Parameters of Technological Growth
ERIC Educational Resources Information Center
Starr, Chauncey; Rudman, Richard
1973-01-01
Examines the factors involved in technological growth and identifies the key parameters as societal resources and societal expectations. Concludes that quality of life can only be maintained by reducing population growth, since this parameter is the product of material levels, overcrowding, food, and pollution. (JR)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barron, Robert W.; McJeon, Haewon C.
2015-05-01
This paper considers the effect of several key parameters of low carbon energy technologies on the cost of abatement. A methodology for determining the minimum level of performance required for a parameter to have a statistically significant impact on CO2 abatement cost is developed and used to evaluate the impact of eight key parameters of low carbon energy supply technologies on the cost of CO2 abatement. The capital cost of nuclear technology is found to have the greatest impact of the parameters studied. The cost of biomass and CCS technologies also have impacts, while their efficiencies have little, if any.more » Sensitivity analysis of the results with respect to population, GDP, and CO2 emission constraint show that the minimum performance level and impact of nuclear technologies is consistent across the socioeconomic scenarios studied, while the other technology parameters show different performance under higher population, lower GDP scenarios. Solar technology was found to have a small impact, and then only at very low costs. These results indicate that the cost of nuclear is the single most important driver of abatement cost, and that trading efficiency for cost may make biomass and CCS technologies more competitive.« less
Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy
2016-01-01
The aeronautics industry has been challenged on many fronts to increase efficiency, reduce emissions, and decrease dependency on carbon-based fuels. This paper provides an overview of the turboelectric and hybrid electric technologies being developed under NASA's Advanced Air Transportation Technology (AATT) Project and discusses how these technologies can impact vehicle design. The discussion includes an overview of key hybrid electric studies and technology investments, the approach to making informed investment decisions based on key performance parameters and mission studies, and the power system architectures for two candidate aircraft. Finally, the power components for a single-aisle turboelectric aircraft with an electrically driven tail cone thruster and for a hybrid-electric nine-passenger aircraft with a range extender are parametrically sized, and the sensitivity of these components to key parameters is presented.
NOX CONTROL TECHNOLOGIES APPLICABLE TO MUNICIPAL WASTE COMBUSTION
The report documents the key design and operating parameters, commercial status, demonstrated performance, and cost of three technologies available for reducing nitrogen oxide (NOx) emissions from municipal waste combustors (MWCs), and identifies technology research and developme...
Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems
NASA Technical Reports Server (NTRS)
Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey
2015-01-01
Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Contact printing of protein microarrays.
Austin, John; Holway, Antonia H
2011-01-01
A review is provided of contact-printing technologies for the fabrication of planar protein microarrays. The key printing performance parameters for creating protein arrays are reviewed. Solid pin and quill pin technologies are described and their strengths and weaknesses compared.
The status of membrane bioreactor technology.
Judd, Simon
2008-02-01
In this article, the current status of membrane bioreactor (MBR) technology for wastewater treatment is reviewed. Fundamental facets of the MBR process and membrane and process configurations are outlined and the advantages and disadvantages over conventional suspended growth-based biotreatment are briefly identified. Key process design and operating parameters are defined and their significance explained. The inter-relationships between these parameters are identified and their implications discussed, with particular reference to impacts on membrane surface fouling and channel clogging. In addition, current understanding of membrane surface fouling and identification of candidate foulants is appraised. Although much interest in this technology exists and its penetration of the market will probably increase significantly, there remains a lack of understanding of key process constraints such as membrane channel clogging, and of the science of membrane cleaning.
Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molotkov, S. N.
2008-07-15
In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper's capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determinedmore » for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency ({eta} {approx} 20%) and dark count probability (p{sub dark} {approx} 10{sup -7})« less
Cryptographic robustness of practical quantum cryptography: BB84 key distribution protocol
NASA Astrophysics Data System (ADS)
Molotkov, S. N.
2008-07-01
In real fiber-optic quantum cryptography systems, the avalanche photodiodes are not perfect, the source of quantum states is not a single-photon one, and the communication channel is lossy. For these reasons, key distribution is impossible under certain conditions for the system parameters. A simple analysis is performed to find relations between the parameters of real cryptography systems and the length of the quantum channel that guarantee secure quantum key distribution when the eavesdropper’s capabilities are limited only by fundamental laws of quantum mechanics while the devices employed by the legitimate users are based on current technologies. Critical values are determined for the rate of secure real-time key generation that can be reached under the current technology level. Calculations show that the upper bound on channel length can be as high as 300 km for imperfect photodetectors (avalanche photodiodes) with present-day quantum efficiency (η ≈ 20%) and dark count probability ( p dark ˜ 10-7).
RESIDENTIAL WOOD COMBUSTION TECHNOLOGY REVIEW VOLUME 1. TECHNICAL REPORT
This report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories -- cordwood stoves, fireplaces, masonry h...
RESIDENTIAL WOOD COMBUSTION TECHNOLOGY REVIEW - VOLUME 2. APPENDICES
The report gives results of a review of the current state-of-the-art of residential wood combustion (RWC). The key environmental parameter of concern was the air emission of particles. The technological status of all major RWC categories--cordwood stoves, fireplaces, masonry heat...
Launch Vehicle Propulsion Design with Multiple Selection Criteria
NASA Technical Reports Server (NTRS)
Shelton, Joey D.; Frederick, Robert A.; Wilhite, Alan W.
2005-01-01
The approach and techniques described herein define an optimization and evaluation approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system. The method uses Monte Carlo simulations, genetic algorithm solvers, a propulsion thermo-chemical code, power series regression curves for historical data, and statistical models in order to optimize a vehicle system. The system, including parameters for engine chamber pressure, area ratio, and oxidizer/fuel ratio, was modeled and optimized to determine the best design for seven separate design weight and cost cases by varying design and technology parameters. Significant model results show that a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Other key findings show the sensitivity of propulsion parameters, technology factors, and cost factors and how these parameters differ when cost and weight are optimized separately. Each of the three key propulsion parameters; chamber pressure, area ratio, and oxidizer/fuel ratio, are optimized in the seven design cases and results are plotted to show impacts to engine mass and overall vehicle mass.
From LCAs to simplified models: a generic methodology applied to wind power electricity.
