Sample records for technological power alpha-source

  1. Americium As A Potential Power Source For Space Missions

    NASA Astrophysics Data System (ADS)

    Cordingley, Leon; Rice, Tom; Sarsfield, Mark J.; Stephenson, Keith; Tinsley, Tim

    2011-10-01

    Electrical power sources used in outer planet missions are a key enabling technology for data acquisition and communications. Power sources generate electricity from the thermal energy from alpha decay of the radioisotope 238Pu via thermoelectric conversion. Production of 238Pu requires specialist facilities including a nuclear reactor and reprocessing plants that are expensive to build and operate, so naturally, a more economical alternative is attractive to the industry. Within Europe 241Am is a feasible alternative to 238Pu that can provide a heat source for radioisotope thermoelectric generators (RTGs) and radioisotope heating units (RHUs). Whilst there are implications associated with the differences between 238Pu and 241Am, these technological challenges are surmountable.

  2. Miniaturized radioisotope solid state power sources

    NASA Astrophysics Data System (ADS)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  3. Design of Alpha Voltaic Power Source Using Americium 241 (241Am) and Diamond with a Power Density of 10 mW/cm3

    DTIC Science & Technology

    2017-10-19

    GaN) was calculated and compared . Alpha-voltaic energy converters were designed in diamond and GaN based on the energy deposition calculations...Example Power Source Two example device designs are calculated and compared . A diamond device containing 2 charge collection regions (Schottky and p...ARL-TR-8189 ● OCT 2017 US Army Research Laboratory Design of Alpha-Voltaic Power Source Using Americium-241 (241Am) and Diamond

  4. SP-100 multimegawatt scaleup to meet electric propulsion mission requirements

    NASA Astrophysics Data System (ADS)

    Newkirk, D. W.; Salamah, S. A.; Stewart, S. L.; Pluta, P. R.

    The SP-100 nuclear heat source technology, utilizing uranium nitride fuel clad in PWC-11 in a fast reactor with lithium coolant circulated by an electromagnetic pump, is shown to be directly extrapolatable to thermal power levels that meet NASA nuclear electric propulsion requirements using different power conversion techniques. The SP-100 nuclear technology can be applied to missions with NEP (nuclear electric propulsion) requirements as low as tens of kWe to tens of MWe. It is pointed out that the SP-100 heat source has a great advantage of very long lifetime capability, since it utilizes very rugged refractory metal fuel pins and is independent of the power conversion scheme chosen for a given mission. The only moving parts in the nuclear subsystems are the control rods moved to compensate for fuel enrichment degradation due to fission and for power shutdown. Lowest alpha values in the range of interest for potential NASA missions are predicted for the dynamic Rankine and static HYTEC conversion systems.

  5. Progress on 241Am Production for Use in Radioisotope Power Systems

    NASA Astrophysics Data System (ADS)

    Baker, S. R.; Bell, K. J.; Brown, J.; Carrigan, C.; Carrott, M. J.; Gregson, C.; Clough, M.; Maher, C. J.; Mason, C.; Rhodes, C. J.; Rice, T. G.; Sarsfield, M. J.; Stephenson, K.; Taylor, R. J.; Tinsley, T. P.; Woodhead, D. A.; Wiss, T.

    2014-08-01

    Electrical power sources used in outer planet missions are a key enabling technology for data acquisition and communications. Power sources generate electricity from the thermal energy from alpha decay of the radioisotope 238Pu via thermo-electric conversion. Production of 238Pu requires specialist facilities including a nuclear reactor and reprocessing plants that are expensive to build and operate, so naturally, a more economical alternative is attractive to the industry. Within Europe 241Am is a feasible alternative to 238Pu that can provide a heat source for radioisotope thermoelectric generators (RTGs) and radioisotope heating units (RHUs). As a daughter product of 241Pu decay, 241Am is present at 1000s kg levels within the UK civil plutonium stockpile.A chemical separation process is required to extract the 241Am in a pure form and this paper describes such a process, successfully developed to the proof of concept stage.

  6. Nuclear electric power sources

    NASA Technical Reports Server (NTRS)

    Singh, J. J.

    1978-01-01

    Measurements on radioactive commercial p-n junction silicon cells show that these units are capable of delivering several hundred microwatts per curie of Am-241 alpha source, indicating their usefulness in such electronic devices as hearing aids, heart pacemakers, electronic watches, delay timers and nuclear dosimeter chargers. It is concluded that the Am-241 sources are superior to the beta sources used previously, because of higher alpha specific ionization and simultaneous production of low energy photons which are easily converted into photoelectrons for additional power.

  7. Extremely-efficient, miniaturized, long-lived alpha-voltaic power source using liquid gallium

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey (Inventor); Patel, Jagdishbhai (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source converts .alpha.-particle energy to electricity for use in electrical systems. Liquid gallium or other liquid medium is subjected to .alpha.-particle emissions. Electrons are freed by collision from neutral gallium atoms to provide gallium ions. The electrons migrate to a cathode while the gallium ions migrate to an anode. A current and/or voltage difference then arises between the cathode and anode because of the work function difference of the cathode and anode. Gallium atoms are regenerated by the receiving of electrons from the anode enabling the generation of additional electrons from additional .alpha.-particle collisions.

  8. [Alpha power voluntary increasing training for cognition enhancement study].

    PubMed

    Alekseeva, M V; Balioz, N V; Muravleva, K B; Sapina, E V; Bazanova, O M

    2012-01-01

    With the aim simultaneous alpha EEG stimulating and EMG decreasing biofeedback training impact on the alpha-activity and cognitive functions 27 healthy male subjects (18-34 years) were investigated in pre- and post 10 training sessions of the voluntary increasing alpha power in individual upper alpha range. The accuracy of conceptual span task, fluency and flexibility in alternatives use task performance and alpha-activity indices were compared in real (14 participants) and sham (13 participants) biofeedback groups for the discrimination of the feedback role in training. The follow up effect oftrainings was studied through month over the training sessions. Results showed that alpha biofeedback training enhanced the fluency and accuracy in cognitive performance, increased resting frequency, width and power in individual upper alpha range only in participants with low baseline alpha frequency. While mock biofeedback increased resting alpha power only in participants with high baseline resting alpha frequency and did not change the cognitive performance. Biofeedback training eliminated the alpha power decrease in response to arithmetic task in both with high and low alpha frequency participants and this effect was followed up over the month. Mock biofeedback training has no such effect. It could be concluded that alpha-EEG-EMG biofeedback has application not only for cognition enhancement, but also in prognostic aims in clinical practice and brain-computer interface technology.

  9. Initial results from the Solar Dynamic (SD) Ground Test Demonstration (GTD) project at NASA Lewis

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Boyle, Robert V.

    1995-01-01

    A government/industry team designed, built, and tested a 2 kWe solar dynamic space power system in a large thermal/vacuum facility with a simulated sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum, and solar flux as encountered in low earth orbit. This paper reviews the goals and status of the Solar Dynamic (SD) Ground Test Demonstration (GTD) program and describes the initial testing, including both operational and performance data. This SD technology has the potential as a future power source for the International Space Station Alpha.

  10. Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability.

    PubMed

    van Dijk, Hanneke; Schoffelen, Jan-Mathijs; Oostenveld, Robert; Jensen, Ole

    2008-02-20

    Although the resting and baseline states of the human electroencephalogram and magnetoencephalogram (MEG) are dominated by oscillations in the alpha band (approximately 10 Hz), the functional role of these oscillations remains unclear. In this study we used MEG to investigate how spontaneous oscillations in humans presented before visual stimuli modulate visual perception. Subjects had to report if there was a subtle difference in gray levels between two superimposed presented discs. We then compared the prestimulus brain activity for correctly (hits) versus incorrectly (misses) identified stimuli. We found that visual discrimination ability decreased with an increase in prestimulus alpha power. Given that reaction times did not vary systematically with prestimulus alpha power changes in vigilance are not likely to explain the change in discrimination ability. Source reconstruction using spatial filters allowed us to identify the brain areas accounting for this effect. The dominant sources modulating visual perception were localized around the parieto-occipital sulcus. We suggest that the parieto-occipital alpha power reflects functional inhibition imposed by higher level areas, which serves to modulate the gain of the visual stream.

  11. Evaluation of miniature vacuum ultraviolet lamps for stability and operating characteristics, Lyman-Alpha task

    NASA Technical Reports Server (NTRS)

    Hurd, W. A.

    1985-01-01

    Modifications required to change the near ultraviolet source in the Optical Contamination Monitor to a source with output at or near the Lyman-Alpha hydrogen line are discussed. The effort consisted of selecting, acquiring and testing candidate miniature ultraviolet lamps with significant output in or near 121.6 nm. The effort also included selection of a miniature dc high-voltage power supply capable of operating the lamp. The power supply was required to operate from available primary power supplied by the Optical Effect Module (DEM) and it should be flight qualified or have the ability to be qualified by the user.

  12. The effects of neurofeedback on oscillatory processes related to tinnitus.

    PubMed

    Hartmann, Thomas; Lorenz, Isabel; Müller, Nadia; Langguth, Berthold; Weisz, Nathan

    2014-01-01

    Although widely used, no proof exists for the feasibility of neurofeedback for reinstating the disordered excitatory-inhibitory balance, marked by a decrease in auditory alpha power, in tinnitus patients. The current study scrutinizes the ability of neurofeedback to focally increase alpha power in auditory areas in comparison to the more common rTMS. Resting-state MEG was measured before and after neurofeedback (n = 8) and rTMS (n = 9) intervention respectively. Source level power and functional connectivity were analyzed with a focus on the alpha band. Only neurofeedback produced a significant decrease in tinnitus symptoms and-more important for the context of the study-a spatially circumscribed increase in alpha power in right auditory regions. Connectivity analysis revealed higher outgoing connectivity in a region ultimately neighboring the area in which power increases were observed. Neurofeedback decreases tinnitus symptoms and increases alpha power in a spatially circumscribed manner. In addition, compared to a more established brain stimulation-based intervention, neurofeedback is a promising approach to renormalize the excitatory-inhibitory imbalance putatively underlying tinnitus. This study is the first to demonstrate the feasibility of focally enhancing alpha activity in tinnitus patients by means of neurofeedback.

  13. Self-powered microthermionic converter

    DOEpatents

    Marshall, Albert C.; King, Donald B.; Zavadil, Kevin R.; Kravitz, Stanley H.; Tigges, Chris P.; Vawter, Gregory A.

    2004-08-10

    A self-powered microthermionic converter having an internal thermal power source integrated into the microthermionic converter. These converters can have high energy-conversion efficiencies over a range of operating temperatures. Microengineering techniques are used to manufacture the converter. The utilization of an internal thermal power source increases potential for mobility and incorporation into small devices. High energy efficiency is obtained by utilization of micron-scale interelectrode gap spacing. Alpha-particle emitting radioisotopes can be used for the internal thermal power source, such as curium and polonium isotopes.

  14. Test-retest reliability of resting-state magnetoencephalography power in sensor and source space.

    PubMed

    Martín-Buro, María Carmen; Garcés, Pilar; Maestú, Fernando

    2016-01-01

    Several studies have reported changes in spontaneous brain rhythms that could be used as clinical biomarkers or in the evaluation of neuropsychological and drug treatments in longitudinal studies using magnetoencephalography (MEG). There is an increasing necessity to use these measures in early diagnosis and pathology progression; however, there is a lack of studies addressing how reliable they are. Here, we provide the first test-retest reliability estimate of MEG power in resting-state at sensor and source space. In this study, we recorded 3 sessions of resting-state MEG activity from 24 healthy subjects with an interval of a week between each session. Power values were estimated at sensor and source space with beamforming for classical frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), low beta (13-20 Hz), high beta (20-30 Hz), and gamma (30-45 Hz). Then, test-retest reliability was evaluated using the intraclass correlation coefficient (ICC). We also evaluated the relation between source power and the within-subject variability. In general, ICC of theta, alpha, and low beta power was fairly high (ICC > 0.6) while in delta and gamma power was lower. In source space, fronto-posterior alpha, frontal beta, and medial temporal theta showed the most reliable profiles. Signal-to-noise ratio could be partially responsible for reliability as low signal intensity resulted in high within-subject variability, but also the inherent nature of some brain rhythms in resting-state might be driving these reliability patterns. In conclusion, our results described the reliability of MEG power estimates in each frequency band, which could be considered in disease characterization or clinical trials. © 2015 Wiley Periodicals, Inc.

  15. Low latitude middle atmosphere ionization studies

    NASA Technical Reports Server (NTRS)

    Bassi, J. P.

    1976-01-01

    Low latitude middle atmosphere ionization was studied with data obtained from three blunt conductivity probes and one Gerdien condenser. An investigation was conducted into the effects of various ionization sources in the 40 to 65 Km altitude range. An observed enhancement of positive ion conductivity taking place during the night can be explained by an atmsopheric effect, with cosmic rays being the only source of ionization only if the ion-ion recombination coefficient (alpha sub i) is small(10 to the -7 power cu cm/s) and varies greatly with altitude. More generally accepted values of alpha sub i ( approximately equal to 3x10 to the -7 power cu cm/s) require an additional source of ionization peaking at about 65 Km, and corresponding approximately to the integrated effect of an X-ray flux measured on a rocket flown in conjunction with the ionization measurements. The reasonable assumption of an alpha sub i which does not vary with altitude in the 50-70 Km range implies an even greater value alpha sub i and a more intense and harder X-ray spectrum.

  16. Preparation of alpha sources using magnetohydrodynamic electrodeposition for radionuclide metrology.

    PubMed

    Panta, Yogendra M; Farmer, Dennis E; Johnson, Paula; Cheney, Marcos A; Qian, Shizhi

    2010-02-01

    Expanded use of nuclear fuel as an energy resource and terrorist threats to public safety clearly require the development of new state-of-the-art technologies and improvement of safety measures to minimize the exposure of people to radiation and the accidental release of radiation into the environment. The precision in radionuclide metrology is currently limited by the source quality rather than the detector performance. Electrodeposition is a commonly used technique to prepare massless radioactive sources. Unfortunately, the radioactive sources prepared by the conventional electrodeposition method produce poor resolution in alpha spectrometric measurements. Preparing radioactive sources with better resolution and higher yield in the alpha spectrometric range by integrating magnetohydrodynamic convection with the conventional electrodeposition technique was proposed and tested by preparing mixed alpha sources containing uranium isotopes ((238)U, (234)U), plutonium ((239)Pu), and americium ((241)Am) for alpha spectrometric determination. The effects of various parameters such as magnetic flux density, deposition current and time, and pH of the sample solution on the formed massless radioactive sources were also experimentally investigated. Copyright 2009 Elsevier Inc. All rights reserved.

  17. Project Longshot: An unmanned probe to Alpha Centauri

    NASA Technical Reports Server (NTRS)

    Beals, Keith A.; Beaulieu, Martin; Dembia, Frank J.; Kerstiens, Joseph; Kramer, Daniel L.; West, Jeffrey R.; Zito, James A.

    1988-01-01

    A preliminary design is presented for an unmanned probe to Alpha Centauri with a planned launch early in the 21st century. The probe would be assembled at the space station and take approx. 100 yrs to reach the nearest star. Several technologies must be developed in order for this mission to be possible. A pulsed fusion microexplosion drive with 1,000,000 secs of specific impulse is the primary enabling technology. A large, long life fission reactor with 300 kW power output is also required. Communications lasers would use a 0.532 micrometer wavelength since there is minimal power output by the stars in that frequency band. A laser with an input power of 250 kW would allow for a data rate of 1000 bits per second at maximum range. There are 3 types of information to be gathered by the probe: properties of the interstellar medium, characteristics of the three star Alpha Centauri system, and astrometry.

  18. [Voluntary alpha-power increasing training impact on the heart rate variability].

    PubMed

    Bazanova, O M; Balioz, N V; Muravleva, K B; Skoraia, M V

    2013-01-01

    In order to study the effect of the alpha EEG power increasing training at heart rate variability (HRV) as the index of the autonomic regulation of cognitive functions there were follow tasks: (1) to figure out the impact of biofeedback in the voluntary increasing the power in the individual high-frequency alpha-band effect on heart rate variability and related characteristics of cognitive and emotional spheres, (2) to determine the nature of the relationship between alpha activity indices and heart rate variability, depending on the alpha-frequency EEG pattern at rest (3) to examine how the individual alpha frequency EEG pattern is reflected in changes HRV as a result of biofeedback training. Psychometric indicators of cognitive performance, the characteristics of the alpha-EEG activity and heart rate variability (HRV) as LF/HF and pNN50 were recorded in 27 healthy men aged 18-34 years, before, during, and after 10 sessions of training of voluntary increase in alpha power in the individual high-frequency alpha band with eyes closed. To determine the biofeedback effect on the alpha power increasing training, data subjects are compared in 2 groups: experimental (14) with the real and the control group (13 people)--with mock biofeedback. The follow up effect of trainings was studied through month over the 10 training sessions. Results showed that alpha biofeedback training enhanced the fluency and accuracy in cognitive performance, decreased anxiety and frontal EMG, increased resting frequency, width and power in individual upper alpha range only in participants with low baseline alpha frequency. While mock biofeedback increased resting alpha power only in participants with high baseline resting alpha frequency and did change neither cognitive performance, nor HRV indices. Biofeedback training eliminated the alpha power decrease in response to arithmetic task in both with high and low alpha frequency participants and this effect was followed up over the month. Mock biofeedback training has no such effect. The positive correlation between the alpha-peak frequency and pNN50 in patients with initially low, but negative--those with high baseline alpha frequency explains the multidirectional biofeedback effects on HRV in low and high alpha frequency subjects. The individual alpha-frequency EEG pattern determines the effectiveness of the alpha EEG biofeedback training in changing heart rate variability, which provides a basis for predicting the results and develop individual approaches to the biofeedback technology implementation that can be used in clinical practice for treatment and rehabilitation of psychosomatic syndromes and in educational training.

  19. Changes of Functional and Directed Resting-State Connectivity Are Associated with Neuronal Oscillations, ApoE Genotype and Amyloid Deposition in Mild Cognitive Impairment

    PubMed Central

    Michels, Lars; Muthuraman, Muthuraman; Anwar, Abdul R.; Kollias, Spyros; Leh, Sandra E.; Riese, Florian; Unschuld, Paul G.; Siniatchkin, Michael; Gietl, Anton F.; Hock, Christoph

    2017-01-01

    The assessment of effects associated with cognitive impairment using electroencephalography (EEG) power mapping allows the visualization of frequency-band specific local changes in oscillatory activity. In contrast, measures of coherence and dynamic source synchronization allow for the study of functional and effective connectivity, respectively. Yet, these measures have rarely been assessed in parallel in the context of mild cognitive impairment (MCI) and furthermore it has not been examined if they are related to risk factors of Alzheimer’s disease (AD) such as amyloid deposition and apolipoprotein ε4 (ApoE) allele occurrence. Here, we investigated functional and directed connectivities with Renormalized Partial Directed Coherence (RPDC) in 17 healthy controls (HC) and 17 participants with MCI. Participants underwent ApoE-genotyping and Pittsburgh compound B positron emission tomography (PiB-PET) to assess amyloid deposition. We observed lower spectral source power in MCI in the alpha and beta bands. Coherence was stronger in HC than MCI across different neuronal sources in the delta, theta, alpha, beta and gamma bands. The directed coherence analysis indicated lower information flow between fronto-temporal (including the hippocampus) sources and unidirectional connectivity in MCI. In MCI, alpha and beta RPDC showed an inverse correlation to age and gender; global amyloid deposition was inversely correlated to alpha coherence, RPDC and beta and gamma coherence. Furthermore, the ApoE status was negatively correlated to alpha coherence and RPDC, beta RPDC and gamma coherence. A classification analysis of cognitive state revealed the highest accuracy using EEG power, coherence and RPDC as input. For this small but statistically robust (Bayesian power analyses) sample, our results suggest that resting EEG related functional and directed connectivities are sensitive to the cognitive state and are linked to ApoE and amyloid burden. PMID:29081745

  20. Radiation resistant PIDECα cell using photon intermediate direct energy conversion and a 210Po source.

    PubMed

    Weaver, Charles L; Schott, Robert J; Prelas, Mark A; Wisniewski, Denis A; Rothenberger, Jason B; Lukosi, Eric D; Oh, Kyuhak

    2018-02-01

    Radiation damage is a significant concern with both alphavoltaic and betavoltaic cells because their performance degrades, especially with high-energy - (>200keV) beta and alpha particles. Indirect excitation methods, such as the Photon Intermediate Direct Energy Conversion (PIDEC) framework, can protect the transducer from radiation. A nuclear battery using a 90 Sr beta source was constructed by the author's research group, which demonstrated the radiation resistance of a PIDEC cell driven by beta particles (PIDECβ cell). Use of alpha sources to drive nuclear batteries would appear to be much more attractive than beta sources due to higher potential power density. However, they are also subject to higher rates of radiation damage. This paper describes the successful incorporation of alpha particles into the PIDEC framework using the alpha emitter 210 Po to form a PIDECα cell. The PIDECα cell transducer was exposed to alpha particles for over one year without experiencing adverse effects from radiation damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Testing the stand-alone microbeam at Columbia University.

    PubMed

    Garty, G; Ross, G J; Bigelow, A W; Randers-Pehrson, G; Brenner, D J

    2006-01-01

    The stand-alone microbeam at Columbia University presents a novel approach to biological microbeam irradiation studies. Foregoing a conventional accelerator as a source of energetic ions, a small, high-specific-activity, alpha emitter is used. Alpha particles emitted from this source are focused using a compound magnetic lens consisting of 24 permanent magnets arranged in two quadrupole triplets. Using a 'home made' 6.5 mCi polonium source, a 1 alpha particle s(-1), 10 microm diameter microbeam can, in principle, be realised. As the alpha source energy is constant, once the microbeam has been set up, no further adjustments are necessary apart from a periodic replacement of the source. The use of permanent magnets eliminates the need for bulky power supplies and cooling systems required by other types of ion lenses and greatly simplifies operation. It also makes the microbeam simple and cheap enough to be realised in any large lab. The Microbeam design as well as first tests of its performance, using an accelerator-based beam are presented here.

  2. Alpha power gates relevant information during working memory updating.

    PubMed

    Manza, Peter; Hau, Chui Luen Vera; Leung, Hoi-Chung

    2014-04-23

    Human working memory (WM) is inherently limited, so we must filter out irrelevant information in our environment or our mind while retaining limited important relevant contents. Previous work suggests that neural oscillations in the alpha band (8-14 Hz) play an important role in inhibiting incoming distracting information during attention and selective encoding tasks. However, whether alpha power is involved in inhibiting no-longer-relevant content or in representing relevant WM content is still debated. To clarify this issue, we manipulated the amount of relevant/irrelevant information using a task requiring spatial WM updating while measuring neural oscillatory activity via EEG and localized current sources across the scalp using a surface Laplacian transform. An initial memory set of two, four, or six spatial locations was to be memorized over a delay until an updating cue was presented indicating that only one or three locations remained relevant for a subsequent recognition test. Alpha amplitude varied with memory maintenance and updating demands among a cluster of left frontocentral electrodes. Greater postcue alpha power was associated with the high relevant load conditions (six and four dots cued to reduce to three relevant) relative to the lower load conditions (four and two dots reduced to one). Across subjects, this difference in alpha power was correlated with condition differences in performance accuracy. In contrast, no significant effects of irrelevant load were observed. These findings demonstrate that, during WM updating, alpha power reflects maintenance of relevant memory contents rather than suppression of no-longer-relevant memory traces.

  3. Adaptive Liquid Crystal Windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taheri, Bahman; Bodnar, Volodymyr

    2011-12-31

    Energy consumption by private and commercial sectors in the U.S. has steadily grown over the last decade. The uncertainty in future availability of imported oil, on which the energy consumption relies strongly, resulted in a dramatic increase in the cost of energy. About 20% of this consumption are used to heat and cool houses and commercial buildings. To reduce dependence on the foreign oil and cut down emission of greenhouse gases, it is necessary to eliminate losses and reduce total energy consumption by buildings. To achieve this goal it is necessary to redefine the role of the conventional windows. Atmore » a minimum, windows should stop being a source for energy loss. Ideally, windows should become a source of energy, providing net gain to reduce energy used to heat and cool homes. It is possible to have a net energy gain from a window if its light transmission can be dynamically altered, ideally electronically without the need of operator assistance, providing optimal control of the solar gain that varies with season and climate in the U.S. In addition, the window must not require power from the building for operation. Resolution of this problem is a societal challenge and of national interest and will have a broad global impact. For this purpose, the year-round, allclimate window solution to provide an electronically variable solar heat gain coefficient (SHGC) with a wide dynamic range is needed. AlphaMicron, Inc. (AMI) developed and manufactured 1ft × 1ft prototype panels for the world’s first auto-adjusting Adaptive Liquid Crystal Windows (ALCWs) that can operate from sunlight without the need for external power source and demonstrate an electronically adjustable SHGC. This novel windows are based on AlphaMicron’s patented e-Tint® technology, a guesthost liquid crystal system implemented on flexible, optically clear plastic films. This technology is suitable both for OEM and aftermarket (retro-fitting) lamination to new and existing windows. Low level of power consumption by ALCWs allows for on-board power electronics for automatic matching of transmission through windows to varying climate conditions without drawing the power from the power grid. ALCWs are capable of transmitting more sunlight in winters to assist in heating and less sunlight in summers to minimize overheating. As such, they can change the window from being a source of energy loss to a source of energy gain. In addition, the scalable AMI’s roll-to-roll process, proved by making 1ft × 1ftALCW prototype panels, allows for cost-effective production of large-scale window panels along with capability to change easily their color and shape. In addition to architectural glazing in houses and commercial buildings, ALCWs can be used in other applications where control of sunlight is needed, such as green houses, used by commercial produce growers and botanical gardens, cars, aircrafts, etc.« less

  4. Portable wireless neurofeedback system of EEG alpha rhythm enhances memory.

    PubMed

    Wei, Ting-Ying; Chang, Da-Wei; Liu, You-De; Liu, Chen-Wei; Young, Chung-Ping; Liang, Sheng-Fu; Shaw, Fu-Zen

    2017-11-13

    Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group. The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8-12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively. The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8-12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group. Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.

  5. Space Station alpha joint bearing

    NASA Technical Reports Server (NTRS)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  6. Project Longshot: A mission to Alpha Centauri

    NASA Technical Reports Server (NTRS)

    West, Curtis; Chamberlain, Sally; Pagan, Neftali; Stevens, Robert

    1989-01-01

    Project Longshot, an exercise in the Advanced Design Program for Space, had as its destination Alpha Centauri, the closest star system to our own solar system. Alpha Centauri, a trinary star system, is 4.34 light years from earth. Although Project Longshot is impossible based on existing technologies, areas that require further investigation in order to make this feat possible are identified. Three areas where advances in technology are needed are propulsion, data processing for autonomous command and control functions, and reliability. Propulsion, possibly by antimatter annihilation; navigation and navigation aids; reliable hardware and instruments; artificial intelligence to eliminate the need for command telemetry; laser communication; and a reliable, compact, and lightweight power system that converts energy efficiently and reliably present major challenges. Project Longshot promises exciting advances in science and technology and new information concerning the universe.

  7. Spectral properties of X-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero-Colmenero, E.

    1998-03-01

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha~1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for N_H. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law slope of the average NELG is alpha = 0.45 +/- 0.09, whilst that of the AGN is alpha = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (<= 2e-15 ergs cm-2 s-1), thus suggesting that NELGs are important contributors to the residual soft (<2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (alpha~0.4, 1-10 keV) is harder than that of AGN (alpha~1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha~0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to constitute it. Furthermore, by combining both samples of NELGs, I find a tendency for sources at lower fluxes to display harder slopes (95% confidence level), further strengthening the case for NELGs to be major contributors to the XRB at the fainter fluxes. The analysis of optical spectroscopy, obtained on La Palma and Hawaii, shows that NELGs form a very heterogeneous group, made up of a mixture of Seyfert 2, LINER and HII-region like galaxies. Seyfert 2 galaxies are found to possess in general the steepest X-ray slopes. Ways to explain this in the context of the unified model of AGN are discussed. The FWHM of some emission lines (Halpha, Hbeta, [NII]) in the NELGs appears to increase with steepening X-ray spectral slope. In the case of the Balmer lines, this is at variance with what is observed in broad line AGN. The FWHM of the Balmer lines is also correlated to the FWHM of the forbidden lines, indicating that they must originate in regions of similar velocity fields. Unfortunately, the number of sources uniquely classified is not sufficient to investigate these relationships on a source type basis. The optical emission line ratios of a bright RIXOS source (aka Arp 185, NGC 6217), classified as a starburst galaxy in the literature, indicate that this is in fact a weak-[OI] LINER, powered either by emission from hot O stars or by hot stars together with a non-stellar continuum. Spatially resolved spectroscopic analysis suggests that the Balmer emission lines are concentrated in the inner regions of the nucleus, while the forbidden lines arise from a more extended region. Line ratios do not indicate a change in the ionizing continuum of this source with distance from the centre.

  8. Suppressed Alpha Oscillations Predict Intelligibility of Speech and its Acoustic Details

    PubMed Central

    Weisz, Nathan

    2012-01-01

    Modulations of human alpha oscillations (8–13 Hz) accompany many cognitive processes, but their functional role in auditory perception has proven elusive: Do oscillatory dynamics of alpha reflect acoustic details of the speech signal and are they indicative of comprehension success? Acoustically presented words were degraded in acoustic envelope and spectrum in an orthogonal design, and electroencephalogram responses in the frequency domain were analyzed in 24 participants, who rated word comprehensibility after each trial. First, the alpha power suppression during and after a degraded word depended monotonically on spectral and, to a lesser extent, envelope detail. The magnitude of this alpha suppression exhibited an additional and independent influence on later comprehension ratings. Second, source localization of alpha suppression yielded superior parietal, prefrontal, as well as anterior temporal brain areas. Third, multivariate classification of the time–frequency pattern across participants showed that patterns of late posterior alpha power allowed best for above-chance classification of word intelligibility. Results suggest that both magnitude and topography of late alpha suppression in response to single words can indicate a listener's sensitivity to acoustic features and the ability to comprehend speech under adverse listening conditions. PMID:22100354

  9. Improving Alpha Spectrometry Energy Resolution by Ion Implantation with ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dion, Michael P.; Liezers, Martin; Farmer, Orville T.

    2015-01-01

    We report results of a novel technique using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) as a method of source preparation for alpha spectrometry. This method produced thin, contaminant free 241Am samples which yielded extraordinary energy resolution which appear to be at the lower limit of the detection technology used in this research.

  10. Neutron noise measurements at the Delphi subcritical assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szieberth, M.; Klujber, G.; Kloosterman, J. L.

    2012-07-01

    The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft Univ. of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and {sup 252}Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean ratio (VTMR, Feynman-{alpha}), the autocorrelation (ACF, Rossi-{alpha}) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution.more » This is due to the presence of higher modes in the system. It has been observed that the {alpha} value fitted is higher when the detector is close to the boundary of the core or to the {sup 252}Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurement also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly. (authors)« less

  11. On the Physiological Modulation and Potential Mechanisms Underlying Parieto-Occipital Alpha Oscillations

    PubMed Central

    Lozano-Soldevilla, Diego

    2018-01-01

    The parieto-occipital alpha (8–13 Hz) rhythm is by far the strongest spectral fingerprint in the human brain. Almost 90 years later, its physiological origin is still far from clear. In this Research Topic I review human pharmacological studies using electroencephalography (EEG) and magnetoencephalography (MEG) that investigated the physiological mechanisms behind posterior alpha. Based on results from classical and recent experimental studies, I find a wide spectrum of drugs that modulate parieto-occipital alpha power. Alpha frequency is rarely affected, but this might be due to the range of drug dosages employed. Animal and human pharmacological findings suggest that both GABA enhancers and NMDA blockers systematically decrease posterior alpha power. Surprisingly, most of the theoretical frameworks do not seem to embrace these empirical findings and the debate on the functional role of alpha oscillations has been polarized between the inhibition vs. active poles hypotheses. Here, I speculate that the functional role of alpha might depend on physiological excitation as much as on physiological inhibition. This is supported by animal and human pharmacological work showing that GABAergic, glutamatergic, cholinergic, and serotonergic receptors in the thalamus and the cortex play a key role in the regulation of alpha power and frequency. This myriad of physiological modulations fit with the view that the alpha rhythm is a complex rhythm with multiple sources supported by both thalamo-cortical and cortico-cortical loops. Finally, I briefly discuss how future research combining experimental measurements derived from theoretical predictions based of biophysically realistic computational models will be crucial to the reconciliation of these disparate findings. PMID:29670518

  12. Repetitive transcranial magnetic stimulation improves consciousness disturbance in stroke patients: A quantitative electroencephalography spectral power analysis.

    PubMed

    Xie, Ying; Zhang, Tong

    2012-11-05

    Repetitive transcranial magnetic stimulation is a noninvasive treatment technique that can directly alter cortical excitability and improve cerebral functional activity in unconscious patients. To investigate the effects and the electrophysiological changes of repetitive transcranial magnetic stimulation cortical treatment, 10 stroke patients with non-severe brainstem lesions and with disturbance of consciousness were treated with repetitive transcranial magnetic stimulation. A quantitative electroencephalography spectral power analysis was also performed. The absolute power in the alpha band was increased immediately after the first repetitive transcranial magnetic stimulation treatment, and the energy was reduced in the delta band. The alpha band relative power values slightly decreased at 1 day post-treatment, then increased and reached a stable level at 2 weeks post-treatment. Glasgow Coma Score and JFK Coma Recovery Scale-Revised score were improved. Relative power value in the alpha band was positively related to Glasgow Coma Score and JFK Coma Recovery Scale-Revised score. These data suggest that repetitive transcranial magnetic stimulation is a noninvasive, safe, and effective treatment technology for improving brain functional activity and promoting awakening in unconscious stroke patients.

  13. Very High Efficiency, Miniaturized, Long-Lived Alpha Particle Power Source Using Diamond Devices for Extreme Space Environments

    NASA Technical Reports Server (NTRS)

    Kolawa, Elizabeth A. (Inventor); Patel, Jagdishbhai U. (Inventor); Fleurial, Jean-Pierre (Inventor)

    2004-01-01

    A power source that converts a-particle energy into electricity by coulomb collision in doped diamond films is described. Alpha particle decay from curium-244 creates electron-hole pairs by free- ing electrons and holes inside the crystal lattice in N- and P-doped diamond films. Ohmic contacts provide electrical connection to an electronic device. Due to the built-in electric field at the rectifying junction across the hT- and P-doped diamond films, the free electrons are constrained to traveling in generally one direction. This one direction then supplies electrons in a manner similar to that of a battery. The radioactive curium layer may be disposed on diamond films for even distribution of a-particle radiation. The resulting power source may be mounted on a diamond substrate that serves to insulate structures below the diamond substrate from a-particle emission. Additional insulation or isolation may be provided in order to prevent damage from a-particle collision. N-doped silicon may be used instead of N-doped diamond.

  14. Laser technologies for ultrasensitive groundwater dating using long-lived isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backus, Sterling

    In this phase I work, we propose to construct and demonstrate a 103 nm laser based on resonantly enhanced and phase matched fifth harmonic generation in hollow waveguides driven by a high power, low cost and compact ultrafast fiber laser. (Figure 4) This VUV laser source can potentially produce >100 milliwatts of VUV light at 103 nm with pulse repetition-rates of 100 kHz to 100 MHz, ideal for the above-mentioned applications. This technology is state-of-the-art and potentially compact, fieldable, low-cost, and of broad interest for a variety of science and technology applications. Laser-based VUV sources in the past have exhibitedmore » low repetition rate, low efficiency, low beam quality, and are based on expensive laser sources. Our approch is to combine ultrafast fiber laser drive technology, ultrafast pulses, and our proven waveguide technology, to create a high repetition rate, high average power VUV source for producing high yield metastable Krypton. At KMLabs we have been offering EUV light sources employing the high harmonic generation (HHG) process driven by high-power femtosecond lasers for >5 years now. Recently, we have developed much smaller scale (briefcase size), but still high average power femtosecond fiber laser sources to supply other markets, and create new ones. By combining these new laser sources with our patented waveguide frequency upconversion technology, we expect to be able to obtain >20mW average power initially, with potentially much higher powers depending on wavelength, in an affordable VUV product. For comparison, our current EUV light sources based on ti:sapphire generate an average power of ~5 µW (albeit at shorter 29 nm wavelength), and we are aware of one other supplier that has developed a VUV (112 nm) light source with ~10-20 µW power.« less

  15. The Atacama Cosmology Telescope: Cosmological Parameters from Three Seasons of Data

    NASA Technical Reports Server (NTRS)

    Seivers, Jonathan L.; Hlozek, Renee A.; Nolta, Michael R.; Acquaviva, Viviana; Addison, Graeme E.; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John W.; Barrientos, L. Felipe; hide

    2013-01-01

    We present constraints on cosmological and astrophysical parameters from highresolution microwave background maps at 148 GHz and 218 GHz made by the Atacama Cosmology Telescope (ACT) in three seasons of observations from 2008 to 2010. A model of primary cosmological and secondary foreground parameters is fit to the map power spectra and lensing deflection power spectrum, including contributions from both the thermal Sunyaev-Zeldovich (tSZ) effect and the kinematic Sunyaev-Zeldovich (kSZ) effect, Poisson and correlated anisotropy from unresolved infrared sources, radio sources, and the correlation between the tSZ effect and infrared sources. The power l(sup 2)C(sub l)/2pi of the thermal SZ power spectrum at 148 GHz is measured to be 3.4 +/- 1.4 micro-K(sup 2) at l = 3000, while the corresponding amplitude of the kinematic SZ power spectrum has a 95% confidence level upper limit of 8.6 micro-K(sup 2). Combining ACT power spectra with the WMAP 7-year temperature and polarization power spectra, we find excellent consistency with the LCDM model. We constrain the number of effective relativistic degrees of freedom in the early universe to be N(sub eff) = 2.79 +/- 0.56, in agreement with the canonical value of N(sub eff) = 3.046 for three massless neutrinos. We constrain the sum of the neutrino masses to be sigma(m?) is less than 0.39 eV at 95% confidence when combining ACT and WMAP 7-year data with BAO and Hubble constant measurements. We constrain the amount of primordial helium to be Y(sub p) = 0.225 +/- 0.034, and measure no variation in the fine structure constant alpha since recombination, with alpha/alpha(sub 0) = 1.004 +/- 0.005. We also find no evidence for any running of the scalar spectral index, derivative(n(sub s))/derivative(ln k) = -0.004 +/- 0.012.

  16. Predictability of depression severity based on posterior alpha oscillations.

    PubMed

    Jiang, H; Popov, T; Jylänki, P; Bi, K; Yao, Z; Lu, Q; Jensen, O; van Gerven, M A J

    2016-04-01

    We aimed to integrate neural data and an advanced machine learning technique to predict individual major depressive disorder (MDD) patient severity. MEG data was acquired from 22 MDD patients and 22 healthy controls (HC) resting awake with eyes closed. Individual power spectra were calculated by a Fourier transform. Sources were reconstructed via beamforming technique. Bayesian linear regression was applied to predict depression severity based on the spatial distribution of oscillatory power. In MDD patients, decreased theta (4-8 Hz) and alpha (8-14 Hz) power was observed in fronto-central and posterior areas respectively, whereas increased beta (14-30 Hz) power was observed in fronto-central regions. In particular, posterior alpha power was negatively related to depression severity. The Bayesian linear regression model showed significant depression severity prediction performance based on the spatial distribution of both alpha (r=0.68, p=0.0005) and beta power (r=0.56, p=0.007) respectively. Our findings point to a specific alteration of oscillatory brain activity in MDD patients during rest as characterized from MEG data in terms of spectral and spatial distribution. The proposed model yielded a quantitative and objective estimation for the depression severity, which in turn has a potential for diagnosis and monitoring of the recovery process. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Tokamak power reactor ignition and time dependent fractional power operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-06-01

    A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transportmore » power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve.« less

  18. Helios Dynamics A Potential Future Power Source for the Greek Islands

    DTIC Science & Technology

    2007-06-01

    offer an apparent understanding of the capabilities of the emerging Photovoltaic Power Converter (PVPC) technology used in panels for electricity... powering method that uses fueled generators and the alternative option is photovoltaic panels with the Atira technology embedded. This analysis is... POWER SOURCE FOR THE GREEK ISLANDS ABSTRACT The use of Alternative Renewable Energy Sources is becoming an increasing possibility to

  19. Galex Lyman-alpha Emitters: Physical Properties, Luminosity Bimodality, And Morphologies.

    NASA Astrophysics Data System (ADS)

    Mallery, Ryan P.

    2010-01-01

    The Galaxy Evolution Explorer spectroscopic survey has uncovered a large statistically significant sample of Lyman-alpha emitters at z sim0.3. ACS imaging of these sources in the COSMOS and AEGIS deep fields reveals that these Lyman-alpha emitters consist of two distinct galaxy morphologies, face on spiral galaxies and compact starburst/merging systems. The morphology bimodality also results in a bimodal distribution of optical luminosity. A comparison between the UV photometry and MIPS 24 micron detections of these sources indicates that they are bluer, and have less dust extinction than similar star forming galaxies that lack Lyman-alpha detection. Our findings show how the global gas and dust distribution of star forming galaxies inhibits Lyman-alpha emission in star forming galaxies. GALEX is a NASA Small Explorer, launched in April 2003. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the CNES of France and the Korean Ministry of Science and Technology.

  20. EEG source reconstruction reveals frontal-parietal dynamics of spatial conflict processing.

    PubMed

    Cohen, Michael X; Ridderinkhof, K Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30-50 Hz), followed by a later alpha-band (8-12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4-8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions.

  1. Fabrication and properties of multilayer structures

    NASA Astrophysics Data System (ADS)

    Tiller, W. A.

    1983-09-01

    The synthesis of SiC films and Pd2Si films via single source and dual source sputtering, respectively, has been experimentally investigated while the reactive sputter deposition of SiO sub x films has been theoretically analyzed. The SiO sub x film data requires a mobile precursor adsorption process to be operative for the oxygen and an oxygen sticking coefficient of between 1.56 x 10 to the minus 3rd power and 4.17 x 10 to the minus 3rd power. An analysis of in-situ electrical diagnostics of the films via a non-contact technique shows the method to be of marginal accuracy for the example selected. An important new formulation of the stress and elastic constant tensors in the vicinity of interfaces has been developed and applied to the simple example of adsorbed layer/substrate interactions via a parametric analysis. Atomic modeling of the SiO system yields peroxide bond formation for oxygen-rich (100) alpha-cristobalite surfaces. Radial distribution function and angular distribution function data have been calculated for bulk alpha-quartz and bulk alpha-cristobalite in good agreement with experiment.

  2. Dynamics of alpha control: Preparatory suppression of posterior alpha oscillations by frontal modulators revealed with combined EEG and event-related optical signal (EROS)

    PubMed Central

    Mathewson, Kyle E.; Beck, Diane M.; Ro, Tony; Maclin, Edward L.; Low, Kathy A.; Fabiani, Monica; Gratton, Gabriele

    2015-01-01

    We investigated the dynamics of brain processes facilitating conscious experience of external stimuli. Previously we proposed that alpha (8-12 Hz) oscillations, which fluctuate with both sustained and directed attention, represent a pulsed inhibition of ongoing sensory brain activity. Here we tested the prediction that inhibitory alpha oscillations in visual cortex are modulated by top-down signals from frontoparietal attention networks. We measured modulations in phase-coherent alpha oscillations from superficial frontal, parietal, and occipital cortices using the event-related optical signal (EROS), a measure of neuronal activity affording high spatiotemporal resolution, along with concurrently-recorded electroencephalogram (EEG), while subjects performed a visual target-detection task. The pre-target alpha oscillations measured with EEG and EROS from posterior areas were larger for subsequently undetected targets, supporting alpha's inhibitory role. Using EROS, we localized brain correlates of these awareness-related alpha oscillations measured at the scalp to the cuneus and precuneus. Crucially, EROS alpha suppression correlated with posterior EEG alpha power across subjects. Sorting the EROS data based on EEG alpha power quartiles to investigate alpha modulators revealed that suppression of posterior alpha was preceded by increased activity in regions of the dorsal attention network, and decreased activity in regions of the cingulo-opercular network. Cross-correlations revealed the temporal dynamics of activity within these preparatory networks prior to posterior alpha modulation. The novel combination of EEG and EROS afforded localization of the sources and correlates of alpha oscillations and their temporal relationships, supporting our proposal that top-down control from attention networks modulates both posterior alpha and awareness of visual stimuli. PMID:24702458

  3. A special repertoire of alpha:beta T cells in neonatal mice.

    PubMed Central

    Bogue, M; Candéias, S; Benoist, C; Mathis, D

    1991-01-01

    According to several functional criteria, the mature thymocytes of neonatal and adult mice are distinctly different. We wondered whether these differences in function might have a structural correlate: do neonates have a distinct repertoire of alpha:beta T cells? In this study, we have exploited the power of polymerase chain reaction technology to generate large numbers of T cell receptor sequences from sorted thymocyte populations from newborn and adult mice. The newborn-derived sequences show very few N nucleotide additions, usually the major source of diversity in T cell receptors. Most interestingly, the paucity of N insertions appears to be exaggerated by selection events that operate during T cell differentiation in the thymus. The significance of these results is largely: (i) that they parallel recent findings on the B cell repertoire in neonates, raising questions about the reactivities specified by such a special repertoire; and (ii) that they suggest a means to 'tag' T cells exported perinatally, allowing one to test the premise that autoreactive T cells derive preferentially from the newborn repertoire. Images PMID:1834457

  4. Technologies. [space power sources

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1992-01-01

    Energy technologies to meet the power requirements of future space missions are reviewed. Photovoltaic, solar dynamic, and solar thermal technologies are discussed along with techniques for energy storage and power management and distribution.

  5. Revisiting Mathematical Problem Solving and Posing in the Digital Era: Toward Pedagogically Sound Uses of Modern Technology

    ERIC Educational Resources Information Center

    Abramovich, S.

    2014-01-01

    The availability of sophisticated computer programs such as "Wolfram Alpha" has made many problems found in the secondary mathematics curriculum somewhat obsolete for they can be easily solved by the software. Against this background, an interplay between the power of a modern tool of technology and educational constraints it presents is…

  6. Altered brain functional connectivity induced by physical exercise may improve neuropsychological functions in patients with benign epilepsy.

    PubMed

    Koirala, Gyan Raj; Lee, Dongpyo; Eom, Soyong; Kim, Nam-Young; Kim, Heung Dong

    2017-11-01

    The objective of this study was to elucidate alteration in functional connectivity (FC) in patients with benign epilepsy with centrotemporal spikes (BECTS) as induced by physical exercise therapy and their correlation to the neuropsychological (NP) functions. We analyzed 115 artifact- and spike-free 2-second epochs extracted from resting state EEG recordings before and after 5weeks of physical exercise in eight patients with BECTS. The exact Low Resolution Electromagnetic Tomography (eLORETA) was used for source reconstruction. We evaluated the cortical current source density (CSD) power across five different frequency bands (delta, theta, alpha, beta, and gamma). Altered FC between 34 regions of interests (ROIs) was then examined using lagged phase synchronization (LPS) method. We further investigated the correlation between the altered FC measures and the changes in NP test scores. We observed changes in CSD power following the exercise for all frequency bands and statistically significant increases in the right temporal region for the alpha band. There were a number of altered FC between the cortical ROIs in all frequency bands of interest. Furthermore, significant correlations were observed between FC measures and NP test scores at theta and alpha bands. The increased localization power at alpha band may be an indication of the positive impact of exercise in patients with BECTS. Frequency band-specific alterations in FC among cortical regions were associated with the modulation of cognitive and NP functions. The significant correlation between FC and NP tests suggests that physical exercise may mitigate the severity of BECTS, thereby enhancing NP function. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. High-Performance AC Power Source by Applying Robust Stability Control Technology for Precision Material Machining

    NASA Astrophysics Data System (ADS)

    Chang, En-Chih

    2018-02-01

    This paper presents a high-performance AC power source by applying robust stability control technology for precision material machining (PMM). The proposed technology associates the benefits of finite-time convergent sliding function (FTCSF) and firefly optimization algorithm (FOA). The FTCSF maintains the robustness of conventional sliding mode, and simultaneously speeds up the convergence speed of the system state. Unfortunately, when a highly nonlinear loading is applied, the chatter will occur. The chatter results in high total harmonic distortion (THD) output voltage of AC power source, and even deteriorates the stability of PMM. The FOA is therefore used to remove the chatter, and the FTCSF still preserves finite system-state convergence time. By combining FTCSF with FOA, the AC power source of PMM can yield good steady-state and transient performance. Experimental results are performed in support of the proposed technology.

  8. Hard X-Ray Emission and the Ionizing Source in LINERs

    NASA Technical Reports Server (NTRS)

    Terashima, Yuichi; Ho, Luis C.; Ptak, Andrew F.

    2000-01-01

    We report X-ray fluxes in the 2-10 keV band from LINERs (low-ionization nuclear emission-line regions) and low-luminosity Seyfert galaxies obtained with the ASCA satellite. Observed X-ray luminosities are in the range between 4 x 10(exp 39) and 5 x 10(exp 41) ergs/s, which are significantly smaller than that of the "classical" low-luminosity Seyfert 1 galaxy NGC 4051. We found that X-ray luminosities in 2-10 keV of LINERs with broad H.alpha emission in their optical spectra (LINER 1s) are proportional to their Ha luminosities. This correlation strongly supports the hypothesis that the dominant ionizing source in LINER 1s is photoionization by hard photons from low-luminosity AGNs. On the other hand, the X-ray luminosities of most LINERs without broad H.alpha emission (LINER 2s) in our sample are lower than LINER 1s at a given H.alpha luminosity. The observed X-ray luminosities in these objects are insufficient to power their H.alpha luminosities, suggesting that their primary ionizing source is other than an AGN, or that an AGN, if present, is obscured even at energies above 2 keV.

  9. EEG Source Reconstruction Reveals Frontal-Parietal Dynamics of Spatial Conflict Processing

    PubMed Central

    Cohen, Michael X; Ridderinkhof, K. Richard

    2013-01-01

    Cognitive control requires the suppression of distracting information in order to focus on task-relevant information. We applied EEG source reconstruction via time-frequency linear constrained minimum variance beamforming to help elucidate the neural mechanisms involved in spatial conflict processing. Human subjects performed a Simon task, in which conflict was induced by incongruence between spatial location and response hand. We found an early (∼200 ms post-stimulus) conflict modulation in stimulus-contralateral parietal gamma (30–50 Hz), followed by a later alpha-band (8–12 Hz) conflict modulation, suggesting an early detection of spatial conflict and inhibition of spatial location processing. Inter-regional connectivity analyses assessed via cross-frequency coupling of theta (4–8 Hz), alpha, and gamma power revealed conflict-induced shifts in cortical network interactions: Congruent trials (relative to incongruent trials) had stronger coupling between frontal theta and stimulus-contrahemifield parietal alpha/gamma power, whereas incongruent trials had increased theta coupling between medial frontal and lateral frontal regions. These findings shed new light into the large-scale network dynamics of spatial conflict processing, and how those networks are shaped by oscillatory interactions. PMID:23451201

  10. PKS 2155-304 relativistically beamed synchrotron radiation from BL LAC object

    NASA Technical Reports Server (NTRS)

    Urry, C. M.; Mushotzky, R. F.

    1981-01-01

    The newly discovered BL Lacertae object, PKS 2155-304, was observed with the medium and high intensity energy detectors of the HEAO-1 A2 experiment. The variability by a factor of two in less than a day reported by Snyder, et al (1979) is confirmed. Two spectra, obtained a year apart, while the satellite was in scanning mode, are well fit by simple power laws with energy spectral index alpha sub 1 equals approximately 1.4. A third spectrum, of higher statistical quality, obtained while the satellite was pointed at its source, has has two components. An acceptable fit was obtained using a two power law model, with indices alpha sub 1 equals 2.0 (+1.2, -0.6) and alpha sub 2 equals -1.5 (+1.5, -2.3). An interpretation of the overall spectrum from radio through X-rays in terms of a synchrotron self-Compton model gives a good description of the data if allowance is made for relativistic beaming. Thus, from a consideration of the spectrum, combined with an estimate of the size of the source, the presence of jets is inferred without their observation.

  11. Multifrequency VLA observations of PKS 0745 - 191 - The archetypal 'cooling flow' radio source?

    NASA Technical Reports Server (NTRS)

    Baum, S. A.; O'Dea, C. P.

    1991-01-01

    Ninety-, 20-, 6- and 2-cm VLA observations of the high-radio-luminosity cooling-flow radio source PKS 0745 - 191 are presented. The radio source was found to have a core with a very steep spectrum (alpha is approximately -1.5) and diffuse emission with an even steeper spectrum (alpha is approximately -1.5 to -2.3) without clear indications of the jets, hotspots, or double lobes found in the other radio sources of comparable luminosity. It is inferred that the energy to power the radio source comes from the central engine, but the source's structure may be heavily influenced by the past history of the galaxy and the inflowing intracluster medium. It is shown that, while the radio source is energetically unimportant for the cluster as a whole, it is important on the scale of the cooling flow. The mere existence of cosmic rays and magnetic fields within a substantial fraction of the volume inside the cooling radius has important consequences for cooling-flow models.

  12. 76 FR 15986 - Alpha Omega Technology, Inc.; Denial Without Prejudice of Food Additive Petition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... regulations be amended to provide for the safe use of a source of irradiation to treat shellfish and finfish....26) to provide for the safe use of a source of irradiation to treat finfish and shellfish. For any... pattern of typical spoilage organisms could be changed by irradiation, thus reducing perception of...

  13. Harvesting energy an sustainable power source, replace batteries for powering WSN and devices on the IoT

    NASA Astrophysics Data System (ADS)

    Pop-Vadean, A.; Pop, P. P.; Latinovic, T.; Barz, C.; Lung, C.

    2017-05-01

    Harvesting energy from nonconventional sources in the environment has received increased attention over the past decade from researchers who study these alternative energy sources for low power applications. Although that energy harvested is small and in the order of milliwatt, it can provide enough power for wireless sensors and other low-power applications. In the environment there is a lot of wasted energy that can be converted into electricity to power the various circuits and represents a potentially cheap source of power. Energy harvesting is important because it offers an alternative power supply for electronic devices where is does not exist conventional energy sources. This technology applied in a wireless sensor network (WSN) and devices on the IoT, will eliminate the need for network-based energy and conventional batteries, will minimize maintenance costs, eliminate cables and batteries and is ecological. It has the same advantage in applications from remote locations, underwater, and other hard to reach places where conventional batteries and energy are not suitable. Energy harvesting will promote environmentally friendly technologies that will save energy, will reduce CO2 emissions, which makes this technology indispensable for achieving next-generation smart cities and sustainable society. In response to the challenges of energy, in this article we remind the basics of harvesting energy and we discuss the various applications of this technology where traditional batteries cannot be used.

  14. Deuterium-tritium experiments on the Tokamak Fusion Test reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosea, J.; Adler, J.H.; Alling, P.

    The deuterium-tritium (D-T) experimental program on the Tokamak Fusion Test Reactor (TFTR) is underway and routine tritium operations have been established. The technology upgrades made to the TFTR facility have been demonstrated to be sufficient for supporting both operations and maintenance for an extended D-T campaign. To date fusion power has been increased to {approx}9 MW and several physics results of importance to the D-T reactor regime have been obtained: electron temperature, ion temperature, and plasma stored energy all increase substantially in the D-T regime relative to the D-D regime at the same neutral beam power and comparable limiter conditioning;more » possible alpha electron heating is indicated and energy confinement improvement with average ion mass is observed; and alpha particle losses appear to be classical with no evidence of TAE mode activity up to the PFUS {approx}6 MW level. Instability in the TAE mode frequency range has been observed at PFUS > 7 MW and its effect on performance in under investigation. Preparations are underway to enhance the alpha particle density further by increasing fusion power and by extending the neutral beam pulse length to permit alpha particle effects of relevance to the ITER regime to be more fully explored.« less

  15. LPP-EUV light source for HVM lithography

    NASA Astrophysics Data System (ADS)

    Saito, T.; Ueno, Y.; Yabu, T.; Kurosawa, A.; Nagai, S.; Yanagida, T.; Hori, T.; Kawasuji, Y.; Abe, T.; Kodama, T.; Nakarai, H.; Yamazaki, T.; Mizoguchi, H.

    2017-01-01

    We have been developing a laser produced plasma extremely ultra violet (LPP-EUV) light source for a high volume manufacturing (HVM) semiconductor lithography. It has several unique technologies such as the high power short pulse carbon dioxide (CO2) laser, the short wavelength solid-state pre-pulse laser and the debris mitigation technology with the magnetic field. This paper presents the key technologies for a high power LPP-EUV light source. We also show the latest performance data which is 188W EUV power at intermediate focus (IF) point with 3.7% conversion efficiency (CE) at 100 kHz.

  16. A Preliminary Model for Spacecraft Propulsion Performance Analysis Based on Nuclear Gain and Subsystem Mass-Power Balances

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman; Schmidt, George R.; Thio, Y. C.; Hurst, Chantelle M.

    1999-01-01

    A preliminary model for spacecraft propulsion performance analysis based on nuclear gain and subsystem mass-power balances are presented in viewgraph form. For very fast missions with straight-line trajectories, it has been shown that mission trip time is proportional to the cube root of alpha. Analysis of spacecraft power systems via a power balance and examination of gain vs. mass-power ratio has shown: 1) A minimum gain is needed to have enough power for thruster and driver operation; and 2) Increases in gain result in decreases in overall mass-power ratio, which in turn leads to greater achievable accelerations. However, subsystem mass-power ratios and efficiencies are crucial: less efficient values for these can partially offset the effect of nuclear gain. Therefore, it is of interest to monitor the progress of gain-limited subsystem technologies and it is also possible that power-limited systems with sufficiently low alpha may be competitive for such ambitious missions. Topics include Space flight requirements; Spacecraft energy gain; Control theory for performance; Mission assumptions; Round trips: Time and distance; Trip times; Vehicle acceleration; and Minimizing trip times.

  17. Alpha-power modulation reflects the balancing of task requirements in a selective attention task.

    PubMed

    Limbach, Katharina; Corballis, Paul M

    2017-02-01

    Recent research has related the orienting of selective attention to the lateralization of posterior EEG alpha power (∼8 to 12 Hz). Typically, alpha power decreases over the side of the head contralateral to the cued side of space. However, it is not clear how this lateralization affects behavior. We recorded EEG from 20 participants while they performed a cued visual discrimination task under three different response-deadline conditions to investigate the effect of alpha-power modulation on behavioral performance in more detail. Although all participants benefited from the cue behaviorally and adjusted their performance according to the response deadlines, we found the cue-related alpha-power modulation to depend on the general alpha-power level at baseline: Only participants with high baseline alpha power showed significant cue-related alpha-power lateralization that was, however, strikingly similar across response-deadline conditions. On the other hand, participants with low alpha power at baseline did not show any lateralization, but adjusted their alpha levels according to the response-deadline instructions and, more importantly, showed a stronger influence of the task instructions on behavioral performance and adapted their response accuracies to the task requirements more flexibly. These findings challenge the often-assumed role of alpha-power lateralization for attentional deployment. While alpha power seems to be related to behavioral performance and the orienting of attention, this relationship is rather complex and, at least under the current task requirements, the general alpha-power state seems to be more strongly related to behavioral performance (in our case, the flexible adjustment to task requirements) than the cue-related lateralization. © 2016 Society for Psychophysiological Research.

  18. Ruthenium Oxide Electrochemical Super Capacitor Optimization for Pulse Power Applications

    NASA Technical Reports Server (NTRS)

    Merryman, Stephen A.; Chen, Zheng

    2000-01-01

    Electrical actuator systems are being pursued as alternatives to hydraulic systems to reduce maintenance time, weight and costs while increasing reliability. Additionally, safety and environmental hazards associated with the hydraulic fluids can be eliminated. For most actuation systems, the actuation process is typically pulsed with high peak power requirements but with relatively modest average power levels. The power-time requirements for electrical actuators are characteristic of pulsed power technologies where the source can be sized for the average power levels while providing the capability to achieve the peak requirements. Among the options for the power source are battery systems, capacitor systems or battery-capacitor hybrid systems. Battery technologies are energy dense but deficient in power density; capacitor technologies are power dense but limited by energy density. The battery-capacitor hybrid system uses the battery to supply the average power and the capacitor to meet the peak demands. It has been demonstrated in previous work that the hybrid electrical power source can potentially provide a weight savings of approximately 59% over a battery-only source. Electrochemical capacitors have many properties that make them well-suited for electrical actuator applications. They have the highest demonstrated energy density for capacitive storage (up to 100 J/g), have power densities much greater than most battery technologies (greater than 30kW/kg), are capable of greater than one million charge-discharge cycles, can be charged at extremely high rates, and have non-explosive failure modes. Thus, electrochemical capacitors exhibit a combination of desirable battery and capacitor characteristics.

  19. Technology Assessment of Doe's 55-we Stirling Technology Demonstrator Convector (TDC)

    NASA Technical Reports Server (NTRS)

    Furlong, Richard; Shaltens, Richard

    2000-01-01

    The Department of Energy (DOE), Germantown, Maryland and the NASA Glenn Research Center (GRC), Cleveland, Ohio are developing a Stirling Convertor for an advanced radioisotope power system as a potential power source for spacecraft on-board electric power for NASA deep space science missions. The Stirling Convertor is being evaluated as an alternative high efficiency power source to replace Radioisotope Thermoelectric Generators (RTGs). Stirling Technology Company (STC), Kennewick, Washington, is developing the highly efficient, long life 55-We free-piston Stirling Convertor known as the Technology Demonstrator Convertor (TDC) under contract to DOE. GRC provides Stirling technology expertise under a Space Act Agreement with the DOE. Lockheed Martin Astronautics (LMA), Valley Forge, Pennsylvania is the current power system integrator for the Advanced Radioisotope Power System (ARPS) Project for the DOE. JPL is responsible for the Outer Planets/Solar Probe Project for NASA.

  20. U-shaped Relation between Prestimulus Alpha-band and Poststimulus Gamma-band Power in Temporal Tactile Perception in the Human Somatosensory Cortex.

    PubMed

    Wittenberg, Marc André; Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2018-04-01

    Neuronal oscillations are a ubiquitous phenomenon in the human nervous system. Alpha-band oscillations (8-12 Hz) have been shown to correlate negatively with attention and performance, whereas gamma-band oscillations (40-150 Hz) correlate positively. Here, we studied the relation between prestimulus alpha-band power and poststimulus gamma-band power in a suprathreshold tactile discrimination task. Participants received two electrical stimuli to their left index finger with different SOAs (0 msec, 100 msec, intermediate SOA, intermediate SOA ± 10 msec). The intermediate SOA was individually determined so that stimulation was bistable, and participants perceived one stimulus in half of the trials and two stimuli in the other half. We measured neuronal activity with magnetoencephalography (MEG). In trials with intermediate SOAs, behavioral performance correlated inversely with prestimulus alpha-band power but did not correlate with poststimulus gamma-band power. Poststimulus gamma-band power was high in trials with low and high prestimulus alpha-band power and low for intermediate prestimulus alpha-band power (i.e., U-shaped). We suggest that prestimulus alpha activity modulates poststimulus gamma activity and subsequent perception: (1) low prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that two stimuli were perceived; (2) intermediate prestimulus alpha-band power leads to low gamma-band power (interpreted as inefficient stimulus processing), consequently, perception was not biased in either direction; and (3) high prestimulus alpha-band power leads to high poststimulus gamma-band power, biasing perception such that only one stimulus was perceived.

  1. A 1kW EUV source for lithography based on FEL emission in a compact storage ring

    NASA Astrophysics Data System (ADS)

    Feser, Michael; Ruth, Ron; Loewen, Rod

    2017-10-01

    EUV has long been hailed as the next generation lithography technology. Its adoption into high volume manufacturing (HVM), however, has been delayed several technology nodes due to technical issues, many of which can be attributed to the EUV source performance. Today's EUV lithography scanners are powered by laser produce plasma (LPP) sources. They have issues with power scaling beyond 300 W, reliability and contamination. Free Electron Lasers (FELs) have been considered as an alternative EUV source. Advantages of accelerator based sources are the maturity of the accelerator technology, lack of debris/contamination, and ability to provide high power. Industry turned away from this technology because of the requirement to feed up to 10 scanners from one linear FEL to make it economically feasible, the large footprint, and generation of radioactive byproducts. All of these issues are overcome in the presented concept using a compact storage ring with steady-state FEL lasing action. At 1 kW output power, comparable cost and footprint to an LPP source, this source is ideally suited for use on a single scanner and promises reliable, contamination free operation. FEL action in the storage ring is sustained by operating the FEL well below the saturation regime and preserving the equilibrium low emittance and energy distribution of the ring.

  2. Potential profile near singularity point in kinetic Tonks-Langmuir discharges as a function of the ion sources temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kos, L.; Tskhakaya, D. D.; Jelic, N.

