabilities and Training Activities to Perform or Accelerate Air Force Environmental Cleanups

    DTIC Science & Technology

    1992-09-01

    capable of remediating sites contaminated with VOCs. Technologies which are innovative , emerging or not applicable are all considered to be...AD-A261 422 AFIT/GEE/CE%’/92S-’ AN" ANALYSIS OF T1’E, P’OTEN-TIAL USE OF RED HORSE CAPABILITIES AND TRAINING ACTIVITIES TO PEPFORM OR ACCELERATE AIR...Approved for public release; distribution unlimited 93 2 2-5 1󈧤 A.FIT/GEE/CEV/92S-7 AIN A.N.AýLYSIS OF THE POTENTIAL USE OF RED HORSE CAPABILITIES

  1. Lunar Relay Satellite Network for Space Exploration: Architecture, Technologies and Challenges

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hackenberg, Anthony W.; Slywczak, Richard A.; Bose, Prasanta; Bergamo, Marcos; Hayden, Jeffrey L.

    2006-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of these missions is to grow, through a series of launches, a system of systems infrastructure with the capability for safe and sustainable autonomous operations at minimum cost while maximizing the exploration capabilities and science return. An incremental implementation process will enable a buildup of the communication, navigation, networking, computing, and informatics architectures to support human exploration missions in the vicinities and on the surfaces of the Moon and Mars. These architectures will support all space and surface nodes, including other orbiters, lander vehicles, humans in spacesuits, robots, rovers, human habitats, and pressurized vehicles. This paper describes the integration of an innovative MAC and networking technology with an equally innovative position-dependent, data routing, network technology. The MAC technology provides the relay spacecraft with the capability to autonomously discover neighbor spacecraft and surface nodes, establish variable-rate links and communicate simultaneously with multiple in-space and surface clients at varying and rapidly changing distances while making optimum use of the available power. The networking technology uses attitude sensors, a time synchronization protocol and occasional orbit-corrections to maintain awareness of its instantaneous position and attitude in space as well as the orbital or surface location of its communication clients. A position-dependent data routing capability is used in the communication relay satellites to handle the movement of data among any of multiple clients (including Earth) that may be simultaneously in view; and if not in view, the relay will temporarily store the data from a client source and download it when the destination client comes into view. The integration of the MAC and data routing networking technologies would enable a relay satellite system to provide end-to-end communication services for robotic and human missions in the vicinity, or on the surface of the Moon with a minimum of Earth-based operational support.

  2. State strategies of governance in biomedical innovation: aligning conceptual approaches for understanding 'Rising Powers' in the global context

    PubMed Central

    2011-01-01

    Background 'Innovation' has become a policy focus in its own right in many states as they compete to position themselves in the emerging knowledge economies. Innovation in biomedicine is a global enterprise in which 'Rising Power' states figure prominently, and which undoubtedly will re-shape health systems and health economies globally. Scientific and technological innovation processes and policies raise difficult issues in the domains of science/technology, civil society, and the economic and healthcare marketplace. The production of knowledge in these fields is complex, uncertain, inter-disciplinary and inter-institutional, and subject to a continuing political struggle for advantage. As part of this struggle, a wide variety of issues - regulation, intellectual property, ethics, scientific boundaries, healthcare market formation - are raised and policy agendas negotiated. Methods A range of social science disciplines and approaches have conceptualised such innovation processes. Against a background of concepts such as the competition state and the developmental state, and national innovation systems, we give an overview of a range of approaches that have potential for advancing understanding of governance of global life science and biomedical innovation, with special reference to the 'Rising Powers', in order to examine convergences and divergences between them. Conceptual approaches that we focus on include those drawn from political science/political economy, sociology of technology; Innovation Studies and Science & Technology Studies. The paper is part of a project supported by the UK ESRC's Rising Powers programme. Results We show convergences and complementarities between the approaches discussed, and argue that the role of the national state itself has become relatively neglected in much of the relevant theorising. Conclusions We conclude that an approach is required that enables innovation and governance to be seen as 'co-producing' each other in a multi-level, global ecology of innovation, taking account of the particular, differing characteristics of different emerging scientific fields and technologies. We suggest key points to take account of in order in the future to move toward a satisfactory integrative conceptual framework, capable of better understanding the processes of the emergence, state steerage and transnational governance of innovative biomedical sectors in the Rising Powers and global context. PMID:21349182

  3. A Magnetron Sputter Deposition System for the Development of Multilayer X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David; Ramsey, Brian; Gubarev, Mikhail

    2014-01-01

    The proposal objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and EUV optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance the MSFC's position as a world leader in the design of innovative X-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures is absolutely necessary in order to advance the field of X-ray astronomy by pushing the limit for observing the universe to ever increasing photon energies (i. e. up to 200 keV or higher); well beyond Chandra (approx. 10 keV) and NuStar's (approx. 75 keV) capability. The addition of multilayer technology would significantly enhance the X-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication and design of innovative X-ray instrumentation which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments.To this aim, a magnetron vacum sputter deposition system for the deposition of novel multilayer thin film X-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and X-ray optics for a broad range of applications including medical imaging.

  4. A Magnetron Sputter Deposition System for the Development of X-Ray Multilayer Optics

    NASA Technical Reports Server (NTRS)

    Broadway, David

    2015-01-01

    The project objective is to establish the capability to deposit multilayer structures for x-ray, neutron, and extreme ultraviolet (EUV) optic applications through the development of a magnetron sputtering deposition system. A specific goal of this endeavor is to combine multilayer deposition technology with the replication process in order to enhance NASA Marshall Space Flight Center's (MSFC's) position as a world leader in the design of innovative x-ray instrumentation through the development of full shell replicated multilayer optics. The development of multilayer structures are absolutely necessary in order to advance the field of x-ray astronomy by pushing the limit for observing the universe to ever-increasing photon energies (i.e., up to 200 keV or higher), well beyond Chandra's (approx.10 keV) and NuStar's (approx.75 keV) capability. The addition of multilayer technology would significantly enhance the x-ray optics capability at MSFC and allow NASA to maintain its world leadership position in the development, fabrication, and design of innovative x-ray instrumentation, which would be the first of its kind by combining multilayer technology with the mirror replication process. This marriage of these technologies would allow astronomers to see the universe in a new light by pushing to higher energies that are out of reach with today's instruments. To this aim, a magnetron vacuum sputter deposition system for the deposition of novel multilayer thin film x-ray optics is proposed. A significant secondary use of the vacuum deposition system includes the capability to fabricate multilayers for applications in the field of EUV optics for solar physics, neutron optics, and x-ray optics for a broad range of applications including medical imaging.

  5. Cryogenic Propellant Storage and Transfer Technology Demonstration: Advancing Technologies for Future Mission Architectures Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Chojnacki, Kent T.; Crane, Deborah J.; Motil, Susan M.; Ginty, Carol A.; Tofil, Todd A.

    2014-01-01

    As part of U.S. National Space Policy, NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. NASA is laying the groundwork to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs. In support of this, NASA is embarking on the Technology Demonstration Mission Cryogenic Propellant Storage and Transfer (TDM CPST) Project to test and validate key cryogenic capabilities and technologies required for future exploration elements, opening up the architecture for large cryogenic propulsion stages and propellant depots. The TDM CPST will provide an on-orbit demonstration of the capability to store, transfer, and measure cryogenic propellants for a duration that enables long term human space exploration missions beyond low Earth orbit. This paper will present a summary of the cryogenic fluid management technology maturation effort, infusion of those technologies into flight hardware development, and a summary of the CPST preliminary design.

  6. Temporal Investment Strategy to Enable JPL Future Space Missions

    NASA Technical Reports Server (NTRS)

    Lincoln, William P.; Hua, Hook; Weisbin, Charles R.

    2006-01-01

    The Jet Propulsion Laboratory (JPL) formulates and conducts deep space missions for NASA (the National Aeronautics and Space Administration). The Chief Technologist of JPL has the responsibility for strategic planning of the laboratory's advanced technology program to assure that the required technological capabilities to enable future JPL deep space missions are ready as needed; as such he is responsible for the development of a Strategic Plan. As part of the planning effort, he has supported the development of a structured approach to technology prioritization based upon the work of the START (Strategic Assessment of Risk and Technology) team. A major innovation reported here is the addition of a temporal model that supports scheduling of technology development as a function of time. The JPL Strategic Technology Plan divides the required capabilities into 13 strategic themes. The results reported here represent the analysis of an initial seven.

  7. 77 FR 26826 - Notice of Open Public Hearing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-07

    ... China's innovation capabilities, with emphasis on the information technology and defense sectors. The... U.S.-CHINA ECONOMIC AND SECURITY REVIEW COMMISSION Notice of Open Public Hearing AGENCY: U.S.-China Economic and Security Review Commission. ACTION: Notice of open public hearing--May 10, 2012...

  8. 2014 SRNL LDRD Annual Report, Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcwhorter, S.

    2015-03-15

    Laboratory Directed Research and Development is a congressionally authorized program that provides the ‘innovation inspiration’ from which many of the Laboratory’s multi-discipline advancements are made in both science and engineering technology. The program is the backbone for insuring that scientific, technical and engineering capabilities can meet current and future needs. It is an important tool in reducing the probability of technological surprise by allowing laboratory technical staff room to innovate and keep abreast of scientific breakthroughs. Drawing from the synergism among the EM and NNSA missions, and work from other federal agencies ensures that LDRD is the key element inmore » maintaining the vitality of SRNL’s technical programs. The LDRD program aims to position the Laboratory for new business in clean energy, national security, nuclear materials management and environmental stewardship by leveraging the unique capabilities of the Laboratory to yield foundational scientific research in core business areas, while aligning with SRS strategic initiatives and maintaining a vision for ultimate DOE applications.« less

  9. Innovative power conversion system for the French SFR prototype, ASTRID

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cachon, L.; Biscarrat, C.; Morin, F.

    2012-07-01

    In the framework of the French Act of 28 June 2006 about nuclear materials and waste management, the prototype ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), foreseen in operation by the 20's, will have to demonstrate not only the minor actinide transmutation capability, but also the progress made in Sodium Fast Reactor (SFR) technology on an industrial scale, by qualifying innovative options. Some of these options still require improvements, especially in the field of operability and safety. In fact, one of the main issues with the standard steam/water Power Conversion System (PCS) of SFR is the fast and energeticmore » chemical reaction between water and sodium, which could occur in steam generators in case of tube failure. To manage the sodium/water reaction, one way consists in minimizing the impact of such event: hence studies are carried out on steam generator design, improvement of the physical knowledge of this phenomenon, development of numerical simulation to predict the reaction onset and consequences, and associated detection improvement. On the other hand, the other way consists in eliminating sodium/water reaction. In this frame, the CEA contribution to the feasibility evaluation of an alternative innovative PCS (replacing steam/water by 180 bar pressurised nitrogen) is focused on the following main topics: - The parametric study leading to nitrogen selection: the thermodynamic cycle efficiency optimisation on Brayton cycles is performed with several gases at different pressures. - The design of innovative compact heat exchangers for the gas loop: here the key points are the nuclear codification associated with inspection capability, the innovative welding process and the thermal-hydraulic and thermal-mechanic optimisations. After a general introduction of the ASTRID project, this paper presents in detail these different feasibility studies being led on the innovative gas PCS for an SFR. (authors)« less

  10. Technologically Reflective Individuals as Enablers of Social Innovation*

    PubMed Central

    Rau, Christiane; Gassmann, Oliver; van den Hende, Ellis

    2015-01-01

    This paper identifies technologically reflective individuals and demonstrates their ability to develop innovations that benefit society. Technological reflectiveness (TR) is the tendency to think about the societal impact of an innovation, and those who display this capability in public are individuals who participate in online idea competitions focused on technical solutions for social problems (such as General Electric's eco‐challenge, the James Dyson Award, and the BOSCH Technology Horizon Award). However, technologically reflective individuals also reflect in private settings (e.g., when reading news updates), thus requiring a scale to identify them. This paper describes the systematic development of an easy‐to‐administer multi‐item scale to measure an individual's level of TR. Applying the TR scale in an empirical study on a health monitoring system confirmed that individuals' degree of TR relates positively to their ability to generate (1) more new product features and uses, (2) features with higher levels of societal impact, and (3) features that are more elaborated. This scale allows firms seeking to implement co‐creation in their new product development (NPD) process and sustainable solutions to identify such individuals. Thus, this paper indicates that companies wishing to introduce new technological products with a positive societal impact may profit from involving technologically reflective individuals in the NPD process. PMID:27134342

  11. Technologically Reflective Individuals as Enablers of Social Innovation.

    PubMed

    Schweitzer, Fiona; Rau, Christiane; Gassmann, Oliver; van den Hende, Ellis

    2015-11-01

    This paper identifies technologically reflective individuals and demonstrates their ability to develop innovations that benefit society. Technological reflectiveness (TR) is the tendency to think about the societal impact of an innovation, and those who display this capability in public are individuals who participate in online idea competitions focused on technical solutions for social problems (such as General Electric's eco-challenge, the James Dyson Award, and the BOSCH Technology Horizon Award). However, technologically reflective individuals also reflect in private settings (e.g., when reading news updates), thus requiring a scale to identify them. This paper describes the systematic development of an easy-to-administer multi-item scale to measure an individual's level of TR. Applying the TR scale in an empirical study on a health monitoring system confirmed that individuals' degree of TR relates positively to their ability to generate (1) more new product features and uses, (2) features with higher levels of societal impact, and (3) features that are more elaborated. This scale allows firms seeking to implement co-creation in their new product development (NPD) process and sustainable solutions to identify such individuals. Thus, this paper indicates that companies wishing to introduce new technological products with a positive societal impact may profit from involving technologically reflective individuals in the NPD process.

  12. Analysis of Alternatives (AoA) of Open Colllaboration and Research Capabilities Collaboratipon in Research and Engineering in Advanced Technology and Education and High-Performance Computing Innovation Center (HPCIC) on the LVOC.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vrieling, P. Douglas

    2016-01-01

    The Livermore Valley Open Campus (LVOC), a joint initiative of the National Nuclear Security Administration (NNSA), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL), enhances the national security missions of NNSA by promoting greater collaboration between world-class scientists at the national security laboratories, and their partners in industry and academia. Strengthening the science, technology, and engineering (ST&E) base of our nation is one of the NNSA’s top goals. By conducting coordinated and collaborative programs, LVOC enhances both the NNSA and the broader national science and technology base, and helps to ensure the health of core capabilities at LLNLmore » and SNL. These capabilities must remain strong to enable the laboratories to execute their primary mission for NNSA.« less

  13. Twenty-First Century Defense and Disruptive Innovation

    DTIC Science & Technology

    2012-03-22

    organizations (or nations)—those not captive to the dominant paradigm—are more likely to find applications where disruptive technologies meet different...smaller, cheaper, and less capable drive, and dismissed their potential. The new firms, however, were not held captive by customer demands and were... balloon that does not carry a human operator and is capable of flight under remote control or autonomous programming.” 17 UAS refers to the “system whose

  14. The Test and Evaluation of Unmanned and Autonomous Systems

    DTIC Science & Technology

    2008-12-01

    robotic/ intelli - gent machines for the U.S. Department of Defense (DoD). Although the technology is still nascent and advancing, we are faced with the...evolutionary nature of UAS acquisition must be met with evolutionary test capabilities yet to be discovered and developed. Test capabilities must be deployed...at a faster pace than UAS deployment to satisfy the demand for warfighter improvements. The DoD is stimulating this new area of innovation with

  15. Building IT capability in health-care organizations.

    PubMed

    Khatri, Naresh

    2006-05-01

    While computer technology has revolutionized industries such as banking and airlines, it has done little for health care so far. Most of the health-care organizations continue the early-computer-era practice of buying the latest technology without knowing how it might effectively be employed in achieving business goals. By investing merely in information technology (IT) rather than in IT capabilities they acquire IT components--primarily hardware, software, and vendor-provided services--which they do not understand and, as a result, are not capable of fully utilizing for achieving organizational objectives. In the absence of internal IT capabilities, health-care organizations have relied heavily on the fragmented IT vendor market in which vendors do not offer an open architecture, and are unwilling to offer electronic interfaces that would make their 'closed' systems compatible with those of other vendors. They are hamstrung as a result because they have implemented so many different technologies and databases that information stays in silos. Health systems can meet this challenge by developing internal IT capabilities that would allow them to seamlessly integrate clinical and business IT systems and develop innovative uses of IT. This paper develops a comprehensive conception of IT capability grounded in the resource-based theory of the firm as a remedy to the woes of IT investments in health care.

  16. Exploration Laboratory Analysis

    NASA Technical Reports Server (NTRS)

    Krihak, M.; Ronzano, K.; Shaw, T.

    2016-01-01

    The Exploration Laboratory Analysis (ELA) project supports the Exploration Medical Capability (ExMC) risk to minimize or reduce the risk of adverse health outcomes and decrements in performance due to in-flight medical capabilities on human exploration missions. To mitigate this risk, the availability of inflight laboratory analysis instrumentation has been identified as an essential capability for manned exploration missions. Since a single, compact space-ready laboratory analysis capability to perform all exploration clinical measurements is not commercially available, the ELA project objective is to demonstrate the feasibility of emerging operational and analytical capability as a biomedical diagnostics precursor to long duration manned exploration missions. The initial step towards ground and flight demonstrations in fiscal year (FY) 2015 was the down selection of platform technologies for demonstrations in the space environment. The technologies selected included two Small Business Innovation Research (SBIR) performers: DNA Medicine Institutes rHEALTH X and Intelligent Optical Systems later flow assays combined with Holomics smartphone analyzer. The selection of these technologies were based on their compact size, breadth of analytical capability and favorable ability to process fluids in a space environment, among several factors. These two technologies will be advanced to meet ground and flight demonstration success criteria and requirements that will be finalized in FY16. Also, the down selected performers will continue the technology development phase towards meeting prototype deliverables in either late 2016 or 2017.

  17. 2011 Ground Robotics Capabilities Conference and Exhibition

    DTIC Science & Technology

    2011-03-24

    and reconnaissance, urban warfare, first responder, surveillance/ hostage situations and other critical missions. All have hard anodized bodies ... Body  Bomb Tool Kit OBJECTIVE: Develop a set of tools that can  be changed and operated remotely that  address the specific threat of an explosive...Innovation Acquisition Opportunities for Future Scientists & Engineers Requirements Technology & Innovation 5 ATLAS, Cheetah & ARM (DARPA) Conformal

  18. Overview of MEMS/NEMS technology development for space applications at NASA/JPL

    NASA Astrophysics Data System (ADS)

    George, Thomas

    2003-04-01

    This paper highlights the current technology development activities of the MEMS Technology Group at JPL. A diverse range of MEMS/NEMS technologies are under development, that are primarily applicable to NASA"s needs in the area of robotic planetary exploration. MEMS/NEMS technologies have obvious advantages for space applications, since they offer the promise of highly capable devices with ultra low mass, size and power consumption. However, the key challenge appears to be in finding efficient means to transition these technologies into "customer" applications. A brief description of this problem is presented along with the Group"s innovative approach to rapidly advance the maturity of technologies via insertion into space missions. Also described are some of the major capabilities of the MEMS Technology Group. A few important examples from among the broad classes of technologies being developed are discussed, these include the "Spider Web Bolometer", High-Performance Miniature Gyroscopes, an Electron Luminescence X-ray Spectrometer, a MEMS-based "Knudsen" Thermal Transpiration pump, MEMS Inchworm Actuators, and Nanowire-based Biological/Chemical Sensors.

  19. The impact of innovation intermediary on knowledge transfer

    NASA Astrophysics Data System (ADS)

    Lin, Min; Wei, Jun

    2018-07-01

    Many firms have opened up their innovation process and actively transfer knowledge with external partners in the market of technology. To reduce some of the market inefficiencies, more and more firms collaborate with innovation intermediaries. In light of the increasing importance of intermediary in the context of open innovation, we in this paper systematically investigate the effect of innovation intermediary on knowledge transfer and innovation process in networked systems. We find that the existence of innovation intermediary is conducive to the knowledge diffusion and facilitate the knowledge growth at system level. Interestingly, the scale of the innovation intermediary has little effect on the growth of knowledge. We further investigate the selection of intermediary members by comparing four selection strategies: random selection, initial knowledge level based selection, absorptive capability based selection, and innovative ability based selection. It is found that the selection strategy based on innovative ability outperforms all the other strategies in promoting the system knowledge growth. Our study provides a theoretical understanding of the impact of innovation intermediary on knowledge transfer and sheds light on the design and selection of innovation intermediary in open innovation.

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. JUST in time health emergency interventions: an innovative approach to training the citizen for emergency situations using virtual reality techniques and advanced IT tools (the VR Tool).

    PubMed

    Manganas, A; Tsiknakis, M; Leisch, E; Ponder, M; Molet, T; Herbelin, B; Magnetat-Thalmann, N; Thalmann, D; Fato, M; Schenone, A

    2004-01-01

    This paper reports the results of the second of the two systems developed by JUST, a collaborative project supported by the European Union under the Information Society Technologies (IST) Programme. The most innovative content of the project has been the design and development of a complementary training course for non-professional health emergency operators, which supports the traditional learning phase, and which purports to improve the retention capability of the trainees. This was achieved with the use of advanced information technology techniques, which provide adequate support and can help to overcome the present weaknesses of the existing training mechanisms.

  3. Linear feature extraction from radar imagery: SBIR (Small Business Innovative Research), phase 2, option 2

    NASA Astrophysics Data System (ADS)

    Milgram, David L.; Kahn, Philip; Conner, Gary D.; Lawton, Daryl T.

    1988-12-01

    The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze features from Synthetic Aperture Radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of and technology issues involved in the development of an automated linear feature extraction system. This final report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.

  4. Innovative Organization of Project Activity of Construction Students

    NASA Astrophysics Data System (ADS)

    Stolbova, I. D.; Aleksandrova, E. P.; Krainova, M. N.

    2017-11-01

    The construction industry competitiveness depends on its equipping with information modeling technologies. This requires training and development of human resources. The advantages of BIM-technologies are considered. The requirements for the specialists capable of promoting information modeling technologies in the construction industry are discussed. For a wide application of BIM-technologies, the problem of training personnel with a new thinking must be solved. When preparing graduates of the major “Construction”, it is necessary to introduce innovative educational technologies aimed at building the students’ ability for team work, competences in the field of modern information and communication technologies, as well as design skills basing on spatial modeling. Graphic training is the first discipline of the professional orientation for construction students. In the context of training it is important to create such learning environment that is close to a professional one. The paper provides the examples of practice-oriented assignments based on the project method in the course of students’ independent work.

  5. Privacy, technology, and norms: the case of Smart Meters.

    PubMed

    Horne, Christine; Darras, Brice; Bean, Elyse; Srivastava, Anurag; Frickel, Scott

    2015-05-01

    Norms shift and emerge in response to technological innovation. One such innovation is Smart Meters - components of Smart Grid energy systems capable of minute-to-minute transmission of consumer electricity use information. We integrate theory from sociological research on social norms and privacy to examine how privacy threats affect the demand for and expectations of norms that emerge in response to new technologies, using Smart Meters as a test case. Results from three vignette experiments suggest that increased threats to privacy created by Smart Meters are likely to provoke strong demand for and expectations of norms opposing the technology and that the strength of these normative rules is at least partly conditional on the context. Privacy concerns vary little with actors' demographic characteristics. These findings contribute to theoretical understanding of norm emergence and have practical implications for implementing privacy protections that effectively address concerns of electricity users. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Small Water System Alternatives: Media and Membrane Filtration Alternatives for Small Communities and Households

    EPA Science Inventory

    This webinar presentation will highlight research case studies on innovative drinking water treatment alternatives for small community water systems. Emphasis will be placed on media and membrane filtration technologies capable of meeting the requirements of the Long-Term 2 Enha...

  7. Overview of microoptics: Past, present, and future

    NASA Technical Reports Server (NTRS)

    Veldkamp, Wilfrid B.

    1993-01-01

    Through advances in semiconductor miniaturization technology, microrelief patterns, with characteristic dimensions as small as the wavelength of light, can now be mass reproduced to form high-quality and low-cost optical components. In a unique example of technology transfer, from electronics to optics, this capability is allowing optics designers to create innovative optical components that promise to solve key problems in optical sensors, optical communication channels, and optical processors.

  8. Tactical STOL moment balance through innovative configuration technology

    NASA Technical Reports Server (NTRS)

    Eckard, G. J.; Sutton, R. C.; Poth, G. E.

    1981-01-01

    Innovative and conventional thrust vectoring moment balance mechanisms, as applied to advanced tactical fighters, are examined. The innovative mechanisms include thrust line translation, life line translation, and auxiliary power control; the conventional mechanisms under investigation are horizontal tails, canards, and variable sweep wings. These mechanisms are tested for their ability to provide negative static margins for landing approach or relocation of the vectored thrust line nearer the aircraft's center of gravity. The net pitching moment due to wing, flaps, and vectored thrust lift would then be small, making possible beneficial trim forces from small trimming devices. These innovative mechanisms are, however, possibly heavy and must be evaluated on their complexity, reliability, maintainability, and STOL capabilities. Several candidate fighter configurations are compared and evaluated.

  9. Programmable Ultra Lightweight System Adaptable Radio (PULSAR) Low Cost Telemetry - Access from Space Advanced Technologies or Down the Middle

    NASA Technical Reports Server (NTRS)

    Sims. Herb; Varnavas, Kosta; Eberly, Eric

    2013-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 1990's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. In contrast, presently qualified satellite transponder applications were developed during the early 1960's space program. Programmable Ultra Lightweight System Adaptable Radio (PULSAR, NASA-MSFC SDR) technology revolutionizes satellite transponder technology by increasing data through-put capability by, at least, an order of magnitude. PULSAR leverages existing Marshall Space Flight Center SDR designs and commercially enhanced capabilities to provide a path to a radiation tolerant SDR transponder. These innovations will (1) reduce the cost of NASA Low Earth Orbit (LEO) and Deep Space transponders, (2) decrease power requirements, and (3) a commensurate volume reduction. Also, PULSAR increases flexibility to implement multiple transponder types by utilizing the same hardware with altered logic - no analog hardware change is required - all of which can be accomplished in orbit. This provides high capability, low cost, transponders to programs of all sizes. The final project outcome would be the introduction of a Technology Readiness Level (TRL) 7 low-cost CubeSat to SmallSat telemetry system into the NASA Portfolio.

  10. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2013-10-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  11. Advanced plasma etch technologies for nanopatterning

    NASA Astrophysics Data System (ADS)

    Wise, Rich

    2012-03-01

    Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.

  12. Using the Technology: Introducing Point of View Video Glasses Into the Simulated Clinical Learning Environment.

    PubMed

    Metcalfe, Helene; Jonas-Dwyer, Diana; Saunders, Rosemary; Dugmore, Helen

    2015-10-01

    The introduction of learning technologies into educational settings continues to grow alongside the emergence of innovative technologies into the healthcare arena. The challenge for health professionals such as medical, nursing, and allied health practitioners is to develop an improved understanding of these technologies and how they may influence practice and contribute to healthcare. For nurse educators to remain contemporary, there is a need to not only embrace current technologies in teaching and learning but to also ensure that students are able to adapt to this changing pedagogy. One recent technological innovation is the use of wearable computing technology, consisting of video recording with the capability of playback analysis. The authors of this article discuss the introduction of the use of wearable Point of View video glasses by a cohort of nursing students in a simulated clinical learning laboratory. Of particular interest was the ease of use of the glasses, also termed the usability of this technology, which is central to its success. Students' reflections were analyzed together with suggestions for future use.

  13. High-Performance Computing and Visualization | Energy Systems Integration

    Science.gov Websites

    Facility | NREL High-Performance Computing and Visualization High-Performance Computing and Visualization High-performance computing (HPC) and visualization at NREL propel technology innovation as a . Capabilities High-Performance Computing NREL is home to Peregrine-the largest high-performance computing system

  14. Innovative Strategies for Teaching Anatomy and Physiology.

    ERIC Educational Resources Information Center

    Ritt, Laura; Stewart, Barbara

    1996-01-01

    Describes the development of new teaching strategies in an anatomy and physiology laboratory at Burlington County College (New Jersey) based on laser disc technology, computers with multimedia capabilities, and appropriate software. Lab activities are described and results of a survey of former students are reported, including a comparison of lab…

  15. Kindergarten 2.0

    ERIC Educational Resources Information Center

    Sevans

    2006-01-01

    The Media Lab of the Massachusetts Institute of Technology is featured. The 21-year-old center is an ongoing experiment in how electronics can shape the future, and it helped pioneer digital videography and computer multimedia capabilities, among other innovations. So it's no surprise that it is home to Lifelong Kindergarten, a high-tech…

  16. Mobile Computing: Trends Enabling Virtual Management

    ERIC Educational Resources Information Center

    Kuyatt, Alan E.

    2011-01-01

    The growing power of mobile computing, with its constantly available wireless link to information, creates an opportunity to use innovative ways to work from any location. This technological capability allows companies to remove constraints of physical proximity so that people and enterprises can work together at a distance. Mobile computing is…

  17. Overcoming Organizational Fixation: Creating and Sustaining an Innovation Culture

    ERIC Educational Resources Information Center

    Stempfle, Joachim

    2011-01-01

    Fixation on established paradigms and practices can severely limit the capability of organizations to change, thereby jeopardizing the ability of organizations to keep up with changes in their environment and new technological developments. Overcoming organizational fixation is therefore a requirement for any organization that strives to achieve…

  18. Tool for evaluating the evolution Space Weather Regional Warning Centers under the innovation point of view: the Case Study of the Embrace Space Weather Program Early Stages

    NASA Astrophysics Data System (ADS)

    Denardini, Clezio Marcos

    2016-07-01

    We have developed a tool for measuring the evolutional stage of the space weather regional warning centers using the approach of the innovative evolution starting from the perspective presented by Figueiredo (2009, Innovation Management: Concepts, metrics and experiences of companies in Brazil. Publisher LTC, Rio de Janeiro - RJ). It is based on measuring the stock of technological skills needed to perform a certain task that is (or should) be part of the scope of a space weather center. It also addresses the technological capacity for innovation considering the accumulation of technological and learning capabilities, instead of the usual international indices like number of registered patents. Based on this definition, we have developed a model for measuring the capabilities of the Brazilian Study and Monitoring Program Space Weather (Embrace), a program of the National Institute for Space Research (INPE), which has gone through three national stages of development and an international validation step. This program was created in 2007 encompassing competence from five divisions of INPE in order to carry out the data collection and maintenance of the observing system in space weather; to model processes of the Sun-Earth system; to provide real-time information and to forecast space weather; and provide diagnostic their effects on different technological systems. In the present work, we considered the issues related to the innovation of micro-processes inherent to the nature of the Embrace program, not the macro-economic processes, despite recognizing the importance of these. During the development phase, the model was submitted to five scientists/managers from five different countries member of the International Space Environment Service (ISES) who presented their evaluations, concerns and suggestions. It was applied to the Embrace program through an interview form developed to be answered by professional members of regional warning centers. Based on the returning answers we have derived a map that led to the discussions presented in this work. Among them, we point out that the advent of a regional warning center demanded some internal effort to perform the new tasks normally assigned to such center. However, the research activities potential stock available at INPE undoubtedly reduced the leap time among the evolutionary steps. In the other way, once the center was established it produced considerable increase in domestic skills of employees involved in this program. The other conclusions, reflections and recommendations are presented, including a personal reflection on learning processes for technological capability accumulation of what we understand to be present in the Embrace program. Contacting Author: C. M. Denardini (clezio.denardin@inpe.br)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate, speaks at the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. The politics of buzzwords at the interface of technoscience, market and society: the case of 'public engagement in science'.