Padey, Pierryves; Girard, Robin; le Boulch, Denis; Blanc, Isabelle
2013-02-05
This study presents a generic methodology to produce simplified models able to provide a comprehensive life cycle impact assessment of energy pathways. The methodology relies on the application of global sensitivity analysis to identify key parameters explaining the impact variability of systems over their life cycle. Simplified models are built upon the identification of such key parameters. The methodology is applied to one energy pathway: onshore wind turbines of medium size considering a large sample of possible configurations representative of European conditions. Among several technological, geographical, and methodological parameters, we identified the turbine load factor and the wind turbine lifetime as the most influent parameters. Greenhouse Gas (GHG) performances have been plotted as a function of these key parameters identified. Using these curves, GHG performances of a specific wind turbine can be estimated, thus avoiding the undertaking of an extensive Life Cycle Assessment (LCA). This methodology should be useful for decisions makers, providing them a robust but simple support tool for assessing the environmental performance of energy systems.
NASA Technical Reports Server (NTRS)
Bonet, John T.; Schellenger, Harvey G.; Rawdon, Blaine K.; Elmer, Kevin R.; Wakayama, Sean R.; Brown, Derrell L.; Guo, Yueping
2011-01-01
NASA has set demanding goals for technology developments to meet national needs to improve fuel efficiency concurrent with improving the environment to enable air transportation growth. A figure shows NASA's subsonic transport system metrics. The results of Boeing ERA N+2 Advanced Vehicle Concept Study show that the Blended Wing Body (BWB) vehicle, with ultra high bypass propulsion systems have the potential to meet the combined NASA ERA N+2 goals. This study had 3 main activities. 1) The development of an advanced vehicle concepts that can meet the NASA system level metrics. 2) Identification of key enabling technologies and the development of technology roadmaps and maturation plans. 3) The development of a subscale test vehicle that can demonstrate and mature the key enabling technologies needed to meet the NASA system level metrics. Technology maturation plans are presented and include key performance parameters and technical performance measures. The plans describe the risks that will be reduced with technology development and the expected progression of technical maturity.
Report of the Horizontal Launch Study
NASA Technical Reports Server (NTRS)
Wilhite, Alan W.; Bartolotta, Paul A.
2011-01-01
A study of horizontal launch concepts has been conducted. This study, jointly sponsored by the Defense Advanced Research Projects Agency (DARPA) and the National Aeronautics and Space Administration (NASA) was tasked to estimate the economic and technical viability of horizontal launch approaches. The study team identified the key parameters and critical technologies which determine mission viability and reported on the state of the art of critical technologies, along with objectives for technology development.
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2013-01-01
The use of printed electronics technologies (PETs), 2D or 3D printing approaches either by conventional electronic fabrication or by rapid graphic printing of organic or nonorganic electronic devices on various small or large rigid or flexible substrates, is projected to grow exponentially in commercial industry. This has provided an opportunity to determine whether or not PETs could be applicable for low volume and high-reliability applications. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the current status of organic and printed electronics technologies. It reviews three key industry roadmaps- on this subject-OE-A, ITRS, and iNEMI-each with a different name identification for this emerging technology. This followed by a brief review of the status of the industry on standard development for this technology, including IEEE and IPC specifications. The report concludes with key technologies and applications and provides a technology hierarchy similar to those of conventional microelectronics for electronics packaging. Understanding key technology roadmaps, parameters, and applications is important when judicially selecting and narrowing the follow-up of new and emerging applicable technologies for evaluation, as well as the low risk insertion of organic, large area, and printed electronics.
Gariano, John; Neifeld, Mark; Djordjevic, Ivan
2017-01-20
Here, we present the engineering trade studies of a free-space optical communication system operating over a 30 km maritime channel for the months of January and July. The system under study follows the BB84 protocol with the following assumptions: a weak coherent source is used, Eve is performing the intercept resend attack and photon number splitting attack, prior knowledge of Eve's location is known, and Eve is allowed to know a small percentage of the final key. In this system, we examine the effect of changing several parameters in the following areas: the implementation of the BB84 protocol over the public channel, the technology in the receiver, and our assumptions about Eve. For each parameter, we examine how different values impact the secure key rate for a constant brightness. Additionally, we will optimize the brightness of the source for each parameter to study the improvement in the secure key rate.
NASA Astrophysics Data System (ADS)
Ireland, Gareth; North, Matthew R.; Petropoulos, George P.; Srivastava, Prashant K.; Hodges, Crona
2015-04-01
Acquiring accurate information on the spatio-temporal variability of soil moisture content (SM) and evapotranspiration (ET) is of key importance to extend our understanding of the Earth system's physical processes, and is also required in a wide range of multi-disciplinary research studies and applications. The utility and applicability of Earth Observation (EO) technology provides an economically feasible solution to derive continuous spatio-temporal estimates of key parameters characterising land surface interactions, including ET as well as SM. Such information is of key value to practitioners, decision makers and scientists alike. The PREMIER-EO project recently funded by High Performance Computing Wales (HPCW) is a research initiative directed towards the development of a better understanding of EO technology's present ability to derive operational estimations of surface fluxes and SM. Moreover, the project aims at addressing knowledge gaps related to the operational estimation of such parameters, and thus contribute towards current ongoing global efforts towards enhancing the accuracy of those products. In this presentation we introduce the PREMIER-EO project, providing a detailed overview of the research aims and objectives for the 1 year duration of the project's implementation. Subsequently, we make available the initial results of the work carried out herein, in particular, related to an all-inclusive and robust evaluation of the accuracy of existing operational products of ET and SM from different ecosystems globally. The research outcomes of this project, once completed, will provide an important contribution towards addressing the knowledge gaps related to the operational estimation of ET and SM. This project results will also support efforts ongoing globally towards the operational development of related products using technologically advanced EO instruments which were launched recently or planned be launched in the next 1-2 years. Key Words: PREMIER-EO, HPC Wales, Soil Moisture, Evapotranspiration, , Earth Observation
Performance comparison: Aluminum electrolytic and solid tantalum capacitor
NASA Technical Reports Server (NTRS)
Hawthornthwaite, B. G.; Piper, J.; Holland, H. W.
1981-01-01
Several key electrical and environmental parameters of latest technology aluminum electrolytic and solid tantalum capacitors were evaluated in terms of price fluctuations of tantalum metal. Performance differences between solid tantalums and aluminum electrolytics are examined.
Geothermal Life Cycle Calculator
Sullivan, John
2014-03-11
This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.