    2011-05-15

    A plasma-sheath transition analysis requires a reliable mathematical expression for the plasma potential profile {Phi}(x) near the sheath edge x{sub s} in the limit {epsilon}{identical_to}{lambda}{sub D}/l=0 (where {lambda}{sub D} is the Debye length and l is a proper characteristic length of the discharge). Such expressions have been explicitly calculated for the fluid model and the singular (cold ion source) kinetic model, where exact analytic solutions for plasma equation ({epsilon}=0) are known, but not for the regular (warm ion source) kinetic model, where no analytic solution of the plasma equation has ever been obtained. For the latter case, Riemann [J. Phys.more » D: Appl. Phys. 24, 493 (1991)] only predicted a general formula assuming relatively high ion-source temperatures, i.e., much higher than the plasma-sheath potential drop. Riemann's formula, however, according to him, never was confirmed in explicit solutions of particular models (e.g., that of Bissell and Johnson [Phys. Fluids 30, 779 (1987)] and Scheuer and Emmert [Phys. Fluids 31, 3645 (1988)]) since ''the accuracy of the classical solutions is not sufficient to analyze the sheath vicinity''[Riemann, in Proceedings of the 62nd Annual Gaseous Electronic Conference, APS Meeting Abstracts, Vol. 54 (APS, 2009)]. Therefore, for many years, there has been a need for explicit calculation that might confirm the Riemann's general formula regarding the potential profile at the sheath edge in the cases of regular very warm ion sources. Fortunately, now we are able to achieve a very high accuracy of results [see, e.g., Kos et al., Phys. Plasmas 16, 093503 (2009)]. We perform this task by using both the analytic and the numerical method with explicit Maxwellian and ''water-bag'' ion source velocity distributions. We find the potential profile near the plasma-sheath edge in the whole range of ion source temperatures of general interest to plasma physics, from zero to ''practical infinity.'' While within limits of ''very low'' and ''relatively high'' ion source temperatures, the potential is proportional to the space coordinate powered by rational numbers {alpha}=1/2 and {alpha}=2/3, with medium ion source temperatures. We found {alpha} between these values being a non-rational number strongly dependent on the ion source temperature. The range of the non-rational power-law turns out to be a very narrow one, at the expense of the extension of {alpha}=2/3 region towards unexpectedly low ion source temperatures.« less

  3. DOE Hydrogen & Fuel Cell Overview

    DTIC Science & Technology

    2011-01-13

    Overview of Combined Heat+Power PowerElectricity Natural Gas Heat + Cooling Natural Gas or Biogas ...Fuel Cell Technologies Program eere.energy.gov Source: US DOE 10/2010 Biogas Benefits: Preliminary Analysis Stationary fuel...with the national grid. Source: US DOE 1/2011 6 | Fuel Cell Technologies Program eere.energy.gov Biogas Resource Example

  4. Multidetector system for nanosecond tagged neutron technology based on hardware selection of events

    NASA Astrophysics Data System (ADS)

    Karetnikov, M. D.; Korotkov, S. A.; Khasaev, T. O.

    2016-09-01

    At the T( d, n)He4 reaction a neutron is accompanied by an associated alpha-particle emitted in the opposite direction. A time and a direction of the neutron escape can be determined by measuring a time and coordinates of the alpha particle at the position-sensitive alpha-detector. The nanosecond tagged neutron technology (NTNT) based on this principle has great potentialities for various applications, e.g., for remote detection of explosives. A spectrum of gamma-rays emitted at the interaction of tagged neutrons with nuclei of chemical elements allows identify a chemical composition of an irradiated object. For practical realization of NTNT, a time resolution of recording the alpha-gamma coincidences should be close to 1 ns. The total intensity of signals can exceed 1 × 106 1/s from all gamma-detectors and 7 × 106 1/s from the alpha-detector. The processing of such stream of data without losses and distortion of information is one of challenging problems of NTNT. Several models of analog DAQ system based on hardware selection of events were devised and their characteristics are examined. The comparison with the digital DAQ systems demonstrated that the analog DAQ provides better timing parameters, lower power consumption, and higher maximum rate of useful events.

  5. A Curriculum Guide for Power Technology, Grades 9-12.

    ERIC Educational Resources Information Center

    Callahan, J. Thomas

    Designed to help the high school industrial arts instructor in teaching power technology, this curriculum guide concentrates on seven subject areas: exploratory power technology, electricity, electronics, small gas engines, automotive repair, transportation, and alternate energy sources. The general course objectives are identified as enabling the…

  6. SEI power source alternatives for rovers and other multi-kWe distributed surface applications

    NASA Technical Reports Server (NTRS)

    Bents, David J.; Kohout, L. L.; Mckissock, Barbara I.; Rodriguez, C. D.; Withrow, C. A.; Colozza, A.; Hanlon, James C.; Schmitz, Paul C.

    1991-01-01

    To support the Space Exploration Initiative (SEI), a study was performed to investigate power system alternatives for the rover vehicles and servicers that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area, and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of mission requirements as they are currently defined.

  7. Oscillatory correlates of autobiographical memory.

    PubMed

    Knyazev, Gennady G; Savostyanov, Alexander N; Bocharov, Andrey V; Dorosheva, Elena A; Tamozhnikov, Sergey S; Saprigyn, Alexander E

    2015-03-01

    Recollection of events from one's own life is referred to as autobiographical memory. Autobiographical memory is an important part of our self. Neuroimaging findings link self-referential processes with the default mode network (DMN). Much evidence coming primarily from functional magnetic resonance imaging studies shows that autobiographical memory and DMN have a common neural base. In this study, electroencephalographic data collected in 47 participants during recollection of autobiographical episodes were analyzed using temporal and spatial independent component analyses in combination with source localization. Autobiographical remembering was associated with an increase of spectral power in alpha and beta and a decrease in delta band. The increase of alpha power, as estimated by sLORETA, was most prominent in the posterior DMN, but was also observed in visual and motor cortices, prompting an assumption that it is associated with activation of DMN and inhibition of irrelevant sensory and motor areas. In line with data linking delta oscillations with aversive states, decrease of delta power was more pronounced in episodes associated with positive emotions, whereas episodes associated with negative emotions were accompanied by an increase of delta power. Vividness of recollection correlated positively with theta oscillations. These results highlight the leading role of alpha oscillations and the DMN in the processes accompanying autobiographical remembering. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. HARV ANSER Flight Test Data Retrieval and Processing Procedures

    NASA Technical Reports Server (NTRS)

    Yeager, Jessie C.

    1997-01-01

    Under the NASA High-Alpha Technology Program the High Alpha Research Vehicle (HARV) was used to conduct flight tests of advanced control effectors, advanced control laws, and high-alpha design guidelines for future super-maneuverable fighters. The High-Alpha Research Vehicle is a pre-production F/A-18 airplane modified with a multi-axis thrust-vectoring system for augmented pitch and yaw control power and Actuated Nose Strakes for Enhanced Rolling (ANSER) to augment body-axis yaw control power. Flight testing at the Dryden Flight Research Center (DFRC) began in July 1995 and continued until May 1996. Flight data will be utilized to evaluate control law performance and aircraft dynamics, determine aircraft control and stability derivatives using parameter identification techniques, and validate design guidelines. To accomplish these purposes, essential flight data parameters were retrieved from the DFRC data system and stored on the Dynamics and Control Branch (DCB) computer complex at Langley. This report describes the multi-step task used to retrieve and process this data and documents the results of these tasks. Documentation includes software listings, flight information, maneuver information, time intervals for which data were retrieved, lists of data parameters and definitions, and example data plots.

  9. A Deep Space Power System Option Based on Synergistic Power Conversion Technologies

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2000-01-01

    Deep space science missions have typically used radioisotope thermoelectric generator (RTG) power systems. The RTG power system has proven itself to be a rugged and highly reliable power system over many missions, however the thermal-to-electric conversion technology used was approximately 5% efficient. While the relatively low efficiency has some benefits in terms of system integration, there are compelling reasons why a more efficient conversion system should be pursued. The cost savings alone that are available as a result of the reduced isotope inventory are significant. The Advanced Radioisotope Power System (ARPS) project was established to fulfill this goal. Although it was not part of the ARPS project, Stirling conversion technology is being demonstrated with a low level of funding by both NASA and DOE. A power system with Stirling convertors. although intended for use with an isotope heat source. can be combined with other advanced technologies to provide a novel power system for deep space missions. An inflatable primary concentrator would be used in combination with a refractive secondary concentrator (RSC) as the heat source to power the system. The inflatable technology as a structure has made great progress for a variety of potential applications such as communications reflectors, radiators and solar arrays. The RSC has been pursued for use in solar thermal propulsion applications, and it's unique properties allow some advantageous system trades to be made. The power system proposed would completely eliminate the isotope heat source and could potentially provide power for science missions to planets as distant as Uranus. This paper will present the background and developmental status of the technologies and will then describe the power system being proposed.

  10. Thermal power systems, point-focusing distributed receiver technology project. Volume 2: Detailed report

    NASA Technical Reports Server (NTRS)

    Lucas, J.

    1979-01-01

    Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver technology is the goal of this Project. The energy thus produced must be economically competitive with other sources. The Project supports the industrial development of technology and hardware for extracting energy from solar power to achieve the stated goal. Present studies are working to concentrate the solar energy through mirrors or lenses, to a working fluid or gas, and through a power converter change to an energy source useful to man. Rankine-cycle and Brayton-cycle engines are currently being developed as the most promising energy converters for our near future needs.

  11. Development of a Multi-bus, Multi-source Reconfigurable Stirling Radioisotope Power System Test Bed

    NASA Technical Reports Server (NTRS)

    Coleman, Anthony S.

    2004-01-01

    The National Aeronautics and Space Administration (NASA) has typically used Radioisotope Thermoelectric Generators (RTG) as their source of electric power for deep space missions. A more efficient and potentially more cost effective alternative to the RTG, the high efficiency 110 watt Stirling Radioisotope Generator 110 (SRG110) is being developed by the Department of Energy (DOE), Lockheed Martin (LM), Stirling Technology Company (STC) and NASA Glenn Research Center (GRC). The SRG110 consists of two Stirling convertors (Stirling Engine and Linear Alternator) in a dual-opposed configuration, and two General Purpose Heat Source (GPHS) modules. Although Stirling convertors have been successfully operated as a power source for the utility grid and as a stand-alone portable generator, demonstration of the technology required to interconnect two Stirling convertors for a spacecraft power system has not been attempted. NASA GRC is developing a Power System Test Bed (PSTB) to evaluate the performance of a Stirling convertor in an integrated electrical power system application. This paper will describe the status of the PSTB and on-going activities pertaining to the PSTB in the NASA Thermal-Energy Conversion Branch of the Power and On-Board Propulsion Technology Division.

  12. An Alpha Proton X-Ray Spectrometer for Mars-96 and Mars Pathfinder

    NASA Astrophysics Data System (ADS)

    Rieder, R.; Wanke, H.; Economou, T.

    1996-09-01

    Mars Pathfinder and the Russian Mars-96 will carry an Alpha Proton X-Ray Spectrometer (APXS) for the determination of the chemical composition of Martian rocks and soil. The instrument will measure the concentration of all major and many minor elements, including C,N and O, at levels above typically 1%. The method employed consist of bombarding a sample of 50 mm diameter with alpha particles from a radioactive source (50 mCi of Cm-244) and measuring: (i) backscattered alpha particles (alpha mode) (ii) protons from (a,p) reactions with some light elements (proton mode) (iii) characteristic X-rays emitted from the sample (X-ray mode). The APXS has a long standing space heritage, going back to Surveyor V,VI and VII (1967/68) and the Soviet Phobos (1988) missions. The present design is the result of an endeavour to reduce mass and power consumption to 600g/ 300mW. It consist of a sensor head containing the alpha sources, a telescope of a silicon detectors for the detection of the alpha particles and protons and a separate X-ray detector with its preamplifier, and an electronics box (80x70x60 mm) containing a microcontroller based multichannel spectrometer. The paper will describe the APXS flight hardware and present results obtained with the flight instrument that will show the instrument capabili- ties and the expected results to be obtained during surface operations on Mars.

  13. Skid steer fuel cell powered unmanned ground vehicle (Burro)

    NASA Astrophysics Data System (ADS)

    Meldrum, Jay S.; Green, Christopher A.

    2008-04-01

    The use of alternative energy technology for vehicle propulsion and auxiliary power is becoming more important. Work is being performed at Michigan Technological University's Keweenaw Research Center on an Army Research Laboratory cooperative agreement to develop two unmanned ground vehicles for military applications. A wide range of alternative energy technologies were investigated. Hydrogen-powered proton exchange membrane fuel cells were identified as the most appropriate alternative energy source. This is due to some development and commercialization which makes the technology "drop-in plug-in" for immediate use. We have previously presented research work on a small unmanned ground vehicle demonstration platform where the fuel cell is the only power source. We now present research work on the integration of a fuel cell onto a larger skid steer platform. The dual-power capability of this vehicle can provide a modest level of propulsion in "engine-off mode" and may also be used to power directed energy devices which have applications in countermine and similar threat technologies.

  14. Fuel-cell powered unmanned ground vehicle

    NASA Astrophysics Data System (ADS)

    Meldrum, Jay S.; Green, Christopher A.; Gwaltney, Geoffrey D.; Bradley, Scott A.; Keith, Jason M.; Podlesak, Thomas F.

    2007-04-01

    The use of alternative energy technology for vehicle propulsion and auxiliary power is becoming more important. Work is being performed at Michigan Technological University's Keweenaw Research Center on an Army Research Laboratory cooperative agreement to develop two unmanned ground vehicles for military applications. A wide range of alternative energy technologies were investigated, and hydrogen-powered proton exchange membrane fuel cells were identified as the most appropriate alternative energy source. This is due to some development and commercialization which makes the technology "drop-in plug-in" for immediate use. We present research work on a small unmanned ground vehicle demonstration platform where the fuel cell is the only power source. We also present research work on the integration of a fuel cell onto a large existing platform. The dual-power capability of this vehicle can provide a modest level of propulsion in "engine-off mode" and may also be used to power directed energy devices which have applications in countermine and similar threat technologies.

  15. The NASA research and technology program on space power: A key element of the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.

    1991-01-01

    In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.

  16. Tonic pain and continuous EEG: prediction of subjective pain perception by alpha-1 power during stimulation and at rest.

    PubMed

    Nir, Rony-Reuven; Sinai, Alon; Moont, Ruth; Harari, Eyal; Yarnitsky, David

    2012-03-01

    Pain neurophysiology has been chiefly characterized via event-related potentials (ERPs), which are exerted using brief, phase-locked noxious stimuli. Striving for objectively characterizing clinical pain states using more natural, prolonged stimuli, tonic pain has been recently associated with the individual peak frequency of alpha oscillations. This finding encouraged us to explore whether alpha power, reflecting the magnitude of the synchronized activity within this frequency range, will demonstrate a corresponding relationship with subjective perception of tonic pain. Five-minute-long continuous EEG was recorded in 18 healthy volunteers under: (i) resting-state; (ii) innocuous temperature; and (iii) psychophysically-anchored noxious temperature. Numerical pain scores (NPSs) collected during the application of tonic noxious stimuli were tested for correlation with alpha-1 and alpha-2 power. NPSs and alpha power remained stable throughout the recording conditions (Ps⩾0.381). In the noxious condition, alpha-1 power obtained at the bilateral temporal scalp was negatively correlated with NPSs (Ps⩽0.04). Additionally, resting-state alpha-1 power recorded at the bilateral temporal scalp was negatively correlated with NPSs reported during the noxious condition (Ps⩽0.038). Current findings suggest alpha-1 power may serve as a direct, objective and experimentally stable measure of subjective perception of tonic pain. Furthermore, resting-state alpha-1 power might reflect individuals' inherent tonic pain responsiveness. The relevance of alpha-1 power to tonic pain perception may deepen the understanding of the mechanisms underlying the processing of prolonged noxious stimulation. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. The quantified EEG characteristics of responders and non-responders to long-term treatment with atomoxetine in children with attention deficit hyperactivity disorders.

    PubMed

    Chiarenza, Giuseppe Augusto; Chabot, Robert; Isenhart, Robert; Montaldi, Luciano; Chiarenza, Marco Paolo; Torto, Maria Grazia Lo; Prichep, Leslie S

    2016-06-01

    The aim of our study is to examine quantitative Electroencephalogram (QEEG) differences between ADHD patients that are responders and non-responders to long-term treatment with Atomoxetine at baseline and after 6 and 12months of treatment. Patients with attention deficit hyperactivity disorder (ADHD) received atomoxetine titrated, over 7days, from 0.5 to 1.2mg/kg/day. QEEG and Swanson, Nolan, and Pelham-IV Questionnaire (SNAP-IV) scores were recorded before treatment and after therapy. Twenty minutes of eyes closed resting EEG was recorded from 19 electrodes referenced to linked earlobes. Full frequency and narrow band spectra of two minutes of artifact-free EEG were computed as well as source localization using Variable Resolution Electrical Tomography (VARETA). Abnormalities were identified using Z-spectra relative to normative values. Patients were classified as responders, non-responders and partial responders based upon the SNAP-IV findings. At baseline, the responders showed increased absolute power in alpha and delta in frontal and temporal regions, whereas, non-responders showed increased absolute power in all frequency bands that was widely distributed. With treatment responders' absolute power values moved toward normal values, whereas, non-responders remained at baseline values. Patients with increased power in the alpha band with no evidence of alterations in the beta or theta range, might be responders to treatment with atomoxetine. Increased power in the beta band coupled with increased alpha seems to be related to non-responders and one should consider atomoxetine withdrawal, especially if there is persistence of increased alpha and beta accompanied by an increase of theta. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Restless 'rest': intrinsic sensory hyperactivity and disinhibition in post-traumatic stress disorder.

    PubMed

    Clancy, Kevin; Ding, Mingzhou; Bernat, Edward; Schmidt, Norman B; Li, Wen

    2017-07-01

    Post-traumatic stress disorder is characterized by exaggerated threat response, and theoretical accounts to date have focused on impaired threat processing and dysregulated prefrontal-cortex-amygdala circuitry. Nevertheless, evidence is accruing for broad, threat-neutral sensory hyperactivity in post-traumatic stress disorder. As low-level, sensory processing impacts higher-order operations, such sensory anomalies can contribute to widespread dysfunctions, presenting an additional aetiological mechanism for post-traumatic stress disorder. To elucidate a sensory pathology of post-traumatic stress disorder, we examined intrinsic visual cortical activity (based on posterior alpha oscillations) and bottom-up sensory-driven causal connectivity (Granger causality in the alpha band) during a resting state (eyes open) and a passive, serial picture viewing state. Compared to patients with generalized anxiety disorder (n = 24) and healthy control subjects (n = 20), patients with post-traumatic stress disorder (n = 25) demonstrated intrinsic sensory hyperactivity (suppressed posterior alpha power, source-localized to the visual cortex-cuneus and precuneus) and bottom-up inhibition deficits (reduced posterior→frontal Granger causality). As sensory input increased from resting to passive picture viewing, patients with post-traumatic stress disorder failed to demonstrate alpha adaptation, highlighting a rigid, set mode of sensory hyperactivity. Interestingly, patients with post-traumatic stress disorder also showed heightened frontal processing (augmented frontal gamma power, source-localized to the superior frontal gyrus and dorsal cingulate cortex), accompanied by attenuated top-down inhibition (reduced frontal→posterior causality). Importantly, not only did suppressed alpha power and bottom-up causality correlate with heightened frontal gamma power, they also correlated with increased severity of sensory and executive dysfunctions (i.e. hypervigilance and impulse control deficits, respectively). Therefore, sensory aberrations help construct a vicious cycle in post-traumatic stress disorder that is in action even at rest, implicating dysregulated triangular sensory-prefrontal-cortex-amygdala circuitry: intrinsic sensory hyperactivity and disinhibition give rise to frontal overload and disrupt executive control, fuelling and perpetuating post-traumatic stress disorder symptoms. Absent in generalized anxiety disorder, these aberrations highlight a unique sensory pathology of post-traumatic stress disorder (ruling out effects merely reflecting anxious hyperarousal), motivating new interventions targeting sensory processing and the sensory brain in these patients. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations.

    PubMed

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-06-16

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.

  20. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations

    PubMed Central

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-01-01

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity. PMID:27306959

  1. Formation of visual memories controlled by gamma power phase-locked to alpha oscillations

    NASA Astrophysics Data System (ADS)

    Park, Hyojin; Lee, Dong Soo; Kang, Eunjoo; Kang, Hyejin; Hahm, Jarang; Kim, June Sic; Chung, Chun Kee; Jiang, Haiteng; Gross, Joachim; Jensen, Ole

    2016-06-01

    Neuronal oscillations provide a window for understanding the brain dynamics that organize the flow of information from sensory to memory areas. While it has been suggested that gamma power reflects feedforward processing and alpha oscillations feedback control, it remains unknown how these oscillations dynamically interact. Magnetoencephalography (MEG) data was acquired from healthy subjects who were cued to either remember or not remember presented pictures. Our analysis revealed that in anticipation of a picture to be remembered, alpha power decreased while the cross-frequency coupling between gamma power and alpha phase increased. A measure of directionality between alpha phase and gamma power predicted individual ability to encode memory: stronger control of alpha phase over gamma power was associated with better memory. These findings demonstrate that encoding of visual information is reflected by a state determined by the interaction between alpha and gamma activity.

  2. History of Power Transmission Technologies and Future Prospects of Power System of Chubu Electric Power Company

    NASA Astrophysics Data System (ADS)

    Takagi, Hirotaka; Sugiyama, Tomonari; Zashibo, Toshihito

    Since its foundation, the power system of Chubu Electric Power Company (hereinafter CEPCO) has developed through power source and transmission facility formation to meet electricity demand increases. This development has been accompanied by progress in transmission technologies including capacity scale-up, compactification and power system stabilization to operate complex power systems. Now, changes in business situation due to electricity market liberalizatin may bring new challenges to future facility formation. This paper reviews CEPCO's history of power system formation and progress in transmission technologies, and describes future challenges.

  3. Effect of gravity on human spontaneous 10-Hz electroencephalographic oscillations during the arrest reaction.

    PubMed

    Cheron, G; Leroy, A; De Saedeleer, C; Bengoetxea, A; Lipshits, M; Cebolla, A; Servais, L; Dan, B; Berthoz, A; McIntyre, J

    2006-11-22

    Electroencephalographic oscillations at 10 Hz (alpha and mu rhythms) are the most prominent rhythms observed in awake, relaxed (eye-closed) subjects. These oscillations may be considered as a marker of cortical inactivity or an index of the active inhibition of the sensory information. Different cortical sources may participate in the 10-Hz oscillation and appear to be modulated by the sensory context and functional demands. In microgravity, the marked reduction in multimodal graviceptive inputs to cortical networks participating in the representation of space could be expected to affect the 10-Hz activity. The effect of microgravity on this basic oscillation has heretofore not been studied quantitatively. Because the alpha rhythm has a functional role in the regulation of network properties of the visual areas, we hypothesised that the absence of gravity would affect its strength. Here, we report the results of an experiment conducted over the course of 3 space flights, in which we quantified the power of the 10-Hz activity in relation to the arrest reaction (i.e., in 2 distinct physiological states: eyes open and eyes closed). We observed that the power of the spontaneous 10-Hz oscillation recorded in the eyes-closed state in the parieto-occipital (alpha rhythm) and sensorimotor areas (mu rhythm) increased in the absence of gravity. The suppression coefficient during the arrest reaction and the related spectral perturbations produced by eye-opening/closure state transition also increased in on orbit. These results are discussed in terms of current theories on the source and the importance of the alpha rhythm for cognitive function.

  4. Source Space Estimation of Oscillatory Power and Brain Connectivity in Tinnitus

    PubMed Central

    Zobay, Oliver; Palmer, Alan R.; Hall, Deborah A.; Sereda, Magdalena; Adjamian, Peyman

    2015-01-01

    Tinnitus is the perception of an internally generated sound that is postulated to emerge as a result of structural and functional changes in the brain. However, the precise pathophysiology of tinnitus remains unknown. Llinas’ thalamocortical dysrhythmia model suggests that neural deafferentation due to hearing loss causes a dysregulation of coherent activity between thalamus and auditory cortex. This leads to a pathological coupling of theta and gamma oscillatory activity in the resting state, localised to the auditory cortex where normally alpha oscillations should occur. Numerous studies also suggest that tinnitus perception relies on the interplay between auditory and non-auditory brain areas. According to the Global Brain Model, a network of global fronto—parietal—cingulate areas is important in the generation and maintenance of the conscious perception of tinnitus. Thus, the distress experienced by many individuals with tinnitus is related to the top—down influence of this global network on auditory areas. In this magnetoencephalographic study, we compare resting-state oscillatory activity of tinnitus participants and normal-hearing controls to examine effects on spectral power as well as functional and effective connectivity. The analysis is based on beamformer source projection and an atlas-based region-of-interest approach. We find increased functional connectivity within the auditory cortices in the alpha band. A significant increase is also found for the effective connectivity from a global brain network to the auditory cortices in the alpha and beta bands. We do not find evidence of effects on spectral power. Overall, our results provide only limited support for the thalamocortical dysrhythmia and Global Brain models of tinnitus. PMID:25799178

  5. The Atacama Cosmology Telescope: Extragalactic Sources at 148 GHz in the 2008 Survey

    NASA Technical Reports Server (NTRS)

    Marriage, T. A.; Juin, J. B.; Lin, Y. T.; Marsden, D.; Nolta, M. R.; Partridge, B.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; hide

    2011-01-01

    We report on extragalactic sources detected in a 455 square-degree map of the southern sky made with data at a frequency of 148 GHz from the Atacama Cosmology Telescope 2008 observing season. We provide a catalog of 157 sources with flux densities spanning two orders of magnitude: from 15 mJy to 1500 mJy. Comparison to other catalogs shows that 98% of the ACT detections correspond to sources detected at lower radio frequencies. Three of the sources appear to be associated with the brightest cluster galaxies of low redshift X-ray selected galaxy clusters. Estimates of the radio to mm-wave spectral indices and differential counts of the sources further bolster the hypothesis that they are nearly all radio sources, and that their emission is not dominated by re-emission from warm dust. In a bright (> 50 mJy) 148 GHz-selected sample with complete cross-identifications from the Australia Telescope 20 GHz survey, we observe an average steepening of the spectra between .5, 20, and 148 GHz with median spectral indices of alp[ha (sub 5-20) = -0.07 +/- 0.06, alpha (sub 20-148) -0.39 +/- 0.04, and alpha (sub 5-148) = -0.20 +/- 0.03. When the measured spectral indices are taken into account, the 148 GHz differential source counts are consistent with previous measurements at 30 GHz in the context of a source count model dominated by radio sources. Extrapolating with an appropriately rescaled model for the radio source counts, the Poisson contribution to the spatial power spectrum from synchrotron-dominated sources with flux density less than 20 mJy is C(sup Sync) = (2.8 +/- 0.3) x 1O (exp-6) micro K(exp 2).

  6. Design, fabrication and calibration of alpha particle densitometers for measuring planetary atmospheric density

    NASA Technical Reports Server (NTRS)

    Sellers, B.; Hunerwadel, J. L.; Hanser, F. A.

    1972-01-01

    An alpha particle densitometer was developed for possible application to measurement of the atmospheric density-altitude profile on Martian entry. The device uses an Am-241 radioactive-foil source, which emits a distributed energy spectrum, located about 25 to 75 cm from a semiconductor detector. System response - defined as the number of alphas per second reaching the detector with energy above a fixed threshold - is given for Ar and CO2. The altitude profile of density measurement accuracy is given for a pure CO2 atmosphere with 5 mb surface pressure. The entire unit, including dc-dc converters, requires less than 350 milliwatts of power from +28 volts, weighs about 0.85 lb and occupies less than 15 cubic inches volume.

  7. Preliminary design of a mobile lunar power supply

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Kenny, Barbara H.; Fulmer, Christopher R.

    1991-01-01

    A preliminary design for a Stirling isotope power system for use as a mobile lunar power supply is presented. Performance and mass of the components required for the system are estimated. These estimates are based on power requirements and the operating environment. Optimizations routines are used to determine minimum mass operational points. Shielding for the isotope system are given as a function of the allowed dose, distance from the source, and the time spent near the source. The technologies used in the power conversion and radiator systems are taken from ongoing research in the Civil Space Technology Initiative (CSTI) program.

  8. Hyperspectral Polymer Solar Cells, Integrated Power for Microsystems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiebitz, Paul

    2014-05-27

    The purpose of this research is to address a critical technology barrier to the deployment of next generation autonomous microsystems – the availability of efficient and reliable power sources. The vast majority of research on microsystems has been directed toward the development and miniaturization of sensors and other devices that enhance their intelligence, physical, and networking capabilities. However, the research into power generating and power storage technologies has not keep pace with this development. This research leveraged the capabilities of RIT’s NanoPower Research Laboratories (NPRL) in materials for advanced lithium ion batteries, nanostructured photovoltaics, and hybrid betavoltaics to develop reliablemore » power sources for microsystems.« less

  9. THz Local Oscillator Technology

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran

    2004-01-01

    The last decade has seen a number of technological advancements that have now made it possible to implement fully solid state local oscillator chains up to 2 THz. These chains are composed of cascaded planar multiplier stages that are pumped with W-band high power sources. The high power W-band sources are achieved by power combining MMIC amplifiers and can provide in access of 150 mW with about 10% bandwidth. Planar diode technology has also enabled novel circuit topologies that can take advantage of the high input power and demonstrate significant efficiencies well into the THz range. Cascaded chains to 1.9 THz have now been demonstrated with enough output power to successfully pump hot-electron bolometer mixers in this frequency range. An overview of the current State-of-the-Art of the local oscillator technology will be presented along with highlighting future trends and challenges.

  10. Space radioisotope power source requirements update and technology status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondt, J.F.

    1998-07-01

    The requirements for a space advanced radioisotope power source are based on potential deep space missions being investigated for the NASA Advanced Space Systems Development Program. Since deep space missions have not been approved, updating requirements is a continuos parallel process of designing the spacecraft and the science instruments to accomplish the potential missions and developing the power source technology to meet changing requirements. There are at least two potential missions, Pluto/Kuiper Express and Europa Orbiter, which may require space advanced radioisotope power sources. The Europa Orbiter has been selected as the preferred first potential mission. However the final decisionmore » will depend on the technology readiness of all the subsystems and the project must be able to switch to Pluto Kuiper Express as the first mission as late as the beginning of fiscal year 2000. Therefore the requirements for the power source will cover both potential missions. As the deep space spacecraft design evolves to meet the science requirements and the Alkali Metal Thermal to Electric (AMTEC) technology matures the advanced radioisotope power source design requirements are updated The AMTEC technology developed to date uses stainless steel for the sodium containment material. The higher efficiency required for the space power system dictates that the AMTEC technology must operate at a higher temperature than possible with stainless steel. Therefore refractory materials have been selected as the baseline material for the AMTEC cell. These refractory materials are Nb1Zr for the hot side and Nb1Zr or Nb10Hf1Ti for the cold side. These materials were selected so the AMTEC cell can operate at 1150K to 1350K hot side temperature and 600K to 700K cold side temperature and meet the present power and mass requirements using four to six general purpose heat source modules as the heat source. The new containment materials and brazes will be evaluated as to lifetime, compatibility and performance with the AMTEC beta prime Alumina, the TiN electrodes, the sodium and the molybdenum current collectors. AMTEC cell components and cells will be built with the baseline containment materials and brazes and tested to determine the performance as a function of temperature. These containment materials will be also be tested with all the other AMTEC components to determine acceleration factors needed to predict AMTEC performance degradation and failure as a function of operating time at temperature.« less

  11. Light sources for high-volume manufacturing EUV lithography: technology, performance, and power scaling

    NASA Astrophysics Data System (ADS)

    Fomenkov, Igor; Brandt, David; Ershov, Alex; Schafgans, Alexander; Tao, Yezheng; Vaschenko, Georgiy; Rokitski, Slava; Kats, Michael; Vargas, Michael; Purvis, Michael; Rafac, Rob; La Fontaine, Bruno; De Dea, Silvia; LaForge, Andrew; Stewart, Jayson; Chang, Steven; Graham, Matthew; Riggs, Daniel; Taylor, Ted; Abraham, Mathew; Brown, Daniel

    2017-06-01

    Extreme ultraviolet (EUV) lithography is expected to succeed in 193-nm immersion multi-patterning technology for sub-10-nm critical layer patterning. In order to be successful, EUV lithography has to demonstrate that it can satisfy the industry requirements in the following critical areas: power, dose stability, etendue, spectral content, and lifetime. Currently, development of second-generation laser-produced plasma (LPP) light sources for the ASML's NXE:3300B EUV scanner is complete, and first units are installed and operational at chipmaker customers. We describe different aspects and performance characteristics of the sources, dose stability results, power scaling, and availability data for EUV sources and also report new development results.

  12. A geothermal AMTEC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuller, M.J.; LeMire, R.A.; Horner-Richardson, K.

    1995-12-31

    The Phillips Laboratory Power and Thermal Management Division (PL/VTP), with the support of ORION International Technologies, is investigating new methods of advanced thermal to electric power conversion for space and terrestrial applications. The alkali metal thermal-to-electric converter (AMTEC), manufactured primarily by Advanced Modular Power Systems (AMPS) of Ann Arbor, MI, has reached a level of technological maturity which would allow its use in a constant, unattended thermal source, such as a geothermal field. Approximately 95,000 square miles in the western United States has hot dry rock with thermal gradients of 60 C/km and higher. Several places in the United Statesmore » and the world have thermal gradients of 500 C/km. Such heat sources represent an excellent thermal source for a system of modular power units using AMTEC devices to convert the heat to electricity. AMTEC cells using sodium as a working fluid require heat input at temperatures between 500 and 1,000 C to generate power. The present state of the art is capable of 15% efficiency with 800 C heat input and has demonstrated 18% efficiency for single cells. This paper discusses the basics of AMTEC operation, current drilling technology as a cost driver, design of modular AMTEC power units, heat rejection technologies, materials considerations, and estimates of power production from a geothermal AMTEC concept.« less

  13. Prestimulus Alpha Power Influences Tactile Temporal Perceptual Discrimination and Confidence in Decisions.

    PubMed

    Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim

    2016-03-01

    Recent studies have demonstrated that prestimulus alpha-band activity substantially influences perception of near-threshold stimuli. Here, we studied the influence of prestimulus alpha power fluctuations on temporal perceptual discrimination of suprathreshold tactile stimuli and subjects' confidence regarding their perceptual decisions. We investigated how prestimulus alpha-band power influences poststimulus decision-making variables. We presented electrical stimuli with different stimulus onset asynchronies (SOAs) to human subjects, and determined the SOA for which temporal perceptual discrimination varied on a trial-by-trial basis between perceiving 1 or 2 stimuli, prior to recording brain activity with magnetoencephalography. We found that low prestimulus alpha power in contralateral somatosensory and occipital areas predicts the veridical temporal perceptual discrimination of 2 stimuli. Additionally, prestimulus alpha power was negatively correlated with confidence ratings in correctly perceived trials, but positively correlated for incorrectly perceived trials. Finally, poststimulus event-related fields (ERFs) were modulated by prestimulus alpha power and reflect the result of a decisional process rather than physical stimulus parameters around ∼150 ms. These findings provide new insights into the link between spontaneous prestimulus alpha power fluctuations, temporal perceptual discrimination, decision making, and decisional confidence. The results suggest that prestimulus alpha power modulates perception and decisions on a continuous scale, as reflected in confidence ratings. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. High Power Helicon Plasma Source for Plasma Processing

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth E.

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is developing a high power helicon plasma source. The high power nature and pulsed neutral gas make this source unique compared to traditional helicon source. These properties produce a plasma flow along the magnetic field lines, and therefore allow the source to be decoupled from the reaction chamber. Neutral gas can be injected downstream, which allows for precision control of the ion-neutral ratio at the surface of the sample. Although operated at high power, the source has demonstrated very low impurity production. This source has applications to nanoparticle productions, surface modification, and ionized physical vapor deposition.

  15. Prefrontal cortex modulates posterior alpha oscillations during top-down guided visual perception

    PubMed Central

    Helfrich, Randolph F.; Huang, Melody; Wilson, Guy; Knight, Robert T.

    2017-01-01

    Conscious visual perception is proposed to arise from the selective synchronization of functionally specialized but widely distributed cortical areas. It has been suggested that different frequency bands index distinct canonical computations. Here, we probed visual perception on a fine-grained temporal scale to study the oscillatory dynamics supporting prefrontal-dependent sensory processing. We tested whether a predictive context that was embedded in a rapid visual stream modulated the perception of a subsequent near-threshold target. The rapid stream was presented either rhythmically at 10 Hz, to entrain parietooccipital alpha oscillations, or arrhythmically. We identified a 2- to 4-Hz delta signature that modulated posterior alpha activity and behavior during predictive trials. Importantly, delta-mediated top-down control diminished the behavioral effects of bottom-up alpha entrainment. Simultaneous source-reconstructed EEG and cross-frequency directionality analyses revealed that this delta activity originated from prefrontal areas and modulated posterior alpha power. Taken together, this study presents converging behavioral and electrophysiological evidence for frontal delta-mediated top-down control of posterior alpha activity, selectively facilitating visual perception. PMID:28808023

  16. Space Power Management and Distribution Status and Trends

    NASA Technical Reports Server (NTRS)

    Reppucci, G. M.; Biess, J. J.; Inouye, L.

    1984-01-01

    An overview of space power management and distribution (PMAD) is provided which encompasses historical and current technology trends. The PMAD components discussed include power source control, energy storage control, and load power processing electronic equipment. The status of distribution equipment comprised of rotary joints and power switchgear is evaluated based on power level trends in the public, military, and commercial sectors. Component level technology thrusts, as driven by perceived system level trends, are compared to technology status of piece-parts such as power semiconductors, capacitors, and magnetics to determine critical barriers.

  17. Impact of Energy Gain and Subsystem Characteristics on Fusion Propulsion Performance

    NASA Technical Reports Server (NTRS)

    Chakrabarti, S.; Schmidt, G. R.

    2001-01-01

    Rapid transport of large payloads and human crews throughout the solar system requires propulsion systems having very high specific impulse (I(sub sp) > 10(exp 4) to 10(exp 5) s). It also calls for systems with extremely low mass-power ratios (alpha < 10(exp -1) kg/kW). Such low alpha are beyond the reach of conventional power-limited propulsion, but may be attainable with fusion and other nuclear concepts that produce energy within the propellant. The magnitude of energy gain must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive energy-intensive subsystems associated with these concepts. This paper evaluates the impact of energy gain and subsystem characteristics on alpha. Central to the analysis are general parameters that embody the essential features of any 'gain-limited' propulsion power balance. Results show that the gains required to achieve alpha = 10(exp -1) kg/kW with foreseeable technology range from approximately 100 to over 2000, which is three to five orders of magnitude greater than current fusion state of the arL Sensitivity analyses point to the parameters exerting the most influence for either: (1) lowering a and improving mission performance or (2) relaxing gain requirements and reducing demands on the fusion process. The greatest impact comes from reducing mass and increasing efficiency of the thruster and subsystems downstream of the fusion process. High relative gain, through enhanced fusion processes or more efficient drivers and processors, is also desirable. There is a benefit in improving driver and subsystem characteristics upstream of the fusion process, but it diminishes at relative gains > 100.

  18. TPV power source development for an unmanned undersea vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmquist, G.A.

    The thermophotovoltaic (TPV) generation of electrical power promises efficiencies that are exploitable for military and commercial applications. TPV offers a combination of unique characteristics as a power source for military Unmanned Undersea Vehicles. In civilian applications TPV technology offers the potential for lightweight, rugged, and reliable power systems that can be environmentally benign. These systems can use a variety of fuels and can be scaled up in size. TPV is truly a dual use technology in which the United States appears to have a technical lead. The focus of the current Quantum program is the maturation of the technology andmore » the demonstration of a 10 kilowatt generator. Preliminary results of this project are presented.« less

  19. Changes in Alpha Frequency and Power of the Electroencephalogram during Volatile-Based General Anesthesia.

    PubMed

    Hight, Darren; Voss, Logan J; Garcia, Paul S; Sleigh, Jamie

    2017-01-01

    Oscillations in the electroencephalogram (EEG) at the alpha frequency (8-12 Hz) are thought to be ubiquitous during surgical anesthesia, but the details of how this oscillation responds to ongoing changes in volatile anesthetic concentration have not been well characterized. It is not known how often alpha oscillations are absent in the clinical context, how sensitively alpha frequency and power respond to changes in anesthetic concentration, and what effect increased age has on alpha frequency. Bipolar EEG was recorded frontally from 305 patients undergoing surgery with sevoflurane or desflurane providing general anesthesia. A new method of detecting the presence of alpha oscillations based on the stability of the rate of change of the peak frequency in the alpha range was developed. Linear concentration-response curves were fitted to assess the sensitivity of alpha power and frequency measures to changing levels of anesthesia. Alpha oscillations were seen to be inexplicably absent in around 4% of patients. Maximal alpha power increased with increasing volatile anesthetic concentrations in half of the patients, and decreased in the remaining patients. Alpha frequency decreased with increasing anesthetic concentrations in near to 90% of patients. Increasing age was associated with decreased sensitivity to volatile anesthesia concentrations, and with decreased alpha frequency, which sometimes transitioned into the theta range (5-7 Hz). While peak alpha frequency shows a consistent slowing to increasing volatile concentrations, the peak power of the oscillation does not, suggesting that frequency might be more informative of depth of anesthesia than traditional power based measures during volatile-based anesthesia. The alpha oscillation becomes slower with increasing age, even when the decreased anesthetic needs of older patients were taken into account.

  20. Large-scale cortical correlation structure of spontaneous oscillatory activity

    PubMed Central

    Hipp, Joerg F.; Hawellek, David J.; Corbetta, Maurizio; Siegel, Markus; Engel, Andreas K.

    2013-01-01

    Little is known about the brain-wide correlation of electrophysiological signals. Here we show that spontaneous oscillatory neuronal activity exhibits frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography (MEG). Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz), and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency specific power-envelope correlations. PMID:22561454

  1. Solar dynamic power for Earth orbital and lunar applications

    NASA Technical Reports Server (NTRS)

    Calogeras, James E.; Dustin, Miles O.; Secunde, Richard R.

    1991-01-01

    Development of solar dynamic (SD) technologies for space over the past 25 years by NASA Lewis Research Center brought SD power to the point where it was selected in the design phase of Space Station Freedom Program as the power source for evolutionary growth. More recent studies showed that large cost savings are possible in establishing manufacturing processes at a Lunar Base if SD is considered as a power source. Technology efforts over the past 5 years have made possible lighter, more durable, SD components for these applications. A review of these efforts and respective benefits is presented.

  2. Witnessing the assembly of galaxies in an extended gas-rich structure at z 3.25

    NASA Astrophysics Data System (ADS)

    Mackenzie, Ruari

    2017-08-01

    The direct study of star formation in Damped Lyman Alpha systems (DLAs), the reservoirs of the majority of neutral gas at high redshift, has previously been hampered by the lack of deep integral field spectroscopy for sensitive searches of faint host galaxies. Building on our successful HST shot-in-the-dark survey that has probed the in-situ star formation rate of z 2-3 DLAs, we have initiated a MUSE follow-up of 6 DLA signlines to overcome this bottleneck. In the first sightline we have studied, we have uncovered a 40 kpc Lyman alpha emitting nebula, composed of two clumps within 50 kpc of the DLA, suggestive of a merger or an extended protodisk. Within this structure, which is the largest nebula known to be associated with a z 3 DLA, we also found a compact continuum source with spectrophotometry consistent with a Lyman Break Galaxy at the same redshift. Aside from the LBG, the rest of the Lyman alpha structure has no continuum counterpart in deep UV and visible imaging. The LBG alone seems unable to power the Lyman alpha nebula and the morphology supports our conclusion that, most likely, this structure is powered by in-situ star formation below detection limit. However, from the Lyman alpha alone the origin of this incredible structure remains ambiguous. With this proposal, we aim to acquire high resolution, deep infrared imaging with HST to probe the rest-frame optical emission to search for the underlying stellar emission of this object and to infer the stellar mass of the LBG. With the powerful combination of HST and MUSE data, we will unravel the nature of this unique system.

  3. Experimental and numerical study of impact of voltage fluctuate, flicker and power factor wave electric generator to local distribution

    NASA Astrophysics Data System (ADS)

    Hadi, Nik Azran Ab; Rashid, Wan Norhisyam Abd; Hashim, Nik Mohd Zarifie; Mohamad, Najmiah Radiah; Kadmin, Ahmad Fauzan

    2017-10-01

    Electricity is the most powerful energy source in the world. Engineer and technologist combined and cooperated to invent a new low-cost technology and free carbon emission where the carbon emission issue is a major concern now due to global warming. Renewable energy sources such as hydro, wind and wave are becoming widespread to reduce the carbon emissions, on the other hand, this effort needs several novel methods, techniques and technologies compared to coal-based power. Power quality of renewable sources needs in depth research and endless study to improve renewable energy technologies. The aim of this project is to investigate the impact of renewable electric generator on its local distribution system. The power farm was designed to connect to the local distribution system and it will be investigated and analyzed to make sure that energy which is supplied to customer is clean. The MATLAB tools are used to simulate the overall analysis. At the end of the project, a summary of identifying various voltage fluctuates data sources is presented in terms of voltage flicker. A suggestion of the analysis impact of wave power generation on its local distribution is also presented for the development of wave generator farms.

  4. Compact Power Conditioning and RF Systems for a High Power RF Source

    DTIC Science & Technology

    2008-12-01

    RF systems have increasing potential for application by the Army. High power RF, or high power microwave ( HPM ), systems can disrupt or disable...that are small, lightweight, portable, and use an independent energy source. The resulting system will be able to produce HPM from a compact package...The consortium was formed to advance the technology of the components required for a compact HPM source with the final goal of full system

  5. Photovoltaics: A Solar Technology for Powering Tomorrow.

    ERIC Educational Resources Information Center

    Flavin, Christopher

    1983-01-01

    Photovoltaics, the technology that converts sunlight directly into electricity, may soon be a reliable power source for the world's poor. The one major challenge is cost reduction. Many topics are discussed, including solar powering the Third World, designing the solar building, investing in the sun, and the future of photovoltaics. (NW)

  6. Thermodynamic Structure of Collision-Dominated Expanding Plasma: Heating of Interplanetary Coronal Mass Injections

    NASA Technical Reports Server (NTRS)

    Liu, Y.; Richardson, J. D.; Belcher, J. W.; Kasper, J. C.; Elliott, H. A.

    2006-01-01

    We investigate the thermodynamic structure of interplanetary coronal mass ejections (ICMEs) using combined surveys of the ejecta between 0.3 and 20 AU. ICMEs are shown to have a moderate expansion in the solar wind compared with theoretical predictions. The expansion seems to be governed by a polytrope with gamma approx. 1.3 in this distance range. We find that Coulomb collisions are important contributors to the ion-ion equilibration process in the ICME plasma. The alpha-proton differential speed quickly drops to below 10 km/s due to strong Coulomb collisions. However, the two species of particles are far from thermal equilibrium with a temperature ratio T(sub alpha/T(sub p) = 4-6, suggestive of a preferential heating of alpha particles. The plasma heating rate as a function of heliocentric &stance required for the temperature profile is deduced by taking into account the expansion and energy transfer between protons and alphas via Coulomb collisions. The turbulence dissipation rate is also inferred from the inertial range power spectrum of magnetic fluctuations within ICMEs. Comparison of the turbulence dissipation rate with the required heating rate shows that turbulence dissipation seems sufficient to explain the ICME heating. Sources powering the turbulence are also investigated by examining the instabilities induced by temperature anisotropies and energy deposition by pickup ions.

  7. Detection of radio continuum emission from Herbig-Haro objects 1 and 2 and from their central exciting source

    NASA Technical Reports Server (NTRS)

    Pravdo, S. H.; Rodriguez, L. F.; Curiel, S.; Canto, J.; Torrelles, J. M.; Becker, R. H.; Sellgren, K.

    1985-01-01

    The region in Orion containing HH 1 and HH 2 was observed with the VLA at 20, 6, and 2 cm on several occasions from 1981 to 1984. At lower resolution, four continuum sources were detected. Two of these sources coincide positionally with HH 1 and HH 2. At 6 cm and higher resolution, HH 1 is resolved into at least two components. The emission is probably bremsstrahlung originating in the same region where the visible line emission is produced. This is the first detection of radio continuum from classic Herbig-Haro objects. At a position closely centered between HH 1 and HH 2, an object that can be interpreted as the energy source of the system was detected. The central source spectrum is S(nu) of about nu to the alpha power, where alpha = 0.4 + or - 0.2, suggesting a stellar wind. Finally, the fourth radio continuum source coincides positionally with an H2O maser and is probably excited by an independent star. There is evidence of time variability in its radio flux. No emission was detected from the Cohen-Schwartz (1979) star at the 0.1 mJy level.

  8. Aging reduces experience-induced sensorimotor plasticity. A magnetoencephalographic study.

    PubMed

    Mary, Alison; Bourguignon, Mathieu; Wens, Vincent; Op de Beeck, Marc; Leproult, Rachel; De Tiège, Xavier; Peigneux, Philippe

    2015-01-01

    Modulation of the mu-alpha and mu-beta spontaneous rhythms reflects plastic neural changes within the primary sensorimotor cortex (SM1). Using magnetoencephalography (MEG), we investigated how aging modifies experience-induced plasticity after learning a motor sequence, looking at post- vs. pre-learning changes in the modulation of mu rhythms during the execution of simple hand movements. Fifteen young (18-30 years) and fourteen older (65-75 years) right-handed healthy participants performed auditory-cued key presses using all four left fingers simultaneously (Simple Movement task - SMT) during two separate sessions. Following both SMT sessions, they repeatedly practiced a 5-elements sequential finger-tapping task (FTT). Mu power calculated during SMT was averaged across 18 gradiometers covering the right sensorimotor region and compared before vs. after sequence learning in the alpha (9/10/11Hz) and the beta (18/20/22Hz) bands separately. Source power maps in the mu-alpha and mu-beta bands were localized using Dynamic Statistical Parametric Mapping (dSPM). The FTT sequence was performed faster at retest than at the end of the learning session, indicating an offline boost in performance. Analyses conducted on SMT sessions revealed enhanced rebound after learning in the right SM1, 3000-3500ms after the initiation of movement, in young as compared to older participants. Source reconstruction indicated that mu-beta is located in the precentral gyrus (motor processes) and mu-alpha is located in the postcentral gyrus (somatosensory processes) in both groups. The enhanced post-movement rebound in young subjects potentially reflects post-training plastic changes in SM1. Age-related decreases in post-training modulatory effects suggest reduced experience-dependent plasticity in the aging brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Overview study of Space Power Technologies for the advanced energetics program. [spacecraft

    NASA Technical Reports Server (NTRS)

    Taussig, R.; Gross, S.; Millner, A.; Neugebauer, M.; Phillips, W.; Powell, J.; Schmidt, E.; Wolf, M.; Woodcock, G.

    1981-01-01

    Space power technologies are reviewed to determine the state-of-the-art and to identify advanced or novel concepts which promise large increases in performance. The potential for incresed performance is judged relative to benchmarks based on technologies which have been flight tested. Space power technology concepts selected for their potentially high performance are prioritized in a list of R & D topical recommendations for the NASA program on Advanced Energetics. The technology categories studied are solar collection, nuclear power sources, energy conversion, energy storage, power transmission, and power processing. The emphasis is on electric power generation in space for satellite on board electric power, for electric propulsion, or for beamed power to spacecraft. Generic mission categories such as low Earth orbit missions and geosynchronous orbit missions are used to distinguish general requirements placed on the performance of power conversion technology. Each space power technology is judged on its own merits without reference to specific missions or power systems. Recommendations include 31 space power concepts which span the entire collection of technology categories studied and represent the critical technologies needed for higher power, lighter weight, more efficient power conversion in space.

  10. Resources in Technology.

    ERIC Educational Resources Information Center

    McCrory, David L.; Maughan, George R.

    This document--intended for secondary school and college students--contains technology education instructional units on engines and power, energy conversion, energy futures, energy sources, communication and society, energy and power in communication, communication systems, microelectronics in communication, transportation in society, energy and…

  11. Feasibility study of a small, thorium-based fission power system for space and terrestrial applications

    NASA Astrophysics Data System (ADS)

    Worrall, Michael Jason

    One of the current challenges facing space exploration is the creation of a power source capable of providing useful energy for the entire duration of a mission. Historically, radioisotope batteries have been used to provide load power, but this conventional system may not be capable of sustaining continuous power for longer duration missions. To remedy this, many forays into nuclear powered spacecraft have been investigated, but no robust system for long-term power generation has been found. In this study, a novel spin on the traditional fission power system that represents a potential optimum solution is presented. By utilizing mature High Temperature Gas Reactor (HTGR) technology in conjunction with the capabilities of the thorium fuel cycle, we have created a light-weight, long-term power source capable of a continuous electric power output of up to 70kW for over 15 years. This system relies upon a combination of fissile, highly-enriched uranium dioxide and fertile thorium carbide Tri-Structural Isotropic (TRISO) fuel particles embedded in a hexagonal beryllium oxide matrix. As the primary fissile material is consumed, the fertile material breeds new fissile material leading to more steady fuel loading over the lifetime of the core. Reactor control is achieved through an innovative approach to the conventional boron carbide neutron absorber by utilizing sections of borated aluminum placed in rotating control drums within the reflector. Borated aluminum allows for much smaller boron concentrations, thus eliminating the potential for 10B(n,alpha)6Li heating issues that are common in boron carbide systems. A wide range of other reactivity control systems are also investigated, such as a radially-split rotating reflector. Lastly, an extension of the design to a terrestrial based system is investigated. In this system, uranium enrichment is dropped to 20 percent in order to meet current regulations, a solid uranium-zirconium hydride fissile driver replaces the uranium dioxide TRISO particles, and the moderating material is changed from beryllium oxide to graphite. These changes result in an increased core size, but the same long-term power generation potential is achieved. Additionally, small amounts of erbium are added to the hydride matrix to further extend core lifetime.

  12. Terahertz Schottky Multiplier Sources

    NASA Technical Reports Server (NTRS)

    Schlecht, Erich T.

    2007-01-01

    This viewgraph presentation reviews the multiplier source technologies and the status/Performance of THz multiplier sources. An example of a THz application is imaging radar. The presentation reviews areas of requirements for THz sources: (1) Figures of merit, (i.e., Frequency Terahertz for high resolution Bandwidth of at least 15 GHz for high range resolution Efficiency (i.e., minimize power supply requirements) (2) Output power: (i.e., Milliwatts below 800 GHz, 10s of microwatts above 1 THz, 1-2 microwatts near 2 THz (3) Mechanical--stability, compact, low mass (4) Environmental -- radiation, vibration, thermal. Several sources for 0.3 - 2 THz are reviewed: FIR lasers, quantum cascade lasers (QCL), backward-wave oscillator (BWO), and Multiplier sources. The current state of the art (SoA) is shown as Substrateless Technology. It also shows where the SoA is for devices beyond 1 THz. The presentation concludes by reviewing the options for future development, and 2 technology roadmaps

  13. Fabrication of a 20.5-inch-diameter segmented silicon annular optic prototype for the ROMA program

    NASA Astrophysics Data System (ADS)

    Hassell, Frank R.; Groark, Frank M.

    1995-10-01

    Recent advancements in single crystal silicon material science and fabrication capabilities and very low absorption (VLA) multi-layer dielectric coating technology have led to the development of uncooled, large aperture, high power mirrors for high energy laser (HEL) systems. Based on this success, a segmented single-crystal silicon substrate concept has been selected as the baseline fabrication approach for uncooled 1.2 meter diameter resonator annular optics for the Alpha space based high energy laser. The objective of this Resonator Optics Materials Assessment (ROMA) task was to demonstrate all of the key fabrication processes required to fabricate the full sized annular optics for the Alpha space based high energy laser. This paper documents the fabrication of a half-scale annular optic prototype (AOP) of the Alpha laser rear cone.

  14. Microwave power transmission system studies. Volume 4: Sections 9 through 14 with appendices. [ground tests and antenna design

    NASA Technical Reports Server (NTRS)

    Maynard, O. E.; Brown, W. C.; Edwards, A.; Haley, J. T.; Meltz, G.; Howell, J. M.; Nathan, A.

    1975-01-01

    The microwave rectifier technology, approaches to the receiving antenna, topology of rectenna circuits, assembly and construction, ROM cost estimates are discussed. Analyses and cost estimates for the equipment required to transmit the ground power to an external user. Noise and harmonic considerations are presented for both the amplitron and klystron and interference limits are identified and evaluated. The risk assessment discussion is discussed wherein technology risks are rated and ranked with regard to their importance in impacting the microwave power transmission system. The system analyses and evaluation are included of parametric studies of system relationships pertaining to geometry, materials, specific cost, specific weight, efficiency, converter packing, frequency selection, power distribution, power density, power output magnitude, power source, transportation and assembly. Capital costs per kW and energy costs as a function of rate of return, power source and transportation costs as well as build cycle time are presented. The critical technology and ground test program are discussed along with ROM costs and schedule. The orbital test program with associated critical technology and ground based program based on full implementation of the defined objectives is discussed.

  15. Extremely Luminous Far-infrared Sources (ELFS)

    NASA Technical Reports Server (NTRS)

    Harwit, Martin; Houck, James R.; Soifer, B. Thomas; Palumbo, Giorgio G. C.

    1987-01-01

    The Infrared Astronomical Satellite (IRAS) survey uncovered a class of Extremely Luminous Far Infrared Sources (ELFS), exhibiting luminosities up to and occasionally exceeding 10 to the 12th power L sub 0. Arguments are presented to show that sources with luminosities L equal to or greater than 3 x 10 to the 10th power L sub 0 may represent gas rich galaxies in collision. The more conventional explanation of these sources as sites of extremely active star formation fails to explain the observed low optical luminosities of ELFS as well as their high infrared excess. In contrast, a collisional model heats gas to a temperature of approx. 10 to the 6th power K where cooling takes place in the extreme ultraviolet. The UV is absorbed by dust and converted into far infrared radiation (FIR) without generation of appreciable optical luminosity. Gas recombination as it cools generates a Lyman alpha photon only once for every two extreme ultraviolet approx. 50eV photons emitted by the 10 to the 6th power gas. That accounts for the high infrared excess. Finally, the model also is able to explain the observed luminosity distribution of ELFS as well as many other traits.

  16. AIR POLLUTION CONTROL TECHNOLOGIES (CHAPTER 65)

    EPA Science Inventory

    The chapter discusses the use of technologies for reducing air pollution emissions from stationary sources, with emphasis on the control of combustion gen-erated air pollution. Major stationary sources include utility power boilers, industrial boilers and heaters, metal smelting ...

  17. Design of Photovoltaic Power System for a Precursor Mission for Human Exploration of Mars

    NASA Technical Reports Server (NTRS)

    Mcnatt, Jeremiah; Landis, Geoffrey; Fincannon, James

    2016-01-01

    This project analyzed the viability of a photovoltaic power source for technology demonstration mission to demonstrate Mars in-situ resource utilization (ISRU) to produce propellant for a future human mission, based on technology available within the next ten years. For this assessment, we performed a power-system design study for a scaled ISRU demonstrator lander on the Mars surface based on existing solar array technologies.

  18. Introducing Wind Power: Essentials for Bringing It into the Classroom

    ERIC Educational Resources Information Center

    Swapp, Andy; Schreuders, Paul; Reeve, Edward

    2011-01-01

    As a renewable source of energy, wind energy will play a significant role in the future. Public, commercial, and privately owned organizations are increasingly finding the value and profits in wind power. Including wind power in a technology and engineering education curriculum teaches students about an important technology that may effect their…

  19. Fuel Cells and Other Emerging Manportable Power Technologies for the NATO Warfighter. Part 1: Power Sources for Manportable/Manwearable Applications (Piles a combustible et autres technologies portatives d’alimentation en energie pour les combattants de l’OTAN - Partie 1: Sources d’alimentation pour les applications transportables/portables par l’homme)

    DTIC Science & Technology

    2014-10-01

    increases, the power source weight budget has to be traded against traditional soldier commodities such as ammunition, water and food . As the...When one considers the other commodities he is required to carry such as food , water, ammunition, etc., the weight burden will undoubtedly have a...Others have flexible outer packaging similar to that used in food processing, which are flexible. Flexible packages are emerging which enable the

  20. Alpha power indexes task-related networks on large and small scales: A multimodal ECoG study in humans and a non-human primate.

    PubMed

    de Pesters, A; Coon, W G; Brunner, P; Gunduz, A; Ritaccio, A L; Brunet, N M; de Weerd, P; Roberts, M J; Oostenveld, R; Fries, P; Schalk, G

    2016-07-01

    Performing different tasks, such as generating motor movements or processing sensory input, requires the recruitment of specific networks of neuronal populations. Previous studies suggested that power variations in the alpha band (8-12Hz) may implement such recruitment of task-specific populations by increasing cortical excitability in task-related areas while inhibiting population-level cortical activity in task-unrelated areas (Klimesch et al., 2007; Jensen and Mazaheri, 2010). However, the precise temporal and spatial relationships between the modulatory function implemented by alpha oscillations and population-level cortical activity remained undefined. Furthermore, while several studies suggested that alpha power indexes task-related populations across large and spatially separated cortical areas, it was largely unclear whether alpha power also differentially indexes smaller networks of task-related neuronal populations. Here we addressed these questions by investigating the temporal and spatial relationships of electrocorticographic (ECoG) power modulations in the alpha band and in the broadband gamma range (70-170Hz, indexing population-level activity) during auditory and motor tasks in five human subjects and one macaque monkey. In line with previous research, our results confirm that broadband gamma power accurately tracks task-related behavior and that alpha power decreases in task-related areas. More importantly, they demonstrate that alpha power suppression lags population-level activity in auditory areas during the auditory task, but precedes it in motor areas during the motor task. This suppression of alpha power in task-related areas was accompanied by an increase in areas not related to the task. In addition, we show for the first time that these differential modulations of alpha power could be observed not only across widely distributed systems (e.g., motor vs. auditory system), but also within the auditory system. Specifically, alpha power was suppressed in the locations within the auditory system that most robustly responded to particular sound stimuli. Altogether, our results provide experimental evidence for a mechanism that preferentially recruits task-related neuronal populations by increasing cortical excitability in task-related cortical areas and decreasing cortical excitability in task-unrelated areas. This mechanism is implemented by variations in alpha power and is common to humans and the non-human primate under study. These results contribute to an increasingly refined understanding of the mechanisms underlying the selection of the specific neuronal populations required for task execution. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Occipital Alpha and Gamma Oscillations Support Complementary Mechanisms for Processing Stimulus Value Associations.

    PubMed

    Marshall, Tom R; den Boer, Sebastiaan; Cools, Roshan; Jensen, Ole; Fallon, Sean James; Zumer, Johanna M

    2018-01-01

    Selective attention is reflected neurally in changes in the power of posterior neural oscillations in the alpha (8-12 Hz) and gamma (40-100 Hz) bands. Although a neural mechanism that allows relevant information to be selectively processed has its advantages, it may lead to lucrative or dangerous information going unnoticed. Neural systems are also in place for processing rewarding and punishing information. Here, we examine the interaction between selective attention (left vs. right) and stimulus's learned value associations (neutral, punished, or rewarded) and how they compete for control of posterior neural oscillations. We found that both attention and stimulus-value associations influenced neural oscillations. Whereas selective attention had comparable effects on alpha and gamma oscillations, value associations had dissociable effects on these neural markers of attention. Salient targets (associated with positive and negative outcomes) hijacked changes in alpha power-increasing hemispheric alpha lateralization when salient targets were attended, decreasing it when they were being ignored. In contrast, hemispheric gamma-band lateralization was specifically abolished by negative distractors. Source analysis indicated occipital generators of both attentional and value effects. Thus, posterior cortical oscillations support both the ability to selectively attend while at the same time retaining the ability to remain sensitive to valuable features in the environment. Moreover, the versatility of our attentional system to respond separately to salient from merely positively valued stimuli appears to be carried out by separate neural processes reflected in different frequency bands.

  2. Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2007-01-01

    Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.

  3. EXTATIC: ASML's α-tool development for EUVL

    NASA Astrophysics Data System (ADS)

    Meiling, Hans; Benschop, Jos P.; Hartman, Robert A.; Kuerz, Peter; Hoghoj, Peter; Geyl, Roland; Harned, Noreen

    2002-07-01

    Within the recently initiated EXTATIC project a complete full-field lithography exposure tool for he 50-nm technology node is being developed. The goal is to demonstrate the feasibility of extreme UV lithography (EUVL) for 50-nm imaging and to reduce technological risks in the development of EUVL production tools. We describe the EUV MEDEA+) framework in which EXTATIC is executed, and give an update on the status of the (alpha) -tool development. A brief summary of our in-house source-collector module development is given, as well as the general vacuum architecture of the (alpha) -tool is discussed. We discuss defect-free reticle handling, and investigated the uses of V-grooved brackets glued to the side of the reticle to reduce particle generation during takeovers. These takeovers do not only occur in the exposure tool, but also in multilayer deposition equipment, e-beam pattern writers, inspection tools, etc., where similar requirements on particle contamination are present. Finally, we present an update of mirror fabrication technology and show improved mirror figuring and finishing results.