    PubMed

    Bensaude Vincent, Bernadette

    2014-04-01

    Emerging technologies such as genomics, nanotechnology, and converging technologies are surrounded by a constellation of fashionable stereotyped phrases such as 'public engagement in science', 'responsible innovation', 'green technology', or 'personalised medicine'. Buzzwords are ubiquitous and used ad libitum by science policy makers, industrial companies in their advertisements, scientists in their research proposals, and journalists. Despite their proliferation in the language of scientific and technological innovation, these buzzwords have attracted little attention among science studies scholars. The purpose of this paper is to try to understand if, and how buzzwords shape the technoscientific landscape. What do they perform? What do they reveal? What do they conceal? Based on a case study of the phrase 'public engagement in science', this paper describes buzzwords as linguistic technologies, capable of three major performances: buzzwords generate matters of concern and play an important role in trying to build consensus; they set attractive goals and agendas; they create unstable collectives through noise.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, K G

    The spread of submarines and related technology is an end product of globalization. Globalization is not a new story. By one estimate, our ancestors first crossed out of Africa roughly 80,000 years ago, and began the process that they now call globalization. With the dispersion of people around the world came the development of culture and civilization as well as the spread of ideas, goods, and technology. The process of globalization then is a long-standing one, not an innovation of the late 20th and early 21st centuries. Over the millennia, this process has been an uneven one. Globalization has oftenmore » cuased great disruptions even to the societies that initiated various innovations in culture and civilization, including science and technology. Indeed, many cultures and civilizations have disappeared while some regions failed to advance as rapidly as others, so the process of globalization is not just one of continuing progress. Globalization in the current era seems to be penetrating the most remote corners of the world at a remarkable rate as a result of advances in science and technology, particularly information technology. The diffusion of science and technology is not necessarily a benign development. It could increase the potential for a global military industrial base that may have an adverse affect on world stability in the future. For example, the spread of key military capabilities, like submarines, could still have an impact, especially over the longer term, on the US capability to project power overseas.« less

  2. Opening the black box: measuring hospital information technology capability.

    PubMed

    Burke, Darrell E; Menachemi, Nir

    2004-01-01

    Recently, health care investment in information technology (IT) has experienced a significant increase. Paralleling this increase has been an increase in IT capabilities. Despite the interest in and promises of IT in the health care setting, there is a paucity of empirical research that has attempted to define an organizational measure of IT capability. The dearth of research has contributed to the traditional belief that IT is perceived as a "black box," whereby organizational resources enter the box as "inputs" and are somehow transformed into positive outcomes for an organization. However, for positive outcomes to be realized, these outcomes must be measurable. This research uses a stakeholder perspective to develop a theoretically specified measure of IT capability. A latent construct, IT munificence, is proposed using tenets from diffusion of innovation theory and strategic contingency theory. The construct is tested using a sample of 1,545 acute care hospitals located in the United States. IT munificence fits the study data well, supporting the hypothesis that IT munificence represents a strategy of hospital IT capability.

  3. Transforming Our SMEX Organization by Way of Innovation, Standardization, and Automation

    NASA Technical Reports Server (NTRS)

    Madden, Maureen; Crouse, Pat; Carry, Everett; Esposito, timothy; Parker, Jeffrey; Bradley, David

    2006-01-01

    NASA's Small Explorer (SMEX) Flight Operations Team (FOT) is currently tackling the challenge of supporting ground operations for several satellites that have surpassed their designed lifetime and have a dwindling budget. At Goddard Space Flight Center (GSFC), these missions are presently being reengineered into a fleet-oriented ground system. When complete, this ground system will provide command and control of four SMEX missions, and will demonstrate fleet automation and control concepts as a pathfinder for additional mission integrations. A goal of this reengineering effort is to demonstrate new ground-system technologies that show promise of supporting longer mission lifecycles and simplifying component integration. In pursuit of this goal, the SMEX organization has had to examine standardization, innovation, and automation. A core technology being demonstrated in this effort is the GSFC Mission Services Evolution Center (GMSEC) architecture. The GMSEC architecture focuses on providing standard interfaces for ground system applications to promote application interoperability. Building around commercial Message Oriented Middleware and providing a common messaging standard allows GMSEC to provide the capabilities necessary to support integration of new software components into existing missions and increase the level of interaction within the system. For SMS, GMSEC has become the technology platform to transform flight operations with the innovation and automation necessary to reduce operational costs. The automation technologies supported in SMEX are built upon capabilities provided by the GMSEC architecture that allows the FOT to further reduce the involvement of the console, operator. Initially, SMEX is automating only routine operations, such as safety and health monitoring, basic commanding, and system recovery. The operational concepts being developed here will reduce the need for staffed passes and are a necessity for future fleet management. As this project continues to evolve, additional innovations beyond GMSEC and automation have, and will continue to be developed. The team developed techniques for migrating ground systems of existing on-orbit assets. The tools necessary to monitor and control software failures were integrated and tailored for operational environments. All this was done with a focus of extending fleet operations to mission beyond SMU. The result of this work is the foundation for a broader fleet-capable ground system that will include several missions supported by the Space Science Mission Operations Project.

  4. An Energy Dense-AI-NaBH4-PEMFC Based Power Generator for Unmanned Undersea Vehicles

    DTIC Science & Technology

    2016-03-01

    1]. Although different types of batteries involving lithium , e.g., primary (Li-SOCb) and rechargeable (Li- ion , Li-polymer) batteries , potentially...development of innovative beyond battery -only technological capabilities would be necessary. The main objective of the proposed work is to develop an...increasing the endurance of UUVs. Lithium is commonly used in battery technology because it is the lightest metal , so higher energy densities are possible

  5. Modern Instrumental Methods in Forensic Toxicology*

    PubMed Central

    Smith, Michael L.; Vorce, Shawn P.; Holler, Justin M.; Shimomura, Eric; Magluilo, Joe; Jacobs, Aaron J.; Huestis, Marilyn A.

    2009-01-01

    This article reviews modern analytical instrumentation in forensic toxicology for identification and quantification of drugs and toxins in biological fluids and tissues. A brief description of the theory and inherent strengths and limitations of each methodology is included. The focus is on new technologies that address current analytical limitations. A goal of this review is to encourage innovations to improve our technological capabilities and to encourage use of these analytical techniques in forensic toxicology practice. PMID:17579968

  6. Idaho National Laboratory Annual Report FY 2013 LDRD Project Summaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dena Tomchak

    The FY 2013 LDRD Annual Report is a compendium of the diverse research performed to develop and ensure the INL’s technical capabilities support the current and future DOE missions and national research priorities. LDRD is essential to INL—it provides a means for the Laboratory to maintain scientific and technical vitality while funding highly innovative, high-risk science and technology research and development (R&D) projects. The program enhances technical capabilities at the Laboratory, providing scientific and engineering staff with opportunities to explore proof-of-principle ideas, advanced studies of innovative concepts, and preliminary technical analyses. Established by Congress in 1991, the LDRD Program provesmore » its benefit each year through new programs, intellectual property, patents, copyrights, national and international awards, and publications.« less

  7. Micro guidance and control synthesis: New components, architectures, and capabilities

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Hadaegh, Fred Y.

    1993-01-01

    New GN&C (guidance, navigation and control) system capabilities are shown to arise from component innovations that involve the synergistic use of microminiature sensors and actuators, microelectronics, and fiber optics. Micro-GN&C system and component concepts are defined that include micro-actuated adaptive optics, micromachined inertial sensors, fiber-optic data nets and light-power transmission, and VLSI microcomputers. The thesis is advanced that these micro-miniaturization products are capable of having a revolutionary impact on space missions and systems, and that GN&C is the pathfinder micro-technology application that can bring that about.

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team KuuKulgur watches as their robots attempt the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sam Ortega, NASA program manager for Centennial Challenges, is seen during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Retrievers team robot is seen as it attempts the level one challenge the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. Linear feature extraction from radar imagery: SBIR (Small Business Innovative Research) phase 2, option 1

    NASA Astrophysics Data System (ADS)

    Conner, Gary D.; Milgram, David L.; Lawton, Daryl T.; McConnell, Christopher C.

    1988-04-01

    The goal of this effort is to develop and demonstrate prototype processing capabilities for a knowledge-based system to automatically extract and analyze linear features from synthetic aperture radar (SAR) imagery. This effort constitutes Phase 2 funding through the Defense Small Business Innovative Research (SBIR) Program. Previous work examined the feasibility of the technology issues involved in the development of an automatedlinear feature extraction system. This Option 1 Final Report documents this examination and the technologies involved in automating this image understanding task. In particular, it reports on a major software delivery containing an image processing algorithmic base, a perceptual structures manipulation package, a preliminary hypothesis management framework and an enhanced user interface.

  12. Innovation and the future of advanced dosimetry: 2D to 5D

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2017-05-01

    Recent years have witnessed a remarkable evolution in the techniques, capabilities and applications of 3D dosimetry. Initially the goal was simple: to innovate new techniques capable of comprehensively measuring and verifying exquisitely intricate dose distributions from a paradigm changing emerging new therapy, IMRT. Basic questions emerged: how well were treatment planning systems modelling the complex delivery, and how could treatments be verified for safe use on patients? Since that time, equally significant leaps of innovation have continued in the technology of treatment delivery. In addition, clinical practice has been transformed by the addition of on-board imaging capabilities, which tend to hypo-fractionation strategies and margin reduction. The net result is a high stakes treatment setting where the clinical morbidity of any unintended treatment deviation is exacerbated by the combination of highly conformal dose distributions given with reduced margins with fractionation regimens unfriendly to healthy tissue. Not surprisingly this scenario is replete with challenges and opportunities for new and improved dosimetry systems. In particular tremendous interest exists in comprehensive 3D dosimetry systems, and systems that can resolve the dose in moving structures (4D) and even in deforming structures (5D). Despite significant progress in the capability of multi-dimensional dosimetry systems, it is striking that true 3D dosimetry systems are today largely found in academic institutions or specialist clinics. The reasons will be explored. We will highlight innovations occurring both in treatment delivery and in advanced dosimetry methods designed to verify them, and explore current and future opportunities for advanced dosimetry tools in clinical practice and translational research.

  13. International Relations, New Technology, and Adaptation of the Military Innovation: Focusing on the Case of the Aircraft Carrier Innovation of the Imperial Japanese Navy During the Interwar Period

    DTIC Science & Technology

    2017-12-01

    AP), a kinetic energy shot. On the other hand, there were many unexploded bombs in Russian fires.45 Consequently, a large ship equipped with large...hits of 240kg bombs . Despite these efforts, after the Washington Naval Treaty, the IJN focused on auxiliary warships such as submarines and cruisers...late 1920s, the IJN began to strengthen its aviation capabilities by consolidating aviation-related organizations and strengthening bombing training.108

  14. A model for technology assessment and commercialization for innovative disruptive technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KASSICIEH, SULEIMAN K.; WALSH, STEVE; MCWHORTER,PAUL J.

    2000-05-17

    Disruptive technologies are scientific discoveries that break through the usual product technology capabilities and provide a basis for a new competitive paradigm as described by Anderson and Tushman [1990], Tushman and Rosenkopf [1992], and Bower and Christensen [1995]. Discontinuous innovations are products/processes/services that provide exponential improvements in the value received by the customer much in the same vein as Walsh [1996], Lynn, Morone and Paulson [1996], and Veryzer [1998]. For more on definitions of disruptive technologies and discontinuous innovations, see Walsh and Linton [1999] who provide a number of definitions for disruptive technologies and discontinuous innovations. Disruptive technologies and discontinuousmore » innovations present a unique challenge and opportunity for R and D organizations seeking to build their commercialization efforts and to reinvent the corporation. These technologies do not have a proven path from scientific discovery to mass production and therefore require novel approaches. These critically important technologies are the wellspring of wealth creation and new competency generation but are not readily accepted by the corporate community. They are alternatively embraced and eschewed by the commercial community. They are finally accepted when the technology has already affected the industry or when the technological horse has already flown out of the hanger. Many firms, especially larger firms, seem reluctant to familiarize themselves with these technologies quickly. The trend seems to be that these firms prefer to react to a proven disruptive technology that has changed the product market paradigm. If true, then there is cause for concern. This paper will review the literature on disruptive technologies presenting a model of the progression from scientific idea to mass production for disruptive technologies contrasted to the more copious incremental technologies. The paper will then describe Sandia National Laboratories' involvement in one of the disruptive technology areas, namely micro-electromechanical systems (sometimes referred to as Microsystems or MEMS) and will survey a number of companies that have investigated Sandia's technological discoveries for potential use in an industrial capacity. The survey will focus on the movement of the research findings from the laboratory into the marketplace and all of the problem areas that disruptive technologies face in this arena. The paper will then state several hypotheses that will be tested. The data will be described with results and conclusions reported.« less

  15. KSC-2014-2981

    NASA Image and Video Library

    2014-06-23

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, students from the University of Colorado Boulder demonstrated a robotic capability for growing a variety of plants in a deep-space habitat. Daniel Zukowski, a University of Colorado Boulder graduate student, right, and Morgan Simpson of the NASA Ground Processing Directorate, check computer displays during a presentation of the team's entry in the eXploration HABitat X-Hab Academic Innovation Challenge. In their concept called "Plants Anywhere: Plants Growing in Free Habitat Spaces," their approach calls for robotically tended plants to be scattered in any available space in a deep-space habitat instead of an area set aside just for vegetation. X-Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in science, technology, engineering and math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Daniel Casper

  16. Sustainable rural telehealth innovation: a public health case study.

    PubMed

    Singh, Rajendra; Mathiassen, Lars; Stachura, Max E; Astapova, Elena V

    2010-08-01

    To examine adoption of telehealth in a rural public health district and to explain how the innovation became sustainable. Longitudinal, qualitative study (1988-2008) of the largest public health district in Georgia. Case study design provided deep insights into the innovation's social dynamics. Punctuated equilibrium theory helped present and make sense of the process. We identified antecedent conditions and outcomes, and we distinguished between episodes and encounters based on the disruptive effects of events. Twenty-five semistructured interviews with 19 decision makers and professionals, direct observations, published papers, grant proposals, technical specifications, and other written materials. Strong collaboration within the district, with local community, and with external partners energized the process. Well-functioning outreach clinics made telehealth desirable. Local champions cultivated participation and generative capability, and overcame barriers through opportunistic exploitation of technological and financial options. Telehealth usage fluctuated between medical and administrative operations in response to internal needs and contextual dynamics. External agencies provided initial funding and supported later expansion. Extensive internal and external collaboration, and a combination of technology push and opportunistic exploitation, can enable sustainable rural telehealth innovation.

  17. Innovations in Mission Architectures for Human and Robotic Exploration Beyond Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cooke, Douglas R.; Joosten, B. Kent; Lo, Martin W.; Ford, Ken; Hansen, Jack

    2002-01-01

    Through the application of advanced technologies, mission concepts, and new ideas in combining capabilities, architectures for missions beyond Earth orbit have been dramatically simplified. These concepts enable a stepping stone approach to discovery driven, technology enabled exploration. Numbers and masses of vehicles required are greatly reduced, yet enable the pursuit of a broader range of objectives. The scope of missions addressed range from the assembly and maintenance of arrays of telescopes for emplacement at the Earth-Sun L2, to Human missions to asteroids, the moon and Mars. Vehicle designs are developed for proof of concept, to validate mission approaches and understand the value of new technologies. The stepping stone approach employs an incremental buildup of capabilities; allowing for decision points on exploration objectives. It enables testing of technologies to achieve greater reliability and understanding of costs for the next steps in exploration.

  18. Microtechnology management considering test and cost aspects for stacked 3D ICs with MEMS

    NASA Astrophysics Data System (ADS)

    Hahn, K.; Wahl, M.; Busch, R.; Grünewald, A.; Brück, R.

    2018-01-01

    Innovative automotive systems require complex semiconductor devices currently only available in consumer grade quality. The European project TRACE will develop and demonstrate methods, processes, and tools to facilitate usage of Consumer Electronics (CE) components to be deployable more rapidly in the life-critical automotive domain. Consumer electronics increasingly use heterogeneous system integration methods and "More than Moore" technologies, which are capable to combine different circuit domains (Analog, Digital, RF, MEMS) and which are integrated within SiP or 3D stacks. Making these technologies or at least some of the process steps available under automotive electronics requirements is an important goal to keep pace with the growing demand for information processing within cars. The approach presented in this paper aims at a technology management and recommendation system that covers technology data, functional and non-functional constraints, and application scenarios, and that will comprehend test planning and cost consideration capabilities.

  19. Binary optics: Trends and limitations

    NASA Technical Reports Server (NTRS)

    Farn, Michael W.; Veldkamp, Wilfrid B.

    1993-01-01

    We describe the current state of binary optics, addressing both the technology and the industry (i.e., marketplace). With respect to the technology, the two dominant aspects are optical design methods and fabrication capabilities, with the optical design problem being limited by human innovation in the search for new applications and the fabrication issue being limited by the availability of resources required to improve fabrication capabilities. With respect to the industry, the current marketplace does not favor binary optics as a separate product line and so we expect that companies whose primary purpose is the production of binary optics will not represent the bulk of binary optics production. Rather, binary optics' more natural role is as an enabling technology - a technology which will directly result in a competitive advantage in a company's other business areas - and so we expect that the majority of binary optics will be produced for internal use.

  20. Defense Science Board 2006 Summer Study on 21st Century Strategic Technology Vectors. Volume 4. Accelerating the Transition of Technologies into U.S. Capabilities

    DTIC Science & Technology

    2007-04-01

    perform more research on future defense technology, the DOD should invest in companies that are leaders in the development of innovative sources of next...well. In fact, the kit from one vender out-performed the standard up-armor kits being produced for the Army’s acquisition team. That Army company ...subsequently purchased the company that had built the improved performance kit. As part of the process to look at alternatives, the Army Material

  1. eLearning or technology enhanced learning in medical education-Hope, not hype.

    PubMed

    Goh, Poh Sun

    2016-09-01

    This Personal View elaborates on my strong conviction that the excitement and positive feelings that many of us have for eLearning or Technology enhanced learning (TeL) is well founded, and will argue why our hopes are justified, and not misplaced. In a nutshell, I believe that eLearning or TeL is a significant advance from previous generations of educational innovation, and offers benefits for students, educators and administrators; by synergistically combining the capabilities of digital content, the Internet, and mobile technology, supported by software and applications or "Apps".

  2. Three Essays on Chinese IT Service Industry: Capability Development, Internationalization Strategy, and Cultural Templates

    ERIC Educational Resources Information Center

    Su, Ning

    2011-01-01

    Leading Chinese technology firms, from automobile manufacturer to information service provider, are evolving into some of the world's most innovative and competitive players, and dramatically changing the global business landscape. What underlies the rise of these firms is China's national strategy of transforming itself from a low-cost…

  3. Unique Procurement Process Expands Microgrid Research Capabilities at the

    Science.gov Websites

    competitive procurement process provided comparative research on multiple controller technologies, which will be made publicly available on GitHub. "We always set out to design and build innovative advance the design and performance of controls for future microgrids, and of the larger U.S. power system

  4. Teaching Accounting through Innovative Technological Means Challenges the Gifted and Retains the Capable Student.

    ERIC Educational Resources Information Center

    Sitton, Vivian; Haney, Frances

    In fall 1979, the Business Department at Isothermal Community College established an Individualized Instruction Center (IIC) to enhance student success through the use of individualized, audiovisual, and tutorial methods. The IIC's staff, which consists of four full-time instructors, four paraprofessionals, three part-time clerical/technical…

  5. Realization of a Desired Future: Innovation in Education

    ERIC Educational Resources Information Center

    Findikoglu, Fuat; Ilhan, Dilek

    2016-01-01

    Today and tomorrow, the world needs individuals who can manipulate critical and creative thinking skills to solve problems as a team. With technology, the way knowledge is obtained, constructed and communicated have completely transformed and altered. When it comes to education, it is a matter of question whether education is capable of creating…

  6. Energy Analysis Research | Energy Analysis | NREL

    Science.gov Websites

    innovation through integration. Illustration of NREL energy analysis research, including impact systems analysis integrates all aspects of our capability set to develop future energy system scenarios evaluate and understand the impact of markets, policies, and financing on technology uptake and the impact

  7. Challenges of Transitioning to an e-Learning System with Learning Objects Capabilities

    ERIC Educational Resources Information Center

    Raspopovic, Miroslava; Cvetanovic, Svetlana; Jankulovic, Aleksandar

    2016-01-01

    In order for higher education institutions, which implements blended and/or online learning to remain competitive and innovative it needs to keep up with the cutting edge technological and educational advances. This task is usually very difficult, keeping in mind the budget constraints that many institutions have. This usually implies that…

  8. Innovative Use of Smartphones for a Sound Resonance Tube Experiment

    ERIC Educational Resources Information Center

    Tho, Siew Wei; Yeung, Yau Yuen

    2014-01-01

    A Smartphone is not only a mobile device that is used for communication but is also integrated with a personal digital assistant (PDA) and other technological capabilities such as built-in acceleration, magnetic and light sensors, microphone, camera and Global Positioning System (GPS) unit. This handheld device has become very popular with the…

  9. Student Learning Outcomes from a Pilot Medical Innovations Course with Nursing, Engineering, and Biology Undergraduate Students

    ERIC Educational Resources Information Center

    Ludwig, Patrice M.; Nagel, Jacquelyn K.; Lewis, Erica J.

    2017-01-01

    Background: Preparing today's undergraduate students from science, technology, engineering, and math (STEM) and related health professions to solve wide-sweeping healthcare challenges is critical. Moreover, it is imperative that educators help students develop the capabilities needed to meet those challenges, including problem solving,…

  10. Optimists' Creed: Brave New Cyberlearning, Evolving Utopias (Circa 2041)

    ERIC Educational Resources Information Center

    Burleson, Winslow; Lewis, Armanda

    2016-01-01

    This essay imagines the role that artificial intelligence innovations play in the integrated living, learning and research environments of 2041. Here, in 2041, in the context of increasingly complex wicked challenges, whose solutions by their very nature continue to evade even the most capable experts, society and technology have co-evolved to…

  11. The Importance of Earth Observations and Data Collaboration within Environmental Intelligence Supporting Arctic Research

    NASA Technical Reports Server (NTRS)

    Casas, Joseph

    2017-01-01

    Within the IARPC Collaboration Team activities of 2016, Arctic in-situ and remote earth observations advanced topics such as :1) exploring the role for new and innovative autonomous observing technologies in the Arctic; 2) advancing catalytic national and international community based observing efforts in support of the National Strategy for the Arctic Region; and 3) enhancing the use of discovery tools for observing system collaboration such as the U.S. National Oceanic and Atmospheric Administration (NOAA) Arctic Environmental Response Management Application (ERMA) and the U.S. National Aeronautics and Space Administration (NASA) Arctic Collaborative Environment (ACE) project geo reference visualization decision support and exploitation internet based tools. Critical to the success of these earth observations for both in-situ and remote systems is the emerging of new and innovative data collection technologies and comprehensive modeling as well as enhanced communications and cyber infrastructure capabilities which effectively assimilate and dissemination many environmental intelligence products in a timely manner. The Arctic Collaborative Environment (ACE) project is well positioned to greatly enhance user capabilities for accessing, organizing, visualizing, sharing and producing collaborative knowledge for the Arctic.

  12. High-NA EUV lithography enabling Moore's law in the next decade

    NASA Astrophysics Data System (ADS)

    van Schoot, Jan; Troost, Kars; Bornebroek, Frank; van Ballegoij, Rob; Lok, Sjoerd; Krabbendam, Peter; Stoeldraijer, Judon; Loopstra, Erik; Benschop, Jos P.; Finders, Jo; Meiling, Hans; van Setten, Eelco; Kneer, Bernhard; Kuerz, Peter; Kaiser, Winfried; Heil, Tilmann; Migura, Sascha; Neumann, Jens Timo

    2017-10-01

    While EUV systems equipped with a 0.33 Numerical Aperture lenses are readying to start volume manufacturing, ASML and Zeiss are ramping up their activities on a EUV exposure tool with Numerical Aperture of 0.55. The purpose of this scanner, targeting an ultimate resolution of 8nm, is to extend Moore's law throughout the next decade. A novel, anamorphic lens design, capable of providing the required Numerical Aperture has been investigated; This lens will be paired with new, faster stages and more accurate sensors enabling Moore's law economical requirements, as well as the tight focus and overlay control needed for future process nodes. The tighter focus and overlay control budgets, as well as the anamorphic optics, will drive innovations in the imaging and OPC modelling. Furthermore, advances in resist and mask technology will be required to image lithography features with less than 10nm resolution. This paper presents an overview of the target specifications, key technology innovations and imaging simulations demonstrating the advantages as compared to 0.33NA and showing the capabilities of the next generation EUV systems.

  13. In-Space Manufacturing: Pioneering a Sustainable Path to Mars

    NASA Technical Reports Server (NTRS)

    Werkheiser, Niki

    2015-01-01

    In order to provide meaningful impacts to exploration technology needs, the In-Space Manufacturing (ISM) Initiative must influence exploration systems design now. In-space manufacturing offers: dramatic paradigm shift in the development and creation of space architectures; efficiency gain and risk reduction for low Earth orbit and deep space exploration; and "pioneering" approach to maintenance, repair, and logistics leading to sustainable, affordable supply chain model. In order to develop application-based capabilities in time to support NASA budget and schedule, ISM must be able to leverage the significant commercial developments, which requires innovative, agile collaborative mechanisms (contracts, challenges, SBIR's, etc.); and NASA-unique investments to focus primarily on adapting the technologies and processes to the microgravity environment. We must do the foundational work - it is the critical path for taking these technologies from lab curiosities to institutionalized capabilities: characterize, certify, institutionalize, design for Additive Manufacturing (AM). Ideally, International Space Station (ISS) U.S. lab rack or partial rack space should be identified for in-space manufacturing utilization in order to continue technology development of a suite of capabilities required for exploration missions, as well as commercialization on ISS.

  14. KSC-2013-2867

    NASA Image and Video Library

    2013-06-21

    CAPE CANAVERAL, Fla. -- At the Kennedy Space Center in Florida, students from University of Colorado are working with NASA mentors in developing a robotic capability for growing a variety of plants, both for consumption as well as the benefit of oxygen-carbon dioxide cycling. Considerations range from monitoring and nutrient supply to selection of plants and autonomy. The activity is part of the eXploration Habitat, or X-Hab, Academic Innovation Challenge. Standing, left to right, are Gioia Massa of the NASA ISS Ground Processing and Research Project Office, Daniel Zukowski, Morgan Simpson of the NASA Ground Processing Directorate, Heather Hava, Keira Havens, Matthew Carton, Christine Fanchiang, Jordan Holquist and Kennedy Director Bob Cabana. Kneeling, left to right, are Ray Wheeler of the NASA Engineering and Technology Directorate, Tracy Gill of the NASA Center Planning and Development Directorate, Scott Mishra and Robert Griffin Hale. Hab Academic Innovation Challenge is a university-level activity designed to engage and retain students in Science, Technology, Engineering and Math, or STEM, disciplines. NASA will directly benefit from the effort by sponsoring the development of innovative habitat concepts from universities which may result in innovative ideas and solutions that could be applied to exploration habitats. For more: http://www.nasa.gov/exploration/technology/deep_space_habitat/xhab/ Photo credit: NASA/Jim Grossmann

  15. Partnership Opportunities with AFRC for Wireless Systems Flight Testing

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview the flight test capabilities at NASA Armstrong Flight Research Center (AFRC), to open up partnership collaboration opportunities for Wireless Community to conduct flight testing of aerospace wireless technologies. Also, it will brief the current activities on wireless sensor system at AFRC through SBIR (Small Business Innovation Research) proposals, and it will show the current areas of interest on wireless technologies that AFRC would like collaborate with Wireless Community to further and testing.

  16. Johnson Space Center Research and Technology Report

    NASA Technical Reports Server (NTRS)

    Pido, Kelle; Davis, Henry L. (Technical Monitor)

    1999-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA's development of human spacecraft, human support systems, and human spacecraft operations. To implement this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space--technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described.

  17. Photonic elements in smart systems for use in aerospace platforms

    NASA Astrophysics Data System (ADS)

    Adamovsky, Grigory; Baumbick, Robert J.; Tabib-Azar, Massood

    1998-07-01

    To compete globally in the next millennium, designers of new transportation vehicles will have to be innovative. Keen competition will reward innovative concepts that are developed and proven first. In order to improve reliability of aerospace platforms and reduce operating cots, new technologies must be exploited to produce autonomous systems, based on highly distributed, smart systems, which can be treated as line replaceable units. These technologies include photonics, which provide sensing and information transfer functions, and micro electro mechanical systems that will produce the actuation and, in some cases, may even provide a computing capability that resembles the hydro- mechanical control system used in older aircraft systems. The combination of these technologies will provide unique systems that will enable achieving the reliability and cost goals dictated by global market. In the article we review some of these issues and discuss a role of photonics in smart system for aerospace platforms.

  18. A compact eyetracked optical see-through head-mounted display

    NASA Astrophysics Data System (ADS)

    Hua, Hong; Gao, Chunyu

    2012-03-01

    An eye-tracked head-mounted display (ET-HMD) system is able to display virtual images as a classical HMD does, while additionally tracking the gaze direction of the user. There is ample evidence that a fully-integrated ETHMD system offers multi-fold benefits, not only to fundamental scientific research but also to emerging applications of such technology. For instance eyetracking capability in HMDs adds a very valuable tool and objective metric for scientists to quantitatively assess user interaction with 3D environments and investigate the effectiveness of various 3D visualization technologies for various specific tasks including training, education, and augmented cognition tasks. In this paper, we present an innovative optical approach to the design of an optical see-through ET-HMD system based on freeform optical technology and an innovative optical scheme that uniquely combines the display optics with the eye imaging optics. A preliminary design of the described ET-HMD system will be presented.

  19. Aeronautics Research Mission Directorate Integrated Systems Research Program (ISRP) and UAS Integration in the NAS Project

    NASA Technical Reports Server (NTRS)

    Wolfe, Jean

    2010-01-01

    Program Goal: Conduct research at an integrated system-level on promising concepts and technologies and explore, assess, or demonstrate the benefits in a relevant environment.Criteria for selection of projects for Integrated Systems Research: a) Technology has attained enough maturity in the foundational research program that they merit more in-depth evaluation at an integrated system level in a relevant environment. b) Technologies which systems analysis indicates have the most potential for contributing to the simultaneous attainment of goals. c) Technologies identified through stakeholder input as having potential for simultaneous attainment of goals. d) Research not being done by other government agencies and appropriate for NASA to conduct. e) Budget augmentation. Environmentally Responsible Aviation (ERA) Project Explore and assess new vehicle concepts and enabling technologies through system-level experimentation to simultaneously reduce fuel burn, noise, and emissions Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project Contribute capabilities that reduce technical barriers related to the safety and operational challenges associated with enabling routine UAS access to the NAS Innovative Concepts for Green Aviation (ICGA) Project Spur innovation by offering research opportunities to the broader aeronautics community through peer-reviewed proposals, with a focus on making aviation more eco-friendly. Establish incentive prizes similar to the Centennial Challenges and sponsor innovation demonstrations of selected technologies that show promise of reducing aviation s impact on the environment

  20. Space information technologies: future agenda

    NASA Astrophysics Data System (ADS)

    Flournoy, Don M.

    2005-11-01

    Satellites will operate more like wide area broadband computer networks in the 21st Century. Space-based information and communication technologies will therefore be a lot more accessible and functional for the individual user. These developments are the result of earth-based telecommunication and computing innovations being extended to space. The author predicts that the broadband Internet will eventually be available on demand to users of terrestrial networks wherever they are. Earth and space communication assets will be managed as a single network. Space networks will assure that online access is ubiquitous. No matter whether users are located in cities or in remote locations, they will always be within reach of a node on the Internet. Even today, scalable bandwidth can be delivered to active users when moving around in vehicles on the ground, or aboard ships at sea or in the air. Discussion of the innovative technologies produced by NASA's Advanced Communications Technology Satellite (1993-2004) demonstrates future capabilities of satellites that make them uniquely suited to serve as nodes on the broadband Internet.