A review of MEMS micropropulsion technologies for CubeSats and PocketQubes
NASA Astrophysics Data System (ADS)
Silva, Marsil A. C.; Guerrieri, Daduí C.; Cervone, Angelo; Gill, Eberhard
2018-02-01
CubeSats have been extensively used in the past decade as scientific tools, technology demonstrators and for education. Recently, PocketQubes have emerged as an interesting and even smaller alternative to CubeSats. However, both satellite types often lack some key capabilities, such as micropropulsion, in order to further extend the range of applications of these small satellites. This paper reviews the current development status of micropropulsion systems fabricated with MEMS (micro electro-mechanical systems) and silicon technology intended to be used in CubeSat or PocketQube missions and compares different technologies with respect to performance parameters such as thrust, specific impulse, and power as well as in terms of operational complexity. More than 30 different devices are analyzed and divided into 7 main categories according to the working principle. A specific outcome of the research is the identification of the current status of MEMS technologies for micropropulsion including key opportunities and challenges.
Experimental study on performance of new low-density proppant
NASA Astrophysics Data System (ADS)
Tian, Yu; Qu, Zhanqing; Cheng, Yingchun; Gong, Yuanzhi
2018-04-01
In recent years, Unconventional oil and gas resources have gradually become an important part of oil and gas development. The development of the above resources must be applied to hydraulic fracturing technology. As a key material in fracturing technology, the proppant is an important factor influencing the success of fracturing. The parameters of ceramsite are excellent which can be used in most fracturing operation. And self-suspension proppant also has good parameters, gelling and gelling breaking, can greatly simplify the oilfield fracturing site construction difficulty, so it can be a new kind of fracturing material as oilfield operation.
NASA Astrophysics Data System (ADS)
Safin, R. R.; Khasanshin, R. R.; Mukhametzyanov, S. R.
2018-03-01
The existing installations for heat treatment of the crushed wood are analyzed. The technology of heat treatment of the crushed wood in the devices of disk-shaped type is offered. The results of modeling for the purpose of determination of interrelation of the key design and technological parameters of the disk-shaped device are presented. It is established that the major factors, affecting duration of stay of the material in a device, are the speed of rotation of the mixer, the number of mixers and the number of rakes on the mixer.
Mobile Router Technology Development
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.; Shell, Dan; Leung, Kent
2002-01-01
Cisco Systems and NASA have been performing joint research on mobile routing technology under a NASA Space Act Agreement. Cisco developed mobile router technology and provided that technology to NASA for applications to aeronautic and space-based missions. NASA has performed stringent performance testing of the mobile router, including the interaction of routing and transport-level protocols. This paper describes mobile routing, the mobile router, and some key configuration parameters. In addition, the paper describes the mobile routing test network and test results documenting the performance of transport protocols in dynamic routing environments.
High density circuit technology, part 3
NASA Technical Reports Server (NTRS)
Wade, T. E.
1982-01-01
Dry processing - both etching and deposition - and present/future trends in semiconductor technology are discussed. In addition to a description of the basic apparatus, terminology, advantages, glow discharge phenomena, gas-surface chemistries, and key operational parameters for both dry etching and plasma deposition processes, a comprehensive survey of dry processing equipment (via vendor listing) is also included. The following topics are also discussed: fine-line photolithography, low-temperature processing, packaging for dense VLSI die, the role of integrated optics, and VLSI and technology innovations.
NASA Astrophysics Data System (ADS)
Gusev, E. V.; Mukhametzyanov, Z. R.; Razyapov, R. V.
2017-11-01
The problems of the existing methods for the determination of combining and technologically interlinked construction processes and activities are considered under the modern construction conditions of various facilities. The necessity to identify common parameters that characterize the interaction nature of all the technology-related construction and installation processes and activities is shown. The research of the technologies of construction and installation processes for buildings and structures with the goal of determining a common parameter for evaluating the relationship between technologically interconnected processes and construction works are conducted. The result of this research was to identify the quantitative evaluation of interaction construction and installation processes and activities in a minimum technologically necessary volume of the previous process allowing one to plan and organize the execution of a subsequent technologically interconnected process. The quantitative evaluation is used as the basis for the calculation of the optimum range of the combination of processes and activities. The calculation method is based on the use of the graph theory. The authors applied a generic characterization parameter to reveal the technological links between construction and installation processes, and the proposed technique has adaptive properties which are key for wide use in organizational decisions forming. The article provides a written practical significance of the developed technique.
Variations in embodied energy and carbon emission intensities of construction materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan Omar, Wan-Mohd-Sabki; School of Environmental Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis; Doh, Jeung-Hwan, E-mail: j.doh@griffith.edu.au
2014-11-15
Identification of parameter variation allows us to conduct more detailed life cycle assessment (LCA) of energy and carbon emission material over their lifecycle. Previous research studies have demonstrated that hybrid LCA (HLCA) can generally overcome the problems of incompleteness and accuracy of embodied energy (EE) and carbon (EC) emission assessment. Unfortunately, the current interpretation and quantification procedure has not been extensively and empirically studied in a qualitative manner, especially in hybridising between the process LCA and I-O LCA. To determine this weakness, this study empirically demonstrates the changes in EE and EC intensities caused by variations to key parameters inmore » material production. Using Australia and Malaysia as a case study, the results are compared with previous hybrid models to identify key parameters and issues. The parameters considered in this study are technological changes, energy tariffs, primary energy factors, disaggregation constant, emission factors, and material price fluctuation. It was found that changes in technological efficiency, energy tariffs and material prices caused significant variations in the model. Finally, the comparison of hybrid models revealed that non-energy intensive materials greatly influence the variations due to high indirect energy and carbon emission in upstream boundary of material production, and as such, any decision related to these materials should be considered carefully. - Highlights: • We investigate the EE and EC intensity variation in Australia and Malaysia. • The influences of parameter variations on hybrid LCA model were evaluated. • Key significant contribution to the EE and EC intensity variation were identified. • High indirect EE and EC content caused significant variation in hybrid LCA models. • Non-energy intensive material caused variation between hybrid LCA models.« less
Sensor for the working surface cleanliness definition in vacuum
NASA Astrophysics Data System (ADS)
Deulin, E. A.; Mashurov, S. S.; Gatsenko, A. A.
2016-07-01
Modern development of nanotechnology as one of the modern science priority directions is impossible to imagine without the use of vacuum systems and technologies. And the better the vacuum (lower the pressure), the “cleaner” we get a surface, which is very important for nanotechnology. Determination of the cleanliness of the surface or the amount of molecular layers of adsorbed gases on the working surface of the products especially in industry, where the cleanliness of the working surface is a key parameter of the technological process and has a significant influence on the output parameters of the final product is the main goal of this work.
Modern methods for the quality management of high-rate melt solidification
NASA Astrophysics Data System (ADS)
Vasiliev, V. A.; Odinokov, S. A.; Serov, M. M.