  4. Neural network communication facilitates verbal working memory.

    PubMed

    Kustermann, Thomas; Rockstroh, Brigitte; Miller, Gregory A; Popov, Tzvetan

    2018-05-28

    Oscillatory brain activity in the theta, alpha, and gamma frequency ranges has been associated with working memory (WM). In addition to alpha and theta activity associated with WM retention, and gamma band activity with item encoding, activity in the alpha band is related to the deployment of attention resources and information. The present study sought to specify distinct roles of neuromagnetic 4-7 Hz theta, 9-13 Hz alpha, and 50-70 Hz gamma power modulation and communication in fronto-parietal networks during cued, hemifield-specific item presentation in a modified Sternberg verbal WM task in 14 student volunteers. Lateralized posterior alpha and gamma power during encoding suggest a preparatory role of alpha oscillations. Bilateral alpha power increases during maintenance reflect information retention for the non-lateralized probe response. Lateralized alpha power increase during encoding was apparently driven by a monotonic increase in fronto-parietal 6 Hz phase, suggesting a mechanism facilitating WM encoding and successful performance. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Gas kinematics of Lyman Alpha Blobs at z=2-3

    NASA Astrophysics Data System (ADS)

    Yang, Yujin

    2015-08-01

    High-redshift Lyman alpha nebulae (Ly-alpha "blobs", LABs) are the site of massive galaxy formation and their early interaction with the intergalactic medium. Research in the past decade has struggled to make progress on the question of what powers these huge Ly-alpha halos and whether the Ly-alpha-emitting gas is outflowing or infalling. First, I will present our optical and NIR spectroscopic observations for the Ly-alpha and the redshifted nebular emission lines such as [OII], [OIII] and Halpha. Using three independent measures --- the velocity offset between the Ly-alpha line and the nonresonant [O III] or Halpha line, the offset of stacked interstellar metal absorption lines, and the spectrally resolved [O III] line profile --- we study the kinematics of gas along the line of sight to galaxies within each blob center. All these kinematic measures show that there are only weak outflows, therefore excluding gas inflows and extreme hyper/superwinds as a source of the extended Ly-alpha emission. I will also present the first detection of molecular gas from a Ly-alpha blob and our on-going effort to characterize the physical conditions of its ISM. The large velocity gradient (LVG) modeling using PdBI observations of CO(3-2), CO(5-4), CO(7-6), CI(2-1) lines suggests that two-phase medium is required to explain the blob's CO SEDs and dust continuum.

  6. Mission applications for advanced photovoltaic solar arrays

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; West, John L.; Chave, Robert G.; Mcgee, David P.; Yen, Albert S.

    1990-01-01

    The suitability of the Advanced Photovoltaic Solar Array (APSA) for future space missions was examined by considering the impact on the spacecraft system in general. The lightweight flexible blanket array system was compared to rigid arrays and a radio-isotope thermoelectric generator (RTG) static power source for a wide range of assumed future earth orbiting and interplanetary mission applications. The study approach was to establish assessment criteria and a rating scheme, identify a reference mission set, perform the power system assessment for each mission, and develop conclusions and recommendations to guide future APSA technology development. The authors discuss the three selected power sources, the assessment criteria and rating definitions, and the reference missions. They present the assessment results in a convenient tabular format. It is concluded that the three power sources examined, APSA, conventional solar arrays, and RTGs, can be considered to complement each other. Each power technology has its own range of preferred applications.

  7. NASA Office of Aeronautics and Space Technology Summer Workshop. Volume 4: Power technology panel

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Technology requirements in the areas of energy sources and conversion, power processing, distribution, conversion, and transmission, and energy storage are identified for space shuttle payloads. It is concluded that the power system technology currently available is adequate to accomplish all missions in the 1973 Mission Model, but that further development is needed to support space opportunities of the future as identified by users. Space experiments are proposed in the following areas: power generation in space, advanced photovoltaic energy converters, solar and nuclear thermoelectric technology, nickel-cadmium batteries, flywheels (mechanical storage), satellite-to-ground transmission and reconversion systems, and regenerative fuel cells.

  8. Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization

    NASA Technical Reports Server (NTRS)

    Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.

    2014-01-01

    This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.

  9. Nuclear energy technology

    NASA Technical Reports Server (NTRS)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  10. Completely explosive ultracompact high-voltage nanosecond pulse-generating system

    NASA Astrophysics Data System (ADS)

    Shkuratov, Sergey I.; Talantsev, Evgueni F.; Baird, Jason; Rose, Millard F.; Shotts, Zachary; Altgilbers, Larry L.; Stults, Allen H.

    2006-04-01

    A conventional pulsed power technology has been combined with an explosive pulsed power technology to produce an autonomous high-voltage power supply. The power supply contained an explosive-driven high-voltage primary power source and a power-conditioning stage. The ultracompact explosive-driven primary power source was based on the physical effect of shock-wave depolarization of high-energy Pb (Zr52Ti48)O3 ferroelectric material. The volume of the energy-carrying ferroelectric elements in the shock-wave ferroelectric generators (SWFEGs) varied from 1.2 to 2.6cm3. The power-conditioning stage was based on the spiral vector inversion generator (VIG). The SWFEG-VIG system demonstrated successful operation and good performance. The amplitude of the output voltage pulse of the SWFEG-VIG system exceeded 90kV, with a rise time of 5.2ns.

  11. High power broadband millimeter wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1999-05-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed using this technology, and have been deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts to 50 kilowatts. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies other technologies will have to be considered particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  12. Safety of long-term feeding of dl-alpha-lipoic acid and its effect on reduced glutathione:oxidized glutathione ratios in beagles.

    PubMed

    Zicker, Steven C; Hagen, Tory M; Joisher, Neha; Golder, Christina; Joshi, Dinesh K; Miller, E Phillip

    2002-01-01

    Alpha-lipoic acid is touted as a powerful antioxidant and possibly a conditionally essential nutrient in older mammals. The safety and efficacy of dl-alpha-lipoic acid was evaluated in 30 adult beagles that were evenly randomized into five groups, each of which was fed one of five different foods with varying inclusion rates of dl-alpha-lipoic acid (0, 150, 1500, 3000, and 4500 ppm). All dogs were fed their respective portion of food daily as their sole source of nutrition for 6 months. Evaluations included general health, body weight, food intake, hematologic and serum biochemical parameters, and glutathione:oxidized glutathione (GSH:GSSG) ratios in lymphocytes. No signs of toxicity were observed at any except the highest level of dl-alpha-lipoic acid inclusion, and no consistent abnormalities were noted in hematologic or biochemical measures at any level. There was a significant overall effect (P< .05) of food on the difference of GSH:GSSG ratio between Day 84 and Day 0. All inclusions of dl-alpha-lipoic acid increased the ratio of GSH:GSSG with the largest numeric improvement occurring at the lowest inclusion rate (150 ppm).

  13. High Power Broadband Millimeter Wave TWTs

    NASA Astrophysics Data System (ADS)

    James, Bill G.

    1998-04-01

    In the early 1980's the requirement for high power broadband millimeter wave sources encouraged the development of microwave vacuum device amplifiers for radar and communication systems. Many government funded programs were implemented for the development of high power broadband millimeter wave amplifiers that would meet the needs of the high power community. The tube design capable of meeting these goals was the slow wave coupled cavity traveling wave device, which had a proven technology base at the lower frequencies (X Band). However scaling this technology to the millimeter frequencies had severe shortcomings in both thermal and manufacturing design. These shortcomings were overcome with the development of the Ladder Circuit technology. In conjunction with the circuit development high power electron beam systems had to be developed for the generation of high rf powers. These beam systems had to be capable of many megawatts of beam power density and high current densities. The cathode technology required to be capable of operating at current densities of 10 amperes per square centimeter at long pulse lengths and high duty cycle. Since the introduction of the Ladder Circuit technology a number of high power broadband millimeter wave amplifiers have been developed and deployed in operating radar and communication systems. Broadband millimeter wave sources have been manufactured in the frequency range from 27 GHz to 100 GHz with power levels ranging from 100 watts CW to 10 kilowatts Peak at W band over a 2 GHz bandwidth. Also a 50 kW peak power and 10 kW average power device at Ka band with 2 GHz bandwidth has been developed. Today the power levels achieved by these devices are nearing the limits of this technology; therefore to gain a significant increase in power at the millimeter wave frequencies, other technologies will have to be considered, particularly fast wave devices. This paper will briefly review the ladder circuit technology and present the designs of a number of broadband high power devices developed at Ka and W band. The discussion will include the beam systems employed in these devices which are the highest power density linear beams generated to date. In conclusion the limits of the power generating capability of this technology will be presented.

  14. Carbon-dependent alleviation of ammonia toxicity for algae cultivation and associated mechanisms exploration.

    PubMed

    Lu, Qian; Chen, Paul; Addy, Min; Zhang, Renchuan; Deng, Xiangyuan; Ma, Yiwei; Cheng, Yanling; Hussain, Fida; Chen, Chi; Liu, Yuhuan; Ruan, Roger

    2018-02-01

    Ammonia toxicity in wastewater is one of the factors that limit the application of algae technology in wastewater treatment. This work explored the correlation between carbon sources and ammonia assimilation and applied a glucose-assisted nitrogen starvation method to alleviate ammonia toxicity. In this study, ammonia toxicity to Chlorella sp. was observed when NH 3 -N concentration reached 28.03mM in artificial wastewater. Addition of alpha-ketoglutarate in wastewater promoted ammonia assimilation, but low utilization efficiency and high cost of alpha-ketoglutarate limits its application in wastewater treatment. Comparison of three common carbon sources, glucose, citric acid, and sodium bicarbonate, indicates that in terms of ammonia assimilation, glucose is the best carbon source. Experimental results suggest that organic carbon with good ability of generating energy and hydride donor may be critical to ammonia assimilation. Nitrogen starvation treatment assisted by glucose increased ammonia removal efficiencies and algal viabilities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Spallation Neutron Source reaches megawatt power

    ScienceCinema

    Dr. William F. Brinkman

    2017-12-09

    The Department of Energy's Spallation Neutron Source (SNS), already the world's most powerful facility for pulsed neutron scattering science, is now the first pulsed spallation neutron source to break the one-megawatt barrier. "Advances in the materials sciences are fundamental to the development of clean and sustainable energy technologies. In reaching this milestone of operating power, the Spallation Neutron Source is providing scientists with an unmatched resource for unlocking the secrets of materials at the molecular level," said Dr. William F. Brinkman, Director of DOE's Office of Science.

  16. Intelligent power management in a vehicular system with multiple power sources

    NASA Astrophysics Data System (ADS)

    Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul

    This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.

  17. Alpha band event-related desynchronization underlying social situational context processing during irony comprehension: A magnetoencephalography source localization study.

    PubMed

    Akimoto, Yoritaka; Takahashi, Hidetoshi; Gunji, Atsuko; Kaneko, Yuu; Asano, Michiko; Matsuo, Junko; Ota, Miho; Kunugi, Hiroshi; Hanakawa, Takashi; Mazuka, Reiko; Kamio, Yoko

    2017-12-01

    Irony comprehension requires integration of social contextual information. Previous studies have investigated temporal aspects of irony processing and its neural substrates using psychological/electroencephalogram or functional magnetic resonance imaging methods, but have not clarified the temporospatial neural mechanisms of irony comprehension. Therefore, we used magnetoencephalography to investigate the neural generators of alpha-band (8-13Hz) event-related desynchronization (ERD) occurring from 600 to 900ms following the onset of a critical sentence at which social situational contexts activated ironic representation. We found that the right anterior temporal lobe, which is involved in processing social knowledge and evaluating others' intentions, exhibited stronger alpha ERD following an ironic statement than following a literal statement. We also found that alpha power in the left anterior temporal lobe correlated with the participants' communication abilities. These results elucidate the temporospatial neural mechanisms of language comprehension in social contexts, including non-literal processing. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Broad Iron K-alpha line of Cygnus X-1 as Seen by XMM-Newton in the EPIC-pn Modified Timing Mode

    NASA Technical Reports Server (NTRS)

    Duro, Refiz; Dauser, Thomas; Wilms, Jorn; Pottschmidt, Katja; Nowak, Michael A.; Fritz, Sonja; Kendziorra, Eckhard; Kirsch, Marcus G. F.; Reynolds, Christopher S.; Staubert, Rudiger

    2011-01-01

    We present the analysis of the broadened, flourescent iron K(alpha) line in simultaneous XMM-Newton and RXTE data from the black hole Cygnus X-I. The XMM-Newton data were taken in a modified version of the Timing Mode of the EPIC-pn camera. In this mode the lower energy threshold of the instrument is increased to 2.8 keV to avoid telemetry drop outs due to the brightness of the source, while at the same time preserving the signal to noise ratio in the Fe K(alpha) band. We find that the best-fit spectrum consists of the sum of an exponentially cut-off power-law and relativistically smeared, ionized reflection. The shape of the broadened Fe K(alpha) feature is due to strong Compton broadening combined with relativistic broadening. Assuming a standard, thin accretion disk, the black hole is close to maximally rotating. Key words. X-rays: binaries - black hole physics - gravitation

  19. Radioisotopic energy conversion system (RECS): A new radioisotopic power cell, based on nuclear, atomic, and radiation transport principles

    NASA Astrophysics Data System (ADS)

    Steinfelds, Eric Victor

    The topic of this thesis is the development of the Radioisotope Energy Conversion System (RECS) in a project which is utilizing analytical computational assisted design and some experimental Research in the investigation of fluorescers and effective transducers with the appropriate energy range choice for the conversion of energy. It is desirable to increase the efficiency in electrical power from the raw kinetic power available from the radioactive material within radioisotope power generators. A major step in this direction is the development and use of Radioisotope Energy Conversion Systems to supplement and ideally replace Radioactive Thermal Generators (RTG). It is possible to achieve electrical conversion efficiencies exceeding 25% for RECS power devices compared to only 9 percent efficiency for RTG's. The theoretical basis with existent materials for the potential achievability of efficiencies above 25% is documented within this thesis. The fundamental RECS consists of a radioisotope radiative source (C1), a mediating fluorescent gas (C2) which readily absorbs energy from the beta particles (or alpha's) and subsequently emits blue or UV photons, photovoltaic cells (C3) to convert the blue and UV photons into electrical energy [2], and electrical circuitry (C4). Solid State inspired component (C3), due to its theoretical (and attainable) high efficiency, is a large step ahead of the RTG design concept. The radioisotope flux source produces the beta(-) particles or alpha particles. Geometrically, presently, we prefer to have the ambient fluorescent gas surround the radioisotope flux source. Our fluorescer shall be a gas such as Krypton. Our specifically wide band-gap photovoltaic cells shall have gap energies which are slightly less than that of UV photons produced by the fluorescing gas. Diamond and Aluminum Nitride sample materials are good potential choices for photovoltaic cells, as is explained here in. Out of the material examples discussed, the highest electric power to mass ratio is found to be readily attainable with strontium-90 as the radiative source. Krypton-85 is indisputably the most efficient in RECS devices. In the conclusion in chapter VI, suggestions are given on acceptable ways of containing krypton-85 and providing sufficient shielding on deep space probes destined to use krypton-85 powered 'batteries'.

  20. Show me the road to hydrogen : UTC/transportation fuel research and development

    DOT National Transportation Integrated Search

    2007-01-01

    Hydrogen-powered fuel is an emerging technology that provides an alternative source of fuel to fossil fuel. Commercially viable technologies are emerging that are expected to allow for consumer vehicles powered by hydrogen as part of a growing hydrog...

  1. Mode-locked thin-disk lasers and their potential application for high-power terahertz generation

    NASA Astrophysics Data System (ADS)

    Saraceno, Clara J.

    2018-04-01

    The progress achieved in the last few decades in the performance of ultrafast laser systems with high average power has been tremendous, and continues to provide momentum to new exciting applications, both in scientific research and technology. Among the various technological advances that have shaped this progress, mode-locked thin-disk oscillators have attracted significant attention as a unique technology capable of providing ultrashort pulses with high energy (tens to hundreds of microjoules) and at very high repetition rates (in the megahertz regime) from a single table-top oscillator. This technology opens the door to compact high repetition rate ultrafast sources spanning the entire electromagnetic spectrum from the XUV to the terahertz regime, opening various new application fields. In this article, we focus on their unexplored potential as compact driving sources for high average power terahertz generation.

  2. Project Dragonfly: A feasibility study of interstellar travel using laser-powered light sail propulsion

    NASA Astrophysics Data System (ADS)

    Perakis, Nikolaos; Schrenk, Lukas E.; Gutsmiedl, Johannes; Koop, Artur; Losekamm, Martin J.

    2016-12-01

    Light sail-based propulsion systems are a candidate technology for interplanetary and interstellar missions due to their flexibility and the fact that no fuel has to be carried along. In 2014, the Initiative for Interstellar Studies (i4is) hosted the Project Dragonfly Design Competition, which aimed at assessing the feasibility of sending an interstellar probe propelled by a laser-powered light sail to another star system. We analyzed and designed a mission to the Alpha Centauri system, with the objective to carry out science operations at the destination. Based on a comprehensive evaluation of currently available technologies and possible locations, we selected a lunar architecture for the laser system. It combines the advantages of surface- and space-based systems, as it requires no station keeping and suffers no atmospheric losses. We chose a graphene-based sandwich material for the light sail because of its low density. Deceleration of the spacecraft sufficient for science operations at the target system is achieved using both magnetic and electric sails. Applying these assumptions in a simulation leads to the conclusion that 250 kg of scientific payload can be sent to Alpha Centauri within the Project Dragonfly Design Competition's constraints of 100 year travel duration and 100 GW laser beam power. This is only sufficient to fulfill parts of the identified scientific objectives, and therefore renders the usefulness of such a mission questionable. A better sail material or higher laser power would improve the acceleration behavior, an increase in the mission time would allow for larger spacecraft masses.

  3. 78 FR 77670 - AlphaGen Power LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. ER14-630-000] AlphaGen Power LLC; Supplemental Notice That Initial Market-Based Rate Filing Includes Request for Blanket Section 204 Authorization This is a supplemental notice in the above-referenced proceeding, of AlphaGen Power...

  4. Spatiotemporal dynamics of auditory attention synchronize with speech

    PubMed Central

    Wöstmann, Malte; Herrmann, Björn; Maess, Burkhard

    2016-01-01

    Attention plays a fundamental role in selectively processing stimuli in our environment despite distraction. Spatial attention induces increasing and decreasing power of neural alpha oscillations (8–12 Hz) in brain regions ipsilateral and contralateral to the locus of attention, respectively. This study tested whether the hemispheric lateralization of alpha power codes not just the spatial location but also the temporal structure of the stimulus. Participants attended to spoken digits presented to one ear and ignored tightly synchronized distracting digits presented to the other ear. In the magnetoencephalogram, spatial attention induced lateralization of alpha power in parietal, but notably also in auditory cortical regions. This alpha power lateralization was not maintained steadily but fluctuated in synchrony with the speech rate and lagged the time course of low-frequency (1–5 Hz) sensory synchronization. Higher amplitude of alpha power modulation at the speech rate was predictive of a listener’s enhanced performance of stream-specific speech comprehension. Our findings demonstrate that alpha power lateralization is modulated in tune with the sensory input and acts as a spatiotemporal filter controlling the read-out of sensory content. PMID:27001861

  5. The Atacama Cosmology Telescope: Cosmological Parameters from the 2008 Power Spectrum

    NASA Technical Reports Server (NTRS)

    Dunkley, J.; Hlozek, R.; Sievers, J.; Acquaviva, V.; Ade, P. A. R.; Aguirre, P.; Amiri, M.; Appel, J. W.; Barrientos, L. F.; Battistelli, E. S.; hide

    2011-01-01

    We present cosmological parameters derived from the angular power spectrum of the cosmic microwave background (CMB) radiation observed at 148 GHz and 218 GHz over 296 deg(exp 2) with the Atacama Cosmology Telescope (ACT) during its 2008 season. ACT measures fluctuations at scales 500 < l < 10,000. We fit a model for the lensed CMB, Sunyaev-Zel'dovich (SZ), and foreground contribution to the 148 GHz and 218 GHz power spectra, including thermal and kinetic SZ, Poisson power from radio and infrared point sources, and clustered power from infrared point sources. At l = 3000, about half the power at 148 GHz comes from primary CMB after masking bright radio sources. The power from thermal and kinetic SZ is estimated to be Beta(sub 3000) is identical to 6.8 +/- 2.9 mu K (exp 2), where Beta (sub l) is identical to l(l + 1) C(sub l)/2pi. The IR Poisson power at 148 GHz is Bewta(sub 3000) 7.8 +/- 0.7 muK(exp 2) (C(sub l) = 5.5 +/- 0.5 nK(exp 2)), and a clustered IR component is required with Beta (sub 3000) = 4.6 +/- 0.9 muK(exp 2), assuming an analytic model for its power spectrum shape. At 218 GHz only about 15% of the power, approximately 27 mu K(exp 2), is CMB anisotropy at l = 3000. The remaining 85% is attributed to IR sources (approximately 50% Poisson and 35% clustered), with spectral index alpha = 3.69 +/- 0.14 for flux scaling as S(nu) varies as nu(sup alpha). We estimate primary cosmological parameters from the less contaminated 148 GHz spectrum, marginalizing over SZ and source power. The ACDM cosmological model is a good fit to the data (chi square/dof = 29/46), and ACDM parameters estimated from ACT+Wilkinson Microwave Anisotropy Probe (WMAP) are consistent with the seven-year WMAP limits, with scale invariant n(sub s) = 1 excluded at 99.7% confidence level (CL) (3 sigma). A model with no CMB lensing is disfavored at 2.8 sigma. By measuring the third to seventh acoustic peaks, and probing the Silk damping regime, the ACT data improve limits on cosmological parameters that affect the small-scale CMB power. The ACT data combined with WMAP give a 6 sigma detection of primordial helium, with Y(sub p) = 0.313 +/- 0.044, and a 4 sigma detection of relativistic species, assumed to be neutrinos, with N(sub eff) = 5.3 +/- 1.3 (4.6 +/- 0.8 with BAO+H(sub 0) data). From the CMB alone the running of the spectral index is constrained to be d(sub s) / d ln k = -0,034 +/- 0,018, the limit on the tensor-to-scalar ratio is r < 0,25 (95% CL), and the possible contribution of Nambu cosmic strings to the power spectrum is constrained to string tension G(sub mu) < 1.6 x 10(exp -7) (95% CL),

  6. Thermophotovoltaic Energy Conversion for Space Applications

    NASA Astrophysics Data System (ADS)

    Teofilo, V. L.; Choong, P.; Chen, W.; Chang, J.; Tseng, Y.-L.

    2006-01-01

    Thermophotovoltaic (TPV) energy conversion cells have made steady and over the years considerable progress since first evaluated by Lockheed Martin for direct conversion using nuclear power sources in the mid 1980s. The design trades and evaluations for application to the early defensive missile satellites of the Strategic Defense Initiative found the cell technology to be immature with unacceptably low cell efficiencies comparable to thermoelectric of <10%. Rapid advances in the epitaxial growth technology for ternary compound semiconductors, novel double hetero-structure junctions, innovative monolithic integrated cell architecture, and bandpass tandem filter have, in concert, significantly improved cell efficiencies to 25% with the promise of 35% using solar cell like multi-junction approach in the near future. Recent NASA sponsored design and feasibility testing programs have demonstrated the potential for 19% system efficiency for 100 We radioisotopic power sources at an integrated specific power of ~14 We/kg. Current state of TPV cell technology however limits the operating temperature of the converter cells to < 400K due to radiator mass consideration. This limitation imposes no system mass penalty for the low power application for use with radioisotopes power sources because of the high specific power of the TPV cell converters. However, the application of TPV energy conversion for high power sources has been perceived as having a major impediment above 1 kWe due to the relative low waste heat rejection temperature. We explore this limitation and compare the integrated specific power of TPV converters with current and projected TPV cells with other advanced space power conversion technologies. We find that when the redundancy needed required for extended space exploration missions is considered, the TPV converters have a much higher range of applicability then previously understood. Furthermore, we believe that with a relatively modest modifications of the current epitaxial growth in MOCVD, an optimal cell architecture for elevated TPV operation can be found to out-perform the state-of-the-art TPV at an elevated temperature.

  7. Broadband Sources in the 1-3 THz Range

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Ward, John; Maestrini, Alain; Chattopadhyay, Goutam; Schlecht, Erich; Thomas, Bertrand; Lin, Robert; Lee, Choonsup; Gill, John

    2009-01-01

    Broadband electronically tunable sources in the terahertz range are a critical technology for enabling space-borne as well as ground-based applications. By power-combining MMIC amplifier and frequency tripler chips, we have recently demonstrated >1 mW of output power at 900 GHz. This source provides a stepping stone to enable sources in the 2-3 THz range than can sufficiently pump multi-pixel imaging arrays.

  8. Discussion on mass concrete construction of wind turbine generator foundation

    NASA Astrophysics Data System (ADS)

    Shang, Liang; Wu, Chaoxiang; Yin, Xiaoyong

    2018-04-01

    Wind power is one of the main power sources currently. China has rich wind power resources, wind power plants are developed faster and faster. However, China wind power construction started late, which is lack of relevant experience technology. It is easy to produce quality problems. The key to the construction quality of wind power plant is the construction quality of mass concrete construction. Therefore, construction technology and quality control of wind turbine generator foundation mass concrete are discussed and analyzed in the paper.

  9. EEG Cortical Connectivity Analysis of Working Memory Reveals Topological Reorganization in Theta and Alpha Bands

    PubMed Central

    Dai, Zhongxiang; de Souza, Joshua; Lim, Julian; Ho, Paul M.; Chen, Yu; Li, Junhua; Thakor, Nitish; Bezerianos, Anastasios; Sun, Yu

    2017-01-01

    Numerous studies have revealed various working memory (WM)-related brain activities that originate from various cortical regions and oscillate at different frequencies. However, multi-frequency band analysis of the brain network in WM in the cortical space remains largely unexplored. In this study, we employed a graph theoretical framework to characterize the topological properties of the brain functional network in the theta and alpha frequency bands during WM tasks. Twenty-eight subjects performed visual n-back tasks at two difficulty levels, i.e., 0-back (control task) and 2-back (WM task). After preprocessing, Electroencephalogram (EEG) signals were projected into the source space and 80 cortical brain regions were selected for further analysis. Subsequently, the theta- and alpha-band networks were constructed by calculating the Pearson correlation coefficients between the power series (obtained by concatenating the power values of all epochs in each session) of all pairs of brain regions. Graph theoretical approaches were then employed to estimate the topological properties of the brain networks at different WM tasks. We found higher functional integration in the theta band and lower functional segregation in the alpha band in the WM task compared with the control task. Moreover, compared to the 0-back task, altered regional centrality was revealed in the 2-back task in various brain regions that mainly resided in the frontal, temporal and occipital lobes, with distinct presentations in the theta and alpha bands. In addition, significant negative correlations were found between the reaction time with the average path length of the theta-band network and the local clustering of the alpha-band network, which demonstrates the potential for using the brain network metrics as biomarkers for predicting the task performance during WM tasks. PMID:28553215

  10. EEG Cortical Connectivity Analysis of Working Memory Reveals Topological Reorganization in Theta and Alpha Bands.

    PubMed

    Dai, Zhongxiang; de Souza, Joshua; Lim, Julian; Ho, Paul M; Chen, Yu; Li, Junhua; Thakor, Nitish; Bezerianos, Anastasios; Sun, Yu

    2017-01-01

    Numerous studies have revealed various working memory (WM)-related brain activities that originate from various cortical regions and oscillate at different frequencies. However, multi-frequency band analysis of the brain network in WM in the cortical space remains largely unexplored. In this study, we employed a graph theoretical framework to characterize the topological properties of the brain functional network in the theta and alpha frequency bands during WM tasks. Twenty-eight subjects performed visual n -back tasks at two difficulty levels, i.e., 0-back (control task) and 2-back (WM task). After preprocessing, Electroencephalogram (EEG) signals were projected into the source space and 80 cortical brain regions were selected for further analysis. Subsequently, the theta- and alpha-band networks were constructed by calculating the Pearson correlation coefficients between the power series (obtained by concatenating the power values of all epochs in each session) of all pairs of brain regions. Graph theoretical approaches were then employed to estimate the topological properties of the brain networks at different WM tasks. We found higher functional integration in the theta band and lower functional segregation in the alpha band in the WM task compared with the control task. Moreover, compared to the 0-back task, altered regional centrality was revealed in the 2-back task in various brain regions that mainly resided in the frontal, temporal and occipital lobes, with distinct presentations in the theta and alpha bands. In addition, significant negative correlations were found between the reaction time with the average path length of the theta-band network and the local clustering of the alpha-band network, which demonstrates the potential for using the brain network metrics as biomarkers for predicting the task performance during WM tasks.

  11. Renewable energy sources, the internet of things and the third industrial revolution: Smart grid and contemporary information and communication technologies

    NASA Astrophysics Data System (ADS)

    Kitsios, Aristidis; Bousakas, Konstantinos; Salame, Takla; Bogno, Bachirou; Papageorgas, Panagiotis; Vokas, Georgios A.; Mauffay, Fabrice; Petit, Pierre; Aillerie, Michel; Charles, Jean-Pierre

    2017-02-01

    In this paper, the energy efficiency of a contemporary Smart Grid that is based on Distributed Renewable Energy Sources (DRES) is examined under the scope of the communication systems utilized between the energy loads and the energy sources. What is evident is that the Internet of Things (IoT) technologies that are based on the existing Web infrastructure can be heavily introduced in this direction especially when combined with long range low bandwidth networking technologies, power line communication technologies and optimization methodologies for renewable energy generation. The renewable energy generation optimization will be based on devices embedded in the PV panels and the wind power generators, which will rely on bidirectional communications with local gateways and remote control stations for achieving energy efficiency. Smart meters and DRES combined with IoT communications will be the enabling technologies for the ultimate fusion of Internet technology and renewable energy generation realizing the Energy Internet.

  12. Nuclear power--key to man's extraterrestrial civilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angelo, J.A.; Buden, D.

    1982-08-01

    The start of the Third Millennium will be highlighted by the establishment of man's extraterrestrial civilization with three technical cornerstones leading to the off-planet expansion of the human resource base. These are the availability of compact energy sources for power and propulsion, the creation of permanent manned habitats in space, and the ability to process materials anywhere in the Solar System. In the 1990s and beyond, nuclear reactors could represent the prime source of both space power and propulsion. The manned and unmanned space missions of tomorrow will demand first kilowatt and then megawatt levels of power. Various nuclear powermore » plant technologies are discussed, with emphasis on derivatives from the nuclear rocket technology.« less

  13. Power source selection for neutral particle beam systems

    NASA Astrophysics Data System (ADS)

    Silverman, Sidney W.; Chi, John W. H.; Hill, Gregory

    Space based neutral particle beams (NPB) are being considered for use as an SDI weapon as well as a mid-course discriminator. These systems require a radio frequency (RF) power source. Five types of amplifiers were considered for the RF power source: the klystron, the klystrode, the tetrode, the cross field amplifier, and the solid state amplifier. A number of different types of power source systems (nuclear and non-nuclear) were considered for integration with these amplifiers. The most attractive amplifier power system concepts were identified through comparative evaluations that took into account the total masses of integrated amplifier power source systems as well as a number of other factors that consisted of development cost, technology risk, vulnerability, survivability, reliability, and impacts on spacecraft stabilization. These concepts are described and conclusions drawn.

  14. The different oscillation patterns of alpha band in the early and later stages of working memory maintenance.

    PubMed

    Xie, Yuanjun; Feng, Zhengquan; Xu, Yuanyuan; Bian, Chen; Li, Min

    2016-10-28

    A putative functional role for alpha oscillations in working memory remains controversial. However, recent evidence suggests that such oscillation may reflect distinct phases of working memory processing. The present study investigated alpha band (8-13Hz) activity during the maintenance stage of working memory using a modified Sternberg working memory task. Our results reveal that alpha power was concentrated primarily in the occipital cortex and was decreased during the early stage of maintenance (0-600ms), and subsequently increased during the later stage of maintenance (1000-1600ms). We suggest that reduced alpha power may be involved in focused attention during the working memory maintenance, whereas increased alpha power may reflect suppression of visual stimuli to facilitate internal processing related to the task. This interpretation is generally consistent with recent reports suggesting that variations in alpha power are associated with the representation and processing of information in the discrete time intervals during the working memory maintenance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Strategic avionics technology definition studies. Subtask 3-1A: Electrical Actuation (ELA) systems

    NASA Technical Reports Server (NTRS)

    Lum, Ben T. F.; Pond, Charles; Dermott, William

    1993-01-01

    This interim report presents the preliminary results of an electrical actuation (ELA) system study (subtask TA3-1A) to support the NASA strategic avionics technology definition studies. The final report of this ELA study is scheduled for September 30, 1993. The topics are presented in viewgraph form and include the following ELA technology demonstration testing; ELA system baseline; power and energy requirements for shuttle effector systems; power efficiency and losses of ELA effector systems; and power and energy requirements for ELA power sources.

  16. Lunar orbiting microwave beam power system

    NASA Technical Reports Server (NTRS)

    Fay, Edgar H.; Cull, Ronald C.

    1990-01-01

    A microwave beam power system using lunar orbiting solar powered satellite(s) and surface rectenna(s) was investigated as a possible energy source for the Moon's surface. The concept has the potential of reduced system mass by placing the power source in orbit. This can greatly reduce and/or eliminate the 14 day energy storage requirement of a lunar surface solar system. Also propellants required to de-orbit to the surface are greatly reduced. To determine the practicality of the concept and the most important factors, a zero-th order feasibility analysis was performed. Three different operational scenarios employing state of the art technology and forecasts for two different sets of advanced technologies were investigated. To reduce the complexity of the problem, satellite(s) were assumed in circular equatorial orbits around the Moon, supplying continuous power to a single equatorial base through a fixed horizontal rectenna on the surface. State of the art technology yielded specific masses greater than 2500 kg/kw, well above projections for surface systems. Using advanced technologies the specific masses are on the order of 100 kg/kw which is within the range of projections for surface nuclear (20 kg/kw) and solar systems (500 kg/kw). Further studies examining optimization of the scenarios, other technologies such as lasers transmitters and nuclear sources, and operational issues such as logistics, maintenance and support are being carried out to support the Space Exploration Initiative (SEI) to the Moon and Mars.

  17. Reduced prefrontal MEG alpha-band power in mild traumatic brain injury with associated posttraumatic stress disorder symptoms.

    PubMed

    Popescu, Mihai; Hughes, John D; Popescu, Elena-Anda; Riedy, Gerard; DeGraba, Thomas J

    2016-09-01

    To determine if changes in cortical alpha-band power in patients with mild traumatic brain injury (mTBI) are associated with the severity of their post-traumatic stress disorder (PTSD) symptoms, and if injury severity and level of exposure to psychologically traumatic events are predictors of these electrophysiological changes. Resting-state magnetoencephalographic recordings were analyzed in 32 patients with mTBI. Alpha-band power was estimated for each patient in 68 cortical regions and was compared between groups of patients with low versus high PTSD symptoms severity. Participants with high PTSD symptom severity showed reduced alpha-band power bilaterally in the superior and middle frontal gyri and frontal poles, and in the left inferior frontal gyrus. Alpha-band power in bilateral middle frontal gyri and frontal poles was negatively correlated with scores reflecting symptoms of emotional numbing. Loss of consciousness (LOC) associated with mTBI and level of exposure to psychologically traumatic events were predictors of decreased prefrontal alpha-band power in some of these regions. Altered prefrontal alpha-band activity, shown to be partly explained by mTBI-related LOC, is associated with PTSD symptoms severity. Our findings will guide future studies addressing the electrophysiological mechanisms underlying a higher incidence of PTSD in patients with mTBI. Published by Elsevier Ireland Ltd.

  18. Electrocortical activity distinguishes between uphill and level walking in humans.

    PubMed

    Bradford, J Cortney; Lukos, Jamie R; Ferris, Daniel P

    2016-02-01

    The objective of this study was to determine if electrocortical activity is different between walking on an incline compared with level surface. Subjects walked on a treadmill at 0% and 15% grades for 30 min while we recorded electroencephalography (EEG). We used independent component (IC) analysis to parse EEG signals into maximally independent sources and then computed dipole estimations for each IC. We clustered cortical source ICs and analyzed event-related spectral perturbations synchronized to gait events. Theta power fluctuated across the gait cycle for both conditions, but was greater during incline walking in the anterior cingulate, sensorimotor and posterior parietal clusters. We found greater gamma power during level walking in the left sensorimotor and anterior cingulate clusters. We also found distinct alpha and beta fluctuations, depending on the phase of the gait cycle for the left and right sensorimotor cortices, indicating cortical lateralization for both walking conditions. We validated the results by isolating movement artifact. We found that the frequency activation patterns of the artifact were different than the actual EEG data, providing evidence that the differences between walking conditions were cortically driven rather than a residual artifact of the experiment. These findings suggest that the locomotor pattern adjustments necessary to walk on an incline compared with level surface may require supraspinal input, especially from the left sensorimotor cortex, anterior cingulate, and posterior parietal areas. These results are a promising step toward the use of EEG as a feed-forward control signal for ambulatory brain-computer interface technologies.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Lynn; Arquit Niederberger, Anne

    Abstract— Lighting systems have the ability to transform the economic and educational infrastructure of disadvantaged communities, and eradicating “light poverty” has become one of the primary goals of the International Year of Light 2015. Solid-state lighting (SSL) technology, based on light-emitting diode (LED) light sources, has emerged as the next generation of lighting technology, with a current global market penetration of roughly 5%. This paper will report on recent research on understanding SSL lighting system reliability (failure modes, environmental stressors, electrical power quality); discuss the implications of SSL technology reliability for providing lighting services; and suggest practical approaches to ensuremore » SSL reliability to benefit humanity. Among the key findings from this work is that LED sources can be extremely reliable, withstanding a broad range of environmental stresses without failure. Nonetheless, SSL lighting systems can have a negative impact on electrical power reliability, as well as on the affordability of lighting services, without attention to the quality of the accompanying power infrastructure. It is therefore critical to ensure that the performance of the power supply electronics used in lighting systems is matched to the quality of the power source, when evaluating energy efficient lighting choices.« less

  20. Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Petre, R.; Mushotzky, R. F.; Krolik, J. H.; Holt, S. S.

    1983-01-01

    Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium.

  1. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  2. Field Operations and Enforcement Manual for Air Pollution Control. Volume II: Control Technology and General Source Inspection.

    ERIC Educational Resources Information Center

    Weisburd, Melvin I.

    The Field Operations and Enforcement Manual for Air Pollution Control, Volume II, explains in detail the following: technology of source control, modification of operations, particulate control equipment, sulfur dioxide removal systems for power plants, and control equipment for gases and vapors; inspection procedures for general sources, fuel…

  3. A High-Energy Technology Demonstration Platfom: The First Step in a Stepping Stones Approach to Energy-Rich Space Infrastructures

    NASA Technical Reports Server (NTRS)

    Carrington, Connie; Day, Greg

    2004-01-01

    The sun provides an abundant source of energy in space, which can be used to power exploration vehicles and infrastructures that support exploration. A first step in developing and demonstrating the necessary technologies to support solar-powered exploration could be a 100-kWe-class solar-powered platform in Earth orbit. This platform would utilize advanced technologies in solar power collection and generation, power management and distribution, thermal management, and electric propulsion. It would also provide a power-rich free-flying platform to demonstrate in space a portfolio of technology flight experiments. This paper presents a preliminary design concept for a 100-kWe solar-powered satellite with the capability to use high-powered electric propulsion, and to flight-demonstrate a variety of payload experiments.

  4. Low-Cost alpha Alane for Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabian, Tibor; Petrie, Mark; Crouch-Baker, Steven

    This project was directed towards the further development of the Savannah River National Laboratory (SRNL) lab-scale electrochemical synthesis of the hydrogen storage material alpha-alane and Ardica Technologies-SRI International (SRI) chemical downstream processes that are necessary to meet DoE cost metrics and transition alpha-alane synthesis to an industrial scale. Ardica has demonstrated the use of alpha-alane in a fuel-cell system for the U.S. Army WFC20 20W soldier power system that has successfully passed initial field trials with individual soldiers. While alpha-alane has been clearly identified as a desirable hydrogen storage material, cost-effective means for its production and regeneration on a scalemore » of use applicable to the industry have yet to be established. We focused on three, principal development areas: 1. The construction of a comprehensive engineering techno-economic model to establish the production costs of alpha-alane by both electrochemical and chemical routes at scale. 2. The identification of critical, cost-saving design elements of the electrochemical cell and the quantification of the product yields of the primary electrochemical process. A moving particle-bed reactor design was constructed and operated. 3. The experimental quantification of the product yields of candidate downstream chemical processes necessary to produce alpha-alane to complete the most cost-effective overall manufacturing process. Our techno-economic model shows that under key assumptions most 2015 and 2020 DOE hydrogen storage system cost targets for low and medium power can be achieved using the electrochemical alane synthesis process. To meet the most aggressive 2020 storage system cost target, $1/g, our model indicates that 420 metric tons per year (MT/y) production of alpha-alane is required. Laboratory-scale experimental work demonstrated that the yields of two of the three critical component steps within the overall “electrochemical process” were sufficiently high to meet this production target. In the case of the yield of the third step, the crystallization of alpha-alane from the primary alane-related product of the electrochemical reaction, further development is required.« less

  5. Recent Advances in Solar Cell Technology

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Bailey, Sheila G.; Piszczor, Michael F., Jr.

    1996-01-01

    The advances in solar cell efficiency, radiation tolerance, and cost over the last decade are reviewed. Potential performance of thin-film solar cells in space are discussed, and the cost and the historical trends in production capability of the photovoltaics industry are considered with respect to the requirements of space power systems. Concentrator cells with conversion efficiency over 30%, and nonconcentrating solar cells with efficiency over 25% are now available, and advanced radiation-tolerant cells and lightweight, thin-film arrays are both being developed. Nonsolar applications of solar cells, including thermophotovoltaics, alpha- and betavoltaics, and laser power receivers, are also discussed.

  6. Anomalous Power Flow and ``Ghost'' Sources

    NASA Astrophysics Data System (ADS)

    Monzon, Cesar

    2008-08-01

    It is demonstrated that EM radiation from complex sources can result in real power in restricted regions of space flowing back towards the sources, thereby mimicking “ghost” sources. This counterintuitive mechanism of radiation does not rely on backward waves, as ordinary waves carry the power. Ways to harness the effect by making it directional are presented, together with selected applications, of which deception is a prime example due to the nature of the phenomenon. The concept can be applied to other areas, such as mechanics, acoustics, etc., and can be realized with available technology.

  7. Impact of sleep loss before learning on cortical dynamics during memory retrieval.

    PubMed

    Alberca-Reina, E; Cantero, J L; Atienza, M

    2015-12-01

    Evidence shows that sleep loss before learning decreases activation of the hippocampus during encoding and promotes forgetting. But it remains to be determined which neural systems are functionally affected during memory retrieval after one night of recovery sleep. To investigate this issue, we evaluated memory for pairs of famous people's faces with the same or different profession (i.e., semantically congruent or incongruent faces) after one night of undisturbed sleep in subjects who either underwent 4hours of acute sleep restriction (ASR, N=20) or who slept 8hours the pre-training night (controls, N=20). EEG recordings were collected during the recognition memory task in both groups, and the cortical sources generating this activity localized by applying a spatial beamforming filter in the frequency domain. Even though sleep restriction did not affect accuracy of memory performance, controls showed a much larger decrease of alpha power relative to a baseline period when compared to sleep-deprived subjects. These group differences affected a widespread frontotemporoparietal network involved in retrieval of episodic/semantic memories. Regression analyses further revealed that associative memory in the ASR group was negatively correlated with alpha power in the occipital regions, whereas the benefit of congruency in the same group was positively correlated with delta power in the left lateral prefrontal cortex. Retrieval-related decreases of alpha power have been associated with the reactivation of material-specific memory representations, whereas increases of delta power have been related to inhibition of interferences that may affect the performance of the task. We can therefore draw the conclusion that a few hours of sleep loss in the pre-training night, though insufficient to change the memory performance, is sufficient to alter the processes involved in retrieving and manipulating episodic and semantic information. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Microcombustor-thermoelectric power generator for 10-50 watt applications

    NASA Astrophysics Data System (ADS)

    Marshall, Daniel S.; Cho, Steve T.

    2010-04-01

    Fuel-based portable power systems, including combustion and fuel cell systems, take advantage of the 80x higher energy density of fuel over lithium battery technologies and offer the potential for much higher energy density power sources - especially for long-duration applications, such as unattended sensors. Miniaturization of fuel-based systems poses significant challenges, including processing of fuel in small channels, catalyst poisoning, and coke and soot formation. Recent advances in micro-miniature combustors in the 200Watt thermal range have enabled the development of small power sources that use the chemical energy of heavy fuel to drive thermal-to-electric converters for portable applications. CUBE Technology has developed compact Micro-Furnace combustors that efficiently deliver high-quality heat to optimized thermal-to-electric power converters, such as advanced thermoelectric power modules and Stirling motors, for portable power generation at the 10-50Watt scale. Key innovations include a compact gas-gas recuperator, innovative heavy fuel processing, coke- & soot-free operation, and combustor optimization for low balance-of-plant power use while operating at full throttle. This combustor enables the development of robust, high energy density, miniature power sources for portable applications.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, B.R.; Muggenburg, B.A.; Welsh, C.A.

    The alpha emitter plutonium-238 ({sup 238}Pu), which is produced in uranium-fueled, light-water reactors, is used as a thermoelectric power source for space applications. Inhalation of a mixed oxide form of Pu is the most likely mode of exposure of workers and the general public. Occupational exposures to {sup 238}PuO{sub 2} have occurred in association with the fabrication of radioisotope thermoelectric generators. Organs and tissue at risk for deterministic and stochastic effects of {sup 238}Pu-alpha irradiation include the lung, liver, skeleton, and lymphatic tissue. Little has been reported about the effects of inhaled {sup 238}PuO{sub 2} on peripheral blood cell countsmore » in humans. The purpose of this study was to investigate hematological responses after a single inhalation exposure of Beagle dogs to alpha-emitting {sup 238}PuO{sub 2} particles and to extrapolate results to humans.« less

  10. EEG alpha spindle measures as indicators of driver fatigue under real traffic conditions.

    PubMed

    Simon, Michael; Schmidt, Eike A; Kincses, Wilhelm E; Fritzsche, Martin; Bruns, Andreas; Aufmuth, Claus; Bogdan, Martin; Rosenstiel, Wolfgang; Schrauf, Michael

    2011-06-01

    The purpose of this study is to show the effectiveness of EEG alpha spindles, defined by short narrowband bursts in the alpha band, as an objective measure for assessing driver fatigue under real driving conditions. An algorithm for the identification of alpha spindles is described. The performance of the algorithm is tested based on simulated data. The method is applied to real data recorded under real traffic conditions and compared with the performance of traditional EEG fatigue measures, i.e. alpha-band power. As a highly valid fatigue reference, the last 20 min of driving from participants who aborted the drive due to heavy fatigue were used in contrast to the initial 20 min of driving. Statistical analysis revealed significant increases from the first to the last driving section of several alpha spindle parameters and among all traditional EEG frequency bands, only of alpha-band power; with larger effect sizes for the alpha spindle based measures. An increased level of fatigue over the same time periods for drop-outs, as compared to participants who did not abort the drive, was observed only by means of alpha spindle parameters. EEG alpha spindle parameters increase both fatigue detection sensitivity and specificity as compared to EEG alpha-band power. It is demonstrated that alpha spindles are superior to EEG band power measures for assessing driver fatigue under real traffic conditions. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. The thalamus as the generator and modulator of EEG alpha rhythm: a combined PET/EEG study with lorazepam challenge in humans.

    PubMed

    Schreckenberger, Mathias; Lange-Asschenfeldt, Christian; Lange-Asschenfeld, Christian; Lochmann, Matthias; Mann, Klaus; Siessmeier, Thomas; Buchholz, Hans-Georg; Bartenstein, Peter; Gründer, Gerhard

    2004-06-01

    Purpose of this study was to investigate the functional relationship between electroencephalographic (EEG) alpha power and cerebral glucose metabolism before and after pharmacological alpha suppression by lorazepam. Ten healthy male volunteers were examined undergoing two F18-fluorodeoxyglucose (18-FDG) positron emission tomography (PET) scans with simultaneous EEG recording: 1x placebo, 1x lorazepam. EEG power spectra were computed by means of Fourier analysis. The PET data were analyzed using SPM99, and the correlations between metabolism and alpha power were calculated for both conditions. The comparison lorazepam versus placebo revealed reduced glucose metabolism of the bilateral thalamus and adjacent subthalamic areas, the occipital cortex and temporo-insular areas (P < 0.001). EEG alpha power was reduced in all derivations (P < 0.001). Under placebo, there was a positive correlation between alpha power and metabolism of the bilateral thalamus and the occipital and adjacent parietal cortex (P < 0.001). Under lorazepam, the thalamic and parietal correlations were maintained, whereas the occipital correlation was no longer detectable (P < 0.001). The correlation analysis of the difference lorazepam-placebo showed the alpha power exclusively correlated with the thalamic activity (P < 0.0001). These results support the hypothesis of a close functional relationship between thalamic activity and alpha rhythm in humans mediated by corticothalamic loops which are independent of sensory afferences. The study paradigm could be a promising approach for the investigation of cortico-thalamo-cortical feedback loops in neuropsychiatric diseases.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, M.P.

    The United States` competitive position in world markets will be determined by many forces. Two of the fundamental factors are the increased use of new technologies, and the availability of low-cost electricity to operate those technologies. The US currently has an will likely continue to have market dominance in both these critical areas. Both of these factors are intimately related since the primary source of new technologies is electric in nature. And, because low-cost coal now dominates and will continue to dominate the electric supply system, and because the US has both an abundance of coal and the world`s largestmore » fleet of coal-fired power plants, the US will have an expanding base of low-cost electricity that will secure its current competitive advantage for years to come. Electric technologies and, increasingly, computer-based technologies integrated with electric technologies are the primary sources of innovative advancement and economic growth. As a consequence, the growth in electricity, which has historically tracked GNP growth, is expected to continue. And, with the restructuring of the electric utility industry and the emergence of vigorous competition, prices are expected to decline as competition increases. The net effect of these forces will be to dramatically increase the use of electric technologies -- and those sources of electricity that can provide low-cost electricity. The data show that coal, the primary source of new los-cost electricity, will supply between one-half and three-fourths of all new electric supply through 2010, at prices of about 3{cents}/kWh, and can do so without new power plant construction. Since the use of coal is expected to rise by at least 200 to 250 million tons/year over the current consumption of 850 million tons, and could increase as much as 400 million tons/yr, some have raised concerns about the emissions impact from the power plants. This report also shows that the net effect of increased electric use, assuming coal dominance, will be a decrease in emissions. This decrease will occur for two reasons: (a) power plants are becoming increasingly clean, and (b) the electric technologies that consume the electricity displace more emissions than are created at the power plants.« less

  13. Control of mercury emissions from stationary coal combustion sources in China: Current status and recommendations.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2016-11-01

    Coal burning in power plants and industrial boilers is the largest combustion source of mercury emissions in China. Together, power plants and industrial boilers emit around 250 tonnes of mercury each year, or around half of atmospheric mercury emissions from anthropogenic sources in the country. Power plants in China are generally equipped with multi-pollutant control technologies, which offer the co-benefit of mercury removal, while mercury-specific control technologies have been installed in some facilities. In contrast, most industrial boilers have only basic or no flue gas cleaning. A combination of measures, including energy conservation, coal switching and blending, reducing the mercury contents of coals through washing, combustion controls, and flue gas cleaning, can be used to reduce mercury emissions from these stationary combustion sources. More stringent emission standards for the major air pollutants from coal-fired power plants and industrial boiler, along with standards for the previously unregulated mercury, were implemented recently, which is expected to bring significant reduction in their mercury emissions through the necessary upgrades of multi-pollutant and mercury-specific control technologies. Meanwhile, strong monitoring capacity and strict enforcement are necessary to ensure that the combustion sources operate in compliance with the new emission standards and achieve significant reduction in the emissions of mercury and other air pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Breezy Power: From Wind to Energy

    ERIC Educational Resources Information Center

    Claymier, Bob

    2009-01-01

    This lesson combines the science concepts of renewable energy and producing electricity with the technology concepts of design, constraints, and technology's impact on the environment. Over five class periods, sixth-grade students "work" for a fictitious power company as they research wind as an alternative energy source and design and test a…

  15. Therapeutic Effects of Rivastigmine and Alfa-Lipoic Acid Combination in the Charles Bonnet Syndrome: Electroencephalography Correlates.

    PubMed

    Hanoglu, Lutfu; Yildiz, Sultan; Polat, Burcu; Demirci, Sema; Tavli, Ahmet Mithat; Yilmaz, Nesrin; Yulug, Burak

    2016-01-01

    Charles Bonnet Syndrome (CBS) is a rare clinical condition which is characterized by complex hallucinations in visually impaired patients. The pathophysiology of this disorder remains largely unknown, and there is still no proven treatment for this disease. In our study, we aimed to investigate the neural activity through Electroencephalography (EEG) power and evaluate the effect of rivastigmine in combination with alpha-lipoic acid on hallucination in two CBS patients with diabetic retinopathy. EEG data was recorded with standard routine EEG protocols for both patients in our electrophysiological research laboratory (REMER Clinical Electrophysiology and Neuromodulation Research and Application Laboratory) with Brain Vision Recorder (Brainproduct, Munich, Germany). All spectral analyses were processed by BrainVision Analyzer 2 (Brainproduct, Munich, Germany, 2.0.4 Version) in 128 Hz sample rates and the EEG recording and analysis was performed before the administration of rivastigmine (4.5 mg/daily and five patch daily for the first and second patients, respectively) in combination with alpha-lipoic acid (600 mg/daily) for both patients while they were not hallucinated during the time period recordings. Based on our measurement protocol, we have compared the patients in the study group with the three control subjects who were found to be normal except of visual disturbances secondary to significant diabetic retinopathy. Highest theta power values were found in right occipital and left temporo-parietal regions for first and second CBS patients, respectively. Additionally, power spectra were lower in two cases as compared to their control groups in the alpha band for all electrodes. We have also shown that acid rivastigmine in combination with alpha-lipoic exerted significant anti-hallucinatory efficiency. Our present findings could support the hypothesis that increased activation of specific areas in the source monitoring system plays an important role in the pathogenesis of CBS. In addition, rivastigmine in combination with alpha-lipoic acid could be a new valuable option for CBS patients.

  16. Alpha power increases in right parietal cortex reflects focused internal attention

    PubMed Central

    Benedek, Mathias; Schickel, Rainer J.; Jauk, Emanuel; Fink, Andreas; Neubauer, Aljoscha C.

    2014-01-01

    This study investigated the functional significance of EEG alpha power increases, a finding that is consistently observed in various memory tasks and specifically during divergent thinking. It was previously shown that alpha power is increased when tasks are performed in mind—e.g., when bottom-up processing is prevented. This study aimed to examine the effect of task-immanent differences in bottom-up processing demands by comparing two divergent thinking tasks, one intrinsically relying on bottom-up processing (sensory-intake task) and one that is not (sensory-independence task). In both tasks, stimuli were masked in half of the trials to establish conditions of higher and lower internal processing demands. In line with the hypotheses, internal processing affected performance and led to increases in alpha power only in the sensory-intake task, whereas the sensory-independence task showed high levels of task-related alpha power in both conditions. Interestingly, conditions involving focused internal attention showed a clear lateralization with higher alpha power in parietal regions of the right hemisphere. Considering evidence from fMRI studies, right-parietal alpha power increases may correspond to a deactivation of the right temporoparietal junction, reflecting an inhibition of the ventral attention network. Inhibition of this region is thought to prevent reorienting to irrelevant stimulation during goal-driven, top-down behavior, which may serve the executive function of task shielding during demanding cognitive tasks such as idea generation and mental imagery. PMID:24561034

  17. Thermal Fluid Analysis of the Combustor Test Setup for a US Army Research Laboratory (ARL) Liquid-Fueled Thermophotovoltaic Power Source Demonstrator

    DTIC Science & Technology

    2015-09-01

    requiring only a few hours of running time. In the 10–100 W+ power range, battery technology is the best solution currently available, but higher...energy dense technologies are needed to augment batteries and extend the available energy density well beyond state of the art battery technology. One way...provide comparable energy density to battery technology with the added advantage of instant recharge. One technology being pursued by the US Army

  18. Policy Challenges of Accelerating Technological Change: Security Policy and Strategy Implications of Parallel Scientific Revolutions

    DTIC Science & Technology

    2014-09-01

    generation, exotic storage technologies, smart power grid management, and better power sources for directed-energy weapons (DEW). Accessible partner nation...near term will help to mitigate risks and improve outcomes. 2 Forecasting typically extrapolates predictions based...eventually, diminished national power . Within this context, this paper examines policy, legal, ethical, and strategy implications for DoD from the impact

  19. Nuclear power technology requirements for NASA exploration missions

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1990-01-01

    It is pointed out that future exploration of the moon and Mars will mandate developments in many areas of technology. In particular, major advances will be required in planet surface power systems. Critical nuclear technology challenges that can enable strategic self-sufficiency, acceptable operational costs, and cost-effective space transportation goals for NASA exploration missions have been identified. Critical technologies for surface power systems include stationary and mobile nuclear reactor and radioisotope heat sources coupled to static and dynamic power conversion devices. These technologies can provide dramatic reductions in mass, leading to operational and transportation cost savings. Critical technologies for space transportation systems include nuclear thermal rocket and nuclear electric propulsion options, which present compelling concepts for significantly reducing mass, cost, or travel time required for Earth-Mars transport.

  20. Alpha-Voltaic Sources Using Liquid Ga as Conversion Medium

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey

    2006-01-01

    A family of proposed miniature sources of power would exploit the direct conversion of the kinetic energy of alpha particles into electricity. In addition to having long operational lives, these sources are expected to operate with energy-conversion efficiencies from 70 to 90 percent. A power source as proposed (see figure) would be an electrolytic cell in which liquid gallium would serve as both an electrolyte and an energy-conversion medium. The cell would contain an iridium cathode and a zirconium anode. The alpha particles, each with a kinetic energy approx.5.8 MeV, would be emitted by radioactive decay of Cm-244, which has a half-life of 18 years. The Cm-244 source would be positioned so that the a particles would enter the liquid gallium, where their kinetic energy would be dissipated mostly through ionization of Ga atoms, creating Ga(+) ions and free electrons. The electrons would be collected by iridium cathode, and the Ga(+) ions would be neutralized at the zirconium cathode by electrons returning after flowing through an external circuit. Gallium is a candidate for use as the electrolyte and the energy-conversion medium because in the liquid state it is a semimetal: its electrical conductivity is greater than that of a typical semiconductor but small in comparison with the conductivities of metals. Consequently, in liquid gallium, electrons and Ga(+) can exist without immediate recombination and can be moved by electric fields. It is expected that electric fields, resulting at least partly from the difference between the work functions of the electrode metals, would move the electrons and ions to their respective electrodes. The open-circuit potential of the cell is expected to be 1.62 V - equal to the difference between the work functions of iridium and zirconium. Unlike in a solid-state energy conversion medium, the impingement of energetic a particles would not give rise to displacement damage in the liquid gallium. Hence, the cell should have a long life, limited only by the half-life of Cm-244. A cell having a volume less than 25 cu mm, containing 1 curie of Cm-244 (the curie is a unit of radioactivity equal to 3.7 10(exp 10) disintegrations per second) is expected to deliver a current between 7 and 12 mA, which, at the expected open-circuit potential, would provide a power in the approximate range of 11 to 20 mW.

  1. Suppression of no-longer relevant information in Working Memory: An alpha-power related mechanism?

    PubMed

    Poch, Claudia; Valdivia, María; Capilla, Almudena; Hinojosa, José Antonio; Campo, Pablo

    2018-03-27

    Selective attention can enhance Working Memory (WM) performance by selecting relevant information, while preventing distracting items from encoding or from further maintenance. Alpha oscillatory modulations are a correlate of visuospatial attention. Specifically, an enhancement of alpha power is observed in the ipsilateral posterior cortex to the locus of attention, along with a suppression in the contralateral hemisphere. An influential model proposes that the alpha enhancement is functionally related to the suppression of information. However, whether ipsilateral alpha power represents a mechanism through which no longer relevant WM representations are inhibited has yet not been explored. Here we examined whether the amount of distractors to be suppressed during WM maintenance is functionally related to alpha power lateralized activity. We measure EEG activity while participants (N = 36) performed a retro-cue task in which the WM load was varied across the relevant/irrelevant post-cue hemifield. We found that alpha activity was lateralized respect to the locus of attention, but did not track post-cue irrelevant load. Additionally, non-lateralized alpha activity increased with post-cue relevant load. We propose that alpha lateralization associated to retro-cuing might be related to a general orienting mechanism toward relevant representation. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. High power pulsed sources based on fiber amplifiers

    NASA Astrophysics Data System (ADS)

    Canat, Guillaume; Jaouën, Yves; Mollier, Jean-Claude; Bouzinac, Jean-Pierre; Cariou, Jean-Pierre

    2017-11-01

    Cladding-pumped rare-earth-doped fiber laser technologies are currently among the best sources for high power applications. Theses extremely compact and robust sources appoint them as good candidate for aeronautical and space applications. The double-clad (DC) fiber converts the poor beamquality of high-power large-area pump diodes from the 1st cladding to laser light at another wavelength guided in an active single-mode core. High-power coherent MOPA (Master Oscillator Power Amplifier) sources (several 10W CW or several 100W in pulsed regime) will soon be achieved. Unfortunately it also brings nonlinear effects which quickly impairs output signal distortions. Stimulated Brillouin scattering (SBS) and optical parametric amplification (OPA) have been shown to be strong limitations. Based on amplifier modeling and experiments we discuss the performances of these sources.

  3. Single-trial log transformation is optimal in frequency analysis of resting EEG alpha.

    PubMed

    Smulders, Fren T Y; Ten Oever, Sanne; Donkers, Franc C L; Quaedflieg, Conny W E M; van de Ven, Vincent

    2018-02-01

    The appropriate definition and scaling of the magnitude of electroencephalogram (EEG) oscillations is an underdeveloped area. The aim of this study was to optimize the analysis of resting EEG alpha magnitude, focusing on alpha peak frequency and nonlinear transformation of alpha power. A family of nonlinear transforms, Box-Cox transforms, were applied to find the transform that (a) maximized a non-disputed effect: the increase in alpha magnitude when the eyes are closed (Berger effect), and (b) made the distribution of alpha magnitude closest to normal across epochs within each participant, or across participants. The transformations were performed either at the single epoch level or at the epoch-average level. Alpha peak frequency showed large individual differences, yet good correspondence between various ways to estimate it in 2 min of eyes-closed and 2 min of eyes-open resting EEG data. Both alpha magnitude and the Berger effect were larger for individual alpha than for a generic (8-12 Hz) alpha band. The log-transform on single epochs (a) maximized the t-value of the contrast between the eyes-open and eyes-closed conditions when tested within each participant, and (b) rendered near-normally distributed alpha power across epochs and participants, thereby making further transformation of epoch averages superfluous. The results suggest that the log-normal distribution is a fundamental property of variations in alpha power across time in the order of seconds. Moreover, effects on alpha power appear to be multiplicative rather than additive. These findings support the use of the log-transform on single epochs to achieve appropriate scaling of alpha magnitude. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. InGaP alpha voltaic batteries: Synthesis, modeling, and radiation tolerance

    NASA Astrophysics Data System (ADS)

    Cress, Cory D.; Landi, Brian J.; Raffaelle, Ryne P.; Wilt, David M.

    2006-12-01

    The viability of InGaP diodes coupled with α-particle sources as radioisotope power supplies is investigated both theoretically and experimentally. The electrical power output of epitaxially grown InGaP p-type/n-type (p/n) junction diodes coupled with Am241 and Po210 α-particle sources was measured. A theoretical model was developed that determines the α-particle energy deposition profile within an InGaP diode when irradiated by an omnidirectional α-particle source. The results of the model illustrate the dramatic influence the radiation source/diode configuration has on the α-particle energy deposition profile within a device. Progress has been shown towards increasing the radiation tolerance of the InGaP devices, which included utilizing an intrinsic region and reducing the junction thickness. Introduction of the intrinsic region within a conventional n /p diode to form a n-type/intrinsic/p-type diode enabled the device to withstand a ten times greater fluence of 4.2MeV α particles before decreasing to 50% of its original power output under simulated air mass zero illumination, when compared to an abrupt junction device with the same active region thickness.

  5. Status of the NASA Space Power Program

    NASA Technical Reports Server (NTRS)

    Mullin, J. P.; Holcomb, L.

    1977-01-01

    The NASA Space Power Research and Technology Program has the objective to provide the technological basis for satisfying the nation's future needs regarding electrical power in space. The development of power sources of low mass and increased environmental resistance is considered. Attention is given to advances in the area of photovoltaic energy conversion, improved Ni-Cd battery components, a nickel-hydrogen battery, remotely activated silver-zinc and lithium-water batteries, the technology of an advanced water electrolysis/regenerative fuel cell system, aspects of thermal-to-electric conversion, environmental interactions, multi-kW low cost systems, and high-performance systems.