  1. Navigating tissue chips from development to dissemination: A pharmaceutical industry perspective

    PubMed Central

    Fabre, Kristin; Chakilam, Ananthsrinivas; Dragan, Yvonne; Duignan, David B; Eswaraka, Jeetu; Gan, Jinping; Guzzie-Peck, Peggy; Otieno, Monicah; Jeong, Claire G; Keller, Douglas A; de Morais, Sonia M; Phillips, Jonathan A; Proctor, William; Sura, Radhakrishna; Van Vleet, Terry; Watson, David; Will, Yvonne; Tagle, Danilo; Berridge, Brian

    2017-01-01

    Tissue chips are poised to deliver a paradigm shift in drug discovery. By emulating human physiology, these chips have the potential to increase the predictive power of preclinical modeling, which in turn will move the pharmaceutical industry closer to its aspiration of clinically relevant and ultimately animal-free drug discovery. Despite the tremendous science and innovation invested in these tissue chips, significant challenges remain to be addressed to enable their routine adoption into the industrial laboratory. This article describes the main steps that need to be taken and highlights key considerations in order to transform tissue chip technology from the hands of the innovators into those of the industrial scientists. Written by scientists from 13 pharmaceutical companies and partners at the National Institutes of Health, this article uniquely captures a consensus view on the progression strategy to facilitate and accelerate the adoption of this valuable technology. It concludes that success will be delivered by a partnership approach as well as a deep understanding of the context within which these chips will actually be used. Impact statement The rapid pace of scientific innovation in the tissue chip (TC) field requires a cohesive partnership between innovators and end users. Near term uptake of these human-relevant platforms will fill gaps in current capabilities for assessing important properties of disposition, efficacy and safety liabilities. Similarly, these platforms could support mechanistic studies which aim to resolve challenges later in development (e.g. assessing the human relevance of a liability identified in animal studies). Building confidence that novel capabilities of TCs can address real world challenges while they themselves are being developed will accelerate their application in the discovery and development of innovative medicines. This article outlines a strategic roadmap to unite innovators and end users thus making implementation smooth and rapid. With the collective contributions from multiple international pharmaceutical companies and partners at National Institutes of Health, this article should serve as an invaluable resource to the multi-disciplinary field of TC development. PMID:28622731

  2. Navigating tissue chips from development to dissemination: A pharmaceutical industry perspective.

    PubMed

    Ewart, Lorna; Fabre, Kristin; Chakilam, Ananthsrinivas; Dragan, Yvonne; Duignan, David B; Eswaraka, Jeetu; Gan, Jinping; Guzzie-Peck, Peggy; Otieno, Monicah; Jeong, Claire G; Keller, Douglas A; de Morais, Sonia M; Phillips, Jonathan A; Proctor, William; Sura, Radhakrishna; Van Vleet, Terry; Watson, David; Will, Yvonne; Tagle, Danilo; Berridge, Brian

    2017-10-01

    Tissue chips are poised to deliver a paradigm shift in drug discovery. By emulating human physiology, these chips have the potential to increase the predictive power of preclinical modeling, which in turn will move the pharmaceutical industry closer to its aspiration of clinically relevant and ultimately animal-free drug discovery. Despite the tremendous science and innovation invested in these tissue chips, significant challenges remain to be addressed to enable their routine adoption into the industrial laboratory. This article describes the main steps that need to be taken and highlights key considerations in order to transform tissue chip technology from the hands of the innovators into those of the industrial scientists. Written by scientists from 13 pharmaceutical companies and partners at the National Institutes of Health, this article uniquely captures a consensus view on the progression strategy to facilitate and accelerate the adoption of this valuable technology. It concludes that success will be delivered by a partnership approach as well as a deep understanding of the context within which these chips will actually be used. Impact statement The rapid pace of scientific innovation in the tissue chip (TC) field requires a cohesive partnership between innovators and end users. Near term uptake of these human-relevant platforms will fill gaps in current capabilities for assessing important properties of disposition, efficacy and safety liabilities. Similarly, these platforms could support mechanistic studies which aim to resolve challenges later in development (e.g. assessing the human relevance of a liability identified in animal studies). Building confidence that novel capabilities of TCs can address real world challenges while they themselves are being developed will accelerate their application in the discovery and development of innovative medicines. This article outlines a strategic roadmap to unite innovators and end users thus making implementation smooth and rapid. With the collective contributions from multiple international pharmaceutical companies and partners at National Institutes of Health, this article should serve as an invaluable resource to the multi-disciplinary field of TC development.

  3. Public-Private Partnerships: NASA as Your Business Partner

    NASA Technical Reports Server (NTRS)

    Martin, Gary

    2017-01-01

    Partnerships is an important part of doing business at NASA. NASA partners with external organizations to access capabilities under collaborative agreements; enters into agreements for partner access to NASA capabilities; expand overall landscape of space activity; and spurring innovation. The U.S. national policy on commercial space is to develop a robust and competitive U.S. commercial space sector and to energize competitive domestic industries to participate in global markets. Commercial space must be competitive, while the government has other priorities such as safety, jobs, etc. NASA partnerships consist of Reimbursable and Non-Reimbursable Space Act Agreements. Partnerships at Ames aligns with Ames' core competencies, and Partners often office in the NASA Research Park, which is an established regional innovation cluster that facilitates commercialization and services as a technology accelerator via onsite collaborations between NASA and its partners.

  4. Strategies and Innovative Approaches for the Future of Space Weather Forecasting

    NASA Astrophysics Data System (ADS)

    Hoeksema, J. T.

    2012-12-01

    The real and potential impacts of space weather have been well documented, yet neither the required research and operations programs, nor the data, modeling and analysis infrastructure necessary to develop and sustain a reliable space weather forecasting capability for a society are in place. The recently published decadal survey "Solar and Space Physics: A Science for a Technological Society" presents a vision for the coming decade and calls for a renewed national commitment to a comprehensive program in space weather and climatology. New resources are imperative. Particularly in the current fiscal environment, implementing a responsible strategy to address these needs will require broad participation across agencies and innovative approaches to make the most of existing resources, capitalize on current knowledge, span gaps in capabilities and observations, and focus resources on overcoming immediate roadblocks.

  5. The BRAIN Initiative: developing technology to catalyse neuroscience discovery.

    PubMed

    Jorgenson, Lyric A; Newsome, William T; Anderson, David J; Bargmann, Cornelia I; Brown, Emery N; Deisseroth, Karl; Donoghue, John P; Hudson, Kathy L; Ling, Geoffrey S F; MacLeish, Peter R; Marder, Eve; Normann, Richard A; Sanes, Joshua R; Schnitzer, Mark J; Sejnowski, Terrence J; Tank, David W; Tsien, Roger Y; Ugurbil, Kamil; Wingfield, John C

    2015-05-19

    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions.

  6. The BRAIN Initiative: developing technology to catalyse neuroscience discovery

    PubMed Central

    Jorgenson, Lyric A.; Newsome, William T.; Anderson, David J.; Bargmann, Cornelia I.; Brown, Emery N.; Deisseroth, Karl; Donoghue, John P.; Hudson, Kathy L.; Ling, Geoffrey S. F.; MacLeish, Peter R.; Marder, Eve; Normann, Richard A.; Sanes, Joshua R.; Schnitzer, Mark J.; Sejnowski, Terrence J.; Tank, David W.; Tsien, Roger Y.; Ugurbil, Kamil; Wingfield, John C.

    2015-01-01

    The evolution of the field of neuroscience has been propelled by the advent of novel technological capabilities, and the pace at which these capabilities are being developed has accelerated dramatically in the past decade. Capitalizing on this momentum, the United States launched the Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative to develop and apply new tools and technologies for revolutionizing our understanding of the brain. In this article, we review the scientific vision for this initiative set forth by the National Institutes of Health and discuss its implications for the future of neuroscience research. Particular emphasis is given to its potential impact on the mapping and study of neural circuits, and how this knowledge will transform our understanding of the complexity of the human brain and its diverse array of behaviours, perceptions, thoughts and emotions. PMID:25823863

  7. Organizational Learning, Strategic Flexibility and Business Model Innovation: An Empirical Research Based on Logistics Enterprises

    NASA Astrophysics Data System (ADS)

    Bao, Yaodong; Cheng, Lin; Zhang, Jian

    Using the data of 237 Jiangsu logistics firms, this paper empirically studies the relationship among organizational learning capability, business model innovation, strategic flexibility. The results show as follows; organizational learning capability has positive impacts on business model innovation performance; strategic flexibility plays mediating roles on the relationship between organizational learning capability and business model innovation; interaction among strategic flexibility, explorative learning and exploitative learning play significant roles in radical business model innovation and incremental business model innovation.

  8. NREL Spectrum of Clean Energy Innovation (Brochure)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2011-09-01

    This brochure describes the NREL Spectrum of Clean Energy Innovation, which includes analysis and decision support, fundamental science, market relevant research, systems integration, testing and validation, commercialization and deployment. Through deep technical expertise and an unmatched breadth of capabilities, the National Renewable Energy Laboratory (NREL) leads an integrated approach across the spectrum of renewable energy innovation. From scientific discovery to accelerating market deployment, NREL works in partnership with private industry to drive the transformation of our nation's energy systems. NREL integrates the entire spectrum of innovation, including fundamental science, market relevant research, systems integration, testing and validation, commercialization, and deployment.more » Our world-class analysis and decision support informs every point on the spectrum. The innovation process at NREL is inter-dependent and iterative. Many scientific breakthroughs begin in our own laboratories, but new ideas and technologies may come to NREL at any point along the innovation spectrum to be validated and refined for commercial use.« less

  9. NASA Centers and Universities Collaborate Through Smallsat Technology Partnerships

    NASA Technical Reports Server (NTRS)

    Cockrell, James

    2018-01-01

    The Small Spacecraft Technology (SST) Program within the NASA Space Technology Mission Directorate is chartered develop and demonstrate the capabilities that enable small spacecraft to achieve science and exploration missions in "unique" and "more affordable" ways. Specifically, the SST program seeks to enable new mission architectures through the use of small spacecraft, to expand the reach of small spacecraft to new destinations, and to make possible the augmentation existing assets and future missions with supporting small spacecraft. The SST program sponsors smallsat technology development partnerships between universities and NASA Centers in order to engage the unique talents and fresh perspectives of the university community and to share NASA experience and expertise in relevant university projects to develop new technologies and capabilities for small spacecraft. These partnerships also engage NASA personnel in the rapid, agile and cost-conscious small spacecraft approaches that have evolved in the university community, as well as increase support to university efforts and foster a new generation of innovators for NASA and the nation.

  10. Innovative designs for the smart ICU: Part 3: Advanced ICU informatics.

    PubMed

    Halpern, Neil A

    2014-04-01

    This third and final installment of this series on innovative designs for the smart ICU addresses the steps involved in conceptualizing, actualizing, using, and maintaining the advanced ICU informatics infrastructure and systems. The smart ICU comprehensively and electronically integrates the patient in the ICU with all aspects of care, displays data in a variety of formats, converts data to actionable information, uses data proactively to enhance patient safety, and monitors the ICU environment to facilitate patient care and ICU management. The keys to success in this complex informatics design process include an understanding of advanced informatics concepts, sophisticated planning, installation of a robust infrastructure capable of both connectivity and interoperability, and implementation of middleware solutions that provide value. Although new technologies commonly appear compelling, they are also complicated and challenging to incorporate within existing or evolving hospital informatics systems. Therefore, careful analysis, deliberate testing, and a phased approach to the implementation of innovative technologies are necessary to achieve the multilevel solutions of the smart ICU.

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    A team KuuKulgur Robot from Estonia is seen on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Sam Ortega, NASA program manager of Centennial Challenges, watches as robots attempt the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot retrieves a sample during a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The University of California Santa Cruz Rover Team prepares their rover for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sample Return Robot Challenge staff members confer before the team Survey robots makes it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Worcester Polytechnic Institute (WPI) President Laurie Leshin, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The team AERO robot drives off the starting platform during the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Team Cephal's robot is seen on the starting platform during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    David Miller, NASA Chief Technologist, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Oregon State University Mars Rover Team's robot is seen during level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    Jerry Waechter of team Middleman from Dunedin, Florida, works on their robot named Ro-Bear during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Middleman is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    A robot from the Intrepid Systems team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    A team KuuKulgur robot is seen as it begins the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The team Mountaineers robot is seen as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Members of the Oregon State University Mars Rover Team prepare their robot to attempt the level one competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Stellar Automation Systems team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  7. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  8. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    All four of team KuuKulgur's robots are seen as they attempt the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  9. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Spectators watch as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  10. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team Middleman's robot, Ro-Bear, is seen as it starts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The team Mountaineers robot is seen after picking up the sample during a rerun of the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Two of team KuuKulgur's robots are seen as they attempt a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    A robot from the University of Waterloo Robotics Team is seen during the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Members of team Survey follow their robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The entrance to Institute Park is seen during the level one challenge as during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Sam Ortega, NASA Centennial Challenges Program Manager, speaks at a breakfast opening the TouchTomorrow Festival, held in conjunction with the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    James Leopore, of team Fetch, from Alexandria, Virginia, speaks with judges as he prepares for the NASA 2014 Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Fetch is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    A team KuuKulgur robot approaches the sample as it attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team survey robot is seen on the starting platform before begging it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Mountaineers team from West Virginia University, watches as their robot attempts the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    The team Survey robot is seen as it conducts a demonstration of the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Team Survey's robot is seen as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. Towards a SIM-Less Existence: The Evolution of Smart Learning Networks

    ERIC Educational Resources Information Center

    Al-Khouri, Ali M.

    2015-01-01

    This article proposes that the widespread availability of wireless networks creates a case in which there is no real need for SIM cards. Recent technological developments offer the capability to outperform SIM cards and provide more innovative dimensions to current systems of mobility. In this context of changing realities in the domain of…

  4. Visible Learning, Visible Learners: The Power of the Group in a Kindergarten Classroom

    ERIC Educational Resources Information Center

    Mardell, Ben; Rivard, Melissa; Krechevsky, Mara

    2012-01-01

    The ability to address complex technological, ecological, social, and ethical challenges in the 21st century depends on developing a citizenry capable of innovation and higher-order thinking. Early childhood educators have the opportunity to help children acquire these abilities right from the start. Central to this endeavor is a more reciprocal…

  5. Space Telerobotics and Rover Research at JPL

    NASA Technical Reports Server (NTRS)

    Weisbin, C.; Hayati, S.; Rodriguez, G.

    1995-01-01

    The goal of our program is to develop, integrate and demonstrate the science and technology of remote telerobotics leading to increases in operational capability, safety, cost effectiveness and probability of success of NASA missions. To that end, the program fosters the development of innovative system concepts for on-orbit servicing and planetary surface missions which use telerobotic systems as an important central component. These concepts are carried forward into develoments which are used to evaluate and demonstrate technology in realistic flight and ground experiments.

  6. Potential and Innovations in Rooftop Photovoltaics

    NASA Astrophysics Data System (ADS)

    Bierman, Ben

    2011-11-01

    Photovoltaic technology has reached a point where its cost and capability make it one of a handful of carbon-free sources of electrical energy that could meet a meaningful fraction of US energy demand. In this paper we will first compare Photovoltaics with several other carbon free energy technologies, then look at the economics of Solyndra's rooftop photovoltaic solution as an example of the current state of the art, as well as the market dynamics that have resulted in dramatically faster adoption in Germany vs. the United States.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    SLAC,

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  8. Concept Design of Cryogenic Propellant Storage and Transfer for Space Exploration

    NASA Technical Reports Server (NTRS)

    Free, James M.; Motil, Susan M.; Kortes, Trudy F.; Meyer, Michael L.; taylor, William J.

    2012-01-01

    NASA is in the planning and investigation process of developing innovative paths for human space exploration that strengthen the capability to extend human and robotic presence beyond low Earth orbit and throughout the solar system. NASA is establishing the foundations to enable humans to safely reach multiple potential destinations, including the Moon, asteroids, Lagrange points, and Mars and its environs through technology and capability development. To achieve access to these destinations within a reasonable flight time will require the use of high performance cryogenic propulsion systems. Therefore NASA is examining mission concepts for a Cryogenic Propellant Storage and Transfer (CPST) Flight Demonstration which will test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots. The CPST project will perform key ground testing in fiscal year 2012 and execute project formulation and implementation leading to a flight demonstration in 2017.

  9. TAPCells, the Chilean dendritic cell vaccine against melanoma and prostate cancer.

    PubMed

    Salazar-Onfray, Flavio; Pereda, Cristián; Reyes, Diego; López, Mercedes N

    2013-01-01

    Here we summarize 10 years of effort in the development of a biomedical innovation with global projections. This innovation consists of a novel method for the production of therapeutic dendritic-like cells called Tumor Antigen Presenting Cells (TAPCells®). TAPCells-based immunotherapy was tested in more than 120 stage III and IV melanoma patients and 20 castration-resistant prostate cancer patients in a series of phase I and I/II clinical trials. TAPCells vaccines induced T cell-mediated memory immune responses that correlated with increased survival in melanoma patients and prolonged prostate-specific antigen doubling time in prostate cancer patients. Importantly, more than 60% of tested patients showed a Delayed Type Hypersensitivity (DTH) reaction against the lysates, indicating the development of anti-tumor immunological memory that correlates with clinical benefits. The in vitro analysis of the lysate mix showed that it contains damage-associated molecular patterns such as HMBG-1 protein which are capable to improve, through Toll-like receptor-4, maturation and antigen cross-presentation of the dendritic cells (DC). In fact, a Toll-like receptor-4 polymorphism correlates with patient clinical outcomes. Moreover, Concholepas concholepas hemocyanin (CCH) used as adjuvant proved to be safe and capable of enhancing the immunological response. Furthermore, we observed that DC vaccination resulted in a three-fold increase of T helper-1 lymphocytes releasing IFN-γ and a two-fold increase of T helper-17 lymphocytes capable of producing IL-17 in DTH+ with respect to DTH- patients. Important steps have been accomplished for TAPCells technology transfer, including patenting, packaging and technology assessment. Altogether, our results indicate that TAPCells vaccines constitute an exceptional Chilean national innovation of international value.

  10. Youth Participatory Action Research (YPAR) 2.0: how technological innovation and digital organizing sparked a food revolution in East Oakland

    PubMed Central

    Akom, Antwi; Shah, Aekta; Nakai, Aaron; Cruz, Tessa

    2017-01-01

    This article argues that technological innovation is transforming the flow of information, the fluidity of social action, and is giving birth to new forms of bottom up innovation that are capable of expanding and exploding old theories of reproduction and resistance because ‘smart mobs’, ‘street knowledge’, and ‘social movements’ cannot be neutralized by powerful structural forces in the same old ways. The purpose of this article is to develop the concept of YPAR 2.0 in which new technologies enable young people to visualize, validate, and transform social inequalities by using local knowledge in innovative ways that deepen civic engagement, democratize data, expand educational opportunity, inform policy, and mobilize community assets. Specifically this article documents how digital technology (including a mobile, mapping and SMS platform called Streetwyze and paper-mapping tool Local Ground) – coupled with ‘ground-truthing’ – an approach in which community members work with researchers to collect and verify ‘public’ data – sparked a food revolution in East Oakland that led to an increase in young people’s self-esteem, environmental stewardship, academic engagement, and positioned urban youth to become community leaders and community builders who are connected and committed to health and well-being of their neighborhoods. This article provides an overview of how the YPAR 2.0 Model was developed along with recommendations and implications for future research and collaborations between youth, teachers, neighborhood leaders, and youth serving organizations. PMID:28835731

  11. Youth Participatory Action Research (YPAR) 2.0: how technological innovation and digital organizing sparked a food revolution in East Oakland.

    PubMed

    Akom, Antwi; Shah, Aekta; Nakai, Aaron; Cruz, Tessa

    2016-01-01

    This article argues that technological innovation is transforming the flow of information, the fluidity of social action, and is giving birth to new forms of bottom up innovation that are capable of expanding and exploding old theories of reproduction and resistance because 'smart mobs', 'street knowledge', and 'social movements' cannot be neutralized by powerful structural forces in the same old ways. The purpose of this article is to develop the concept of YPAR 2.0 in which new technologies enable young people to visualize, validate, and transform social inequalities by using local knowledge in innovative ways that deepen civic engagement, democratize data, expand educational opportunity, inform policy, and mobilize community assets. Specifically this article documents how digital technology (including a mobile, mapping and SMS platform called Streetwyze and paper-mapping tool Local Ground) - coupled with 'ground-truthing' - an approach in which community members work with researchers to collect and verify 'public' data - sparked a food revolution in East Oakland that led to an increase in young people's self-esteem, environmental stewardship, academic engagement, and positioned urban youth to become community leaders and community builders who are connected and committed to health and well-being of their neighborhoods. This article provides an overview of how the YPAR 2.0 Model was developed along with recommendations and implications for future research and collaborations between youth, teachers, neighborhood leaders, and youth serving organizations.

  12. Design and operations technologies - Integrating the pieces. [for future space systems design

    NASA Technical Reports Server (NTRS)

    Eldred, C. H.

    1979-01-01

    As major elements of life-cycle costs (LCC) having critical impacts on the initiation and utilization of future space programs, the areas of vehicle design and operations are reviewed in order to identify technology requirements. Common to both areas is the requirement for efficient integration of broad, complex systems. Operations technologies focus on the extension of space-based capabilities and cost reduction through the combination of innovative design, low-maintenance hardware, and increased manpower productivity. Design technologies focus on computer-aided techniques which increase productivity while maintaining a high degree of flexibility which enhances creativity and permits graceful design changes.

  13. Innovative telecommunications for law enforcement

    NASA Technical Reports Server (NTRS)

    Sohn, R. L.

    1976-01-01

    The operation of computer-aided dispatch, mobile digital communications, and automatic vehicle location systems used in law enforcement is discussed, and characteristics of systems used by different agencies are compared. With reference to computer-aided dispatch systems, the data base components, dispatcher work load, extent of usage, and design trends are surveyed. The capabilities, levels of communication, and traffic load of mobile digital communications systems are examined. Different automatic vehicle location systems are distinguished, and two systems are evaluated. Other aspects of the application of innovative technology to operational command, control, and communications systems for law enforcement agencies are described.

  14. Sustainable Rural Telehealth Innovation: A Public Health Case Study

    PubMed Central

    Singh, Rajendra; Mathiassen, Lars; Stachura, Max E; Astapova, Elena V

    2010-01-01

    Objective To examine adoption of telehealth in a rural public health district and to explain how the innovation became sustainable. Study Setting Longitudinal, qualitative study (1988–2008) of the largest public health district in Georgia. Study Design Case study design provided deep insights into the innovation's social dynamics. Punctuated equilibrium theory helped present and make sense of the process. We identified antecedent conditions and outcomes, and we distinguished between episodes and encounters based on the disruptive effects of events. Data Collection Twenty-five semistructured interviews with 19 decision makers and professionals, direct observations, published papers, grant proposals, technical specifications, and other written materials. Principal Findings Strong collaboration within the district, with local community, and with external partners energized the process. Well-functioning outreach clinics made telehealth desirable. Local champions cultivated participation and generative capability, and overcame barriers through opportunistic exploitation of technological and financial options. Telehealth usage fluctuated between medical and administrative operations in response to internal needs and contextual dynamics. External agencies provided initial funding and supported later expansion. Conclusions Extensive internal and external collaboration, and a combination of technology push and opportunistic exploitation, can enable sustainable rural telehealth innovation. PMID:20459449

  15. Fuzzy AHP Analysis on Enterprises’ Independent Innovation Capability Evaluation

    NASA Astrophysics Data System (ADS)

    Zhu, Yu; Lei, Huai-ying

    Independent innovation has become a key factor in the rapid and healthy development of the enterprises. Therefore, an effective and reasonable comprehensive evaluation on the independent innovation capability of the businesses is especially important. This paper applies fuzzy AHP in the evaluation of the independent innovation capability of the businesses, and validates the rationality and feasibility of the evaluation methods and the indicators.

  16. Advanced teleoperation: Technology innovations and applications

    NASA Technical Reports Server (NTRS)

    Schenker, Paul S.; Bejczy, Antal K.; Kim, Won S.

    1994-01-01

    The capability to remotely, robotically perform space assembly, inspection, servicing, and science functions would rapidly expand our presence in space, and the cost efficiency of being there. There is considerable interest in developing 'telerobotic' technologies, which also have comparably important terrestrial applications to health care, underwater salvage, nuclear waste remediation and other. Such tasks, both space and terrestrial, require both a robot and operator interface that is highly flexible and adaptive, i.e., capable of efficiently working in changing and often casually structured environments. One systems approach to this requirement is to augment traditional teleoperation with computer assists -- advanced teleoperation. We have spent a number of years pursuing this approach, and highlight some key technology developments and their potential commercial impact. This paper is an illustrative summary rather than self-contained presentation; for completeness, we include representative technical references to our work which will allow the reader to follow up items of particular interest.

  17. Antecedents of CIOs' Innovation Capability in Hospitals: Results of an Empirical Study.

    PubMed

    Liebe, Jan-David; Esdar, Moritz; Thye, Johannes; Hübner, Ursula

    2017-01-01

    CIOs' innovation capability is regarded as a precondition of successful HIT adoption in hospitals. Based on the data of 142 CIOs, this study aimed at identifying antecedents of perceived innovation capability. Eight features describing the status quo of the hospital IT management (e.g. use of IT governance frameworks), four features of the hospital structure (e.g. functional diversification) and four CIO characteristics (e.g. duration of employment) were tested as potential antecedents in an exploratory stepwise regression approach. Perceived innovation capability in its entirety and its three sub-dimensions served as criterion. The results show that CIOs' perceived innovation capability could be explained significantly (R2=0.34) and exclusively by facts that described the degree of formalism and structure of IT management in a hospital, e.g. intensive and formalised strategic communication, the existence of an IT strategy and the use of IT governance frameworks. Breaking down innovation capability into its constituents revealed that "innovative organisational culture" contributed to a large extent (R2=0.26) to the overall result sharing several predictors. In contrast, "intrapreneurial personality" (R2=0.11) and "openness towards users" (R2=0.18) could be predicted less well. These results hint at the relationship between working in a well-structured, formalised and strategy oriented environment and the overall feeling of being capable to promote IT innovation.

  18. Introduction of symbiotic human-robot-cooperation in the steel sector: an example of social innovation

    NASA Astrophysics Data System (ADS)

    Colla, Valentina; Schroeder, Antonius; Buzzelli, Andrea; Abbà, Dario; Faes, Andrea; Romaniello, Lea

    2018-05-01

    The introduction of new technologies, which can support and empower human capabilities in a number of professional tasks while possibly reducing the need for cumbersome operations and the exposure to risk and professional diseases, is nowadays perceived as a must in any industrial field, process industry included. However, despite their relevant potentials, new technologies are not always easy to introduce in the professional environment. A design procedure which takes into account the workers' acceptance, needing and capabilities as well as a continuing education and training process of the personnel who must exploit the innovation, is as fundamental as the technical reliability for the successful introduction of any new technology in a professional environment. An exemplary case is provided by symbiotic human-robot-cooperation. In the steel sector, the difficulties for the implementation of symbiotic human-robot-cooperation is bigger with respect to the manufacturing sector, due to the environmental conditions, which in some cases are not favorable to robots. On the other hand, the opportunities and potential advantages are also greater, as robots could replace human operators in repetitive, heavy tasks, by improving workers' health and safety. The present paper provides an example of the potential and opportunities of human-robot interaction and discusses how this approach can be included in a social innovation paradigm. Moreover, an example will be provided of an ongoing project funded by the Research Fund for Coal and Steel, "ROBOHARSH", which aims at implementing such approach in the steel industry, in order to develop a very sensitive task, i.e. the replacement of the refractory components of the ladle sliding gate.

  19. A 21st Century Science, Technology, and Innovation Strategy for Americas National Security

    DTIC Science & Technology

    2016-05-01

    areas. Advanced Computing and Communications The exponential growth of the digital economy, driven by ubiquitous computing and communication...weapons- focused R&D, many of the capabilities being developed have significant dual-use potential. Digital connectivity, for instance, brings...scale than traditional recombinant DNA techniques, and to share these designs digitally . Nanotechnology promises the ability to engineer entirely

  20. Overcoming Barriers for eLearning in Universities--Portfolio Models for eCompetence Development of Faculty

    ERIC Educational Resources Information Center

    Schneckenberg, Dirk

    2010-01-01

    This paper explores the role that eCompetence of faculty members play in the integration of eLearning in higher education. Learning technologies have the potential to enhance educational innovation, but the eLearning adoption rate of faculty in universities is so far disappointing. The motivation and capability of faculty to use information and…

  1. Developing of a Collaborative Learning Environment through Technology Enhanced Education (TE3) Support

    ERIC Educational Resources Information Center

    Harris, Robert J.

    2008-01-01

    Purpose: The purpose of this paper is to report on the development of a knowledge transfer project, part funded through TE3, designed to encourage innovation and improve the capability of SMEs in the West Midlands region of the UK. Knowledge is critical to developing competency within small businesses and managers that understand how their…

  2. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitzman, D.O.; Stepp, A.K.; Dennis, D.M.

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  3. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitzman, D.O.; stepp, A.K.; Dennis, D.M.

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents.

  4. Personalised and Self Regulated Learning in the Web 2.0 Era: International Exemplars of Innovative Pedagogy Using Social Software

    ERIC Educational Resources Information Center

    McLoughlin, Catherine; Lee, Mark J. W.

    2010-01-01

    Research findings in recent years provide compelling evidence of the importance of encouraging student control over the learning process as a whole. The socially based tools and technologies of the Web 2.0 movement are capable of supporting informal conversation, reflexive dialogue and collaborative content generation, enabling access to a wide…

  5. Radiotherapy using a laser proton accelerator

    NASA Astrophysics Data System (ADS)

    Murakami, Masao; Hishikawa, Yoshio; Miyajima, Satoshi; Okazaki, Yoshiko; Sutherland, Kenneth L.; Abe, Mitsuyuki; Bulanov, Sergei V.; Daido, Hiroyuki; Esirkepov, Timur Zh.; Koga, James; Yamagiwa, Mitsuru; Tajima, Toshiki

    2008-06-01

    Laser acceleration promises innovation in particle beam therapy of cancer where an ultra-compact accelerator system for cancer beam therapy can become affordable to a broad range of patients. This is not feasible without the introduction of a technology that is radically different from the conventional accelerator-based approach. Because of its compactness and other novel characteristics, the laser acceleration method provides many enhanced capabilities

  6. Electronic switches and control circuits: A compilation

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The innovations in this updated series of compilations dealing with electronic technology represents a carefully selected collection of items on electronic switches and control circuits. Most of the items are based on well-known circuit design concepts that have been simplified or refined to meet NASA's demanding requirement for reliability, simplicity, fail-safe characteristics, and the capability of withstanding environmental extremes.

  7. 2011-2012 Dryden Center Innovation Fund End of the Year Report: Altitude-Compensating Rocket Nozzles

    NASA Technical Reports Server (NTRS)

    Jones, Daniel S.; Bui, Trong T.

    2012-01-01

    This report highlights one of the many successful projects at the NASA Dryden Flight Research Center that was approved for FY12 funding under the Center Innovation Fund. This project was focused on advancing the technology readiness level of one specific type of altitude-compensating nozzle: the dual-bell rocket nozzle. When considering a rocket's performance over its entire integrated trajectory, the dual-bell nozzle has been predicted to achieve a higher total impulse over the conventional bell nozzle, which is expected to result in a greater capability of payload mass to low-Earth orbit. Although the dual-bell rocket nozzle has been thoroughly studied for several decades, this nozzle has still not been adequately tested in a relevant flight-like environment. This report provides highlights and top-level details on the FY12 feasibility effort to advance this promising technology through flight test, a collaborative effort which leverages NASA Marshall's dual-bell nozzle research and development with Dryden's expertise in propulsion-focused flight testing. To accomplish this goal, the NASA F-15B is proposed as the testbed for the initial flight-test campaign to advance this greatly needed capability.

  8. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    PubMed Central

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  9. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    PubMed

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure.

  10. Innovative Approaches to Improve Anti-Infective Vaccine Efficacy.

    PubMed

    Yeaman, Michael R; Hennessey, John P

    2017-01-06

    Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.

  11. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Team AERO, from the Worcester Polytechnic Institute (WPI) transports their robot to the competition field for the level one of the competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Robots that will be competing in the Level one competition are seen as they sit in impound prior to the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Ahti Heinla, left, and Sulo Kallas, right, from Estonia, prepare team KuuKulgur's robot for the rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    A sample can be seen on the competition field as the team Survey robot conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Jascha Little of team Survey is seen as he follows the teams robot as it conducts a demonstration of the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The University of California Santa Cruz Rover Team poses for a picture with their robot after attempting the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The University of California Santa Cruz Rover Team's robot is seen prior to starting it's second attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  18. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The Oregon State University Mars Rover Team poses for a picture with their robot following their attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  19. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    The University of Waterloo Robotics Team, from Canada, prepares to place their robot on the start platform during the level one challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  20. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The University of Waterloo Robotics Team, from Ontario, Canada, prepares their robot for the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The team from the University of Waterloo is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  1. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Sam Ortega, NASA program manager for Centennial Challenges, is interviewed by a member of the media before the start of level two competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  2. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Jim Rothrock, left, and Carrie Johnson, right, of the Wunderkammer Laboratory team pose for a picture with their robot after attempting the level one competition during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  3. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The Oregon State University Mars Rover Team follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Jerry Waechter of team Middleman from Dunedin, Florida, speaks about his team's robot, Ro-Bear, as it makes it attempt at the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    The Oregon State University Mars Rover Team, from Corvallis, Oregon, follows their robot on the practice field during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. The Oregon State University Mars Rover Team is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.