2016-12-01
The quality management of high-rate melt solidification needs combined solution obtained by methods and approaches adapted to a certain situation. Technological audit is recommended to estimate the possibilities of the process. Statistical methods are proposed with the choice of key parameters. Numerical methods, which can be used to perform simulation under multifactor technological conditions, and an increase in the quality of decisions are of particular importance.
Abraham, Sushil; Bain, David; Bowers, John; Larivee, Victor; Leira, Francisco; Xie, Jasmina
2015-01-01
The technology transfer of biological products is a complex process requiring control of multiple unit operations and parameters to ensure product quality and process performance. To achieve product commercialization, the technology transfer sending unit must successfully transfer knowledge about both the product and the process to the receiving unit. A key strategy for maximizing successful scale-up and transfer efforts is the effective use of engineering and shake-down runs to confirm operational performance and product quality prior to embarking on good manufacturing practice runs such as process performance qualification runs. We consider key factors to consider in making the decision to perform shake-down or engineering runs. We also present industry benchmarking results of how engineering runs are used in drug substance technology transfers alongside the main themes and best practices that have emerged. Our goal is to provide companies with a framework for ensuring the "right first time" technology transfers with effective deployment of resources within increasingly aggressive timeline constraints. © PDA, Inc. 2015.
Application of harmonic detection technology in methane telemetry
NASA Astrophysics Data System (ADS)
Huo, Yuehua; Fan, Weiqiang
2017-08-01
Methane telemetry plays a vital role in ensuring the safe production of coal mines and monitoring the leakage of natural gas pipelines. Harmonic detection is the key technology of methane telemetry accuracy and sensitivity, but the current telemetry distance is short, the relationship between different modulation parameters is complex, and the harmonic signal is affected by noise interference. These factors seriously affect the development of harmonic detection technology. In this paper, the principle of methane telemetry based on harmonic detection technology is introduced. The present situation and characteristics of harmonic detection technology are expounded. The problems existing in harmonic detection are analyzed. Finally, the future development trend is discussed.
Li, Chen; Tan, Qiulin; Jia, Pinggang; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Xiong, Jijun
2015-06-04
Measurement technology for various key parameters in harsh environments (e.g., high-temperature and biomedical applications) continues to be limited. Wireless passive LC resonant sensors offer long service life and can be suitable for harsh environments because they can transmit signals without battery power or wired connections. Consequently, these devices have become the focus of many current research studies. This paper addresses recent research, key technologies, and practical applications relative to passive LC sensors used to monitor temperature, pressure, humidity, and harmful gases in harsh environments. The advantages and disadvantages of various sensor types are discussed, and prospects and challenges for future development of these sensors are presented.
Li, Chen; Tan, Qiulin; Jia, Pinggang; Zhang, Wendong; Liu, Jun; Xue, Chenyang; Xiong, Jijun
2015-01-01
Measurement technology for various key parameters in harsh environments (e.g., high-temperature and biomedical applications) continues to be limited. Wireless passive LC resonant sensors offer long service life and can be suitable for harsh environments because they can transmit signals without battery power or wired connections. Consequently, these devices have become the focus of many current research studies. This paper addresses recent research, key technologies, and practical applications relative to passive LC sensors used to monitor temperature, pressure, humidity, and harmful gases in harsh environments. The advantages and disadvantages of various sensor types are discussed, and prospects and challenges for future development of these sensors are presented. PMID:26053753
Project management lessons learned on SDIO's Delta Star and Single Stage Rocket Technology programs
NASA Technical Reports Server (NTRS)
Klevatt, Paul L.
1992-01-01
The topics are presented in viewgraph form and include the following: a Delta Star (Delta 183) Program Overview, lessons learned, and rapid prototyping and the Single Stage Rocket Technology (SSRT) Program. The basic objective of the Strategic Defense Initiative Programs are to quickly reduce key uncertainties to a manageable range of parameters and solutions, and to yield results applicable to focusing subsequent research dollars on high payoff areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones-Albertus, Rebecca; Feldman, David; Fu, Ran
2016-04-20
To quantify the potential value of technological advances to the photovoltaics (PV) sector, this paper examines the impact of changes to key PV module and system parameters on the levelized cost of energy (LCOE). The parameters selected include module manufacturing cost, efficiency, degradation rate, and service lifetime. NREL's System Advisor Model (SAM) is used to calculate the lifecycle cost per kilowatt-hour (kWh) for residential, commercial, and utility scale PV systems within the contiguous United States, with a focus on utility scale. Different technological pathways are illustrated that may achieve the Department of Energy's SunShot goal of PV electricity that ismore » at grid price parity with conventional electricity sources. In addition, the impacts on the 2015 baseline LCOE due to changes to each parameter are shown. These results may be used to identify research directions with the greatest potential to impact the cost of PV electricity.« less
Optical components damage parameters database system
NASA Astrophysics Data System (ADS)
Tao, Yizheng; Li, Xinglan; Jin, Yuquan; Xie, Dongmei; Tang, Dingyong
2012-10-01
Optical component is the key to large-scale laser device developed by one of its load capacity is directly related to the device output capacity indicators, load capacity depends on many factors. Through the optical components will damage parameters database load capacity factors of various digital, information technology, for the load capacity of optical components to provide a scientific basis for data support; use of business processes and model-driven approach, the establishment of component damage parameter information model and database systems, system application results that meet the injury test optical components business processes and data management requirements of damage parameters, component parameters of flexible, configurable system is simple, easy to use, improve the efficiency of the optical component damage test.
The study of precision measurement of pelvis spatial structure
NASA Astrophysics Data System (ADS)
Ma, Xiang; Ouyang, Jianfei; Qu, Xinghua
2010-03-01
Osteometry is fundamental for anthropometry. It provides the key technology and value to the study of palaeoanthropology, medicine, and criminal investigation. The traditional osteometry that has been widely accepted and used since 18th century has no longer met the information demand for modern research and application. It is significant and necessary to create an advanced 3-dimensional osteometry technique for anthropometry. This paper presents a new quick and accurate method to measure human pelvis through mathematical modeling. The pelvis is a complex combination of bones, which consists of three connected parts: hipbones, sacrum, and coccyx. There are over 40 items to be measured for the 1-dimension characteristics. In this paper, a combined measuring technology is developed for pelvis measurement. It uses machine vision systems and a portable measuring arm to obtain key geometry parameters of the pelvis. The mathematics models of the pelvis spatial structure and its parts are created through the process of data collecting, digging, assembling, and modeling. The experiment shows that the proposed technology can meet traditional osteometry and obtain entire 1D geometric parameters of the pelvis, such as maximum breadth and height, diameter of obstetric conjugata, inclination angle, and sakralneigungswinkel, etc. at the same time after modeling. Besides making the measurements above, the proposed technology can measure the geometry characteristics of pelvis and its parts, such as volume, surface area, curvature, and spatial structure, which are almost impossible for traditional technology. The overall measuring error is less than 0.1mm.
Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements
NASA Astrophysics Data System (ADS)
Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.
2016-06-01
Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.
NASA Astrophysics Data System (ADS)
Changyong, Dou; Huadong, Guo; Chunming, Han; yuquan, Liu; Xijuan, Yue; Yinghui, Zhao
2014-03-01
Raw signal simulation is a useful tool for the system design, mission planning, processing algorithm testing, and inversion algorithm design of Synthetic Aperture Radar (SAR). Due to the wide and high frequent variation of aircraft's trajectory and attitude, and the low accuracy of the Position and Orientation System (POS)'s recording data, it's difficult to quantitatively study the sensitivity of the key parameters, i.e., the baseline length and inclination, absolute phase and the orientation of the antennas etc., of the airborne Interferometric SAR (InSAR) system, resulting in challenges for its applications. Furthermore, the imprecise estimation of the installation offset between the Global Positioning System (GPS), Inertial Measurement Unit (IMU) and the InSAR antennas compounds the issue. An airborne interferometric SAR (InSAR) simulation based on the rigorous geometric model and real navigation data is proposed in this paper, providing a way for quantitatively studying the key parameters and for evaluating the effect from the parameters on the applications of airborne InSAR, as photogrammetric mapping, high-resolution Digital Elevation Model (DEM) generation, and surface deformation by Differential InSAR technology, etc. The simulation can also provide reference for the optimal design of the InSAR system and the improvement of InSAR data processing technologies such as motion compensation, imaging, image co-registration, and application parameter retrieval, etc.
[Research advances in water quality monitoring technology based on UV-Vis spectrum analysis].
Wei, Kang-Lin; Wen, Zhi-yu; Wu, Xin; Zhang, Zhong-Wei; Zeng, Tian-Ling
2011-04-01
The application of spectral analysis to water quality monitoring is an important developing trend in the field of modern environment monitoring technology. The principle and characteristic of water quality monitoring technology based on UV-Vis spectrum analysis are briefly reviewed. And the research status and advances are introduced from two aspects, on-line monitoring and in-situ monitoring. Moreover, the existent key technical problems are put forward. Finally, the technology trends of multi-parameter water quality monitoring microsystem and microsystem networks based on microspectrometer are prospected, which has certain reference value for the research and development of environmental monitoring technology and modern scientific instrument in the authors' country.
Textile Technologies and Tissue Engineering: A Path Towards Organ Weaving
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein
2016-01-01
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, pore size and mechanical properties of the fabrics play important role in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. PMID:26924450
Mapping of multiple parameter m-health scenarios to mobile WiMAX QoS variables.
Alinejad, Ali; Philip, N; Istepanian, R S H
2011-01-01
Multiparameter m-health scenarios with bandwidth demanding requirements will be one of key applications in future 4 G mobile communication systems. These applications will potentially require specific spectrum allocations with higher quality of service requirements. Furthermore, one of the key 4 G technologies targeting m-health will be medical applications based on WiMAX systems. Hence, it is timely to evaluate such multiple parametric m-health scenarios over mobile WiMAX networks. In this paper, we address the preliminary performance analysis of mobile WiMAX network for multiparametric telemedical scenarios. In particular, we map the medical QoS to typical WiMAX QoS parameters to optimise the performance of these parameters in typical m-health scenario. Preliminary performance analyses of the proposed multiparametric scenarios are evaluated to provide essential information for future medical QoS requirements and constraints in these telemedical network environments.
2011-08-01
industries and key players providing equipment include Flow and OMAX. The decision tree for waterjet machining is shown in Figure 28. Figure 28...about the melt pool. Process parameters including powder flow , laser power, and scan speed are adjusted accordingly • Multiple materials o BD...project.eu.com/home/home_page_static.jsp o Working with multiple partners; one is Cochlear . Using LMD or SLM to fabricate cochlear implants with 10
Matching Learning Style Preferences with Suitable Delivery Methods on Textile Design Programmes
ERIC Educational Resources Information Center
Sayer, Kate; Studd, Rachel
2006-01-01
Textile design is a subject that encompasses both design and technology; aesthetically pleasing patterns and forms must be set within technical parameters to create successful fabrics. When considering education methods in design programmes, identifying the most relevant learning approach is key to creating future successes. Yet are the most…
Lu, Zexiang; Wu, Zhengguo; Fan, Liwei; Zhang, Hui; Liao, Yiqiang; Zheng, Deyong; Wang, Siqun
2016-01-01
A novel process to rapidly liquefy sawdust using reduced quantities of solvent, was successfully carried out via microwave-ultrasonic assisted technology (MUAT) in a sulphuric acid/polyethylene glycol 400-glycerol catalytic system. The influences of some key parameters on the liquefaction yield were investigated. The results showed that compared with traditional liquefaction, the introduction of MUAT allowed the solvent dosage to be halved and shortened the liquefaction time from 60 to 20 min. The liquefaction yield reached 91% under the optimal conditions. However, the influence on the yield of some parameters such as catalyst concentration, was similar to that of traditional liquefaction, indicating that the application of MUAT possibly only intensified heat and mass transfer rather than altering either the degradation mechanism or pathway. The introduction of MUAT as a process intensification technology has good industrial application potential for woody biomass liquefaction. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Parmar, Devendra S.; Shams, Qamar A.
2002-01-01
The strategy of NASA to explore space objects in the vicinity of Earth and other planets of the solar system includes robotic and human missions. This strategy requires a road map for technology development that will support the robotic exploration and provide safety for the humans traveling to other celestial bodies. Aeroassist is one of the key elements of technology planning for the success of future robot and human exploration missions to other celestial bodies. Measurement of aerothermodynamic parameters such as temperature, pressure, and acceleration is of prime importance for aeroassist technology implementation and for the safety and affordability of the mission. Instrumentation and methods to measure such parameters have been reviewed in this report in view of past practices, current commercial availability of instrumentation technology, and the prospects of improvement and upgrade according to the requirements. Analysis of the usability of each identified instruments in terms of cost for efficient weight-volume ratio, power requirement, accuracy, sample rates, and other appropriate metrics such as harsh environment survivability has been reported.
Textile Technologies and Tissue Engineering: A Path Toward Organ Weaving.