  6. Amorphous silicon thin films: The ultimate lightweight space solar cell

    NASA Technical Reports Server (NTRS)

    Vendura, G. J., Jr.; Kruer, M. A.; Schurig, H. H.; Bianchi, M. A.; Roth, J. A.

    1994-01-01

    Progress is reported with respect to the development of thin film amorphous (alpha-Si) terrestrial solar cells for space applications. Such devices promise to result in very lightweight, low cost, flexible arrays with superior end of life (EOL) performance. Each alpha-Si cell consists of a tandem arrangement of three very thin p-i-n junctions vapor deposited between film electrodes. The thickness of this entire stack is approximately 2.0 microns, resulting in a device of negligible weight, but one that must be mechanically supported for handling and fabrication into arrays. The stack is therefore presently deposited onto a large area (12 by 13 in), rigid, glass superstrate, 40 mil thick, and preliminary space qualification testing of modules so configured is underway. At the same time, a more advanced version is under development in which the thin film stack is transferred from the glass onto a thin (2.0 mil) polymer substrate to create large arrays that are truly flexible and significantly lighter than either the glassed alpha-Si version or present conventional crystalline technologies. In this paper the key processes for such effective transfer are described. In addition, both glassed (rigid) and unglassed (flexible) alpha-Si cells are studied when integrated with various advanced structures to form lightweight systems. EOL predictions are generated for the case of a 1000 W array in a standard, 10 year geosynchronous (GEO) orbit. Specific powers (W/kg), power densities (W/sq m) and total array costs ($/sq ft) are compared.

  7. Organic Materials Ionizing Radiation Susceptibility for the Outer Planet/Solar Probe Radioisotope Power Source

    NASA Technical Reports Server (NTRS)

    Golliher, Eric L.; Pepper, Stephen V.

    2001-01-01

    The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.

  8. Energy scavenging sources for biomedical sensors.

    PubMed

    Romero, E; Warrington, R O; Neuman, M R

    2009-09-01

    Energy scavenging has increasingly become an interesting option for powering electronic devices because of the almost infinite lifetime and the non-dependence on fuels for energy generation. Moreover, the rise of wireless technologies promises new applications in medical monitoring systems, but these still face limitations due to battery lifetime and size. A trade-off of these two factors has typically governed the size, useful life and capabilities of an autonomous system. Energy generation from sources such as motion, light and temperature gradients has been established as commercially viable alternatives to batteries for human-powered flashlights, solar calculators, radio receivers and thermal-powered wristwatches, among others. Research on energy harvesting from human activities has also addressed the feasibility of powering wearable or implantable systems. Biomedical sensors can take advantage of human-based activities as the energy source for energy scavengers. This review describes the state of the art of energy scavenging technologies for powering sensors and instrumentation of physiological variables. After a short description of the human power and the energy generation limits, the different transduction mechanisms, recent developments and challenges faced are reviewed and discussed.

  9. Independent component analysis of EEG dipole source localization in resting and action state of brain

    NASA Astrophysics Data System (ADS)

    Almurshedi, Ahmed; Ismail, Abd Khamim

    2015-04-01

    EEG source localization was studied in order to determine the location of the brain sources that are responsible for the measured potentials at the scalp electrodes using EEGLAB with Independent Component Analysis (ICA) algorithm. Neuron source locations are responsible in generating current dipoles in different states of brain through the measured potentials. The current dipole sources localization are measured by fitting an equivalent current dipole model using a non-linear optimization technique with the implementation of standardized boundary element head model. To fit dipole models to ICA components in an EEGLAB dataset, ICA decomposition is performed and appropriate components to be fitted are selected. The topographical scalp distributions of delta, theta, alpha, and beta power spectrum and cross coherence of EEG signals are observed. In close eyes condition it shows that during resting and action states of brain, alpha band was activated from occipital (O1, O2) and partial (P3, P4) area. Therefore, parieto-occipital area of brain are active in both resting and action state of brain. However cross coherence tells that there is more coherence between right and left hemisphere in action state of brain than that in the resting state. The preliminary result indicates that these potentials arise from the same generators in the brain.

  10. Brain dynamics that correlate with effects of learning on auditory distance perception.

    PubMed

    Wisniewski, Matthew G; Mercado, Eduardo; Church, Barbara A; Gramann, Klaus; Makeig, Scott

    2014-01-01

    Accuracy in auditory distance perception can improve with practice and varies for sounds differing in familiarity. Here, listeners were trained to judge the distances of English, Bengali, and backwards speech sources pre-recorded at near (2-m) and far (30-m) distances. Listeners' accuracy was tested before and after training. Improvements from pre-test to post-test were greater for forward speech, demonstrating a learning advantage for forward speech sounds. Independent component (IC) processes identified in electroencephalographic (EEG) data collected during pre- and post-testing revealed three clusters of ICs across subjects with stimulus-locked spectral perturbations related to learning and accuracy. One cluster exhibited a transient stimulus-locked increase in 4-8 Hz power (theta event-related synchronization; ERS) that was smaller after training and largest for backwards speech. For a left temporal cluster, 8-12 Hz decreases in power (alpha event-related desynchronization; ERD) were greatest for English speech and less prominent after training. In contrast, a cluster of IC processes centered at or near anterior portions of the medial frontal cortex showed learning-related enhancement of sustained increases in 10-16 Hz power (upper-alpha/low-beta ERS). The degree of this enhancement was positively correlated with the degree of behavioral improvements. Results suggest that neural dynamics in non-auditory cortical areas support distance judgments. Further, frontal cortical networks associated with attentional and/or working memory processes appear to play a role in perceptual learning for source distance.

  11. Power System Analysis

    NASA Astrophysics Data System (ADS)

    Taniguchi, Haruhito

    Electric power generation that relies on various sources as the primary sources of energy is expected to bring down CO2 emissions levels to support the overall strategy to curb global warming. Accordingly, utilities are moving towards integrating more renewable sources for generation, mostly dispersed, and adopting Smart Grid Technologies for system control. In order to construct, operate, and maintain power systems stably and economically in such background, thorough understanding about the characteristics of power systems and their components is essential. This paper presents modeling and simulation techniques available for the analysis of critical aspects such as thermal capacity, stability, voltage stability, and frequency dynamics, vital for the stable operation of power systems.

  12. U.S. Army PEM fuel cell programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, A.S.; Jacobs, R.

    The United States Army has identified the need for lightweight power sources to provide the individual soldier with continuous power for extended periods without resupply. Due to the high cost of primary batteries and the high weight of rechargeable batteries, fuel cell technology is being developed to provide a power source for the individual soldier, sensors, communications equipment and other various applications in the Army. Current programs are in the tech base area and will demonstrate Proton Exchange Membrane (PEM) Fuel Cell Power Sources with low weight and high energy densities. Fuel Cell Power Sources underwent user evaluations in 1996more » that showed a power source weight reduction of 75%. The quiet operation along with the ability to refuel much like an engine was well accepted by the user and numerous applications were investigated. These programs are now aimed at further weight reduction for applications that are weight critical; system integration that will demonstrate a viable military power source; refining the user requirements; and planning for a transition to engineering development.« less

  13. Development and Demonstration of a 25 Watt Thermophotovoltaic Power Source for a Hybrid Power System

    NASA Technical Reports Server (NTRS)

    Doyle, Edward; Shukla, Kailash; Metcalfe, Christopher

    2001-01-01

    The development of a propane-fueled, 25 W thermophotovoltaic (TPV) power source for use in a hybrid power system is described. The TPV power source uses a platinum emitting surface with an anti-reflective coating to radiate to gallium antimonide photocells, which converts the radiation to electric power. The development program started with the design and fabrication of an engineering prototype system. This was used as a component development vehicle to develop the technologies for the various components. A 25 W demonstration prototype was then designed and fabricated using the most advanced component approaches. The designs and test results from this development program are discussed.

  14. Stirling Power Convertors Demonstrated in Extended Operation

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2005-01-01

    A 110-W Stirling Radioisotope Generator (SRG110) is being developed by Lockheed Martin Astronautics of Valley Forge, Pennsylvania, under contract to the Department of Energy of Germantown, Maryland. The generator will be a high-efficiency electric power source for NASA space exploration missions that can operate in the vacuum of deep space or in a gaseous atmosphere, such as on the surface of Mars. The generator converts heat supplied by the decay of a plutonium heat source into electric power for the spacecraft. In support of the SRG110 project, the NASA Glenn Research Center has established a technology effort that will provide some of the key data to ensure a successful transition to flight for what will be the first dynamic power system to be used in space. High system efficiency is obtained through the use of free-piston Stirling power-conversion technology. Glenn tasks include in-house testing of Stirling convertors and controllers, materials evaluation and heater head life assessment, structural dynamics, evaluation of electromagnetic interference, assessment of organics, and reliability analysis. There is also an advanced technology effort that is complementary to the near-term technology effort, intended to reduce the mass of the Stirling convertor and increase efficiency.

  15. Alpha Power Modulates Perception Independently of Endogenous Factors.

    PubMed

    Brüers, Sasskia; VanRullen, Rufin

    2018-01-01

    Oscillations are ubiquitous in the brain. Alpha oscillations in particular have been proposed to play an important role in sensory perception. Past studies have shown that the power of ongoing EEG oscillations in the alpha band is negatively correlated with visual outcome. Moreover, it also co-varies with other endogenous factors such as attention, vigilance, or alertness. In turn, these endogenous factors influence visual perception. Therefore, it remains unclear how much of the relation between alpha and perception is indirectly mediated by such endogenous factors, and how much reflects a direct causal influence of alpha rhythms on sensory neural processing. We propose to disentangle the direct from the indirect causal routes by introducing modulations of alpha power, independently of any fluctuations in endogenous factors. To this end, we use white-noise sequences to constrain the brain activity of 20 participants. The cross-correlation between the white-noise sequences and the concurrently recorded EEG reveals the impulse response function (IRF), a model of the systematic relationship between stimulation and brain response. These IRFs are then used to reconstruct rather than record the brain activity linked with new random sequences (by convolution). Interestingly, this reconstructed EEG only contains information about oscillations directly linked to the white-noise stimulation; fluctuations in attention and other endogenous factors may still modulate brain alpha rhythms during the task, but our reconstructed EEG is immune to these factors. We found that the detection of near-perceptual threshold targets embedded within these new white-noise sequences depended on the power of the ~10 Hz reconstructed EEG over parieto-occipital channels. Around the time of presentation, higher power led to poorer performance. Thus, fluctuations in alpha power, induced here by random luminance sequences, can directly influence perception: the relation between alpha power and perception is not a mere consequence of fluctuations in endogenous factors.

  16. Powering embedded electronics for wind turbine monitoring using multi-source energy harvesting techniques

    NASA Astrophysics Data System (ADS)

    Anton, S. R.; Taylor, S. G.; Raby, E. Y.; Farinholt, K. M.

    2013-03-01

    With a global interest in the development of clean, renewable energy, wind energy has seen steady growth over the past several years. Advances in wind turbine technology bring larger, more complex turbines and wind farms. An important issue in the development of these complex systems is the ability to monitor the state of each turbine in an effort to improve the efficiency and power generation. Wireless sensor nodes can be used to interrogate the current state and health of wind turbine structures; however, a drawback of most current wireless sensor technology is their reliance on batteries for power. Energy harvesting solutions present the ability to create autonomous power sources for small, low-power electronics through the scavenging of ambient energy; however, most conventional energy harvesting systems employ a single mode of energy conversion, and thus are highly susceptible to variations in the ambient energy. In this work, a multi-source energy harvesting system is developed to power embedded electronics for wind turbine applications in which energy can be scavenged simultaneously from several ambient energy sources. Field testing is performed on a full-size, residential scale wind turbine where both vibration and solar energy harvesting systems are utilized to power wireless sensing systems. Two wireless sensors are investigated, including the wireless impedance device (WID) sensor node, developed at Los Alamos National Laboratory (LANL), and an ultra-low power RF system-on-chip board that is the basis for an embedded wireless accelerometer node currently under development at LANL. Results indicate the ability of the multi-source harvester to successfully power both sensors.

  17. Neuroelectrical imaging study of music perception by children with unilateral and bilateral cochlear implants.

    PubMed

    Marsella, Pasquale; Scorpecci, Alessandro; Vecchiato, Giovanni; Colosimo, Alfredo; Maglione, Anton Giulio; Babiloni, Fabio

    2014-05-01

    To investigate by means of non-invasive neuroelectrical imaging the differences in the perceived pleasantness of music between children with cochlear implants (CI) and normal-hearing (NH) children. 5 NH children and 5 children who received a sequential bilateral CI were assessed by means of High-Resolution EEG with Source Reconstruction as they watched a musical cartoon. Implanted children were tested before and after the second implant. For each subject the scalp Power Spectral Density was calculated in order to investigate the EEG alpha asymmetry. The scalp topographic distribution of the EEG power spectrum in the alpha band was different in children using one CI as compared to NH children (see figure). With two CIs the cortical activation pattern changed significantly, becoming more similar to the one observed in NH children. The findings support the hypothesis that bilateral CI users have a closer-to-normal perception of the pleasantness of music than unilaterally implanted children.

  18. Geothermal Technologies | NREL

    Science.gov Websites

    clean, renewable, domestic power source for the United States. Photo of a geothermal power plant in a technical barriers. GeoVision Study Photo of large gears on a drilling apparatus Technology Innovation We're of a woman in a hard hat with a large, drilling apparatus behind her in a grassy field Partnerships

  19. Gender differences in association between serotonin transporter gene polymorphism and resting-state EEG activity.

    PubMed

    Volf, N V; Belousova, L V; Knyazev, G G; Kulikov, A V

    2015-01-22

    Human brain oscillations represent important features of information processing and are highly heritable. Gender has been observed to affect association between the 5-HTTLPR (serotonin-transporter-linked polymorphic region) polymorphism and various endophenotypes. This study aimed to investigate the effects of 5-HTTLPR on the spontaneous electroencephalography (EEG) activity in healthy male and female subjects. DNA samples extracted from buccal swabs and resting EEG recorded at 60 standard leads were collected from 210 (101 men and 109 women) volunteers. Spectral EEG power estimates and cortical sources of EEG activity were investigated. It was shown that effects of 5-HTTLPR polymorphism on electrical activity of the brain vary as a function of gender. Women with the S/L genotype had greater global EEG power compared to men with the same genotype. In men, current source density was markedly different among genotype groups in only alpha 2 and alpha 3 frequency ranges: S/S allele carriers had higher current source density estimates in the left inferior parietal lobule in comparison with the L/L group. In women, genotype difference in global power asymmetry was found in the central-temporal region. Contrasting L/L and S/L genotype carriers also yielded significant effects in the right hemisphere inferior parietal lobule and the right postcentral gyrus with L/L genotype carriers showing lower current source density estimates than S/L genotype carriers in all but gamma bands. So, in women, the effects of 5-HTTLPR polymorphism were associated with modulation of the EEG activity in a wide range of EEG frequencies. The significance of the results lies in the demonstration of gene by sex interaction with resting EEG that has implications for understanding sex-related differences in affective states, emotion and cognition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. X-ray emission associated with radio galaxies in the Perseus cluster

    NASA Technical Reports Server (NTRS)

    Rhee, George; Burns, Jack O.; Kowalski, Michael P.

    1994-01-01

    In this paper, we report on new x-ray observations of the Perseus cluster made using four separate pointings of the Roentgen Satellite (ROSAT) Positron Sensitive Proportional Counter (PSPC). We searched for x-ray emission associated with 16 radio galaxies and detected six above 3 sigma. We made use of the PSPC spectra to determine if the x-ray emission associated with radio galaxies in Perseus is thermal or nonthermal in origin (i.e., hot gas or an active galactic nuclei (AGN)). For the head-tail radio galaxy IC 310, we find that the data are best fit by a power law model with an unusually large spectral index alpha = 2.7. This is consistent with its unresolved spatial structure. On the other hand, a second resolved x-ray source associated with another radio galaxy 2.3 Mpc from the Perseus center (V Zw 331) is best fit by a thermal model. For three sources with insufficient flux for a full spectral analysis, we calculated hardness ratios. On this basis, the x-ray emission associated with the well known head-tail source NGC 1265 is consistent with thermal radiation. The x-ray spectra of UGC 2608 and UGC 2654 probably arise from hot gas, although very steep power-law spectra (alpha greater than 3.2) are also possible. The spectrum of NGC 1275 is quite complex due to the presence of an AGN and the galaxy's location at the center of a cluster cooling flow.

  1. EEG alpha power as an intermediate measure between brain-derived neurotrophic factor Val66Met and depression severity in patients with major depressive disorder.

    PubMed

    Zoon, Harriët F A; Veth, C P M; Arns, Martijn; Drinkenburg, W H I M; Talloen, Willem; Peeters, Pieter J; Kenemans, J L

    2013-06-01

    Major depressive disorder has a large impact on patients and society and is projected to be the second greatest global burden of disease by 2020. The brain-derived neurotrophic factor (BDNF) gene is considered to be one of the important factors in the etiology of major depressive disorder. In a recent study, alpha power was found to mediate between BDNF Met and subclinical depressed mood. The current study looked at a population of patients with major depressive disorder (N = 107) to examine the association between the BDNF Val66Met polymorphism, resting state EEG alpha power, and depression severity. For this purpose, repeated-measures analysis of variance, partial correlation, and multiple linear models were used. Results indicated a negative association between parietal-occipital alpha power in the eyes open resting state and depression severity. In addition, Met/Met patients showed lower global absolute alpha power in the eyes closed condition compared with Val-carriers. These findings are in accordance with the previously uncovered pathway between BDNF Val66Met, resting state EEG alpha power, and depression severity. Additional research is needed for the clarification of this tentative pathway and its implication in personalized treatment of major depressive disorder.

  2. A Bayesian sequential design using alpha spending function to control type I error.

    PubMed

    Zhu, Han; Yu, Qingzhao

    2017-10-01

    We propose in this article a Bayesian sequential design using alpha spending functions to control the overall type I error in phase III clinical trials. We provide algorithms to calculate critical values, power, and sample sizes for the proposed design. Sensitivity analysis is implemented to check the effects from different prior distributions, and conservative priors are recommended. We compare the power and actual sample sizes of the proposed Bayesian sequential design with different alpha spending functions through simulations. We also compare the power of the proposed method with frequentist sequential design using the same alpha spending function. Simulations show that, at the same sample size, the proposed method provides larger power than the corresponding frequentist sequential design. It also has larger power than traditional Bayesian sequential design which sets equal critical values for all interim analyses. When compared with other alpha spending functions, O'Brien-Fleming alpha spending function has the largest power and is the most conservative in terms that at the same sample size, the null hypothesis is the least likely to be rejected at early stage of clinical trials. And finally, we show that adding a step of stop for futility in the Bayesian sequential design can reduce the overall type I error and reduce the actual sample sizes.

  3. Dynamic radioactive particle source

    DOEpatents

    Moore, Murray E; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  4. New insights into insight: Neurophysiological correlates of the difference between the intrinsic "aha" and the extrinsic "oh yes" moment.

    PubMed

    Rothmaler, Katrin; Nigbur, Roland; Ivanova, Galina

    2017-01-27

    Insight refers to a situation in which a problem solver immediately changes his understanding of a problem situation. This representational change can either be triggered by external stimuli, like a hint or the solution itself, or by internal solution attempts. In the present paper, the differences and similarities between these two phenomena, namely "extrinsic" and "intrinsic" insight, are examined. To this end, electroencephalogram (EEG) is recorded while subjects either recognize or generate solutions to German verbal compound remote associate problems (CRA). Based on previous studies, we compare the alpha power prior to insightful solution recognition with the alpha power prior to insightful solution generation. Results show that intrinsic insights are preceded by an increase in alpha power at right parietal electrodes, while extrinsic insights are preceded by a respective decrease. These results can be interpreted in two ways. In consistency with other studies, the increase in alpha power before intrinsic insights can be interpreted as an increased internal focus of attention. Accordingly, the decrease in alpha power before extrinsic insights may be associated with a more externally oriented focus of attention. Alternatively, the increase in alpha power prior to intrinsic insights can be interpreted as an active inhibition of solution-related information, while the alpha power decrease prior to extrinsic insights may reflect its activation. Regardless of the interpretation, the results provide strong evidence that extrinsic and intrinsic insight differ on the behavioral as well as the neurophysiological level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Measurements on low level plutonium sources using Rad Elec Electret Ion Chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levinskas, D.; Teagarden, J.; Wilkes, E.

    1998-11-01

    This is a technique for measuring gross alpha particle emission from interior contaminated surfaces. The technique utilizes electret ionization chambers (EICs), which consist of a charged Teflon plate (the electret) and an electrically-conductive plastic chamber of 145 ml volume. To measure very low levels of alpha contamination, the EIC is left in place on the surface to be measured for about 48 hours. The change in the surface charge of the electret is a measure of the ionization during the measurement period. The rate of change of the charge is converted into an activity using an appropriate calibration factor. Thismore » system has the ability to make accurate gross alpha contamination measurements while being subject to a high airborne radon concentration, such as might occur in certain buildings or during an atmospheric inversion. Previous studies of the effectiveness of these EIC`s focused on levels of alpha contamination much higher than is allowed for unrestricted release of material at the Rocky Flats Environmental Technology Site (RFETS). This study evaluated the performance of EIC`s at levels from 100 disintegrations per minute (dpm) per 100 cm{sup 2} to below 20 dpm per 100 cm{sup 2} (all measurements are referenced to a 4{pi} geometry). The EIC`s were found to be within 5% accuracy, as compared to a gas flow proportional counter calibrated with a NIST-traceable source. Test results indicate that the EIC, left in place for 48 hours, can detect alpha contamination as low as 6.4 {+-} 3.0 dpm/100 cm{sup 2} to a 95% confidence level.« less

  6. Power source evaluation capabilities at Sandia National Laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doughty, D.H.; Butler, P.C.

    1996-04-01

    Sandia National Laboratories maintains one of the most comprehensive power source characterization facilities in the U.S. National Laboratory system. This paper describes the capabilities for evaluation of fuel cell technologies. The facility has a rechargeable battery test laboratory and a test area for performing nondestructive and functional computer-controlled testing of cells and batteries.

  7. Recent Accomplishments in Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Fikes, John C.; Henley, Mark W.; Mankins, John C.; Howell, Joe T.; Fork, Richard L.; Cole, Spencer T.; Skinner, Mark

    2003-01-01

    Wireless power transmission can be accomplished over long distances using laser power sources and photovoltaic receivers. Recent research at AMOS has improved our understanding of the use of this technology for practical applications. Research by NASA, Boeing, the University of Alabama-Huntsville, the University of Colorado, Harvey Mudd College, and the Naval Postgraduate School has tested various commercial lasers and photovoltaic receiver configurations. Lasers used in testing have included gaseous argon and krypton, solid-state diodes, and fiber optic sources, at wavelengths ranging from the visible to the near infra-red. A variety of Silicon and Gallium Arsenide photovoltaic have been tested with these sources. Safe operating procedures have been established, and initial tests have been conducted in the open air at AMOS facilities. This research is progressing toward longer distance ground demonstrations of the technology and practical near-term space demonstrations.

  8. An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.

    2005-01-01

    NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02-OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), August 13, 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.

  9. Ultrafast disk technology enables next generation micromachining laser sources

    NASA Astrophysics Data System (ADS)

    Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk

    2013-02-01

    Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues operation at 15W is an excellent choice. Currently this is the world's most powerful industrial sub-10 ps UV laser.

  10. EEG-based cognitive load of processing events in 3D virtual worlds is lower than processing events in 2D displays.

    PubMed

    Dan, Alex; Reiner, Miriam

    2017-12-01

    Interacting with 2D displays, such as computer screens, smartphones, and TV, is currently a part of our daily routine; however, our visual system is built for processing 3D worlds. We examined the cognitive load associated with a simple and a complex task of learning paper-folding (origami) by observing 2D or stereoscopic 3D displays. While connected to an electroencephalogram (EEG) system, participants watched a 2D video of an instructor demonstrating the paper-folding tasks, followed by a stereoscopic 3D projection of the same instructor (a digital avatar) illustrating identical tasks. We recorded the power of alpha and theta oscillations and calculated the cognitive load index (CLI) as the ratio of the average power of frontal theta (Fz.) and parietal alpha (Pz). The results showed a significantly higher cognitive load index associated with processing the 2D projection as compared to the 3D projection; additionally, changes in the average theta Fz power were larger for the 2D conditions as compared to the 3D conditions, while alpha average Pz power values were similar for 2D and 3D conditions for the less complex task and higher in the 3D state for the more complex task. The cognitive load index was lower for the easier task and higher for the more complex task in 2D and 3D. In addition, participants with lower spatial abilities benefited more from the 3D compared to the 2D display. These findings have implications for understanding cognitive processing associated with 2D and 3D worlds and for employing stereoscopic 3D technology over 2D displays in designing emerging virtual and augmented reality applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Deficient attention modulation of lateralized alpha power in schizophrenia.

    PubMed

    Kustermann, Thomas; Rockstroh, Brigitte; Kienle, Johanna; Miller, Gregory A; Popov, Tzvetan

    2016-06-01

    Modulation of 8-14 Hz (alpha) activity in posterior brain regions is associated with covert attention deployment in visuospatial tasks. Alpha power decrease contralateral to to-be-attended stimuli is believed to foster subsequent processing, such as retention of task-relevant input. Degradation of this alpha-regulation mechanism may reflect an early stage of disturbed attention regulation contributing to impaired attention and working memory commonly found in schizophrenia. The present study tested this hypothesis of early disturbed attention regulation by examining alpha power modulation in a lateralized cued delayed response task in 14 schizophrenia patients (SZ) and 25 healthy controls (HC). Participants were instructed to remember the location of a 100-ms saccade-target cue in the left or right visual hemifield in order to perform a delayed saccade to that location after a retention interval. As expected, alpha power decrease during the retention interval was larger in contralateral than ipsilateral posterior regions, and SZ showed less of this lateralization than did HC. In particular, SZ failed to show hemifield-specific alpha modulation in posterior right hemisphere. Results suggest less efficient modulation of alpha oscillations that are considered critical for attention deployment and item encoding and, hence, may affect subsequent spatial working memory performance. © 2016 Society for Psychophysiological Research.

  12. Energy harvesting concepts for small electric unmanned systems

    NASA Astrophysics Data System (ADS)

    Qidwai, Muhammad A.; Thomas, James P.; Kellogg, James C.; Baucom, Jared N.

    2004-07-01

    In this study, we identify and survey energy harvesting technologies for small electrically powered unmanned systems designed for long-term (>1 day) time-on-station missions. An environmental energy harvesting scheme will provide long-term, energy additions to the on-board energy source. We have identified four technologies that cover a broad array of available energy sources: solar, kinetic (wind) flow, autophagous structure-power (both combustible and metal air-battery systems) and electromagnetic (EM) energy scavenging. We present existing conceptual designs, critical system components, performance, constraints and state-of-readiness for each technology. We have concluded that the solar and autophagous technologies are relatively matured for small-scale applications and are capable of moderate power output levels (>1 W). We have identified key components and possible multifunctionalities in each technology. The kinetic flow and EM energy scavenging technologies will require more in-depth study before they can be considered for implementation. We have also realized that all of the harvesting systems require design and integration of various electrical, mechanical and chemical components, which will require modeling and optimization using hybrid mechatronics-circuit simulation tools. This study provides a starting point for detailed investigation into the proposed technologies for unmanned system applications under current development.

  13. Overview on the high power excimer laser technology

    NASA Astrophysics Data System (ADS)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  14. 78 FR 29292 - Partial Approval and Partial Disapproval of Air Quality State Implementation Plans; Arizona...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-20

    ... Technology (BART) controls for four sources. These sources are Freeport-McMoRan Incorporated (FMMI) Miami... Electric Power Cooperative (AEPCO) Apache Generating Station. However, we are proposing to disapprove other...) The initials BART mean or refer to Best Available Retrofit Technology. (5) The term Class I area...

  15. Solar Energy Directory: A Directory of Domestic and International Firms Involved in Solar Energy.

    ERIC Educational Resources Information Center

    Centerline Co., Phoenix, AZ.

    This directory is intended to provide a link between suppliers of solar energy technology and information and potential users of these products. Included are over 1400 national and international entries. These listings include architects, associations, education sources, wind power technology and information sources, solar research organizations,…

  16. Continued X-ray Monitoring of Magnetar Candidate SWIFT J1822.3-1606

    NASA Astrophysics Data System (ADS)

    Scholz, P.; Livingstone, M. A.; Kaspi, V. M.

    2011-08-01

    We report on Swift/XRT and RXTE/PCA observations of the new 8.4-s Galactic magnetar candidate SWIFT J1822.3-1606, also referred to as SGR J1822.3-1606 (ATELs #3488, #3489, #3490, #3493, #3495, #3496, #3501, #3503, #3543). The persistent X-ray flux from the source continues to fade in ongoing XRT monitoring observations. For data in the MJD range 55757 to 55781, the best-fit power-law index, alpha, for the decay of the absorbed 1-10 keV flux is -0.47 ± 0.02, assuming a decay of functional form F(t) = F0 + F0*(t-T)^alpha, where T is the epoch of the Swift/BAT trigger (ATEL #3488).

  17. Age-related changes in neocortical high-voltage spindles and alpha EEG power during quiet waking in rats.

    PubMed

    Moyanova, Slavianka G; Kirov, Roumen K; Kortenska, Lidia V

    2002-04-01

    Age-related changes in neocortical high-voltage spindle (HVS) and in electroencephalographic (EEG) alpha power were examined in young (3.0 to 4.6 months), middle-aged (10.2 to 13.8 months), and old (21.5 to 24.0 months) male Wistar rats during quiet waking. Whereas the duration of quiet waking stage did not change as a function of age, a significant increase in HVS amount and EEG alpha peak power was observed in the middle-aged rats with only a tendency for a further enhancement in the old animals. An additional analysis showed that the elevation of alpha power is associated with age rather than with HVS activity.

  18. Multiple shell fusion targets

    DOEpatents

    Lindl, J.D.; Bangerter, R.O.

    1975-10-31

    Multiple shell fusion targets for use with electron beam and ion beam implosion systems are described. The multiple shell targets are of the low-power type and use a separate relatively low Z, low density ablator at large radius for the outer shell, which reduces the focusing and power requirements of the implosion system while maintaining reasonable aspect ratios. The targets use a high Z, high density pusher shell placed at a much smaller radius in order to obtain an aspect ratio small enough to protect against fluid instability. Velocity multiplication between these shells further lowers the power requirements. Careful tuning of the power profile and intershell density results in a low entropy implosion which allows breakeven at low powers. For example, with ion beams as a power source, breakeven at 10-20 Terrawatts with 10 MeV alpha particles for imploding a multiple shell target can be accomplished.

  19. OCCIPITAL SOURCES OF RESTING STATE ALPHA RHYTHMS ARE RELATED TO LOCAL GRAY MATTER DENSITY IN SUBJECTS WITH AMNESIC MILD COGNITIVE IMPAIRMENT AND ALZHEIMER’S DISEASE

    PubMed Central

    Claudio, Babiloni; Claudio, Del Percio; Marina, Boccardi; Roberta, Lizio; Susanna, Lopez; Filippo, Carducci; Nicola, Marzano; Andrea, Soricelli; Raffaele, Ferri; Ivano, Triggiani Antonio; Annapaola, Prestia; Serenella, Salinari; Rasser Paul, E; Erol, Basar; Francesco, Famà; Flavio, Nobili; Görsev, Yener; Durusu, Emek-Savaş Derya; Gesualdo, Loreto; Ciro, Mundi; Thompson Paul, M; Rossini Paolo, M.; Frisoni Giovanni, B

    2014-01-01

    Occipital sources of resting state electroencephalographic (EEG) alpha rhythms are abnormal, at the group level, in patients with amnesic mild cognitive impairment (MCI) and Alzheimer’s disease (AD). Here we evaluated the hypothesis that amplitude of these occipital sources is related to neurodegeneration in occipital lobe as measured by magnetic resonance imaging (MRI). Resting-state eyes-closed EEG rhythms were recorded in 45 healthy elderly (Nold), 100 MCI, and 90 AD subjects. Neurodegeneration of occipital lobe was indexed by weighted averages of gray matter density (GMD), estimated from structural MRIs. EEG rhythms of interest were alpha 1 (8–10.5 Hz) and alpha 2 (10.5–13 Hz). EEG cortical sources were estimated by low resolution brain electromagnetic tomography (LORETA). Results showed a positive correlation between occipital GMD and amplitude of occipital alpha 1 sources in Nold, MCI and AD subjects as a whole group (r=0.3, p=0.000004, N=235). Furthermore, there was a positive correlation between amplitude of occipital alpha 1 sources and cognitive status as revealed by Mini Mental State Evaluation (MMSE) score across all subjects (r=0.38, p=0.000001, N=235). Finally, amplitude of occipital alpha 1 sources allowed a moderate classification of individual Nold and AD subjects (sensitivity: 87.8%; specificity: 66.7%; area under the Receiver Operating Characteristic (ROC) curve: 0.81). These results suggest that the amplitude of occipital sources of resting state alpha rhythms is related to AD neurodegeneration in occipital lobe along pathological aging. PMID:25442118

  20. Spectral properties of x-ray selected narrow emission line galaxies

    NASA Astrophysics Data System (ADS)

    Romero Colmenero, Encarnacion

    This thesis reports a study of the X-ray and optical properties of two samples of X-ray selected Narrow Emission Line Galaxies (NELGs), and their comparison with the properties of broad line Active Galactic Nuclei (AGN). One sample (18 NELGs) is drawn from the ROSAT International X-ray Optical Survey (RIXOS), the other (19 NELGs and 33 AGN) from the ROSAT UK Deep Survey. ROSAT multi-channel X-ray spectra have been extracted and fitted with power-law, bremsstrahlung and black body models for the brighter RIXOS sources. In most cases, power-law and bremsstrahlung models provide the best results. The average spectral energy index, alpha, of the RIXOS NELGs is 0.96 +/- 0.07, similar to that of AGN (alpha ~ 1). For the fainter RIXOS NELGs, as well as for all the UK Deep Survey sources, counts in three spectral bands have been extracted and fitted with a power-law model, assuming the Galactic value for NH. The brighter RIXOS sources demonstrated that the results obtained by these two different extraction and fitting procedures provide consistent results. Two average X-ray spectra, one for the NELGs and another for the AGN, were created from the UK Deep Survey sources. The power-law spectral slope of the average NELG is S = 0.45 +/- 0.09, whilst that of the AGN is S = 0.96 +/- 0.03. ROSAT X-ray surveys have shown that the fractional surface density of NELGs increases with respect to AGN at faint fluxes (< 2 x 10-15erg cm-2 s -1), thus suggesting that NELGs are important contributors to the residual soft (< 2 keV) X-ray background (XRB). Moreover, the spectral slope of this background (S ~ 0.4, 1-10 keV) is harder than that of AGN (S ~ 1), which are known to contribute most of the XRB at higher flux levels. The work presented in this thesis shows unequivocally for the first time that the integrated spectrum of the faintest NELGs (alpha ~ 0.4) is consistent with that of the soft X-ray background, finally reconciling it with the properties of the sources that are thought to constitute it. Furthermore, by combining both samples of NELGs, I find a tendency for sources at lower fluxes to display harder slopes (95% confidence level), further strengthening the case for NELGs to be major contributors to the XRB at the fainter fluxes. The analysis of optical spectroscopy, obtained on La Palma and Hawaii, shows that NELGs form a very heterogeneous group, made up of a mixture of Seyfert 2, LINER and HII-region like galaxies. Seyfert 2 galaxies are found to possess in general the steepest X-ray slopes. Ways to explain this in the context of the unified model of AGN are discussed. The FWHM of some emission lines (H, [NH]) in the NELGs appears to increase with steepening X-ray spectral slope. In the case of the Balmer lines, this at variance with what is observed in broad line AGN. The FWHM of the Balmer lines is also correlated to the FWHM of the forbidden lines, indicating that they must originate in regions of similar velocity fields. Unfortunately, the number of sources uniquely classified is not sufficient to investigate these relationships on a source type basis. The optical emission line ratios of a bright RIXOS source (aka Arp 185, NGC 6217), classified as a starburst galaxy in the literature, indicate that this is in fact a weak-[OI] LINER, powered either by emission from hot O stars or by hot stars together with a non-stellar continuum. Spatially resolved spectroscopic analysis suggests that the Balmer emission lines are concentrated in the inner regions of the nucleus, while the forbidden lines arise from a more extended region. Line ratios do not indicate a change in the ionizing continuum of this source with distance from the centre.

  1. An advanced concept secondary power systems study for an advanced transport technology aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The application of advanced technology to the design of an integrated secondary power system for future near-sonic long-range transports was investigated. The study showed that the highest payoff is achieved by utilizing secondary power equipment that contributes to minimum cruise drag. This is best accomplished by the use of the dedicated auxiliary power unit concept (inflight APU) as the prime power source for an airplane with a body-mounted engine or by the use of the internal engine generator concept (electrical power extraction from the propulsion engine) for an airplane with a wing-pod-mounted engine.

  2. Technical Challenges and Potential Solutions for Cross-Country Multi-Terminal Superconducting DC Power Cables

    NASA Astrophysics Data System (ADS)

    Al-Taie, A.; Graber, L.; Pamidi, S. V.

    2017-12-01

    Opportunities for applications of high temperature superconducting (HTS) DC power cables for long distance power transmission in increasing the reliability of the electric power grid and to enable easier integration of distributed renewable sources into the grid are discussed. The gaps in the technology developments both in the superconducting cable designs and cryogenic systems as well as power electronic devices are identified. Various technology components in multi-terminal high voltage DC power transmission networks and the available options are discussed. The potential of ongoing efforts in the development of superconducting DC transmission systems is discussed.

  3. Probing the limits of alpha power lateralisation as a neural marker of selective attention in middle-aged and older listeners.

    PubMed

    Tune, Sarah; Wöstmann, Malte; Obleser, Jonas

    2018-02-11

    In recent years, hemispheric lateralisation of alpha power has emerged as a neural mechanism thought to underpin spatial attention across sensory modalities. Yet, how healthy ageing, beginning in middle adulthood, impacts the modulation of lateralised alpha power supporting auditory attention remains poorly understood. In the current electroencephalography study, middle-aged and older adults (N = 29; ~40-70 years) performed a dichotic listening task that simulates a challenging, multitalker scenario. We examined the extent to which the modulation of 8-12 Hz alpha power would serve as neural marker of listening success across age. With respect to the increase in interindividual variability with age, we examined an extensive battery of behavioural, perceptual and neural measures. Similar to findings on younger adults, middle-aged and older listeners' auditory spatial attention induced robust lateralisation of alpha power, which synchronised with the speech rate. Notably, the observed relationship between this alpha lateralisation and task performance did not co-vary with age. Instead, task performance was strongly related to an individual's attentional and working memory capacity. Multivariate analyses revealed a separation of neural and behavioural variables independent of age. Our results suggest that in age-varying samples as the present one, the lateralisation of alpha power is neither a sufficient nor necessary neural strategy for an individual's auditory spatial attention, as higher age might come with increased use of alternative, compensatory mechanisms. Our findings emphasise that explaining interindividual variability will be key to understanding the role of alpha oscillations in auditory attention in the ageing listener. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Terrestrial Applications of Extreme Environment Stirling Space Power Systems

    NASA Technical Reports Server (NTRS)

    Dyson, Rodger. W.

    2012-01-01

    NASA has been developing power systems capable of long-term operation in extreme environments such as the surface of Venus. This technology can use any external heat source to efficiently provide electrical power and cooling; and it is designed to be extremely efficient and reliable for extended space missions. Terrestrial applications include: use in electric hybrid vehicles; distributed home co-generation/cooling; and quiet recreational vehicle power generation. This technology can reduce environmental emissions, petroleum consumption, and noise while eliminating maintenance and environmental damage from automotive fluids such as oil lubricants and air conditioning coolant. This report will provide an overview of this new technology and its applications.

  5. CO2 laser drives extreme ultraviolet nano-lithography — second life of mature laser technology

    NASA Astrophysics Data System (ADS)

    Nowak, K. M.; Ohta, T.; Suganuma, T.; Fujimoto, J.; Mizoguchi, H.; Sumitani, A.; Endo, A.

    2013-12-01

    It was shown both theoretically and experimentally that nanosecond order laser pulses at 10.6 micron wavelength were superior for driving the Sn plasma extreme ultraviolet (EUV) source for nano-lithography for the reasons of higher conversion efficiency, lower production of debris and higher average power levels obtainable in CO2 media without serious problems of beam distortions and nonlinear effects occurring in competing solid-state lasers at high intensities. The renewed interest in such pulse format, wavelength, repetition rates in excess of 50 kHz and average power levels in excess of 18 kiloWatt has sparked new opportunities for a matured multi-kiloWatt CO2 laser technology. The power demand of EUV source could be only satisfied by a Master-Oscillator-Power-Amplifier system configuration, leading to a development of a new type of hybrid pulsed CO2 laser employing a whole spectrum of CO2 technology, such as fast flow systems and diffusion-cooled planar waveguide lasers, and relatively recent quantum cascade lasers. In this paper we review briefly the history of relevant pulsed CO2 laser technology and the requirements for multi-kiloWatt CO2 laser, intended for the laser-produced plasma EUV source, and present our recent advances, such as novel solid-state seeded master oscillator and efficient multi-pass amplifiers built on planar waveguide CO2 lasers.

  6. Mode and site of acupuncture modulation in the human brain: 3D (124-ch) EEG power spectrum mapping and source imaging.

    PubMed

    Chen, Andrew C N; Liu, Feng-Jun; Wang, Li; Arendt-Nielsen, Lars

    2006-02-15

    This study determined: (a) if acupuncture stimulation at a traditional site might modulate ongoing EEG as compared with stimulation of a control site; (b) if high-frequency vs. low-frequency stimulation could exert differential effects of acupuncture; (c) if the observed effects of acupuncture were specific to certain EEG bands; and (d) if the acupuncture effect could be isolated at a specific scalp field, with its putative underlying intracranial source. Twelve healthy male volunteers (age range 22-35) participated in two experimental sessions separated by 1 week, which involved transcutaneous acupoint stimulation at selected acupoint (Li 4, HeGu) vs. a mock point at the fourth interosseous muscle area on the left hand in high (HF: 100 Hz) vs. low-frequency (LF: 2 Hz) stimulation by counter-balanced order. 124-ch EEG data were used to analyze the Delta, Theta, Alpha-1, Alpha-2, Beta, and Gamma bands. The absolute EEG powers (muv2) at focal maxima across three stages (baseline, stimulation, post) were examined by two-way (condition, stage) repeated measures ANOVA. The activity of the Theta power significantly decreased (P = 0.02), compared with control during HF but not LF stimulation at acupoint stimulation, however, there was no study effect at the mock point. A decreased Theta EEG power was prominent at the frontal midline sites (FCz, Fz) and the contralateral right hemisphere front site (FCC2h). In contrast, the Theta power of low-frequency stimulation showed an increase from the baseline as those in both controlled mock point stimulations. The observed high-frequency acupoint stimulation effects of Theta EEG were only present during, but not after, simulation. The topographic Theta activity was tentatively identified to originate from the intracranial current source in cingulate cortex, likely ACC. It is likely that short-term cortical plasticity occurs during high-frequency but not low-frequency stimulation at the HeGu point, but not mock point. We suggest that HeGu acupuncture stimulation modulates limbic cingulum by a frequency modulation mode, which then may damp nociceptive processing in the brain.

  7. Anticipatory Attentional Suppression of Visual Features Indexed by Oscillatory Alpha-Band Power Increases: A High-Density Electrical Mapping Study

    PubMed Central

    Snyder, Adam C.; Foxe, John J.

    2010-01-01

    Retinotopically specific increases in alpha-band (~10 Hz) oscillatory power have been strongly implicated in the suppression of processing for irrelevant parts of the visual field during the deployment of visuospatial attention. Here, we asked whether this alpha suppression mechanism also plays a role in the nonspatial anticipatory biasing of feature-based attention. Visual word cues informed subjects what the task-relevant feature of an upcoming visual stimulus (S2) was, while high-density electroencephalographic recordings were acquired. We examined anticipatory oscillatory activity in the Cue-to-S2 interval (~2 s). Subjects were cued on a trial-by-trial basis to attend to either the color or direction of motion of an upcoming dot field array, and to respond when they detected that a subset of the dots differed from the majority along the target feature dimension. We used the features of color and motion, expressly because they have well known, spatially separated cortical processing areas, to distinguish shifts in alpha power over areas processing each feature. Alpha power from dorsal regions increased when motion was the irrelevant feature (i.e., color was cued), and alpha power from ventral regions increased when color was irrelevant. Thus, alpha-suppression mechanisms appear to operate during feature-based selection in much the same manner as has been shown for space-based attention. PMID:20237273

  8. Designing and Testing Energy Harvesters Suitable for Renewable Power Sources

    NASA Astrophysics Data System (ADS)

    Synkiewicz, B.; Guzdek, P.; Piekarski, J.; Zaraska, K.

    2016-01-01

    Energy harvesters convert waste power (heat, light and vibration) directly to electric power . Fast progress in their technology, design and areas of application (e.g. “Internet of Things”) has been observed recently. Their effectiveness is steadily growing which makes their application to powering sensor networks with wireless data transfer reasonable. The main advantage is the independence from wired power sources, which is especially important for monitoring state of environmental parameters. In this paper we describe the design and realization of a gas sensor monitoring CO level (powered by TEG) and two, designed an constructed in ITE, autonomous power supply modules powered by modern photovoltaic cells.

  9. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study.

    PubMed

    Riedner, Brady A; Goldstein, Michael R; Plante, David T; Rumble, Meredith E; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M

    2016-04-01

    To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4-8 Hz) and alpha (8-12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. © 2016 Associated Professional Sleep Societies, LLC.

  10. Wearable Sensor System Powered by a Biofuel Cell for Detection of Lactate Levels in Sweat (Postprint)

    DTIC Science & Technology

    2016-05-04

    attractive for development of sensing technology for the monitoring of human performance. Amperometric biosensors are known to be inexpensive, repro...biofuel cells for self-powered biosensors was first discussed in 2001 and has gained momentum in recent years.32–34 Information technology has...lactate biosensor ,35,36 a glucose oxidase BFC power source, an energy har- vester and a micropotentiostat. The following sections describe the development

  11. Aluminum-Water Energy System for Autonomous Undersea Vehicles

    DTIC Science & Technology

    2015-04-10

    lithium ‐ ion battery technology, which provides three days of endurance to a mid‐sized AUV traveling at...electrochemical power sources such as lithium ‐ ion batteries power most industry‐ built AUVs. In mid‐sized AUVs, lithium ‐ ion technology can power an AUV at 2 to 3...data are for relative comparison only; the volume and mass penalties of oxygen and water are not included. Data for lithium - ion and zinc

  12. Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest.

    PubMed

    Meneses, Francisco M; Queirós, Fernanda C; Montoya, Pedro; Miranda, José G V; Dubois-Mendes, Selena M; Sá, Katia N; Luz-Santos, Cleber; Baptista, Abrahão F

    2016-01-01

    Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F (1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F (1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F (1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA.

  13. Detecting Driver Mental Fatigue Based on EEG Alpha Power Changes during Simulated Driving.

    PubMed

    Gharagozlou, Faramarz; Nasl Saraji, Gebraeil; Mazloumi, Adel; Nahvi, Ali; Motie Nasrabadi, Ali; Rahimi Foroushani, Abbas; Arab Kheradmand, Ali; Ashouri, Mohammadreza; Samavati, Mehdi

    2015-12-01

    Driver fatigue is one of the major implications in transportation safety and accounted for up to 40% of road accidents. This study aimed to analyze the EEG alpha power changes in partially sleep-deprived drivers while performing a simulated driving task. Twelve healthy male car drivers participated in an overnight study. Continuous EEG and EOG records were taken during driving on a virtual reality simulator on a monotonous road. Simultaneously, video recordings from the driver face and behavior were performed in lateral and front views and rated by two trained observers. Moreover, the subjective self-assessment of fatigue was implemented in every 10-min interval during the driving using Fatigue Visual Analog Scale (F-VAS). Power spectrum density and fast Fourier transform (FFT) were used to determine the absolute and relative alpha powers in the initial and final 10 minutes of driving. The findings showed a significant increase in the absolute alpha power (P = 0.006) as well as F-VAS scores during the final section of driving (P = 0.001). Meanwhile, video ratings were consistent with subjective self-assessment of fatigue. The increase in alpha power in the final section of driving indicates the decrease in the level of alertness and attention and the onset of fatigue, which was consistent with F-VAS and video ratings. The study suggested that variations in alpha power could be a good indicator for driver mental fatigue, but for using as a countermeasure device needed further investigations.

  14. Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days.

    PubMed

    Cannon, Rex L; Baldwin, Debora R; Shaw, Tiffany L; Diloreto, Dominic J; Phillips, Sherman M; Scruggs, Annie M; Riehl, Timothy C

    2012-06-14

    There is a growing interest for using quantitative EEG and LORETA current source density in clinical and research settings. Importantly, if these indices are to be employed in clinical settings then the reliability of these measures is of great concern. Neuroguide (Applied Neurosciences) is sophisticated software developed for the analyses of power, and connectivity measures of the EEG as well as LORETA current source density. To date there are relatively few data evaluating topographical EEG reliability contrasts for all 19 channels and no studies have evaluated reliability for LORETA calculations. We obtained 4 min eyes-closed and eyes-opened EEG recordings at 30-day intervals. The EEG was analyzed in Neuroguide and FFT power, coherence and phase was computed for traditional frequency bands (delta, theta, alpha and beta) and LORETA current source density was calculated in 1 Hz increments and summed for total power in eight regions of interest (ROI). In order to obtain a robust measure of reliability we utilized a random effects model with an absolute agreement definition. The results show very good reproducibility for total absolute power and coherence. Phase shows lower reliability coefficients. LORETA current source density shows very good reliability with an average 0.81 for ECB and 0.82 for EOB. Similarly, the eight regions of interest show good to very good agreement across time. Implications for future directions and use of qEEG and LORETA in clinical populations are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. The Mighty Atom? The Development of Nuclear Power Technology

    ERIC Educational Resources Information Center

    Harris, Frank

    2014-01-01

    The use of nuclear energy for the generation of electricity started in the 1950s and was viewed, at the time, as a source of virtually free power. Development flourished and some countries adopted the nuclear option as their principal source for producing electrical energy. However, a series of nuclear incidents and concern about the treatment of…

  16. EQ-10 electrodeless Z-pinch EUV source for metrology applications

    NASA Astrophysics Data System (ADS)

    Gustafson, Deborah; Horne, Stephen F.; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-11-01

    With EUV Lithography systems shipping, the requirements for highly reliable EUV sources for mask inspection and resist outgassing are becoming better defined, and more urgent. The sources needed for metrology applications are very different than that needed for lithography; brightness (not power) is the key requirement. Suppliers for HVM EUV sources have all resources working on high power and have not entered the smaller market for metrology. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinchTM light source since 19951. The source is currently being used for metrology, mask inspection, and resist development2-4. These applications require especially stable performance in both output power and plasma size and position. Over the last 6 years Energetiq has made many source modifications which have included better thermal management to increase the brightness and power of the source. We now have introduced a new source that will meet requirements of some of the mask metrology first generation tools; this source will be reviewed.

  17. ProThera Biologics, Inc.: a novel immunomodulator and biomarker for life-threatening diseases.

    PubMed

    Lim, Yow-Pin

    2013-02-01

    ProThera Biologics is a development stage bio-therapeutics company in East Providence, Rhode Island. The company was founded in 2002 to focus on the critical role and commercial potential of Inter-alpha Inhibitor Proteins (IAIP) for treating acute life-threatening inflammatory diseases. The discovery research originated in the basic research laboratories of the co-founders, Yow-Pin Lim, MD, PhD, and Douglas C. Hixson, PhD, at Rhode Island Hospital, a Lifespan partner. The company is backed by the Slater Technology Fund and has received research grants from the Rhode Island State Science and Technology Council (RI STAC) as well as continuous funding from the National Institutes of Health (NIH), with several Phase I and II Small Business Innovation Research (SBIR) grants over the past 10 years. ProThera has developed a novel process to purify Inter-alpha Inhibitor Proteins from source material, and has conducted groundbreaking research into the usage of IAIP to fight systemic inflammation.

  18. Strength, power, fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes.

    PubMed

    Norman, Barbara; Esbjörnsson, Mona; Rundqvist, Håkan; Osterlund, Ted; von Walden, Ferdinand; Tesch, Per A

    2009-03-01

    Alpha-actinins are structural proteins of the Z-line. Human skeletal muscle expresses two alpha-actinin isoforms, alpha-actinin-2 and alpha-actinin-3, encoded by their respective genes ACTN2 and ACTN3. ACTN2 is expressed in all muscle fiber types, while only type II fibers, and particularly the type IIb fibers, express ACTN3. ACTN3 (R577X) polymorphism results in loss of alpha-actinin-3 and has been suggested to influence skeletal muscle function. The X allele is less common in elite sprint and power athletes than in the general population and has been suggested to be detrimental for performance requiring high power. The present study investigated the association of ACTN3 genotype with muscle power during 30-s Wingate cycling in 120 moderately to well-trained men and women and with knee extensor strength and fatigability in a subset of 21 men performing isokinetic exercise. Muscle biopsies were obtained from the vastus lateralis muscle to determine fiber-type composition and ACTN2 and ACTN3 mRNA levels. Peak and mean power and the torque-velocity relationship and fatigability output showed no difference across ACTN3 genotypes. Thus this study suggests that R577X polymorphism in ACTN3 is not associated with differences in power output, fatigability, or force-velocity characteristics in moderately trained individuals. However, repeated exercise bouts prompted an increase in peak torque in RR but not in XX genotypes, suggesting that ACTN3 genotype may modulate responsiveness to training. Our data further suggest that alpha-actinins do not play a significant role in determining muscle fiber-type composition. Finally, we show that ACTN2 expression is affected by the content of alpha-actinin-3, which implies that alpha-actinin-2 may compensate for the lack of alpha-actinin-3 and hence counteract the phenotypic consequences of the deficiency.

  19. Imaging alpha particle detector

    DOEpatents

    Anderson, David F.

    1985-01-01

    A method and apparatus for detecting and imaging alpha particles sources is described. A conducting coated high voltage electrode (1) and a tungsten wire grid (2) constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source (3) to be quantitatively or qualitatively analyzed. A thin polyester film window (4) allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  20. Imaging alpha particle detector

    DOEpatents

    Anderson, D.F.

    1980-10-29

    A method and apparatus for detecting and imaging alpha particles sources is described. A dielectric coated high voltage electrode and a tungsten wire grid constitute a diode configuration discharge generator for electrons dislodged from atoms or molecules located in between these electrodes when struck by alpha particles from a source to be quantitatively or qualitatively analyzed. A thin polyester film window allows the alpha particles to pass into the gas enclosure and the combination of the glass electrode, grid and window is light transparent such that the details of the source which is imaged with high resolution and sensitivity by the sparks produced can be observed visually as well. The source can be viewed directly, electronically counted or integrated over time using photographic methods. A significant increase in sensitivity over other alpha particle detectors is observed, and the device has very low sensitivity to gamma or beta emissions which might otherwise appear as noise on the alpha particle signal.

  1. Evolution of Space Station EMU PLSS technology recommendations

    NASA Technical Reports Server (NTRS)

    Wilde, Richard C.

    1990-01-01

    Viewgraphs on extravehicular mobility unit (EMU) portable life support system (PLSS) technology recommendations are presented. Topics covered include: oxygen supply storage; oxygen supply regulators; carbon dioxide control; prime movers; crew comfort; heat rejection; power sources; controls; display devices; and sensor technology.

  2. Accelerator Technology Division annual report, FY 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-06-01

    This paper discusses: accelerator physics and special projects; experiments and injectors; magnetic optics and beam diagnostics; accelerator design and engineering; radio-frequency technology; accelerator theory and simulation; free-electron laser technology; accelerator controls and automation; and high power microwave sources and effects.

  3. HTR3B is associated with alcoholism with antisocial behavior and alpha EEG power—an intermediate phenotype for alcoholism and co-morbid behaviors

    PubMed Central

    Ducci, Francesca; Enoch, Mary-Anne; Yuan, Qiaoping; Shen, Pei-Hong; White, Kenneth V.; Hodgkinson, Colin; Albaugh, Bernard; Virkkunen, Matti; Goldman, David

    2009-01-01

    Alcohol use disorders (AUD) with co-morbid antisocial personality disorder (ASPD) have been associated with serotonin (5-HT) dysfunction. 5-HT3 receptors are potentiated by ethanol and appear to modulate reward. 5-HT3 receptor antagonists may be useful in the treatment of early-onset alcoholics with co-morbid ASPD. Low-voltage alpha electroencephalogram (EEG) power, a highly heritable trait, has been associated with both AUD and ASPD. A recent whole genome linkage scan in one of our samples, Plains American Indians (PI), has shown a suggestive linkage peak for alpha power at the 5-HT3R locus. We tested whether genetic variation within the HTR3A and HTR3B genes influences vulnerability to AUD with comorbid ASPD (AUD + ASPD) and moderates alpha power. Our study included three samples: 284 criminal alcoholic Finnish Caucasians and 234 controls; two independent community-ascertained samples with resting EEG recordings: a predominantly Caucasian sample of 191 individuals (Bethesda) and 306 PI. In the Finns, an intronic HTR3B SNP rs3782025 was associated with AUD + ASPD (P = .004). In the Bethesda sample, the same allele predicted lower alpha power (P = 7.37e-5). Associations between alpha power and two other HTR3B SNPs were also observed among PI (P = .03). One haplotype in the haplotype block at the 3′ region of the gene that included rs3782025 was associated with AUD + ASPD in the Finns (P = .02) and with reduced alpha power in the Bethesda population (P = .00009). Another haplotype in this block was associated with alpha power among PI (P = .03). No associations were found for HTR3A. Genetic variation within HTR3B may influence vulnerability to develop AUD with comorbid ASPD. 5-HT3R might contribute to the imbalance between excitation and inhibition that characterize the brain of alcoholics. PMID:19185213

  4. Feasibility of eyes open alpha power training for mental enhancement in elite gymnasts.

    PubMed

    Dekker, Marian K J; van den Berg, Berber R; Denissen, Ad J M; Sitskoorn, Margriet M; van Boxtel, Geert J M

    2014-01-01

    This study focuses on a novel, easy to use and instruction-less method for mental training in athletes. Previous findings suggest that particular mental capacities are needed for achieving peak performance; including attentional control, focus, relaxation and positive affect. Electroencephalography (EEG) alpha brain activity has been associated with neural inhibition during processes of selective attention, for improving efficiency in information processing. Here we hypothesised that eyes open alpha power training by music teaches athletes to (1) learn to self-regulate their brain activity, and (2) learn to increase their baseline alpha power, herewith improving mental capacities such as focusing the allocation of attention. The study was double-blind and placebo-controlled. Twelve elite gymnasts were either given eyes open alpha power training or random beta power training (controls). Results indicate small improvements in sleep quality, mental and physical shape. In our first attempt at getting a grip on mental capacities in athletes, we think this novel training method can be promising. Because gymnastics is one of the most mentally demanding sports, we value even small benefits for the athlete and consider them indicative for future research.

  5. Regional Patterns of Elevated Alpha and High-Frequency Electroencephalographic Activity during Nonrapid Eye Movement Sleep in Chronic Insomnia: A Pilot Study

    PubMed Central

    Riedner, Brady A.; Goldstein, Michael R.; Plante, David T.; Rumble, Meredith E.; Ferrarelli, Fabio; Tononi, Giulio; Benca, Ruth M.

    2016-01-01

    Study Objectives: To examine nonrapid eye movement (NREM) sleep in insomnia using high-density electroencephalography (EEG). Methods: All-night sleep recordings with 256 channel high-density EEG were analyzed for 8 insomnia subjects (5 females) and 8 sex and age-matched controls without sleep complaints. Spectral analyses were conducted using unpaired t-tests and topographical differences between groups were assessed using statistical non-parametric mapping. Five minute segments of deep NREM sleep were further analyzed using sLORETA cortical source imaging. Results: The initial topographic analysis of all-night NREM sleep EEG revealed that insomnia subjects had more high-frequency EEG activity (> 16 Hz) compared to good sleeping controls and that the difference between groups was widespread across the scalp. In addition, the analysis also showed that there was a more circumscribed difference in theta (4–8 Hz) and alpha (8–12 Hz) power bands between groups. When deep NREM sleep (N3) was examined separately, the high-frequency difference between groups diminished, whereas the higher regional alpha activity in insomnia subjects persisted. Source imaging analysis demonstrated that sensory and sensorimotor cortical areas consistently exhibited elevated levels of alpha activity during deep NREM sleep in insomnia subjects relative to good sleeping controls. Conclusions: These results suggest that even during the deepest stage of sleep, sensory and sensorimotor areas in insomnia subjects may still be relatively active compared to control subjects and to the rest of the sleeping brain. Citation: Riedner BA, Goldstein MR, Plante DT, Rumble ME, Ferrarelli F, Tononi G, Benca RM. Regional patterns of elevated alpha and high-frequency electroencephalographic activity during nonrapid eye movement sleep in chronic insomnia: a pilot study. SLEEP 2016;39(4):801–812. PMID:26943465

  6. Brain activation during fast driving in a driving simulator: the role of the lateral prefrontal cortex.

    PubMed

    Jäncke, Lutz; Brunner, Béatrice; Esslen, Michaela

    2008-07-16

    Little is currently known about the neural underpinnings of the cognitive control of driving behavior in realistic situations and of the driver's speeding behavior in particular. In this study, participants drove in realistic scenarios presented in a high-end driving simulator. Scalp-recorded EEG oscillations in the alpha-band (8-13 Hz) with a 30-electrode montage were recorded while the participants drove under different conditions: (i) excessively fast (Fast), (ii) in a controlled manner at a safe speed (Correct), and (iii) impatiently in the context of testing traffic conditions (Impatient). Intracerebral sources of alpha-band activation were estimated using low resolution electrical tomography. Given that previous studies have shown a strong negative correlation between the Bold response in the frontal cortex and the alpha-band power, we used alpha-band-related activity as an estimation of frontal activation. Statistical analysis revealed more alpha-band-related activity (i.e. less neuronal activation) in the right lateral prefrontal cortex, including the dorsolateral prefrontal cortex, during fast driving. Those participants who speeded most and exhibited greater risk-taking behavior demonstrated stronger alpha-related activity (i.e. less neuronal activation) in the left anterior lateral prefrontal cortex. These findings are discussed in the context of current theories about the role of the lateral prefrontal cortex in controlling risk-taking behavior, task switching, and multitasking.

  7. Portable direct methanol fuel cell systems

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.; Valdez, T. I.

    2002-01-01

    This article includes discussion of the specific power and power density requirements for various portable system applications, the status of stack technology, progress in the implementation of balance-of-plant designs, and a summary of the characteristics of various DMFC portable power source demonstrations.

  8. An Overview and Status of NASA's Radioisotope Power Conversion Technology NRA

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Wong, Wayne A.; Tuttle, Karen L.

    2005-01-01

    NASA's Advanced Radioisotope Power Systems (RPS) development program is developing next generation radioisotope power conversion technologies that will enable future missions that have requirements that can not be met by either photovoltaic systems or by current Radioisotope Power System (RPS) technology. The Advanced Power Conversion Research and Technology project of the Advanced RPS development program is funding research and technology activities through the NASA Research Announcement (NRA) 02- OSS-01, "Research Opportunities in Space Science 2002" entitled "Radioisotope Power Conversion Technology" (RPCT), 13 August 2002. The objective of the RPCT NRA is to advance the development of radioisotope power conversion technologies to provide significant improvements over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. These advances would enable a factor of 2 to 4 decrease in the amount of fuel required to generate electrical power. The RPCT NRA selected advanced RPS power conversion technology research and development proposals in the following three areas: innovative RPS power conversion research, RPS power conversion technology development in a nominal 100We scale; and, milliwatt/multi-watt RPS (mWRPS) power conversion research. Ten RPCT NRA contracts were awarded in 2003 in the areas of Brayton, Stirling, thermoelectric (TE), and thermophotovoltaic (TPV) power conversion technologies. This paper will provide an overview of the RPCT NRA, and a brief summary of accomplishments over the first 18 months but focusing on advancements made over the last 6 months.

  9. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase.