    PubMed

    Konry, Tania; Sarkar, Saheli; Sabhachandani, Pooja; Cohen, Noa

    2016-07-11

    Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.

  7. Study of capabilities and limitations of 3D printing technology

    NASA Astrophysics Data System (ADS)

    Lemu, H. G.

    2012-04-01

    3D printing is one of the developments in rapid prototyping technology. The inception and development of the technology has highly assisted the product development phase of product design and manufacturing. The technology is particularly important in educating product design and 3D modeling because it helps students to visualize their design idea, to enhance their creative design process and enables them to touch and feel the result of their innovative work. The availability of many 3D printers on the market has created a certain level of challenge for the user. Among others, complexity of part geometry, material type, compatibility with 3D CAD models and other technical aspects still need in-depth study. This paper presents results of the experimental work on the capabilities and limitations of the Z510 3D printer from Z-corporation. Several parameters such as dimensional and geometrical accuracy, surface quality and strength as a function of model size, orientation and file exchange format are closely studied.

  8. Small Spacecraft for Planetary Science

    NASA Astrophysics Data System (ADS)

    Baker, John; Castillo-Rogez, Julie; Bousquet, Pierre-W.; Vane, Gregg; Komarek, Tomas; Klesh, Andrew

    2016-07-01

    As planetary science continues to explore new and remote regions of the Solar system with comprehensive and more sophisticated payloads, small spacecraft offer the possibility for focused and more affordable science investigations. These small spacecraft or micro spacecraft (< 100 kg) can be used in a variety of architectures consisting of orbiters, landers, rovers, atmospheric probes, and penetrators. A few such vehicles have been flown in the past as technology demonstrations. However, technologies such as new miniaturized science-grade sensors and electronics, advanced manufacturing for lightweight structures, and innovative propulsion are making it possible to fly much more capable micro spacecraft for planetary exploration. While micro spacecraft, such as CubeSats, offer significant cost reductions with added capability from advancing technologies, the technical challenges for deep space missions are very different than for missions conducted in low Earth orbit. Micro spacecraft must be able to sustain a broad range of planetary environments (i.e., radiations, temperatures, limited power generation) and offer long-range telecommunication performance on a par with science needs. Other capabilities needed for planetary missions, such as fine attitude control and determination, capable computer and data handling, and navigation are being met by technologies currently under development to be flown on CubeSats within the next five years. This paper will discuss how micro spacecraft offer an attractive alternative to accomplish specific science and technology goals and what relevant technologies are needed for these these types of spacecraft. Acknowledgements: Part of this work is being carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to NASA. Government sponsorship acknowledged.

  9. An agent-oriented approach to automated mission operations

    NASA Technical Reports Server (NTRS)

    Truszkowski, Walt; Odubiyi, Jide

    1994-01-01

    As we plan for the next generation of Mission Operations Control Center (MOCC) systems, there are many opportunities for the increased utilization of innovative knowledge-based technologies. The innovative technology discussed is an advanced use of agent-oriented approaches to the automation of mission operations. The paper presents an overview of this technology and discusses applied operational scenarios currently being investigated and prototyped. A major focus of the current work is the development of a simple user mechanism that would empower operations staff members to create, in real time, software agents to assist them in common, labor intensive operations tasks. These operational tasks would include: handling routine data and information management functions; amplifying the capabilities of a spacecraft analyst/operator to rapidly identify, analyze, and correct spacecraft anomalies by correlating complex data/information sets and filtering error messages; improving routine monitoring and trend analysis by detecting common failure signatures; and serving as a sentinel for spacecraft changes during critical maneuvers enhancing the system's capabilities to support nonroutine operational conditions with minimum additional staff. An agent-based testbed is under development. This testbed will allow us to: (1) more clearly understand the intricacies of applying agent-based technology in support of the advanced automation of mission operations and (2) access the full set of benefits that can be realized by the proper application of agent-oriented technology in a mission operations environment. The testbed under development addresses some of the data management and report generation functions for the Explorer Platform (EP)/Extreme UltraViolet Explorer (EUVE) Flight Operations Team (FOT). We present an overview of agent-oriented technology and a detailed report on the operation's concept for the testbed.

  10. Precision Time Protocol-Based Trilateration for Planetary Navigation

    NASA Technical Reports Server (NTRS)

    Murdock, Ron

    2015-01-01

    Progeny Systems Corporation has developed a high-fidelity, field-scalable, non-Global Positioning System (GPS) navigation system that offers precision localization over communications channels. The system is bidirectional, providing position information to both base and mobile units. It is the first-ever wireless use of the Institute of Electrical and Electronics Engineers (IEEE) Precision Time Protocol (PTP) in a bidirectional trilateration navigation system. The innovation provides a precise and reliable navigation capability to support traverse-path planning systems and other mapping applications, and it establishes a core infrastructure for long-term lunar and planetary occupation. Mature technologies are integrated to provide navigation capability and to support data and voice communications on the same network. On Earth, the innovation is particularly well suited for use in unmanned aerial vehicles (UAVs), as it offers a non-GPS precision navigation and location service for use in GPS-denied environments. Its bidirectional capability provides real-time location data to the UAV operator and to the UAV. This approach optimizes assisted GPS techniques and can be used to determine the presence of GPS degradation, spoofing, or jamming.

  11. Aeromechanics and Aeroacoustics Predictions of the Boeing-SMART Rotor Using Coupled-CFD/CSD Analyses

    NASA Technical Reports Server (NTRS)

    Bain, Jeremy; Sim, Ben W.; Sankar, Lakshmi; Brentner, Ken

    2010-01-01

    This paper will highlight helicopter aeromechanics and aeroacoustics prediction capabilities developed by Georgia Institute of Technology, the Pennsylvania State University, and Northern Arizona University under the Helicopter Quieting Program (HQP) sponsored by the Tactical Technology Office of the Defense Advanced Research Projects Agency (DARPA). First initiated in 2004, the goal of the HQP was to develop high fidelity, state-of-the-art computational tools for designing advanced helicopter rotors with reduced acoustic perceptibility and enhanced performance. A critical step towards achieving this objective is the development of rotorcraft prediction codes capable of assessing a wide range of helicopter configurations and operations for future rotorcraft designs. This includes novel next-generation rotor systems that incorporate innovative passive and/or active elements to meet future challenging military performance and survivability goals.

  12. Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions

    NASA Technical Reports Server (NTRS)

    Beauchamp, Pat; Cutts, James; Quadrelli, Marco B.; Wood, Lincoln J.; Riedel, Joseph E.; McHenry, Mike; Aung, MiMi; Cangahuala, Laureano A.; Volpe, Rich

    2013-01-01

    Future planetary explorations envisioned by the National Research Council's (NRC's) report titled Vision and Voyages for Planetary Science in the Decade 2013-2022, developed for NASA Science Mission Directorate (SMD) Planetary Science Division (PSD), seek to reach targets of broad scientific interest across the solar system. This goal requires new capabilities such as innovative interplanetary trajectories, precision landing, operation in close proximity to targets, precision pointing, multiple collaborating spacecraft, multiple target tours, and advanced robotic surface exploration. Advancements in Guidance, Navigation, and Control (GN&C) and Mission Design in the areas of software, algorithm development and sensors will be necessary to accomplish these future missions. This paper summarizes the key GN&C and mission design capabilities and technologies needed for future missions pursuing SMD PSD's scientific goals.

  13. Reconfigurable, Cognitive Software-Defined Radio

    NASA Technical Reports Server (NTRS)

    Bhat, Arvind

    2015-01-01

    Software-defined radio (SDR) technology allows radios to be reconfigured to perform different communication functions without using multiple radios to accomplish each task. Intelligent Automation, Inc., has developed SDR platforms that switch adaptively between different operation modes. The innovation works by modifying both transmit waveforms and receiver signal processing tasks. In Phase I of the project, the company developed SDR cognitive capabilities, including adaptive modulation and coding (AMC), automatic modulation recognition (AMR), and spectrum sensing. In Phase II, these capabilities were integrated into SDR platforms. The reconfigurable transceiver design employs high-speed field-programmable gate arrays, enabling multimode operation and scalable architecture. Designs are based on commercial off-the-shelf (COTS) components and are modular in nature, making it easier to upgrade individual components rather than redesigning the entire SDR platform as technology advances.

  14. Current biodefense vaccine programs and challenges.

    PubMed

    Wolfe, Daniel N; Florence, William; Bryant, Paula

    2013-07-01

    The Defense Threat Reduction Agency's Joint Science and Technology Office manages the Chemical and Biological Defense Program's Science and Technology portfolio. The Joint Science and Technology Office's mission is to invest in transformational ideas, innovative people and actionable technology development for Chemical and Biological Defense solutions, with the primary goal to deliver Science and Technology products and capabilities to the warfighter and civilian population that outpace the threat. This commentary focuses on one thrust area within this mission: the Vaccine program of the Joint Science and Technology Office's Translational Medical Division. Here, we will describe candidate vaccines currently in the S&T pipeline, enabling technologies that should facilitate advanced development of these candidates into FDA licensed vaccines, and how the ever-changing biological threat landscape impacts the future of biodefense vaccines.

  15. Science-based health innovation in sub-Saharan Africa

    PubMed Central

    2010-01-01

    In recent years emerging markets such as India, China, and Brazil have developed appropriate business models and lower-cost technological innovations to address health challenges locally and internationally. But it is not well understood what capabilities African countries, with their high disease burden, have in science-based health innovation. This gap in knowledge is addressed by this series in BMC International Health and Human Rights. The series presents the results of extensive on-the-ground research in the form of four country case studies of health and biotechnology innovation, six studies of institutions within Africa involved in health product development, and one study of health venture funds in Africa. To the best of our knowledge it is the first extensive collection of empirical work on African science-based health innovation. The four country cases are Ghana, Rwanda, Tanzania and Uganda. The six case studies of institutions are A to Z Textiles (Tanzania), Acorn Technologies (South Africa), Bioventures venture capital fund (South Africa), the Malagasy Institute of Applied Research (IMRA; Madagascar), the Kenyan Medical Research Institute (KEMRI; Kenya), and Niprisan’s development by Nigeria’s National Institute for Pharmaceutical Research and Development and Xechem (Nigeria). All of the examples highlight pioneering attempts to build technological capacity, create economic opportunities, and retain talent on a continent significantly affected by brain drain. They point to the practical challenges for innovators on the ground, and suggest potentially helpful policies, funding streams, and other support systems. For African nations, health innovation represents an opportunity to increase domestic capacity to solve health challenges; for international funders, it is an opportunity to move beyond foreign aid and dependency. The shared goal is creating self-sustaining innovation that has both health and development impacts. While this is a long-term strategy, this series shows the potential of African-led innovation, and indicates how it might balance realism against opportunity. There is ample scope to learn lessons more systematically from cases like those we discuss; to link entrepreneurs, scientists, funders, and policy-makers into a network to share opportunities and challenges; and ultimately to better support and stimulate African-led health innovation. PMID:21144069

  16. Science-based health innovation in sub-Saharan Africa.

    PubMed

    Al-Bader, Sara; Masum, Hassan; Simiyu, Ken; Daar, Abdallah S; Singer, Peter A

    2010-12-13

    In recent years emerging markets such as India, China, and Brazil have developed appropriate business models and lower-cost technological innovations to address health challenges locally and internationally. But it is not well understood what capabilities African countries, with their high disease burden, have in science-based health innovation.This gap in knowledge is addressed by this series in BMC International Health and Human Rights. The series presents the results of extensive on-the-ground research in the form of four country case studies of health and biotechnology innovation, six studies of institutions within Africa involved in health product development, and one study of health venture funds in Africa. To the best of our knowledge it is the first extensive collection of empirical work on African science-based health innovation.The four country cases are Ghana, Rwanda, Tanzania and Uganda. The six case studies of institutions are A to Z Textiles (Tanzania), Acorn Technologies (South Africa), Bioventures venture capital fund (South Africa), the Malagasy Institute of Applied Research (IMRA; Madagascar), the Kenyan Medical Research Institute (KEMRI; Kenya), and Niprisan's development by Nigeria's National Institute for Pharmaceutical Research and Development and Xechem (Nigeria).All of the examples highlight pioneering attempts to build technological capacity, create economic opportunities, and retain talent on a continent significantly affected by brain drain. They point to the practical challenges for innovators on the ground, and suggest potentially helpful policies, funding streams, and other support systems.For African nations, health innovation represents an opportunity to increase domestic capacity to solve health challenges; for international funders, it is an opportunity to move beyond foreign aid and dependency. The shared goal is creating self-sustaining innovation that has both health and development impacts. While this is a long-term strategy, this series shows the potential of African-led innovation, and indicates how it might balance realism against opportunity. There is ample scope to learn lessons more systematically from cases like those we discuss; to link entrepreneurs, scientists, funders, and policy-makers into a network to share opportunities and challenges; and ultimately to better support and stimulate African-led health innovation.

  17. A plant-inspired robot with soft differential bending capabilities.

    PubMed

    Sadeghi, A; Mondini, A; Del Dottore, E; Mattoli, V; Beccai, L; Taccola, S; Lucarotti, C; Totaro, M; Mazzolai, B

    2016-12-20

    We present the design and development of a plant-inspired robot, named Plantoid, with sensorized robotic roots. Natural roots have a multi-sensing capability and show a soft bending behaviour to follow or escape from various environmental parameters (i.e., tropisms). Analogously, we implement soft bending capabilities in our robotic roots by designing and integrating soft spring-based actuation (SSBA) systems using helical springs to transmit the motor power in a compliant manner. Each robotic tip integrates four different sensors, including customised flexible touch and innovative humidity sensors together with commercial gravity and temperature sensors. We show how the embedded sensing capabilities together with a root-inspired control algorithm lead to the implementation of tropic behaviours. Future applications for such plant-inspired technologies include soil monitoring and exploration, useful for agriculture and environmental fields.

  18. Robotics Offer Newfound Surgical Capabilities

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Barrett Technology Inc., of Cambridge, Massachusetts, completed three Phase II Small Business Innovation Research (SBIR) contracts with Johnson Space Center, during which the company developed and commercialized three core technologies: a robotic arm, a hand that functions atop the arm, and a motor driver to operate the robotics. Among many industry uses, recently, an adaptation of the arm has been cleared by the U.S. Food and Drug Administration (FDA) for use in a minimally invasive knee surgery procedure, where its precision control makes it ideal for inserting a very small implant.

  19. Rocket-Powered Parachutes Rescue Entire Planes

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Small Business Innovation Research (SBIR) contracts with Langley Research Center helped BRS Aerospace, of Saint Paul, Minnesota, to develop technology that has saved 246 lives to date. The company s whole aircraft parachute systems deploy in less than 1 second thanks to solid rocket motors and are capable of arresting the descent of a small aircraft, lowering it safely to the ground. BRS has sold more than 30,000 systems worldwide, and the technology is now standard equipment on many of the world s top-selling aircraft. Parachutes for larger airplanes are in the works.

  20. Linking satellite ICT application businesses with regional innovation centers and investors: The EC “INVESaT” project

    NASA Astrophysics Data System (ADS)

    Ghiron, Florence; Kreisel, Joerg

    2009-09-01

    In the sector of information and communication technologies (ICT), whether in the USA, Japan, or Europe, innovative services are already in use, based on large-scale space-based infrastructure investments. Such systems are e.g. earth observation, telecommunication, and navigation, timing and positioning satellites. In combination with the advent of powerful handheld terminals and the demand for ubiquitous services, it is expected that info-mobility applications will reveal new sources of business in the years ahead, using in particular the Earth observation and future GALILEO systems to position any feature or user anywhere in the world within a few meter accuracy. Hence, satellite-based capabilities provide new and unique opportunities for economic stimulation and development. Many incubators and innovation centers in Europe have already grasped this growth potential. Yet, for many European players business growth appears below expectations compared to developments in the USA following the launch of GPS (Global Positioning System). Europe still has to overcome intrinsic barriers to seize these new business opportunities faster and with more visible economic impact by leveraging on SMEs and regional innovation centers to expand the commercial utilization of satellite capabilities and mobilization of appropriate financial resources. The paper elaborates on the INVESat project (funded by the EuropeInnova—European Commission), which aims at bridging the gap between Innovative enterprises and financial In VEstors in the emerging markets of SaTellite applications. The critical success factors required to stimulate and support more efficiently investments in this bread of innovative services will also be highlighted.

  1. Strategic Sourcing of R&D: The Determinants of Success

    NASA Astrophysics Data System (ADS)

    Brook, Jacques W.; Plugge, Albert

    The outsourcing of the R&D function is an emerging practice of corporate firms. In their attempt to reduce the increasing cost of research and technology development, firms are strategically outsourcing the R&D function or repositioning their internal R&D organisation. By doing so, they are able to benefit from other technology sources around the world. So far, there is only limited research on how firms develop their R&D sourcing strategies and how these strategies are implemented. This study aims to identify which determinants contribute to the success of R&D sourcing strategies. The results of our empirical research indicate that a clear vision of how to manage innovation strategically on a corporate level is a determinant of an effective R&D strategy. Moreover, our findings revealed that the R&D sourcing strategy influences a firm's sourcing capabilities. These sourcing capabilities need to be developed to manage the demand as well as the supply of R&D services. The alignment between the demand capabilities and the supply capabilities contributes to the success of R&D sourcing.

  2. Inflatable Antennas Support Emergency Communication

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Glenn Research Center awarded Small Business Innovation Research (SBIR) contracts to ManTech SRS Technologies, of Newport Beach, California, to develop thin film inflatable antennas for space communication. With additional funding, SRS modified the concepts for ground-based inflatable antennas. GATR (Ground Antenna Transmit and Receive) Technologies, of Huntsville, Alabama, licensed the technology and refined it to become the world s first inflatable antenna certified by the Federal Communications Commission. Capable of providing Internet access, voice over Internet protocol, e-mail, video teleconferencing, broadcast television, and other high-bandwidth communications, the systems have provided communication during the wildfires in California, after Hurricane Katrina in Mississippi, and following the 2010 Haiti earthquake.

  3. The ARC (Astrophysical Research Consortium) telescope project.

    NASA Astrophysics Data System (ADS)

    Anderson, K. S.

    A consortium of universities intends to construct a 3.5 meter optical-infrared telescope at a site in south-central New Mexico. The use of innovative mirror technology, a fast primary, and an alt-azimuth mounting results in a compact and lightweight instrument. This telescope will be uniquely well-suited for addressing certain observational programs by virtue of its capability for fully remote operation and rapid instrument changes.

  4. Learning in a Massively Multiplayer Online Role Playing Game: The Development of Government Leadership Competencies and Performance Elements

    ERIC Educational Resources Information Center

    Brown, Tammy

    2011-01-01

    The increase of technological capabilities has opened the door to innovations that help people learn. One popular form of training over the past 10 years has been in Serious Game--simulations used for training rather than entertainment. The purpose of the study was to determine whether participants who played a massively multiplayer online role…

  5. Open Innovation and Technology Maturity Analysis

    DTIC Science & Technology

    2007-09-11

    Management Process Develop a framework which incorporates DoD Acquisition Management framework (e.g: TRLs), DoD Business Transformation strategies...Public Organizations (DoD): DoD Force Transformation : • Support the Joint Warfighting Capability of the DoD • Enable Rapid Access to Information for...Survey - 2007  Defense Transformation : Clear Leadership, Accountability, and Management Tools Are Needed to Enhance DOD’s Efforts to Transform Military

  6. Innovation value chain capability in Malaysian-owned company: A theoretical framework

    NASA Astrophysics Data System (ADS)

    Abidin, Norkisme Zainal; Suradi, Nur Riza Mohd

    2014-09-01

    Good quality products or services are no longer adequate to guarantee the sustainability of a company in the present competitive business. Prior research has developed various innovation models with the hope to better understand the innovativeness of the company. Due to countless definitions, indicators, factors, parameter and approaches in the study of innovation, it is difficult to ensure which one will best suit the Malaysian-owned company innovativeness. This paper aims to provide a theoretical background to support the framework of the innovation value chain capability in Malaysian-owned Company. The theoretical framework was based on the literature reviews, expert interviews and focus group study. The framework will be used to predict and assess the innovation value chain capability in Malaysian-owned company.

  7. Innovation or Violation? Leveraging Mobile Technology to Conduct Socially Responsible Community Research.

    PubMed

    Roy, Amanda L

    2017-12-01

    Mobile technology is increasingly being used to measure individuals' moods, thoughts, and behaviors in real time. Current examples include the use of smartphones to collect ecological momentary assessments (EMAs; assessments delivered "in the moment"); wearable technology to passively collect objective measures of participants' movement, physical activity, sleep, and physiological response; and smartphones and wearable devices with global positioning system (GPS) capabilities to collect precise information about where participants spend their time. Although advances in mobile technology offer exciting opportunities for measuring and modeling individuals' experiences in their natural environments, they also introduce new ethical issues. Drawing on lessons learned while collecting GPS coordinates and EMAs measuring mood, companionship, and health-risk behavior with a sample of low-income, predominantly racial/ethnic minority youth living in Chicago, this manuscript discusses ethical challenges specific to the methodology (e.g., unanticipated access to personal information) and broader concerns related to data conceptualization and interpretation (e.g., the ethics of "monitoring" low-income youth of color). While encouraging researchers to embrace innovations offered by mobile technology, this discussion highlights some of the many ethical issues that also need to be considered. © Society for Community Research and Action 2017.

  8. Innovation Inspired by Nature: Capabilities, Potentials and Challenges

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2012-01-01

    Through evolution, nature came up with many effective solutions to its challenges and continually improving them. By mimicking, coping and being inspired, humans have been using Nature's solutions to address their own challenges. In recent years, the implementation of nature's capabilities has intensified with our growing understanding of the various biological and nastic mechanisms and processes. Successes include even the making of humanlike robots that perform such lifelike tasks as walking, talking, making eye-contact, interpreting speech and facial expressions, as well as many other humanlike functions. Generally, once humans are able to implement a function then, thru rapid advances in technology, capabilities are developed that can significantly exceed the original source of inspiration in Nature. Examples include flight where there is no species that can fly as high, carry so much mass, has so large dimensions and fly so fast, and operate at as such extreme conditions as our aircraft and other aerospace systems. However, using the capabilities of today's technology, there are many challenges that are not feasible to address in mimicking characteristics of species and plants. In this manuscript, state-of-the-art of biomimetic capabilities, potentials and challenges are reviewed.

  9. Exploring Innovation Capabilities of Hospital CIOs: An Empirical Assessment.

    PubMed

    Esdar, Moritz; Liebe, Jan-David; Weiß, Jan-Patrick; Hübner, Ursula

    2017-01-01

    Hospital CIOs play a central role in the adoption of innovative health IT. Until now, it remained unclear which particular conditions constitute their capability to innovate in terms of intrapersonal as well as organisational factors. An inventory of 20 items was developed to capture these conditions and examined by analysing data obtained from 164 German hospital CIOs. Principal component analysis resulted in three internally consistent components that constitute large portions of the CIOs innovation capability: organisational innovation culture, entrepreneurship personality and openness towards users. Results were used to build composite indicators that allow further evaluations.

  10. Cognitive and sociocultural aspects of robotized technology: innovative processes of adaptation

    NASA Astrophysics Data System (ADS)

    Kvesko, S. B.; Kvesko, B. B.; Kornienko, M. A.; Nikitina, Y. A.; Pankova, N. M.

    2018-05-01

    The paper dwells upon interaction between socio-cultural phenomena and cognitive characteristics of robotized technology. The interdisciplinary approach was employed in order to cast light on the manifold and multilevel identity of scientific advance in terms of robotized technology within the mental realm. Analyzing robotized technology from the viewpoint of its significance for the modern society is one of the upcoming trends in the contemporary scientific realm. The robots under production are capable of interacting with people; this results in a growing necessity for the studies on social status of robotized technological items. Socio-cultural aspect of cognitive robotized technology is reflected in the fact that the nature becomes ‘aware’ of itself via human brain, a human being tends to strives for perfection in their intellectual and moral dimensions.

  11. The Earth Science Vision

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark; Rychekewkitsch, Michael; Andrucyk, Dennis; McConaughy, Gail; Meeson, Blanche; Hildebrand, Peter; Einaudi, Franco (Technical Monitor)

    2000-01-01

    NASA's Earth Science Enterprise's long range vision is to enable the development of a national proactive environmental predictive capability through targeted scientific research and technological innovation. Proactive environmental prediction means the prediction of environmental events and their secondary consequences. These consequences range from disasters and disease outbreak to improved food production and reduced transportation, energy and insurance costs. The economic advantage of this predictive capability will greatly outweigh the cost of development. Developing this predictive capability requires a greatly improved understanding of the earth system and the interaction of the various components of that system. It also requires a change in our approach to gathering data about the earth and a change in our current methodology in processing that data including its delivery to the customers. And, most importantly, it requires a renewed partnership between NASA and its sister agencies. We identify six application themes that summarize the potential of proactive environmental prediction. We also identify four technology themes that articulate our approach to implementing proactive environmental prediction.

  12. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Russel Howe of team Survey, center, works on a laptop to prepare the team's robot for a demonstration run after the team's robot failed to leave the starting platform during it's attempt at the level two challenge at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  13. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-12

    Russel Howe of team Survey speaks with Sample Return Robot Challenge staff members after the team's robot failed to leave the starting platform during it's attempt at the level two challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Thursday, June 12, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  14. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-11

    Kenneth Stafford, Assistant Director of Robotics Engineering and Director of the Robotics Resource Center at the Worcester Polytechnic Institute (WPI), verifies the location of the target sample during the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Wednesday, June 11, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  15. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    Members of the Mountaineers team from West Virginia University celebrate after their robot returned to the starting platform after picking up the sample during a rerun of the level one challenge during the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Saturday, June 14, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Eighteen teams are competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  16. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-10

    A pair of Worcester Polytechnic Institute (WPI) students walk past a pair of team KuuKulgur's robots on the campus quad, during a final tuneup before the start of competition at the 2014 NASA Centennial Challenges Sample Return Robot Challenge, Tuesday, June 10, 2014, at the Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team KuuKulgur is one of eighteen teams competing for a $1.5 million NASA prize purse. Teams will be required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge is to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  17. A methodology aimed at fostering and sustaining the development processes of an IE-based industry

    NASA Astrophysics Data System (ADS)

    Corallo, Angelo; Errico, Fabrizio; de Maggio, Marco; Giangreco, Enza

    In the current competitive scenario, where business relationships are fundamental in building successful business models and inter/intra organizational business processes are progressively digitalized, an end-to-end methodology is required that is capable of guiding business networks through the Internetworked Enterprise (IE) paradigm: a new and innovative organizational model able to leverage Internet technologies to perform real-time coordination of intra and inter-firm activities, to create value by offering innovative and personalized products/services and reduce transaction costs. This chapter presents the TEKNE project Methodology of change that guides business networks, by means of a modular and flexible approach, towards the IE techno-organizational paradigm, taking into account the competitive environment of the network and how this environment influences its strategic, organizational and technological levels. Contingency, the business model, enterprise architecture and performance metrics are the key concepts that form the cornerstone of this methodological framework.

  18. Open Pit Mine 3d Mapping by Tls and Digital Photogrammetry: 3d Model Update Thanks to a Slam Based Approach

    NASA Astrophysics Data System (ADS)

    Vassena, G.; Clerici, A.

    2018-05-01

    The state of the art of 3D surveying technologies, if correctly applied, allows to obtain 3D coloured models of large open pit mines using different technologies as terrestrial laser scanner (TLS), with images, combined with UAV based digital photogrammetry. GNSS and/or total station are also currently used to geo reference the model. The University of Brescia has been realised a project to map in 3D an open pit mine located in Botticino, a famous location of marble extraction close to Brescia in North Italy. Terrestrial Laser Scanner 3D point clouds combined with RGB images and digital photogrammetry from UAV have been used to map a large part of the cave. By rigorous and well know procedures a 3D point cloud and mesh model have been obtained using an easy and rigorous approach. After the description of the combined mapping process, the paper describes the innovative process proposed for the daily/weekly update of the model itself. To realize this task a SLAM technology approach is described, using an innovative approach based on an innovative instrument capable to run an automatic localization process and real time on the field change detection analysis.

  19. A comparative analysis and guide to virtual reality robotic surgical simulators.

    PubMed

    Julian, Danielle; Tanaka, Alyssa; Mattingly, Patricia; Truong, Mireille; Perez, Manuela; Smith, Roger

    2018-02-01

    Since the US Food and Drug Administration approved robotically assisted surgical devices for human surgery in 2000, the number of surgeries utilizing this innovative technology has risen. In 2015, approximately 650 000 robot-assisted procedures were performed worldwide. Surgeons must be properly trained to safely transition to using such innovative technology. Multiple virtual reality robotic simulators are now commercially available for educational and training purposes. There is a need for comparative evaluations of these simulators to aid users in selecting an appropriate device for their purposes. We conducted a comparison of the design and capabilities of all dedicated simulators of the da Vinci robot - the da Vinci Skills Simulator (dVSS), dV-Trainer (dVT), Robotic Skills Simulators (RoSS) and the RobotiX Mentor. This paper provides the base specifications of the hardware and software, with an emphasis on the training capabilities of each system. Each simulator contains a large number of training exercises for skills development: dVSS n = 40, dVT n = 65, RoSS n = 52, RobotiX Mentor n = 31. All four offer 3D visual images but use different display technologies. The dVSS leverages the real robotic surgical console to provide visualization, hand controls and foot pedals. The dVT, RoSS and RobotiX Mentor created simulated versions of all of these control systems. Each includes systems management services that allow instructors to collect, export and analyze the scores of students using the simulators. This study provides comparative information on the four simulators' functional capabilities. Each device offers unique advantages and capabilities for training robotic surgeons. Each has been the subject of validation experiments, which have been published in the literature. But those do not provide specific details on the capabilities of the simulators, which are necessary for an understanding sufficient to select the one best suited for an organization's needs. This article provides comparative information to assist with that type of selection. Copyright © 2017 John Wiley & Sons, Ltd.

  20. How Does the Concentration of Determinants Affect Industrial Innovation Performance? - An Empirical Analysis of 23 Chinese Industrial Sectors.

    PubMed

    Huang, Shansong; Bai, Yang; Tan, Qingmei

    2017-01-01

    The agglomeration of innovation determinants has a significant influence on the innovation performance of industries and enterprises. Such an effect has received less attention in empirical research studies. This study involves a survey of the agglomeration effect of two important innovation determinants, R&D investment and R&D personnel, and its influence on innovation performance from the perspective of the industrial level. We analysed the agglomeration features based on the panel data of 23 Chinese industrial sectors from 2001~2013. An interpretation model is proposed to examine the agglomeration effect on innovation performance for 4 industrial groups: state-owned enterprises, individual enterprises, foreign-owned enterprises and enterprises as a whole. We found two main results. First, the agglomeration of determinants has a clear positive effect on the innovation performance of all 4 groups but affects individual enterprises more significantly, followed by state-owned and foreign-owned enterprises. Second, the state-owned enterprises show a much higher concentration of R&D investment and R&D personnel than other groups. However, the induced innovation efficiency in the state-owned enterprises is worse than in the individual enterprises. The advantage of resources and capital does not translate into corresponding innovation output. The privately owned small and medium-sized enterprises (SMEs) show a high capability of technological innovation and mercerization but have limited innovation resources.