Akbari, Mohsen; Tamayol, Ali; Bagherifard, Sara; Serex, Ludovic; Mostafalu, Pooria; Faramarzi, Negar; Mohammadi, Mohammad Hossein; Khademhosseini, Ali
2016-04-06
Textile technologies have recently attracted great attention as potential biofabrication tools for engineering tissue constructs. Using current textile technologies, fibrous structures can be designed and engineered to attain the required properties that are demanded by different tissue engineering applications. Several key parameters such as physiochemical characteristics of fibers, microarchitecture, and mechanical properties of the fabrics play important roles in the effective use of textile technologies in tissue engineering. This review summarizes the current advances in the manufacturing of biofunctional fibers. Different textile methods such as knitting, weaving, and braiding are discussed and their current applications in tissue engineering are highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Systems Analysis of the Hydrogen Transition with HyTrans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leiby, Paul Newsome; Greene, David L; Bowman, David Charles
2007-01-01
The U.S. Federal government is carefully considering the merits and long-term prospects of hydrogen-fueled vehicles. NAS (1) has called for the careful application of systems analysis tools to structure the complex assessment required. Others, raising cautionary notes, question whether a consistent and plausible transition to hydrogen light-duty vehicles can identified (2) and whether that transition would, on balance, be environmentally preferred. Modeling the market transition to hydrogen-powered vehicles is an inherently complex process, encompassing hydrogen production, delivery and retailing, vehicle manufacturing, and vehicle choice and use. We describe the integration of key technological and market factors in a dynamic transitionmore » model, HyTrans. The usefulness of HyTrans and its predictions depends on three key factors: (1) the validity of the economic theories that underpin the model, (2) the authenticity with which the key processes are represented, and (3) the accuracy of specific parameter values used in the process representations. This paper summarizes the theoretical basis of HyTrans, and highlights the implications of key parameter specifications with sensitivity analysis.« less
Immersion lithography defectivity analysis at DUV inspection wavelength
NASA Astrophysics Data System (ADS)
Golan, E.; Meshulach, D.; Raccah, N.; Yeo, J. Ho.; Dassa, O.; Brandl, S.; Schwarz, C.; Pierson, B.; Montgomery, W.
2007-03-01
Significant effort has been directed in recent years towards the realization of immersion lithography at 193nm wavelength. Immersion lithography is likely a key enabling technology for the production of critical layers for 45nm and 32nm design rule (DR) devices. In spite of the significant progress in immersion lithography technology, there remain several key technology issues, with a critical issue of immersion lithography process induced defects. The benefits of the optical resolution and depth of focus, made possible by immersion lithography, are well understood. Yet, these benefits cannot come at the expense of increased defect counts and decreased production yield. Understanding the impact of the immersion lithography process parameters on wafer defects formation and defect counts, together with the ability to monitor, control and minimize the defect counts down to acceptable levels is imperative for successful introduction of immersion lithography for production of advanced DR's. In this report, we present experimental results of immersion lithography defectivity analysis focused on topcoat layer thickness parameters and resist bake temperatures. Wafers were exposed on the 1150i-α-immersion scanner and 1200B Scanner (ASML), defect inspection was performed using a DUV inspection tool (UVision TM, Applied Materials). Higher sensitivity was demonstrated at DUV through detection of small defects not detected at the visible wavelength, indicating on the potential high sensitivity benefits of DUV inspection for this layer. The analysis indicates that certain types of defects are associated with different immersion process parameters. This type of analysis at DUV wavelengths would enable the optimization of immersion lithography processes, thus enabling the qualification of immersion processes for volume production.
NASA Technical Reports Server (NTRS)
Abney, Morgan B.; Perry, Jay L.
2016-01-01
Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.
Curie-Montgolfiere Planetary Explorers
NASA Astrophysics Data System (ADS)
Taylor, Chris Y.; Hansen, Jeremiah
2007-01-01
Hot-air balloons, also known as Montgolfiere balloons, powered by heat from radioisotope decay are a potentially useful tool for exploring planetary atmospheres and augmenting the capabilities of other exploration technologies. This paper describes the physical equations and identifies the key engineering parameters that drive radioisotope-powered balloon performance. These parameters include envelope strength-to-weight, envelope thermal conductivity, heater power-to-weight, heater temperature, and balloon shape. The design space for these parameters are shown for varying atmospheric compositions to illustrate the performance needed to build functioning ``Curie-Montgolfiere'' balloons for various planetary atmospheres. Methods to ease the process of Curie-Montgolfiere conceptual design and sizing of are also introduced.
NASA Astrophysics Data System (ADS)
Janesick, James R.; Elliott, Tom S.; Winzenread, Rusty; Pinter, Jeff H.; Dyck, Rudolph H.
1995-04-01
Seven new CCDs are presented. The devices will be used in a variety of applications ranging from generating color cinema movies to adaptive optics camera systems to compensate for atmospheric turbulence at major astronomical observatories. This paper highlights areas of design, fabrication, and operation techniques to achieve state-of-the-art performance. We discuss current limitations of CCD technology for several key parameters.
Butterfly Encryption Scheme for Resource-Constrained Wireless Networks †
Sampangi, Raghav V.; Sampalli, Srinivas
2015-01-01
Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis. PMID:26389899
Butterfly Encryption Scheme for Resource-Constrained Wireless Networks.
Sampangi, Raghav V; Sampalli, Srinivas
2015-09-15
Resource-constrained wireless networks are emerging networks such as Radio Frequency Identification (RFID) and Wireless Body Area Networks (WBAN) that might have restrictions on the available resources and the computations that can be performed. These emerging technologies are increasing in popularity, particularly in defence, anti-counterfeiting, logistics and medical applications, and in consumer applications with growing popularity of the Internet of Things. With communication over wireless channels, it is essential to focus attention on securing data. In this paper, we present an encryption scheme called Butterfly encryption scheme. We first discuss a seed update mechanism for pseudorandom number generators (PRNG), and employ this technique to generate keys and authentication parameters for resource-constrained wireless networks. Our scheme is lightweight, as in it requires less resource when implemented and offers high security through increased unpredictability, owing to continuously changing parameters. Our work focuses on accomplishing high security through simplicity and reuse. We evaluate our encryption scheme using simulation, key similarity assessment, key sequence randomness assessment, protocol analysis and security analysis.