    PubMed

    Tretter, Laszlo; Adam-Vizi, Vera

    2004-09-08

    Alpha-ketoglutarate dehydrogenase (alpha-KGDH), a key enzyme in the Krebs' cycle, is a crucial early target of oxidative stress (Tretter and Adam-Vizi, 2000). The present study demonstrates that alpha-KGDH is able to generate H(2)O(2) and, thus, could also be a source of reactive oxygen species (ROS) in mitochondria. Isolated alpha-KGDH with coenzyme A (HS-CoA) and thiamine pyrophosphate started to produce H(2)O(2) after addition of alpha-ketoglutarate in the absence of nicotinamide adenine dinucleotide-oxidized (NAD(+)). NAD(+), which proved to be a powerful inhibitor of alpha-KGDH-mediated H(2)O(2) formation, switched the H(2)O(2) forming mode of the enzyme to the catalytic [nicotinamide adenine dinucleotide-reduced (NADH) forming] mode. In contrast, NADH stimulated H(2)O(2) formation by alpha-KGDH, and for this, neither alpha-ketoglutarate nor HS-CoA were required. When all of the substrates and cofactors of the enzyme were present, the NADH/NAD(+) ratio determined the rate of H(2)O(2) production. The higher the NADH/NAD(+) ratio the higher the rate of H(2)O(2) production. H(2)O(2) production as well as the catalytic function of the enzyme was activated by Ca(2+). In synaptosomes, using alpha-ketoglutarate as respiratory substrate, the rate of H(2)O(2) production increased by 2.5-fold, and aconitase activity decreased, indicating that alpha-KGDH can generate H(2)O(2) in in situ mitochondria. Given the NADH/NAD(+) ratio as a key regulator of H(2)O(2) production by alpha-KGDH, it is suggested that production of ROS could be significant not only in the respiratory chain but also in the Krebs' cycle when oxidation of NADH is impaired. Thus alpha-KGDH is not only a target of ROS but could significantly contribute to generation of oxidative stress in the mitochondria.

  10. Advanced X-Ray Sources Ensure Safe Environments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Ames Research Center awarded inXitu Inc. (formerly Microwave Power Technology), of Mountain View, California, an SBIR contract to develop a new design of electron optics for forming and focusing electron beams that is applicable to a broad class of vacuum electron devices. This technology offers an inherently rugged and more efficient X-ray source for material analysis; a compact and rugged X-ray source for smaller rovers on future Mars missions; and electron beam sources to reduce undesirable emissions from small, widely distributed pollution sources; and remediation of polluted sites.

  11. Three-dimensional localization of abnormal EEG activity in migraine: a low resolution electromagnetic tomography (LORETA) study of migraine patients in the pain-free interval.

    PubMed

    Clemens, Béla; Bánk, József; Piros, Pálma; Bessenyei, Mónika; Veto, Sára; Tóth, Márton; Kondákor, István

    2008-09-01

    Investigating the brain of migraine patients in the pain-free interval may shed light on the basic cerebral abnormality of migraine, in other words, the liability of the brain to generate migraine attacks from time to time. Twenty unmedicated "migraine without aura" patients and a matched group of healthy controls were investigated in this explorative study. 19-channel EEG was recorded against the linked ears reference and was on-line digitized. 60 x 2-s epochs of eyes-closed, waking-relaxed activity were subjected to spectral analysis and a source localization method, low resolution electromagnetic tomography (LORETA). Absolute power was computed for 19 electrodes and four frequency bands (delta: 1.5-3.5 Hz, theta: 4.0-7.5 Hz, alpha: 8.0-12.5 Hz, beta: 13.0-25.0 Hz). LORETA "activity" (=current source density, ampers/meters squared) was computed for 2394 voxels and the above specified frequency bands. Group comparison was carried out for the specified quantitative EEG variables. Activity in the two groups was compared on a voxel-by-voxel basis for each frequency band. Statistically significant (uncorrected P < 0.01) group differences were projected to cortical anatomy. Spectral findings: there was a tendency for more alpha power in the migraine that in the control group in all but two (F4, C3) derivations. However, statistically significant (P < 0.01, Bonferroni-corrected) spectral difference was only found in the right occipital region. The main LORETA-finding was that voxels with P < 0.01 differences were crowded in anatomically contiguous cortical areas. Increased alpha activity was found in a cortical area including part of the precuneus, and the posterior part of the middle temporal gyrus in the right hemisphere. Decreased alpha activity was found bilaterally in medial parts of the frontal cortex including the anterior cingulate and the superior and medial frontal gyri. Neither spectral analysis, nor LORETA revealed statistically significant differences in the delta, theta, and beta bands. LORETA revealed the anatomical distribution of the cortical sources (generators) of the EEG abnormalities in migraine. The findings characterize the state of the cerebral cortex in the pain-free interval and might be suitable for planning forthcoming investigations.

  12. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Technical Reports Server (NTRS)

    Mason, Lee; Palac, Donald; Gibson, Marc; Houts, Michael; Warren, John; Werner, James; Poston, David; Qualls, Arthur Lou; Radel, Ross; Harlow, Scott

    2012-01-01

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  13. Design and Test Plans for a Non-Nuclear Fission Power System Technology Demonstration Unit

    NASA Astrophysics Data System (ADS)

    Mason, L.; Palac, D.; Gibson, M.; Houts, M.; Warren, J.; Werner, J.; Poston, D.; Qualls, L.; Radel, R.; Harlow, S.

    A joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) team is developing concepts and technologies for affordable nuclear Fission Power Systems (FPSs) to support future exploration missions. A key deliverable is the Technology Demonstration Unit (TDU). The TDU will assemble the major elements of a notional FPS with a non-nuclear reactor simulator (Rx Sim) and demonstrate system-level performance in thermal vacuum. The Rx Sim includes an electrical resistance heat source and a liquid metal heat transport loop that simulates the reactor thermal interface and expected dynamic response. A power conversion unit (PCU) generates electric power utilizing the liquid metal heat source and rejects waste heat to a heat rejection system (HRS). The HRS includes a pumped water heat removal loop coupled to radiator panels suspended in the thermal-vacuum facility. The basic test plan is to subject the system to realistic operating conditions and gather data to evaluate performance sensitivity, control stability, and response characteristics. Upon completion of the testing, the technology is expected to satisfy the requirements for Technology Readiness Level 6 (System Demonstration in an Operational and Relevant Environment) based on the use of high-fidelity hardware and prototypic software tested under realistic conditions and correlated with analytical predictions.

  14. NREL Researchers Test Solar Thermal Technology

    Science.gov Websites

    incorporates a number of design and manufacturing modifications that could make the heliostat less costly and make power tower systems cost competitive with conventional sources of electricity. Power towers, a

  15. Marine and Hydrokinetic Energy Metocean Data-use, Sources, and Instrumentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirnivas, Senu

    Marine and Hydrokinetic Energy Metocean Data-use, Sources, and Instrumentation presentation from Water Power Technologies Office Peer Review, FY14-FY16. This project aims to accelerate deployment of marine and hydrokinetic (MHK) technology by establishing: 1) relevant existing and evolving standards and guidelines, 2) meteorological and oceanic (metocean) data use 3) data sources, and 4) instrumentation guidance for siting, design, and operation of MHK devices along the U.S coastline.

  16. Intermittent 20-HZ-photic stimulation leads to a uniform reduction of alpha-global field power in healthy volunteers.

    PubMed

    Rau, R; Raschka, C; Koch, H J

    2001-01-01

    19-channel-EEGs were recorded from scalp surface of 30 healthy subjects (16m, 14f, mean age: 34 ys, SD: 11.7 ys) at rest and under IPS (Intermittent Photic Stimulation) at rates of 5, 10 and 20 Hertz (Hz). Digitalized data underwent spectral analysis with fast fourier transfomation (FFT) yielding the basis for the computation of global field power (GFP). For quantification GFP values in the frequency ranges of 5, 10 and 20 Hz at rest were divided by the corresponding data gained under IPS. While ratios from PDE data showed no stable parameter due to high interindividual variability, ratios of alpha-power turned out to be uniform in all subjects: IPS at 20 Hz always led to a suppression of alpha-power. Dividing alpha-GFP at rest by alpha-GFP under 20-Hz IPS thus resulted in a ratio < 1. We conclude that ratios from GFP data are a stable diagnostic paradigma.

  17. EEG alpha power and creative ideation☆

    PubMed Central

    Fink, Andreas; Benedek, Mathias

    2014-01-01

    Neuroscientific studies revealed first insights into neural mechanisms underlying creativity, but existing findings are highly variegated and often inconsistent. Despite the disappointing picture on the neuroscience of creativity drawn in recent reviews, there appears to be robust evidence that EEG alpha power is particularly sensitive to various creativity-related demands involved in creative ideation. Alpha power varies as a function of creativity-related task demands and the originality of ideas, is positively related to an individuals’ creativity level, and has been observed to increase as a result of creativity interventions. Alpha increases during creative ideation could reflect more internally oriented attention that is characterized by the absence of external bottom-up stimulation and, thus, a form of top-down activity. Moreover, they could indicate the involvement of specific memory processes such as the efficient (re-)combination of unrelated semantic information. We conclude that increased alpha power during creative ideation is among the most consistent findings in neuroscientific research on creativity and discuss possible future directions to better understand the manifold brain mechanisms involved in creativity. PMID:23246442

  18. Remote-site power generation opportunities for Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M.L.

    1997-03-01

    The Energy and Environmental Research Center (EERC) has been working with the Federal Energy Technology Center in Morgantown, West Virginia, to assess options for small, low-cost, environmental acceptable power generation for application in remote areas of Alaska. The goal of this activity was to reduce the use of fuel in Alaskan villages by developing small, low-cost power generation applications. Because of the abundance of high-quality coal throughout Alaska, emphasis was placed on clean coal applications, but other energy sources, including geothermal, wind, hydro, and coalbed methane, were also considered. The use of indigenous energy sources would provide cheaper cleaner power,more » reduce the need for PCE (Power Cost Equalization program) subsidies, increase self-sufficiency, and retain hard currency in the state while at the same time creating jobs in the region. The introduction of economical, small power generation systems into Alaska by US equipment suppliers and technology developers aided by the EERC would create the opportunities for these companies to learn how to engineer, package, transport, finance, and operate small systems in remote locations. All of this experience would put the US developers and equipment supply companies in an excellent position to export similar types of small power systems to rural areas or developing countries. Thus activities in this task that relate to determining the generic suitability of these technologies for other countries can increase US competitiveness and help US companies sell these technologies in foreign countries, increasing the number of US jobs. The bulk of this report is contained in the two appendices: Small alternative power workshop, topical report and Global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.« less

  19. Correcting power and p-value calculations for bias in diffusion tensor imaging.

    PubMed

    Lauzon, Carolyn B; Landman, Bennett A

    2013-07-01

    Diffusion tensor imaging (DTI) provides quantitative parametric maps sensitive to tissue microarchitecture (e.g., fractional anisotropy, FA). These maps are estimated through computational processes and subject to random distortions including variance and bias. Traditional statistical procedures commonly used for study planning (including power analyses and p-value/alpha-rate thresholds) specifically model variability, but neglect potential impacts of bias. Herein, we quantitatively investigate the impacts of bias in DTI on hypothesis test properties (power and alpha-rate) using a two-sided hypothesis testing framework. We present theoretical evaluation of bias on hypothesis test properties, evaluate the bias estimation technique SIMEX for DTI hypothesis testing using simulated data, and evaluate the impacts of bias on spatially varying power and alpha rates in an empirical study of 21 subjects. Bias is shown to inflame alpha rates, distort the power curve, and cause significant power loss even in empirical settings where the expected difference in bias between groups is zero. These adverse effects can be attenuated by properly accounting for bias in the calculation of power and p-values. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Performance of 100-W HVM LPP-EUV source

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru; Nakarai, Hiroaki; Abe, Tamotsu; Nowak, Krzysztof M.; Kawasuji, Yasufumi; Tanaka, Hiroshi; Watanabe, Yukio; Hori, Tsukasa; Kodama, Takeshi; Shiraishi, Yutaka; Yanagida, Tatsuya; Soumagne, Georg; Yamada, Tsuyoshi; Yamazaki, Taku; Okazaki, Shinji; Saitou, Takashi

    2015-08-01

    At Gigaphoton Inc., we have developed unique and original technologies for a carbon dioxide laser-produced tin plasma extreme ultraviolet (CO2-Sn-LPP EUV) light source, which is the most promising solution for high-power high-volume manufacturing (HVM) EUV lithography at 13.5 nm. Our unique technologies include the combination of a pulsed CO2 laser with Sn droplets, the application of dual-wavelength laser pulses for Sn droplet conditioning, and subsequent EUV generation and magnetic field mitigation. Theoretical and experimental data have clearly shown the advantage of our proposed strategy. Currently, we are developing the first HVM light source, `GL200E'. This HVM light source will provide 250-W EUV power based on a 20-kW level pulsed CO2 laser. The preparation of a high average-power CO2 laser (more than 20 kW output power) has been completed in cooperation with Mitsubishi Electric Corporation. Recently, we achieved 140 W at 50 kHz and 50% duty cycle operation as well as 2 h of operation at 100 W of power level. Further improvements are ongoing. We will report the latest status and the challenge to reach stable system operation of more than 100 W at about 4% conversion efficiency with 20-μm droplets and magnetic mitigation.

  1. Power Amplifier Module with 734-mW Continuous Wave Output Power

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Samoska, Lorene A.; Kangaslahti, Pekka P.; Lamgrigtsen, Bjorn H.; Goldsmith, Paul F.; Lin, Robert H.; Soria, Mary M.; Cooperrider, Joelle T.; Micovic, Moroslav; Kurdoghlian, Ara

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers-to generate higher frequency signals in nonlinear Schottky diode-based LO sources. By advancing PA technology, the LO system performance can be increased with possible cost reductions compared to current GaAs PAs. High-power, high-efficiency GaN PAs are cross-cutting and can enable more efficient local oscillator distribution systems for new astrophysics and planetary receivers and heterodyne array instruments. It can also allow for a new, electronically scannable solid-state array technology for future Earth science radar instruments and communications platforms.

  2. Radioisotope Sources of Electric Power

    DTIC Science & Technology

    1973-09-20

    u) watt/cm-3 O) specific activity f) curia/watt (curie/a) a) half-life c) specific power output h) years (capacity) 1) days d) watt/p Polonium - 210 ...AD/A-001 210 RADIOISOTOPE SOURCES OF ELECTRIC POWER G. M. Fradkin, et al Army Foreign Science and Technology Center Charlottesville, Virginia 20...ormed. 6v usino this effect , one may make small-sized 3ources of electrical eneruv. Batteries with direct charde collection may be used to create accel

  3. Fission Surface Power Technology Development Status

    NASA Technical Reports Server (NTRS)

    Palac, Donald T.; Mason, Lee S.; Harlow, Scott

    2009-01-01

    With the potential future deployment of a lunar outpost there is expected to be a clear need for a high-power, lunar surface power source to support lunar surface operations independent of the day-night cycle, and Fission Surface Power (FSP) is a very effective solution for power levels above a couple 10 s of kWe. FSP is similarly enabling for the poorly illuminated surface of Mars. The power levels/requirements for a lunar outpost option are currently being studied, but it is known that cost is clearly a predominant concern to decision makers. This paper describes the plans of NASA and the DOE to execute an affordable fission surface power system technology development project to demonstrate sufficient technology readiness of an affordable FSP system so viable and cost-effective FSP system options will be available when high power lunar surface system choices are expected to be made in the early 2010s.

  4. Study to develop educational products about the fear of new energy technologies. Phase II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DuPont, R.L.

    1985-01-31

    Fear of nuclear power was found in the study sample to be widespread and far more intense than fear of any other energy source. Fears were greatest of waste disposal and accidents, with fear of what is not known being especially common. Many fears appeared to be based on lack of information. Both general and specific fears of nuclear power were significantly reduced by reading an educational booklet. After reading this booklet study subjects reported less extreme views of nuclear power, seeing it to be more similar to other energy sources. This decline in fear of nuclear power did notmore » produce a proportionate increase in support for nuclear power as a source of electricity.« less

  5. Thermal Fluid Analysis of the Heat Sink and Chip Carrier Assembly for a US Army Research Laboratory Liquid-Fueled Thermophotovoltaic Power Source Demonstrator

    DTIC Science & Technology

    2016-09-01

    battery technology (140 W·h/kg for rechargeable lithium - ion technology).1 One way to achieve higher energy density is to take advantage of the large...missions without resupply to unmanned air vehicles requiring only a few hours of running time. In the 10–100 W+ power range, battery technology is the...best solution currently available, but higher-energy dense technologies are needed to augment batteries and extend the available energy density well

  6. A Review on the Development of Gravitational Water Vortex Power Plant as Alternative Renewable Energy Resources

    NASA Astrophysics Data System (ADS)

    Rahman, M. M.; Tan, J. H.; Fadzlita, M. T.; Khairul Muzammil, A. R. Wan

    2017-07-01

    Gravitational water vortex power plant is a green technology that generates electricity from alternative or renewable energy source. In the vortex power plant, water is introduced into a circular basin tangentially that creates a free vortex and energy is extracted from the free vortex by using a turbine. The main advantages of this type of power plant is the generation of electricity from ultra-low hydraulic pressure and it is also environmental friendly. Since the hydraulic head requirement is as low as 1m, this type of power plant can be installed at a river or a stream to generate electricity for few houses. It is a new and not well-developed technology to harvest electricity from low pressure water energy sources. There are limited literatures available on the design, fabrication and physical geometry of the vortex turbine and generator. Past researches focus on the optimization of turbine design, inlets, outlets and basin geometry. However, there are still insufficient literatures available for the technology to proceed beyond prototyping stage. The maximum efficiency obtained by the researchers are approximately 30% while the commercial companies claimed about 50% of efficiency with 500W to 20kW of power generated. Hence, the aim of this paper is to determine the gap in the vortex power plant technology development through past works and a set of research recommendations will be developed as efforts to accelerate the development of GWVPP.

  7. Technology Learning Activities. Design Brief--Measuring Inaccessible Distances. Alternative Energy Sources: Designing a Wind Powered Generator. Alternative Energy Sources: Designing a Hot Dog Heater Using Solar Energy.

    ERIC Educational Resources Information Center

    Technology Teacher, 1991

    1991-01-01

    These three learning activities are on measuring accessible distances, designing a wind powered generator, and designing a hot dog heater using solar energy. Each activity includes description of context, objectives, list of materials and equipment, challenge to students, and evaluation questions. (SK)

  8. Dynamic correlations between heart and brain rhythm during Autogenic meditation

    PubMed Central

    Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan

    2013-01-01

    This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion. PMID:23914165

  9. Dynamic correlations between heart and brain rhythm during Autogenic meditation.

    PubMed

    Kim, Dae-Keun; Lee, Kyung-Mi; Kim, Jongwha; Whang, Min-Cheol; Kang, Seung Wan

    2013-01-01

    This study is aimed to determine significant physiological parameters of brain and heart under meditative state, both in each activities and their dynamic correlations. Electrophysiological changes in response to meditation were explored in 12 healthy volunteers who completed 8 weeks of a basic training course in autogenic meditation. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly during meditation. Relative EEG alpha power and alpha lagged coherence also increased. A significant slowing of parietal peak alpha frequency was observed. Parietal peak alpha power increased with increasing heart coherence during meditation, but no such relationship was observed during baseline. Average alpha lagged coherence also increased with increasing heart coherence during meditation, but weak opposite relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline periods. Heart coherence can be a cardiac marker for the meditative state and also may be a general marker for the meditative state since heart coherence is strongly correlated with EEG alpha activities. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, would help recover physiological synchrony following a period of homeostatic depletion.

  10. JPRS Report, Science and Technology: Europe, German Aerospace Industry Competitiveness.

    DTIC Science & Technology

    1991-05-31

    construction , in which the German aerospace industry is involved (Alpha Jet, Tornado, Jaeger 90), are not directly transferable, since they deal with...INTA 1,500 100 Japan NASDA 938 749 U.S. NASA 23,0003 7,653 1. Planned after completion of construction phase (cun mately 100) 2. Annual average...for five-year construction phase 3. Excluding contractors rently approxi- Source: DLR, DASA III.5 Fiscal Aspects, Subsidies Taxes and duties affect

  11. Tocopherol fate in plasma and liver of streptozotocin-treated rats that orally received antioxidants and Spirulina extracts.

    PubMed

    García-Martínez, D; Rupérez, F J; Ugarte, P; Barbas, C

    2007-07-01

    Streptozotocin-induced diabetic rats constitute a model of oxidative stress, and vitamin E continues to be a topic of speculation in this area. On the other hand, marine extracts, particularly microalgae extracts obtained with environmentally clean technologies and which demonstrate antioxidant activity in vitro, are a potential source of in vivo antioxidant defense. We have studied the alpha-tocopherol content in the plasma and liver of diabetic rats after 7 and 14 days under the condition, and before and after the treatment with vitamin E and C, as well as with different Spirulina extracts, as compared with the corresponding controls. The improvement of analytical methodology related to the determination of alpha-tocopherol in the plasma and liver of rats was also considered. To do this, a method previously developed for plasma, employing a single extraction step, was adapted and validated for liver after minor modifications. Moreover, stability of alpha-tocopherol in plasma of diabetic and control animals was compared in different storage conditions. Results showed that diabetic plasma strongly influences stability of alpha-tocopherol, even at -20 degrees C, but samples are stable for at least one year at -80 degrees C. Finally, regarding supplementation, results indicate that supplementation with alpha-tocopherol increases stored alpha-tocopherol in liver, but not in plasma, but this availability is strongly dependent on the stage of diabetes of the animal. Extracts of Spirulina platensis, despite showing antioxidant activity in vitro, increased alpha-tocopherol concentration in neither plasma nor liver.

  12. A history of nuclear transmutations by natural alpha particles

    NASA Astrophysics Data System (ADS)

    Leone, Matteo

    2005-11-01

    A systematic account of the use of alpha particles up to the 1930s for promoting the disintegration of atoms is here provided. As will be shown, a number of different radium family alpha sources were used in the experiments that led to the discoveries of the proton (Rutherford E 1919 Phil. Mag. 37 581-7) and neutron (Chadwick J 1932 Nature 129 312). The reasons leading to the employment of a particular alpha particle source, as well as the relationship between these sources and the available methods of recording, will be closely addressed.

  13. FFT transformed quantitative EEG analysis of short term memory load.

    PubMed

    Singh, Yogesh; Singh, Jayvardhan; Sharma, Ratna; Talwar, Anjana

    2015-07-01

    The EEG is considered as building block of functional signaling in the brain. The role of EEG oscillations in human information processing has been intensively investigated. To study the quantitative EEG correlates of short term memory load as assessed through Sternberg memory test. The study was conducted on 34 healthy male student volunteers. The intervention consisted of Sternberg memory test, which runs on a version of the Sternberg memory scanning paradigm software on a computer. Electroencephalography (EEG) was recorded from 19 scalp locations according to 10-20 international system of electrode placement. EEG signals were analyzed offline. To overcome the problems of fixed band system, individual alpha frequency (IAF) based frequency band selection method was adopted. The outcome measures were FFT transformed absolute powers in the six bands at 19 electrode positions. Sternberg memory test served as model of short term memory load. Correlation analysis of EEG during memory task was reflected as decreased absolute power in Upper alpha band in nearly all the electrode positions; increased power in Theta band at Fronto-Temporal region and Lower 1 alpha band at Fronto-Central region. Lower 2 alpha, Beta and Gamma band power remained unchanged. Short term memory load has distinct electroencephalographic correlates resembling the mentally stressed state. This is evident from decreased power in Upper alpha band (corresponding to Alpha band of traditional EEG system) which is representative band of relaxed mental state. Fronto-temporal Theta power changes may reflect the encoding and execution of memory task.

  14. Monte Carlo calculations of the cellular S-values for α-particle-emitting radionuclides incorporated into the nuclei of cancer cells of the MDA-MB231, MCF7 and PC3 lines.

    PubMed

    Rojas-Calderón, E L; Ávila, O; Ferro-Flores, G

    2018-05-01

    S-values (dose per unit of cumulated activity) for alpha particle-emitting radionuclides and monoenergetic alpha sources placed in the nuclei of three cancer cell models (MCF7, MDA-MB231 breast cancer cells and PC3 prostate cancer cells) were obtained by Monte Carlo simulation. The MCNPX code was used to calculate the fraction of energy deposited in the subcellular compartments due to the alpha sources in order to obtain the S-values. A comparison with internationally accepted S-values reported by the MIRD Cellular Committee for alpha sources in three sizes of spherical cells was also performed leading to an agreement within 4% when an alpha extended source uniformly distributed in the nucleus is simulated. This result allowed to apply the Monte Carlo Methodology to evaluate S-values for alpha particles in cancer cells. The calculation of S-values for nucleus, cytoplasm and membrane of cancer cells considering their particular geometry, distribution of the radionuclide source and chemical composition by means of Monte Carlo simulation provides a good approach for dosimetry assessment of alpha emitters inside cancer cells. Results from this work provide information and tools that may help researchers in the selection of appropriate radiopharmaceuticals in alpha-targeted cancer therapy and improve its dosimetry evaluation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Pre-cue Fronto-Occipital Alpha Phase and Distributed Cortical Oscillations Predict Failures of Cognitive Control

    PubMed Central

    Hamm, Jordan P.; Dyckman, Kara A.; McDowell, Jennifer E.; Clementz, Brett A.

    2012-01-01

    Cognitive control is required for correct performance on antisaccade tasks, including the ability to inhibit an externally driven ocular motor repsonse (a saccade to a peripheral stimulus) in favor of an internally driven ocular motor goal (a saccade directed away from a peripheral stimulus). Healthy humans occasionally produce errors during antisaccade tasks, but the mechanisms associated with such failures of cognitive control are uncertain. Most research on cognitive control failures focuses on post-stimulus processing, although a growing body of literature highlights a role of intrinsic brain activity in perceptual and cognitive performance. The current investigation used dense array electroencephalography and distributed source analyses to examine brain oscillations across a wide frequency bandwidth in the period prior to antisaccade cue onset. Results highlight four important aspects of ongoing and preparatory brain activations that differentiate error from correct antisaccade trials: (i) ongoing oscillatory beta (20–30Hz) power in anterior cingulate prior to trial initiation (lower for error trials), (ii) instantaneous phase of ongoing alpha-theta (7Hz) in frontal and occipital cortices immediately before trial initiation (opposite between trial types), (iii) gamma power (35–60Hz) in posterior parietal cortex 100 ms prior to cue onset (greater for error trials), and (iv) phase locking of alpha (5–12Hz) in parietal and occipital cortices immediately prior to cue onset (lower for error trials). These findings extend recently reported effects of pre-trial alpha phase on perception to cognitive control processes, and help identify the cortical generators of such phase effects. PMID:22593071

  16. [EEG alpha indices in dependence on the menstrual cycle phase and salivary progesterone].

    PubMed

    Bazanova, O M; Kondratenko, A V; Kuz'minova, O I; Muravleva, K B; Petrova, S E

    2014-01-01

    The effects of the neurohumoral status on the EEG alpha - activity indices were studied in a within-subject design with 78 women aged 18-27 years during 1-2 menstrual cycle. Psychometric and EEG indices of alpha waves basal body temperature, saliva progesterone and cortisol level were monitored every 2-3 days. Menstrual and follicular recording sessions occurred before the ovulatory temperature rise, luteal recording session--after increasing progesterone level more than 20% respect to previous day and premenstrual sessions after decreasing progesterone level more that 20% respect to previous day. The design consisted of rest and task periods EEG, EMG and ECG recordings. Half the subjects began during their menstrual phase and half began during their luteal phase. All 5 phases were compared for differences between psychometric features EEG alpha activity, EMG and ECG baseline resting levels, as well as for reactivity to cognitive task. The results showed menstrual phase differences in all psychometric and alpha EEG indices. The cognitive fluency, alpha peak frequency, alpha band width, power in alpha-2 frequency range are maximal at luteal, alpha visual activation and reactivity to cognitive task performance--at follicular phase. The hypothesis that the EEG alpha activity depends on the hormonal status supported by the positive association salivary progesterone level with the alpha peak frequency, power in the alpha-2 band and negative--with the power of the alpha-1 band. According these results, we conclude that psycho-physiological recording sessions with women might be provided with a glance to phase of menstrual cycle.

  17. Determination of nursing students' attitudes towards the use of technology.

    PubMed

    Terkes, Nurten; Celik, Ferya; Bektas, Hicran

    2018-03-11

    The use of technology is increasingly important in nursing education and practice. For this reason, it is necessary to determine the attitudes of nursing students towards technology. This study was conducted with 508 nursing students. A personal information form that was prepared by the researchers and the Attitudes Toward Technology Scale were used as the data collection tools. The mean score that was obtained by the nursing students from the Attitudes Toward Technology Scale was 61.53 ± 1.13. The Cronbach's alpha coefficient was found to be 0.90. There was a statistically significant difference between the sexes, using a computer, tablet, or laptop, using technology to reach health-related information, and for professional development, using mobile applications related to drug information. There was also a statistical difference between using the Periscope and Scorpio accounts from social media and using Excel and PowerPoint from Microsoft programs. Nursing students are capable of technology-based teaching, which can be expanded as a result. © 2018 Japan Academy of Nursing Science.

  18. Impact of Energy Gain and Subsystem Characteristics on Fusion Propulsion Performance Balances

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Suman; Schmidt, George R.

    2000-01-01

    Rapid transportation of large payloads and human crews to destinations throughout the solar system will require propulsion systems having not only very high exhaust velocities (I (sub sp) greater than or equal to 10 (exp 4) to 10 (exp 5) sec) but also extremely low mass-power ratios (alpha less than or equal to 10 (exp -1) kg/kW). Such low a are difficult to achieve with power-limited propulsion systems. but may be attainable with fusion and other high I (sub SP) nuclear concepts that produce energy within the propellant. The magnitude of this energy gain is of fundamental importance. It must be large enough to sustain the nuclear process while still providing a high jet power relative to the massive power-intensive subsystems associated with these types of concepts. This paper evaluates the energy gain and mass-power characteristics required for a consistent with 1-year roundtrip planetary missions ranging up to 100 AU. Central to this analysis is an equation for overall system a, which is derived from the power balance of a generalized "gain-limited" propulsion system. Results show that the gain required to achieve alpha approximately 10 (exp -1) kg/kW with foreseeable subsystem technology can vary from 50 to as high as 10,000, which is 2 to 5 orders of magnitude greater than current state-of-the art. However, order of magnitude improvements in propulsion subsystem mass and efficiency could reduce gain requirements to 10 to 1,000 - still a very challenging goal.

  19. Alternate method of source preparation for alpha spectrometry: No electrodeposition, no hydrofluoric acid

    DOE PAGES

    Kurosaki, Hiromu; Mueller, Rebecca J.; Lambert, Susan B.; ...

    2016-07-15

    An alternate method of preparing actinide alpha counting sources was developed in place of electrodeposition or lanthanide fluoride micro-precipitation. The method uses lanthanide hydroxide micro-precipitation to avoid the use of hazardous hydrofluoric acid. Lastly, it provides a quicker, simpler, and safer way of preparing actinide alpha counting sources in routine, production-type laboratories that process many samples daily.

  20. Production of alpha-amylase from Aspergillus oryzae for several industrial applications in a single step.

    PubMed

    Porfirif, María C; Milatich, Esteban J; Farruggia, Beatriz M; Romanini, Diana

    2016-06-01

    A one-step method as a strategy of alpha-amylase concentration and purification was developed in this work. This methodology requires the use of a very low concentration of biodegradable polyelectrolyte (Eudragit(®) E-PO) and represents a low cost, fast, easy to scale up and non-polluting technology. Besides, this methodology allows recycling the polymer after precipitation. The formation of reversible soluble/insoluble complexes between alpha-amylase and the polymer Eudragit(®) E-PO was studied, and their precipitation in selected conditions was applied with bioseparation purposes. Turbidimetric assays allowed to determine the pH range where the complexes are insoluble (4.50-7.00); pH 5.50 yielded the highest turbidity of the system. The presence of NaCl (0.05M) in the medium totally dissociates the protein-polymer complexes. When the adequate concentration of polymer was added under these conditions to a liquid culture of Aspergillus oryzae, purification factors of alpha-amylase up to 7.43 and recoveries of 88% were obtained in a simple step without previous clarification. These results demonstrate that this methodology is suitable for the concentration and production of alpha-amylase from this source and could be applied at the beginning of downstream processing. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Inverter communications using output signal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Patrick L.

    Technologies for communicating information from an inverter configured for the conversion of direct current (DC) power generated from an alternative source to alternating current (AC) power are disclosed. The technologies include determining information to be transmitted from the inverter over a power line cable connected to the inverter and controlling the operation of an output converter of the inverter as a function of the information to be transmitted to cause the output converter to generate an output waveform having the information modulated thereon.

  2. A Retrospective of Four Decades of Military Interest in Thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Guazzoni, Guido; Matthews, Selma

    2004-11-01

    Following a short discussion on the origin of Thermophotovoltaic (TPV), this presentation offers a retrospective of the progress and results of the recurrent efforts in TPV conducted in the United States by the Military during the last 40 years. The US Army's interest in TPV, for the development of portable power sources, started a few years after the energy conversion approach was conceived. TPV technology was seen to offer a solution for the Army's need for power in the 10 to 1500 Watt range. The technology offered the means to overcome the limitation of size and weight found in existing commercial power sources, with the additional advantage of silent and multifuel operation. Hence, the Army invested research and development (R&D) funding to investigate TPV feasibility for tactical field application. After an initial decade of continuous research studies by the Army, the support for this technology has experienced cycles of significant efforts interrupted by temporary waiting periods to allow this technology to further mature. Over the last four decades, several TPV proof of concept systems were developed. The results of their testing and evaluation have demonstrated the feasibility of the technology for development of power sources with output of several watts to a few hundreds watts. To date, the results have not been found to adequately demonstrate the applicability of TPV to the development of military power generators with output above 500 watts. TPV power sources have not been developed yet for Army field use or troop testing. The development risk is still considered to be moderate-to-high since practical-size systems that go beyond the laboratory test units have not been designed, constructed, tested. The greatest need is for system development, along with concurrent continued component development and improvement. The Defense Advanced Research Project Agency (DARPA) support for TPV R&D effort has been drastically reduced. The Army is still pursuing a 500watt TPV unit demonstrator. No further collaboration among DARPA, Army, NASA is contemplated, which seems indicative of the beginning of a new period of waiting for additional maturing of this technology. The Army's assessment about the viability of TPV for integrated systems indicates that the technology will require a few more years of development. However, at this time, for the completion of component and system development, a strong effort is needed in the private sector. The achievement of the necessary ruggedness for some critical components, acceptable overall efficiency, and system thermal management, is essential for a new, strong restart of TPV effort by the Military.

  3. DESIGN OF A GAMMA-RAY SOURCE BASED ON INVERSE COMPTON SCATTERING AT THE FAST SUPERCONDUCTING LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihalcea, D.; Jacobson, B.; Murokh, A.

    2016-10-10

    A watt-level average-power gamma-ray source is currently under development at the Fermilab Accelerator Science & Technology (FAST) facility. The source is based on the Inverse Compton Scattering of a high-brightness 300-MeV beam against a high-power laser beam circulating in an optical cavity. The back scattered gamma rays are expected to have photon energies up to 1.5 MeV. This paper discusses the optimization of the source, its performances, and the main challenges ahead.

  4. Power processing

    NASA Technical Reports Server (NTRS)

    Schwarz, F. C.

    1971-01-01

    Processing of electric power has been presented as a discipline that draws on almost every field of electrical engineering, including system and control theory, communications theory, electronic network design, and power component technology. The cost of power processing equipment, which often equals that of expensive, sophisticated, and unconventional sources of electrical energy, such as solar batteries, is a significant consideration in the choice of electric power systems.

  5. Mini-Brayton heat source assembly development

    NASA Technical Reports Server (NTRS)

    Wein, D.; Zimmerman, W. F.

    1978-01-01

    The work accomplished on the Mini-Brayton Heat Source Assembly program is summarized. Required technologies to design, fabricate and assemble components for a high temperature Heat Source Assembly (HSA) which would generate and transfer the thermal energy for a spaceborne Brayton Isotope Power System (BIPS) were developed.

  6. Cross-frequency power coupling between hierarchically organized face-selective areas.

    PubMed

    Furl, Nicholas; Coppola, Richard; Averbeck, Bruno B; Weinberger, Daniel R

    2014-09-01

    Neural oscillations are linked to perception and behavior and may reflect mechanisms for long-range communication between brain areas. We developed a causal model of oscillatory dynamics in the face perception network using magnetoencephalographic data from 51 normal volunteers. This model predicted induced responses to faces by estimating oscillatory power coupling between source locations corresponding to bilateral occipital and fusiform face areas (OFA and FFA) and the right superior temporal sulcus (STS). These sources showed increased alpha and theta and decreased beta power as well as selective responses to fearful facial expressions. We then used Bayesian model comparison to compare hypothetical models, which were motivated by previous connectivity data and a well-known theory of temporal lobe function. We confirmed this theory in detail by showing that the OFA bifurcated into 2 independent, hierarchical, feedforward pathways, with fearful expressions modulating power coupling only in the more dorsal (STS) pathway. The power coupling parameters showed a common pattern over connections. Low-frequency bands showed same-frequency power coupling, which, in the dorsal pathway, was modulated by fearful faces. Also, theta power showed a cross-frequency suppression of beta power. This combination of linear and nonlinear mechanisms could reflect computational mechanisms in hierarchical feedforward networks. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Free-piston Stirling component test power converter

    NASA Technical Reports Server (NTRS)

    Dochat, George; Dhar, Manmohan

    1991-01-01

    The National Aeronautics and Space Administration (NASA) has been evaluating free-piston Stirling power converters (FPSPCs) for use on a wide variety of space missions. They provide high reliability, long life, and efficient operation and can be coupled with all potential heat sources, various heat input and heat rejection systems, and various power management and distribution systems. FPSPCs can compete favorably with alternative power conversion systems over a range of hundreds of watts to megawatts. Mechanical Technology Incorporated (MTI) is developing FPSPC technology under contract to NASA Lewis Research Center and will demonstrate this technology in two full-scale power converters operating at space temperature conditions. The testing of the first of these, the component test power converter (CTPC), was initiated in Spring 1991 to evaluate mechanical operation at space operating temperatures. The CTPC design, hardware fabrication, and initial test results are reviewed.

  8. Alpha absolute power measurement in panic disorder with agoraphobia patients.

    PubMed

    de Carvalho, Marcele Regine; Velasques, Bruna Brandão; Freire, Rafael C; Cagy, Maurício; Marques, Juliana Bittencourt; Teixeira, Silmar; Rangé, Bernard P; Piedade, Roberto; Ribeiro, Pedro; Nardi, Antonio Egidio; Akiskal, Hagop Souren

    2013-10-01

    Panic attacks are thought to be a result from a dysfunctional coordination of cortical and brainstem sensory information leading to heightened amygdala activity with subsequent neuroendocrine, autonomic and behavioral activation. Prefrontal areas may be responsible for inhibitory top-down control processes and alpha synchronization seems to reflect this modulation. The objective of this study was to measure frontal absolute alpha-power with qEEG in 24 subjects with panic disorder and agoraphobia (PDA) compared to 21 healthy controls. qEEG data were acquired while participants watched a computer simulation, consisting of moments classified as "high anxiety"(HAM) and "low anxiety" (LAM). qEEG data were also acquired during two rest conditions, before and after the computer simulation display. We observed a higher absolute alpha-power in controls when compared to the PDA patients while watching the computer simulation. The main finding was an interaction between the moment and group factors on frontal cortex. Our findings suggest that the decreased alpha-power in the frontal cortex for the PDA group may reflect a state of high excitability. Our results suggest a possible deficiency in top-down control processes of anxiety reflected by a low absolute alpha-power in the PDA group while watching the computer simulation and they highlight that prefrontal regions and frontal region nearby the temporal area are recruited during the exposure to anxiogenic stimuli. © 2013 Elsevier B.V. All rights reserved.

  9. III-V/Ge MOS device technologies for low power integrated systems

    NASA Astrophysics Data System (ADS)

    Takagi, S.; Noguchi, M.; Kim, M.; Kim, S.-H.; Chang, C.-Y.; Yokoyama, M.; Nishi, K.; Zhang, R.; Ke, M.; Takenaka, M.

    2016-11-01

    CMOS utilizing high mobility III-V/Ge channels on Si substrates is expected to be one of the promising devices for high performance and low power integrated systems in the future technology nodes, because of the enhanced carrier transport properties. In addition, Tunneling-FETs (TFETs) using Ge/III-V materials are regarded as one of the most important steep slope devices for the ultra-low power applications. In this paper, we address the device and process technologies of Ge/III-V MOSFETs and TFETs on the Si CMOS platform. The channel formation, source/drain (S/D) formation and gate stack engineering are introduced for satisfying the device requirements. The plasma post oxidation to form GeOx interfacial layers is a key gate stack technology for Ge CMOS. Also, direct wafer bonding of ultrathin body quantum well III-V-OI channels, combined with Tri-gate structures, realizes high performance III-V n-MOSFETs on Si. We also demonstrate planar-type InGaAs and Ge/strained SOI TFETs. The defect-less p+-n source junction formation with steep impurity profiles is a key for high performance TFET operation.

  10. Analysis and Application of Microgrids

    NASA Astrophysics Data System (ADS)

    Yue, Lu

    New trends of generating electricity locally and utilizing non-conventional or renewable energy sources have attracted increasing interests due to the gradual depletion of conventional fossil fuel energy sources. The new type of power generation is called Distributed Generation (DG) and the energy sources utilized by Distributed Generation are termed Distributed Energy Sources (DERs). With DGs embedded in the distribution networks, they evolve from passive distribution networks to active distribution networks enabling bidirectional power flows in the networks. Further incorporating flexible and intelligent controllers and employing future technologies, active distribution networks will turn to a Microgrid. A Microgrid is a small-scale, low voltage Combined with Heat and Power (CHP) supply network designed to supply electrical and heat loads for a small community. To further implement Microgrids, a sophisticated Microgrid Management System must be integrated. However, due to the fact that a Microgrid has multiple DERs integrated and is likely to be deregulated, the ability to perform real-time OPF and economic dispatch with fast speed advanced communication network is necessary. In this thesis, first, problems such as, power system modelling, power flow solving and power system optimization, are studied. Then, Distributed Generation and Microgrid are studied and reviewed, including a comprehensive review over current distributed generation technologies and Microgrid Management Systems, etc. Finally, a computer-based AC optimization method which minimizes the total transmission loss and generation cost of a Microgrid is proposed and a wireless communication scheme based on synchronized Code Division Multiple Access (sCDMA) is proposed. The algorithm is tested with a 6-bus power system and a 9-bus power system.

  11. A Design of a Modular GPHS-Stirling Power System for a Lunar Habitation Module

    NASA Technical Reports Server (NTRS)

    Schmitz, Paul C.; Penswick, L. Barry; Shaltens, Richard K.

    2005-01-01

    Lunar habitation modules need electricity and potentially heat to operate. Because of the low amounts of radiation emitted by General Purpose Heat Source (GPHS) modules, power plants incorporating these as heat sources could be placed in close proximity to habitation modules. A design concept is discussed for a high efficiency power plant based on a GPHS assembly integrated with a Stirling convertor. This system could provide both electrical power and heat, if required, for a lunar habitation module. The conceptual GPHS/Stirling system is modular in nature and made up of a basic 5.5 KWe Stirling convertor/GPHS module assembly, convertor controller/PMAD electronics, waste heat radiators, and associated thermal insulation. For the specific lunar application under investigation eight modules are employed to deliver 40 KWe to the habitation module. This design looks at three levels of Stirling convertor technology and addresses the issues of integrating the Stirling convertors with the GPHS heat sources assembly using proven technology whenever possible. In addition, issues related to the high-temperature heat transport system, power management, convertor control, vibration isolation, and potential system packaging configurations to ensure safe operation during all phases of deployment will be discussed.

  12. Flexible operation of thermal plants with integrated energy storage technologies

    NASA Astrophysics Data System (ADS)

    Koytsoumpa, Efthymia Ioanna; Bergins, Christian; Kakaras, Emmanouil

    2017-08-01

    The energy system in the EU requires today as well as towards 2030 to 2050 significant amounts of thermal power plants in combination with the continuously increasing share of Renewables Energy Sources (RES) to assure the grid stability and to secure electricity supply as well as to provide heat. The operation of the conventional fleet should be harmonised with the fluctuating renewable energy sources and their intermittent electricity production. Flexible thermal plants should be able to reach their lowest minimum load capabilities while keeping the efficiency drop moderate as well as to increase their ramp up and down rates. A novel approach for integrating energy storage as an evolutionary measure to overcome many of the challenges, which arise from increasing RES and balancing with thermal power is presented. Energy storage technologies such as Power to Fuel, Liquid Air Energy Storage and Batteries are investigated in conjunction with flexible power plants.

  13. Status of a Power Processor for the Prometheus-1 Electric Propulsion System

    NASA Technical Reports Server (NTRS)

    Pinero, Luis R.; Hill, Gerald M.; Aulisio, Michael; Gerber, Scott; Griebeler, Elmer; Hewitt, Frank; Scina, Joseph

    2006-01-01

    NASA is developing technologies for nuclear electric propulsion for proposed deep space missions in support of the Exploration initiative under Project Prometheus. Electrical power produced by the combination of a fission-based power source and a Brayton power conversion and distribution system is used by a high specific impulse ion propulsion system to propel the spaceship. The ion propulsion system include the thruster, power processor and propellant feed system. A power processor technology development effort was initiated under Project Prometheus to develop high performance and lightweight power-processing technologies suitable for the application. This effort faces multiple challenges including developing radiation hardened power modules and converters with very high power capability and efficiency to minimize the impact on the power conversion and distribution system as well as the heat rejection system. This paper documents the design and test results of the first version of the beam supply, the design of a second version of the beam supply and the design and test results of the ancillary supplies.

  14. A Note on Comparing the Power of Test Statistics at Low Significance Levels.

    PubMed

    Morris, Nathan; Elston, Robert

    2011-01-01

    It is an obvious fact that the power of a test statistic is dependent upon the significance (alpha) level at which the test is performed. It is perhaps a less obvious fact that the relative performance of two statistics in terms of power is also a function of the alpha level. Through numerous personal discussions, we have noted that even some competent statisticians have the mistaken intuition that relative power comparisons at traditional levels such as α = 0.05 will be roughly similar to relative power comparisons at very low levels, such as the level α = 5 × 10 -8 , which is commonly used in genome-wide association studies. In this brief note, we demonstrate that this notion is in fact quite wrong, especially with respect to comparing tests with differing degrees of freedom. In fact, at very low alpha levels the cost of additional degrees of freedom is often comparatively low. Thus we recommend that statisticians exercise caution when interpreting the results of power comparison studies which use alpha levels that will not be used in practice.

  15. Livestock water pumping with wind and solar power

    USDA-ARS?s Scientific Manuscript database

    Recent developments in pumping technologies have allowed for efficient use of renewable energies like wind and solar to power new pumps for remote water pumping. A helical type, positive displacement pump was developed a few years ago and recently modified to accept input from a variable power sourc...

  16. Different slopes for different folks: alpha and delta EEG power predict subsequent video game learning rate and improvements in cognitive control tasks.

    PubMed

    Mathewson, Kyle E; Basak, Chandramallika; Maclin, Edward L; Low, Kathy A; Boot, Walter R; Kramer, Arthur F; Fabiani, Monica; Gratton, Gabriele

    2012-12-01

    We hypothesized that control processes, as measured using electrophysiological (EEG) variables, influence the rate of learning of complex tasks. Specifically, we measured alpha power, event-related spectral perturbations (ERSPs), and event-related brain potentials during early training of the Space Fortress task, and correlated these measures with subsequent learning rate and performance in transfer tasks. Once initial score was partialled out, the best predictors were frontal alpha power and alpha and delta ERSPs, but not P300. By combining these predictors, we could explain about 50% of the learning rate variance and 10%-20% of the variance in transfer to other tasks using only pretraining EEG measures. Thus, control processes, as indexed by alpha and delta EEG oscillations, can predict learning and skill improvements. The results are of potential use to optimize training regimes. Copyright © 2012 Society for Psychophysiological Research.

  17. Alpha particle effects in burning tokamak plasmas: overview and specific examples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sigmar, D.J.

    1986-07-01

    Using the total power balance of an ignited tokamak plasma as a guideline, a range of alpha driven effects is surveyed regarding their impact on achieving and maintaining fusion burn. Specific examples of MHD and kinetic modes and multi species transport dynamics are discussed, including the possible interaction of these categories of effects. This power balance approach rather than a straightforward enumeration of possible effects serves to reveal their non-linear dependence and the ensuing fragility of our understanding of the approach to and maintenance of ignition. Specific examples are given of the interaction between ..cap alpha..-power driven sawtoothing and idealmore » MHD stability, and direct ..cap alpha..-effects on MHD modes including kinetic corrections. Anomalous ion heat transport and central impurity peaking mechanisms and anomalous and collisional ..cap alpha..-transport including the ambipolar electric field are discussed.« less

  18. Technology for satellite power conversion

    NASA Technical Reports Server (NTRS)

    Campbell, D. P.; Gouker, M. A.; Summers, C.; Gallagher, J. J.

    1984-01-01

    Techniques for satellite electromagnetic energy transfer and power conversion at millimeter and infrared wavelengths are discussed. The design requirements for rectenna receiving elements are reviewed for both coherent radiation sources and Earth thermal infrared emission. Potential power transmitters including gyrotrons, free electron lasers, and CO2 lasers are assessed along with the rectification properties of metal-oxide metal diode power converters.

  19. Primary electric power generation systems for advanced-technology engines

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.

    1983-01-01

    The advantages of the all electric airplane are discussed. In the all electric airplane the generator is the sole source of electric power; it powers the primary and secondary flight controls, the environmentals, and the landing gear. Five candidates for all electric power systems are discussed and compared. Cost benefits of the all electric airplane are discussed.

  20. Decoding and Reconstructing the Focus of Spatial Attention from the Topography of Alpha-band Oscillations.

    PubMed

    Samaha, Jason; Sprague, Thomas C; Postle, Bradley R

    2016-08-01

    Many aspects of perception and cognition are supported by activity in neural populations that are tuned to different stimulus features (e.g., orientation, spatial location, color). Goal-directed behavior, such as sustained attention, requires a mechanism for the selective prioritization of contextually appropriate representations. A candidate mechanism of sustained spatial attention is neural activity in the alpha band (8-13 Hz), whose power in the human EEG covaries with the focus of covert attention. Here, we applied an inverted encoding model to assess whether spatially selective neural responses could be recovered from the topography of alpha-band oscillations during spatial attention. Participants were cued to covertly attend to one of six spatial locations arranged concentrically around fixation while EEG was recorded. A linear classifier applied to EEG data during sustained attention demonstrated successful classification of the attended location from the topography of alpha power, although not from other frequency bands. We next sought to reconstruct the focus of spatial attention over time by applying inverted encoding models to the topography of alpha power and phase. Alpha power, but not phase, allowed for robust reconstructions of the specific attended location beginning around 450 msec postcue, an onset earlier than previous reports. These results demonstrate that posterior alpha-band oscillations can be used to track activity in feature-selective neural populations with high temporal precision during the deployment of covert spatial attention.

  1. Spacecraft instrument technology and cosmochemistry

    PubMed Central

    McSween, Harry Y.; McNutt, Ralph L.; Prettyman, Thomas H.

    2011-01-01

    Measurements by instruments on spacecraft have significantly advanced cosmochemistry. Spacecraft missions impose serious limitations on instrument volume, mass, and power, so adaptation of laboratory instruments drives technology. We describe three examples of flight instruments that collected cosmochemical data. Element analyses by Alpha Particle X-ray Spectrometers on the Mars Exploration Rovers have revealed the nature of volcanic rocks and sedimentary deposits on Mars. The Gamma Ray Spectrometer on the Lunar Prospector orbiter provided a global database of element abundances that resulted in a new understanding of the Moon’s crust. The Ion and Neutral Mass Spectrometer on Cassini has analyzed the chemical compositions of the atmosphere of Titan and active plumes on Enceladus. PMID:21402932

  2. RF power harvesting: a review on designing methodologies and applications

    NASA Astrophysics Data System (ADS)

    Tran, Le-Giang; Cha, Hyouk-Kyu; Park, Woo-Tae

    2017-12-01

    Wireless power transmission was conceptualized nearly a century ago. Certain achievements made to date have made power harvesting a reality, capable of providing alternative sources of energy. This review provides a summ ary of radio frequency (RF) power harvesting technologies in order to serve as a guide for the design of RF energy harvesting units. Since energy harvesting circuits are designed to operate with relatively small voltages and currents, they rely on state-of-the-art electrical technology for obtaining high efficiency. Thus, comprehensive analysis and discussions of various designs and their tradeoffs are included. Finally, recent applications of RF power harvesting are outlined.

  3. In situ chemical analyses of extraterrestrial bodies

    NASA Technical Reports Server (NTRS)

    Economou, Thanasis E.; Turkevich, Anthony L.

    1988-01-01

    One of the most important tasks on any sample return mission will have to be a quick sample characterization in order to guarantee a variety of collected samples. An alpha particle instrument with alpha, proton and X-ray modes can provide a quick and almost complete chemical analysis of Mars samples. This instrument is based on three interactions of the alpha particles from a radioactive source with matter: elastic scattering of the alpha particles by nuclei (alpha mode), (alpha,p) nuclear reaction with some light elements (proton mode), and excitation of the atomic structure of atoms by alpha particles, leading to emission of characteristic X-rays of the lunar surface at three sites during the Surveyor mission of 1967 to 1968. Since then the instrument has been improved and miniaturized substantially. As shown in the past, the alpha particle instrument can operate under Martian conditions without any degradation in the performance. The alpha and proton modes can provide vital information about the light elements, while the X-ray mode with its ambient temperature X-ray detector will be useful for the heavier elements. The excitation of the atomic structure is provided by the same alpha radioactive source that is used by alpha and proton modes or by an auxiliary X-ray source that is selected to enhance the sensitivity to some important geochemical elements.

  4. An Overview of Controls and Flying Qualities Technology on the F/A-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Pahle, Joseph W.; Wichman, Keith D.; Foster, John V.; Bundick, W. Thomas

    1996-01-01

    The NASA F/A-18 High Alpha Research Vehicle (HARV) has been the flight test bed of a focused technology effort to significantly increase maneuvering capability at high angles of attack. Development and flight test of control law design methodologies, handling qualities metrics, performance guidelines, and flight evaluation maneuvers are described. The HARV has been modified to include two research control effectors, thrust vectoring, and actuated forebody strakes in order to provide increased control power at high angles of attack. A research flight control system has been used to provide a flexible, easily modified capability for high-angle-of-attack research controls. Different control law design techniques have been implemented and flight-tested, including eigenstructure assignment, variable gain output feedback, pseudo controls, and model-following. Extensive piloted simulation has been used to develop nonlinear performance guide-lines and handling qualities criteria for high angles of attack. This paper reviews the development and evaluation of technologies useful for high-angle-of-attack control. Design, development, and flight test of the research flight control system, control laws, flying qualities specifications, and flight test maneuvers are described. Flight test results are used to illustrate some of the lessons learned during flight test and handling qualities evaluations.

  5. THE PREPARATION, PROPERTIES, AND USES OF AMERICIUM-241, ALPHA-, GAMMA-, AND NEUTRON SOURCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strain, J.E.; Leddicotte, G.W.

    1962-09-01

    A study was made of the preparation of alpha, gamma, and neutron sources using the long-lived radioisotope of americium, Am/sup 241/. Americium-241 is an artificiallyproduced radioelement which has a half-life of 462 plus or minus 10 years and decays to Np/sup 237/ by alpha emission followed by low-energy gamma emission. The high specific activity of americium-241 (7.0 x 10/sup 9/ d/m/mg) combined with its reasonably long half-life makes it ideally sulted for the preparation of radioactive sources. The chemical and physical properties of Am/ sup 241/ and the physical manipulations involved in fabricating alpha, gamma, and neutron sources are generallymore » described in this report. Uses for each type of source are discussed and data are presented to indicate the respective properties and usefulness of each source type. (auth)« less

  6. Prestimulus alpha-band power biases visual discrimination confidence, but not accuracy.

    PubMed

    Samaha, Jason; Iemi, Luca; Postle, Bradley R

    2017-09-01

    The magnitude of power in the alpha-band (8-13Hz) of the electroencephalogram (EEG) prior to the onset of a near threshold visual stimulus predicts performance. Together with other findings, this has been interpreted as evidence that alpha-band dynamics reflect cortical excitability. We reasoned, however, that non-specific changes in excitability would be expected to influence signal and noise in the same way, leaving actual discriminability unchanged. Indeed, using a two-choice orientation discrimination task, we found that discrimination accuracy was unaffected by fluctuations in prestimulus alpha power. Decision confidence, on the other hand, was strongly negatively correlated with prestimulus alpha power. This finding constitutes a clear dissociation between objective and subjective measures of visual perception as a function of prestimulus cortical excitability. This dissociation is predicted by a model where the balance of evidence supporting each choice drives objective performance but only the magnitude of evidence supporting the selected choice drives subjective reports, suggesting that human perceptual confidence can be suboptimal with respect to tracking objective accuracy. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. 2015 Key Wind Program and National Laboratory Accomplishments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Office of Energy Efficiency and Renewable Energy

    The U.S. Department of Energy (DOE) Wind Program is committed to helping the nation secure cost-competitive sources of renewable energy through the development and deployment of innovative wind power technologies. By investing in improvements to wind plant design, technology development, and operation as well as developing tools to identify the highest quality wind resources, the Wind Program serves as a leader in making wind energy technologies more competitive with traditional sources of energy and a larger part of our nation’s renewable energy portfolio.

  8. Electrochemical Energy Storage and Power Sources for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Baldwin, Richard S.

    2007-01-01

    An overview of NASA s electrochemical energy storage programs for NASA Exploration missions is being presented at the 10th Electrochemical Power Sources R&D Symposium, which is being held in Williamsburg, VA on August 20-23, 2007. This public domain venue, which is sponsored by the U.S. Navy and held every two years, serves as a forum for the dissemination of research and development results related to electrochemical energy storage technology programs that are currently being supported and managed within governmental agencies. Technology areas of primary interest include batteries, fuel cells, and both overview and focused presentations on such are given by both governmental and contractual researchers. The forum also provides an opportunity to assess technology areas of mutual interest with respect to establishing collaborative and/or complementary programmatic interactions.

  9. High-power free-electron lasers-technology and future applications

    NASA Astrophysics Data System (ADS)

    Socol, Yehoshua

    2013-03-01

    Free-electron laser (FEL) is an all-electric, high-power, high beam-quality source of coherent radiation, tunable - unlike other laser sources - at any wavelength within wide spectral region from hard X-rays to far-IR and beyond. After the initial push in the framework of the “Star Wars” program, the FEL technology benefited from decades of R&D and scientific applications. Currently, there are clear signs that the FEL technology reached maturity, enabling real-world applications. E.g., successful and unexpectedly smooth commissioning of the world-first X-ray FEL in 2010 increased in one blow by more than an order of magnitude (40×) wavelength region available by FEL technology and thus demonstrated that the theoretical predictions just keep true in real machines. Experience of ordering turn-key electron beamlines from commercial companies is a further demonstration of the FEL technology maturity. Moreover, successful commissioning of the world-first multi-turn energy-recovery linac demonstrated feasibility of reducing FEL size, cost and power consumption by probably an order of magnitude in respect to previous configurations, opening way to applications, previously considered as non-feasible. This review takes engineer-oriented approach to discuss the FEL technology issues, keeping in mind applications in the fields of military and aerospace, next generation semiconductor lithography, photo-chemistry and isotope separation.

  10. 78 FR 41731 - Source Specific Federal Implementation Plan for Implementing Best Available Retrofit Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... Federal Implementation Plan for Implementing Best Available Retrofit Technology for Four Corners Power... Implementation Plan (FIP) to implement the Best Available Retrofit Technology (BART) requirement of the Regional... given the uncertainties in the electrical market in Arizona, EPA is proposing to extend the date by...

  11. Electric Power System Technology Options for Lunar Surface Missions

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.

    2005-01-01

    In 2004, the President announced a 'Vision for Space Exploration' that is bold and forward-thinking, yet practical and responsible. The vision explores answers to longstanding questions of importance to science and society and will develop revolutionary technologies and capabilities for the future, while maintaining good stewardship of taxpayer dollars. One crucial technology area enabling all space exploration is electric power systems. In this paper, the author evaluates surface power technology options in order to identify leading candidate technologies that will accomplish lunar design reference mission three (LDRM-3). LDRM-3 mission consists of multiple, 90-day missions to the lunar South Pole with 4-person crews starting in the year 2020. Top-level power requirements included a nominal 50 kW continuous habitat power over a 5-year lifetime with back-up or redundant emergency power provisions and a nominal 2-kW, 2-person unpressurized rover. To help direct NASA's technology investment strategy, this lunar surface power technology evaluation assessed many figures of merit including: current technology readiness levels (TRLs), potential to advance to TRL 6 by 2014, effectiveness of the technology to meet the mission requirements in the specified time, mass, stowed volume, deployed area, complexity, required special ground facilities, safety, reliability/redundancy, strength of industrial base, applicability to other LDRM-3 elements, extensibility to Mars missions, costs, and risks. For the 50-kW habitat module, dozens of nuclear, radioisotope and solar power technologies were down-selected to a nuclear fission heat source with Brayton, Stirling or thermoelectric power conversion options. Preferred energy storage technologies included lithium-ion battery and Proton Exchange Membrane (PEM) Regenerative Fuel Cells (RFC). Several AC and DC power management and distribution architectures and component technologies were defined consistent with the preferred habitat power generation technology option and the overall lunar surface mission. For rover power, more than 20 technology options were down-selected to radioisotope Stirling, liquid lithium-ion battery, PEM RFC, or primary fuel cell options. The author discusses various conclusions that can be drawn from the findings of this surface power technologies evaluation.

  12. Clinical nutrition managers have access to sources of empowerment.

    PubMed

    Mislevy, J M; Schiller, M R; Wolf, K N; Finn, S C

    2000-09-01

    To ascertain perceived access of dietitians to power in the workplace. The conceptual framework was Kanter's theory of organizational power. The Conditions for Work Effectiveness Questionnaire was used to measure perceived access to sources of power: information, support, resources, and opportunities. Demographic data were collected to identify factors that may enhance empowerment. The questionnaire was sent to a random sample of 348 dietitians chosen from members of the Clinical Nutrition Management dietetic practice group of the American Dietetic Association. Blank questionnaires were returned by 99 (28.4%) people not working as clinical nutrition managers, which left 249 in the sample. Descriptive statistics were used to organize and summarize data. One-way analysis of variance and t tests were performed to identify differences in responses based on levels of education, work setting, and information technology skills. Usable questionnaires were received from 178 people (71.5%). On a 5-point scale, scores for access to information (mean +/- standard deviation [SD] = 3.8 +/- 0.7), opportunity (mean +/- SD = 3.6 +/- 0.7), support (mean +/- SD = 3.2 +/- 0.9), and resources (mean +/- SD = 3.1 +/- 0.8) demonstrated that clinical nutrition managers perceived themselves as having substantial access to sources of empowerment. Those having higher levels of education, working in larger hospitals, having better-developed information technology skills, and using information technology more frequently had statistically significant higher empowerment scores (P = < or = .05) than contrasting groups in each category. Clinical nutrition managers are empowered and able to assume leadership roles in today's health care settings. Their power may be enhanced by asserting more pressure to gain greater access to sources of power: support, information, resources, and opportunities.

  13. [Effects of noise and music on EEG power spectrum].

    PubMed

    Yuan, Q; Liu, X H; Li, D C; Wang, H L; Liu, Y S

    2000-12-01

    Objective. To observe the effect of noise and music on EEG power spectrum. Method. 12 healthy male pilots aged 30 +/- 0.58 years served as the subjects. Dynamic EEG from 16 regions was recorded during quiet, under noise or when listening to music using Oxford MR95 Holter recorder. Changes of EEG power spectrum of delta, theta, alpha1, alpha2, beta1 and beta2, frequency components in 16 regions were analyzed. Result. The total alpha1 power was significantly decreased, while the total theta power was significantly increased when listening to music; It implies that the interhemispheric transmission of information in the frontotemporal areas might be involved. Conclusion. The changes of the EEG power spectrum were closely related to man's emotions; relaxation was associated with music; Individual difference exists in the influence of sound on EEG.

  14. Control research in the NASA high-alpha technology program

    NASA Technical Reports Server (NTRS)

    Gilbert, William P.; Nguyen, Luat T.; Gera, Joseph

    1990-01-01

    NASA is conducting a focused technology program, known as the High-Angle-of-Attack Technology Program, to accelerate the development of flight-validated technology applicable to the design of fighters with superior stall and post-stall characteristics and agility. A carefully integrated effort is underway combining wind tunnel testing, analytical predictions, piloted simulation, and full-scale flight research. A modified F-18 aircraft has been extensively instrumented for use as the NASA High-Angle-of-Attack Research Vehicle used for flight verification of new methods and concepts. This program stresses the importance of providing improved aircraft control capabilities both by powered control (such as thrust-vectoring) and by innovative aerodynamic control concepts. The program is accomplishing extensive coordinated ground and flight testing to assess and improve available experimental and analytical methods and to develop new concepts for enhanced aerodynamics and for effective control, guidance, and cockpit displays essential for effective pilot utilization of the increased agility provided.

  15. Study of the Many Fluorescent Lines and the Absorption Variability in GX 301-2 with XMM-Newton

    NASA Technical Reports Server (NTRS)

    Fuerst, F.; Suchy, S.; Kreykenbohm, I.; Barragan, L.; Wilms, J.; Pottschmidt, K.; Caballero, I.; Kretschmar, P.; Ferrigno, C.; Rothschild, R. E.