  1. How Does the Concentration of Determinants Affect Industrial Innovation Performance? – An Empirical Analysis of 23 Chinese Industrial Sectors

    PubMed Central

    Huang, Shansong; Bai, Yang; Tan, Qingmei

    2017-01-01

    The agglomeration of innovation determinants has a significant influence on the innovation performance of industries and enterprises. Such an effect has received less attention in empirical research studies. This study involves a survey of the agglomeration effect of two important innovation determinants, R&D investment and R&D personnel, and its influence on innovation performance from the perspective of the industrial level. We analysed the agglomeration features based on the panel data of 23 Chinese industrial sectors from 2001~2013. An interpretation model is proposed to examine the agglomeration effect on innovation performance for 4 industrial groups: state-owned enterprises, individual enterprises, foreign-owned enterprises and enterprises as a whole. We found two main results. First, the agglomeration of determinants has a clear positive effect on the innovation performance of all 4 groups but affects individual enterprises more significantly, followed by state-owned and foreign-owned enterprises. Second, the state-owned enterprises show a much higher concentration of R&D investment and R&D personnel than other groups. However, the induced innovation efficiency in the state-owned enterprises is worse than in the individual enterprises. The advantage of resources and capital does not translate into corresponding innovation output. The privately owned small and medium-sized enterprises (SMEs) show a high capability of technological innovation and mercerization but have limited innovation resources. PMID:28099452

  2. KSC Tech Transfer News, Volume 5, No. 1

    NASA Technical Reports Server (NTRS)

    Buckingham, Bruce (Editor)

    2012-01-01

    In October 2011, the White House released a presidential memorandum titled "Accelerating Technology Transfer and Commercialization of Federal Research in Support of High-Growth Businesses." It emphasized the importance of technology transfer as a driver of successful innovation to fuel economic growth, create jobs, and make U.S. industries more competitive in a global market. In response to this memorandum, NASA developed a 5-year plan for accelerating its own technology transfer activities. This plan outlines key objectives for enhancing NASA's ability to increase the rate, volume, and quality of technology transfers to industry, academia, and other Government agencies. By doing so, we are increasing the economic impact and public benefit of Federal technology investments. In addition, NASA established technology transfer as a key element of one of its Agency High Priority Performance Goals: "Enable bold new missions and make new technologies available to Government agencies and U.S. industry."What does this mean to you? In the broadest sense, NASA defines technology transfer as the utilization of NASA's technological assets- technologies, innovations, unique facilities and equipment, and technical expertise- by public and private sectors to benefit the Nation. So, if your job involves developing new technologies, writing new software, creating innovative ways to do business, performing research, or developing new technical capabilities, you could be contributing to Kennedy Space Center's (KSC) technology transfer activities by creating the technological assets that may one day be used by external partners. Furthermore, anytime you provide technical expertise to external partners, you're participating in technology transfer. The single most important step you can take to support the technology transfer process is to report new technologies and innovations ro the Technology Transfer Office. This is the critical first step in fueling the technology transfer pipeline. This is also a requirement for all Federal employees (see NPD 2091.1 B) and most NASA contractors. Detailed information on when, where, and how ro report new technology is provided on the following page. In addition, it's important that all detailed-oriented discussions about technology between NASA and external partners are documented or that they occur under formal agreements such as Space Act Agreements and Nondisclosure Agreements. Our office can assist you in putting these agreements into place, protecting NASA's interests, and providing the means to accurately measure the Agency's technology transfer activities. Technology transfer is everyone's responsibility. We need your help to ensure that NASA remains the leader in Federal technology transfer, and that the great work done at KSC provides the maximum economic and societal benefit to the Nation.

  3. Transformations in Air Transportation Systems For the 21st Century

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness, resilience, and other metrics. The lecture offers an air transportation system topology and a scale-free network linkage graphic as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system topologies, and airspace architectures and procedural concepts. These new paradigms could support scalable alternatives for the expansion of future air mobility to more consumers in more parts of the world.

  4. USGS Capabilities to Study the Impacts of Drought and Climate Change in the Southeastern United States

    USGS Publications Warehouse

    ,

    2009-01-01

    In the Southeast, U.S. Geological Survey (USGS) scientists are researching issues through technical studies of water availability and quality, geologic processes (marine, coastal, and terrestrial), geographic complexity, and biological resources. The USGS is prepared to tackle multifaceted questions associated with global climate change and resulting weather patterns such as drought through expert scientific skill, innovative research approaches, and accurate information technology.

  5. A six degree-of-freedom Lorentz vibration isolator with nonlinear controller

    NASA Astrophysics Data System (ADS)

    Fenn, Ralph C.

    1992-05-01

    The results of a phase 2 Small Business Innovation Research Program sponsored by MSFC are presented. Technology is developed for isolating acceleration sensitive microgravity experiments from structural vibration of a spacecraft, such as a space station. Two hardware articles are constructed: a six degree of freedom Lorentz force isolation and a one degree of freedom low acceleration testbed capable of tests at typical experiment accelerations.

  6. Method-centered digital communities on protocols.io for fast-paced scientific innovation.

    PubMed

    Kindler, Lori; Stoliartchouk, Alexei; Teytelman, Leonid; Hurwitz, Bonnie L

    2016-01-01

    The Internet has enabled online social interaction for scientists beyond physical meetings and conferences. Yet despite these innovations in communication, dissemination of methods is often relegated to just academic publishing. Further, these methods remain static, with subsequent advances published elsewhere and unlinked. For communities undergoing fast-paced innovation, researchers need new capabilities to share, obtain feedback, and publish methods at the forefront of scientific development. For example, a renaissance in virology is now underway given the new metagenomic methods to sequence viral DNA directly from an environment. Metagenomics makes it possible to "see" natural viral communities that could not be previously studied through culturing methods. Yet, the knowledge of specialized techniques for the production and analysis of viral metagenomes remains in a subset of labs.  This problem is common to any community using and developing emerging technologies and techniques. We developed new capabilities to create virtual communities in protocols.io, an open access platform, for disseminating protocols and knowledge at the forefront of scientific development. To demonstrate these capabilities, we present a virology community forum called VERVENet. These new features allow virology researchers to share protocols and their annotations and optimizations, connect with the broader virtual community to share knowledge, job postings, conference announcements through a common online forum, and discover the current literature through personalized recommendations to promote discussion of cutting edge research. Virtual communities in protocols.io enhance a researcher's ability to: discuss and share protocols, connect with fellow community members, and learn about new and innovative research in the field.  The web-based software for developing virtual communities is free to use on protocols.io. Data are available through public APIs at protocols.io.

  7. Diffusion of innovations: smartphones and wireless anatomy learning resources.

    PubMed

    Trelease, Robert B

    2008-01-01

    The author has previously reported on principles of diffusion of innovations, the processes by which new technologies become popularly adopted, specifically in relation to anatomy and education. In presentations on adopting handheld computers [personal digital assistants (PDAs)] and personal media players for health sciences education, particular attention has been directed to the anticipated integration of PDA functions into popular cellular telephones. However, limited distribution of early "smartphones" (e.g., Palm Treo and Blackberry) has provided few potential users for anatomical learning resources. In contrast, iPod media players have been self-adopted by millions of students, and "podcasting" has become a popular medium for distributing educational media content. The recently introduced Apple iPhone has combined smartphone and higher resolution media player capabilities. The author successfully tested the iPhone and the "work alike" iPod touch wireless media player with text-based "flashcard" resources, existing PDF educational documents, 3D clinical imaging data, lecture "podcasts," and clinical procedure video. These touch-interfaced, mobile computing devices represent just the first of a new generation providing practical, scalable wireless Web access with enhanced multimedia capabilities. With widespread student self-adoption of such new personal technology, educators can look forward to increasing portability of well-designed, multiplatform "learn anywhere" resources. Copyright 2008 American Association of Anatomists

  8. Visioning technology for the future of telehealth.

    PubMed

    Brennan, David M; Holtz, Bree E; Chumbler, Neale R; Kobb, Rita; Rabinowitz, Terry

    2008-11-01

    By its very nature, telehealth relies on technology. Throughout history, as new technologies emerged and afforded people the ability to send information across distances, it was not long before this capability was applied to the most basic need of all: maintaining health. While much of the early work in telehealth was driven by technology (e.g., making opportunistic use of the systems and devices that were available at the time), recent trends are beginning to push the demand for and the development of new technologies specific to the individual needs of telehealth applications. The future of telehealth will benefit greatly from this technology innovation, in particular, in areas such as home telehealth and remote monitoring, e-health and patient portal applications, personal health records, interactive Internet technologies, and robotics. Telehealth, while not a panacea for all of the challenges facing modern healthcare systems, has a substantial and ever-expanding potential to revolutionize the ways in which people receive medical care while offering the possibility to contain costs, manage chronic diseases, and prevent secondary complications. By demanding innovative solutions and speaking out in support of the field, the telehealth community can and should be leading the charge for greater attention to human factors in technology development, interoperable medical records, staff training and competencies, standards and guidelines, and support for expanded telehealth coverage at the national, state, and local levels.

  9. Technology, market and policy aspects of geothermal energy in Europe

    NASA Astrophysics Data System (ADS)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    The Strategic Energy Technology Plan (SET-Plan) is the technology pillar of the EU's energy and climate policy. The goal of the SET-Plan is to achieve EU worldwide leadership in the production of energy technological solutions capable of delivering EU 2020 and 2050 targets for a low carbon economy. The Joint Research Centre (JRC) runs and manages the SET-Plan Information System (SETIS) to support the SET-Plan. Under SETIS, the JRC publishes a number of regularly updated key references on the state of low carbon technology, research and innovation in Europe. Within the framework of the SET-Plan, the geothermal sector is placed into context with other power and heat generation technologies. The talk will give an introduction to some of JRC's geothermal research activities. Amongst others, the JRC Geothermal status report will be presented. This report aims to contribute to the general knowledge about the geothermal sector, its technology, economics and policies, with a focus on innovation, research, development and deployment activities as well as policy support schemes within the European Union. The speech will present the main findings of the report, providing an overview of the activities and progress made by the geothermal energy sector, the status of its sub-technologies and current developments. In addition, the speech will discuss the economic, market and policy aspects of geothermal energy for power production, direct use and ground source heat pumps in Europe and beyond.

  10. Transitioning Unmanned Technologies for Earth Science Applications

    NASA Astrophysics Data System (ADS)

    Wardell, L. J.; Douglas, J.

    2008-12-01

    Development of small unmanned aerial systems (UAS) has progressed dramatically in recent years along with miniaturization of sensor technology. This confluence of development paths has resulted in greater capability in smaller, less expensive platforms allowing research to be performed where manned airborne platforms are impractical or dangerous. Recent applications include small UAS for studies involving hurricanes, volcanic activity, sea ice changes, glacier melt, biological monitoring of land and sea species, wildfire monitoring, and others. However, the majority of UAS employed in these investigations were originally developed for non-civilian applications and many of the required interfaces are locked behind proprietary specifications, requiring expensive customization by the manufacturer to transform a military UAS into one suitable for civilian work. A small UAS for scientific research should be standards-based, low-cost, user friendly, field serviceable, and be designed to accept a range of payloads. The AV8R UAS is one example of an unmanned system that has been developed for specific application to earth observation missions. This system is designed to be operated by the user with difficult environmental conditions and field logistics in mind. Numerous features and innovations that advance this technology as a research tool as well as its planned science missions will be presented. Most importantly, all interfaces to the system required for successful design and integration of various payloads will be openly available. The environment of open, standards based development allow the small technologies companies that serve as the backbone for much of the technology development to participate in the rapid development of industry capabilities. This is particularly true with UAS technologies. Programs within the USA such as the STTR foster collaborations with small businesses and university researchers. Other innovations related to autonomous unmanned systems will be featured as well as opportunities for collaborations between small technology companies and universities to produce technical solutions in the challenging research environment will be discussed.

  11. Leveraging the big-data revolution: CMS is expanding capabilities to spur health system transformation.

    PubMed

    Brennan, Niall; Oelschlaeger, Allison; Cox, Christine; Tavenner, Marilyn

    2014-07-01

    As the largest single payer for health care in the United States, the Centers for Medicare and Medicaid Services (CMS) generates enormous amounts of data. Historically, CMS has faced technological challenges in storing, analyzing, and disseminating this information because of its volume and privacy concerns. However, rapid progress in the fields of data architecture, storage, and analysis--the big-data revolution--over the past several years has given CMS the capabilities to use data in new and innovative ways. We describe the different types of CMS data being used both internally and externally, and we highlight a selection of innovative ways in which big-data techniques are being used to generate actionable information from CMS data more effectively. These include the use of real-time analytics for program monitoring and detecting fraud and abuse and the increased provision of data to providers, researchers, beneficiaries, and other stakeholders. Project HOPE—The People-to-People Health Foundation, Inc.

  12. A Tale of Two Small Business Grants: The Best of Times, the Worst of Times from the NASA Ames Small Business Innovative Research (SBIR) Program

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Lee, Geoffrey S.

    2006-01-01

    The purposes of the SBIR Program are to: stimulate technological innovation in the private sector; strengthen the role of Small Business Concerns (SBCs) in meeting Federal research and development needs; increase the commercial application of these research results; and encourage participation of socially and economically disadvantaged persons and women-owned small businesses. The process can be highly rewarding, providing the small business with resources to pursue research and development with a focus on providing NASA with new and advanced capabilities. We present two examples of how the NASA Ames SBIR Program has addressed these purposes, nurturing innovative ideas from small, businesses into commercially viable products that also address analytical needs in space research. These examples, from the Science Instruments for Conducting Solar System Exploration Subtopic, describe the journey from innovative concept to analytical instrument, one successful and one hampered by numerous roadblocks (including some international intrigue}.

  13. 40 CFR 35.2032 - Innovative and alternative technologies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Innovative and alternative technologies... Innovative and alternative technologies. (a) Funding for innovative and alternative technologies. Projects or... innovative or alternative technology shall receive increased grants under § 35.2152. (1) Only funds from the...

  14. 40 CFR 35.2032 - Innovative and alternative technologies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Innovative and alternative technologies... Innovative and alternative technologies. (a) Funding for innovative and alternative technologies. Projects or... innovative or alternative technology shall receive increased grants under § 35.2152. (1) Only funds from the...

  15. 40 CFR 35.2032 - Innovative and alternative technologies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Innovative and alternative technologies... Innovative and alternative technologies. (a) Funding for innovative and alternative technologies. Projects or... innovative or alternative technology shall receive increased grants under § 35.2152. (1) Only funds from the...

  16. 40 CFR 35.2032 - Innovative and alternative technologies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Innovative and alternative technologies... Innovative and alternative technologies. (a) Funding for innovative and alternative technologies. Projects or... innovative or alternative technology shall receive increased grants under § 35.2152. (1) Only funds from the...

  17. 40 CFR 35.2032 - Innovative and alternative technologies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Innovative and alternative technologies... Innovative and alternative technologies. (a) Funding for innovative and alternative technologies. Projects or... innovative or alternative technology shall receive increased grants under § 35.2152. (1) Only funds from the...

  18. AFRL Commander's Challenge 2015: stopping the active shooter

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Boston, Jonathan; Smith, Brandon; Swartz, Pete; Whitney-Rawls, Amy; Martinez Calderon, Julian; Magin, Jonathan

    2017-05-01

    In this work, we describe a rapid-innovation challenge to combat and deal with the problem of internal, insider physical threats (e.g., active shooters) and associated first-responder situation awareness on military installations. Our team's research and development effort described within focused on several key tech development areas: (1) indoor acoustical gunshot detection, (2) indoor spatial tracking of first responders, (3) bystander safety and protection, (4) two-way mass alerting capability, and (5) spatial information displays for command and control. The technological solutions were specifically designed to be innovative, low-cost, and (relatively) easy-to-implement, and to provide support across the spectrum of possible users including potential victims/bystanders, first responders, dispatch, and incident command.

  19. Evaluation of 3D printed optofluidic smart glass prototypes.

    PubMed

    Wolfe, Daniel; Goossen, K W

    2018-01-22

    Smart glass or smart windows are an innovative technology used for thermal management, energy efficiency, and privacy applications. Notable commercially available smart glass relies on an electric stimuli to modulate the glass from a transparent to a translucent mode of operation. However, the current market technologies, such as electrochromic, polymer dispersed liquid crystal, and suspended particle devices are expensive and suffer from solar absorption, poor transmittance modulation, and in some cases, continuous power consumption. The authors of this paper present a novel optofluidic smart glass prototype capable of modulating visible light transmittance from 8% to 85%.

  20. Continuing evolution of in-vitro diagnostic instrumentation

    NASA Astrophysics Data System (ADS)

    Cohn, Gerald E.

    2000-04-01

    The synthesis of analytical instrumentation and analytical biochemistry technologies in modern in vitro diagnostic instrumentation continues to generate new systems with improved performance and expanded capability. Detection modalities have expanded to include multichip modes of fluorescence, scattering, luminescence and reflectance so as to accommodate increasingly sophisticated immunochemical and nucleic acid based reagent systems. The time line graph of system development now extends from the earliest automated clinical spectrophotometers through molecule recognition assays and biosensors to the new breakthroughs of biochip and DNA diagnostics. This brief review traces some of the major innovations in the evolution of system technologies and previews the conference program.

  1. Cryogenic Propellant Storage and Transfer Technology Demonstration For Long Duration In-Space Missions

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Motil, Susan M.; Kortes, Trudy F.; Taylor, William J.; McRight, Patrick S.

    2012-01-01

    The high specific impulse of cryogenic propellants can provide a significant performance advantage for in-space transfer vehicles. The upper stages of the Saturn V and various commercial expendable launch vehicles have used liquid oxygen and liquid hydrogen propellants; however, the application of cryogenic propellants has been limited to relatively short duration missions due to the propensity of cryogens to absorb environmental heat resulting in fluid losses. Utilizing advanced cryogenic propellant technologies can enable the efficient use of high performance propellants for long duration missions. Crewed mission architectures for beyond low Earth orbit exploration can significantly benefit from this capability by developing realistic launch spacing for multiple launch missions, by prepositioning stages and by staging propellants at an in-space depot. The National Aeronautics and Space Administration through the Office of the Chief Technologist is formulating a Cryogenic Propellant Storage and Transfer Technology Demonstration Mission to mitigate the technical and programmatic risks of infusing these advanced technologies into the development of future cryogenic propellant stages or in-space propellant depots. NASA is seeking an innovative path for human space exploration, which strengthens the capability to extend human and robotic presence throughout the solar system. This mission will test and validate key cryogenic technological capabilities and has the objectives of demonstrating advanced thermal control technologies to minimize propellant loss during loiter, demonstrating robust operation in a microgravity environment, and demonstrating efficient propellant transfer on orbit. The status of the demonstration mission concept development, technology demonstration planning and technology maturation activities in preparation for flight system development are described.

  2. Understanding the Dynamic Convergence Phenomenon from the Perspective of Diversity and Persistence: A Cross-Sector Comparative Analysis between the United States and South Korea.

    PubMed

    Shim, We; Kwon, Oh-Jin; Moon, Yeong-Ho; Kim, Keun-Hwan

    2016-01-01

    This study was designed to improve the explanation for the behavior of the phenomenon of technology convergence. The concepts and measurements of diversity and persistence, as inherent attributes of the phenomenon, were elaborated by reviewing different theories. Diversity was examined by analyzing the degree of capability to absorb heterogeneous technologies, while persistence was investigated by analyzing the degree of continuity in the usage of cumulated technologies. With these two dimensions, an analytic framework was proposed to compare the differences and dynamic patterns of convergence competence by countries at the technology sector level. Three major technology sectors in the United States and South Korea, namely, information and communication technology, biotechnology, and nanotechnology, were explored to explicitly illustrate the differences in technology convergence competence. The results show that although Korea has narrowed the differences of capabilities for technology convergence compared to the US, Korea not only has to continuously pursue the improvement of specialization for all three sectors, but also has to encourage the exploitation of different technology fields. The suggested framework and indicators allow for monitoring of the dynamic patterns of a technology sector and identifying the sources of the gaps. Thus, the framework and indicators are able to ensure the purpose of government innovation policy and to provide strategic directions for redistributing the proper combination of sources to accomplish technology convergence.

  3. Understanding the Dynamic Convergence Phenomenon from the Perspective of Diversity and Persistence: A Cross-Sector Comparative Analysis between the United States and South Korea

    PubMed Central

    2016-01-01

    This study was designed to improve the explanation for the behavior of the phenomenon of technology convergence. The concepts and measurements of diversity and persistence, as inherent attributes of the phenomenon, were elaborated by reviewing different theories. Diversity was examined by analyzing the degree of capability to absorb heterogeneous technologies, while persistence was investigated by analyzing the degree of continuity in the usage of cumulated technologies. With these two dimensions, an analytic framework was proposed to compare the differences and dynamic patterns of convergence competence by countries at the technology sector level. Three major technology sectors in the United States and South Korea, namely, information and communication technology, biotechnology, and nanotechnology, were explored to explicitly illustrate the differences in technology convergence competence. The results show that although Korea has narrowed the differences of capabilities for technology convergence compared to the US, Korea not only has to continuously pursue the improvement of specialization for all three sectors, but also has to encourage the exploitation of different technology fields. The suggested framework and indicators allow for monitoring of the dynamic patterns of a technology sector and identifying the sources of the gaps. Thus, the framework and indicators are able to ensure the purpose of government innovation policy and to provide strategic directions for redistributing the proper combination of sources to accomplish technology convergence. PMID:27416495

  4. Scientific Computing Strategic Plan for the Idaho National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whiting, Eric Todd

    Scientific computing is a critical foundation of modern science. Without innovations in the field of computational science, the essential missions of the Department of Energy (DOE) would go unrealized. Taking a leadership role in such innovations is Idaho National Laboratory’s (INL’s) challenge and charge, and is central to INL’s ongoing success. Computing is an essential part of INL’s future. DOE science and technology missions rely firmly on computing capabilities in various forms. Modeling and simulation, fueled by innovations in computational science and validated through experiment, are a critical foundation of science and engineering. Big data analytics from an increasing numbermore » of widely varied sources is opening new windows of insight and discovery. Computing is a critical tool in education, science, engineering, and experiments. Advanced computing capabilities in the form of people, tools, computers, and facilities, will position INL competitively to deliver results and solutions on important national science and engineering challenges. A computing strategy must include much more than simply computers. The foundational enabling component of computing at many DOE national laboratories is the combination of a showcase like data center facility coupled with a very capable supercomputer. In addition, network connectivity, disk storage systems, and visualization hardware are critical and generally tightly coupled to the computer system and co located in the same facility. The existence of these resources in a single data center facility opens the doors to many opportunities that would not otherwise be possible.« less

  5. Implementing hospital innovation in Taiwan: the perspectives of institutional theory and social capital.

    PubMed

    Yang, Chen-Wei

    2015-01-01

    The main purpose of this study is to develop an innovation model for hospital organisations. For this purpose, this study explores and examines the determinants, capabilities and performance in the hospital sector. First, this discusses three categories of determinants that affect hospitals' innovative capability studies: (1) knowledge stock; (2) social ties; and (3) institutional pressures. Then, this study examines the idea of innovative hospital capabilities, defined as the ability of the hospital organisation to innovate their knowledge. Finally, the hospital evaluation rating, which identifies performance in the hospital sector, was examined. This study empirically tested the theoretical model at the organisation level. The findings suggest that a hospital's innovative capabilities are influenced by its knowledge stock, social ties, institutional pressures and the impact of hospital performance. However, in attempts to keep hospitals aligned with their highly institutionalised environments, it may prove necessary for hospital administrators to pay more attention to both existing knowledge stock and the process of innovation if the institutions are to survive. Finally, implications for theory and practitioners complete this study. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Technologies Advance UAVs for Science, Military

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A Space Act Agreement with Goddard Space Flight Center and West Virginia University enabled Aurora Flight Sciences Corporation, of Manassas, Virginia, to develop cost-effective composite manufacturing capabilities and open a facility in West Virginia. The company now employs 160 workers at the plant, tasked with crafting airframe components for the Global Hawk unmanned aerial vehicle (UAV) program. While one third of the company's workforce focuses on Global Hawk production, the rest of the company develops advanced UAV technologies that are redefining traditional approaches to unmanned aviation. Since the company's founding, Aurora s cutting-edge work has been supported with funding from NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs.

  7. A research program for the socioeconomic impacts of gene editing regulation

    PubMed Central

    Whelan, Agustina I.; Lema, Martin A.

    2017-01-01

    ABSTRACT Gene editing technologies are a group of recent innovations in plant breeding using molecular biology, which have in common the capability of introducing a site-directed mutation or deletion in the genome. The first cases of crops improved with these technologies are approaching the market; this has raised an international debate regarding if they should be regulated as genetically modified crops or just as another form of mutagenesis under conventional breeding. This dilemma for policymakers not only entails issues pertaining safety information and legal/regulatory definitions. It also demands borrowing tools developed in the field of social studies of science and technology, as an additional basis for sound decision making. PMID:28080208

  8. [Applications of 3D printing technology in teaching of oromaxillofacial head and neck surgical oncology].

    PubMed

    Ruan, Min; Ji, Tong; Zhang, Chen-Ping

    2016-12-01

    With the increasing maturation of 3D printing technology, as well as its application in various industries, investigation of 3D printing technology into clinic medical education becomes an important task of the current medical education. The teaching content of oromaxillofacial head and neck surgical oncology is complicated and diverse, making lower understanding/memorizing efficiency and insufficient skill training. To overcome the disadvantage of traditional teaching method, it is necessary to introduce 3D printing technique into teaching of oromaxillofacial head and neck surgical oncology, in order to improve the teaching quality and problem solving capabilities, and finally promote cultivation of skilled and innovative talents.

  9. A research program for the socioeconomic impacts of gene editing regulation.

    PubMed

    Whelan, Agustina I; Lema, Martin A

    2017-01-02

    Gene editing technologies are a group of recent innovations in plant breeding using molecular biology, which have in common the capability of introducing a site-directed mutation or deletion in the genome. The first cases of crops improved with these technologies are approaching the market; this has raised an international debate regarding if they should be regulated as genetically modified crops or just as another form of mutagenesis under conventional breeding. This dilemma for policymakers not only entails issues pertaining safety information and legal/regulatory definitions. It also demands borrowing tools developed in the field of social studies of science and technology, as an additional basis for sound decision making.

  10. Research and technology, 1986

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by: performing innovative research relevant to national needs and Agency goals; transferring technology to users in a timely manner; and providing development support to other United States Government agencies, industry, and the NASA centers. This report contains highlights of the major accomplishments and applications made during the past year. The highlights illustrate both the broad range of the research and technology activities at the NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  11. Research and technology 1988

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. The mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other U.S. Government agencies, industry, and other NASA Centers. This report contains highlights of the major accomplishments and applications made during the past year. The highlights illustrate both the broad range of the research and technology activities at NASA Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research.

  12. Research and technology, 1989: Langley Research Center

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights of the major accomplishments and applications that were made during the past year are presented. The highlights illustrate both the broad range of the research and technology activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  13. Research and Technology 1990, Langley Research Center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The mission of NASA-Langley is to increase the knowledge and capability of the U.S. in a full range of aeronautics disciplines and in selected space disciplines. This mission will be executed by performing innovative research relevant to national needs and agency goals, transferring technology to users in a timely manner, and providing development support to other U.S. government agencies, industry, and other NASA centers. Highlights are presented of the major accomplishments and applications that were made during the past year. The highlights illustrate both the broad range of the research and technology activitives at NASA-Langley and the contributions of this work toward maintaining U.S. leadership in aeronautics and space research.

  14. Research and technology 1987

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by: performing innovative research relevant to national needs and Agency goals; transferring technology to users in a timely manner; and providing development support to other United States Government agencies, industry, and other NASA centers. Contained are highlights of the major accomplishments and applications that were made during the past year. The highlights illustrate both the broad range of the research and technology activities at the NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  15. Biomedical engineering - A means to add new dimension to medicine and research

    NASA Technical Reports Server (NTRS)

    Doerr, D. F.

    1992-01-01

    Biomedical engineering is an evolving science that seeks to insert technically oriented and trained personnel to assist medical professionals in solving technological problems in the pursuit of innovations in the delivery of health care. Consequently, engineering solutions are brought to bear on problems that previously were outside the training of physicians and beyond the understanding or appreciation of the conventionally educated electrical or mechanical engineers. This physician/scientist/engineer team has a capability to extend medicine and research far beyond the capability of a single entity operating alone. How biomedical engineering has added a new dimension to medical science at the Kennedy Space Center is described.

  16. NASA research in aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Beheim, M. A.

    1982-01-01

    A broad overview of the scope of research presently being supported by NASA in aircraft propulsion is presented with emphasis on Lewis Research Center activities related to civil air transports, CTOL and V/STOL systems. Aircraft systems work is performed to identify the requirements for the propulsion system that enhance the mission capabilities of the aircraft. This important source of innovation and creativity drives the direction of propulsion research. In a companion effort, component research of a generic nature is performed to provide a better basis for design and provides an evolutionary process for technological growth that increases the capabilities of all types of aircraft. Both are important.

  17. Technical Assistance for Southwest Solar Technologies Inc. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munoz-Ramos, Karina; Brainard, James Robert; McIntyre, Annie

    2012-07-01

    Southwest Solar Technologies Inc. is constructing a Solar-Fuel Hybrid Turbine energy system. This innovative energy system combines solar thermal energy with compressed air energy storage and natural gas fuel backup capability to provide firm, non-intermittent power. In addition, the energy system will have very little impact on the environment since, unlike other Concentrated Solar Power (CSP) technologies, it requires minimal water. In 2008 Southwest Solar Technologies received a Solar America Showcase award from the Department of Energy for Technical Assistance from Sandia National Laboratories. This report details the work performed as part of the Solar America Showcase award for Southwestmore » Solar Technologies. After many meetings and visits between Sandia National Labs and Southwest Solar Technologies, several tasks were identified as part of the Technical Assistance and the analysis and results for these are included here.« less

  18. SmallSat Innovations for Planetary Science

    NASA Astrophysics Data System (ADS)

    Weinberg, Jonathan; Petroy, Shelley; Roark, Shane; Schindhelm, Eric

    2017-10-01

    As NASA continues to look for ways to fly smaller planetary missions such as SIMPLEX, MoO, and Venus Bridge, it is important that spacecraft and instrument capabilities keep pace to allow these missions to move forward. As spacecraft become smaller, it is necessary to balance size with capability, reliability and payload capacity. Ball Aerospace offers extensive SmallSat capabilities matured over the past decade, utilizing our broad experience developing mission architecture, assembling spacecraft and instruments, and testing advanced enabling technologies. Ball SmallSats inherit their software capabilities from the flight proven Ball Configurable Platform (BCP) line of spacecraft, and may be tailored to meet the unique requirements of Planetary Science missions. We present here recent efforts in pioneering both instrument miniaturization and SmallSat/sensorcraft development through mission design and implementation. Ball has flown several missions with small, but capable spacecraft. We also have demonstrated a variety of enhanced spacecraft/instrument capabilities in the laboratory and in flight to advance autonomy in spaceflight hardware that can enable some small planetary missions.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoreen, Terrence P

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data andmore » an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science and technology; (4) serving as a proving ground for new research; and (5) supporting high-risk, potentially high-value R&D. Through LDRD the Laboratory is able to improve its distinctive capabilities and enhance its ability to conduct cutting-edge R&D for its DOE and WFO sponsors. To meet the LDRD objectives and fulfill the particular needs of the Laboratory, ORNL has established a program with two components: the Director's R&D Fund and the Seed Money Fund. As outlined in Table 1, these two funds are complementary. The Director's R&D Fund develops new capabilities in support of the Laboratory initiatives, while the Seed Money Fund is open to all innovative ideas that have the potential for enhancing the Laboratory's core scientific and technical competencies. Provision for multiple routes of access to ORNL LDRD funds maximizes the likelihood that novel ideas with scientific and technological merit will be recognized and supported.« less

  20. Next Space Race is in IT

    NASA Technical Reports Server (NTRS)

    Alger, George; Santiago, S. Scott (Technical Monitor)

    2001-01-01

    The next Space Race will be in the economic applications from space and science technology. As NASA science and technology has global application; IT is global, economics is global; surely there are great untapped potentials in finding the IT links of commonality among these three. The Economics of IT will continue to depend upon solution providers creating new methods that capitalize on linking information and information centers with the applications community for business and economic functions.. New and innovative IT vendors whose increased efforts to apply evolving technologies and principles that power the e-business revolution are now seeing the business of government being transformed in a similar fashion. NASA will be a prime example of IT transformation. Potential benefits of e-government are identical to the benefits of e-commerce, which start from value derived from capabilities and assets. The capability and asset wealth of NASA technology and data mass scattered through hundreds of archives will one day provide incredible economic benefit across international and corporate boundaries. Yet the ability to economically benefit from bridging the gap between capability to billable service has yet to find it's first major market. Ultimately the role of government, science, and technology linking to the business world will find greater dependence from this increasingly common ground of IT solutions and technologies. Therefore the future role of the IT industry may be as much administrative as technical, ultimately of critical importance furthering the role of science into application.

  1. 76 FR 76388 - National Medal of Technology and Innovation Nomination Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-07

    ... Medal of Technology and Innovation is the highest honor for technological achievement bestowed by the... commercialization of technology products, processes and concepts, technological innovation, and development of the Nation's technological manpower. The purpose of the National Medal of Technology and Innovation is to...