Estrada, José M; Kraakman, N J R Bart; Lebrero, Raquel; Muñoz, Raúl
2012-01-01
The sensitivity of the economics of the five most commonly applied odour abatement technologies (biofiltration, biotrickling filtration, activated carbon adsorption, chemical scrubbing and a hybrid technology consisting of a biotrickling filter coupled with carbon adsorption) towards design parameters and commodity prices was evaluated. Besides, the influence of the geographical location on the Net Present Value calculated for a 20 years lifespan (NPV20) of each technology and its robustness towards typical process fluctuations and operational upsets were also assessed. This comparative analysis showed that biological techniques present lower operating costs (up to 6 times) and lower sensitivity than their physical/chemical counterparts, with the packing material being the key parameter affecting their operating costs (40-50% of the total operating costs). The use of recycled or partially treated water (e.g. secondary effluent in wastewater treatment plants) offers an opportunity to significantly reduce costs in biological techniques. Physical/chemical technologies present a high sensitivity towards H2S concentration, which is an important drawback due to the fluctuating nature of malodorous emissions. The geographical analysis evidenced high NPV20 variations around the world for all the technologies evaluated, but despite the differences in wage and price levels, biofiltration and biotrickling filtration are always the most cost-efficient alternatives (NPV20). When, in an economical evaluation, the robustness is as relevant as the overall costs (NPV20), the hybrid technology would move up next to BTF as the most preferred technologies. Copyright © 2012 Elsevier Inc. All rights reserved.
Research on axisymmetric aspheric surface numerical design and manufacturing technology
NASA Astrophysics Data System (ADS)
Wang, Zhen-zhong; Guo, Yin-biao; Lin, Zheng
2006-02-01
The key technology for aspheric machining offers exact machining path and machining aspheric lens with high accuracy and efficiency, in spite of the development of traditional manual manufacturing into nowadays numerical control (NC) machining. This paper presents a mathematical model between virtual cone and aspheric surface equations, and discusses the technology of uniform wear of grinding wheel and error compensation in aspheric machining. Finally, a software system for high precision aspheric surface manufacturing is designed and realized, based on the mentioned above. This software system can work out grinding wheel path according to input parameters and generate machining NC programs of aspheric surfaces.
NASA Astrophysics Data System (ADS)
Yang, Can; Ma, Cheng; Hu, Linxi; He, Guangqiang
2018-06-01
We present a hierarchical modulation coherent communication protocol, which simultaneously achieves classical optical communication and continuous-variable quantum key distribution. Our hierarchical modulation scheme consists of a quadrature phase-shifting keying modulation for classical communication and a four-state discrete modulation for continuous-variable quantum key distribution. The simulation results based on practical parameters show that it is feasible to transmit both quantum information and classical information on a single carrier. We obtained a secure key rate of 10^{-3} bits/pulse to 10^{-1} bits/pulse within 40 kilometers, and in the meantime the maximum bit error rate for classical information is about 10^{-7}. Because continuous-variable quantum key distribution protocol is compatible with standard telecommunication technology, we think our hierarchical modulation scheme can be used to upgrade the digital communication systems to extend system function in the future.
Optimal Design of Calibration Signals in Space-Borne Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Ferroni, Valerio;
2016-01-01
Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterisation of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
Optimal Design of Calibration Signals in Space Borne Gravitational Wave Detectors
NASA Technical Reports Server (NTRS)
Nofrarias, Miquel; Karnesis, Nikolaos; Gibert, Ferran; Armano, Michele; Audley, Heather; Danzmann, Karsten; Diepholz, Ingo; Dolesi, Rita; Ferraioli, Luigi; Thorpe, James I.
2014-01-01
Future space borne gravitational wave detectors will require a precise definition of calibration signals to ensure the achievement of their design sensitivity. The careful design of the test signals plays a key role in the correct understanding and characterization of these instruments. In that sense, methods achieving optimal experiment designs must be considered as complementary to the parameter estimation methods being used to determine the parameters describing the system. The relevance of experiment design is particularly significant for the LISA Pathfinder mission, which will spend most of its operation time performing experiments to characterize key technologies for future space borne gravitational wave observatories. Here we propose a framework to derive the optimal signals in terms of minimum parameter uncertainty to be injected to these instruments during its calibration phase. We compare our results with an alternative numerical algorithm which achieves an optimal input signal by iteratively improving an initial guess. We show agreement of both approaches when applied to the LISA Pathfinder case.
Trade Spaces in Crewed Spacecraft Atmosphere Revitalization System Development
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Bagdigian, Robert M.; Carrasquillo, Robyn L.
2010-01-01
Developing the technological response to realizing an efficient atmosphere revitalization system for future crewed spacecraft and space habitats requires identifying and describing functional trade spaces. Mission concepts and requirements dictate the necessary functions; however, the combination and sequence of those functions possess significant flexibility. Us-ing a closed loop environmental control and life support (ECLS) system architecture as a starting basis, a functional unit operations approach is developed to identify trade spaces. Generalized technological responses to each trade space are discussed. Key performance parameters that apply to functional areas are described.
A crunch on thermocompression flip chip bonding
NASA Astrophysics Data System (ADS)
Suppiah, Sarveshvaran; Ong, Nestor Rubio; Sauli, Zaliman; Sarukunaselan, Karunavani; Alcain, Jesselyn Barro; Mahmed, Norsuria; Retnasamy, Vithyacharan
2017-09-01
This study discussed the evolution and important findings, critical technical challenges, solutions and bonding equipment of flip chip thermo compression bonding (TCB). The bonding force, temperature and time were the key bonding parameters that need to be tweaked based on the researches done by others. TCB technology worked well with both pre-applied underfill and flux (still under development). Lower throughput coupled with higher processing costs was example of challenges in the TCB technology. The paper is concluded with a brief description of the current equipment used in thermo compression process.
NASA Astrophysics Data System (ADS)
Nikolopoulos, Georgios M.
2018-01-01
We consider a recently proposed entity authentication protocol in which a physical unclonable key is interrogated by random coherent states of light, and the quadratures of the scattered light are analyzed by means of a coarse-grained homodyne detection. We derive a sufficient condition for the protocol to be secure against an emulation attack in which an adversary knows the challenge-response properties of the key and moreover, he can access the challenges during the verification. The security analysis relies on Holevo's bound and Fano's inequality, and suggests that the protocol is secure against the emulation attack for a broad range of physical parameters that are within reach of today's technology.
Research on application of several tracking detectors in APT system
NASA Astrophysics Data System (ADS)
Liu, Zhi
2005-01-01
APT system is the key technology in free space optical communication system, and acquisition and tracking detector is the key component in PAT system. There are several candidate detectors that can be used in PAT system, such as CCD, QAPD and CMOS Imager etc. The characteristics of these detectors are quite different, i.e., the structures and the working schemes. This paper gives thoroughly compare of the usage and working principle of CCD and CMOS imager, and discusses the key parameters like tracking error, noise analyses, power analyses etc. Conclusion is given at the end of this paper that CMOS imager is a good candidate detector for PAT system in free space optical communication system.