    2011-01-01

    We present an in-depth study of the High Mass X-ray Binary (HMXB) GX 301-2 during its pre-periastron flare using data from the XMM-Newton satellite. The energy spectrum shows a power law continuum absorbed by a large equivalent hydrogen column on the order of 10(exp 24)/ sq cm and a prominent Fe K-alpha fluorescent emission line. Besides the Fe K-alpha line, evidence for Fe K-Beta, Ni K-alpha, Ni K-Beta, S K-alpha, Ar K-alpha, Ca K-alpha, and Cr K-alpha fluorescent lines is found. The observed line strengths are consistent with fluorescence in a cold absorber. This is the first time that Cr K-alpha is seen in emission in the X-ray spectrum of a HMXB. In addition to the modulation by the strong pulse period of approx 685 sec the source is highly variable and shows different states of activity. We perform time-resolved as well as pulse-to-pulse resolved spectroscopy to investigate differences between these states of activity. We find that fluorescent line fluxes are strongly variable and generally follow the overall flux. The N-H value is variable by a factor of 2, but not correlated to continuum normalization. We find an interval of low flux in the light curve in which the pulsations cease almost completely, without any indication of an increasing absorption column. We investigate this dip in detail and argue that it is most likely that during the dip the accretion ceased and the afterglow of the fluorescent iron accounted for the main portion of the X-ray flux. A similar dip was found earlier in RXTE data, and we compare our findings to these results.

  16. Advanced Electrical Materials and Components Being Developed

    NASA Technical Reports Server (NTRS)

    Schwarze, Gene E.

    2004-01-01

    All aerospace systems require power management and distribution (PMAD) between the energy and power source and the loads. The PMAD subsystem can be broadly described as the conditioning and control of unregulated power from the energy source and its transmission to a power bus for distribution to the intended loads. All power and control circuits for PMAD require electrical components for switching, energy storage, voltage-to-current transformation, filtering, regulation, protection, and isolation. Advanced electrical materials and component development technology is a key technology to increasing the power density, efficiency, reliability, and operating temperature of the PMAD. The primary means to develop advanced electrical components is to develop new and/or significantly improved electronic materials for capacitors, magnetic components, and semiconductor switches and diodes. The next important step is to develop the processing techniques to fabricate electrical and electronic components that exceed the specifications of presently available state-of-the-art components. The NASA Glenn Research Center's advanced electrical materials and component development technology task is focused on the following three areas: 1) New and/or improved dielectric materials for the development of power capacitors with increased capacitance volumetric efficiency, energy density, and operating temperature; 2) New and/or improved high-frequency, high-temperature soft magnetic materials for the development of transformers and inductors with increased power density, energy density, electrical efficiency, and operating temperature; 3) Packaged high-temperature, high-power density, high-voltage, and low-loss SiC diodes and switches.

  17. Relationship of genetically transmitted alpha EEG traits to anxiety disorders and alcoholism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enoch, M.A.; Rohrbaugh, W.; Harris, C.R.

    We tested the hypothesis that a heritable EEG trait, the low voltage alpha (LV), is associated with psychiatric disorders. Modest to moderate evidence for genetic linkage of both panic disorder and the low voltage alpha trait to the same region of chromosome 20q has recently been reported, raising the issue of whether there is a phenotypic correlation between these traits. A total of 124 subjects including 50 unrelated index subjects and 74 relatives were studied. Alpha EEG power was measured and EEG phenotypes were impressionistically classified. Subjects were psychiatrically interviewed using the SADS-L and blind-rated by RDC criteria. Alcoholics weremore » four times more likely to be LV (including so-called borderline low voltage alpha) than were nonalcoholic, nonanxious subjects. Alcoholics with anxiety disorder are 10 times more likely to be LV. However, alcoholics without anxiety disorder were similar to nonalcoholics in alpha power. An anxiety disorder (panic disorder, phobia, or generalized anxiety) was found in 14/17 LV subjects as compared to 34/101 of the rest of the sample (P < 0.01). Support for these observations was found in the unrelated index subjects in whom no traits would be shared by familial clustering. Lower alpha power in anxiety disorders was not state-dependent, as indicated by the Spielberger Anxiety Scale. Familial covariance of alpha power was 0.25 (P < 0.01). These findings indicate there may be a shared factor underlying the transmissible low voltage alpha EEG variant and vulnerability to anxiety disorders with associated alcoholism. This factor is apparently not rare, because LV was found in approximately 10% of unrelated index subjects and 5% of subjects free of alcoholism and anxiety disorders. 43 refs., 1 fig., 3 tabs.« less

  18. Adaptive Red Teaming on Developmental Technologies

    DTIC Science & Technology

    2015-09-01

    between participating technologies. Power sources such as generators, wind turbines , and solar panels are examples of technology that have high...Day Camera xiv RASE Reconnaissance Advanced Sensor and Exploitation RF radio frequency RFI request for information RGPs rocket...used in night vision equipment, or a more complex electronic attack exploiting a weakness in a wireless network. Technological limitations can be

  19. Development status of EUV sources for use in beta-tools and high-volume chip manufacturing tools

    NASA Astrophysics Data System (ADS)

    Stamm, U.; Kleinschmidt, J.; Bolshukhin, D.; Brudermann, J.; Hergenhan, G.; Korobotchko, V.; Nikolaus, B.; Schürmann, M. C.; Schriever, G.; Ziener, C.; Borisov, V. M.

    2006-03-01

    In the paper we give an update about the development status of gas discharge produced plasma (GDPP) EUV sources at XTREME technologies. Already in 2003 first commercial prototypes of xenon GDPP sources of the type XTS 13-35 based on the Z-pinch with 35 W power in 2π sr have been delivered and integrated into micro-exposure tools from Exitech, UK. The micro-exposure tools with these sources have been installed in industry in 2004. The first tool has made more than 100 million pulses without visible degradation of the source collector optics. For the next generation of full-field exposure tools (we call it Beta-tools) we develop GDPP sources with power of > 10 W in intermediate focus. Also these sources use xenon as fuel which has the advantage of not introducing additional contaminations. Here we describe basic performance of these sources as well as aspects of collector integration and debris mitigation and optics lifetime. To achieve source performance data required for high volume chip manufacturing we consider tin as fuel for the source because of its higher conversion efficiency compared to xenon. While we had earlier reported an output power of 400 W in 2π sr from a tin source we could reach meanwhile 800 W in 2π sr from the source in burst operation. Provided a high power collector is available with a realistic collector module efficiency of between 9% and 15 % these data would support 70-120 W power in intermediate focus. However, we do not expect that the required duty cycle and the required electrode lifetimes can be met with this standing electrode design Z-pinch approach. To overcome lifetime and duty cycle limitations we have investigated GDPP sources with tin fuel and rotating disk electrodes. Currently we can generate more than 200 W in 2π sr with these sources at 4 kHz repetition rate. To achieve 180 W power in intermediate focus which is the recent requirement of some exposure tool manufacturers this type of source needs to operate at 21-28 kHz repetition rate which may be not possible by various reasons. In order to make operation at reasonable repetition rates with sufficient power possible we have investigated various new excitation concepts of the rotating disk electrode configurations. With one of the concepts pulse energies above 170 mJ in 2π sr could be demonstrated. This approach promises to support 180 W intermediate focus power at repetition rates in the range between 7 and 10 kHz. It will be developed to the next power level in the following phase of XTREME technologies' high volume manufacturing source development program.

  20. Studying Cosmic Dawn with WFIRST

    NASA Astrophysics Data System (ADS)

    Rhoads, James; Malhotra, Sangeeta; Jansen, Rolf A.; Windhorst, Rogier; Tilvi, Vithal; Finkelstein, Steven; Wold, Isak; Papovich, Casey; Fan, Xiaohui; Mellema, Garrelt; Zackrisson, Erik; Jensen, Hannes; T

    2018-01-01

    Our understanding of Cosmic Dawn can be revolutionized using WFIRST's combination of wide-field, sensitive, high resolution near-infrared imaging and spectroscopy. Guest investigator studies of WFIRST's high latitude imaging survey and supernova search fields will yield orders of magnitude increases in our samples of Lyman break galaxies from z=7 to z>12. The high latitude spectrsocopic survey will enable an unprecedented search for z>7 quasars. Guest observer deep fields can extend these studies to flux levels of Hubble's deepest fields, over regions measured in square degrees. The resulting census of luminous objects in the Cosmic Dawn will provide key insights into the sources of the ultraviolet photons that powered reionization. Moreover, because WFIRST has a wide field (slitless) spectroscopic capability, it can be used to search for Lyman alpha emitting galaxies over the full history of reionization. By comparing the Lyman alpha galaxy statistics to those of continuum sources, we can directly probe the transparency of the intergalactic gas and chart reionization history.Our team is planning for both Guest Investigator and Guest Observer applications of WFIRST to studying Cosmic Dawn, and welcomes dialog with other interested members of the community.

  1. Lateralization in Alpha-Band Oscillations Predicts the Locus and Spatial Distribution of Attention.

    PubMed

    Ikkai, Akiko; Dandekar, Sangita; Curtis, Clayton E

    2016-01-01

    Attending to a task-relevant location changes how neural activity oscillates in the alpha band (8-13Hz) in posterior visual cortical areas. However, a clear understanding of the relationships between top-down attention, changes in alpha oscillations in visual cortex, and attention performance are still poorly understood. Here, we tested the degree to which the posterior alpha power tracked the locus of attention, the distribution of attention, and how well the topography of alpha could predict the locus of attention. We recorded magnetoencephalographic (MEG) data while subjects performed an attention demanding visual discrimination task that dissociated the direction of attention from the direction of a saccade to indicate choice. On some trials, an endogenous cue predicted the target's location, while on others it contained no spatial information. When the target's location was cued, alpha power decreased in sensors over occipital cortex contralateral to the attended visual field. When the cue did not predict the target's location, alpha power again decreased in sensors over occipital cortex, but bilaterally, and increased in sensors over frontal cortex. Thus, the distribution and the topography of alpha reliably indicated the locus of covert attention. Together, these results suggest that alpha synchronization reflects changes in the excitability of populations of neurons whose receptive fields match the locus of attention. This is consistent with the hypothesis that alpha oscillations reflect the neural mechanisms by which top-down control of attention biases information processing and modulate the activity of neurons in visual cortex.

  2. Lifecycle Cost Assessment of Fuel Cell Technologies for Soldier Power System Applications. Paper and Presentation for the 43rd Power Sources Conference held 8-9 July 2008, Philadelphia, PA

    DTIC Science & Technology

    2008-07-09

    PEMFC in Federal Markets,” 2007 Fuel Cell Seminar, San Antonio, TX, 17 October 2007. 7. Fok, K., “Metal Hydride Fuel Cells: Increases in Power...Lauderdale, FL, March 17-20, 2008. 10. Zhao J., et al, “Reclaim/recycle of Pt/C catalysts for PEMFC ,” Energy Conversion and Management, vol. 48...hydrogen PEMFC or SOFC systems – Baratto et al, Journal of Power Sources – Citigroup, Dist. Telecom Backup – Battelle, Fuel Cell Seminar 2007 • Fuel

  3. Individual Differences in Cerebral Cortical Activity During Stress: Understanding and Intervention to Enhance Shooting Performance

    DTIC Science & Technology

    2009-04-30

    successfully raised physiological and 15. SUBJECT TERMS brain, cognitive neuroscience, EEG , neurofeedback , competition, stress, neuroendocrine, shooting...efficacy of the Neurofeedback training to elevate frontal EEG asymmetry (F4 minus F3 alpha power) in an attempt to enhance emotion regulation. The...observed a remarkable increase or synchrony of EEG alpha power (i.e., low-alpha) across the general scalp topography for both groups ( neurofeedback

  4. Implementation and Testing of Turbulence Models for the F18-HARV Simulation

    NASA Technical Reports Server (NTRS)

    Yeager, Jessie C.

    1998-01-01

    This report presents three methods of implementing the Dryden power spectral density model for atmospheric turbulence. Included are the equations which define the three methods and computer source code written in Advanced Continuous Simulation Language to implement the equations. Time-history plots and sample statistics of simulated turbulence results from executing the code in a test program are also presented. Power spectral densities were computed for sample sequences of turbulence and are plotted for comparison with the Dryden spectra. The three model implementations were installed in a nonlinear six-degree-of-freedom simulation of the High Alpha Research Vehicle airplane. Aircraft simulation responses to turbulence generated with the three implementations are presented as plots.

  5. Silicon-Carbide Power MOSFET Performance in High Efficiency Boost Power Processing Unit for Extreme Environments

    NASA Technical Reports Server (NTRS)

    Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan

    2016-01-01

    Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.

  6. Heat Recuperator Engineering for an ARL Liquid-Fueled Thermophotovoltaic Power Source Demonstrator

    DTIC Science & Technology

    2014-09-01

    using logistics and multiple other fuels. Some potential technologies include thermoelectric , thermophotovoltaic (TPV), and thermionic. For these... thermoelectric , thermophotovoltaic (TPV), and thermionic. For these technologies, thermal efficiency is critical to achieve high energy density and thermal-to... thermoelectric and TPV. The exhaust gas will be above this temperature, but more than 50% of the thermal power of the combustor can be lost to the exhaust

  7. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Signorelli, Riccardo; Cooley, John

    2015-10-14

    FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements inmore » rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor of 10x. The electronics have demonstrated a substantially reduced design cycle time by way of process and material selection innovations and have been qualified for 250°C / 10 Grms for at least 200 hours. FastCAP has also invented a rotary inertial energy generator (RIEG) to harvest various mechanical energy sources that exist downhole. This device is flow-independent and has been demonstrated as a proof of concept to survive geothermal well temperatures under this project. The herein energy harvester has been developed to provide operational power by harvesting rotational mechanical energy that exists downhole in geothermal drilling. The energy harvester has been tested at 250°C / 10 Grms for 200 hours. Deployment of these technologies in geothermal drilling and exploration applications could have an immediate and significant impact on the effectiveness and efficiency of drilling processes, particularly with regard to use of advanced logging and monitoring techniques. The ultimate goal of this work is to reduce drilling risk to make geothermal energy more attractive and viable to the customer. Generally speaking, we aim to support the transfer of MWD techniques from oil and gas to geothermal exploration with considerations toward the practical differences between the two. One of the most significant obstacles to the deployment of advanced drilling and production techniques in the geothermal context are limitations related to the maximum operating temperatures of downhole batteries used to provide power for downhole sensors, steering tools, telemetry equipment and other MWD/LWD technologies. FastCAP’s higher temperature ultracapacitor technology will provide power solutions for similar advanced drilling and production techniques, even in the harsher environments associated with geothermal energy production. This ultracapacitor will enable downhole power solutions for the geothermal industry capable of the same reliable and safe operation our team has demonstrated in the oil and gas context. Without batteries, geothermal MWD is left without a downhole power source. Some very high temperature turbines exist but provide unsteady, intermittent power and no power when the flow is off. In high loss formations common to geothermal exploration, it will be auspicious to support air drilling in which case there is no flow to power a turbine at all. In the best case, rechargeable energy storage will help to buffer unsteady power from non-battery power sources and in the worst case it will be needed to store energy from highly intermittent sources to provide a continuously operable power source to the tool.« less

  8. NASA Radioisotope Power System Program - Technology and Flight Systems

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Dudzinski, Leonard A.

    2009-01-01

    NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided.

  9. The NASA space power technology program

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1992-01-01

    NASA has a broad technology program in the field of space power. This paper describes that program, including the roles and responsibilities of the various NASA field centers and major contractors. In the power source area, the paper discusses the SP-100 Space Nuclear Power Project, which has been under way for about seven years and is making substantial progress toward development of components for a 100-kilowatt power system that can be scaled to other sizes. This system is a candidate power source for nuclear electric propulsion, as well as for a power plant for a lunar base. In the energy storage area, the paper describes NASA's battery- and fuel-cell development programs. NASA is actively working on NiCd, NiH2, and lithium batteries. A status update is also given on a U.S. Air Force-sponsored program to develop a large (150 ampere-hour) lithium-thionyl chloride battery for the Centaur upper-stage launch vehicle. Finally, the area of power management and distribution (PMAD) is addressed, including power system components such as solid-state switches and power integrated circuits. Automated load management and other computer-controlled functions offer considerable payoffs. The state of the art in space power is described, along with NASA's medium- and long-term goals in the area.

  10. Power-Law Template for IR Point Source Clustering

    NASA Technical Reports Server (NTRS)

    Addison, Graeme E.; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark; Halpern, Mark; Hincks, Adam; Hlozek, Renee; hide

    2011-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217,353,545 and 857 GHz, over angular scales 100 < I < 2200), the Balloonborne Large-Aperture Submillimeter Telescope (BLAST; 250, 350 and 500 microns; 1000 < I < 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fit by a simple power law of the form C_l\\propto I(sup -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, nu(sup beta) B(nu,T_eff), with a single emissivity index beta = 2.20 +/- 0.07 and effective temperature T_eff= 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha_150-220 = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in Cosmic Microwave Background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  11. A SOCIO-ECONOMIST LOOKS AT THE CURRENT VALUES AND CHANGING NEEDS OF YOUTH. FINAL DRAFT.

    ERIC Educational Resources Information Center

    THEOBALD, ROBERT

    MAN HAS ACHIEVED THE POWER TO CREATE AN ENVIRONMENT SUITED TO HIS NEEDS. THIS POWER COMES FROM DEVELOPMENTS IN THE UTILIZATION OF ENERGY, ADVANCEMENTS IN CHEMISTRY, AN INCREASE IN SCIENTIFIC PROBLEM SOLVING ABILITY AND COMPUTER TECHNOLOGY. THESE SOURCES OF POWER RESULT IN THE DRIVE TOWARD THE DEVELOPMENT OF DESTRUCTIVE POWER, THE CAPABILITY OF…

  12. Hybrid Power Management Program Evaluated Ultracapacitors for the Next Generation Launch Transportation Project

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2005-01-01

    The NASA Glenn Research Center initiated baseline testing of ultracapacitors to obtain empirical data in determining the feasibility of using ultracapacitors for the Next Generation Launch Transportation (NGLT) Project. There are large transient loads associated with NGLT that require a very large primary energy source or an energy storage system. The primary power source used for this test was a proton-exchange-membrane (PEM) fuel cell. The energy storage system can consist of batteries, flywheels, or ultracapacitors. Ultracapacitors were used for these tests. NASA Glenn has a wealth of experience in ultracapacitor technology through the Hybrid Power Management (HPM) Program, which the Avionics, Power and Communications Branch of Glenn s Engineering Development Division initiated for the Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-ofthe- art power devices in optimal configurations for space and terrestrial applications. The appropriate application and control of the various advanced power devices (such as ultracapacitors and fuel cells) significantly improves overall system performance and efficiency. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy.

  13. Feasibility Study of Cargo Airship Transportation Systems Powered by New Green Energy Technologies

    NASA Technical Reports Server (NTRS)

    Skuza, Jonathan R.; Park, Yeonjoon; Kim, Hyun Jung; Seaman, Shane T.; King, Glen C.; Choi, Sang H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik

    2014-01-01

    The development of transportation systems that use new and sustainable energy technologies is of utmost importance due to the possible future shortfalls that current transportation modes will encounter because of increased volume and costs. The introduction and further research and development of new transportation and energy systems by materials researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) and the Department of Transportation are discussed in this Technical Memorandum. In this preliminary study, airship concepts were assessed for cargo transportation using various green energy technologies capable of 24-hour operation (i.e., night and day). Two prototype airships were successfully constructed and tested at LaRC to demonstrate their feasibility: one with commercially available solar cells for operation during the daytime and one with microwave rectennas (i.e., rectifying antennas) developed in-house for night-time operation. The test results indicate the feasibility of a cargo transportation airship powered by new green energy sources and wireless power technology. Future applications will exploit new green energy sources that use materials and devices recently developed or are in the process of being developed at LaRC. These include quantum well SiGe solar cells; low, mid-, and high temperature thermoelectric modules; and wireless microwave and optical rectenna devices. This study examines the need and development of new energy sources for transportation, including the current status of research, materials, and potential applications.

  14. Fusion alpha-particle diagnostics for DT experiments on the joint European torus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiptily, V. G.; Beaumont, P.; Syme, D. B.

    2014-08-21

    JET equipped with ITER-like wall (a beryllium wall and a tungsten divertor) can provide auxiliary heating with power up to 35MW, producing a significant population of α-particles in DT operation. The direct measurements of alphas are very difficult and α-particle studies require a significant development of dedicated diagnostics. JET now has an excellent set of confined and lost fast particle diagnostics for measuring the α-particle source and its evolution in space and time, α-particle energy distribution, and α-particle losses. This paper describes how the above mentioned JET diagnostic systems could be used for α-particle measurements, and what options exist formore » keeping the essential α-particle diagnostics functioning well in the presence of intense DT neutron flux. Also, α-particle diagnostics for ITER are discussed.« less

  15. Reliable high-power injection locked 6kHz 60W laser for ArF immersion lithography

    NASA Astrophysics Data System (ADS)

    Watanabe, Hidenori; Komae, Shigeo; Tanaka, Satoshi; Nohdomi, Ryoichi; Yamazaki, Taku; Nakarai, Hiroaki; Fujimoto, Junichi; Matsunaga, Takashi; Saito, Takashi; Kakizaki, Kouji; Mizoguchi, Hakaru

    2007-03-01

    Reliable high power 193nm ArF light source is desired for the successive growth of ArF-immersion technology for 45nm node generation. In 2006, Gigaphoton released GT60A, high power injection locked 6kHz/60W/0.5pm (E95) laser system, to meet the demands of semiconductor markets. In this paper, we report key technologies for reliable mass production GT laser systems and GT60A high durability performance test results up to 20 billion pulses.

  16. Association of EEG alpha variants and alpha power with alcohol dependence in Mexican American young adults.

    PubMed

    Ehlers, Cindy L; Phillips, Evelyn

    2007-02-01

    Several studies support an association between electroencephalogram (EEG) voltage and alcohol dependence. However, the distribution of EEG variants also appears to differ depending on an individual's ethnic heritage, suggesting significant genetic stratification of this EEG phenotype. The present study's aims were to investigate the incidence of EEG alpha variants and spectral power in the alpha frequency range in Mexican American young adults based on gender, and personal and family history of alcohol dependence. Clinical ratings (high-, medium-, and low alpha voltage variants) and spectral characteristics of the EEG in the alpha frequency range (7.5-12 Hz) were investigated in young adult (age 18-25 years) Mexican American men (n=98) and women (n=138) who were recruited from the community. Nineteen percent (n=45) of the participants had a low-voltage alpha EEG variant, 18% had a high-voltage variant, and 63% had a medium-voltage variant. There were no significant differences in the distribution of the EEG variants based on family history of alcohol dependence. There was a significant relationship between gender and the three alpha variants (chi2=9.7; df=2; P<.008), and there were no male participants with alcohol dependence with high alpha variants (chi2=5.8; df=2; P<.056). Alcohol dependence, but not a family history of alcohol dependence, was associated with lower spectral power in the alpha frequency range in the right (F=4.4; df=1,96; P<.04) and left (F=5.3; df=1.96; P<.02) occipital areas in the men but not in the women. In conclusion, in this select population of Mexican American young adults, male gender and alcohol dependence are associated with an absence of high-voltage alpha variants and lower alpha power in the EEG. These data suggest that EEG low voltage, a highly heritable trait, may represent an important endophenotype in male Mexican Americans that may aid in linking brain function with genetic factors underlying alcohol dependence in this ethnic group.

  17. Study on key technologies of optimization of big data for thermal power plant performance

    NASA Astrophysics Data System (ADS)

    Mao, Mingyang; Xiao, Hong

    2018-06-01

    Thermal power generation accounts for 70% of China's power generation, the pollutants accounted for 40% of the same kind of emissions, thermal power efficiency optimization needs to monitor and understand the whole process of coal combustion and pollutant migration, power system performance data show explosive growth trend, The purpose is to study the integration of numerical simulation of big data technology, the development of thermal power plant efficiency data optimization platform and nitrogen oxide emission reduction system for the thermal power plant to improve efficiency, energy saving and emission reduction to provide reliable technical support. The method is big data technology represented by "multi-source heterogeneous data integration", "large data distributed storage" and "high-performance real-time and off-line computing", can greatly enhance the energy consumption capacity of thermal power plants and the level of intelligent decision-making, and then use the data mining algorithm to establish the boiler combustion mathematical model, mining power plant boiler efficiency data, combined with numerical simulation technology to find the boiler combustion and pollutant generation rules and combustion parameters of boiler combustion and pollutant generation Influence. The result is to optimize the boiler combustion parameters, which can achieve energy saving.

  18. Emission Trade to Meet Reasonably Available Control Technology (RACT) for the State of New York

    EPA Pesticide Factsheets

    This revision establishes and requires an emission trade between Niagara Mohawk Power Corporation and Champion International Paper Corporation which will result in both sources meeting the requirements of Reasonably Available Control Technology for oxides

  19. Simulation of the alpha particle heating and the helium ash source in an International Thermonuclear Experimental Reactor-like tokamak with an internal transport barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Lei, E-mail: lye@ipp.ac.cn; Guo, Wenfeng; Xiao, Xiaotao

    2014-12-15

    A guiding center orbit following code, which incorporates a set of non-singular coordinates for orbit integration, was developed and applied to investigate the alpha particle heating in an ITER-like tokamak with an internal transport barrier. It is found that a relatively large q (safety factor) value can significantly broaden the alpha heating profile in comparison with the local heating approximation; this broadening is due to the finite orbit width effects; when the orbit width is much smaller than the scale length of the alpha particle source profile, the heating profile agrees with the source profile, otherwise, the heating profile canmore » be significantly broadened. It is also found that the stagnation particles move to the magnetic axis during the slowing-down process, thus the effect of stagnation orbits is not beneficial to the helium ash removal. The source profile of helium ash is broadened in comparison with the alpha source profile, which is similar to the heating profile.« less

  20. MEG adaptation reveals action representations in posterior occipitotemporal regions.

    PubMed

    Hauswald, Anne; Tucciarelli, Raffaele; Lingnau, Angelika

    2018-06-01

    When we observe other people's actions, a number of parietal and precentral regions known to be involved in the planning and execution of actions are recruited for example seen as power decreases in alpha and beta frequencies indicative of increased activation. It has been argued that this recruitment reflects the process of simulating the observed action, thereby providing access to the meaning of the action. Alternatively, it has been suggested that rather than providing access to the meaning of an action, parietal and precentral regions might be recruited as a consequence of action understanding. A way to distinguish between these alternatives is to examine where in the brain and at which time point it is possible to discriminate between different types of actions (e.g., pointing or grasping) irrespective of the way these are performed. To this aim, we presented participants with videos of simple hand actions performed with the left or right hand towards a target on the left or the right side while recording magnetoencephalography (MEG) data. In each trial, participants were presented with two subsequent videos (S1, S2) depicting either the same (repeat trials) or different (non-repeat trials) actions. We predicted that areas that are sensitive to the type of action should show stronger adaptation (i.e., a smaller decrease in alpha and beta power) in repeat in comparison to non-repeat trials. Indeed, we observed less alpha and beta power decreases during the presentation of S2 when the action was repeated compared to when two different actions were presented indicating adaptation of neuronal populations that are selective for the type of action. Sources were obtained exclusively in posterior occipitotemporal regions, supporting the notion that an early differentiation of actions occurs outside the motor system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. State Electricity Profiles

    EIA Publications

    2017-01-01

    The annual report presents data tables describing the electricity industry in each State. Data include: summary statistics; the 10 largest plants by generating capacity; the top five entities ranked by sector; electric power industry generating capacity by primary energy source; electric power industry generation by primary energy source; utility delivered fuel prices for coal, petroleum, and natural gas; electric power industry emissions estimates; retail sales, revenue, and average retail price by sector; retail electricity sales statistics; and supply and disposition of electricity; net metering counts and capacity by technology and customer type; and advanced metering counts by customer type.

  2. A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platforn at the National Ignition Facility

    DOE PAGES

    Rosenberg, M. J.; Zylstra, A. B.; Seguin, F. H.; ...

    2016-01-18

    A thin-glass-shell, D 3He-filled exploding-pusher inertial confinement fusion implosion at the National Ignition Facility (NIF) has been demonstrated as a proton source that serves as a promising first step toward development of a monoenergetic proton, alpha, and triton backlighting platform at the NIF. Among the key measurements, the D3He-proton emission on this experiment (shot N121128) has been well-characterized spectrally, temporally, and in terms of emission isotropy, revealing a highly monoenergetic (ΔE/E~4%) and isotropic source (~3% proton fluence variation and ~0.5% proton energy variation). On a similar shot (N130129, with D 2 fill), the DD-proton spectrum has been obtained as well,more » illustrating that monoenergetic protons of multiple energies may be utilized in a single experiment. In conclusion, these results, and experiments on OMEGA, point toward future steps in the development of a precision, monoenergetic proton, alpha, and triton source that can readily be implemented at the NIF for backlighting a broad range of high energy density physics (HEDP) experiments in which fields and flows are manifest, and also utilized for studies of stopping power in warm dense matter and in classical plasmas.« less

  3. A direct-drive exploding-pusher implosion as the first step in development of a monoenergetic charged-particle backlighting platforn at the National Ignition Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenberg, M. J.; Zylstra, A. B.; Seguin, F. H.

    A thin-glass-shell, D 3He-filled exploding-pusher inertial confinement fusion implosion at the National Ignition Facility (NIF) has been demonstrated as a proton source that serves as a promising first step toward development of a monoenergetic proton, alpha, and triton backlighting platform at the NIF. Among the key measurements, the D3He-proton emission on this experiment (shot N121128) has been well-characterized spectrally, temporally, and in terms of emission isotropy, revealing a highly monoenergetic (ΔE/E~4%) and isotropic source (~3% proton fluence variation and ~0.5% proton energy variation). On a similar shot (N130129, with D 2 fill), the DD-proton spectrum has been obtained as well,more » illustrating that monoenergetic protons of multiple energies may be utilized in a single experiment. In conclusion, these results, and experiments on OMEGA, point toward future steps in the development of a precision, monoenergetic proton, alpha, and triton source that can readily be implemented at the NIF for backlighting a broad range of high energy density physics (HEDP) experiments in which fields and flows are manifest, and also utilized for studies of stopping power in warm dense matter and in classical plasmas.« less

  4. Architectural innovation foresight of thermoelectric generator charger integrated portable power supply for portable consumer electronic device in metropolitan market: The case study of Thailand

    NASA Astrophysics Data System (ADS)

    Maolikul, S.; Kiatgamolchai, S.; Chavarnakul, T.

    2012-06-01

    In the context of information and communication technology (ICT) trend for worldwide individuals, social life becomes digital and portable consumer electronic devices (PCED) powered by conventional power supply from batteries have been evolving through miniaturization and various function integration. Thermoelectric generators (TEG) were hypothesized for its potential role of battery charger to serve the shining PCED market. Hence, this paper, mainly focusing at the metropolitan market in Thailand, aimed to conduct architectural innovation foresight and to develop scenarios on potential exploitation approach of PCED battery power supply with TEG charger converting power from ambient heat source adjacent to individual's daily life. After technical review and assessment for TEG potential and battery aspect, the business research was conducted to analyze PCED consumer behavior for their PCED utilization pattern, power supply lack problems, and encountering heat sources/sinks in 3 modes: daily life, work, and leisure hobbies. Based on the secondary data analysis from literature and National Statistical Office of Thailand, quantitative analysis was applied using the cluster probability sampling methodology, statistically, with the sample size of 400 at 0.05 level of significance. In addition, the qualitative analysis was conducted to emphasize the rationale of consumer's behavior using in-depth qualitative interview. Scenario planning technique was also used to generate technological and market trend foresight. Innovation field and potential scenario for matching technology with market was proposed in this paper. The ingredient for successful commercialization of battery power supply with TEG charger for PCED market consists of 5 factors as follows: (1) PCED characteristic, (2) potential ambient heat sources/sinks, (3) battery module, (4) power management module, and the final jigsaw (5) characteristic and adequate arrangement of TEG modules. The foresight outcome for the potential innovations represents a case study in the pilot commercialization of TEG technology for some interesting niche markets in metropolitan area of Thailand, and, thus, can be the clue for product development related to TEG for market-driven application in other similar requirement conditions and contexts as well.

  5. Lesion evidence for a critical role of left posterior but not frontal areas in alpha-beta power decreases during context-driven word production.

    PubMed

    Piai, Vitória; Rommers, Joost; Knight, Robert T

    2017-09-09

    Different frequency bands in the electroencephalogram are postulated to support distinct language functions. Studies have suggested that alpha-beta power decreases may index word-retrieval processes. In context-driven word retrieval, participants hear lead-in sentences that either constrain the final word ('He locked the door with the') or not ('She walked in here with the'). The last word is shown as a picture to be named. Previous studies have consistently found alpha-beta power decreases prior to picture onset for constrained relative to unconstrained sentences, localised to the left lateral-temporal and lateral-frontal lobes. However, the relative contribution of temporal versus frontal areas to alpha-beta power decreases is unknown. We recorded the electroencephalogram from patients with stroke lesions encompassing the left lateral-temporal and inferior-parietal regions or left-lateral frontal lobe and from matched controls. Individual participant analyses revealed a behavioural sentence context facilitation effect in all participants, except for in the two patients with extensive lesions to temporal and inferior parietal lobes. We replicated the alpha-beta power decreases prior to picture onset in all participants, except for in the two same patients with extensive posterior lesions. Thus, whereas posterior lesions eliminated the behavioural and oscillatory context effect, frontal lesions did not. Hierarchical clustering analyses of all patients' lesion profiles, and behavioural and electrophysiological effects identified those two patients as having a unique combination of lesion distribution and context effects. These results indicate a critical role for the left lateral-temporal and inferior parietal lobes, but not frontal cortex, in generating the alpha-beta power decreases underlying context-driven word production. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  6. Intraoperative Frontal Alpha-Band Power Correlates with Preoperative Neurocognitive Function in Older Adults

    PubMed Central

    Giattino, Charles M.; Gardner, Jacob E.; Sbahi, Faris M.; Roberts, Kenneth C.; Cooter, Mary; Moretti, Eugene; Browndyke, Jeffrey N.; Mathew, Joseph P.; Woldorff, Marty G.; Berger, Miles; Berger, Miles

    2017-01-01

    Each year over 16 million older Americans undergo general anesthesia for surgery, and up to 40% develop postoperative delirium and/or cognitive dysfunction (POCD). Delirium and POCD are each associated with decreased quality of life, early retirement, increased 1-year mortality, and long-term cognitive decline. Multiple investigators have thus suggested that anesthesia and surgery place severe stress on the aging brain, and that patients with less ability to withstand this stress will be at increased risk for developing postoperative delirium and POCD. Delirium and POCD risk are increased in patients with lower preoperative cognitive function, yet preoperative cognitive function is not routinely assessed, and no intraoperative physiological predictors have been found that correlate with lower preoperative cognitive function. Since general anesthesia causes alpha-band (8–12 Hz) electroencephalogram (EEG) power to decrease occipitally and increase frontally (known as “anteriorization”), and anesthetic-induced frontal alpha power is reduced in older adults, we hypothesized that lower intraoperative frontal alpha power might correlate with lower preoperative cognitive function. Here, we provide evidence that such a correlation exists, suggesting that lower intraoperative frontal alpha power could be used as a physiological marker to identify older adults with lower preoperative cognitive function. Lower intraoperative frontal alpha power could thus be used to target these at-risk patients for possible therapeutic interventions to help prevent postoperative delirium and POCD, or for increased postoperative monitoring and follow-up. More generally, these results suggest that understanding interindividual differences in how the brain responds to anesthetic drugs can be used as a probe of neurocognitive function (and dysfunction), and might be a useful measure of neurocognitive function in older adults. PMID:28533746

  7. In-flight performance of the solar UV radiometer LYRA/PROBA-2

    NASA Astrophysics Data System (ADS)

    Stockman, Y.; BenMoussa, A.; Dammasch, I.; Defise, J.-M.; Dominique, M.; Halain, J.-P.; Hochedez, J.-F.; Koller, S.; Schmutz, W.; Schühle, U.

    2017-11-01

    LYRA is a solar radiometer, part of the PROBA-2 micro-satellite payload (Fig. 1). The PROBA-2 [1] mission has been launched on 02 November 2009 with a Rockot launcher to a Sun-synchronous orbit at an altitude of 725 km. Its nominal operation duration is two years with possible extension of 2 years. PROBA-2 is a small satellite developed under an ESA General Support Technology Program (GSTP) contract to perform an in-flight demonstration of new space technologies and support a scientific mission for a set of selected instruments [2]. PROBA-2 host 17 technological demonstrators and 4 scientific instruments. The mission is tracked by the ESA Redu Mission Operation Center. One of the four scientific instruments is LYRA that monitors the solar irradiance at a high cadence (> 20 Hz) in four soft X-Ray to VUV large passbands: the "Lyman-Alpha" channel, the "Herzberg" continuum range, the "Aluminium" and "Zirconium" filter channels. The radiometric calibration is traceable to synchrotron source standards [3]. LYRA benefits from wide bandgap detectors based on diamond. It is the first space assessment of these revolutionary UV detectors for astrophysics. Diamond sensors make the instruments radiation-hard and solar-blind (insensitive to the strong solar visible light) and, therefore, visible light blocking filters become superfluous. To correlate the data of this new detector technology, silicon detectors with well known characteristics are also embarked. Due to the strict allocated mass and power budget (5 kg, 5W), and poor priority to the payload needs on such platform, an optimization and a robustness of the instrument was necessary. The first switch-on occured on 16 November 2009. Since then the instrument performances have been monitored and analyzed during the commissioning period. This paper presents the first-light and preliminary performance analysis.

  8. Alpha-Voltaic Sources Using Diamond as Conversion Medium

    NASA Technical Reports Server (NTRS)

    Patel, Jagadish U.; Fleurial, Jean-Pierre; Kolawa, Elizabeth

    2006-01-01

    A family of proposed miniature sources of power would exploit the direct conversion of the kinetic energy of a particles into electricity in diamond semiconductor diodes. These power sources would function over a wide range of temperatures encountered in terrestrial and outer-space environments. These sources are expected to have operational lifetimes of 10 to 20 years and energy conversion efficiencies >35 percent. A power source according to the proposal would include a pair of devices like that shown in the figure. Each device would contain Schottky and p/n diode devices made from high-band-gap, radiation-hard diamond substrates. The n and p layers in the diode portion would be doped sparsely (<1014 cm-3) in order to maximize the volume of the depletion region and thereby maximize efficiency. The diode layers would be supported by an undoped diamond substrate. The source of a particles would be a thin film of 244Cm (half-life 18 years) sandwiched between the two paired devices. The sandwich arrangement would force almost every a particle to go through the active volume of at least one of the devices. Typical a particle track lengths in the devices would range from 20 to 30 microns. The a particles would be made to stop only in the undoped substrates to prevent damage to the crystalline structures of the diode portions. The overall dimensions of a typical source are expected to be about 2 by 2 by 1 mm. Assuming an initial 244Cm mass of 20 mg, the estimated initial output of the source is 20 mW (a current of 20 mA at a potential of 1 V).

  9. The PEGASUS Drive: A nuclear electric propulsion system for the space exploration initiative

    NASA Astrophysics Data System (ADS)

    Coomes, Edmund P.; Dagle, Jeffery E.

    1991-01-01

    The advantages of using electric propulsion for propulsion are well-known in the aerospace community. The high specific impulse, lower propellant requirements, and lower system mass make it a very attractive propulsion option for the Space Exploration Initiative (SEI), especially for the transport of cargo. One such propulsion system is the PEGASUS Drive (Coomes et al. 1987). In its original configuration, the PEGASUS Drive consisted of a 10-MWe power source coupled to a 6-MW magnetoplasmadynamic (MPD) thruster system. The PEGASUS Drive propelled a manned vechicle to Mars and back in 601 days. By removing the crew and their associated support systems from the space craft and by incorporating technology advances in reactor design and heat rejection systems, a second generation PEGASUS Drive can be developed with an alpha less than two. Utilizing this propulsion system, a 400-MT cargo vechicle, assembled and loaded in low Earth orbit (LEO), could deliver 262 MT of supplies and hardware to MARS 282 days after escaping Earth orbit. Upon arrival at Mars the transport vehicle would place its cargo in the desired parking orbit around Mars and then proceed to synchronous orbit above the desired landing sight. Using a laser transmitter, PEGASUS could provide 2-MW on the surface to operate automated systems deployed earlier and then provide surface power to support crew activities after their arrival. The additional supplies and hardware, coupled with the availability of megawatt levels of electric power on the Mars surface, would greatly enhance and even expand the mission options being considered under SEI.

  10. Synchrotron Radiation Research--An Overview.

    ERIC Educational Resources Information Center

    Bienenstock, Arthur; Winick, Herman

    1983-01-01

    Discusses expanding user community seeking access to synchrotron radiation sources, properties/sources of synchrotron radiation, permanent-magnet technology and its impact on synchrotron radiation research, factors limiting power, the density of synchrotron radiation, and research results illustrating benefit of higher flux and brightness. Also…

  11. Proceedings of the international workshop on the technology and thermal hydraulics of heavy liquid metals (Hg, Pb, Bi, and their eutectics)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Appleton, B.R.; Bauer, G.S.

    1996-06-01

    The International Workshop on the Technology and Thermal Hydraulics of Heavy Liquid Metals (Schruns Workshop) was organized to assess the R&D and technology problems associated with designing and building a heavy liquid metal target for a spallation neutron source. The European scientific community is completing a feasibility study for a future, accelerator-based, pulsed spallation neutron source that would deliver a beam power of 5 megawatts (MW) to a target. They have concluded that a liquid metal target is preferable to conventional solid targets for handling the extreme radiation environments, high heat loads, and pulsed power. Similarly, the ORNL has beenmore » funded by the DOE to design a high-power, pulsed spallation neutron source that would begin operation at about 1 MW but that could be upgraded to significantly higher powers in the future. Again, the most feasible target design appears to be a liquid metal target. Since the expertise needed to consider these problems resides in a number of disparate disciplines not normally covered by existing conferences, this workshop was organized to bring a small number of scientists and engineers together to assess the opportunities for building such a target. The objectives and goals of the Schruns Workshop were to: review and share existing information on the science and technology of heavy liquid metal systems. Evaluate the opportunities and limitations of materials compatibility, thermal hydraulics and heat transfer, chemical reactions, corrosion, radiation effects, liquid-gas mixtures, systems designs, and circuit components for a heavy liquid metal target. Establish the critical R & D and technology that is necessary to construct a liquid metal target. Explore opportunities for cooperative R & D among members of the international community that could expedite results, and share expertise and resources. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.« less

  12. Overview of Energy Storage Technologies for Space Applications

    NASA Technical Reports Server (NTRS)

    Surampudi, Subbarao

    2006-01-01

    This presentations gives an overview of the energy storage technologies that are being used in space applications. Energy storage systems have been used in 99% of the robotic and human space missions launched since 1960. Energy storage is used in space missions to provide primary electrical power to launch vehicles, crew exploration vehicles, planetary probes, and astronaut equipment; store electrical energy in solar powered orbital and surface missions and provide electrical energy during eclipse periods; and, to meet peak power demands in nuclear powered rovers, landers, and planetary orbiters. The power source service life (discharge hours) dictates the choice of energy storage technology (capacitors, primary batteries, rechargeable batteries, fuel cells, regenerative fuel cells, flywheels). NASA is planning a number of robotic and human space exploration missions for the exploration of space. These missions will require energy storage devices with mass and volume efficiency, long life capability, an the ability to operate safely in extreme environments. Advanced energy storage technologies continue to be developed to meet future space mission needs.

  13. Flywheel Energy Storage Technology Workshop

    NASA Astrophysics Data System (ADS)

    Okain, D.; Howell, D.

    Advances in recent years of high strength/lightweight materials, high performance magnetic bearings, and power electronics technology has spurred a renewed interest by the transportation, utility, and manufacturing industries in flywheel energy storage (FES) technologies. FES offers several advantages over conventional electrochemical energy storage, such as high specific energy and specific power, fast charging time, long service life, high turnaround efficiency (energy out/energy in), and no hazardous/toxic materials or chemicals are involved. Potential applications of FES units include power supplies for hybrid and electric vehicles, electric vehicle charging stations, space systems, and pulsed power devices. Also, FES units can be used for utility load leveling, uninterruptable power supplies to protect electronic equipment and electrical machinery, and for intermittent wind or photovoltaic energy sources. The purpose of this workshop is to provide a forum to highlight technologies that offer a high potential to increase the performance of FES systems and to discuss potential solutions to overcome present FES application barriers. This document consists of viewgraphs from 27 presentations.

  14. Space nuclear power: Key to outer solar system exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, G.L.; Allen, D.M.

    1998-07-01

    In 1995, in response to threatened budget cuts, the American Institute of Aeronautics and Astronautics (AIAA) approved a position paper supporting the maintenance of the technology base for space nuclear power. The position paper contained four recomemndations: (1) DOE, NASA, and DoD should develop and support an integrated program that maintains the nuclear option and develops the needed high-payoff technologies; (2) Congress should provide strong, continuing financial and political support for the agencies' program; (3) Government and industry leaders should voice their advocacy for a strong space nuclear power program to support future system requirements; and (4) The US shouldmore » continue to maintain its cooperation and technical interchanges with other countries to advance nuclear power source technology and to promote nuclear safety.« less

  15. Space Power Architectures for NASA Missions: The Applicability and Benefits of Advanced Power and Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.

    2001-01-01

    The relative importance of electrical power systems as compared with other spacecraft bus systems is examined. The quantified benefits of advanced space power architectures for NASA Earth Science, Space Science, and Human Exploration and Development of Space (HEDS) missions is then presented. Advanced space power technologies highlighted include high specific power solar arrays, regenerative fuel cells, Stirling radioisotope power sources, flywheel energy storage and attitude control, lithium ion polymer energy storage and advanced power management and distribution.

  16. The quasar proximity effect in an equivalent-width-limited sample of the Lyman-alpha forest

    NASA Technical Reports Server (NTRS)

    Chernomordik, Viktor V.; Ozernoy, Leonid M.

    1993-01-01

    We have obtained a simple analytical approximation to the relationship between a rest-frame equivalent-width distribution for Ly-alpha forest absorption lines, N(W), and an H I column density distribution of the observed cloud number, N(N). Assuming a simple power-law form for N(N) proportional to N exp (1-beta), it is shown that beta = 1.4 turns out to agree fairly well with the observed form of N(W) in a broad range of column densities. We present a theoretical analysis of how the 'proximity effect' influences a W-limited sample of Ly-alpha forest lines. It is shown that this influence is considerably smaller than has been found before for a N-limited sample, for which an approximate value of beta was assumed rather than derived as has been done, for a W-limited sample, in the present paper. As a result, available observational data appear to be still consistent with the conjecture that the observed population of QSOs is the major source of the UV background at redshifts z about 2-4.

  17. Validation of the Karolinska sleepiness scale against performance and EEG variables.

    PubMed

    Kaida, Kosuke; Takahashi, Masaya; Akerstedt, Torbjörn; Nakata, Akinori; Otsuka, Yasumasa; Haratani, Takashi; Fukasawa, Kenji

    2006-07-01

    The Karolinska sleepiness scale (KSS) is frequently used for evaluating subjective sleepiness. The main aim of the present study was to investigate the validity and reliability of the KSS with electroencephalographic, behavioral and other subjective indicators of sleepiness. Participants were 16 healthy females aged 33-43 (38.1+/-2.68) years. The experiment involved 8 measurement sessions per day for 3 consecutive days. Each session contained the psychomotor vigilance task (PVT), the Karolinska drowsiness test (KDT-EEG alpha & theta power), the alpha attenuation test (AAT-alpha power ratio open/closed eyes) and the KSS. Median reaction time, number of lapses, alpha and theta power density and the alpha attenuation coefficients (AAC) showed highly significant increase with increasing KSS. The same variables were also significantly correlated with KSS, with a mean value for lapses (r=0.56). The KSS was closely related to EEG and behavioral variables, indicating a high validity in measuring sleepiness. KSS ratings may be a useful proxy for EEG or behavioral indicators of sleepiness.

  18. Estimating GHG Reduction from Combinations of Current Best-Available and Future Powertrain and Vehicle Technologies for a Midsized Car Using EPA’s ALPHA Model (SAE 2016-01-0910)

    EPA Science Inventory

    EPA identified the best, or most efficient, engines, transmissions and vehicle technologies, and then used ALPHA to predict the GHG emissions would be from a midsized car incorporating the best combination of these technologies.

  19. Advanced tendencies in development of photovoltaic cells for power engineering

    NASA Astrophysics Data System (ADS)

    Strebkov, D. S.

    2015-01-01

    Development of solar power engineering must be based on original innovative Russian and world technologies. It is necessary to develop promising Russian technologies of manufacturing of photovoltaic cells and semiconductor materials: chlorine-free technology for obtaining solar silicon; matrix solar cell technology with an efficiency of 25-30% upon the conversion of concentrated solar, thermal, and laser radiation; encapsulation technology for high-voltage silicon solar modules with a voltage up to 1000 V and a service life up to 50 years; new methods of concentration of solar radiation with the balancing illumination of photovoltaic cells at 50-100-fold concentration; and solar power systems with round-the-clock production of electrical energy that do not require energy storage devices and reserve sources of energy. The advanced tendency in silicon power engineering is the use of high-temperature reactions in heterogeneous modular silicate solutions for long-term (over one year) production of heat and electricity in the autonomous mode.

  20. Lateralization in Alpha-Band Oscillations Predicts the Locus and Spatial Distribution of Attention

    PubMed Central

    Ikkai, Akiko; Dandekar, Sangita; Curtis, Clayton E.

    2016-01-01

    Attending to a task-relevant location changes how neural activity oscillates in the alpha band (8–13Hz) in posterior visual cortical areas. However, a clear understanding of the relationships between top-down attention, changes in alpha oscillations in visual cortex, and attention performance are still poorly understood. Here, we tested the degree to which the posterior alpha power tracked the locus of attention, the distribution of attention, and how well the topography of alpha could predict the locus of attention. We recorded magnetoencephalographic (MEG) data while subjects performed an attention demanding visual discrimination task that dissociated the direction of attention from the direction of a saccade to indicate choice. On some trials, an endogenous cue predicted the target’s location, while on others it contained no spatial information. When the target’s location was cued, alpha power decreased in sensors over occipital cortex contralateral to the attended visual field. When the cue did not predict the target’s location, alpha power again decreased in sensors over occipital cortex, but bilaterally, and increased in sensors over frontal cortex. Thus, the distribution and the topography of alpha reliably indicated the locus of covert attention. Together, these results suggest that alpha synchronization reflects changes in the excitability of populations of neurons whose receptive fields match the locus of attention. This is consistent with the hypothesis that alpha oscillations reflect the neural mechanisms by which top-down control of attention biases information processing and modulate the activity of neurons in visual cortex. PMID:27144717

  1. Experience-dependent modulation of alpha and beta during action observation and motor imagery.

    PubMed

    Di Nota, Paula M; Chartrand, Julie M; Levkov, Gabriella R; Montefusco-Siegmund, Rodrigo; DeSouza, Joseph F X

    2017-03-06

    EEG studies investigating the neural networks that facilitate action observation (AO) and kinaesthetic motor imagery (KMI) have shown reduced, or desynchronized, power in the alpha (8-12 Hz) and beta (13-30 Hz) frequency bands relative to rest, reflecting efficient activation of task-relevant areas. Functional modulation of these networks through expertise in dance has been established using fMRI, with greater activation among experts during AO. While there is evidence for experience-dependent plasticity of alpha power during AO of dance, the influence of familiarity on beta power during AO, and alpha and beta activity during KMI, remain unclear. The purpose of the present study was to measure the impact of familiarity on confidence ratings and EEG activity during (1) AO of a brief ballet sequence, (2) KMI of this same sequence, and (3) KMI of non-dance movements among ballet dancers, dancers from other genres, and non-dancers. Ballet dancers highly familiar with the genre of the experimental stimulus demonstrated higher individual alpha peak frequency (iAPF), greater alpha desynchronization, and greater task-related beta power during AO, as well as faster iAPF during KMI of non-dance movements. While no between-group differences in alpha or beta power were observed during KMI of dance or non-dance movements, all participants showed significant desynchronization relative to baseline, and further desynchronization during dance KMI relative to non-dance KMI indicative of greater cognitive load. These findings confirm and extend evidence for experience-dependent plasticity of alpha and beta activity during AO of dance and KMI. We also provide novel evidence for modulation of iAPF that is faster when tuned to the specific motor repertoire of the observer. By considering the multiple functional roles of these frequency bands during the same task (AO), we have disentangled the compounded contribution of familiarity and expertise to alpha desynchronization for mediating task engagement among familiar ballet dancers and reflecting task difficulty among unfamiliar non-dance subjects, respectively. That KMI of a complex dance sequence relative to everyday, non-dance movements recruits greater cognitive resources suggests it may be a more powerful tool in driving neural plasticity of action networks, especially among the elderly and those with movement disorders.

  2. THE PANCHROMATIC HUBBLE ANDROMEDA TREASURY. IV. A PROBABILISTIC APPROACH TO INFERRING THE HIGH-MASS STELLAR INITIAL MASS FUNCTION AND OTHER POWER-LAW FUNCTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisz, Daniel R.; Fouesneau, Morgan; Dalcanton, Julianne J.

    2013-01-10

    We present a probabilistic approach for inferring the parameters of the present-day power-law stellar mass function (MF) of a resolved young star cluster. This technique (1) fully exploits the information content of a given data set; (2) can account for observational uncertainties in a straightforward way; (3) assigns meaningful uncertainties to the inferred parameters; (4) avoids the pitfalls associated with binning data; and (5) can be applied to virtually any resolved young cluster, laying the groundwork for a systematic study of the high-mass stellar MF (M {approx}> 1 M {sub Sun }). Using simulated clusters and Markov Chain Monte Carlomore » sampling of the probability distribution functions, we show that estimates of the MF slope, {alpha}, are unbiased and that the uncertainty, {Delta}{alpha}, depends primarily on the number of observed stars and on the range of stellar masses they span, assuming that the uncertainties on individual masses and the completeness are both well characterized. Using idealized mock data, we compute the theoretical precision, i.e., lower limits, on {alpha}, and provide an analytic approximation for {Delta}{alpha} as a function of the observed number of stars and mass range. Comparison with literature studies shows that {approx}3/4 of quoted uncertainties are smaller than the theoretical lower limit. By correcting these uncertainties to the theoretical lower limits, we find that the literature studies yield ({alpha}) = 2.46, with a 1{sigma} dispersion of 0.35 dex. We verify that it is impossible for a power-law MF to obtain meaningful constraints on the upper mass limit of the initial mass function, beyond the lower bound of the most massive star actually observed. We show that avoiding substantial biases in the MF slope requires (1) including the MF as a prior when deriving individual stellar mass estimates, (2) modeling the uncertainties in the individual stellar masses, and (3) fully characterizing and then explicitly modeling the completeness for stars of a given mass. The precision on MF slope recovery in this paper are lower limits, as we do not explicitly consider all possible sources of uncertainty, including dynamical effects (e.g., mass segregation), unresolved binaries, and non-coeval populations. We briefly discuss how each of these effects can be incorporated into extensions of the present framework. Finally, we emphasize that the technique and lessons learned are applicable to more general problems involving power-law fitting.« less

  3. Genetic and Environmental Influences on Frontal EEG Asymmetry and Alpha Power in 9–10 Year Old Twins

    PubMed Central

    Gao, Yu; Tuvblad, Catherine; Raine, Adrian; Lozano, Dora I.; Baker, Laura A.

    2008-01-01

    Modest genetic influences on frontal EEG asymmetry have been found in adults, but little is known about its genetic origins in children. Resting frontal asymmetry and alpha power were examined in 951 9–10-year-old twins. Results showed that in both males and females: (1) a modest but significant amount of variance in frontal asymmetry was accounted for by genetic factors (11–27%) with the remainder accounted for by non-shared environmental influences, and (2) alpha power were highly heritable, with 70–85% of the variance accounted for by genetic factors. Results suggest that the genetic architecture of frontal asymmetry and alpha power in late childhood are similar to that in adulthood and that the high non-shared environmental influences on frontal asymmetry may reflect environmentally-influenced individual differences in the maturation of frontal cortex as well as state-dependent influences on specific measurements. PMID:19386046

  4. Bioenvironmental Engineer’s Guide to Ionizing Radiation

    DTIC Science & Technology

    2005-10-01

    mercury x-rays 186 (4 % ) - y Ra -226 radon x-rays Luminous Products, Neutron (tl/2: 1600 y) Alpha photons from daughters: Sources (w/ Be ) Rn-222, Po...Radioisotope Thermoelectric (t1,2: 88 y) Generators Pu-239 Alpha uranium x-rays Nuclear Weapons, Neutron (t1 /2: 2.4 x 104 y) Sources (w/ Be ...Calibration Am-241 .60 (36 %) - Static Eliminators, Chemical (h2: 432 y) Alpha n Agent Detectors, Neutron neptunium x-rays Sources (w/ Be ) 11 October 2005

  5. A review on lithium-ion power battery thermal management technologies and thermal safety

    NASA Astrophysics Data System (ADS)

    An, Zhoujian; Jia, Li; Ding, Yong; Dang, Chao; Li, Xuejiao

    2017-10-01

    Lithium-ion power battery has become one of the main power sources for electric vehicles and hybrid electric vehicles because of superior performance compared with other power sources. In order to ensure the safety and improve the performance, the maximum operating temperature and local temperature difference of batteries must be maintained in an appropriate range. The effect of temperature on the capacity fade and aging are simply investigated. The electrode structure, including electrode thickness, particle size and porosity, are analyzed. It is found that all of them have significant influences on the heat generation of battery. Details of various thermal management technologies, namely air based, phase change material based, heat pipe based and liquid based, are discussed and compared from the perspective of improving the external heat dissipation. The selection of different battery thermal management (BTM) technologies should be based on the cooling demand and applications, and liquid cooling is suggested being the most suitable method for large-scale battery pack charged/discharged at higher C-rate and in high-temperature environment. The thermal safety in the respect of propagation and suppression of thermal runaway is analyzed.

  6. Aquantis C-Plane Ocean Current Turbine Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Alex

    The Aquantis 2.5 MW Ocean Current Generation Device technology developed by Dehlsen Associates, LLC (DA) is a derivation of wind power generating technology (a means of harnessing a slow moving fluid) adapted to the ocean environment. The Aquantis Project provides an opportunity for accelerated technological development and early commercialization, since it involves the joining of two mature disciplines: ocean engineering and wind turbine design. The Aquantis Current Plane (C-Plane) technology is an ocean current turbine designed to extract kinetic energy from a current flow. The technology is capable of achieving competitively priced, continuous, base-load, and reliable power generation from amore » source of renewable energy not before possible in this scale or form.« less

  7. Preliminary assessment of rover power systems for the Mars Rover Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1989-01-01

    Four isotope power system concepts were presented and compared on a common basis for application to on-board electrical prime power for an autonomous planetary rover vehicle. A representative design point corresponding to the Mars Rover Sample Return (MRSR) preliminary mission requirements (500 W) was selected for comparison purposes. All systems concepts utilize the General Purpose Heat Source (GPHS) isotope heat source developed by DOE. Two of the concepts employ thermoelectric (TE) conversion: one using the GPHS Radioisotope Thermoelectric Generator (RTG) used as a reference case, the other using an advanced RTG with improved thermoelectric materials. The other two concepts employed are dynamic isotope power systems (DIPS): one using a closed Brayton cycle (CBC) turboalternator, and the other using a free piston Stirling cycle engine/linear alternator (FPSE) with integrated heat source/heater head. Near-term technology levels have been assumed for concept characterization using component technology figure-of-merit values taken from the published literature. For example, the CBC characterization draws from the historical test database accumulated from space Brayton cycle subsystems and components from the NASA B engine through the mini-Brayton rotating unit. TE system performance is estimated from Voyager/multihundred Watt (MHW)-RTG flight experience through Mod-RTG performance estimates considering recent advances in TE materials under the DOD/DOE/NASA SP-100 and NASA Committee on Scientific and Technological Information programs. The Stirling DIPS system is characterized from scaled-down Space Power Demonstrator Engine (SPDE) data using the GPHS directly incorporated into the heater head. The characterization/comparison results presented here differ from previous comparison of isotope power (made for LEO applications) because of the elevated background temperature on the Martian surface compared to LEO, and the higher sensitivity of dynamic systems to elevated s

  8. Awareness is related to reduced post-stimulus alpha power: A no-report inattentional blindness study.

    PubMed

    Harris, Anthony M; Dux, Paul E; Mattingley, Jason B

    2018-05-15

    Delineating the neural correlates of sensory awareness is a key requirement for developing a neuroscientific understanding of consciousness. A neural signal that has been proposed as a key neural correlate of awareness is amplitude reduction of 8-14 Hz alpha oscillations. Alpha oscillations are also closely linked to processes of spatial attention, providing potential alternative explanations for past results associating alpha oscillations with awareness. We employed a no-report inattentional blindness (IB) paradigm with electroencephalography to examine the association between awareness and the power of 8-14 Hz alpha oscillations. We asked whether the alpha-power decrease commonly reported when stimuli are perceived is related to awareness, or other factors that commonly confound awareness investigations, specifically task-relevance and visual salience. Two groups of participants performed a target discrimination task at fixation while irrelevant non-salient shape probes were presented briefly in the left or right visual field. One group was explicitly informed of the peripheral probes at the commencement of the experiment (the control group), whereas the other was not told about the probes until halfway through the experiment (IB group). Consequently, the IB group remained unaware of the probes for the first half of the experiment. In all conditions in which participants were aware of the probes, there was an enhanced negativity in the event-related potential (the visual awareness negativity). Furthermore, there was an extended contralateral alpha-power decrease when the probes were perceived, which was not present when they failed to reach awareness. These results suggest alpha oscillations are intrinsically associated with awareness itself. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. The radio emission from the ultraluminous far-infrared galaxy NGC 6240

    NASA Technical Reports Server (NTRS)

    Colbert, Edward J. M.; Wilson, Andrew S.; Bland-Hawthorn, Jonathan

    1994-01-01

    We present new radio observations of the 'prototypical' ultraluminous far-infrared galaxy NGC 6240, obtained using the Very Large Array (VLA) at lambda = 20 cm in B-configuration and at lambda = 3.6 cm in A-configuration. These data, along with those from four previous VLA observations, are used to perform a comprehensive study of the radio emission from NGC 6240. Approximately 70% (approximately 3 x 10(exp 23) W/Hz) of the total radio power at 20 cm originates from the nuclear region (approximately less than 1.5 kpc), of which half is emitted by two unresolved (R approximately less than 36 pc) cores and half by a diffuse component. The radio spectrum of the nuclear emission is relatively flat (alpha approximately equals 0.6; S(sub nu) proportional to nu(exp -alpha). The supernova rate required to power the diffuse component is consistent with that predicted by the stellar evolution models of Rieke et al. (1985). If the radio emission from the two compact cores is powered by supernova remnants, then either the remnants overlap and form hot bubbles in the cores, or they are very young (approximately less than 100 yr.) Nearly all of the remaining 30% of the total radio power comes from an 'armlike' region extending westward from the nuclear region. The western arm emission has a steep spectrum (alpha approximately equals 1.0), suggestive of aging effects from synchrotron or inverse-Compton losses, and is not correlated with starlight; we suggest that it is synchrotron emission from a shell of material driven by a galactic superwind. Inverse Compton scattering of far-infrared photons in the radio sources is expected to produce an X-ray flux of approximately 2 - 6 x 10(exp -14) ergs/s/sq cm in the 2 - 10 keV band. No significant radio emission is detected from or near the possible ultramassive 'dark core'.

  10. Integrity of central nervous function in diabetes mellitus assessed by resting state EEG frequency analysis and source localization.

    PubMed

    Frøkjær, Jens B; Graversen, Carina; Brock, Christina; Khodayari-Rostamabad, Ahmad; Olesen, Søren S; Hansen, Tine M; Søfteland, Eirik; Simrén, Magnus; Drewes, Asbjørn M

    2017-02-01

    Diabetes mellitus (DM) is associated with structural and functional changes of the central nervous system. We used electroencephalography (EEG) to assess resting state cortical activity and explored associations to relevant clinical features. Multichannel resting state EEG was recorded in 27 healthy controls and 24 patients with longstanding DM and signs of autonomic dysfunction. The power distribution based on wavelet analysis was summarized into frequency bands with corresponding topographic mapping. Source localization analysis was applied to explore the electrical cortical sources underlying the EEG. Compared to controls, DM patients had an overall decreased EEG power in the delta (1-4Hz) and gamma (30-45Hz) bands. Topographic analysis revealed that these changes were confined to the frontal region for the delta band and to central cortical areas for the gamma band. Source localization analysis identified sources with reduced activity in the left postcentral gyrus for the gamma band and in right superior parietal lobule for the alpha1 (8-10Hz) band. DM patients with clinical signs of autonomic dysfunction and gastrointestinal symptoms had evidence of altered resting state cortical processing. This may reflect metabolic, vascular or neuronal changes associated with diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Data traffic reduction schemes for Cholesky factorization on asynchronous multiprocessor systems

    NASA Technical Reports Server (NTRS)

    Naik, Vijay K.; Patrick, Merrell L.