  2. Spinoff 2011

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Topics include: Bioreactors Drive Advances in Tissue Engineering; Tooling Techniques Enhance Medical Imaging; Ventilator Technologies Sustain Critically Injured Patients; Protein Innovations Advance Drug Treatments, Skin Care; Mass Analyzers Facilitate Research on Addiction; Frameworks Coordinate Scientific Data Management; Cameras Improve Navigation for Pilots, Drivers; Integrated Design Tools Reduce Risk, Cost; Advisory Systems Save Time, Fuel for Airlines; Modeling Programs Increase Aircraft Design Safety; Fly-by-Wire Systems Enable Safer, More Efficient Flight; Modified Fittings Enhance Industrial Safety; Simulation Tools Model Icing for Aircraft Design; Information Systems Coordinate Emergency Management; Imaging Systems Provide Maps for U.S. Soldiers; High-Pressure Systems Suppress Fires in Seconds; Alloy-Enhanced Fans Maintain Fresh Air in Tunnels; Control Algorithms Charge Batteries Faster; Software Programs Derive Measurements from Photographs; Retrofits Convert Gas Vehicles into Hybrids; NASA Missions Inspire Online Video Games; Monitors Track Vital Signs for Fitness and Safety; Thermal Components Boost Performance of HVAC Systems; World Wind Tools Reveal Environmental Change; Analyzers Measure Greenhouse Gasses, Airborne Pollutants; Remediation Technologies Eliminate Contaminants; Receivers Gather Data for Climate, Weather Prediction; Coating Processes Boost Performance of Solar Cells; Analyzers Provide Water Security in Space and on Earth; Catalyst Substrates Remove Contaminants, Produce Fuel; Rocket Engine Innovations Advance Clean Energy; Technologies Render Views of Earth for Virtual Navigation; Content Platforms Meet Data Storage, Retrieval Needs; Tools Ensure Reliability of Critical Software; Electronic Handbooks Simplify Process Management; Software Innovations Speed Scientific Computing; Controller Chips Preserve Microprocessor Function; Nanotube Production Devices Expand Research Capabilities; Custom Machines Advance Composite Manufacturing; Polyimide Foams Offer Superior Insulation; Beam Steering Devices Reduce Payload Weight; Models Support Energy-Saving Microwave Technologies; Materials Advance Chemical Propulsion Technology; and High-Temperature Coatings Offer Energy Savings.

  3. Research on Upgrade Path to Technology Innovation of Resource-based SMEs in China

    NASA Astrophysics Data System (ADS)

    Jie, Xu

    2017-08-01

    Complexity, diversity and coordination are features of technology innovation of resource-based SMEs in China. This paper studies on the key factors of macro-environment, cooperation among enterprises and enterprise interior, which influence the upgrading of technology innovation of resource-based SMEs in China. This paper constructs integrated system of technology innovation to analyse the upgrade path to technology innovation of resource-based SMEs in China, so that enterprises would improve their technology innovation and get a new way to accomplish sustainable innovated development.

  4. Innovations in Radiotherapy Technology.

    PubMed

    Feain, I J; Court, L; Palta, J R; Beddar, S; Keall, P

    2017-02-01

    Many low- and middle-income countries, together with remote and low socioeconomic populations within high-income countries, lack the resources and services to deal with cancer. The challenges in upgrading or introducing the necessary services are enormous, from screening and diagnosis to radiotherapy planning/treatment and quality assurance. There are severe shortages not only in equipment, but also in the capacity to train, recruit and retain staff as well as in their ongoing professional development via effective international peer-review and collaboration. Here we describe some examples of emerging technology innovations based on real-time software and cloud-based capabilities that have the potential to redress some of these areas. These include: (i) automatic treatment planning to reduce physics staffing shortages, (ii) real-time image-guided adaptive radiotherapy technologies, (iii) fixed-beam radiotherapy treatment units that use patient (rather than gantry) rotation to reduce infrastructure costs and staff-to-patient ratios, (iv) cloud-based infrastructure programmes to facilitate international collaboration and quality assurance and (v) high dose rate mobile cobalt brachytherapy techniques for intraoperative radiotherapy. Copyright © 2016 The Royal College of Radiologists. All rights reserved.

  5. The Defense Threat Reduction Agency's Technical Nuclear Forensics Research and Development Program

    NASA Astrophysics Data System (ADS)

    Franks, J.

    2015-12-01

    The Defense Threat Reduction Agency (DTRA) Technical Nuclear Forensics (TNF) Research and Development (R&D) Program's overarching goal is to design, develop, demonstrate, and transition advanced technologies and methodologies that improve the interagency operational capability to provide forensics conclusions after the detonation of a nuclear device. This goal is attained through the execution of three focus areas covering the span of the TNF process to enable strategic decision-making (attribution): Nuclear Forensic Materials Exploitation - Development of targeted technologies, methodologies and tools enabling the timely collection, analysis and interpretation of detonation materials.Prompt Nuclear Effects Exploitation - Improve ground-based capabilities to collect prompt nuclear device outputs and effects data for rapid, complementary and corroborative information.Nuclear Forensics Device Characterization - Development of a validated and verified capability to reverse model a nuclear device with high confidence from observables (e.g., prompt diagnostics, sample analysis, etc.) seen after an attack. This presentation will outline DTRA's TNF R&D strategy and current investments, with efforts focusing on: (1) introducing new technical data collection capabilities (e.g., ground-based prompt diagnostics sensor systems; innovative debris collection and analysis); (2) developing new TNF process paradigms and concepts of operations to decrease timelines and uncertainties, and increase results confidence; (3) enhanced validation and verification (V&V) of capabilities through technology evaluations and demonstrations; and (4) updated weapon output predictions to account for the modern threat environment. A key challenge to expanding these efforts to a global capability is the need for increased post-detonation TNF international cooperation, collaboration and peer reviews.

  6. A system for the simulation and evaluation of satellite communication networks

    NASA Technical Reports Server (NTRS)

    Bagwell, J. W.

    1983-01-01

    With the emergence of a new era in satellite communications brought about by NASA's thrust into the Ka band with multibeam and onboard processing technologies, new and innovative techniques for evaluating these concepts and systems are required. To this end, NASA, in conjunction with its extensive program for advanced communications technology development, has undertaken to develop a concept for the simulation and evaluation of a complete communications network. Incorporated in this network will be proof of concept models of the latest technologies proposed for future satellite communications systems. These include low noise receivers, matrix switches, baseband processors, and solid state and tube type high power amplifiers. To accomplish this, numerous supporting technologies must be added to those aforementioned proof of concept models. These include controllers for synchronization, order wire, and resource allocation, gain compensation, signal leveling, power augmentation, and rain fade and range delay simulation. Taken together, these will be assembled to comprise a system capable of addressing numerous design and performance questions. The simulation and evaluation system as planned will be modular in design and implementation, capable of modification and updating to track and evaluate a continuum emerging concepts and technologies.

  7. Passive IR polarization sensors: a new technology for mine detection

    NASA Astrophysics Data System (ADS)

    Barbour, Blair A.; Jones, Michael W.; Barnes, Howard B.; Lewis, Charles P.

    1998-09-01

    The problem of mine and minefield detection continues to provide a significant challenge to sensor systems. Although the various sensor technologies (infrared, ground penetrating radar, etc.) may excel in certain situations there does not exist a single sensor technology that can adequately detect mines in all conditions such as time of day, weather, buried or surface laid, etc. A truly robust mine detection system will likely require the fusion of data from multiple sensor technologies. The performance of these systems, however, will ultimately depend on the performance of the individual sensors. Infrared (IR) polarimetry is a new and innovative sensor technology that adds substantial capabilities to the detection of mines. IR polarimetry improves on basic IR imaging by providing improved spatial resolution of the target, an inherent ability to suppress clutter, and the capability for zero (Delta) T imaging. Nichols Research Corporation (Nichols) is currently evaluating the effectiveness of IR polarization for mine detection. This study is partially funded by the U.S. Army Night Vision & Electronic Sensors Directorate (NVESD). The goal of the study is to demonstrate, through phenomenology studies and limited field trials, that IR polarizaton outperforms conventional IR imaging in the mine detection arena.

  8. Pathfinder technologies for bold new missions. [U.S. research and development program for space exploration

    NASA Technical Reports Server (NTRS)

    Sadin, Stanley R.; Rosen, Robert

    1987-01-01

    Project Pathfinder is a proposed U.S. Space Research and Technology program intended to enable bold new missions of space exploration. Pathfinder continues the advancement of technological capabilities and extends the foundation established under the Civil Space Technology Initiative, CSTI. By filling critical technological gaps, CSTI enhances access to Earth orbit and supports effective operations and science missions therein. Pathfinder, with a longer-term horizon, looks to a future that builds on Shuttle and Space Station and addresses technologies that support a range of exploration missions including: a return to the Moon to build an outpost; piloted missions to Mars; and continued scientific exploration of Earth and the other planets. The program's objective is to develop, within reasonable time frames, those emerging and innovative technologies that will make possible both new and enhanced missions and system concepts.

  9. Illustrating anticipatory life cycle assessment for emerging photovoltaic technologies.

    PubMed

    Wender, Ben A; Foley, Rider W; Prado-Lopez, Valentina; Ravikumar, Dwarakanath; Eisenberg, Daniel A; Hottle, Troy A; Sadowski, Jathan; Flanagan, William P; Fisher, Angela; Laurin, Lise; Bates, Matthew E; Linkov, Igor; Seager, Thomas P; Fraser, Matthew P; Guston, David H

    2014-09-16

    Current research policy and strategy documents recommend applying life cycle assessment (LCA) early in research and development (R&D) to guide emerging technologies toward decreased environmental burden. However, existing LCA practices are ill-suited to support these recommendations. Barriers related to data availability, rapid technology change, and isolation of environmental from technical research inhibit application of LCA to developing technologies. Overcoming these challenges requires methodological advances that help identify environmental opportunities prior to large R&D investments. Such an anticipatory approach to LCA requires synthesis of social, environmental, and technical knowledge beyond the capabilities of current practices. This paper introduces a novel framework for anticipatory LCA that incorporates technology forecasting, risk research, social engagement, and comparative impact assessment, then applies this framework to photovoltaic (PV) technologies. These examples illustrate the potential for anticipatory LCA to prioritize research questions and help guide environmentally responsible innovation of emerging technologies.

  10. Capability of Rolling Efficiency for 100M High-Speed Rails

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Howard

    2014-03-22

    OG Technologies, Inc. (OGT), along with its academic and industrial partners, proposes this CORE project for the Capability of Rolling Efficiency for 100m high-speed rails. The goal is to establish the competitive advantage, and thus the sustainability of the US-based rail manufacturers by greatly enhanced efficiency through innovative in-line metrology technology, in-depth process knowledge, and advanced process control to overcome detrimental factors such as higher labor costs that are saddling the US manufacturing sector. This Phase I project was carried out by an industrial-academia team over 9 months. The R&D team successfully completed all technical tasks and accomplished the objectivesmore » for the Phase I. In addition to the technical efforts, the introductory information of this project as well as anticipated progress was disseminated to steel mills interested in the project. The Phase I project has established the technical and commercial basis for additional development. There are needs to further completing the in-line sensing capability, deepening the capability of metamodeling, and supporting the process monitoring and control. The R&D team plans to submit a Phase II proposal based on the findings.« less

  11. Physics, Physicists and Revolutionary Capabilities for the Intelligence Community

    NASA Astrophysics Data System (ADS)

    Porter, Lisa

    2009-05-01

    Over the past several decades, physicists have made seminal contributions to technological capabilities that have enabled the U.S. intelligence community to provide unexpected and unparalleled information to our nation's decision makers and help dispel the cloud of uncertainty they face in dealing with crises and challenges around the world. As we look to the future, we recognize that the ever-quickening pace of changes in the world and the threats we must confront demand continued innovation and improvement in the capabilities needed to provide the information on which our leaders depend. This talk will focus on some of the major technological challenges that the intelligence community faces in the coming years, and the many ways that physicists can help to overcome those challenges. The potential impact of physicists on the future capabilities of the US intelligence community is huge. In addition to the more obvious and direct impact through research in areas ranging from novel sensors to quantum information science, the unique approach physicists bring to a problem can also have an indirect but important effect by influencing how challenges in areas ranging from cybersecurity to advanced analytics are approached and solved. Several examples will be given.

  12. An optoelectric professional's training model based on Unity of Knowing and Doing theory

    NASA Astrophysics Data System (ADS)

    Qin, Shiqiao; Wu, Wei; Zheng, Jiaxing; Wang, Xingshu; Zhao, Yingwei

    2017-08-01

    The "Unity of Knowing and Doing" (UKD) theory is proposed by an ancient Chinese philosopher, Wang Shouren, in 1508, which explains how to unify knowledge and practice. Different from the Chinese traditional UKD theory, the international higher education usually treats knowledge and practice as independent, and puts more emphasis on knowledge. Oriented from the UKD theory, the College of Opto-electric Science and Engineering (COESE) at National University of Defense Technology (NUDT) explores a novel training model in cultivating opto-electric professionals from the aspects of classroom teaching, practice experiment, system experiment, design experiment, research experiment and innovation experiment (CPSDRI). This model aims at promoting the unity of knowledge and practice, takes how to improve the students' capability as the main concern and tries to enhance the progress from cognition to professional action competence. It contains two hierarchies: cognition (CPS) and action competence (DRI). In the cognition hierarchy, students will focus on learning and mastering the professional knowledge of optics, opto-electric technology, laser, computer, electronics and machine through classroom teaching, practice experiment and system experiment (CPS). Great attention will be paid to case teaching, which links knowledge with practice. In the action competence hierarchy, emphasis will be placed on promoting students' capability of using knowledge to solve practical problems through design experiment, research experiment and innovation experiment (DRI). In this model, knowledge is divided into different modules and capability is cultivated on different levels. It combines classroom teaching and experimental teaching in a synergetic way and unifies cognition and practice, which is a valuable reference to the opto-electric undergraduate professionals' cultivation.

  13. Market Research: Faster, Smarter and Predictive

    DTIC Science & Technology

    2015-08-01

    for acquisition workforce, and mar- ket research report generation. MRCOE Release 3 will include full transition of capability to strategic platform...2015 Wesley,deputy director for technology and innovation, is acting director of the Department of Defense Office of Small Business Programs (OSBP...where Chowdhury provides senior man- agement support. S P E C I A L • I S S U E BBP 3.0 T hrough implementation of the “Increasing Small Business

  14. Picking the Bone: The B-1 Bomber as a Platform for Innovation

    DTIC Science & Technology

    2010-06-01

    light of the U-2 shoot down and developing missile technology, the LAMPS design name indicated a shift in Air Force requirements, demanding a bomber...in light of growing concerns over the changing global situation and increasing strategic capabilities in the Soviet Union. The latest studies...the engagement and targeting enemy military forces during a regional conventional conflict.1 In light of this vision for future warfare, General

  15. Securing the High Ground: Dominant Combat Air Force for America. 2008 Combat Air Force Strategic Plan

    DTIC Science & Technology

    2008-07-28

    continue to be beyond our technical ability to realize aggresively pursue advanced technical solutions to stay at the leading edge of technological...inherent to each caf Way and to seek continual improvement through exploration of innovative concepts, advanced capabilities, game -changing...available online at the air force portal: https://wwwd.my.af.mil/afknprod/strat_plan COMBAT AIR FORCE STRATEGIC PLAN Points of Contact securing the high

  16. Manufacturing Methods and Technology Program Plan, CY 1980.

    DTIC Science & Technology

    1980-09-01

    AD-A092 2Ii3 &RMY INDUSTRIAL BASE ENGINEERING ACTIVITY ROCK ISLAND IL FIG 1346 ..ANIJPACTRItd METH4OS AND TECNOLOGY PROGRAM PLAN. CY 1960. (U) %EP 60... innovative solutions. For example, material handling, process tools and inspection systems must be computerized to achieve the desired operating economics and...to decrease expensive direct labor; however, the new systems must also be capable of economic layaway for periods of ten years or more, a situation

  17. Sigint for Anyone: The Growing Availability of Signals Intelligence in the Public Domain

    DTIC Science & Technology

    2017-01-01

    this opinion today. We tested this viewpoint by conducting a market scan to seek examples of how new technologies, innovations, and behaviors are...future to understand the capabilities each provides, which audience or market each serves, and what implications each may have for government policy...effects. Finally, we identified areas for future study for U.S. and allied government leaders to respond to these changes. During our market scan, we

  18. American export control, technology spillover and innovation of Chinese pharmaceutical Industry.

    PubMed

    Hui, Jiang

    2017-05-01

    This paper was aimed to analyze whether the U.S. strict export control to China affects the technological innovation of Chinese pharmaceutical industry. This paper selected the data of technological innovation and the expenditure of high and new technology adoption in China's pharmaceutical industry from 1995 to 2014, created panel regression model to study the impact of export controls on technology spillovers and the impact of technology spillovers on innovation capacity. The results show that US export control has a significant impact on technology spillovers, but foreign technology spillovers have no significant impact on the innovation of Chinese pharmaceutical industry. Although the US export control prevented foreign technology spillovers to China, but indirectly stimulated the domestic technology spillovers to pharmaceutical manufacturing industry in China. Statistical analysis show that the correlation coefficient between innovation capacity and expenditure for high technology adoption is not significant, but the expenditure of purchasing domestic technical is essential to pharmaceutical innovation. This study shows that US export control indirectly, not directly, affected the technological innovation of China's pharmaceutical industry, affected the allocation of innovative resources, but failed to prevent the technological progress and competitiveness improvement of Chinese pharmaceutical industry.

  19. Autonomous flight and remote site landing guidance research for helicopters

    NASA Technical Reports Server (NTRS)

    Denton, R. V.; Pecklesma, N. J.; Smith, F. W.

    1987-01-01

    Automated low-altitude flight and landing in remote areas within a civilian environment are investigated, where initial cost, ongoing maintenance costs, and system productivity are important considerations. An approach has been taken which has: (1) utilized those technologies developed for military applications which are directly transferable to a civilian mission; (2) exploited and developed technology areas where new methods or concepts are required; and (3) undertaken research with the potential to lead to innovative methods or concepts required to achieve a manual and fully automatic remote area low-altitude and landing capability. The project has resulted in a definition of system operational concept that includes a sensor subsystem, a sensor fusion/feature extraction capability, and a guidance and control law concept. These subsystem concepts have been developed to sufficient depth to enable further exploration within the NASA simulation environment, and to support programs leading to the flight test.

  20. KSC-2011-8117

    NASA Image and Video Library

    2011-12-01

    CAPE CANAVERAL, Fla. -- This is an artist's conception of the Dragon capsule under development by Space Exploration Technologies (SpaceX) of Hawthorne, Calif., for NASA's Commercial Crew Program (CCP). In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 (CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. (ATK), The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance (ULA). For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  1. KSC-2012-1826

    NASA Image and Video Library

    2012-01-30

    HAWTHORNE, Calif. -- NASA astronaut Rex Walheim checks out the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  2. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM: INNOVATION MAKING A DIFFERENCE

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program encourages commercialization of innovative technologies for characterizing and remediating hazardous waste site contamination through four components: Demonstration, Emerging Technology, and Monitoring & Measurement Pr...

  3. Contract Research Organizations (CROs) in China: integrating Chinese research and development capabilities for global drug innovation.

    PubMed

    Shi, Yun-Zhen; Hu, Hao; Wang, Chunming

    2014-11-19

    The significance of R&D capabilities of China has become increasingly important as an emerging force in the context of globalization of pharmaceutical research and development (R&D). While China has prospered in its R&D capability in the past decade, how to integrate the rising pharmaceutical R&D capability of China into the global development chain for innovative drugs remains challenging. For many multinational corporations and research organizations overseas, their attempt to integrate China's pharmaceutical R&D capabilities into their own is always hindered by policy constraints and reluctance of local universities and pharmaceutical firms. In light of the situation, contract research organizations (CROs) in China have made great innovation in value proposition, value chain and value networking to be at a unique position to facilitate global and local R&D integration. Chinese CROs are now being considered as the essentially important and highly versatile integrator of local R&D capability for global drug discovery and innovation.

  4. The use of smart technologies in enabling construction components reuse: A viable method or a problem creating solution?

    PubMed

    Iacovidou, Eleni; Purnell, Phil; Lim, Ming K

    2018-06-15

    The exploitation of Radio Frequency Identification (RFID) for tracking and archiving the properties of structural construction components could be a potentially innovative disruption for the construction sector. This is because RFID can stimulate the reuse of construction components and reduce their wastage, hence addressing sustainability issues in the construction sector. To test the plausibility of that idea, this study explores the potential pre-conditions for RFID to facilitate construction components reuse, and develops a guidance for promoting their redistribution back to the supply chain. It also looks at how integrating RFID with Building Information Modelling (BIM) can possibly be a valuable extension of its capabilities, providing the opportunity for tracked components to be incorporated into new structures in an informed, sound way. A preliminary assessment of the strengths, weaknesses, opportunities and threats of the RFID technology is presented in order to depict its current and future potential in promoting construction components' sustainable lifecycle management, while emphasis has been laid on capturing their technical, environmental, economic and social value. Findings suggest that the collection of the right amount of information at the design-construction-deconstruction-reuse-disposal stage is crucial for RFID to become a successful innovation in the construction sector. Although a number of limitations related to the technical operability and recycling of RFID tags seem to currently hinder its uptake for structural components' lifecycle management, future technological innovations could provide solutions that would enable it to become a mainstream practice. Taken together these proposals advocate that the use of RFID and its integration with BIM can create the right environment for the development of new business models focused on sustainable resource management. These models may then unlock multiple values that are otherwise dissipated in the system. If the rapid technological development of RFID capability can be allied to policy interventions that control and manage its uptake along the supply chain, the sustainable lifecycle management of construction components could be radically enhanced. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Incorporating digital imaging into dental hygiene practice.

    PubMed

    Saxe, M J; West, D J

    1997-01-01

    The objective of this paper is to describe digital imaging technology: available modalities, scientific imaging process, advantages and limitations, and applications to dental hygiene practice. Advances in technology have created innovative imaging modalities for intraoral radiography that eliminate film as the traditional image receptor. Digital imaging generates instantaneous radiographic images on a display monitor following exposure. Advantages include lower patient exposure per image and elimination of film processing. Digital imaging enhances diagnostic capabilities and, therefore, treatment decisions by the oral healthcare provider. Utilization of digital imaging technology for intraoral radiography will advance the practice of dental hygiene. Although spatial resolution is inferior to conventional film, digital imaging provides adequate resolution to diagnose oral diseases. Dental hygienists must evaluate new technologies in radiography to continue providing quality care while reducing patient exposure to ionizing radiation.

  6. Research on the Mode of Technology Innovation Alliance of the New Material Industry in Hunan Province

    NASA Astrophysics Data System (ADS)

    Wang, Fan

    2018-03-01

    One of the main directions of technology development in the 21st century is the development and application of new materials, and the key to the development of the new material industry lies in the industrial technology innovation. The gross scale of the new material industry in Hunan Province ranks the first array in China. Based on the present situation of Hunan’s new material industry, three modes of technology innovation alliance are put forward in this paper, namely the government-driven mode, the research-driven and the market-oriented mode. The government-driven mode is applicable to the major technology innovation fields with uncertain market prospect, high risk of innovation and government’s direct or indirect intervention;the research-driven mode is applicable to the key technology innovation fields with a high technology content; and the market-oriented mode is applicable to the general innovation fields in which enterprises have demands for technology innovation but such innovation must be achieved via cooperative research and development.

  7. Tactical Satellite 3

    NASA Astrophysics Data System (ADS)

    Davis, T. M.; Straight, S. D.; Lockwook, R. B.

    2008-08-01

    Tactical Satellite 3 is an Air Force Research Laboratory Science and Technology (S&T) initiative that explores the capability and technological maturity of small, low-cost satellites. It features a low cost "plug and play" modular bus and low cost militarily significant payloads - a Raytheon developed Hyperspectral imager and secondary payload data exfiltration provided by the Office of Naval Research. In addition to providing for ongoing innovation and demonstration in this important technology area, these S&T efforts also help mitigate technology risk and establish a potential concept of operations for future acquisitions. The key objectives are rapid launch and on-orbit checkout, theater commanding, and near-real time theater data integration. It will also feature a rapid development of the space vehicle and integrated payload and spacecraft bus by using components and processes developed by the satellite modular bus initiative. Planned for a late summer 2008 launch, the TacSat-3 spacecraft will collect and process images and then downlink processed data using a Common Data Link. An in-theater tactical ground station will have the capability to uplink tasking to spacecraft and will receive full data image. An international program, the United Kingdom Defence Science and Technology Laboratory (DSTL) and Australian Defence Science and Technology Organisation (DSTO) plan to participate in TacSat-3 experiments.

  8. Health Monitoring System Technology Assessments: Cost Benefits Analysis

    NASA Technical Reports Server (NTRS)

    Kent, Renee M.; Murphy, Dennis A.

    2000-01-01

    The subject of sensor-based structural health monitoring is very diverse and encompasses a wide range of activities including initiatives and innovations involving the development of advanced sensor, signal processing, data analysis, and actuation and control technologies. In addition, it embraces the consideration of the availability of low-cost, high-quality contributing technologies, computational utilities, and hardware and software resources that enable the operational realization of robust health monitoring technologies. This report presents a detailed analysis of the cost benefit and other logistics and operational considerations associated with the implementation and utilization of sensor-based technologies for use in aerospace structure health monitoring. The scope of this volume is to assess the economic impact, from an end-user perspective, implementation health monitoring technologies on three structures. It specifically focuses on evaluating the impact on maintaining and supporting these structures with and without health monitoring capability.

  9. ENABLING SMART MANUFACTURING TECHNOLOGIES FOR DECISION-MAKING SUPPORT

    PubMed Central

    Helu, Moneer; Libes, Don; Lubell, Joshua; Lyons, Kevin; Morris, KC

    2017-01-01

    Smart manufacturing combines advanced manufacturing capabilities and digital technologies throughout the product lifecycle. These technologies can provide decision-making support to manufacturers through improved monitoring, analysis, modeling, and simulation that generate more and better intelligence about manufacturing systems. However, challenges and barriers have impeded the adoption of smart manufacturing technologies. To begin to address this need, this paper defines requirements for data-driven decision making in manufacturing based on a generalized description of decision making. Using these requirements, we then focus on identifying key barriers that prevent the development and use of data-driven decision making in industry as well as examples of technologies and standards that have the potential to overcome these barriers. The goal of this research is to promote a common understanding among the manufacturing community that can enable standardization efforts and innovation needed to continue adoption and use of smart manufacturing technologies. PMID:28649678

  10. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitrization of DOD Stockpiles

    NASA Technical Reports Server (NTRS)

    Smith, Ed; Dee, P. E.; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the US Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development towards establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill disposal. The emerging plasma environmental thermal treatment process has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: (1) pyrotechnic smoke assemblies, (2) thermal batteries, (3) proximity fuses, (4) cartridge actuated devices (CADs), and (5) propellant actuated devices (PADs). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilotscale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  11. Demonstration of Plasma Arc Environmental Technology Applications for the Demilitarization of DOD Stockpiles

    NASA Technical Reports Server (NTRS)

    Smith, Ed; Zaghloul, Hany; Filius, Krag; Rivers, Tim

    2000-01-01

    Since 1989 the U.S. Army Construction Engineering Research Laboratories (USACERL) have been active participants in the research and development toward establishing Plasma Arc Technology (PAT) as an efficient, economical, and safe hazardous waste immobilization tool. A plasma torch capable of generating high temperatures makes this technology a viable and powerful tool for the thermal destruction of various military industrial waste streams into an innocuous ceramic material no longer requiring hazardous waste landfill (Class 1) disposal. The emerging pl asma environmental thermal treatment process, has been used to safely and efficiently meet the waste disposal needs for various demilitarized components disposal needs, such as: pyrotechnic smoke assemblies, thermal batteries, proximity fuses, cartridge actuated devices (CAD's), and propellant actuated devices (PAD's). MSE Technology Applications, Inc., (MSE) has proposed and fabricated a Mobile Plasma Treatment System to be a technology demonstrator for pilot-scale mobile plasma waste processing. The system is capable of providing small-scale waste remediation services, and conducting waste stream applicability demonstrations. The Mobile Plasma Treatment System's innovative concept provides the flexibility to treat waste streams at numerous sites and sites with only a limited quantity of waste, yet too hazardous to transport to a regional fixed facility. The system was designed to be operated as skid mounted modules; consisting of a furnace module, controls module, offgas module, and ancillary systems module. All system components have been integrated to be operated from a single control station with both semi-continuous feeding and batch slag-pouring capability.

  12. Innovative Technologies for Efficient Pharmacotherapeutic Management in Space

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Daniels, Vernie

    2014-01-01

    Current and future Space exploration missions and extended human presence in space aboard the ISS will expose crew to risks that differ both quantitatively and qualitatively from those encountered before by space travelers and will impose an unknown risk of safety and crew health. The technology development challenges for optimizing therapeutics in space must include the development of pharmaceuticals with extended stability, optimal efficacy and bioavailability with minimal toxicity and side effects. Innovative technology development goals may include sustained/chronic delivery preventive health care products and vaccines, low-cost high-efficiency noninvasive, non-oral dosage forms with radio-protective formulation matrices and dispensing technologies coupled with self-reliant tracking technologies for quality assurance and quality control assessment. These revolutionary advances in pharmaceutical technology will assure human presence in space and healthy living on Earth. Additionally, the Joint Commission on Accreditation of Healthcare Organizations advocates the use of health information technologies to effectively execute all aspects of medication management (prescribing, dispensing, and administration). The advent of personalized medicine and highly streamlined treatment regimens stimulated interest in new technologies for medication management. Intelligent monitoring devices enhance medication accountability compliance, enable effective drug use, and offer appropriate storage and security conditions for dangerous drug and controlled substance medications in remote sites where traditional pharmacies are unavailable. These features are ideal for Exploration Medical Capabilities. This presentation will highlight current novel commercial off-the-shelf (COTS) intelligent medication management devices for the unique dispensing, therapeutic drug monitoring, medication tracking, and drug delivery demands of exploration space medical operations.

  13. 75 FR 28782 - Extension of Period for Nominations to the National Medal of Technology and Innovation Nomination...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-24

    ... innovation and/or be familiar with the education, training, employment and management of technological... Innovations/Bioengineering and Biomedical Technology; Technology Management/Computing/IT/Manufacturing...] Extension of Period for Nominations to the National Medal of Technology and Innovation Nomination Evaluation...

  14. National Strategies for Technological Innovation

    ERIC Educational Resources Information Center

    Rossini, Frederick; Bozeman, Barry

    1977-01-01

    Considers the implications of the technological innovation literature for possible national strategies for innovation. Sketches highly generalized innovation strategies for nations at various levels of technological development. (Author/IRT)

  15. The Research Plan: Closing the ExMC Med02 "Pharmacy" Gap

    NASA Technical Reports Server (NTRS)

    Daniels, Vernie; Bayuse, Tina; Mulcahy, Robert; Shah, Ronak; Antonsen, Erik

    2017-01-01

    HRP Human Research Roadmap: Risk and Gap Risk of Adverse Health Outcomes and Decrements in Performance due to Inflight Medical Conditions. Med02 "Pharmacy" Gap: We do not have the capability to provide a safe and effective medication formulary for exploration missions delivering a recommendation for a chemically stable, safe, and effective medication formulary that will support the operational needs of exploration space missions research strategy evidence-based formulary and models innovative analytical tools and methodologies novel treatments and preventive measures Planned review by a panel of experts from the pharmaceutical industry, regulatory, and academic scientific communities Formulary Selection Formulary Potency and Shelf life Formulary Safety and Toxicity Novel Technology Proof-of-Concept Portable real-time chemical analysis Innovative drug development / design

  16. The continual innovation of commercial PET/CT solutions in nuclear cardiology: Siemens Healthineers.

    PubMed

    Bendriem, Bernard; Reed, Jessie; McCullough, Kathryn; Khan, Mohammad Raza; Smith, Anne M; Thomas, Damita; Long, Misty

    2018-04-10

    Cardiac PET/CT is an evolving, non-invasive imaging modality that impacts patient management in many clinical scenarios. Beyond offering the capability to assess myocardial perfusion, inflammatory cardiac pathologies, and myocardial viability, cardiac PET/CT also allows for the non-invasive quantitative assessment of myocardial blood flow (MBF) and myocardial flow reserve (MFR). Recognizing the need for an enhanced comprehension of coronary physiology, Siemens Healthineers implemented a sophisticated solution for the calculation of MBF and MFR in 2009. As a result, each aspect of their innovative scanner and image-processing technology seamlessly integrates into an efficient, easy-to-use workflow for everyday clinical use that maximizes the number of patients who potentially benefit from this imaging modality.