    1989-01-01

    Communication requirements of Cholesky factorization of dense and sparse symmetric, positive definite matrices are analyzed. The communication requirement is characterized by the data traffic generated on multiprocessor systems with local and shared memory. Lower bound proofs are given to show that when the load is uniformly distributed the data traffic associated with factoring an n x n dense matrix using n to the alpha power (alpha less than or equal 2) processors is omega(n to the 2 + alpha/2 power). For n x n sparse matrices representing a square root of n x square root of n regular grid graph the data traffic is shown to be omega(n to the 1 + alpha/2 power), alpha less than or equal 1. Partitioning schemes that are variations of block assignment scheme are described and it is shown that the data traffic generated by these schemes are asymptotically optimal. The schemes allow efficient use of up to O(n to the 2nd power) processors in the dense case and up to O(n) processors in the sparse case before the total data traffic reaches the maximum value of O(n to the 3rd power) and O(n to the 3/2 power), respectively. It is shown that the block based partitioning schemes allow a better utilization of the data accessed from shared memory and thus reduce the data traffic than those based on column-wise wrap around assignment schemes.

  12. Relating to monitoring ion sources

    DOEpatents

    Orr, Christopher Henry; Luff, Craig Janson; Dockray, Thomas; Macarthur, Duncan Whittemore; Bounds, John Alan

    2002-01-01

    The apparatus and method provide techniques for monitoring the position on alpha contamination in or on items or locations. The technique is particularly applicable to pipes, conduits and other locations to which access is difficult. The technique uses indirect monitoring of alpha emissions by detecting ions generated by the alpha emissions. The medium containing the ions is moved in a controlled manner frog in proximity with the item or location to the detecting unit and the signals achieved over time are used to generate alpha source position information.

  13. The Jet/Disk Connection in AGN: Chandra and XMM-Newton Observations of Three Powerful Radio-Loud Quasars

    NASA Technical Reports Server (NTRS)

    Sambruna, Rita; Gliozzi, Mario; Tavecchio, F.; Maraschi, L.; Foschini, Luigi

    2007-01-01

    The connection between the accretion process that powers AGN and the formation of jets is still poorly understood. Here we tackle this issue using new, deep Chandra and XMM-Newton observations of tlie cores of three powerful radio loud quasars: 1136-135, 1150+497 (Chandra), and 0723+679 (XMM-Newton), in the redshift range z=0.3-0.8. These sources are known from our previous Chandra siiapsliot survey to liave kpc-scale X-ray jets. In 1136-135 and 1150-1+497; evidence is found for the presence of diffuse thermal X-ray emission around the cores; on scales of 40-50 kpc and with luminosity L(sub 0.3-2 kev approx. 10(sup 43) erg per second, suggesting thermal emission from the host galaxy or a galaxy group. The X-ray continua of the cores in the three sources are described by an upward-curved (concave) broken power law, with photon indices GAMMA (sub soft) approx. 1.8 - 2.1 and GAMMA (sub hard) approx. 1.7 below and above approx. equal to 2 keV, respectively. There is evidence for an uiiresolved Fe K alpha line with EW approx. 70 eV in the three quasars. The Spectral Energy Distributions of the sources can be well described by a mix of jet and disk emission, with the jet dominating the radio and hard X-rays (via synchrotron and external Compton) and the disk dominating the optical/UV through soft X-rays. The ratio of the jet-to-disk powers is approx. 1, consistent with those derived for a number of gamma ray emitting blazars. This indicates that near equality of accretion and jet power may be common in powerful radio-loud AGN.

  14. Forestry Vehicle

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Power Pack II provides an economical means of moving a power source into remote roadless forest areas. It was developed by Prof. Miles and his associates, working in cooperation with the University of California's Department of Forestry. The team combined its own design of an all-terrain vehicle with a suspension system based on the NASA load equalization technology. Result is an intermediate-sized unit which carries a power source and the powered tools to perform a variety of forest management tasks which cannot be done economically with current equipment. Power Pack II can traverse very rough terrain and climb a 60 degree slope; any one of the wheels can move easily over an obstacle larger than itself. Work is being done on a more advanced Power Pack III.

  15. Parietal EEG alpha suppression time of memory retrieval reflects memory load while the alpha power of memory maintenance is a composite of the visual process according to simultaneous and successive Sternberg memory tasks.

    PubMed

    Okuhata, Shiho; Kusanagi, Takuya; Kobayashi, Tetsuo

    2013-10-25

    The present study investigated EEG alpha activity during visual Sternberg memory tasks using two different stimulus presentation modes to elucidate how the presentation mode affected parietal alpha activity. EEGs were recorded from 10 healthy adults during the Sternberg tasks in which memory items were presented simultaneously and successively. EEG power and suppression time (ST) in the alpha band (8-13Hz) were computed for the memory maintenance and retrieval phases. The alpha activity differed according to the presentation mode during the maintenance phase but not during the retrieval phase. Results indicated that parietal alpha power recorded during the maintenance phase did not reflect the memory load alone. In contrast, ST during the retrieval phase increased with the memory load for both presentation modes, indicating a serial memory scanning process, regardless of the presentation mode. These results indicate that there was a dynamic transition in the memory process from the maintenance phase, which was sensitive to external factors, toward the retrieval phase, during which the process converged on the sequential scanning process, the Sternberg task essentially required. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breault, R.W.; Rolfe, J.

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermomore » Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.« less

  17. Simulation model of the F/A-18 high angle-of-attack research vehicle utilized for the design of advanced control laws

    NASA Technical Reports Server (NTRS)

    Strickland, Mark E.; Bundick, W. Thomas; Messina, Michael D.; Hoffler, Keith D.; Carzoo, Susan W.; Yeager, Jessie C.; Beissner, Fred L., Jr.

    1996-01-01

    The 'f18harv' six degree-of-freedom nonlinear batch simulation used to support research in advanced control laws and flight dynamics issues as part of NASA's High Alpha Technology Program is described in this report. This simulation models an F/A-18 airplane modified to incorporate a multi-axis thrust-vectoring system for augmented pitch and yaw control power and actuated forebody strakes for enhanced aerodynamic yaw control power. The modified configuration is known as the High Alpha Research Vehicle (HARV). The 'f18harv' simulation was an outgrowth of the 'f18bas' simulation which modeled the basic F/A-18 with a preliminary version of a thrust-vectoring system designed for the HARV. The preliminary version consisted of two thrust-vectoring vanes per engine nozzle compared with the three vanes per engine actually employed on the F/A-18 HARV. The modeled flight envelope is extensive in that the aerodynamic database covers an angle-of-attack range of -10 degrees to +90 degrees, sideslip range of -20 degrees to +20 degrees, a Mach Number range between 0.0 and 2.0, and an altitude range between 0 and 60,000 feet.

  18. Space Solar Power Concepts: Demonstrations to Pilot Plants

    NASA Technical Reports Server (NTRS)

    Carrington, Connie K.; Feingold, Harvey; Howell, Joe T. (Technical Monitor)

    2002-01-01

    The availability of abundant, affordable power where needed is a key to the future exploration and development of space as well as future sources of clean terrestrial power. One innovative approach to providing such power is the use of wireless power transmission (WPT). There are at least two possible WPT methods that appear feasible; microwave and laser. Microwave concepts have been generated, analyzed and demonstrated. Technologies required to provide an end-to-end system have been identified and roadmaps generated to guide technology development requirements. Recently, laser W T approaches have gained an increased interest. These approaches appear to be very promising and will possibly solve some of the major challenges that exist with the microwave option. Therefore, emphasis is currently being placed on the laser WPT activity. This paper will discuss the technology requirements, technology roadmaps and technology flight experiments demonstrations required to lead toward a pilot plant demonstration. Concepts will be discussed along with the modeling techniques that are used in developing them. Feasibility will be addressed along with the technology needs, issues and capabilities for particular concepts. Flight experiments and demonstrations will be identified that will pave the road from demonstrations to pilot plants and beyond.

  19. EEG alpha activity during imagining creative moves in soccer decision-making situations.

    PubMed

    Fink, Andreas; Rominger, Christian; Benedek, Mathias; Perchtold, Corinna M; Papousek, Ilona; Weiss, Elisabeth M; Seidel, Anna; Memmert, Daniel

    2018-06-01

    This study investigated task-related changes of EEG alpha power while participants were imagining creative moves in soccer decision-making situations. After presenting brief video clips of a soccer scene, participants had to imagine themselves as the acting player and to think either of a creative/original or an obvious/conventional move (control condition) that might lead to a goal. Performance of the soccer task generally elicited comparatively strong alpha power decreases at parietal and occipital sites, indicating high visuospatial processing demands. This power decrease was less pronounced in the creative vs. control condition, reflecting a more internally oriented state of information processing characterized by more imaginative mental simulation rather than stimulus-driven bottom-up processing. In addition, more creative task performance in the soccer task was associated with stronger alpha desynchronization at left cortical sites, most prominently over motor related areas. This finding suggests that individuals who generated more creative moves were more intensively engaged in processes related to movement imagery. Unlike the domain-specific creativity measure, individual's trait creative potential, as assessed by a psychometric creativity test, was globally positively associated with alpha power at all cortical sites. In investigating creative processes implicated in complex creative behavior involving more ecologically valid demands, this study showed that thinking creatively in soccer decision-making situations recruits specific brain networks supporting processes related to visuospatial attention and movement imagery, while the relative increase in alpha power in more creative conditions and in individuals with higher creative potential might reflect a pattern relevant across different creativity domains. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Exoskeleton for Soldier Enhancement Systems Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, J.F.

    2000-09-28

    The development of a successful exoskeleton for human performance augmentation (EHPA) will require a multi-disciplinary systems approach based upon sound biomechanics, power generation and actuation systems, controls technology, and operator interfaces. The ability to integrate key components into a system that enhances performance without impeding operator mobility is essential. The purpose of this study and report are to address the issue of feasibility of building a fieldable EHPA. Previous efforts, while demonstrating progress and enhancing knowledge, have not approached the level required for a fully functional, fieldable system. It is doubtless that the technologies required for a successful exoskeleton havemore » advanced, and some of them significantly. The question to be addressed in this report is have they advanced to the point of making a system feasible in the next three to five years? In this study, the key technologies required to successfully build an exoskeleton have been examined. The primary focus has been on the key technologies of power sources, actuators, and controls. Power sources, including internal combustion engines, fuel cells, batteries, super capacitors, and hybrid sources have been investigated and compared with respect to the exoskeleton application. Both conventional and non-conventional actuator technologies that could impact EHPA have been assessed. In addition to the current state of the art of actuators, the potential for near-term improvements using non-conventional actuators has also been addressed. Controls strategies, and their implication to the design approach, and the exoskeleton to soldier interface have also been investigated. In addition to these key subsystems and technologies, this report addresses technical concepts and issues relating to an integrated design. A recommended approach, based on the results of the study is also presented.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gair, Jonathan R.; Tang, Christopher; Volonteri, Marta

    One of the sources of gravitational waves for the proposed space-based gravitational wave detector, the Laser Interferometer Space Antenna (LISA), are the inspirals of compact objects into supermassive black holes in the centers of galaxies--extreme-mass-ratio inspirals (EMRIs). Using LISA observations, we will be able to measure the parameters of each EMRI system detected to very high precision. However, the statistics of the set of EMRI events observed by LISA will be more important in constraining astrophysical models than extremely precise measurements for individual systems. The black holes to which LISA is most sensitive are in a mass range that ismore » difficult to probe using other techniques, so LISA provides an almost unique window onto these objects. In this paper we explore, using Bayesian techniques, the constraints that LISA EMRI observations can place on the mass function of black holes at low redshift. We describe a general framework for approaching inference of this type--using multiple observations in combination to constrain a parametrized source population. Assuming that the scaling of the EMRI rate with the black-hole mass is known and taking a black-hole distribution given by a simple power law, dn/dlnM=A{sub 0}(M/M{sub *}){sup {alpha}}{sub 0}, we find that LISA could measure the parameters to a precision of {Delta}(lnA{sub 0}){approx}0.08, and {Delta}({alpha}{sub 0}){approx}0.03 for a reference model that predicts {approx}1000 events. Even with as few as 10 events, LISA should constrain the slope to a precision {approx}0.3, which is the current level of observational uncertainty in the low-mass slope of the black-hole mass function. We also consider a model in which A{sub 0} and {alpha}{sub 0} evolve with redshift, but find that EMRI observations alone do not have much power to probe such an evolution.« less

  2. Free-electron laser emission architecture impact on extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Hosler, Erik R.; Wood, Obert R.; Barletta, William A.

    2017-10-01

    Laser-produced plasma (LPP) EUV sources have demonstrated ˜125 W at customer sites, establishing confidence in EUV lithography (EUVL) as a viable manufacturing technology. However, for extension to the 3-nm technology node and beyond, existing scanner/source technology must enable higher-NA imaging systems (requiring increased resist dose and providing half-field exposures) and/or EUV multipatterning (requiring increased wafer throughput proportional to the number of exposure passes). Both development paths will require a substantial increase in EUV source power to maintain the economic viability of the technology, creating an opportunity for free-electron laser (FEL) EUV sources. FEL-based EUV sources offer an economic, high-power/single-source alternative to LPP EUV sources. Should FELs become the preferred next-generation EUV source, the choice of FEL emission architecture will greatly affect its operational stability and overall capability. A near-term industrialized FEL is expected to utilize one of the following three existing emission architectures: (1) self-amplified spontaneous emission, (2) regenerative amplifier, or (3) self-seeding. Model accelerator parameters are put forward to evaluate the impact of emission architecture on FEL output. Then, variations in the parameter space are applied to assess the potential impact to lithography operations, thereby establishing component sensitivity. The operating range of various accelerator components is discussed based on current accelerator performance demonstrated at various scientific user facilities. Finally, comparison of the performance between the model accelerator parameters and the variation in parameter space provides a means to evaluate the potential emission architectures. A scorecard is presented to facilitate this evaluation and provides a framework for future FEL design and enablement for EUVL applications.

  3. Space propulsion and power beaming using millimeter systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benford, J.; Dickinson, R.

    1995-11-01

    Past schemes for using beamed microwave power for space propulsion and providing power to space platforms have used microwaves below 10 GHz. Recent expansions of the high power microwave technology domain offer fundamental reassessment of the following missions: (1) location of orbital debris, (2) supplying power to loitering high-altitude airplanes, (3) satellite battery recharging, (4) imaging of asteroids, (5) orbit raising and transfer, (6) interplanetary probe launch to the outer planets and comets, and ultimately (7) launch into Earth orbit. This group of applications may be done by a ground-based system. The system would start small, being built for themore » near Earth missions, and be enlarged incrementally as the technology matures and confidence develops. Of particular interest are sources in the millimeter range where there are low loss atmospheric windows and MJ pulses are available in quasi-CW operation. A development scenario for these missions using millimeter wave technology is described.« less

  4. Space-Based Solar Power: A Technical, Economic, and Operational Assessment

    DTIC Science & Technology

    2015-04-01

    reports also address alternative and renew- able sources such as biomass, wind, geothermal , and solar (thermal and photovoltaic), which are becom- ing...2025 using solar, wind, biomass, and geothermal energy generation technologies.86 Table 3. Army Sites for Terrestrial Solar Photovoltaic Power

  5. The Old Jalopy Races into the Future.

    ERIC Educational Resources Information Center

    Considine, Tim

    1993-01-01

    Discusses alternative transportation technological advances in speed, range, battery strategies, and safety facilitated by motor car racing. Presents a historical perspective of the development of steam, electric and gas-powered vehicles and modern versions of electric, and mixed power source cars being tested today. (MCO)

  6. Nuclear Power in Space.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Research has shown that nuclear radioisotope power generators can supply compact, reliable, and efficient sources of energy for a broad range of space missions. These missions range from televising views of planetary surfaces to communicating scientific data to Earth. This publication presents many applications of the advancing technology and…

  7. Medically related activities of application team program

    NASA Technical Reports Server (NTRS)

    1971-01-01

    Application team methodology identifies and specifies problems in technology transfer programs to biomedical areas through direct contact with users of aerospace technology. The availability of reengineering sources increases impact of the program on the medical community and results in broad scale application of some bioinstrumentation systems. Examples are given that include devices adapted to the rehabilitation of neuromuscular disorders, power sources for artificial organs, and automated monitoring and detection equipment in clinical medicine.

  8. Emission Control Technologies for Thermal Power Plants

    NASA Astrophysics Data System (ADS)

    Nihalani, S. A.; Mishra, Y.; Juremalani, J.

    2018-03-01

    Coal thermal power plants are one of the primary sources of artificial air emissions, particularly in a country like India. Ministry of Environment and Forests has proposed draft regulation for emission standards in coal-fired power plants. This includes significant reduction in sulphur-dioxide, oxides of nitrogen, particulate matter and mercury emissions. The first step is to evaluate the technologies which represent the best selection for each power plant based on its configuration, fuel properties, performance requirements, and other site-specific factors. This paper will describe various technology options including: Flue Gas Desulfurization System, Spray Dryer Absorber (SDA), Circulating Dry Scrubber (CDS), Limestone-based Wet FGD, Low NOX burners, Selective Non Catalytic Reduction, Electrostatic Precipitator, Bag House Dust Collector, all of which have been evaluated and installed extensively to reduce SO2, NOx, PM and other emissions. Each control technology has its advantages and disadvantages. For each of the technologies considered, major features, potential operating and maintenance cost impacts, as well as key factors that contribute to the selection of one technology over another are discussed here.

  9. Investigation of a family of power conditioners integrated into a utility grid: final report Category I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, P.; Putkovich, R.P.

    1981-07-01

    A study was conducted of the requirements for and technologies applicable to power conditioning equipment in residential solar photovoltaic systems. A survey of companies known or thought to manufacture power conditioning equipment was conducted to asses the technology. Technical issues regarding ac and dc interface requirements were studied. A baseline design was selected to be a good example of existing technology which would not need significant development effort for its implementation. Alternative technologies are evaluated to determine which meet the baseline specification, and their costs and losses are evaluated. Areas in which cost improvements can be obtained are studied, andmore » the three best candidate technologies--the current-sourced converter, the HF front end converter, and the programmed wave converter--are compared. It is concluded that the designs investigated will meet, or with slight improvement could meet, short term efficiency goals. Long term efficiency goals could be met if an isolation transformer were not required in the power conditioning equipment. None of the technologies studied can meet cost goals unless further improvements are possible. (LEW)« less

  10. Estimated use of water in Lincoln County, Wyoming, 1993

    USGS Publications Warehouse

    Ogle, K.M.; Eddy-Miller, C. A.; Busing, C.J.

    1996-01-01

    Total water use in Lincoln County, Wyoming in 1993 was estimated to be 405,000 Mgal (million gallons). Water use estimates were divided into nine categories: public supply, self-supplied domestic, commercial, irrigation, livestock, indus ial, mining, thermoelectric power, and hydro- electric power. Public supply water use, estimated to be 2,160 Mgal, primarily was obtained from springs and wells. Shallow ground water wells were the primary source of self-supplied domestic water, estimate to be 1.7 Mgal, and 53 percent of those wells were drilled to a depth of 100 feet or less. Commercial water use, estimated to be 117 Mgal, was obtained from public-supply systems. Surface water supplied an estimated 153,000 Mgal of the total estimated water use of 158,000 Mgal for irrigation in 1993. Sprinkler and flood irrigation technology were used about equally in the northern part of Lincoln County and flood irrigation was the primary technology used in the southern part. Livestock, industrial, and mining were not major water users in Lincoln County in 1993. Livestock water use totaled an estimated 203 Mgal. Industrial water use was estimated to be 120 Mgal from self-supplied water sources and 27 Mgal from public supplied water source Mining water use was an estimated 153 Mgal. Thermoelectric and hydroelectric power generation used surface water sources. Thermoelectric power water use was an estimated 5,900 Mgal. An estimated 238,000 Mgal of water was used to generate hydroelectc power at Fontenelle Reservoir on the Green River.

  11. Local Network-Level Integration Mediates Effects of Transcranial Alternating Current Stimulation.

    PubMed

    Fuscà, Marco; Ruhnau, Philipp; Neuling, Toralf; Weisz, Nathan

    2018-05-01

    Transcranial alternating current stimulation (tACS) has been proposed as a tool to draw causal inferences on the role of oscillatory activity in cognitive functioning and has the potential to induce long-term changes in cerebral networks. However, effectiveness of tACS underlies high variability and dependencies, which, as previous modeling works have suggested, may be mediated by local and network-level brain states. We used magnetoencephalography to record brain activity from 17 healthy participants at rest as they kept their eyes open (EO) or eyes closed (EC) while being stimulated with sham, weak, or strong alpha-tACS using a montage commonly assumed to target occipital areas. We reconstructed the activity of sources in all stimulation conditions by means of beamforming. The analysis of resting-state brain activity revealed an interaction of the external stimulation with the endogenous alpha power increase from EO to EC. This interaction was localized to the posterior cingulate, a region remote from occipital cortex. This suggests state-dependent (EO vs. EC) long-range effects of tACS. In a follow-up analysis of this online-tACS effect, we find evidence that this state-dependency effect is mediated by functional network changes: connection strength from the precuneus was significantly correlated with the state-dependency effect in the posterior cingulate during tACS. No analogous correlation could be found for alpha power modulations in occipital cortex. Altogether, this is the first strong evidence to illustrate how functional network architectures can shape tACS effects.

  12. Methods and Data Used to Investigate Polonium-210 as a Source of Excess Gross-Alpha Radioactivity in Ground Water, Churchill County, Nevada

    USGS Publications Warehouse

    Seiler, Ralph L.

    2007-01-01

    Ground water is the major source of drinking water in the Carson River Basin, California and Nevada. Previous studies have shown that uranium and gross-alpha radioactivities in ground water can be greater than U.S. Environmental Protection Agency Maximum Contaminant Levels, particularly in the Carson Desert, Churchill County, Nevada. Studies also have shown that the primary source of the gross-alpha radioactivity and alpha-emitting radionuclides in ground water is the dissolution of uranium-rich granitic rocks and basin-fill sediments that have their origins in the Sierra Nevada. However, ground water sampled from some wells in the Carson Desert had gross-alpha radioactivities greater than could be accounted for by the decay of dissolved uranium. The occurrence of polonium-210 (Po-210) was hypothesized to explain the higher than expected gross-alpha radioactivities. This report documents and describes the study design, field and analytical methods, and data used to determine whether Po-210 is the source of excess gross-alpha radioactivity in ground water underlying the Carson Desert in and around Fallon, Nevada. Specifically, this report presents: 1) gross alpha and uranium radioactivities for 100 wells sampled from June to September 2001; and 2) pH, dissolved oxygen, specific conductance, and Po-210 radioactivity for 25 wells sampled in April and June 2007. Results of quality-control samples for the 2007 dataset are also presented.

  13. Solar Energy: Its Technologies and Applications

    DOE R&D Accomplishments Database

    Auh, P. C.

    1978-06-01

    Solar heat, as a potential source of clean energy, is available to all of us. Extensive R and D efforts are being made to effectively utilize this renewable energy source. A variety of different technologies for utilizing solar energy have been proven to be technically feasible. Here, some of the most promising technologies and their applications are briefly described. These are: Solar Heating and Cooling of Buildings (SHACOB), Solar Thermal Energy Conversion (STC), Wind Energy Conversion (WECS), Bioconversion to Fuels (BCF), Ocean Thermal Energy Conversion (OTEC), and Photovoltaic Electric Power Systems (PEPS). Special emphasis is placed on the discussion of the SHACOB technologies, since the technologies are being expeditiously developed for the near commercialization.

  14. Mars Technologies Spawn Durable Wind Turbines

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.

    2013-01-01

    Sometimes referred to as regenerative life support systems, the concept includes an enclosed self-sufficient habitat that can independently support life for years on end. Such a system aims not only to produce its own food and water but to purify air and convert waste into useful byproducts. In the early 1990s, NASA was planning for an extended stay on Mars, and Bubenheim and his Ames colleagues were concentrating efforts on creating a complete ecological system to sustain human crewmembers during their time on the Red Planet. The main barrier to developing such a system, he says, is energy. Mars has no power plants, and a regenerative system requires equipment that runs on electricity to do everything from regulating humidity in the atmosphere to monitoring the quality of recycled water. The Ames group started looking at how to best make power on a planet that is millions of miles away from Earth and turned to a hybrid concept combining wind and solar power technologies. The reason was that Mars experiences frequent dust storms that can block nearly all sunlight. When theres a dust storm and the wind is blowing, the wind system could be the dominant power source. When the wind is not blowing and the sun is out, photovoltaics could be the dominant source, says Bubenheim.To develop and test the wind power technology, Ames turned to a remote, harsh environment here on Earth: the South Pole. The South Pole was a really good analog for Mars, says Bubenheim. The technology features for going to Mars were the same technology features needed to make something work at the South Pole.Around the same time that NASA started investigating energy technologies for the Red Planet, the National Science Foundation (NSF) was working on a redesign of their station at the South Pole. To power its operations, NSF used fuel that it flew to the remote location, but the Foundation recognized the benefits of also using onsite renewable energy technologies. In the winter they have small crews and their power requirements are less, says Bubenheim. In the summers, they bring in larger groups and photovoltaics could supply a lot of power. Using renewable energy technology could be a way of reducing the amount of fuel they have to fly in.Technology TransferTo advance wind turbine technology to meet the requirements of extremely harsh environments like that on Mars, Ames partnered with NSF and the Department of Energy. It was clear that a lot of the same features were also desirable for the cold regions of the Earth, says Bubenheim. NASA took the leadership on the team because we had the longest-term technology a Mars turbine. Years before, NSF had worked with a company called Northern Power Systems (NPS), based in Barre, Vermont, to deploy a 3-kilowatt wind turbine on Black Island off the coast of Antarctica.Sometimes referred to as regenerative life support systems, the concept includes an enclosed self-sufficient habitat that can independently support life for years on end. Such a system aims not only to produce its own food and water but to purify air and convert waste into useful byproducts. In the early 1990s, NASA was planning for an extended stay on Mars, and Bubenheim and his Ames colleagues were concentrating efforts on creating a complete ecological system to sustain human crewmembers during their time on the Red Planet. The main barrier to developing such a system, he says, is energy. Mars has no power plants, and a regenerative system requires equipment that runs on electricity to do everything from regulating humidity in the atmosphere to monitoring the quality of recycled water. The Ames group started looking at how to best make power on a planet that is millions of miles away from Earth and turned to a hybrid concept combining wind and solar power technologies. The reason was that Mars experiences frequent dust storms that can block nearly all sunlight. When there's a dust storm and the wind is blowing, the wind system could be the dominant power source. When the wind is not blowing and the sun is out, photovoltaics could be the dominant source, says Bubenheim.To develop and test the wind power technology, Ames turned to a remote, harsh environment here on Earth: the South Pole. The South Pole was a really good analog for Mars, says Bubenheim. The technology features for going to Mars were the same technology features needed to make something work at the South Pole.Around the same time that NASA started investigating energy technologies for the Red Planet, the National Science Foundation (NSF) was working on a redesign of their station at the South Pole. To power its operations, NSF used fuel that it flew to the remote location, but the Foundation recognized the benefits of also using onsite renewable energy technologies. In the winter they have small crews and their power requirements are less, says Bubenheim. In the summers, they bring in larger groups and photovoltaics could supply a lot of power. Using renewable energy technology could be a way of reducing the amount of fuel they have to fly in.Technology Transfer To advance wind turbine technology to meet the requirements of extremely harsh environments like that on Mars, Ames partnered with NSF and the Department of Energy. It was clear that a lot of the same features were also desirable for the cold regions of the Earth, says Bubenheim. NASA took the leadership on the team because we had the longest-term technology a Mars turbine.

  15. The R&D progress of 4 MW EAST-NBI high current ion source.

    PubMed

    Xie, Yahong; Hu, Chundong; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Xie, Yuanlai; Sheng, Peng; Jiang, Caichao; Liu, Zhimin

    2014-02-01

    A high current ion source, which consists of the multi-cusp bucket plasma generator and tetrode accelerator with multi-slot apertures, is developed and tested for the Experimental Advanced Superconducting Tokamak neutral beam injector. Three ion sources are tested on the test bed with arc power of 80 kW, beam voltage of 80 keV, and beam power of 4 MW. The arc regulation technology with Langmuir probes is employed for the long pulse operation of ion source, and the long pulse beam of 50 keV @ 15.5 A @ 100 s and 80 keV @ 52A @ 1s are extracted, respectively.

  16. Rapid Information and Communication Technology Assessment Team (RTAT): Enabling the Hands and Feet to Win the Hearts and Minds

    DTIC Science & Technology

    2014-09-01

    and 20 “live” tweets were injected into the scenario itself  1 alternative power demonstration ( wind and solar) accomplished  7 remote wireless ...solved this issue. 2. Hastily Formed Networks (HFN)  Alternative power sources were set up:RENEWS–a wind turbine , flexible solar panels, rigid...297 WORKS CONSULTED Akyildiz, I. (2011). Sensor networks in challenged environments. Wireless Technologies for Humanitarian Relief, 3(3).doi

  17. Wind Power Technologies FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2016-03-01

    The Wind Program accelerates U.S. deployment of clean, affordable, and reliable domestic wind power through research, development, and demonstration activities. These advanced technology investments directly contribute to the goals for the United States to generate 80% of the nation’s electricity from clean, carbon-free energy sources by 2035; reduce carbon emissions 26%-28% below 2005 levels by 2025; and reduce carbon emissions 80% by 2050 by reducing costs and increasing performance of wind energy systems.

  18. A method to reproduce alpha-particle spectra measured with semiconductor detectors.

    PubMed

    Timón, A Fernández; Vargas, M Jurado; Sánchez, A Martín

    2010-01-01

    A method is proposed to reproduce alpha-particle spectra measured with silicon detectors, combining analytical and computer simulation techniques. The procedure includes the use of the Monte Carlo method to simulate the tracks of alpha-particles within the source and in the detector entrance window. The alpha-particle spectrum is finally obtained by the convolution of this simulated distribution and the theoretical distributions representing the contributions of the alpha-particle spectrometer to the spectrum. Experimental spectra from (233)U and (241)Am sources were compared with the predictions given by the proposed procedure, showing good agreement. The proposed method can be an important aid for the analysis and deconvolution of complex alpha-particle spectra. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. THE CORES OF THE Fe K{alpha} LINES IN ACTIVE GALACTIC NUCLEI: AN EXTENDED CHANDRA HIGH ENERGY GRATING SAMPLE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu, X. W.; Wang, J. X.; Yaqoob, T.

    We extend the study of the core of the Fe K{alpha} emission line at {approx}6.4 keV in Seyfert galaxies reported by Yaqoob and Padmanabhan using a larger sample observed by the Chandra high-energy grating (HEG). The sample consists of 82 observations of 36 unique sources with z < 0.3. Whilst heavily obscured active galactic nuclei are excluded from the sample, these data offer some of the highest precision measurements of the peak energy of the Fe K{alpha} line, and the highest spectral resolution measurements of the width of the core of the line in unobscured and moderately obscured (N {submore » H} < 10{sup 23} cm{sup -2}) Seyfert galaxies to date. From an empirical and uniform analysis, we present measurements of the Fe K{alpha} line centroid energy, flux, equivalent width (EW), and intrinsic width (FWHM). The Fe K{alpha} line is detected in 33 sources, and its centroid energy is constrained in 32 sources. In 27 sources, the statistical quality of the data is good enough to yield measurements of the FWHM. We find that the distribution in the line centroid energy is strongly peaked around the value for neutral Fe, with over 80% of the observations giving values in the range 6.38-6.43 keV. Including statistical errors, 30 out of 32 sources ({approx}94%) have a line centroid energy in the range 6.35-6.47 keV. The mean EW, among the observations in which a non-zero lower limit could be measured, was 53 {+-} 3 eV. The mean FWHM from the subsample of 27 sources was 2060 {+-} 230 km s{sup -1}. The mean EW and FWHM are somewhat higher when multiple observations for a given source are averaged. From a comparison with the H{beta} optical emission-line widths (or, for one source, Br{alpha}), we find that there is no universal location of the Fe K{alpha} line-emitting region relative to the optical broad-line region (BLR). In general, a given source may have contributions to the Fe K{alpha} line flux from parsec-scale distances from the putative black hole, down to matter a factor {approx}2 closer to the black hole than the BLR. We confirm the presence of the X-ray Baldwin effect, an anti-correlation between the Fe K{alpha} line EW and X-ray continuum luminosity. The HEG data have enabled isolation of this effect to the narrow core of the Fe K{alpha} line.« less

  20. Improvements in the EQ-10 electrodeless Z-pinch EUV source for metrology applications

    NASA Astrophysics Data System (ADS)

    Horne, Stephen F.; Gustafson, Deborah; Partlow, Matthew J.; Besen, Matthew M.; Smith, Donald K.; Blackborow, Paul A.

    2011-04-01

    Now that EUV lithography systems are beginning to ship into the fabs for next generation chips it is more critical that the EUV infrastructure developments are keeping pace. Energetiq Technology has been shipping the EQ-10 Electrodeless Z-pinch™ light source since 2005. The source is currently being used for metrology, mask inspection, and resist development. These applications require especially stable performance in both power and source size. Over the last 5 years Energetiq has made many source modifications which have included better thermal management as well as high pulse rate operation6. Recently we have further increased the system power handling and electrical pulse reproducibility. The impact of these modifications on source performance will be reported.

  1. Mercury Emissions Capture Efficiency with Activated Carbon ...

    EPA Pesticide Factsheets

    This EPA-led project, conducted in collaboration with UNEP, the Swedish Environmental Institute and various Russian Institutes, that demonstrates that the mercury emission control efficiencies of activated carbon injection technologies applied at a Russian power plant burning Russian coals are similar to those found at U.S. plants burning US coals. (The US funding was from funds provided to the EPA by the Department of State pursuant to the Bio-Chemical Redirect Program which engages former Russian (and other former Soviet) weapons scientists in research projects with US collaborators.) Among other things, this report will aid the major task, of developing guidance on best available mercury control technology/best environmental practices (BAT/BEP) for coal-fired power plants, a major source a global anthropogenic emissions. (The new Minamata Convention requires BAT/BEP for new power plants and other major emission sources within five years of treaty ratification.)

  2. Exploding the Black Box: Personal Computing, the Notebook Battery Crisis, and Postindustrial Systems Thinking.

    PubMed

    Eisler, Matthew N

    Historians of science and technology have generally ignored the role of power sources in the development of consumer electronics. In this they have followed the predilections of historical actors. Research, development, and manufacturing of batteries has historically occurred at a social and intellectual distance from the research, development, and manufacturing of the devices they power. Nevertheless, power source technoscience should properly be understood as an allied yet estranged field of electronics. The separation between the fields has had important consequences for the design and manufacturing of mobile consumer electronics. This paper explores these dynamics in the co-construction of notebook batteries and computers. In so doing, it challenges assumptions of historians and industrial engineers and planners about the nature of computer systems in particular and the development of technological systems. The co-construction of notebook computers and batteries, and the occasional catastrophic failure of their compatibility, challenges systems thinking more generally.

  3. Thrust vector control using electric actuation

    NASA Astrophysics Data System (ADS)

    Bechtel, Robert T.; Hall, David K.

    1995-01-01

    Presently, gimbaling of launch vehicle engines for thrust vector control is generally accomplished using a hydraulic system. In the case of the space shuttle solid rocket boosters and main engines, these systems are powered by hydrazine auxiliary power units. Use of electromechanical actuators would provide significant advantages in cost and maintenance. However, present energy source technologies such as batteries are heavy to the point of causing significant weight penalties. Utilizing capacitor technology developed by the Auburn University Space Power Institute in collaboration with the Auburn CCDS, Marshall Space Flight Center (MSFC) and Auburn are developing EMA system components with emphasis on high discharge rate energy sources compatible with space shuttle type thrust vector control requirements. Testing has been done at MSFC as part of EMA system tests with loads up to 66000 newtons for pulse times of several seconds. Results show such an approach to be feasible providing a potential for reduced weight and operations costs for new launch vehicles.

  4. Issues and opportunities in space photovoltaics

    NASA Technical Reports Server (NTRS)

    Francis, Robert W.; Somerville, W. A.; Flood, Dennis J.

    1988-01-01

    Space power sources are becoming a central focus for determining man's potential and schedule for exploring and utilizing the benefits of space. The ability to search, probe, survey, and communicate throughout the universe will depend on providing adequate power to the instruments to do these jobs. Power requirements for space platforms are increasing and will continue to increase into the 21st century. Photovoltaics have been a dependable power source for space for the last 30 years and have served as the primary source of power on virtually all DOD and NASA satellites. The performance of silicon (Si) solar cells has increased from 10 percent air mass zero (AM0) solar energy conversion efficiency in the early 60's to almost 15 percent on today's spacecraft. Some technologists even think that the potential for solar photovoltaics has reached a plateau. However, present and near-future Air Force and NASA requirements show needs that, if the problems are looked upon as opportunities, can elevate the photovoltaic power source scientist and array structure engineer into the next technological photovoltaic growth curve.

  5. Development of a Thermoacoustic Stirling Engine Technology Demonstrator

    NASA Astrophysics Data System (ADS)

    Reissner, Alexander; Gerger, Joachim; Hummel, Stefan; Reißig, Jannis; Pawelke, Roland

    2014-08-01

    Waste heat is a primary source of energy loss in many aerospace and terrestrial applications. FOTEC, an Austrian Research Company located in Wiener Neustadt, is presently developing a micro power converter, promising high efficiencies even for small- scale applications. The converter is based on an innovative thermoacoustic stirling engine concept without any moving parts. Such a maintenance-free engine system would be particularly suitable for advanced space power systems (radioisotope, waste heat) or even within the scope of terrestrial energy harvesting. This paper will summarizes the status of our ongoing efforts on this micro power converter technology.

  6. Rapid determination of 210Po in water samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2013-08-02

    A new rapid method for the determination of 210Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of 210Po in water samples have typically involved spontaneous auto-deposition of 210Po onto silver or other metal disks followed by counting by alphamore » spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin, often in combination with 210Pb analysis. A new rapid method for 210Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin (N,N,N,N-tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of 210Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate 210Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid determination of 210Po.« less

  7. State of the art of D&D Instrumentation Technology: Alpha counting in the presence of high background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerman, C.E.

    1995-08-01

    Discrimination of alpha activity in the presence of a high radiation background has been identified as an area of concern to be studied for D&D applications. Upon evaluating the range of alpha detection needs for D&D operations, we have expanded this study to address the operational concern of greatly expediting alpha counting of rough surfaces and rubble. Note that the term, ``rough surfaces`` includes a wide range of practical cases, including contaminated equipment and work surfaces. We have developed provisional applications requirements for instrumentation of this type; and we also have generated the scope of a program of instrument evaluationmore » and testing, with emphasis on practical implementation. In order to obtain the full operational benefit of alpha discrimination in the presence of strong beta-gamma radiation background, the detection system must be capable of some form of remote or semi-remote operation in order to reduce operator exposure. We have identified a highly promising technique, the long-range alpha detector (LRAD), for alpha discrimination in the presence of high radiation background. This technique operates upon the principle of transporting alphaionized air to an ionization detector. A transport time within a few seconds is adequate. Neither the provisional requirements nor the evaluation and testing scope were expressly tailored to force the selection of a LRAD technology, and they could be used as a basis for studies of other promising technologies. However, a technology that remotely detects alpha-ionized air (e. g., LRAD) is a natural fit to the key requirements of rejection of high background at the survey location and operator protection. Also, LRAD appears to be valuable for D&D applications as a means of greatly expediting surface alpha-activity surveys that otherwise would require performing time-consuming scans over surfaces of interest with alpha detector probes, and even more labor-intensive surface wipe surveys.« less

  8. Prediction of Francis Turbine Prototype Part Load Pressure and Output Power Fluctuations with Hydroelectric Model

    NASA Astrophysics Data System (ADS)

    Alligné, S.; Nicolet, C.; Béguin, A.; Landry, C.; Gomes, J.; Avellan, F.

    2017-04-01

    The prediction of pressure and output power fluctuations amplitudes on Francis turbine prototype is a challenge for hydro-equipment industry since it is subjected to guarantees to ensure smooth and reliable operation of the hydro units. The European FP7 research project Hyperbole aims to setup a methodology to transpose the pressure fluctuations induced by the cavitation vortex rope from the reduced scale model to the prototype generating units. A Francis turbine unit of 444MW with a specific speed value of ν = 0.29, is considered as case study. A SIMSEN model of the power station including electrical system, controllers, rotating train and hydraulic system with transposed draft tube excitation sources is setup. Based on this model, a frequency analysis of the hydroelectric system is performed for all technologies to analyse potential interactions between hydraulic excitation sources and electrical components. Three technologies have been compared: the classical fixed speed configuration with Synchronous Machine (SM) and the two variable speed technologies which are Doubly Fed Induction Machine (DFIM) and Full Size Frequency Converter (FSFC).

  9. Role of L-lysine-alpha-ketoglutarate aminotransferase in catabolism of lysine as a nitrogen source for Rhodotorula glutinis.

    PubMed Central

    Kinzel, J J; Winston, M K; Bhattacharjee, J K

    1983-01-01

    Wild-type and saccharopine dehydrogenaseless mutant strains of Rhodotorula glutinis grew in minimal medium containing lysine as the sole nitrogen source and simultaneously accumulated, in the culture supernatant, large amounts of a product identified as alpha-aminoadipic-delta-semialdehyde. The saccharopine dehydrogenase and pipecolic acid oxidase levels remained unchanged in wild-type cells grown in the presence of ammonium or lysine as the nitrogen source. Lysine-alpha-ketoglutarate aminotransferase activity was demonstrated in ammonium-grown cells. This activity was depressed in cells grown in the presence of lysine as the sole source of nitrogen. PMID:6408065

  10. Army Net Zero Prove Out. Net Zero Energy Best Practices

    DTIC Science & Technology

    2014-11-18

    energy which is then used to drive a heat engine to generate electrical power. Geothermal Power – These systems use thermal energy generated and...stored in the earth as a generating source for electricity. Several pilot installations are investigating this technology by conducting geothermal ...concentrate solar thermal energy which is then used to drive a heat engine to generate electrical power. • Geothermal Power - These systems use thermal energy

  11. Comparison of Cf-252 thin-film sources prepared by evaporation or self-transfer

    DOE PAGES

    Algutifan, Noor J.; Sherman, Steven R.; Alexander, Charles W.

    2014-11-29

    Californium-252 (Z = 98) is valued as a potent neutron source due to its spontaneous fission decay path. Thin film sources containing Cf-252 were prepared by two techniques: evaporation and self-transfer. The sources were analyzed by alpha and gamma spectroscopy. Results indicate that self-transfer sources exhibit less alpha energy straggling and energy loss than evaporative sources. Fission fragments may also self-transfer, and sources made by self-transfer may need some decay time to reach radioactive equilibrium.

  12. Optimization of a radiative membrane for gas sensing applications

    NASA Astrophysics Data System (ADS)

    Lefebvre, Anthony; Boutami, Salim; Greffet, Jean-Jacques; Benisty, Henri

    2014-05-01

    To engineer a cheap, portable and low-power optical gas sensor, incandescent sources are more suitable than expensive quantum cascade lasers and low-efficiency light-emitting diodes. Such sources of radiation have already been realized, using standard MEMS technology, consisting in free standing circular micro-hotplates. This paper deals with the design of such membranes in order to maximize their wall-plug efficiency. Specification constraints are taken into account, including available energy per measurement and maximum power delivered by the electrical supply source. The main drawback of these membranes is known to be the power lost through conduction to the substrate, thus not converted in (useful) radiated power. If the membrane temperature is capped by technological requirements, radiative flux can be favored by increasing the membrane radius. However, given a finite amount of energy, the larger the membrane and its heat capacity, the shorter the time it can be turned on. This clearly suggests that an efficiency optimum has to be found. Using simulations based on a spatio-temporal radial profile, we demonstrate how to optimally design such membrane systems, and provide an insight into the thermo-optical mechanisms governing this kind of devices, resulting in a nontrivial design with a substantial benefit over existing systems. To further improve the source, we also consider tailoring the membrane stack spectral emissivity to promote the infrared signal to be sensed as well as to maximize energy efficiency.

  13. Coal-fired Power Plants with Flexible Amine-based CCS and Co-located Wind Power: Environmental, Economic and Reliability Outcomes

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Rubenka

    Carbon Capture and Storage (CCS) technologies provide a means to significantly reduce carbon emissions from the existing fleet of fossil-fired plants, and hence can facilitate a gradual transition from conventional to more sustainable sources of electric power. This is especially relevant for coal plants that have a CO2 emission rate that is roughly two times higher than that of natural gas plants. Of the different kinds of CCS technology available, post-combustion amine based CCS is the best developed and hence more suitable for retrofitting an existing coal plant. The high costs from operating CCS could be reduced by enabling flexible operation through amine storage or allowing partial capture of CO2 during high electricity prices. This flexibility is also found to improve the power plant's ramp capability, enabling it to offset the intermittency of renewable power sources. This thesis proposes a solution to problems associated with two promising technologies for decarbonizing the electric power system: the high costs of the energy penalty of CCS, and the intermittency and non-dispatchability of wind power. It explores the economic and technical feasibility of a hybrid system consisting of a coal plant retrofitted with a post-combustion-amine based CCS system equipped with the option to perform partial capture or amine storage, and a co-located wind farm. A techno-economic assessment of the performance of the hybrid system is carried out both from the perspective of the stakeholders (utility owners, investors, etc.) as well as that of the power system operator. (Abstract shortened by ProQuest.).

  14. Utility aspects of space power: Load management versus source management

    NASA Technical Reports Server (NTRS)

    Walls, B.

    1995-01-01

    Electrical power, as an area of study, is relatively young as compared to language, chemistry, physics, mathematics, philosophy, metallurgy, textiles, transportation, or farming. Practically all of the technology that has enabled the huge, continent-spanning power grids that have become ubiquitous in developed countries was developed in the last 150 years. In fact, Tesla's advocacy of alternating current for transmission just won out in the beginning of this century. Despite the novelty of the field as a whole, space power applications are, of course, much newer. This paper looks at the history of space power, and compares it to its older sibling on earth, forming a basis for determining appropriate transitions of technology from the terrestrial realm to space applications.

  15. Strategies for steam handling and H2S abatement at geothermal power plants in the geysers area of Northern California

    NASA Astrophysics Data System (ADS)

    Morris, W. F.; Stephens, F. B.

    1981-08-01

    Strict limitations on the emission of H2S from new geothermal power plants in The Geysers area of northern California were imposed by Lake and Northern Sonoma County Air Pollution Control Districts. Lake County, under new source review rules, stipulated that specific technologies should be utilized to limit H2S emissions to 5 lb/h as a condition for determination of compliance. The status of these technologies as well as other ongoing technology development efforts to conserve steam and abate H2S are evaluated.

  16. OEM fiber laser rangefinder for long-distance measurement

    NASA Astrophysics Data System (ADS)

    Corman, Alexandre; Chiquet, Frédéric; Avisse, Thomas; Le Flohic, Marc

    2015-05-01

    SensUp designs and manufactures electro-optical systems based on laser technology, in particular from fiber lasers. Indeed, that kind of source enables us to get a significant peak power with huge repetition rates at the same time, thus combining some characteristics of the two main technologies on the telemetry field today: laser diodes and solid-state lasers. The OEM (Original Equipment Manufacturer) fiber Laser RangeFinder (LRF) set out below, aims to fit the SWaP (Size Weight and Power) requirements of military markets, and might turn out to be a real alternative to other technologies usually used in range finding systems.

  17. Prioritized Degree Distribution in Wireless Sensor Networks with a Network Coded Data Collection Method

    PubMed Central

    Wan, Jan; Xiong, Naixue; Zhang, Wei; Zhang, Qinchao; Wan, Zheng

    2012-01-01

    The reliability of wireless sensor networks (WSNs) can be greatly affected by failures of sensor nodes due to energy exhaustion or the influence of brutal external environment conditions. Such failures seriously affect the data persistence and collection efficiency. Strategies based on network coding technology for WSNs such as LTCDS can improve the data persistence without mass redundancy. However, due to the bad intermediate performance of LTCDS, a serious ‘cliff effect’ may appear during the decoding period, and source data are hard to recover from sink nodes before sufficient encoded packets are collected. In this paper, the influence of coding degree distribution strategy on the ‘cliff effect’ is observed and the prioritized data storage and dissemination algorithm PLTD-ALPHA is presented to achieve better data persistence and recovering performance. With PLTD-ALPHA, the data in sensor network nodes present a trend that their degree distribution increases along with the degree level predefined, and the persistent data packets can be submitted to the sink node according to its degree in order. Finally, the performance of PLTD-ALPHA is evaluated and experiment results show that PLTD-ALPHA can greatly improve the data collection performance and decoding efficiency, while data persistence is not notably affected. PMID:23235451

  18. Thermal power systems point-focusing distributed receiver technology project. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Lucas, J.

    1979-01-01

    Thermal or electrical power from the sun's radiated energy through Point-Focusing Distributed Receiver Technology is the goal of this project. The energy thus produced must be technically, as well as economically, competitive with other energy sources. This project is to support the industrial development of the required technology to achieve the above stated goal. Solar energy is concentrated by either a reflecting surface or a lense to a receiver where it is transferred to a working liquid or gas. Receiver temperatures are in the 1000 - 2000 F range. Conceptual design studies are expected to identify power conversion units with a viable place in the solar energy future. Rankine and Brayton cycle engines are under investigation. This report details the Jet Propulsion Laboratory's accomplishments with point-focusing technology in Fy 1978.

  19. Antioxidant and analgesic activities of turpentine of Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe.

    PubMed

    Gülçin, Ilhami; Büyükokuroglu, M Emin; Oktay, Münir; Küfrevioglu, O Irfan

    2003-05-01

    The aim of this study is to examine possible antioxidant and analgesic activities of turpentine exudes from Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe (TPN). Total antioxidant activity, reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities were studied. The total antioxidant activity increased with the increasing amount of extracts (100, 300, and 500 microg) added to linoleic acid emulsion. All of the doses of TPN showed higher antioxidant activity than alpha-tocopherol. The samples showed 49, 70, and 91% inhibition on peroxidation of linoleic acid emulsion, respectively. On the other hand, the 300 microg of alpha-tocopherol showed 40% inhibition on peroxidation of linoleic acid emulsion. There is correlation between antioxidant activity and the reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities. Like antioxidant activity, the reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities of TPN depending on concentration and increasing with increased concentration of TPN. These properties may be the major reasons for the inhibition of lipid peroxidation. The results obtained in the present study indicate that the TPN has a potential source of natural antioxidant. In addition, analgesic effect of TPN was investigated in present study and TPN had strong analgesic effect. The analgesic effect of TPN compared with metamizol as a standard analgesic compound.

  20. Overview of NASA GRC Stirling Technology Development

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2004-01-01

    The Stirling Radioisotope Generator (SRG) is currently being developed by Lockheed Martin Astronautics (LMA) under contract to the Department of Energy (DOE). The generator will be a high efficiency electric power source for NASA Space Science missions with the ability to operate in vacuum or in an atmosphere such as on Mars. High efficiency is obtained through the use of free-piston Stirling power conversion. Power output will be greater than 100 watts at the beginning of life with the decline in power largely due to the decay of the plutonium heat source. In support of the DOE SRG project, the NASA Glenn Research Center (GRC) has established a technology effort to provide data to ensure a successful transition to flight for what will be the first dynamic power system in space. Initially, a limited number of areas were selected for the effort, however this is now being expanded to more thoroughly cover key technical issues. There is also an advanced technology effort that is complementary to the near-term technology effort. Many of the tests use the 55-We Technology Demonstration Convertor (TDC). There have been multiple controller tests to support the LMA flight controller design effort. Preparation is continuing for a thermal/vacuum system demonstration. A pair of flight prototype TDC s have been placed on continuous operation. Heater head life assessment continues, with the material data being refined and the analysis moving toward the system perspective. Magnet aging tests continue to characterize any possible aging in the strength or demagnetization resistance of the magnets in the linear alternator. A reliability effort has been initiated to help guide the development activities with focus on the key components and subsystems. This paper will provide an overview of some of the GRC technical efforts, including the status, and a description of future efforts.

  1. Performance of one hundred watt HVM LPP-EUV source

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Hakaru; Nakarai, Hiroaki; Abe, Tamotsu; Nowak, Krzysztof M.; Kawasuji, Yasufumi; Tanaka, Hiroshi; Watanabe, Yukio; Hori, Tsukasa; Kodama, Takeshi; Shiraishi, Yutaka; Yanagida, Tatsuya; Soumagne, Georg; Yamada, Tsuyoshi; Yamazaki, Taku; Okazaki, Shinji; Saitou, Takashi

    2015-03-01

    We have been developing CO2-Sn-LPP EUV light source which is the most promising solution as the 13.5nm high power light source for HVM EUVL. Unique and original technologies such as: combination of pulsed CO2 laser and Sn droplets, dual wavelength laser pulses shooting, and mitigation with magnetic field, have been developed in Gigaphoton Inc. The theoretical and experimental data have clearly showed the advantage of our proposed strategy. Based on these data we are developing first practical source for HVM - "GL200E". This data means 250W EUV power will be able to realize around 20kW level pulsed CO2 laser. We have reported engineering data from our recent test such around 43W average clean power, CE=2.0%, with 100kHz operation and other data 19). We have already finished preparation of higher average power CO2 laser more than 20kW at output power cooperate with Mitsubishi Electric Corporation 14). Recently we achieved 92W with 50kHz, 50% duty cycle operation 20). We have reported component technology progress of EUV light source system. We report promising experimental data and result of simulation of magnetic mitigation system in Proto #1 system. We demonstrated several data with Proto #2 system: (1) emission data of 140W in burst under 70kHz 50% duty cycle during 10 minutes. (2) emission data of 118W in burst under 60kHz 70% duty cycle during 10 minutes. (3) emission data of 42W in burst under 20kHz 50% duty cycle (10000pls/0.5ms OFF) during 3 hours (110Mpls). Also we report construction of Pilot #1 system. Final target is week level operation with 250W EUV power with CE=4%, more than 27kW CO2 laser power by the end of Q2 of 2015.

  2. US Army Research Laboratory power sources R and D programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher, H.A.; Gilman, S.; Hamlen, R.P.

    1993-05-01

    The development and application of new electronic technologies over the recent past has resulted in a major evolution of new electronic battlefield equipment. The need for lighter-weight and more cost effective power sources with higher power/energy density capability is critical to the successful development and deployment of these new, high performance battlefield devices. The current status and thrust of the Army Research Laboratory's (ARL's) battery and fuel cell R and D programs that support these new and emerging applications will be reviewed. Major technical barriers will be identified along with the corresponding proposed approaches to solving these anticipated problems.

  3. Solar Power Satellites: Reconsideration as Renewable Energy Source Based on Novel Approaches

    NASA Astrophysics Data System (ADS)

    Ellery, Alex

    2017-04-01

    Solar power satellites (SPS) are a solar energy generation mechanism that captures solar energy in space and converts this energy into microwave for transmission to Earth-based rectenna arrays. They offer a constant, high integrated energy density of 200 W/m2 compared to <10 W/m2 for other renewable energy sources. Despite this promise as a clean energy source, SPS have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current 20,000/kg to <200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to 2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many including the provision of stable baseload power. Here, I present a novel approach to reduce the specific cost of solar power satellites to 1/kg by leveraging two enabling technologies - in-situ resource utilization of lunar material and 3D printing of this material. Specifically, we demonstrate that electric motors may be constructed from lunar material through 3D printing representing a major step towards the development of self-replicating machines. Such machines have the capacity to build solar power satellites on the Moon, thereby bypassing the launch cost problem. The productive capacity of self-replicating machines favours the adoption of large constellations of small solar power satellites. This opens up additional clean energy options for combating climate change by meeting the demands for future global energy.

  4. Power-Law Template for Infrared Point-Source Clustering

    NASA Technical Reports Server (NTRS)

    Addison, Graeme E; Dunkley, Joanna; Hajian, Amir; Viero, Marco; Bond, J. Richard; Das, Sudeep; Devlin, Mark J.; Halpern, Mark; Hincks, Adam D; Hlozek, Renee; hide

    2012-01-01

    We perform a combined fit to angular power spectra of unresolved infrared (IR) point sources from the Planck satellite (at 217, 353, 545, and 857 GHz, over angular scales 100 approx < l approx < 2200), the Balloon-borne Large-Aperture Submillimeter Telescope (BLAST; 250, 350, and 500 micron; 1000 approx < l approx < 9000), and from correlating BLAST and Atacama Cosmology Telescope (ACT; 148 and 218 GHz) maps. We find that the clustered power over the range of angular scales and frequencies considered is well fitted by a simple power law of the form C(sup clust)(sub l) varies as l (sub -n) with n = 1.25 +/- 0.06. While the IR sources are understood to lie at a range of redshifts, with a variety of dust properties, we find that the frequency dependence of the clustering power can be described by the square of a modified blackbody, ?(sup Beta)B(?, T(sub eff) ), with a single emissivity index Beta = 2.20 +/- 0.07 and effective temperature T(sub eff) = 9.7 K. Our predictions for the clustering amplitude are consistent with existing ACT and South Pole Telescope results at around 150 and 220 GHz, as is our prediction for the effective dust spectral index, which we find to be alpha(sub 150-220) = 3.68 +/- 0.07 between 150 and 220 GHz. Our constraints on the clustering shape and frequency dependence can be used to model the IR clustering as a contaminant in cosmic microwave background anisotropy measurements. The combined Planck and BLAST data also rule out a linear bias clustering model.

  5. 40 CFR 423.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... control technology (BCT). [Reserved] 423.14 Section 423.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE... by the application of the best conventional pollutant control technology (BCT). [Reserved] ...

  6. 40 CFR 423.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... control technology (BCT). [Reserved] 423.14 Section 423.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE... by the application of the best conventional pollutant control technology (BCT). [Reserved] ...

  7. 40 CFR 423.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... control technology (BCT). [Reserved] 423.14 Section 423.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE... by the application of the best conventional pollutant control technology (BCT). [Reserved] ...

  8. 40 CFR 423.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... control technology (BCT). [Reserved] 423.14 Section 423.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE... by the application of the best conventional pollutant control technology (BCT). [Reserved] ...

  9. 40 CFR 423.14 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... control technology (BCT). [Reserved] 423.14 Section 423.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE... by the application of the best conventional pollutant control technology (BCT). [Reserved] ...

  10. Nuclear Technology: Making Informed Decisions.

    ERIC Educational Resources Information Center

    Altshuler, Kenneth

    1989-01-01

    Discusses a unit on nuclear technology which is taught in a physics class. Explains the unit design, implementation process, demonstrations used, and topics of discussion that include light and optics, naturally and artificially produced sources of radioactivity, nuclear equations, isotopes and half-lives, and power-generating nuclear reactors.…

  11. GABAergic modulation of visual gamma and alpha oscillations and its consequences for working memory performance.

    PubMed

    Lozano-Soldevilla, Diego; ter Huurne, Niels; Cools, Roshan; Jensen, Ole

    2014-12-15

    Impressive in vitro research in rodents and computational modeling has uncovered the core mechanisms responsible for generating neuronal oscillations. In particular, GABAergic interneurons play a crucial role for synchronizing neural populations. Do these mechanistic principles apply to human oscillations associated with function? To address this, we recorded ongoing brain activity using magnetoencephalography (MEG) in healthy human subjects participating in a double-blind pharmacological study receiving placebo, 0.5 mg and 1.5 mg of lorazepam (LZP; a benzodiazepine upregulating GABAergic conductance). Participants performed a demanding visuospatial working memory (WM) task. We found that occipital gamma power associated with WM recognition increased with LZP dosage. Importantly, the frequency of the gamma activity decreased with dosage, as predicted by models derived from the rat hippocampus. A regionally specific gamma increase correlated with the drug-related performance decrease. Despite the system-wide pharmacological intervention, gamma power drug modulations were specific to visual cortex: sensorimotor gamma power and frequency during button presses remained unaffected. In contrast, occipital alpha power modulations during the delay interval decreased parametrically with drug dosage, predicting performance impairment. Consistent with alpha oscillations reflecting functional inhibition, LZP affected alpha power strongly in early visual regions not required for the task demonstrating a regional specific occipital impairment. GABAergic interneurons are strongly implicated in the generation of gamma and alpha oscillations in human occipital cortex where drug-induced power modulations predicted WM performance. Our findings bring us an important step closer to linking neuronal dynamics to behavior by embracing established animal models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. OAST Space Theme Workshop. Volume 3: Working group summary. 6: Power (P-2). A. Statement. B. Technology needs (form 1). C. Priority assessment (form 2)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Power requirements for the multipurpose space power platform, for space industrialization, SETI, the solar system exploration facility, and for global services are assessed for various launch dates. Priorities and initiatives for the development of elements of space power systems are described for systems using light power input (solar energy source) or thermal power input, (solar, chemical, nuclear, radioisotopes, reactors). Systems for power conversion, power processing, distribution and control are likewise examined.

  13. Piezoelectric devices for generating low power

    NASA Astrophysics Data System (ADS)

    Chilibon, Irinela

    2016-12-01

    This paper reviews concepts and applications in low-power electronics and energy harvesting technologies. Various piezoelectric materials and devices for small power generators useful in renewable electricity are presented. The vibrating piezoelectric device differs from the typical electrical power source in that it has capacitive rather than inductive source impedance, and may be driven by mechanical vibrations of varying amplitude. In general, vibration energy could be converted into electrical energy using one of three techniques: electrostatic charge, magnetic fields and piezoelectric. A low power piezoelectric generator, having a PZT element was realised in order to supply small electronic elements, such as optoelectronic small devices, LEDs, electronic watches, small sensors, interferometry with lasers or Micro-electro-mechanical System (MEMS) array with multi-cantilevers.

  14. MotorWeek

    ScienceCinema

    None

    2017-12-27

    In 2008, PBS's MotorWeek, television's original automotive magazine, visited Argonne's Transportation Technology R&D Center "To learn what it really takes to make clean power sources a viable reality."

  15. The Design of Connection Solid Oxide Fuel Cell (SOFC) Integrated Grid with Three-Phase Inverter

    NASA Astrophysics Data System (ADS)

    Darjat; Sulistyo; Triwiyatno, Aris; Thalib, Humaid

    2018-03-01

    Fuel cell technology is a relatively new energy-saving technology that has the potential to replace conventional energy technologies. Among the different types of generation technologies, fuel cells is the generation technologies considered as a potential source of power generation because it is flexible and can be placed anywhere based distribution system. Modeling of SOFC is done by using Nernst equation. The output power of the fuel cell can be controlled by controlling the flow rate of the fuels used in the process. Three-phase PWM inverter is used to get the form of three-phase voltage which same with the grid. In this paper, the planning and design of the SOFC are connected to the grid.

  16. Biomass power in transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, D.K.

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plantmore » market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.« less

  17. EEG-MEG Integration Enhances the Characterization of Functional and Effective Connectivity in the Resting State Network

    PubMed Central

    Mideksa, Kidist Gebremariam; Anwar, Abdul Rauf; Stephani, Ulrich; Deuschl, Günther; Freitag, Christine M.; Siniatchkin, Michael

    2015-01-01

    At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general conclusion multi-center studies would be helpful. PMID:26509448

  18. Luminescence imaging of water during alpha particle irradiation

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Komori, Masataka; Koyama, Shuji; Toshito, Toshiyuki

    2016-05-01

    The luminescence imaging of water using the alpha particle irradiation of several MeV energy range is thought to be impossible because this alpha particle energy is far below the Cerenkov-light threshold and the secondary electrons produced in this energy range do not emit Cerenkov-light. Contrary to this consensus, we found that the luminescence imaging of water was possible with 5.5 MeV alpha particle irradiation. We placed a 2 MBq of 241Am alpha source in water, and luminescence images of the source were conducted with a high-sensitivity, cooled charge-coupled device (CCD) camera. We also carried out such imaging of the alpha source in three different conditions to compare the photon productions with that of water, in air, with a plastic scintillator, and an acrylic plate. The luminescence imaging of water was observed from 10 to 20 s acquisition, and the intensity was linearly increased with time. The intensity of the luminescence with the alpha irradiation of water was 0.05% of that with the plastic scintillator, 4% with air, and 15% with the acrylic plate. The resolution of the luminescence image of water was better than 0.25 mm FWHM. Alpha particles of 5.5 MeV energy emit luminescence in water. Although the intensity of the luminescence was smaller than that in air, it was clearly observable. The luminescence of water with alpha particles would be a new method for alpha particle detection and distribution measurements in water.

  19. Paying attention to attention in recognition memory: insights from models and electrophysiology.

    PubMed

    Dubé, Chad; Payne, Lisa; Sekuler, Robert; Rotello, Caren M

    2013-12-01

    Reliance on remembered facts or events requires memory for their sources, that is, the contexts in which those facts or events were embedded. Understanding of source retrieval has been stymied by the fact that uncontrolled fluctuations of attention during encoding can cloud results of key importance to theoretical development. To address this issue, we combined electrophysiology (high-density electroencephalogram, EEG, recordings) with computational modeling of behavioral results. We manipulated subjects' attention to an auditory attribute, whether the source of individual study words was a male or female speaker. Posterior alpha-band (8-14 Hz) power in subjects' EEG increased after a cue to ignore the voice of the person who was about to speak. Receiver-operating-characteristic analysis validated our interpretation of oscillatory dynamics as a marker of attention to source information. With attention under experimental control, computational modeling showed unequivocally that memory for source (male or female speaker) reflected a continuous signal detection process rather than a threshold recollection process.

  20. Advanced Gas Turbine (AGT) Technology Project

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Engine testing, ceramic component fabrication and evaluation, component performance rig testing, and analytical studies comprised AGT 100 activities during the 1985 year. Ten experimental assemblies (builds) were evaluated using two engines. Accrued operating time was 120 hr of burning and 170 hr total, bringing cumulative total operating time to 395 hr, all devoid of major failures. Tests identified the generator seals as the primary working fluid leakage sources. Power transfer clutch operation was demonstrated. An alpha SiC gasifier rotor engine test resulted in blade tip failures. Recurring case vibration and shaft whip have limited gasifier shaft speeds to 84%. Ceramic components successfully engine tested now include the SiC scroll assembly, Si3N3 turbine rotor, combustor assembly, regenerator disk bulkhead, turbine vanes, piston rings, and couplings. A compressor shroud design change to reduce heat recirculation back to the inlet was executed. Ceramic components activity continues to focus on the development of state-of-the-art material strength characteristics in full-scale engine hardware. Fiber reinforced glass-ceramic composite turbine (inner) backplates were fabricated by Corning Glass Works. The BMAS/III material performed well in engine testing. Backplates of MAS material have not been engine tested.

  1. Increased Alpha-Band Power during the Retention of Shapes and Shape-Location Associations in Visual Short-Term Memory

    PubMed Central

    Johnson, Jeffrey S.; Sutterer, David W.; Acheson, Daniel J.; Lewis-Peacock, Jarrod A.; Postle, Bradley R.

    2011-01-01

    Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band (~8–14 Hz) power during the delay period of delayed-recognition short-term memory tasks. These increases have been proposed to reflect the inhibition, for example, of cortical areas representing task-irrelevant information, or of potentially interfering representations from previous trials. Another possibility, however, is that elevated delay-period alpha-band power (DPABP) reflects the selection and maintenance of information, rather than, or in addition to, the inhibition of task-irrelevant information. In the present study, we explored these possibilities using a delayed-recognition paradigm in which the presence and task relevance of shape information was systematically manipulated across trial blocks and electroencephalographic was used to measure alpha-band power. In the first trial block, participants remembered locations marked by identical black circles. The second block featured the same instructions, but locations were marked by unique shapes. The third block featured the same stimulus presentation as the second, but with pretrial instructions indicating, on a trial-by-trial basis, whether memory for shape or location was required, the other dimension being irrelevant. In the final block, participants remembered the unique pairing of shape and location for each stimulus. Results revealed minimal DPABP in each of the location-memory conditions, whether locations were marked with identical circles or with unique task-irrelevant shapes. In contrast, alpha-band power increases were observed in both the shape-memory condition, in which location was task irrelevant, and in the critical final condition, in which both shape and location were task relevant. These results provide support for the proposal that alpha-band oscillations reflect the retention of shape information and/or shape–location associations in short-term memory. PMID:21713012

  2. Learning temporal context shapes prestimulus alpha oscillations and improves visual discrimination performance.

    PubMed

    Toosi, Tahereh; K Tousi, Ehsan; Esteky, Hossein

    2017-08-01

    Time is an inseparable component of every physical event that we perceive, yet it is not clear how the brain processes time or how the neuronal representation of time affects our perception of events. Here we asked subjects to perform a visual discrimination task while we changed the temporal context in which the stimuli were presented. We collected electroencephalography (EEG) signals in two temporal contexts. In predictable blocks stimuli were presented after a constant delay relative to a visual cue, and in unpredictable blocks stimuli were presented after variable delays relative to the visual cue. Four subsecond delays of 83, 150, 400, and 800 ms were used in the predictable and unpredictable blocks. We observed that predictability modulated the power of prestimulus alpha oscillations in the parieto-occipital sites: alpha power increased in the 300-ms window before stimulus onset in the predictable blocks compared with the unpredictable blocks. This modulation only occurred in the longest delay period, 800 ms, in which predictability also improved the behavioral performance of the subjects. Moreover, learning the temporal context shaped the prestimulus alpha power: modulation of prestimulus alpha power grew during the predictable block and correlated with performance enhancement. These results suggest that the brain is able to learn the subsecond temporal context of stimuli and use this to enhance sensory processing. Furthermore, the neural correlate of this temporal prediction is reflected in the alpha oscillations. NEW & NOTEWORTHY It is not well understood how the uncertainty in the timing of an external event affects its processing, particularly at subsecond scales. Here we demonstrate how a predictable timing scheme improves visual processing. We found that learning the predictable scheme gradually shaped the prestimulus alpha power. These findings indicate that the human brain is able to extract implicit subsecond patterns in the temporal context of events. Copyright © 2017 the American Physiological Society.

  3. Suzaku observation of IGR J16318-4848

    NASA Technical Reports Server (NTRS)

    Barragan, Laura; Wilms, Joern; Pottschmidt, Katja; Nowak, Michael A.; Kreykenbohm, Ingo; Walter, Roland; Tomsick, John A.

    2009-01-01

    We report on the first Suzaku observation of IGR J16318-4848, the most extreme example of a new group of highly absorbed X-ray binaries that have recently been discovered by the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The Suzaku observation was carried out between 2006 August 14 and 17, with a net exposure time of 97 ks. The average X-ray spectrum of the source can be well described (chi-square (sub red)= 0.99) with a continuum model typical for neutron stars i.e., a strongly absorbed power law continuum with a photon index of 0.676(42) and an exponential cutoff at 20.5(6) keY. The absorbing column is N(sub H) = 1.95(3) X 10(exp 24)/square cm. Consistent with earlier work, strong fluorescent emission lines of Fe K-alpha, Fe K-beta, and Ni K-alpha are observed. Despite the large N(sub H), no Compton shoulder is seen in the lines, arguing for a non-spherical and inhomogeneous absorber. Seen at an average 5-60 keV absorbed flux of 3.4 x 10(exp -10) erg/square cm/second, the source exhibits significant variability on timescales of hours.

  4. Enabling technologies for fiber optic sensing

    NASA Astrophysics Data System (ADS)

    Ibrahim, Selwan K.; Farnan, Martin; Karabacak, Devrez M.; Singer, Johannes M.

    2016-04-01

    In order for fiber optic sensors to compete with electrical sensors, several critical parameters need to be addressed such as performance, cost, size, reliability, etc. Relying on technologies developed in different industrial sectors helps to achieve this goal in a more efficient and cost effective way. FAZ Technology has developed a tunable laser based optical interrogator based on technologies developed in the telecommunication sector and optical transducer/sensors based on components sourced from the automotive market. Combining Fiber Bragg Grating (FBG) sensing technology with the above, high speed, high precision, reliable quasi distributed optical sensing systems for temperature, pressure, acoustics, acceleration, etc. has been developed. Careful design needs to be considered to filter out any sources of measurement drifts/errors due to different effects e.g. polarization and birefringence, coating imperfections, sensor packaging etc. Also to achieve high speed and high performance optical sensing systems, combining and synchronizing multiple optical interrogators similar to what has been used with computer/processors to deliver super computing power is an attractive solution. This path can be achieved by using photonic integrated circuit (PIC) technology which opens the doors to scaling up and delivering powerful optical sensing systems in an efficient and cost effective way.

  5. ARPA-E: Advancing the Electric Grid

    ScienceCinema

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2018-06-07

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  6. Photovoltaics as a terrestrial energy source. Volume 1: An introduction

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Photovoltaic (PV) systems were examined their potential for terrestrial application and future development. Photovoltaic technology, existing and potential photovoltaic applications, and the National Photovoltaics Program are reviewed. The competitive environment for this electrical source, affected by the presence or absence of utility supplied power is evaluated in term of systems prices. The roles of technological breakthroughs, directed research and technology development, learning curves, and commercial demonstrations in the National Program are discussed. The potential for photovoltaics to displace oil consumption is examined, as are the potential benefits of employing PV in either central-station or non-utility owned, small, distributed systems.

  7. Advanced Stirling Technology Development at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Shaltens, Richard K.; Wong, Wayne A.

    2007-01-01

    The NASA Glenn Research Center has been developing advanced energy-conversion technologies for use with both radioisotope power systems and fission surface power systems for many decades. Under NASA's Science Mission Directorate, Planetary Science Theme, Technology Program, Glenn is developing the next generation of advanced Stirling convertors (ASCs) for use in the Department of Energy/Lockheed Martin Advanced Stirling Radioisotope Generator (ASRG). The next-generation power-conversion technologies require high efficiency and high specific power (watts electric per kilogram) to meet future mission requirements to use less of the Department of Energy's plutonium-fueled general-purpose heat source modules and reduce system mass. Important goals include long-life (greater than 14-yr) reliability and scalability so that these systems can be considered for a variety of future applications and missions including outer-planet missions and continual operation on the surface of Mars. This paper provides an update of the history and status of the ASC being developed for Glenn by Sunpower Inc. of Athens, Ohio.

  8. Generation of Electrical Power from Stimulated Muscle Contractions Evaluated

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Kilgore, Kevin; Ercegovic, David B.

    2004-01-01

    This project is a collaborative effort between NASA Glenn Research Center's Revolutionary Aeropropulsion Concepts (RAC) Project, part of the NASA Aerospace Propulsion and Power Program of the Aerospace Technology Enterprise, and Case Western Reserve University's Cleveland Functional Electrical Stimulation (FES) Center. The RAC Project foresees implantable power requirements for future applications such as organically based sensor platforms and robotics that can interface with the human senses. One of the goals of the FES Center is to develop a totally implantable neural prosthesis. This goal is based on feedback from patients who would prefer a system with an internal power source over the currently used system with an external power source. The conversion system under investigation would transform the energy produced from a stimulated muscle contraction into electrical energy. We hypothesize that the output power of the system will be greater than the input power necessary to initiate, sustain, and control the electrical conversion system because of the stored potential energy of the muscle. If the system can be made biocompatible, durable, and with the potential for sustained use, then the biological power source will be a viable solution.

  9. High-contrast imaging in multi-star systems: progress in technology development and lab results

    NASA Astrophysics Data System (ADS)

    Belikov, Ruslan; Pluzhnik, Eugene; Bendek, Eduardo; Sirbu, Dan

    2017-09-01

    We present the continued progress and laboratory results advancing the technology readiness of Multi-Star Wavefront Control (MSWC), a method to directly image planets and disks in multi-star systems such as Alpha Centauri. This method works with almost any coronagraph (or external occulter with a DM) and requires little or no change to existing and mature hardware. In particular, it works with single-star coronagraphs and does not require the off-axis star(s) to be coronagraphically suppressed. Because of the ubiquity of multistar systems, this method increases the science yield of many missions and concepts such as WFIRST, Exo-C/S, HabEx, LUVOIR, and potentially enables the detection of Earthlike planets (if they exist) around our nearest neighbor star, Alpha Centauri, with a small and low-cost space telescope such as ACESat. Our lab demonstrations were conducted at the Ames Coronagraph Experiment (ACE) laboratory and show both the feasibility as well as the trade-offs involved in using MSWC. We show several simulations and laboratory tests at roughly TRL-3 corresponding to representative targets and missions, including Alpha Centauri with WFIRST. In particular, we demonstrate MSWC in Super-Nyquist mode, where the distance between the desired dark zone and the off-axis star is larger than the conventional (sub-Nyquist) control range of the DM. Our laboratory tests did not yet include a coronagraph, but did demonstrate significant speckle suppression from two independent light sources at sub- as well as super-Nyquist separations.

  10. Development of a transmission alpha particle dosimetry technique using A549 cells and a Ra-223 source for targeted alpha therapy.

    PubMed

    Al Darwish, R; Staudacher, A H; Li, Y; Brown, M P; Bezak, E

    2016-11-01

    In targeted radionuclide therapy, regional tumors are targeted with radionuclides delivering therapeutic radiation doses. Targeted alpha therapy (TAT) is of particular interest due to its ability to deliver alpha particles of high linear energy transfer within the confines of the tumor. However, there is a lack of data related to alpha particle distribution in TAT. These data are required to more accurately estimate the absorbed dose on a cellular level. As a result, there is a need for a dosimeter that can estimate, or better yet determine the absorbed dose deposited by alpha particles in cells. In this study, as an initial step, the authors present a transmission dosimetry design for alpha particles using A549 lung carcinoma cells, an external alpha particle emitting source (radium 223; Ra-223) and a Timepix pixelated semiconductor detector. The dose delivery to the A549 lung carcinoma cell line from a Ra-223 source, considered to be an attractive radionuclide for alpha therapy, was investigated in the current work. A549 cells were either unirradiated (control) or irradiated for 12, 1, 2, or 3 h with alpha particles emitted from a Ra-223 source positioned below a monolayer of A549 cells. The Timepix detector was used to determine the number of transmitted alpha particles passing through the A549 cells and DNA double strand breaks (DSBs) in the form of γ-H2AX foci were examined by fluorescence microscopy. The number of transmitted alpha particles was correlated with the observed DNA DSBs and the delivered radiation dose was estimated. Additionally, the dose deposited was calculated using Monte Carlo code SRIM. Approximately 20% of alpha particles were transmitted and detected by Timepix. The frequency and number of γ-H2AX foci increased significantly following alpha particle irradiation as compared to unirradiated controls. The equivalent dose delivered to A549 cells was estimated to be approximately 0.66, 1.32, 2.53, and 3.96 Gy after 12, 1, 2, and 3 h irradiation, respectively, considering a relative biological effectiveness of alpha particles of 5.5. The study confirmed that the Timepix detector can be used for transmission alpha particle dosimetry. If cross-calibrated using biological dosimetry, this method will give a good indication of the biological effects of alpha particles without the need for repeated biological dosimetry which is costly, time consuming, and not readily available.

  11. 40 CFR 423.12 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... technology currently available (BPT). 423.12 Section 423.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS STEAM ELECTRIC POWER GENERATING POINT SOURCE... by the application of the best practicable control technology currently available (BPT). (a) In...

  12. TECHNOLOGY INNOVATIONS AND EXPERIENCE CURVES FOR NITROGEN OXIDES CONTROL TECHNOLOGIES

    EPA Science Inventory

    This paper reviews the regulatory history for nitrogen oxides (NOX) pollutant emissions from stationary sources, primarily in coal-fired power plants. Nitrogen dioxide (NO2) is one of the six criteria pollutants regulated by the 1970 Clean Air Act where Nati...

  13. Technologies for Upgrading Light Water Reactor Outlet Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessmentmore » of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.« less

  14. The Coast Guard Proceedings of the Marine Safety and Security Council. Volume 72, Number 2, Summer 2015

    DTIC Science & Technology

    2015-01-01

    environ- mentally friendly power -producing and -saving technolo- gies on physical ATONs; using photovoltaic cells as supple- mental power sources, such...ATON positioning, solar power , and self-contained LED lanterns. And, as technological advancements have made accessing and transiting the MTS more...Atmospheric Administration (NOAA) charts up to date. However, with the vast increase in com- puting power and system interconnectivity, there is a rec

  15. A Methodology for the Estimation of the Wind Generator Economic Efficiency

    NASA Astrophysics Data System (ADS)

    Zaleskis, G.

    2017-12-01

    Integration of renewable energy sources and the improvement of the technological base may not only reduce the consumption of fossil fuel and environmental load, but also ensure the power supply in regions with difficult fuel delivery or power failures. The main goal of the research is to develop the methodology of evaluation of the wind turbine economic efficiency. The research has demonstrated that the electricity produced from renewable sources may be much more expensive than the electricity purchased from the conventional grid.

  16. Avionic technology testing by using a cognitive neurometric index: A study with professional helicopter pilots.

    PubMed

    Borghini, Gianluca; Aricò, Pietro; Di Flumeri, Gianluca; Salinari, Serenella; Colosimo, Alfredo; Bonelli, Stefano; Napoletano, Linda; Ferreira, Ana; Babiloni, Fabio

    2015-01-01

    In this study, we investigated the possibility to evaluate the impact of different avionic technologies on the mental workload of helicopter's pilots by measuring their brain activity with the EEG during a series of simulated missions carried out at AgustaWestland facilities in Yeovil (UK). The tested avionic technologies were: i) Head-Up Display (HUD); ii) Head-Mounted Display (HMD); iii) Full Conformal symbology (FC); iv) Flight Guidance (FG) symbology; v) Synthetic Vision System (SVS); and vi) Radar Obstacles (RO) detection system. It has been already demonstrated that in cognitive tasks, when the cerebral workload increases the EEG power spectral density (PSD) in theta band over frontal areas increases, and the EEG PSD in alpha band decreases over parietal areas. A mental workload index (MWL) has been here defined as the ratio between the frontal theta and parietal alpha EEG PSD values. Such index has been used for testing and comparing the different avionic technologies. Results suggested that the HUD provided a significant (p<;.05) workload reduction across all the flight scenarios with respect to the other technologies. In addition, the simultaneous use of FC and FG technologies (FC+FG) produced a significant decrement of the workload (p<;.01) with respect to the use of only the FC. Moreover, the use of the SVS technology provided on Head Down Display (HDD) with the simultaneous use of FC+FG and the RO seemed to produce a lower cerebral workload when compared with the use of only the FC. Interestingly, the workload estimation by means of subjective measures, provided by pilots through a NASA-TLX questionnaire, did not provide any significant differences among the different flight scenarios. These results suggested that the proposed MWL cognitive neurometrics could be used as a reliable measure of the user's mental workload, being a valid indicator for the comparison and the test of different avionic technologies.

  17. The Use of AlphaScreen Technology in HTS: Current Status

    PubMed Central

    Eglen, Richard M; Reisine, Terry; Roby, Philippe; Rouleau, Nathalie; Illy, Chantal; Bossé, Roger; Bielefeld, Martina

    2008-01-01

    AlphaScreen (Amplified Luminescent Proximity Homogeneous Assay Screen) is versatile assay technology developed to measuring analytes using a homogenous protocol. This technology is an example of a bead-based proximity assay and was developed from a diagnostic assay technology known as LOCI (Luminescent Oxygen Channeling Assay). Here, singlet oxygen molecules, generated by high energy irradiation of Donor beads, travel over a constrained distance (approx. 200 nm) to Acceptor beads. This results in excitation of a cascading series of chemical reactions, ultimately causing generation of a chemiluminescent signal. In the past decade, a wide variety of applications has been reported, ranging from detection of analytes involved in cell signaling, including protein:protein, protein:peptide, protein:small molecule or peptide:peptide interactions. Numerous homogeneous HTS-optimized assays have been reported using the approach, including generation of second messengers (such as accumulation of cyclic AMP, cyclic GMP, inositol [1, 4, 5] trisphosphate or phosphorylated ERK) from liganded GPCRs or tyrosine kinase receptors, post-translational modification of proteins (such as proteolytic cleavage, phosphorylation, ubiquination and sumoylation) as well as protein-protein and protein-nucleic acid interactions. Recently, the basic AlphaScreen technology was extended in that the chemistry of the Acceptor bead was modified such that emitted light is more intense and spectrally defined, thereby markedly reducing interference from biological fluid matrices (such as trace hemolysis in serum and plasma). In this format, referred to as AlphaLISA, it provides an alternative technology to classical ELISA assays and is suitable for high throughput automated fluid dispensing and detection systems. Collectively, AlphaScreen and AlphaLISA technologies provide a facile assay platform with which one can quantitate complex cellular processes using simple no-wash microtiter plate based assays. They provide the means by which large compound libraries can be screened in a high throughput fashion at a diverse range of therapeutically important targets, often not readily undertaken using other homogeneous assay technologies. This review assesses the current status of the technology in drug discovery, in general, and high throughput screening (HTS), in particular. PMID:20161822

  18. Open Source Initiative Powers Real-Time Data Streams

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Under an SBIR contract with Dryden Flight Research Center, Creare Inc. developed a data collection tool called the Ring Buffered Network Bus. The technology has now been released under an open source license and is hosted by the Open Source DataTurbine Initiative. DataTurbine allows anyone to stream live data from sensors, labs, cameras, ocean buoys, cell phones, and more.

  19. Open Source, Crowd Source: Harnessing the Power of the People behind Our Libraries

    ERIC Educational Resources Information Center

    Trainor, Cindi

    2009-01-01

    Purpose: The purpose of this paper is to provide an insight into the use of Web 2.0 and Library 2.0 technologies so that librarians can combine open source software with user-generated content to create a richer discovery experience for their users. Design/methodology/approach: Following a description of the current state of integrated library…

  20. Modeling and control of hybrid wind/photovoltaic/fuel cell distributed generation systems

    NASA Astrophysics Data System (ADS)

    Wang, Caisheng

    Due to ever increasing energy consumption, rising public awareness of environmental protection, and steady progress in power deregulation, alternative (i.e., renewable and fuel cell based) distributed generation (DG) systems have attracted increased interest. Wind and photovoltaic (PV) power generation are two of the most promising renewable energy technologies. Fuel cell (FC) systems also show great potential in DG applications of the future due to their fast technology development and many merits they have, such as high efficiency, zero or low emission (of pollutant gases) and flexible modular structure. The modeling and control of a hybrid wind/PV/FC DG system is addressed in this dissertation. Different energy sources in the system are integrated through an AC bus. Dynamic models for the main system components, namely, wind energy conversion system (WECS), PV energy conversion system (PVECS), fuel cell, electrolyzer, power electronic interfacing circuits, battery, hydrogen storage tank, gas compressor and gas pressure regulator, are developed. Two types of fuel cells have been modeled in this dissertation: proton exchange membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Power control of a grid-connected FC system as well as load mitigation control of a stand-alone FC system are investigated. The pitch angle control for WECS, the maximum power point tracking (MPPT) control for PVECS, and the control for electrolyzer and power electronic devices, are also addressed in the dissertation. Based on the dynamic component models, a simulation model for the proposed hybrid energy system has been developed using MATLAB/Simulink. The overall power management strategy for coordinating the power flows among the different energy sources is presented in the dissertation. Simulation studies have been carried out to verify the system performance under different scenarios using a practical load profile and real weather data. The results show that the overall power management strategy is effective and the power flows among the different energy sources and the load demand is balanced successfully. The DG's impacts on the existing power system are also investigated in this dissertation. Analytical methods for finding optimal sites to deploy DG sources in power systems are presented and verified with simulation studies.

  1. Energy Spectra and High Frequency Oscillations in 4U 0614+091

    NASA Technical Reports Server (NTRS)

    Ford, E. C.; Kaaret, P.; Chen, K.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.

    1997-01-01

    We investigate the behavior of the high frequency quasi-periodic oscillations (QPOs) in 4U 0614+091, combining timing and spectral analysis of RXTE (Rossi X-ray Timing Explorer) observations. The energy spectrum of the source can be described by a power law plus a blackbody component. The blackbody has a variable temperature (kT approximately 0.8 to 1.4 keV) and accounts for 10 to 25% of the total energy flux. The power law flux and photon index also vary (F approximately 0.8 to 1.6 x 10(exp -9) erg/sq cm.s and alpha approximately 2.0 to 2.8 respectively). We find a robust correlation of the frequency of the higher frequency QPO with the flux of the blackbody. The source follows the same relation even in observations separated by several months. The QPO frequency does not have a similarly unique correlation with the total flux or the flux of the power law component. The RMS amplitudes of the higher frequency QPO rise with energy but are consistent with a constant for the lower frequency QPO. These results may be interpreted in terms of a beat frequency model for the production of the high frequency QPOs.

  2. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness

    PubMed Central

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-01-01

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly “domain general” conflict processing mechanisms, instead of conflict source specific effects. PMID:26169473

  3. EEG neural oscillatory dynamics reveal semantic and response conflict at difference levels of conflict awareness.

    PubMed

    Jiang, Jun; Zhang, Qinglin; Van Gaal, Simon

    2015-07-14

    Although previous work has shown that conflict can be detected in the absence of awareness, it is unknown how different sources of conflict (i.e., semantic, response) are processed in the human brain and whether these processes are differently modulated by conflict awareness. To explore this issue, we extracted oscillatory power dynamics from electroencephalographic (EEG) data recorded while human participants performed a modified version of the Stroop task. Crucially, in this task conflict awareness was manipulated by masking a conflict-inducing color word preceding a color patch target. We isolated semantic from response conflict by introducing four color words/patches, of which two were matched to the same response. We observed that both semantic as well as response conflict were associated with mid-frontal theta-band and parietal alpha-band power modulations, irrespective of the level of conflict awareness (high vs. low), although awareness of conflict increased these conflict-related power dynamics. These results show that both semantic and response conflict can be processed in the human brain and suggest that the neural oscillatory mechanisms in EEG reflect mainly "domain general" conflict processing mechanisms, instead of conflict source specific effects.

  4. Power dependence of reflectivity of metallic films.

    PubMed

    Yeh, Y C; Stafsudd, O M

    1976-01-01

    The reflectivity of vacuum-deposited gold films on quartz glass substrates was studied as a function of 10.6-microm radiation power density. A simple linear model of the temperature dependence of the absorptivity of the gold film is developed. This temperature dependence is coupled with a three-dimensional heat flow analysis and fits the experimental data well. The absorptivity alpha is written as alpha(0)(1 + betaT) and the values of alpha(0) and beta are determined, respectively, as (0.88 +/- 0.01) x 10(-2) and 12 x 10(-4)/ degrees C.

  5. Autonomous self-powered structural health monitoring system

    NASA Astrophysics Data System (ADS)

    Qing, Xinlin P.; Anton, Steven R.; Zhang, David; Kumar, Amrita; Inman, Daniel J.; Ooi, Teng K.

    2010-03-01

    Structural health monitoring technology is perceived as a revolutionary method of determining the integrity of structures involving the use of multidisciplinary fields including sensors, materials, system integration, signal processing and interpretation. The core of the technology is the development of self-sufficient systems for the continuous monitoring, inspection and damage detection of structures with minimal labor involvement. A major drawback of the existing technology for real-time structural health monitoring is the requirement for external electrical power input. For some applications, such as missiles or combat vehicles in the field, this factor can drastically limit the use of the technology. Having an on-board electrical power source that is independent of the vehicle power system can greatly enhance the SHM system and make it a completely self-contained system. In this paper, using the SMART layer technology as a basis, an Autonomous Self-powered (ASP) Structural Health Monitoring (SHM) system has been developed to solve the major challenge facing the transition of SHM systems into field applications. The architecture of the self-powered SHM system was first designed. There are four major components included in the SHM system: SMART Layer with sensor network, low power consumption diagnostic hardware, rechargeable battery with energy harvesting device, and host computer with supporting software. A prototype of the integrated self-powered active SHM system was built for performance and functionality testing. Results from the evaluation tests demonstrated that a fully charged battery system is capable of powering the SHM system for active scanning up to 10 hours.

  6. Artificial neural network application for space station power system fault diagnosis

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Oliver, Walter E.; Dias, Lakshman G.

    1995-01-01

    This study presents a methodology for fault diagnosis using a Two-Stage Artificial Neural Network Clustering Algorithm. Previously, SPICE models of a 5-bus DC power distribution system with assumed constant output power during contingencies from the DDCU were used to evaluate the ANN's fault diagnosis capabilities. This on-going study uses EMTP models of the components (distribution lines, SPDU, TPDU, loads) and power sources (DDCU) of Space Station Alpha's electrical Power Distribution System as a basis for the ANN fault diagnostic tool. The results from the two studies are contrasted. In the event of a major fault, ground controllers need the ability to identify the type of fault, isolate the fault to the orbital replaceable unit level and provide the necessary information for the power management expert system to optimally determine a degraded-mode load schedule. To accomplish these goals, the electrical power distribution system's architecture can be subdivided into three major classes: DC-DC converter to loads, DC Switching Unit (DCSU) to Main bus Switching Unit (MBSU), and Power Sources to DCSU. Each class which has its own electrical characteristics and operations, requires a unique fault analysis philosophy. This study identifies these philosophies as Riddles 1, 2 and 3 respectively. The results of the on-going study addresses Riddle-1. It is concluded in this study that the combination of the EMTP models of the DDCU, distribution cables and electrical loads yields a more accurate model of the behavior and in addition yielded more accurate fault diagnosis using ANN versus the results obtained with the SPICE models.

  7. 48 CFR 204.470-3 - Contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Protocol, in solicitations and contracts for research and development or major defense acquisition programs...) Other radiological source materials; or (c) Technologies directly related to nuclear power production...

  8. Self-absorption Effects on Alpha-Induced Atmospheric Nitrogen Fluorescence Yield

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bachelor, Paula P.; Jordan, David V.; Harper, Warren W.

    2009-12-01

    Nitrogen fluorescence induced by alpha, beta and gamma radiation can be used to detect the presence of radioactive contamination in the environment. Successful measurement of fluorescence yield involves a number of factors, including: known fluorescence signal rate during the measurement; the effective alpha spectrum of the radioactive sources used in the measurement; optical attenuation length of the fluorescence signal in air during the measurement; the absolute throughput of the instrumentation; calibration of the instrumentation; and radiation transport modeling of the "effective" array exposure rate given the spectrum of the alpha particles. Field testing of optical instrumentation was conducted to measuremore » the nitrogen fluorescence yield from the alpha radiation generated from americium-241 (241Am) decay. The 241Am test sources were prepared by direct evaporation of ~1 mCi in nitric acid solution, and some solids were visible on the surface of the sources. A laboratory study was conducted with lower activities of 241Am to determine whether the presence of solids on the surface of the sources prepared both by direct evaporation and by electrodeposition onto stainless steel disks produced sufficient self-absorption to cause a decrease in expected fluorescence. Alpha spectroscopy was used to determine the apparent activity of the sources versus the known activity deposited on the surface. Results from the self-absorption laboratory studies were used to correct the activity values in the model and calculate the nitrogen fluorescence generated by the 241Am during the field experiments.« less

  9. Thermionic/AMTEC cascade converter concept for high-efficiency space power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hagan, T.H. van; Smith, J.N. Jr.; Schuller, M.

    1996-12-31

    This paper presents trade studies that address the use of the thermionic/AMTEC cell--a cascaded, high-efficiency, static power conversion concept that appears well-suited to space power applications. Both the thermionic and AMTEC power conversion approaches have been shown to be promising candidates for space power. Thermionics offers system compactness via modest efficiency at high heat rejection temperatures, and AMTEC offers high efficiency at modest heat rejection temperature. From a thermal viewpoint the two are ideally suited for cascaded power conversion: thermionic heat rejection and AMTEC heat source temperatures are essentially the same. In addition to realizing conversion efficiencies potentially as highmore » as 35--40%, such a cascade offers the following perceived benefits: survivability; simplicity; technology readiness; and technology growth. Mechanical approaches and thermal/electric matching criteria for integrating thermionics and AMTEC into a single conversion device are described. Focusing primarily on solar thermal space power applications, parametric trends are presented to show the performance and cost potential that should be achievable with present-day technology in cascaded thermionic/AMTEC systems.« less

  10. Opposite effects of lateralised transcranial alpha versus gamma stimulation on auditory spatial attention.

    PubMed

    Wöstmann, Malte; Vosskuhl, Johannes; Obleser, Jonas; Herrmann, Christoph S

    2018-04-06

    Spatial attention relatively increases the power of neural 10-Hz alpha oscillations in the hemisphere ipsilateral to attention, and decreases alpha power in the contralateral hemisphere. For gamma oscillations (>40 Hz), the opposite effect has been observed. The functional roles of lateralised oscillations for attention are currently unclear. If lateralised oscillations are functionally relevant for attention, transcranial stimulation of alpha versus gamma oscillations in one hemisphere should differentially modulate the accuracy of spatial attention to the ipsi-versus contralateral side. 20 human participants performed a dichotic listening task under continuous transcranial alternating current stimulation (tACS, vs sham) at alpha (10 Hz) or gamma (47 Hz) frequency. On each trial, participants attended to four spoken numbers on the left or right ear, while ignoring numbers on the other ear. In order to stimulate a left temporo-parietal cortex region, which is known to show marked modulations of alpha power during auditory spatial attention, tACS (1 mA peak-to-peak amplitude) was applied at electrode positions TP7 and FC5 over the left hemisphere. As predicted, unihemispheric alpha-tACS relatively decreased the recall of targets contralateral to stimulation, but increased recall of ipsilateral targets. Importantly, this spatial pattern of results was reversed for gamma-tACS. Results provide a proof of concept that transcranially stimulated oscillations can enhance spatial attention and facilitate attentional selection of speech. Furthermore, opposite effects of alpha versus gamma stimulation support the view that states of high alpha are incommensurate with active neural processing as reflected by states of high gamma. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Surface Contamination Monitor and Survey Information Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-02-01

    Shonka Research Associates, Inc.`s (SRA) Surface Contamination Monitor and Survey Information management System (SCM/SIMS) is designed to perform alpha and beta radiation surveys of floors and surfaces and document the measured data. The SRA-SCM/SIMS technology can be applied to routine operational surveys, characterization surveys, and free release and site closure surveys. Any large nuclear site can make use of this technology. This report describes a demonstration of the SRA-SCM/SIMS technology. This demonstration is part of the chicago Pile-5 (CP-5) Large-Scale Demonstration Project (LSDP) sponsored by the US Department of Energy (DOE), Office of Science and Technology (ST), Deactivation and Decommissioningmore » Focus Area (DDFA). The objective of the LSDP is to select and demonstrate potentially beneficial technologies at the Argonne National Laboratory-East`s (ANL) CP-5 Research Reactor Facility. The purpose of the LSDP is to demonstrate that by using innovative and improved deactivation and decommissioning (D and D) technologies from various sources, significant benefits can be achieved when compared to baseline D and D technologies.« less

  12. Technology Evaluation for an Advanced Individual Protection System (AIPS)

    DTIC Science & Technology

    1992-12-01

    this analysis are: time of operation, duration of thermal management, power consumed during operation, cooling/heating benefit , time between recharge...BRDEC) TOPICS: o individual power * batteries/engines/fuel cel!s POC: Wes Goodwin (NRDEC) TOPICS: * microclimate cooling e vapor compression cycles e...individual power 2.3 LITERATURE SEARCHES The literature searches began by reviewing Battelle in-house sources for useful reports. This included a

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Komiyama, Ryoichi; Marnay, Chris; Stadler, Michael

    In this analysis, the authors projected Japan's energy demand/supply and energy-related CO{sub 2} emissions to 2050. Their analysis of various scenarios indicated that Japan's CO{sub 2} emissions in 2050 could be potentially reduced by 26-58% from the current level (FY 2005). These results suggest that Japan could set a CO{sub 2} emission reduction target for 2050 at between 30% and 60%. In order to reduce CO{sub 2} emissions by 60% in 2050 from the present level, Japan will have to strongly promote energy conservation at the same pace as an annual rate of 1.9% after the oil crises (to cutmore » primary energy demand per GDP (TPES/GDP) in 2050 by 60% from 2005) and expand the share of non-fossil energy sources in total primary energy supply in 2050 to 50% (to reduce CO{sub 2} emissions per primary energy demand (CO{sub 2}/TPES) in 2050 by 40% from 2005). Concerning power generation mix in 2050, nuclear power will account for 60%, solar and other renewable energy sources for 20%, hydro power for 10% and fossil-fired generation for 10%, indicating substantial shift away from fossil fuel in electric power supply. Among the mitigation measures in the case of reducing CO{sub 2} emissions by 60% in 2050, energy conservation will make the greatest contribution to the emission reduction, being followed by solar power, nuclear power and other renewable energy sources. In order to realize this massive CO{sub 2} abatement, however, Japan will have to overcome technological and economic challenges including the large-scale deployment of nuclear power and renewable technologies.« less

  14. High power microwave source development

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  15. Measurement of alpha particle energy using windowless electret ion chambers.

    PubMed

    Dua, S K; Kotrappa, P; Srivastava, R; Ebadian, M A; Stieff, L R

    2002-10-01

    Electret ion chambers are inexpensive, lightweight, robust, commercially available, passive, charge-integrating devices for accurate measurement of different ionizing radiations. In an earlier work a chamber of dimensions larger than the range of alpha particles having aluminized Mylar windows of different thickness was used for measurement of alpha radiation. Correlation between electret mid-point voltage, alpha particle energy, and response was developed and it was shown that this chamber could be used for estimating the effective energy of an unknown alpha source. In the present study, the electret ion chamber is used in the windowless mode so that the alpha particles dissipate their entire energy inside the volume, and the alpha particle energy is determined from the first principles. This requires that alpha disintegration rate be accurately known or measured by an alternate method. The measured energies were within 1 to 4% of the true values for different sources (230Th, 237Np, 239Pu, 241Am, and 224Cm). This method finds application in quantitative determination of alpha energy absorbed in thin membrane and, hence, the absorbed dose.

  16. Polarimetry of the HI Lyman-alpha for coronal magnetic field diagnostics

    NASA Technical Reports Server (NTRS)

    Fineschi, Silvano; Hoover, Richard B.; Zukic, Muamer; Kim, Jongmin; Walker, Arthur B. C., Jr.; Baker, Phillip, C.

    1993-01-01

    We discuss and analyze the possible sources of observational and instrumental uncertainty that can be encountered in measuring magnetic fields of the solar corona through polarimetric observations of the Hanle effect of the coronal Ly-alpha line. The Hanle effect is the modification of the linear polarization of a resonantly scattered line, due to the presence of a magnetic field. Simulated observations are used to examine how polarimetric measurements of this effect are affected by the line-of-sight integration, the electron collisions, and the Ly-alpha geocorona. We plan to implement the coronal magnetic field diagnostics via the Ly-alpha Hanle effect using an all-reflecting Ly-alpha coronagraph/polarimeter (Ly-alphaCoPo) which employs reflecting multilayer mirrors, polarizers, and filters. We discuss here the requirements for such an instrument, and analyze the sources of instrumental uncertainty for polarimetric observations of the coronal Ly-alpha Hanle effect. We conclude that the anticipated polarization signal from the corona and the expected performance of the Ly-alphaCoPo instrument are such that the Ly-alpha Hanle effect method for coronal field diagnostics is feasible.

  17. The observation of spectral variation indicative of porphyrin biomarkers in reflectance spectra of source rock - The application of remote sensing technology to petroleum geochemistry

    NASA Technical Reports Server (NTRS)

    Holden, Peter Newhall; Gaffey, Michael J.

    1990-01-01

    The spectral signature of porphyrin compounds, considered to be biomarkers of depositional environment and thermal maturity, have been identified in reflectance spectra of oil shales. The key bands identified, in order of intensity, are the Soret (0.40 microns), alpha (0.57 microns), and beta (0.53 microns) bands. The observed bands represent the composite spectral signature of all porphyrin compounds present in the sample and, therefore, change position and intensity in accordance with changes in porphyrin chemistry.

  18. Frontal and Parietal Cortices Show Different Spatiotemporal Dynamics across Problem-solving Stages.

    PubMed

    Tschentscher, Nadja; Hauk, Olaf

    2016-08-01

    Arithmetic problem-solving can be conceptualized as a multistage process ranging from task encoding over rule and strategy selection to step-wise task execution. Previous fMRI research suggested a frontal-parietal network involved in the execution of complex numerical and nonnumerical tasks, but evidence is lacking on the particular contributions of frontal and parietal cortices across time. In an arithmetic task paradigm, we evaluated individual participants' "retrieval" and "multistep procedural" strategies on a trial-by-trial basis and contrasted those in time-resolved analyses using combined EEG and MEG. Retrieval strategies relied on direct retrieval of arithmetic facts (e.g., 2 + 3 = 5). Procedural strategies required multiple solution steps (e.g., 12 + 23 = 12 + 20 + 3 or 23 + 10 + 2). Evoked source analyses revealed independent activation dynamics within the first second of problem-solving in brain areas previously described as one network, such as the frontal-parietal cognitive control network: The right frontal cortex showed earliest effects of strategy selection for multistep procedural strategies around 300 msec, before parietal cortex activated around 700 msec. In time-frequency source power analyses, memory retrieval and multistep procedural strategies were differentially reflected in theta, alpha, and beta frequencies: Stronger beta and alpha desynchronizations emerged for procedural strategies in right frontal, parietal, and temporal regions as function of executive demands. Arithmetic fact retrieval was reflected in right prefrontal increases in theta power. Our results demonstrate differential brain dynamics within frontal-parietal networks across the time course of a problem-solving process, and analyses of different frequency bands allowed us to disentangle cortical regions supporting the underlying memory and executive functions.

  19. Alpha-theta border EEG abnormalities in preclinical Huntington's disease.

    PubMed

    Ponomareva, Natalya; Klyushnikov, Sergey; Abramycheva, Natalya; Malina, Daria; Scheglova, Nadejda; Fokin, Vitaly; Ivanova-Smolenskaia, Irina; Illarioshkin, Sergey

    2014-09-15

    Brain dysfunction precedes clinical manifestation of Huntington's disease (HD) by decades. This study was aimed to determine whether resting EEG is altered in preclinical HD mutations carriers (pre-HD). We examined relative power of broad traditional EEG bands as well as 1-Hz sub-bands of theta and alpha from the resting-state EEG of 29 pre-HD individuals and of 29 age-matched normal controls. The relative power of the narrow sub-band in the border of theta-alpha (7-8 Hz) was significantly reduced in pre-HD subjects as compared to normal controls, while the alterations in relative power of the broad frequency bands were not significant. In pre-HD subjects, the number of CAG repeats in the huntingtin (HTT) gene as well as the disease burden score (DBS) showed a positive correlation with relative power of the delta and theta frequency bands and their sub-bands and a negative correlation with alpha band relative power and the differences of relative power of the 7-8 Hz and 4-5 Hz frequency sub-bands. The obtained results suggest that EEG alterations in pre-HD individuals may be related to the course of the pathological process and to HD endophenotype. Analysis of the narrow EEG bands was found to be more useful for assessing EEG alterations in pre-HD individuals than a more traditional approach using broad bandwidths. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generationa)

    NASA Astrophysics Data System (ADS)

    Booske, John H.

    2008-05-01

    Homeland security and military defense technology considerations have stimulated intense interest in mobile, high power sources of millimeter-wave (mmw) to terahertz (THz) regime electromagnetic radiation, from 0.1 to 10THz. While vacuum electronic sources are a natural choice for high power, the challenges have yet to be completely met for applications including noninvasive sensing of concealed weapons and dangerous agents, high-data-rate communications, high resolution radar, next generation acceleration drivers, and analysis of fluids and condensed matter. The compact size requirements for many of these high frequency sources require miniscule, microfabricated slow wave circuits. This necessitates electron beams with tiny transverse dimensions and potentially very high current densities for adequate gain. Thus, an emerging family of microfabricated, vacuum electronic devices share many of the same plasma physics challenges that are currently confronting "classic" high power microwave (HPM) generators including long-life bright electron beam sources, intense beam transport, parasitic mode excitation, energetic electron interaction with surfaces, and rf air breakdown at output windows. The contemporary plasma physics and other related issues of compact, high power mmw-to-THz sources are compared and contrasted to those of HPM generation, and future research challenges and opportunities are discussed.

  1. Cortical Alpha Activity in Schizoaffective Patients

    PubMed Central

    Moeini, Mahdi; Khaleghi, Ali; Mohammadi, Mohammad Reza; Zarafshan, Hadi; Fazio, Rachel L.; Majidi, Hamid

    2017-01-01

    Objective: Electrophysiological studies have identified abnormal oscillatory activities in the cerebral cortex in schizophrenia and mood disorders. Biological and pathophysiological evidence suggests specific deficits in serotonin (5-HT) receptor function in schizoaffective disorder (SA), a clinical syndrome with characteristics of both schizophrenia and bipolar disorder. This study investigated alpha oscillations in patients with SA. Method: Electroencephalography was used to measure ongoing and evoked alpha oscillations in 38 adults meeting Diagnostic and Statistical Manual of Mental Disorders–Fourth Edition (DSM–IV) criteria for SA, and in 39 healthy controls. Results: Spontaneous alpha power of the participants with SA was significantly lower than that of healthy participants [F (1, 75) = 8.81, P < 0.01]. Evoked alpha activity was also decreased in SA compared to controls [F (1, 75) = 5.67, P = 0.025]. Conclusion: A strong reduction of alpha power in the posterior regions may reflect abnormality in the thalamocortical circuits. It is shown that hypoxia and reduced cerebral blood flow is associated with reduced alpha activity among different regions of the brain. Therefore, it can be concluded that greatly decreased alpha activity, particularly in centro-parietal and occipital regions, is related to SA symptoms such as hallucinations. PMID:28496495

  2. Cortical Alpha Activity in Schizoaffective Patients.

    PubMed

    Moeini, Mahdi; Khaleghi, Ali; Mohammadi, Mohammad Reza; Zarafshan, Hadi; Fazio, Rachel L; Majidi, Hamid

    2017-01-01

    Objective: Electrophysiological studies have identified abnormal oscillatory activities in the cerebral cortex in schizophrenia and mood disorders. Biological and pathophysiological evidence suggests specific deficits in serotonin (5-HT) receptor function in schizoaffective disorder (SA), a clinical syndrome with characteristics of both schizophrenia and bipolar disorder. This study investigated alpha oscillations in patients with SA. Method: Electroencephalography was used to measure ongoing and evoked alpha oscillations in 38 adults meeting Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV) criteria for SA, and in 39 healthy controls. Results: Spontaneous alpha power of the participants with SA was significantly lower than that of healthy participants [F (1, 75) = 8.81, P < 0.01]. Evoked alpha activity was also decreased in SA compared to controls [F (1, 75) = 5.67, P = 0.025]. Conclusion : A strong reduction of alpha power in the posterior regions may reflect abnormality in the thalamocortical circuits. It is shown that hypoxia and reduced cerebral blood flow is associated with reduced alpha activity among different regions of the brain. Therefore, it can be concluded that greatly decreased alpha activity, particularly in centro-parietal and occipital regions, is related to SA symptoms such as hallucinations.

  3. Using a modified technology acceptance model to evaluate healthcare professionals' adoption of a new telemonitoring system.

    PubMed

    Gagnon, Marie Pierre; Orruño, Estibalitz; Asua, José; Abdeljelil, Anis Ben; Emparanza, José

    2012-01-01

    To examine the factors that could influence the decision of healthcare professionals to use a telemonitoring system. A questionnaire, based on the Technology Acceptance Model (TAM), was developed. A panel of experts in technology assessment evaluated the face and content validity of the instrument. Two hundred and thirty-four questionnaires were distributed among nurses and doctors of the cardiology, pulmonology, and internal medicine departments of a tertiary hospital. Cronbach alpha was calculated to measure the internal consistency of the questionnaire items. Construct validity was evaluated using interitem correlation analysis. Logistic regression analysis was performed to test the theoretical model. Adjusted odds ratios (ORs) and their 95% confidence intervals (CIs) were computed. A response rate of 39.7% was achieved. With the exception of one theoretical construct (Habit) that corresponds to behaviors that become automatized, Cronbach alpha values were acceptably high for the remaining constructs. Theoretical variables were well correlated with each other and with the dependent variable. The original TAM was good at predicting telemonitoring usage intention, Perceived Usefulness being the only significant predictor (OR: 5.28, 95% CI: 2.12-13.11). The model was still significant and more powerful when the other theoretical variables were added. However, the only significant predictor in the modified model was Facilitators (OR: 4.96, 95% CI: 1.59-15.55). The TAM is a good predictive model of healthcare professionals' intention to use telemonitoring. However, the perception of facilitators is the most important variable to consider for increasing doctors' and nurses' intention to use the new technology.

  4. Space Solar Power Demonstrations: Challenges and Progress

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Mankins, John C.; Lavoie, Anthony R. (Technical Monitor)

    2002-01-01

    The prospects of using electrical power beamed from space are coming closer to reality with the continued pursuit and improvements in the supporting space solar research and technology. Space Solar Power (SSP) has been explored off and on for approximately three decades as a viable alternative and clean energy source. Results produced through the more recent Space Solar Power Exploratory Research and Technology (SERT) program involving extensive participation by industry, universities, and government has provided a sound technical basis for believing that technology can be improved to the extent that SSP systems can be built, economically feasible, and successfully deployed in space. Considerable advancements have been made in conceptual designs and supporting technologies including solar power generation, wireless power transmission, power management distribution, thermal management and materials, and the integrated systems engineering assessments. Basic technologies have progressed to the point were the next logical step is to formulate and conduct sophisticated demonstrations involving prototype hardware as final proof of concepts and identify high end technology readiness levels in preparation for full scale SSP systems designs. In addition to continued technical development issues, environmental and safety issues must be addressed and appropriate actions taken to reassure the public and prepare them for the future use of this alternative renewable energy resource. Accomplishing these objectives will allow informed future decisions regarding further SSP and related R&D investments by both NASA management and prospective external partners. In particular, accomplishing these objectives will also guide further definition of SSP and related technology roadmaps including performance objectives, resources and schedules; including 'multi-purpose' applications (terrestrial markets, science, commercial development of space, and other government missions).

  5. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging.

    PubMed

    Caplan, Jeremy B; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A

    2015-05-15

    Rhythmic brain activity at low frequencies (<12Hz) during rest are thought to increase in neurodegenerative disease, but findings in healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; Caplan et al., 2001; Whitten et al., 2011) avoids these problems by using the signal's own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18-25 years) and older (60-74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1-4Hz), at which rhythms are sporadic; topographies were more similar in the 8-12Hz alpha band. There was little theta-band activity meeting the BOSC method's criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In summary, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Distinguishing rhythmic from non-rhythmic brain activity during rest in healthy neurocognitive aging

    PubMed Central

    Caplan, Jeremy B.; Bottomley, Monica; Kang, Pardeep; Dixon, Roger A.

    2015-01-01

    Rhythmic brain activity at low frequencies (<12 Hz) during rest are thought to increase in neurodegenerative disease, but findings in healthy neurocognitive aging are mixed. Here we address two reasons conventional spectral analyses may have led to inconsistent results. First, spectral-power measures are compared to a baseline condition; when resting activity is the signal of interest, it is unclear what the baseline should be. Second, conventional methods do not clearly differentiate power due to rhythmic versus non-rhythmic activity. The Better OSCillation detection method (BOSC; [10], [65]) avoids these problems by using the signal’s own spectral characteristics as a reference to detect elevations in power lasting a few cycles. We recorded electroencephalographic (EEG) signal during rest, alternating eyes open and closed, in healthy younger (18–25 years) and older (60–74 years) participants. Topographic plots suggested the conventional and BOSC analyses measured different sources of activity, particularly at frequencies, like delta (1–4 Hz), at which rhythms are sporadic (but topographies were more similar in the 8–12 Hz alpha band). There was little theta-band activity meeting the BOSC method’s criteria, suggesting prior findings of theta power in healthy aging may reflect non-rhythmic signal. In contrast, delta oscillations were present at higher levels than theta in both age groups. In sum, applying strict and standardized criteria for rhythmicity, slow rhythms appear present in the resting brain at delta and alpha, but not theta frequencies, and appear unchanged in healthy aging. PMID:25769279

  7. Plasma instability control toward high fluence, high energy x-ray continuum source

    NASA Astrophysics Data System (ADS)

    Poole, Patrick; Kirkwood, Robert; Wilks, Scott; Blue, Brent

    2017-10-01

    X-ray source development at Omega and NIF seeks to produce powerful radiation with high conversion efficiency for material effects studies in extreme fluence environments. While current K-shell emission sources can achieve tens of kJ on NIF up to 22 keV, the conversion efficiency drops rapidly for higher Z K-alpha energies. Pulsed power devices are efficient generators of MeV bremsstrahlung x-rays but are unable to produce lower energy photons in isolation, and so a capability gap exists for high fluence x-rays in the 30 - 100 keV range. A continuum source under development utilizes instabilities like Stimulated Raman Scattering (SRS) to generate plasma waves that accelerate electrons into high-Z converter walls. Optimizing instabilities using existing knowledge on their elimination will allow sufficiently hot and high yield electron distributions to create a superior bremsstrahlung x-ray source. An Omega experiment has been performed to investigate the optimization of SRS and high energy x-rays using Au hohlraums with parylene inner lining and foam fills, producing 10× greater x-ray yield at 50 keV than conventional direct drive experiments on the facility. Experiment and simulation details on this campaign will be presented. This work was performed under the auspices of the US DoE by LLNL under Contract No. DE-AC52-07NA27344.

  8. Solar photovoltaic power systems: an electric utility R & d perspective.

    PubMed

    Demeo, E A; Taylor, R W

    1984-04-20

    Solar photovoltaic technology is receiving increasing attention as a prospective source of bulk, electric utility power within the next 10 to 20 years. Successful development will require solar energy conversion efficiencies of about 15 percent for photovoltaic flat-plate modules, or about 25 percent for photovoltaic cells using highly concentrated sunlight. Three different cell technologies have a better than even chance of achieving these target efficiencies with costs and operating lifetimes that would allow significant use by electric utilities. The challenge for the next decade is to push photovoltaic technology to its physical limits while expanding markets and user confidence with currently available systems.

  9. Smart grid technologies in local electric grids

    NASA Astrophysics Data System (ADS)

    Lezhniuk, Petro D.; Pijarski, Paweł; Buslavets, Olga A.

    2017-08-01

    The research is devoted to the creation of favorable conditions for the integration of renewable sources of energy into electric grids, which were designed to be supplied from centralized generation at large electric power stations. Development of distributed generation in electric grids influences the conditions of their operation - conflict of interests arises. The possibility of optimal functioning of electric grids and renewable sources of energy, when complex criterion of the optimality is balance reliability of electric energy in local electric system and minimum losses of electric energy in it. Multilevel automated system for power flows control in electric grids by means of change of distributed generation of power is developed. Optimization of power flows is performed by local systems of automatic control of small hydropower stations and, if possible, solar power plants.

  10. Energy for Development: Third World Options. Worldwatch Paper 15.

    ERIC Educational Resources Information Center

    Hayes, Denis

    Focusing on the need for energy to sustain economic development on a long-term basis, the document examines energy options of the post-petroleum era in developing nations. Nuclear power and solar power are the most important among proposed alternative energy sources. Limited applicability of nuclear technology to the Third World is discussed.…

  11. IEC fusion: The future power and propulsion system for space

    NASA Astrophysics Data System (ADS)

    Hammond, Walter E.; Coventry, Matt; Hanson, John; Hrbud, Ivana; Miley, George H.; Nadler, Jon

    2000-01-01

    Rapid access to any point in the solar system requires advanced propulsion concepts that will provide extremely high specific impulse, low specific power, and a high thrust-to-power ratio. Inertial Electrostatic Confinement (IEC) fusion is one of many exciting concepts emerging through propulsion and power research in laboratories across the nation which will determine the future direction of space exploration. This is part of a series of papers that discuss different applications of the Inertial Electrostatic Confinement (IEC) fusion concept for both in-space and terrestrial use. IEC will enable tremendous advances in faster travel times within the solar system. The technology is currently under investigation for proof of concept and transitioning into the first prototype units for commercial applications. In addition to use in propulsion for space applications, terrestrial applications include desalinization plants, high energy neutron sources for radioisotope generation, high flux sources for medical applications, proton sources for specialized medical applications, and tritium production. .

  12. Quantitative electroencephalogram (QEEG) Spectrum Analysis of Patients with Schizoaffective Disorder Compared to Normal Subjects.

    PubMed

    Moeini, Mahdi; Khaleghi, Ali; Amiri, Nasrin; Niknam, Zahra

    2014-10-01

    The aim of this study was to achieve a better understanding of schizoaffective disorder. Therefore, we obtained electroencephalogram (EEG) signals from patients with schizoaffective disorder and analyzed them in comparison to normal subjects. Forty patients with schizoaffective disorder and 40 normal subjects were selected randomly and their electroencephalogram signals were recorded based on 10-20 international system by 23 electrodes in open- and closed-eyes while they were sitting on a chair comfortably. After preprocessing for noise removal and artifact reduction, we took 60- second segments from each recorded signals. Then, the absolute and relative powers of these segments were evaluated in all channels and in 4 frequency bands (i.e., delta, theta, alpha and beta waves). Finally, Data were analyzed by independent t-test using SPSS software. A significant decrease in relative power in the alpha band, a significant decrease in power spectra in the alpha band and a significant increase in power spectra in the beta band were found in patients compared to normal subjects (P < 0.05). The predominant wave in the centro-parietal region was the beta wave in patients, but it was the alpha band in normal subjects (P = 0.048). Also, the predominant wave of the occipital region in patients was the delta wave, while it was the alpha wave in normal subjects (P = 0.038). Considering the findings, particularly based on the significant decrease of the alpha waves in schizoaffective patients, it can be concluded that schizoaffective disorder can be seen in schizophrenia spectrum.

  13. Alpha oscillations in the pedunculopontine nucleus correlate with gait performance in parkinsonism

    PubMed Central

    Thevathasan, Wesley; Pogosyan, Alek; Hyam, Jonathan A.; Jenkinson, Ned; Foltynie, Tom; Limousin, Patricia; Bogdanovic, Marko; Zrinzo, Ludvic; Green, Alexander L.; Aziz, Tipu Z.

    2012-01-01

    The pedunculopontine nucleus, a component of the reticular formation, is topographically organized in animal models and implicated in locomotor control. In Parkinson's disease, pedunculopontine nucleus stimulation is an emerging treatment for gait freezing. Local field potentials recorded from pedunculopontine nucleus electrodes in such patients have demonstrated oscillations in the alpha and beta frequency bands, reactive to self-paced movement. Whether these oscillations are topographically organized or relevant to locomotion is unknown. Here, we recorded local field potentials from the pedunculopontine nucleus in parkinsonian patients during rest and unconstrained walking. Relative gait speed was assessed with trunk accelerometry. Peaks of alpha power were present at rest and during gait, when they correlated with gait speed. Gait freezing was associated with attenuation of alpha activity. Beta peaks were less consistently observed across rest and gait, and did not correlate with gait speed. Alpha power was maximal in the caudal pedunculopontine nucleus region and beta power was maximal rostrally. These results indicate a topographic distribution of neuronal activity in the pedunculopontine nucleus region and concur with animal data suggesting that the caudal subregion has particular relevance to gait. Alpha synchronization, proposed to suppress ‘task irrelevant’ distraction, has previously been demonstrated to correlate with performance of cognitive tasks. Here, we demonstrate a correlation between alpha oscillations and improved gait performance. The results raise the possibility that stimulation of caudal and rostral pedunculopontine nucleus regions may differ in their clinical effects. PMID:22232591

  14. Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.

    PubMed

    Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2018-05-01

    People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.

  15. APXS on board Chandrayaan-2 Rover

    NASA Astrophysics Data System (ADS)

    Shanmugam, M.; Sripada, V. S. Murty; Acharya, Y. B.; Goyal, S. K.

    2012-07-01

    Alpha Particle X-ray Spectrometer (APXS) is a well proven instrument for quantitative in situ elemental analysis of the planetary surfaces and has been successfully employed for Mars surface exploration. Chandrayaan-2, ISRO's second lunar mission having an Orbiter, Lander and Rover has provided an opportunity to explore the lunar surface with superior detectors such as Silicon Drift Detector (SDD) with energy resolution of about 150eV @ 5.9keV. The objective of the APXS instrument is to analyse several soil/rock samples along the rover traverse for the major elements with characteristic X-rays in 1 to 25keV range. The working principle of APXS involves measuring the intensity of characteristic X-rays emitted from the sample due to Alpha Particle Induced X-ray Emission (PIXE) and X-ray florescence (XRF) processes using suitable radioactive sources, allowing the determination of elements from Na to Br, spanning the energy range of 0.9 to 16keV. For this experiment ^{244}Cm radioactive source has been chosen which emits both Alpha particles (5.8MeV) and X-rays (14.1keV, 18keV). APXS uses six Alpha sources, each about 5mCi activity. Unlike Mars, lunar environment poses additional challenges due to the regolith and extreme surface temperature changes, to operate the APXS. Our APXS instrument consists of two packages namely APXS sensor head and APXS signal electronics. The sensor head assembly contains SDD, six alpha sources and front end electronic circuits such as preamplifier and shaper circuits and will be mounted on a robotic arm which on command brings the sensor head close to the lunar surface at a height of 35±10mm. SDD module to be used in the experiment has 30mm ^{2} active detector area with in-built peltier cooler and heat sink to maintain the detector at about -35°C. The detector is covered with 8 micron thick Be window which results in the low energy threshold of about 1keV. The size of the APXS sensor head is 70x70x70mm ^{3} (approx). APXS signal electronics consists of a PCB having digital, power and rover interface electronics circuits, which are housed inside the Warm Electronics Box (WEB) mounted under the rover chassis where the temperature is maintained between -50°C to +70°C. Presently, we have completed the design verification model of the APXS payload and engineering model of the payload is in progress. The developed system has been tested using laboratory X-ray sources and observed an energy resolution of about 150eV at 5.9keV when the detector is cooled to -35°C. We also carried out the detection of X-ray fluorescence for some of the USGS standards for a fixed geometry of detector, source and sample, using ^{55}Fe and ^{241}Am X-ray sources. It is shown that the count rate of a given peak varies linearly with the concentration of the corresponding element. The detailed developments and results will be discussed at the conference.

  16. The impact of the weather conditions on the cooling performance of the heat pump driven by an internal natural gas combustion engine

    NASA Astrophysics Data System (ADS)

    Janovcová, Martina; Jandačka, Jozef; Malcho, Milan

    2015-05-01

    Market with sources of heat and cold offers unlimited choice of different power these devices, design technology, efficiency and price categories. New progressive technologies are constantly discovering, about which is still little information, which include heat pumps powered by a combustion engine running on natural gas. A few pieces of these installations are in Slovakia, but no studies about their work and effectiveness under real conditions. This article deals with experimental measurements of gas heat pump efficiency in cooling mode. Since the gas heat pump works only in system air - water, air is the primary low - energy source, it is necessary to monitor the impact of the climate conditions for the gas heat pump performance.

  17. Automated Power Systems Management (APSM)

    NASA Technical Reports Server (NTRS)

    Bridgeforth, A. O.

    1981-01-01

    A breadboard power system incorporating autonomous functions of monitoring, fault detection and recovery, command and control was developed, tested and evaluated to demonstrate technology feasibility. Autonomous functions including switching of redundant power processing elements, individual load fault removal, and battery charge/discharge control were implemented by means of a distributed microcomputer system within the power subsystem. Three local microcomputers provide the monitoring, control and command function interfaces between the central power subsystem microcomputer and the power sources, power processing and power distribution elements. The central microcomputer is the interface between the local microcomputers and the spacecraft central computer or ground test equipment.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oland, CB

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributedmore » Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.« less

  19. CD90-positive cells, an additional cell population, produce laminin {alpha}2 upon transplantation to dy{sup 3k}/dy{sup 3k} mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukada, So-ichiro; Yamamoto, Yukiko; Segawa, Masashi

    2008-01-01

    Laminin {alpha}2 is a component of skeletal and cardiac muscle basal lamina. A defect of the laminin {alpha}2 chain leads to severe congenital muscular dystrophy (MDC1A) in humans and dy/dy mice. Myogenic cells including myoblasts, myotubes, and myofibers in skeletal muscle are a possible source of the laminin {alpha}2 chain, and myogenic cells are thus proposed as a cell source for congenital muscular dystrophy therapy. However, we observed production of laminin {alpha}2 in non-myogenic cells of normal mice, and we could enrich these laminin {alpha}2-producing cells in CD90{sup +} cell fractions. Intriguingly, the number of CD90{sup +} cells increased dramaticallymore » during skeletal muscle regeneration in mice. This fraction did not include myogenic cells but exhibited a fibroblast-like phenotype. Moreover, these cells were resident in skeletal muscle, not derived from bone marrow. Finally, the production of laminin {alpha}2 in CD90{sup +} cells was not dependent on fusion with myogenic cells. Thus, CD90{sup +} cells are a newly identified additional cell fraction that increased during skeletal muscle regeneration in vivo and could be another cell source for therapy for lama2-deficient muscular dystrophy.« less

  20. EEG alpha frequency correlates of burnout and depression: The role of gender.

    PubMed

    Tement, Sara; Pahor, Anja; Jaušovec, Norbert

    2016-02-01

    EEG alpha frequency band biomarkers of depression are widely explored. Due to their trait-like features, they may help distinguish between depressive and burnout symptomatology, which is often referred to as "work-related depression". The present correlational study strived to examine whether individual alpha frequency (IAF), power, and coherence in the alpha band can provide evidence for establishing burnout as a separate diagnostic entity. Resting EEG (eyes closed) was recorded in 117 individuals (42 males). In addition, the participants filled-out questionnaires of burnout and depression. Regression analyses highlighted the differential value of IAF and power in predicting burnout and depression. IAF was significantly related to depressive symptomatology, whereas power was linked mostly to burnout. Moreover, seven out of twelve interactions between EEG indicators and gender were significant. Connectivity patterns were significant for depression displaying gender-related differences. The results offer tentative support for establishing burnout as a separate clinical syndrome. Copyright © 2015 Elsevier B.V. All rights reserved.

Top