  17. Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight Research

    NASA Technical Reports Server (NTRS)

    Miller, Christopher

    2014-01-01

    At the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST vehicle is a flexible laboratory for nascent technologies that would benefit from early life cycle flight research data It provides a robust and safe environment where innovative techniques can be explored in a fly-fix-fly rapid prototyping paradigm IRAC Simple adaptive control technologies can provide real benefits without undo complexity Adverse pilot/adaptive system interactions can be mitigated and tools have been developed to evaluate those interactions ICP Substantial fuel savings can be achieved over a broad range of vehicles and configurations with intelligent control solutions LVAC The AAC design is robust and effective for the SLS mission, and promises to provide benefits to other platforms as well OCLA Hopefully will show that structural feedback can be seamlessly integrated with performance and stability objectives All of these control technologies have been implemented into the same baseline control law and could be combined into one control solution that answers many pressing questions for modern vehicle configurations

  18. Survey of WBSNs for Pre-Hospital Assistance: Trends to Maximize the Network Lifetime and Video Transmission Techniques

    PubMed Central

    Gonzalez, Enrique; Peña, Raul; Vargas-Rosales, Cesar; Avila, Alfonso; Perez-Diaz de Cerio, David

    2015-01-01

    This survey aims to encourage the multidisciplinary communities to join forces for innovation in the mobile health monitoring area. Specifically, multidisciplinary innovations in medical emergency scenarios can have a significant impact on the effectiveness and quality of the procedures and practices in the delivery of medical care. Wireless body sensor networks (WBSNs) are a promising technology capable of improving the existing practices in condition assessment and care delivery for a patient in a medical emergency. This technology can also facilitate the early interventions of a specialist physician during the pre-hospital period. WBSNs make possible these early interventions by establishing remote communication links with video/audio support and by providing medical information such as vital signs, electrocardiograms, etc. in real time. This survey focuses on relevant issues needed to understand how to setup a WBSN for medical emergencies. These issues are: monitoring vital signs and video transmission, energy efficient protocols, scheduling, optimization and energy consumption on a WBSN. PMID:26007741

  19. Peer Review and Surgical Innovation: Robotic Surgery and Its Hurdles.

    PubMed

    Vyas, Dinesh; Cronin, Sean

    2015-12-01

    The peer review processes as outlined in the Health Care Quality Improvement Act (HCQIA) is meant ensure quality standard of care through a self-policing mechanism by the medical community. This process grants immunity for people filing a peer review, which is meant to protect whistleblowers. However, it also creates a loophole that can be used maliciously to hinder competition. This is accentuated when surgeons are integrating new technologies, such as robotic surgery, into their practice. With more than 2000 da Vinci robots in use and more than 300 new units being shipped each year, robotic surgery has become a mainstay in the surgical field. The applications for robots continue to expand as surgeons discover their expanding capability. We need a better peer review process. That ensures the peer review is void of competitive bias. Peer reviewers need to be familiar with the procedure and the technology. The current process could stymie innovation in the name of competition.

  20. Research and technology, 1991. Langley Research Center

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The mission of the NASA Langley Research Center is to increase the knowledge and capability of the United States in a full range of aeronautics disciplines and in selected space disciplines. This mission will be accomplished by performing innovative research relevant to national needs and Agency goals, transferring technology to users in a timely manner, and providing development support to other United States Government agencies, industry, and other NASA centers. Highlights are given of the major accomplishments and applications that have been made during the past year. The highlights illustrate both the broad range of the research and technology (R&T) activities at NASA Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research.

  1. Opportunities for development of advanced large cargo aircraft

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1976-01-01

    A critical review of the history, current state of the art, and future prospects for cargo aircraft systems indicates that three of the major advantages of air cargo are rapid delivery, ability to bridge geographical boundaries, and capability to provide a flexible market response. Foreseeable advances in large aircraft development offer even greater profit potential by increasing the payload ton-miles per pound of fuel. Intermodal containers and handling systems and computerized control and billing may be key ingredients. Details of a NASA program for large aircraft systems technology are outlined, which includes systems studies, research and technology investigations, and determination of the need for critical flight experiments. Innovative advanced technologies and configuration concepts are discussed. Numerous illustrations supplement the text.

  2. Smart Sensors Assess Structural Health

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA frequently inspects launch vehicles, fuel tanks, and other components for structural damage. To perform quick evaluation and monitoring, the Agency pursues the development of structural health monitoring systems. In 2001, Acellent Technologies Inc., of Sunnyvale, California, received Small Business Innovation Research (SBIR) funding from Marshall Space Flight Center to develop a hybrid Stanford Multi-Actuator Receiver Transduction (SMART) Layer for aerospace vehicles and structures. As a result, Acellent expanded the technology's capability and now sells it to aerospace and automotive companies; construction, energy, and utility companies; and the defense, space, transportation, and energy industries for structural condition monitoring, damage detection, crack growth monitoring, and other applications.

  3. HERA: A New Platform for Embedding Agents in Heterogeneous Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Alonso, Ricardo S.; de Paz, Juan F.; García, Óscar; Gil, Óscar; González, Angélica

    Ambient Intelligence (AmI) based systems require the development of innovative solutions that integrate distributed intelligent systems with context-aware technologies. In this sense, Multi-Agent Systems (MAS) and Wireless Sensor Networks (WSN) are two key technologies for developing distributed systems based on AmI scenarios. This paper presents the new HERA (Hardware-Embedded Reactive Agents) platform, that allows using dynamic and self-adaptable heterogeneous WSNs on which agents are directly embedded on the wireless nodes This approach facilitates the inclusion of context-aware capabilities in AmI systems to gather data from their surrounding environments, achieving a higher level of ubiquitous and pervasive computing.

  4. Robotic hair restoration.

    PubMed

    Rose, Paul T; Nusbaum, Bernard

    2014-01-01

    The latest innovation to hair restoration surgery has been the introduction of a robotic system for harvesting grafts. This system uses the follicular unit extraction/follicular isolation technique method for harvesting follicular units, which is particularly well suited to the abilities of a robotic technology. The ARTAS system analyzes images of the donor area and then a dual-chamber needle and blunt dissecting punch are used to harvest the follicular units. The robotic technology is now being used in various locations around the world. This article discusses the use of the robotic system, its capabilities, and the advantages and disadvantages of the system. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Environments for online maritime simulators with cloud computing capabilities

    NASA Astrophysics Data System (ADS)

    Raicu, Gabriel; Raicu, Alexandra

    2016-12-01

    This paper presents the cloud computing environments, network principles and methods for graphical development in realistic naval simulation, naval robotics and virtual interactions. The aim of this approach is to achieve a good simulation quality in large networked environments using open source solutions designed for educational purposes. Realistic rendering of maritime environments requires near real-time frameworks with enhanced computing capabilities during distance interactions. E-Navigation concepts coupled with the last achievements in virtual and augmented reality will enhance the overall experience leading to new developments and innovations. We have to deal with a multiprocessing situation using advanced technologies and distributed applications using remote ship scenario and automation of ship operations.

  6. Business Process Management

    NASA Astrophysics Data System (ADS)

    Hantry, Francois; Papazoglou, Mike; van den Heuvel, Willem-Jan; Haque, Rafique; Whelan, Eoin; Carroll, Noel; Karastoyanova, Dimka; Leymann, Frank; Nikolaou, Christos; Lammersdorf, Winfried; Hacid, Mohand-Said

    Business process management is one of the core drivers of business innovation and is based on strategic technology and capable of creating and successfully executing end-to-end business processes. The trend will be to move from relatively stable, organization-specific applications to more dynamic, high-value ones where business process interactions and trends are examined closely to understand more accurately an application's requirements. Such collaborative, complex end-to-end service interactions give rise to the concept of Service Networks (SNs).

  7. Small Business Innovations (Automated Information)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Bruce G. Jackson & Associates Document Director is an automated tool that combines word processing and database management technologies to offer the flexibility and convenience of text processing with the linking capability of database management. Originally developed for NASA, it provides a means to collect and manage information associated with requirements development. The software system was used by NASA in the design of the Assured Crew Return Vehicle, as well as by other government and commercial organizations including the Southwest Research Institute.

  8. Innovative research in the design and operation of large telescopes for space: Aspects of giant telescopes in space

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.

    1985-01-01

    The capability and understanding of how to finish the reflector surfaces needed for large space telescopes is discussed. The technology for making very light glass substrates for mirrors is described. Other areas of development are in wide field imaging design for very fast primaries, in data analysis and retrieval methods for astronomical images, and in methods for making large area closely packed mosaics of solid state array detectors.

  9. A Future With The United States Air Force Advanced Maintenance And Munitions Operations School: Securing Strategic Agility Through 2036

    DTIC Science & Technology

    2016-06-01

    SCIENCES Advisor: Dr. Paul J. Springer Maxwell Air Force Alabama August 2015 / June 2016 DISTRIBUTION A. Approved for public release...experienced rapid changes in the way the Service performs its roles to best complement our nation’s warfighting capability. Fueled by technology, innovation ...requires foresight and a level of organization and training that is ready to operate in environments which are heavily contested, degraded, and

  10. Precision Medicine-Nobody Is Average.

    PubMed

    Vinks, A A

    2017-03-01

    Medicine gets personal and tailor-made treatments are underway. Hospitals have started to advertise their advanced genomic testing capabilities and even their disruptive technologies to help foster a culture of innovation. The prediction in the lay press is that in decades from now we may look back and see 2017 as the year precision medicine blossomed. It is all part of the Precision Medicine Initiative that takes into account individual differences in people's genes, environments, and lifestyles. © 2017 ASCPT.

  11. Modeling operation of mechanism of holistic management of technological processes at enterprise

    NASA Astrophysics Data System (ADS)

    Igorevich Shanin, Igor; Aleksandrovna Boris, Olga

    2018-03-01

    Enterprises applying modeling and technological process management approaches represent a sector of a new innovative economic system. First of all, they are innovators using innovative proposals and various resources to solve practical problems. Their work leads to balanced positive technological changes. In other words, they constitute industrial entrepreneurship with innovative goals and vice versa - innovative entrepreneurship with industrial objectives. It should be noted that the mechanism of holistic management of technological processes at the enterprise combines a traditional industrial organization of production, an innovative and technological enterprise. The enterprise borrows industrial targets from the latter one, an innovative component - from innovative activity and entrepreneurial approaches to holistic management - from a commercial firm.

  12. Concise Review: Microfluidic Technology Platforms: Poised to Accelerate Development and Translation of Stem Cell-Derived Therapies

    PubMed Central

    Titmarsh, Drew M.; Chen, Huaying; Glass, Nick R.; Cooper-White, Justin J.

    2014-01-01

    Stem cells are a powerful resource for producing a variety of cell types with utility in clinically associated applications, including preclinical drug screening and development, disease and developmental modeling, and regenerative medicine. Regardless of the type of stem cell, substantial barriers to clinical translation still exist and must be overcome to realize full clinical potential. These barriers span processes including cell isolation, expansion, and differentiation; purification, quality control, and therapeutic efficacy and safety; and the economic viability of bioprocesses for production of functional cell products. Microfluidic systems have been developed for a myriad of biological applications and have the intrinsic capability of controlling and interrogating the cellular microenvironment with unrivalled precision; therefore, they have particular relevance to overcoming such barriers to translation. Development of microfluidic technologies increasingly utilizes stem cells, addresses stem cell-relevant biological phenomena, and aligns capabilities with translational challenges and goals. In this concise review, we describe how microfluidic technologies can contribute to the translation of stem cell research outcomes, and we provide an update on innovative research efforts in this area. This timely convergence of stem cell translational challenges and microfluidic capabilities means that there is now an opportunity for both disciplines to benefit from increased interaction. PMID:24311699

  13. Current Capabilities at SNL for the Integration of Small Modular Reactors onto Smart Microgrids Using Sandia's Smart Microgrid Technology High Performance Computing and Advanced Manufacturing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, Salvador B.

    Smart grids are a crucial component for enabling the nation’s future energy needs, as part of a modernization effort led by the Department of Energy. Smart grids and smart microgrids are being considered in niche applications, and as part of a comprehensive energy strategy to help manage the nation’s growing energy demands, for critical infrastructures, military installations, small rural communities, and large populations with limited water supplies. As part of a far-reaching strategic initiative, Sandia National Laboratories (SNL) presents herein a unique, three-pronged approach to integrate small modular reactors (SMRs) into microgrids, with the goal of providing economically-competitive, reliable, andmore » secure energy to meet the nation’s needs. SNL’s triad methodology involves an innovative blend of smart microgrid technology, high performance computing (HPC), and advanced manufacturing (AM). In this report, Sandia’s current capabilities in those areas are summarized, as well as paths forward that will enable DOE to achieve its energy goals. In the area of smart grid/microgrid technology, Sandia’s current computational capabilities can model the entire grid, including temporal aspects and cyber security issues. Our tools include system development, integration, testing and evaluation, monitoring, and sustainment.« less

  14. 75 FR 8043 - National Medal of Technology and Innovation Nomination Evaluation Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Nation's highest honor for technological innovation, awarded annually by the President of the United... utilizing technological innovation and/or be familiar with the education, training, employment and.../Manufacturing Innovation; Technological Manpower/Workforce Training/Education. Committee members generally are...

  15. 76 FR 80901 - National Medal of Technology and Innovation Nomination Evaluation Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-27

    ... Nation's highest honor for technological innovation, awarded annually by the President of the United... utilizing technological innovation and/or be familiar with the education, training, employment and... Management/Computing/IT/Manufacturing Innovation; Technological Manpower/Workforce Training/Education. Under...

  16. Integrating the Development of Continuous Improvement and Innovation Capabilities into Engineering Education

    ERIC Educational Resources Information Center

    Jorgensen, Frances; Kofoed, Lise Busk

    2007-01-01

    In this paper, a study is presented in which engineering students at a Danish university developed Continuous Improvement (CI) and innovation capabilities through action research and experiential learning methods. The paper begins with a brief overview of the literature on CI and innovation, followed by an account of how the students designed and…

  17. H3Africa and the African life sciences ecosystem: building sustainable innovation.

    PubMed

    Dandara, Collet; Huzair, Farah; Borda-Rodriguez, Alexander; Chirikure, Shadreck; Okpechi, Ikechi; Warnich, Louise; Masimirembwa, Collen

    2014-12-01

    Interest in genomics research in African populations is experiencing exponential growth. This enthusiasm stems in part from the recognition that the genomic diversity of African populations is a window of opportunity for innovations in postgenomics medicine, ecology, and evolutionary biology. The recently launched H3Africa initiative, for example, captures the energy and momentum of this interest. This interdisciplinary socio-technical analysis highlights the challenges that have beset previous genomics research activities in Africa, and looking ahead, suggests constructive ways H3Africa and similar large scale science efforts could usefully chart a new era of genomics and life sciences research in Africa that is locally productive and globally competitive. As independent African scholars and social scientists, we propose that any serious global omics science effort, including H3Africa, aiming to build genomics research capacity and capability in Africa, needs to fund the establishment of biobanks and the genomic analyses platforms within Africa. Equally they need to prioritize community engagement and bioinformatics capability and the training of African scientists on these platforms. Historically, the financial, technological, and skills imbalance between Africa and developed countries has created exploitative frameworks of collaboration where African researchers have become merely facilitators of Western funded and conceived research agendas involving offshore expatriation of samples. Not surprisingly, very little funding was allocated to infrastructure and human capital development in the past. Moving forward, capacity building should materialize throughout the entire knowledge co-production trajectory: idea generation (e.g., brainstorming workshops for innovative hypotheses development by African scientists), data generation (e.g., genome sequencing), and high-throughput data analysis and contextualization. Additionally, building skills for political science scholarship that questions the unchecked assumptions of the innovation performers be they funders, scientists, and social scientists, would enable collective innovation that is truly sustainable, ethical, and robust.

  18. Software Defined Radios - Architectures, Systems and Functions

    NASA Technical Reports Server (NTRS)

    Sims, Herb

    2017-01-01

    Software Defined Radio (SDR) technology has been proven in the commercial sector since the early 90's. Today's rapid advancement in mobile telephone reliability and power management capabilities exemplifies the effectiveness of the SDR technology for the modern communications market. SDR technology offers potential to revolutionize satellite transponder technology by increasing science data through-put capability by at least an order of magnitude. While the SDR is adaptive in nature and is "One-size-fits-all" by design, conventional transponders are built to a specific platform and must be redesigned for every new bus. The SDR uses a minimum amount of analog/Radio Frequency (RF) components to up/down-convert the RF signal to/from a digital format. Once analog data is digitized, all processing is performed using hardware logic. Typical SDR processes include; filtering, modulation, up/down converting and demodulation. These innovations have reduced the cost of transceivers, a decrease in power requirements and a commensurate reduction in volume. An additional pay-off is the increased flexibility of the SDR: allowing the same hardware to implement multiple transponder types by altering hardware logic -no change of analog hardware is required -all of which can be ultimately accomplished in orbit.

  19. The Soldier Fitness Tracker: global delivery of Comprehensive Soldier Fitness.

    PubMed

    Fravell, Mike; Nasser, Katherine; Cornum, Rhonda

    2011-01-01

    Carefully implemented technology strategies are vital to the success of large-scale initiatives such as the U.S. Army's Comprehensive Soldier Fitness (CSF) program. Achieving the U.S. Army's vision for CSF required a robust information technology platform that was scaled to millions of users and that leveraged the Internet to enable global reach. The platform needed to be agile, provide powerful real-time reporting, and have the capacity to quickly transform to meet emerging requirements. Existing organizational applications, such as "Single Sign-On," and authoritative data sources were exploited to the maximum extent possible. Development of the "Soldier Fitness Tracker" is the most recent, and possibly the best, demonstration of the potential benefits possible when existing organizational capabilities are married to new, innovative applications. Combining the capabilities of the extant applications with the newly developed applications expedited development, eliminated redundant data collection, resulted in the exceeding of program objectives, and produced a comfortable experience for the end user, all in less than six months. This is a model for future technology integration. (c) 2010 APA, all rights reserved.

  20. The future challenge for aeropropulsion

    NASA Technical Reports Server (NTRS)

    Rosen, Robert; Bowditch, David N.

    1992-01-01

    NASA's research in aeropropulsion is focused on improving the efficiency, capability, and environmental compatibility for all classes of future aircraft. The development of innovative concepts, and theoretical, experimental, and computational tools provide the knowledge base for continued propulsion system advances. Key enabling technologies include advances in internal fluid mechanics, structures, light-weight high-strength composite materials, and advanced sensors and controls. Recent emphasis has been on the development of advanced computational tools in internal fluid mechanics, structural mechanics, reacting flows, and computational chemistry. For subsonic transport applications, very high bypass ratio turbofans with increased engine pressure ratio are being investigated to increase fuel efficiency and reduce airport noise levels. In a joint supersonic cruise propulsion program with industry, the critical environmental concerns of emissions and community noise are being addressed. NASA is also providing key technologies for the National Aerospaceplane, and is studying propulsion systems that provide the capability for aircraft to accelerate to and cruise in the Mach 4-6 speed range. The combination of fundamental, component, and focused technology development underway at NASA will make possible dramatic advances in aeropropulsion efficiency and environmental compatibility for future aeronautical vehicles.

  1. 78 FR 90 - National Medal of Technology and Innovation Call for 2013 Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-02

    ... Medal highlights the national importance of fostering technological innovation resulting in commercially...] National Medal of Technology and Innovation Call for 2013 Nominations AGENCY: United States Patent and... Medal of Technology and Innovation (NMTI). Since establishment by Congress in the Stevenson-Wydler...

  2. 40 CFR 35.908 - Innovative and alternative technologies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Innovative and alternative technologies... § 35.908 Innovative and alternative technologies. (a) Policy. EPA's policy is to encourage and, where possible, to assist in the development of innovative and alternative technologies for the construction of...

  3. 40 CFR 35.908 - Innovative and alternative technologies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Innovative and alternative technologies... § 35.908 Innovative and alternative technologies. (a) Policy. EPA's policy is to encourage and, where possible, to assist in the development of innovative and alternative technologies for the construction of...

  4. 40 CFR 35.908 - Innovative and alternative technologies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Innovative and alternative technologies... § 35.908 Innovative and alternative technologies. (a) Policy. EPA's policy is to encourage and, where possible, to assist in the development of innovative and alternative technologies for the construction of...

  5. 40 CFR 35.908 - Innovative and alternative technologies.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Innovative and alternative technologies... § 35.908 Innovative and alternative technologies. (a) Policy. EPA's policy is to encourage and, where possible, to assist in the development of innovative and alternative technologies for the construction of...

  6. 40 CFR 35.908 - Innovative and alternative technologies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Innovative and alternative technologies... § 35.908 Innovative and alternative technologies. (a) Policy. EPA's policy is to encourage and, where possible, to assist in the development of innovative and alternative technologies for the construction of...

  7. A Community-Based Approach to Leading the Nation in Smart Energy Use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2013-12-31

    Project Objectives The AEP Ohio gridSMART® Demonstration Project (Project) achieved the following objectives: • Built a secure, interoperable, and integrated smart grid infrastructure in northeast central Ohio that demonstrated the ability to maximize distribution system efficiency and reliability and consumer use of demand response programs that reduced energy consumption, peak demand, and fossil fuel emissions. • Actively attracted, educated, enlisted, and retained consumers in innovative business models that provided tools and information reducing consumption and peak demand. • Provided the U.S. Department of Energy (DOE) information to evaluate technologies and preferred smart grid business models to be extended nationally. Projectmore » Description Ohio Power Company (the surviving company of a merger with Columbus Southern Power Company), doing business as AEP Ohio (AEP Ohio), took a community-based approach and incorporated a full suite of advanced smart grid technologies for 110,000 consumers in an area selected for its concentration and diversity of distribution infrastructure and consumers. It was organized and aligned around: • Technology, implementation, and operations • Consumer and stakeholder acceptance • Data management and benefit assessment Combined, these functional areas served as the foundation of the Project to integrate commercially available products, innovative technologies, and new consumer products and services within a secure two-way communication network between the utility and consumers. The Project included Advanced Metering Infrastructure (AMI), Distribution Management System (DMS), Distribution Automation Circuit Reconfiguration (DACR), Volt VAR Optimization (VVO), and Consumer Programs (CP). These technologies were combined with two-way consumer communication and information sharing, demand response, dynamic pricing, and consumer products, such as plug-in electric vehicles and smart appliances. In addition, the Project incorporated comprehensive cyber security capabilities, interoperability, and a data assessment that, with grid simulation capabilities, made the demonstration results an adaptable, integrated solution for AEP Ohio and the nation.« less

  8. Router Agent Technology for Policy-Based Network Management

    NASA Technical Reports Server (NTRS)

    Chow, Edward T.; Sudhir, Gurusham; Chang, Hsin-Ping; James, Mark; Liu, Yih-Chiao J.; Chiang, Winston

    2011-01-01

    This innovation can be run as a standalone network application on any computer in a networked environment. This design can be configured to control one or more routers (one instance per router), and can also be configured to listen to a policy server over the network to receive new policies based on the policy- based network management technology. The Router Agent Technology transforms the received policies into suitable Access Control List syntax for the routers it is configured to control. It commits the newly generated access control lists to the routers and provides feedback regarding any errors that were faced. The innovation also automatically generates a time-stamped log file regarding all updates to the router it is configured to control. This technology, once installed on a local network computer and started, is autonomous because it has the capability to keep listening to new policies from the policy server, transforming those policies to router-compliant access lists, and committing those access lists to a specified interface on the specified router on the network with any error feedback regarding commitment process. The stand-alone application is named RouterAgent and is currently realized as a fully functional (version 1) implementation for the Windows operating system and for CISCO routers.

  9. The Virtual Learning Commons: Supporting Science Education with Emerging Technologies

    NASA Astrophysics Data System (ADS)

    Pennington, D. D.; Gandara, A.; Gris, I.

    2012-12-01

    The Virtual Learning Commons (VLC), funded by the National Science Foundation Office of Cyberinfrastructure CI-Team Program, is a combination of Semantic Web, mash up, and social networking tools that supports knowledge sharing and innovation across scientific disciplines in research and education communities and networks. The explosion of scientific resources (data, models, algorithms, tools, and cyberinfrastructure) challenges the ability of educators to be aware of resources that might be relevant to their classes. Even when aware, it can be difficult to understand enough about those resources to develop classroom materials. Often emerging data and technologies have little documentation, especially about their application. The VLC tackles this challenge by providing mechanisms for individuals and groups of educators to organize Web resources into virtual collections, and engage each other around those collections in order to a) learn about potentially relevant resources that are available; b) design classes that leverage those resources; and c) develop course syllabi. The VLC integrates Semantic Web functionality for structuring distributed information, mash up functionality for retrieving and displaying information, and social media for discussing/rating information. We are working to provide three views of information that support educators in different ways: 1. Innovation Marketplace: supports users as they find others teaching similar courses, where they are located, and who they collaborate with; 2. Conceptual Mapper: supports educators as they organize their thinking about the content of their class and related classes taught by others; 3. Curriculum Designer: supports educators as they generate a syllabus and find Web resources that are relevant. This presentation will discuss the innovation and learning theories that have informed design of the VLC, hypotheses about the use of emerging technologies to support innovation in classrooms, and will include a brief demonstration of these capabilities.

  10. The new world of discovery, invention, and innovation: convergence of knowledge, technology, and society

    NASA Astrophysics Data System (ADS)

    Roco, Mihail C.; Bainbridge, William S.

    2013-09-01

    Convergence of knowledge and technology for the benefit of society (CKTS) is the core opportunity for progress in the twenty-first century. CKTS is defined as the escalating and transformative interactions among seemingly different disciplines, technologies, communities, and domains of human activity to achieve mutual compatibility, synergism, and integration, and through this process to create added value and branch out to meet shared goals. Convergence has been progressing by stages over the past several decades, beginning with nanotechnology for the material world, followed by convergence of nanotechnology, biotechnology, information, and cognitive science (NBIC) for emerging technologies. CKTS is the third level of convergence. It suggests a general process to advance creativity, innovation, and societal progress based on five general purpose principles: (1) the interdependence of all components of nature and society, (2) decision analysis for research, development, and applications based on dynamic system-logic deduction, (3) enhancement of creativity and innovation through evolutionary processes of convergence that combines existing principles and divergence that generates new ones, (4) the utility of higher-level cross-domain languages to generate new solutions and support transfer of new knowledge, and (5) the value of vision-inspired basic research embodied in grand challenges. CKTS is a general purpose approach in knowledge society. It allows society to answer questions and resolve problems that isolated capabilities cannot, as well as to create new competencies, knowledge, and technologies on this basis. Possible solutions are outlined for key societal challenges in the next decade, including support for foundational emerging technologies NBIC to penetrate essential platforms of human activity and create new industries and jobs, improve lifelong wellness and human potential, achieve personalized and integrated healthcare and education, and secure a sustainable quality of life for all. This paper provides a 10-year "NBIC2" vision within a longer-term framework for converging technology and human progress outlined in a previous study of unifying principles across "NBIC" fields that began with nanotechnology, biotechnology, information technology, and technologies based on and enabling cognitive science (Roco and Bainbridge, Converging technologies for improving human performance: nanotechnology, biotechnology, information technology and cognitive sciences, 2003).

  11. In-Q-Tel, the strategic investment firm for the U.S. Intelligence Community

    NASA Astrophysics Data System (ADS)

    Ulvick, S. J.; Tighe, D. W.

    2008-04-01

    In-Q-Tel is a strategic investment firm that works to identify, adapt, and deliver innovative technology solutions to support the missions of the Central Intelligence Agency and the broader U.S. Intelligence Community (IC). Launched by the CIA in 1999 as a private, independent, not-for-profit organization, IQT's mission is to identify and partner with companies developing cutting-edge technologies that serve the national security interests of the United States. Working from an evolving strategic blueprint defining the Intelligence Community's critical technology needs, IQT engages with entrepreneurs, growth companies, researchers, and venture capitalists to deliver technologies that provide superior capabilities for the CIA and the broader IC. To date, IQT has reviewed more than 6,300 business proposals, invested in more than 100 companies, and delivered more than 140 technology solutions to the U.S. Intelligence Community.

  12. SMD Technology Development Story for NASA Annual Technology report

    NASA Technical Reports Server (NTRS)

    Seablom, Michael S.

    2017-01-01

    The role of the Science Mission Directorate (SMD) is to enable NASA to achieve its science goals in the context of the Nation's science agenda. SMD's strategic decisions regarding future missions and scientific pursuits are guided by Agency goals, input from the science community-including the recommendations set forth in the National Research Council (NRC) decadal surveys-and a commitment to preserve a balanced program across the major science disciplines. Toward this end, each of the four SMD science divisions-Heliophysics, Earth Science, Planetary Science, and Astrophysics-develops fundamental science questions upon which to base future research and mission programs. Often the breakthrough science required to answer these questions requires significant technological innovation-e.g., instruments or platforms with capabilities beyond the current state of the art. SMD's targeted technology investments fill technology gaps, enabling NASA to build the challenging and complex missions that accomplish groundbreaking science.

  13. Campus Technology Innovators Awards 2010

    ERIC Educational Resources Information Center

    Lloyd, Meg; Raths, David

    2010-01-01

    Each year in judging the Campus Technology Innovators awards, the authors have the privilege of reading through hundreds of fascinating examples of technology innovation on campus. Nominated projects cover the gamut of technology areas, from assessment and advising to wireless and web 2.0. This article presents 11 innovator award winners of this…

  14. Image-guided thoracic surgery in the hybrid operation room.

    PubMed

    Ujiie, Hideki; Effat, Andrew; Yasufuku, Kazuhiro

    2017-01-01

    There has been an increase in the use of image-guided technology to facilitate minimally invasive therapy. The next generation of minimally invasive therapy is focused on advancement and translation of novel image-guided technologies in therapeutic interventions, including surgery, interventional pulmonology, radiation therapy, and interventional laser therapy. To establish the efficacy of different minimally invasive therapies, we have developed a hybrid operating room, known as the guided therapeutics operating room (GTx OR) at the Toronto General Hospital. The GTx OR is equipped with multi-modality image-guidance systems, which features a dual source-dual energy computed tomography (CT) scanner, a robotic cone-beam CT (CBCT)/fluoroscopy, high-performance endobronchial ultrasound system, endoscopic surgery system, near-infrared (NIR) fluorescence imaging system, and navigation tracking systems. The novel multimodality image-guidance systems allow physicians to quickly, and accurately image patients while they are on the operating table. This yield improved outcomes since physicians are able to use image guidance during their procedures, and carry out innovative multi-modality therapeutics. Multiple preclinical translational studies pertaining to innovative minimally invasive technology is being developed in our guided therapeutics laboratory (GTx Lab). The GTx Lab is equipped with similar technology, and multimodality image-guidance systems as the GTx OR, and acts as an appropriate platform for translation of research into human clinical trials. Through the GTx Lab, we are able to perform basic research, such as the development of image-guided technologies, preclinical model testing, as well as preclinical imaging, and then translate that research into the GTx OR. This OR allows for the utilization of new technologies in cancer therapy, including molecular imaging, and other innovative imaging modalities, and therefore enables a better quality of life for patients, both during and after the procedure. In this article, we describe capabilities of the GTx systems, and discuss the first-in-human technologies used, and evaluated in GTx OR.

  15. 76 FR 18166 - Technology Innovation Program Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Technology Innovation Program Advisory Board AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Technology Innovation Program Advisory Board, National...

  16. 75 FR 62369 - Technology Innovation Program Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Technology Innovation Program Advisory Board AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Technology Innovation Program Advisory Board, National...

  17. 75 FR 22553 - Technology Innovation Program Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-29

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Technology Innovation Program Advisory Board AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Technology Innovation Program Advisory Board, National...

  18. The Cutting Edge of High-Temperature Composites

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA s Ultra-Efficient Engine Technology (UEET) program was formed in 1999 at Glenn Research Center to manage an important national propulsion program for the Space Agency. The UEET program s focus is on developing innovative technologies to enable intelligent, environmentally friendly, and clean-burning turbine engines capable of reducing harmful emissions while maintaining high performance and increasing reliability. Seven technology projects exist under the program, with each project working towards specific goals to provide new technology for propulsion. One of these projects, Materials and Structures for High Performance, is concentrating on developing and demonstrating advanced high-temperature materials to enable high-performance, high-efficiency, and environmentally compatible propulsion systems. Materials include ceramic matrix composite (CMC) combustor liners and turbine vanes, disk alloys, turbine airfoil material systems, high-temperature polymer matrix composites, and lightweight materials for static engine structures.

  19. An assessment of General Aviation utilization of advanced avionics technology

    NASA Technical Reports Server (NTRS)

    Quinby, G. F.

    1980-01-01

    Needs of the general aviation industry for services and facilities which might be supplied by NASA were examined. In the data collection phase, twenty-one individuals from nine manufacturing companies in general aviation were interviewed against a carefully prepared meeting format. General aviation avionics manufacturers were credited with a high degree of technology transfer from the forcing industries such as television, automotive, and computers and a demonstrated ability to apply advanced technology such as large scale integration and microprocessors to avionics functions in an innovative and cost effective manner. The industry's traditional resistance to any unnecessary regimentation or standardization was confirmed. Industry's self sufficiency in applying advanced technology to avionics product development was amply demonstrated. NASA research capability could be supportive in areas of basic mechanics of turbulence in weather and alternative means for its sensing.

  20. Innovation network

    PubMed Central

    Acemoglu, Daron; Akcigit, Ufuk; Kerr, William R.

    2016-01-01

    Technological progress builds upon itself, with the expansion of invention in one domain propelling future work in linked fields. Our analysis uses 1.8 million US patents and their citation properties to map the innovation network and its strength. Past innovation network structures are calculated using citation patterns across technology classes during 1975–1994. The interaction of this preexisting network structure with patent growth in upstream technology fields has strong predictive power on future innovation after 1995. This pattern is consistent with the idea that when there is more past upstream innovation for a particular technology class to build on, then that technology class innovates more. PMID:27681628

  1. Johnson Space Center Research and Technology Annual Report 1998-1999

    NASA Technical Reports Server (NTRS)

    Abbey, George W. S.

    2004-01-01

    As the principle center for NASA's Human Exploration and Development of Space (HEDS) Enterprise, the Johnson Space Center (JSC) leads NASA development of human spacecraft, human support systems, and human spacecraft operations. An important element in implementing this mission, JSC has focused on developing the infrastructure and partnerships that enable the technology development for future NASA programs. In our efforts to develop key technologies, we have found that collaborative relationships with private industry and academia strengthen our capabilities, infuse innovative ideas, and provide alternative applications for our development projects. The American public has entrusted NASA with the responsibility for space technology development, and JSC is committed to the transfer of the technologies that we develop to the private sector for further development and application. It is our belief that commercialization of NASA technologies benefits both American industry and NASA through technology innovation and continued partnering. To this end, we present the 1998-1999 JSC Research and Technology Report. As your guide to the current JSC technologies, this report showcases the projects in work at JSC that may be of interest to U.S. industry, academia, and other government agencies (federal, state, and local). For each project, potential alternative uses and commercial applications are described. To aid in your search, projects are arranged according to the Major Product Groups used by CorpTech to classify and index types of industry. Some projects fall into multiple categories and are placed under the predominant category, for example, an artificial intelligence project is listed under the Computer Software category, while its function is to automate a process (Automation category).

  2. NASA's Advanced TPS Materials and Technology Development: Multi-Functional Materials and Systems for Space Exploration

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Feldman, Jay; Ellerby, Donald T.; Wercinski, Paul F.; Beck, Robin A S.

    2017-01-01

    NASA's future missions will be more demanding. They require materials to be mass efficient, robust, multi-functional, scalable and able to be integrated with other subsystems to enable innovative missions to accomplish future science missions. Thermal protection systems and materials (TPSM) are critical for the robotic and human exploration of the solar system when it involves entry. TPSM is a single string system with no back-up. Mass efficiency and robustness are required. Integration of TPSM with the aeroshell is both a challenge and an opportunity. Since 2010, NASA's Space Technology Mission Directorate has invested in innovative new materials and systems across a spectrum of game changing technologies. In this keynote address, we plan to highlight and present our successful approaches utilized in developing four different materials and system technologies that use innovative new manufacturing techniques to meet mission needs. 3-D weaving and felt manufacturing allowed us to successfully propose new ways of addressing TPSM challenges. In the 3-D MAT project, we developed and delivered a multi-functional TPS materials solution, in under three years that is an enabler for Lunar Capable Orion Spacecraft. Under the HEEET project, we are developing a robust heat-shield that can withstand extreme entry conditions, both thermally and mechanically, for entry at Venus, Saturn or higher speed sample return missions. The improved efficiency of HEEET allows science missions entry at much reduced G'loads enabling delicate science instruments to be used. The ADEPT concept is a foldable and deployable entry system and the critical component is a multi-functional fabric that is foldable and deployable and also functions as a mechanical aeroshell and a TPS. The fourth technology we will highlight involves felt to address integration challenges of rigid ablative system such as PICA that was used on MSL. The felt technology allows us to develop a compliant TPS for easy integration. The above four technology developments have focused on mission infusion as the success criteria. These technologies are in different stages of mission infusion. These innovations have led to new mission concepts to be proposed in the future. In our keynote address we will present approaches we have employed throughout the project to create the bridge to transition from low TRL to mission infusion and to overcome the traditional TRL valley of death.

  3. Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, C.V.; Lockwood, G.J.; Normann, R.A.

    1999-06-01

    The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted ofmore » the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.« less

  4. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The NASA Centennial Challenges prize, level one, is presented to team Mountaineers for successfully completing level one of the NASA 2014 Sample Return Robot Challenge, from left, Ryan Watson, Team Mountaineers; Lucas Behrens, Team Mountaineers; Jarred Strader, Team Mountaineers; Yu Gu, Team Mountaineers; Scott Harper, Team Mountaineers; Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate; Laurie Leshin, Worcester Polytechnic Institute (WPI) President; David Miller, NASA Chief Technologist; Alexander Hypes, Team Mountaineers; Nick Ohi,Team Mountaineers; Marvin Cheng, Team Mountaineers; Sam Ortega, NASA Program Manager for Centennial Challenges; and Tanmay Mandal, Team Mountaineers;, Saturday, June 14, 2014, at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineers was the only team to complete the level one challenge. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  5. 2014 NASA Centennial Challenges Sample Return Robot Challenge

    NASA Image and Video Library

    2014-06-14

    The NASA Centennial Challenges prize, level one, is presented to team Mountaineers for successfully completing level one of the NASA 2014 Sample Return Robot Challenge, from left, Ken Stafford, WPI Challenge technical advisor; Colleen Shaver, WPI Challenge Manager; Ryan Watson, Team Mountaineers; Marvin Cheng, Team Mountaineers; Alexander Hypes, Team Mountaineers; Jarred Strader, Team Mountaineers; Lucas Behrens, Team Mountaineers; Yu Gu, Team Mountaineers; Nick Ohi, Team Mountaineers; Dorothy Rasco, NASA Deputy Associate Administrator for the Space Technology Mission Directorate; Scott Harper, Team Mountaineers; Tanmay Mandal, Team Mountaineers; David Miller, NASA Chief Technologist; Sam Ortega, NASA Program Manager for Centennial Challenges, Saturday, June 14, 2014, at Worcester Polytechnic Institute (WPI) in Worcester, Mass. Team Mountaineers was the only team to complete the level one challenge. During the competition, teams were required to demonstrate autonomous robots that can locate and collect samples from a wide and varied terrain, operating without human control. The objective of this NASA-WPI Centennial Challenge was to encourage innovations in autonomous navigation and robotics technologies. Innovations stemming from the challenge may improve NASA's capability to explore a variety of destinations in space, as well as enhance the nation's robotic technology for use in industries and applications on Earth. Photo Credit: (NASA/Joel Kowsky)

  6. Propagations of the AAPT New Faculty Workshop: A case study of the infusion of student-centered technological and pedagogical innovations in the introductory physics program at West Point

    NASA Astrophysics Data System (ADS)

    Sones, Bryndol

    2009-03-01

    Since 2002, the Department of Physics at West Point has been the fortunate recipient of yearly attendance at the AAPT New Faculty Workshop. This sustained involvement has contributed directly to enhancements in our two-semester introductory physics program. Two aspects of West Point's environment make our involvement with the workshop especially fruitful: our diverse students and our frequent faculty turn-over. We teach to over 1100 students with majors across the entire spectrum. The majority of our faculty is an active duty Army officer here for just three years. At West Point, we rely on the workshop as a wellspring for faculty development, technological innovation, and pedagogical refinement. In the past few years, we have incorporated aspects of peer instruction, activity-based learning, and tutorials for student discovery. On the technological side, we now have TabletPCs for faculty, rf response cards (TurningPoint), high speed video analysis (LoggerPro) projects, and video tutoring capabilities (Camtashia). Student achievement is measured through our traditional course evaluation tools as well as nationally recognized standardize tests. Results will are discussed in the presentation.

  7. NASA's Space Launch System: Moving Toward the Launch Pad

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd A.

    2013-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center (MSFC), is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. Designed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Supporting Orion's first autonomous flight to lunar orbit and back in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown via an upgrade approach that will provide building blocks for future space exploration. NASA is working to deliver this new capability in an austere economic climate, a fact that has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the 2 years since the Agency formally announced its architecture in September 2011, the path it is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130-t lift capability after 2021. The paper will explain how, to meet the challenge of a flat funding curve, an architecture was chosen that combines the use and enhancement of legacy systems and technology with strategic new developments that will evolve the launch vehicle's capabilities. This approach reduces the time and cost of delivering the initial 70 t Block 1 vehicle, and reduces the number of parallel development investments required to deliver the evolved 130 t Block 2 vehicle. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware, to life-cycle milestones such as the vehicle's Preliminary Design Review (PDR). The paper will also discuss the remaining challenges both in delivering the 70-t vehicle and in evolving its capabilities to the 130-t vehicle, and how NASA plans to accomplish these goals. As this paper will explain, SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by harnessing business and technological innovations to deliver sustainable solutions for space exploration.

  8. 76 FR 70970 - Technology Innovation Program Advisory Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... DEPARTMENT OF COMMERCE National Institute of Standards and Technology Technology Innovation Program Advisory Board AGENCY: National Institute of Standards and Technology, Department of Commerce. ACTION: Notice of public meeting. SUMMARY: The Technology Innovation Program (TIP) Advisory Board will...

  9. COTS Initiative Panel Discussion

    NASA Image and Video Library

    2013-11-13

    NASA Administrator Charles Bolden, left, presents NASA's Group Achievement Award to Gwynne Shotwell, President, SpaceX, at NASA Headquarters in Washington on Thursday, November 13, 2013. Shotwell received the award for outstanding contributions and innovative accomplishments in the completion of the Commercial Orbital Transportation Services (COTS) initiative. Through COTS, NASA's partners Space Exploration Technologies Corp. (SpaceX) and Orbital Sciences Corp., developed new U.S. rockets and spacecraft, launched from U.S. soil, capable of transporting cargo to low-Earth orbit and the International Space Station. Photo Credit: (NASA/Jay Westcott)

  10. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitzman, D.O.; Stepp, A.K.

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil-releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.

  11. Innovative MIOR Process Utilizing Indigenous Reservoir Constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hitzman, D.O.; Bailey, S.A.; Stepp, A.K.

    This research program was directed at improving the knowledge of reservoir ecology and developing practical microbial solutions for improving oil production. The goal was to identify indigenous microbial populations which can produce beneficial metabolic products and develop a methodology to stimulate those select microbes with inorganic nutrient amendments to increase oil recovery. This microbial technology has the capability of producing multiple oil releasing agents. The potential of the system will be illustrated and demonstrated by the example of biopolymer production on oil recovery.

  12. Technological Innovation and Strategic Human Resource Management: Developing a Theory.

    ERIC Educational Resources Information Center

    Gattiker, Urs E.

    Technological innovation affects the structure and content of jobs. Research indicates that there is a need for a theory of technological innovation and strategic human resource management considering several factors, such as an employee's beliefs about the effect of technological innovations on the quality of work life and work content.…

  13. Electronegative Gas Thruster - Direct Thrust Measurement Project

    NASA Technical Reports Server (NTRS)

    Dankanich, John (Principal Investigator); Aanesland, Ane; Polzin, Kurt; Walker, Mitchell

    2015-01-01

    This effort is an international collaboration and academic partnership to mature an innovative electric propulsion (EP) thruster concept to TRL 3 through direct thrust measurement. The initial target application is for Small Satellites, but can be extended to higher power. The Plasma propulsion with Electronegative GASES (PEGASES) concept simplifies ion thruster operation, eliminates a neutralizer requirement and should yield longer life capabilities and lower cost implementation over conventional gridded ion engines. The basic proof-of concept has been demonstrated and matured to TRL 2 over the past several years by researchers at the Laboratoire de Physique des Plasma in France. Due to the low maturity of the innovation, there are currently no domestic investments in electronegative gas thrusters anywhere within NASA, industry or academia. The end product of this Center Innovation Fund (CIF) project will be a validation of the proof-of-concept, maturation to TRL 3 and technology assessment report to summarize the potential for the PEGASES concept to supplant the incumbent technology. Information exchange with the foreign national will be one-way with the exception of the test results. Those test results will first go through a standard public release ITAR/export control review, and the results will be presented in a public technical forum, and the results will be presented in a public technical forum.

  14. 7 CFR 1466.27 - Conservation Innovation Grants (CIG).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... lead to the transfer of conservation technologies, management systems, and innovative approaches (such... to stimulate the development and adoption of innovative conservation approaches and technologies... focus. Applications for CIG should demonstrate the use of innovative approaches and technologies to...

  15. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION PROGRAM - TECHNOLOGY PROFILES 4th Edition

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program evaluates new and promising treatment technologies for cleanup of hazardous waste sites. The program was created to encourage the development and routine use of innovative treatment technologies. As a result, the SI...

  16. Innovating Education and Educating for Innovation: The Power of Digital Technologies and Skills

    ERIC Educational Resources Information Center

    OECD Publishing, 2016

    2016-01-01

    OECD's Innovation Strategy calls upon all sectors in the economy and society to innovate in order to foster productivity, growth and well-being. Education systems are critically important for innovation through the development of skills that nurture new ideas and technologies. However, whereas digital technologies are profoundly changing the way…

  17. Technology-Based Innovations to Foster Personalized Healthy Lifestyles and Well-Being: A Targeted Review.

    PubMed

    Spanakis, Emmanouil G; Santana, Silvina; Tsiknakis, Manolis; Marias, Kostas; Sakkalis, Vangelis; Teixeira, António; Janssen, Joris H; de Jong, Henri; Tziraki, Chariklia

    2016-06-24

    New community-based arrangements and novel technologies can empower individuals to be active participants in their health maintenance, enabling people to control and self-regulate their health and wellness and make better health- and lifestyle-related decisions. Mobile sensing technology and health systems responsive to individual profiles combined with cloud computing can expand innovation for new types of interoperable services that are consumer-oriented and community-based. This could fuel a paradigm shift in the way health care can be, or should be, provided and received, while lessening the burden on exhausted health and social care systems. Our goal is to identify and discuss the main scientific and engineering challenges that need to be successfully addressed in delivering state-of-the-art, ubiquitous eHealth and mHealth services, including citizen-centered wellness management services, and reposition their role and potential within a broader context of diverse sociotechnical drivers, agents, and stakeholders. We review the state-of-the-art relevant to the development and implementation of eHealth and mHealth services in critical domains. We identify and discuss scientific, engineering, and implementation-related challenges that need to be overcome to move research, development, and the market forward. Several important advances have been identified in the fields of systems for personalized health monitoring, such as smartphone platforms and intelligent ubiquitous services. Sensors embedded in smartphones and clothes are making the unobtrusive recognition of physical activity, behavior, and lifestyle possible, and thus the deployment of platforms for health assistance and citizen empowerment. Similarly, significant advances are observed in the domain of infrastructure supporting services. Still, many technical problems remain to be solved, combined with no less challenging issues related to security, privacy, trust, and organizational dynamics. Delivering innovative ubiquitous eHealth and mHealth services, including citizen-centered wellness and lifestyle management services, goes well beyond the development of technical solutions. For the large-scale information and communication technology-supported adoption of healthier lifestyles to take place, crucial innovations are needed in the process of making and deploying usable empowering end-user services that are trusted and user-acceptable. Such innovations require multidomain, multilevel, transdisciplinary work, grounded in theory but driven by citizens' and health care professionals' needs, expectations, and capabilities and matched by business ability to bring innovation to the market.

  18. Technology-Based Innovations to Foster Personalized Healthy Lifestyles and Well-Being: A Targeted Review

    PubMed Central

    Santana, Silvina; Tsiknakis, Manolis; Marias, Kostas; Sakkalis, Vangelis; Teixeira, António; Janssen, Joris H; de Jong, Henri; Tziraki, Chariklia

    2016-01-01

    Background New community-based arrangements and novel technologies can empower individuals to be active participants in their health maintenance, enabling people to control and self-regulate their health and wellness and make better health- and lifestyle-related decisions. Mobile sensing technology and health systems responsive to individual profiles combined with cloud computing can expand innovation for new types of interoperable services that are consumer-oriented and community-based. This could fuel a paradigm shift in the way health care can be, or should be, provided and received, while lessening the burden on exhausted health and social care systems. Objective Our goal is to identify and discuss the main scientific and engineering challenges that need to be successfully addressed in delivering state-of-the-art, ubiquitous eHealth and mHealth services, including citizen-centered wellness management services, and reposition their role and potential within a broader context of diverse sociotechnical drivers, agents, and stakeholders. Methods We review the state-of-the-art relevant to the development and implementation of eHealth and mHealth services in critical domains. We identify and discuss scientific, engineering, and implementation-related challenges that need to be overcome to move research, development, and the market forward. Results Several important advances have been identified in the fields of systems for personalized health monitoring, such as smartphone platforms and intelligent ubiquitous services. Sensors embedded in smartphones and clothes are making the unobtrusive recognition of physical activity, behavior, and lifestyle possible, and thus the deployment of platforms for health assistance and citizen empowerment. Similarly, significant advances are observed in the domain of infrastructure supporting services. Still, many technical problems remain to be solved, combined with no less challenging issues related to security, privacy, trust, and organizational dynamics. Conclusions Delivering innovative ubiquitous eHealth and mHealth services, including citizen-centered wellness and lifestyle management services, goes well beyond the development of technical solutions. For the large-scale information and communication technology-supported adoption of healthier lifestyles to take place, crucial innovations are needed in the process of making and deploying usable empowering end-user services that are trusted and user-acceptable. Such innovations require multidomain, multilevel, transdisciplinary work, grounded in theory but driven by citizens’ and health care professionals’ needs, expectations, and capabilities and matched by business ability to bring innovation to the market. PMID:27342137

  19. New technology for food systems and security.

    PubMed

    Yau, N J Newton

    2009-01-01

    In addition to product trade, technology trade has become one of the alternatives for globalization action around the world. Although not all technologies employed on the technology trade platform are innovative technologies, the data base of international technology trade still is a good indicator for observing innovative technologies around world. The technology trade data base from Sinew Consulting Group (SCG) Ltd. was employed as an example to lead the discussion on security or safety issues that may be caused by these innovative technologies. More technologies related to processing, functional ingredients and quality control technology of food were found in the data base of international technology trade platform. The review was conducted by categorizing technologies into the following subcategories in terms of safety and security issues: (1) agricultural materials/ingredients, (2) processing/engineering, (3) additives, (4) packaging/logistics, (5) functional ingredients, (6) miscellaneous (include detection technology). The author discusses examples listed for each subcategory, including GMO technology, nanotechnology, Chinese medicine based functional ingredients, as well as several innovative technologies. Currently, generation of innovative technology advance at a greater pace due to cross-area research and development activities. At the same time, more attention needs to be placed on the employment of these innovative technologies.

  20. From translational research to open technology innovation systems.

    PubMed

    Savory, Clive; Fortune, Joyce

    2015-01-01

    The purpose of this paper is to question whether the emphasis placed within translational research on a linear model of innovation provides the most effective model for managing health technology innovation. Several alternative perspectives are presented that have potential to enhance the existing model of translational research. A case study is presented of innovation of a clinical decision support system. The paper concludes from the case study that an extending the triple helix model of technology transfer, to one based on a quadruple helix, present a basis for improving the performance translational research. A case study approach is used to help understand development of an innovative technology within a teaching hospital. The case is then used to develop and refine a model of the health technology innovation system. The paper concludes from the case study that existing models of translational research could be refined further through the development of a quadruple helix model of heath technology innovation that encompasses greater emphasis on user-led and open innovation perspectives. The paper presents several implications for future research based on the need to enhance the model of health technology innovation used to guide policy and practice. The quadruple helix model of innovation that is proposed can potentially guide alterations to the existing model of translational research in the healthcare sector. Several suggestions are made for how innovation activity can be better supported at both a policy and operational level. This paper presents a synthesis of the innovation literature applied to a theoretically important case of open innovation in the UK National Health Service. It draws in perspectives from other industrial sectors and applies them specifically to the management and organisation of innovation activities around health technology and the services in which they are embedded.

  1. Causal Relationships among Technology Acquisition, Absorptive Capacity, and Innovation Performance: Evidence from the Pharmaceutical Industry.

    PubMed

    Jeon, Jieun; Hong, Suckchul; Ohm, Jay; Yang, Taeyong

    2015-01-01

    This paper discusses the importance of absorptive capacity in improving a firm's innovation performance. Specifically, we examine firm interaction with the knowledge and capabilities of outside organizations and the effect on the firm's bottom line. We use the impulse-response function of the vector auto-regressive model to gain insight into this relationship by estimating the time required for the effect of each activity level to reach outputs, the spillover effects. We apply this methodology to pharmaceutical firms, which we classify into two sub-groups--large firms and medium and small firms--based on sales. Our results show that the impact of an activity on any other activity is delayed by three years for large firms and by one to two years for small and medium firms.

  2. The Superfund Innovative Technology Evaluation Program SUMMARY AND CLOSURE REPORT

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program promoted the development, commercialization, and implementation of innovative hazardous waste treatment technologies for 20 years. SITE offered a mechanism for conducting joint technology demonstration and evaluation ...

  3. High-fidelity video and still-image communication based on spectral information: natural vision system and its applications

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masahiro; Haneishi, Hideaki; Fukuda, Hiroyuki; Kishimoto, Junko; Kanazawa, Hiroshi; Tsuchida, Masaru; Iwama, Ryo; Ohyama, Nagaaki

    2006-01-01

    In addition to the great advancement of high-resolution and large-screen imaging technology, the issue of color is now receiving considerable attention as another aspect than the image resolution. It is difficult to reproduce the original color of subject in conventional imaging systems, and that obstructs the applications of visual communication systems in telemedicine, electronic commerce, and digital museum. To breakthrough the limitation of conventional RGB 3-primary systems, "Natural Vision" project aims at an innovative video and still-image communication technology with high-fidelity color reproduction capability, based on spectral information. This paper summarizes the results of NV project including the development of multispectral and multiprimary imaging technologies and the experimental investigations on the applications to medicine, digital archives, electronic commerce, and computer graphics.

  4. GAIN Technology Workshops Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braase, Lori Ann

    National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is requiredmore » to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.« less

  5. In the Shadow of Schumpeter: W. Rupert Maclaurin and the Study of Technological Innovation

    ERIC Educational Resources Information Center

    Godin, Benoit

    2008-01-01

    J. Schumpeter is a key figure, even a seminal one, on technological innovation. Most economists who study technological innovation refer to Schumpeter and his pioneering role in introducing innovation into economic studies. However, despite having brought forth the concept of innovation in economic theory, Schumpeter provided few if any analyses…

  6. 1992 UPDATE OF U.S. EPA'S SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) EMERGING TECHNOLOGY PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Emerging Technology Program (ETP) has encouraged and financially supported further development of bench- and pilot-scale testing and evaluation of innovative technologies suitable for use at hazardous waste sites for five year...

  7. Systems Thinking for the Enterprise: A Thought Piece

    NASA Astrophysics Data System (ADS)

    Rebovich, George

    This paper suggests a way of managing the acquisition of capabilities for large-scale government enterprises that is different from traditional "specify and build" approaches commonly employed by U.S. government agencies in acquiring individual systems or systems of systems (SoS). Enterprise capabilities evolve through the emergence and convergence of information and other technologies and their integration into social, institutional and operational organizations and processes. Enterprise capabilities evolve whether or not the enterprise has processes in place to actively manage them. Thus the critical role of enterprise system engineering (ESE) processes should be to shape, enhance and accelerate the "natural" evolution of enterprise capabilities. ESE processes do not replace or add a layer to traditional system engineering (TSE) processes used in developing individual systems or SoS. ESE processes should complement TSE processes by shaping outcome spaces and stimulating interactions among enterprise participants through marketlike mechanisms to reward those that create innovation which moves and accelerates the evolution of the enterprise.

  8. SUPERFUND INNOVATIVE TECHNOLOGY EVALUATION (SITE) PROGRAM ANNUAL REPORT TO CONGRESS 2003

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program has successfully promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 17 years. SITE offers a mechanism for conducting joint technology demonstration a...

  9. The Superfund Innovative Technology Evaluation Program Annual Report to Congress FY2004

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program has successfully promoted the development, commercialization, and implementation of innovative hazardous waste treatment technologies for 18 years. SITE offers a mechanism for conducting joint technology demonstration ...

  10. Ultra-Sensitive Photoreceiver Boosts Data Transmission

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA depends on advanced, ultra-sensitive photoreceivers and photodetectors to provide high-data communications and pinpoint image-detection and -recognition capabilities from great distances. In 2003, Epitaxial Technologies LLC was awarded a Small Business Innovation Research (SBIR) contract from Goddard Space Flight Center to address needs for advanced sensor components. Epitaxial developed a photoreciever capable of single proton sensitivity that is also smaller, lighter, and requires less power than its predecessor. This receiver operates in several wavelength ranges; will allow data rate transmissions in the terabit range; and will enhance Earth-based missions for remote sensing of crops and other natural resources, including applications for fluorescence and phosphorescence detection. Widespread military and civilian applications are anticipated, especially through enhancing fiber optic communications, laser imaging, and laser communications.

  11. Shaping the future through innovations: From medical imaging to precision medicine.

    PubMed

    Comaniciu, Dorin; Engel, Klaus; Georgescu, Bogdan; Mansi, Tommaso

    2016-10-01

    Medical images constitute a source of information essential for disease diagnosis, treatment and follow-up. In addition, due to its patient-specific nature, imaging information represents a critical component required for advancing precision medicine into clinical practice. This manuscript describes recently developed technologies for better handling of image information: photorealistic visualization of medical images with Cinematic Rendering, artificial agents for in-depth image understanding, support for minimally invasive procedures, and patient-specific computational models with enhanced predictive power. Throughout the manuscript we will analyze the capabilities of such technologies and extrapolate on their potential impact to advance the quality of medical care, while reducing its cost. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Hand-Held Devices Detect Explosives and Chemical Agents

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Ion Applications Inc., of West Palm Beach, Florida, partnered with Ames Research Center through Small Business Innovation Research (SBIR) agreements to develop a miniature version ion mobility spectrometer (IMS). While NASA was interested in the instrument for detecting chemicals during exploration of distant planets, moons, and comets, the company has incorporated the technology into a commercial hand-held IMS device for use by the military and other public safety organizations. Capable of detecting and identifying molecules with part-per-billion sensitivity, the technology now provides soldiers with portable explosives and chemical warfare agent detection. The device is also being adapted for detecting drugs and is employed in industrial processes such as semiconductor manufacturing.

  13. Measurement and Assessment of Physical Activity by Information and Communication Technology.

    PubMed

    Zhang, Qun; Yang, Xi; Liu, Dan; Zhao, Wen Hua

    2017-06-01

    This study provides explorative insights into the information and communication technology (ICT) for promoting the physical activity level. ICT has provided innovative ideas and perspectives for PA measurement, assessment, evaluation and health intervention. ICT that aims to increase exercise for the entire population should be of a well-oriented and easy-to-use design with the options of tailored and personalized feedback, coaching, and ranking and supporting; it should be capable of setting goals and working with a schedule and be accompanied by a website to provide overviews of the users' exercise results and progress. Copyright © 2017 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  14. Thin Film Transistor Control Circuitry for MEMS Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Daugherty, Robin

    This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10-100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.

  15. NASA astronaut Rex Walheim checks out the Dragon spacecraft und

    NASA Image and Video Library

    2012-01-30

    HAWTHORNE, Calif. -- NASA astronaut Rex Walheim checks out the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  16. KSC-2012-1825

    NASA Image and Video Library

    2012-01-30

    HAWTHORNE, Calif. -- NASA astronauts and industry experts are monitored while they check out the crew accommodations in the Dragon spacecraft under development by Space Exploration Technologies SpaceX of Hawthorne, Calif., for the agency's Commercial Crew Program. In 2011, NASA selected SpaceX during Commercial Crew Development Round 2 CCDev2) activities to mature the design and development of a crew transportation system with the overall goal of accelerating a United States-led capability to the International Space Station. The goal of CCP is to drive down the cost of space travel as well as open up space to more people than ever before by balancing industry’s own innovative capabilities with NASA's 50 years of human spaceflight experience. Six other aerospace companies also are maturing launch vehicle and spacecraft designs under CCDev2, including Alliant Techsystems Inc. ATK, The Boeing Co., Excalibur Almaz Inc., Blue Origin, Sierra Nevada, and United Launch Alliance ULA. For more information, visit www.nasa.gov/commercialcrew. Image credit: Space Exploration Technologies

  17. From Metacognition to Practice Cognition: The DNP e-Portfolio to Promote Integrated Learning.

    PubMed

    Anderson, Kelley M; DesLauriers, Patricia; Horvath, Catherine H; Slota, Margaret; Farley, Jean Nelson

    2017-08-01

    Educating Doctor of Nursing Practice (DNP) students for an increasingly complex health care environment requires novel applications of learning concepts and technology. A deliberate and thoughtful process is required to integrate concepts of the DNP program into practice paradigm changes to subsequently improve students' abilities to innovate solutions to complex practice problems. The authors constructed or participated in electronic portfolio development inspired by theories of metacognition and integrated learning. The objective was to develop DNP student's reflection, integration of concepts, and technological capabilities to foster the deliberative competencies related to the DNP Essentials and the foundations of the DNP program. The pedagogical process demonstrates how e-portfolios adapted into the doctoral-level curriculum for DNP students can address the Essentials and foster the development of metacognitive capabilities, which translates into practice changes. The authors suggest that this pedagogical approach has the potential to optimize reflective and deliberative competencies among DNP students. [J Nurs Educ. 2017;56(8):497-500.]. Copyright 2017, SLACK Incorporated.

  18. 77 FR 38678 - NASA Advisory Council; Technology and Innovation Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-28

    ... and Innovation Committee; Meeting AGENCY: National Aeronautics and Space Administration. ACTION... National Aeronautics and Space Administration (NASA) announces a meeting of the Technology and Innovation... access badge to enter GSFC and must state that they are attending the NAC's Technology and Innovation...

  19. Solar and Space Physics Science Enabled by Pico and Nano Satellites

    NASA Astrophysics Data System (ADS)

    Swenson, C.; Fish, C. S.

    2012-12-01

    The most significant advances in solar and space physics, or Heliophysics, over the next decade are most likely to derive from new observational techniques. The connection between advances in scientific understanding and technology has historically been demonstrated across many disciplines and time. Progress on some of the most compelling scientific problems will most likely occur through multipoint observations within the space environment to understand the coupling between disparate regions: Heliosphere, magnetosphere, ionosphere, thermosphere and mesosphere. Multipoint measurements are also needed to develop understanding of the various scalars or vector field signatures (i.e gradients, divergence) that arise from coupling processes that occur across temporal and spatial scales or within localized regions. The resources that are available over the next decades for all areas of Heliophysics research have limits and it is therefore important that the community be innovative in developing new observational techniques to advance science. One of the most promising new observational techniques becoming available are miniaturized sensors and satellite systems called pico- or nano-satellites and CubeSats. These are enabled by the enormous investment of the commercial, medical, and defense industries in producing highly capable, portable and low-power battery-operated consumer electronics, in-situ composition probes, and novel reconnaissance sensors. The advancements represented by these technologies have direct application in developing pico- or nano-satellites and CubeSats system for Heliophysics research. In this talk we overview the current environment and technologies surrounding these novel small satellites and discuss the types and capabilities of the miniature sensors that are being developed. We discuss how pico- or nano-satellites and CubeSats can be used to address highest priority science identified in the Decadal Survey and the innovations and advancements that are required to make substantial progress.

  20. DEMONSTRATION AND EVALUATION OF INNOVATIVE REMEDIATION TECHNOLOGIES THROUGH THE EPA SITE PROGRAM

    EPA Science Inventory

    The Superfund Innovative Technology Evaluation (SITE) Program has successfuly promoted the development, commercialization and implementation of innovative hazardous waste treatment technologies for 18 years. SITE offers a mechanism for conducting joint technology demonstration an...

Top