Prevention through Design Adoption Readiness Model (PtD ARM): An integrated conceptual model.
Weidman, Justin; Dickerson, Deborah E; Koebel, Charles T
2015-01-01
Prevention through Design (PtD), eliminating hazards at the design-stage of tools and systems, is the optimal method of mitigating occupational health and safety risks. A recent National Institute of Safety and Health initiative has established a goal to increase adoption of PtD innovation in industry. The construction industry has traditionally lagged behind other sectors in the adoption of innovation, in general; and of safety and health prevention innovation, in particular. Therefore, as a first step toward improving adoption trends in this sector, a conceptual model was developed to describe the parameters and causal relationships that influence and predict construction stakeholder "adoption readiness" for PtD technology innovation. This model was built upon three well-established theoretical frameworks: the Health Belief Model, the Diffusion of Innovation Model, and the Technology Acceptance Model. Earp and Ennett's model development methodology was employed to build a depiction of the key constructs and directionality and magnitude of relationships among them. Key constructs were identified from the literature associated with the three theoretical frameworks, with special emphasis given to studies related to construction or OHS technology adoption. A conceptual model is presented. Recommendations for future research are described and include confirmatory structural equation modeling of model parameters and relationships, additional descriptive investigation of barriers to adoption in some trade sectors, and design and evaluation of an intervention strategy.
[Technological development: a weak link in vaccine innovation in Brazil].
Homma, Akira; Martins, Reinaldo M; Jessouroum, Ellen; Oliva, Otavio
2003-01-01
In very recent years, the federal government has launched important initiatives mean to strengthen science, technology, and innovation in Brazil and thus enhance the results of technological innovation in key areas of the country's economy. Yet these initiatives have not been enough to reduce Brazil's heavy dependence on goods and technology from more developed nations. The article describes the current state of vaccination, production, and technological development of vaccines both internationally and nationally. Some thoughts are also offered on the complexity of vaccine innovation and the various stages whose completion is essential to the whole process of technological development. An analysis is made of the parameters and factors involved in each stage; technical requirements for facilities and equipment; good manufacturing practice guidelines; organizational, infrastructural, and managerial needs; and the lengthy time periods adn high costs entailed in these activities.
Present and future free-space quantum key distribution
NASA Astrophysics Data System (ADS)
Nordholt, Jane E.; Hughes, Richard J.; Morgan, George L.; Peterson, C. Glen; Wipf, Christopher C.
2002-04-01
Free-space quantum key distribution (QKD), more popularly know as quantum cryptography, uses single-photon free-space optical communications to distribute the secret keys required for secure communications. At Los Alamos National Laboratory we have demonstrated a fully automated system that is capable of operations at any time of day over a horizontal range of several kilometers. This has proven the technology is capable of operation from a spacecraft to the ground, opening up the possibility of QKD between any group of users anywhere on Earth. This system, the prototyping of a new system for use on a spacecraft, and the techniques required for world-wide quantum key distribution will be described. The operational parameters and performance of a system designed to operate between low earth orbit (LEO) and the ground will also be discussed.
Development of a smart timber bridge - a five-year plan
Brent M. Phares; Terry J. Wipf; Ursula Deza; James P. Wacker
2011-01-01
This paper outlines a 5-year research plan for the development of a structural health monitoring system for timber bridges. A series of studies identify and evaluate various sensing technologies for measurement of structural adequacy and/or deterioration parameters. The overall goal is to develop a turn-key system to analyze, monitor, and report on the performance and...
System Architecture Modeling for Technology Portfolio Management using ATLAS
NASA Technical Reports Server (NTRS)
Thompson, Robert W.; O'Neil, Daniel A.
2006-01-01
Strategic planners and technology portfolio managers have traditionally relied on consensus-based tools, such as Analytical Hierarchy Process (AHP) and Quality Function Deployment (QFD) in planning the funding of technology development. While useful to a certain extent, these tools are limited in the ability to fully quantify the impact of a technology choice on system mass, system reliability, project schedule, and lifecycle cost. The Advanced Technology Lifecycle Analysis System (ATLAS) aims to provide strategic planners a decision support tool for analyzing technology selections within a Space Exploration Architecture (SEA). Using ATLAS, strategic planners can select physics-based system models from a library, configure the systems with technologies and performance parameters, and plan the deployment of a SEA. Key parameters for current and future technologies have been collected from subject-matter experts and other documented sources in the Technology Tool Box (TTB). ATLAS can be used to compare the technical feasibility and economic viability of a set of technology choices for one SEA, and compare it against another set of technology choices or another SEA. System architecture modeling in ATLAS is a multi-step process. First, the modeler defines the system level requirements. Second, the modeler identifies technologies of interest whose impact on an SEA. Third, the system modeling team creates models of architecture elements (e.g. launch vehicles, in-space transfer vehicles, crew vehicles) if they are not already in the model library. Finally, the architecture modeler develops a script for the ATLAS tool to run, and the results for comparison are generated.
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2014-01-01
Bottom terminated components and quad flat no-lead (BTC/QFN) packages have been extensively used by commercial industry for more than a decade. Cost and performance advantages and the closeness of the packages to the boards make them especially unique for radio frequency (RF) applications. A number of high-reliability parts are now available in this style of package configuration. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the status of BTC/QFN and their advanced versions of multi-row QFN (MRQFN) packaging technologies. The report provides a comprehensive review of packaging trends and specifications on design, assembly, and reliability. Emphasis is placed on assembly reliability and associated key design and process parameters because they show lower life than standard leaded package assembly under thermal cycling exposures. Inspection of hidden solder joints for assuring quality is challenging and is similar to ball grid arrays (BGAs). Understanding the key BTC/QFN technology trends, applications, processing parameters, workmanship defects, and reliability behavior is important when judicially selecting and narrowing the follow-on packages for evaluation and testing, as well as for the low risk insertion in high-reliability applications.
NASA Technical Reports Server (NTRS)
Ghaffarian, Reza
2014-01-01
Bottom terminated components and quad flat no-lead (BTC/QFN) packages have been extensively used by commercial industry for more than a decade. Cost and performance advantages and the closeness of the packages to the boards make them especially unique for radio frequency (RF) applications. A number of high-reliability parts are now available in this style of package configuration. This report presents a summary of literature surveyed and provides a body of knowledge (BOK) gathered on the status of BTC/QFN and their advanced versions of multi-row QFN (MRQFN) packaging technologies. The report provides a comprehensive review of packaging trends and specifications on design, assembly, and reliability. Emphasis is placed on assembly reliability and associated key design and process parameters because they show lower life than standard leaded package assembly under thermal cycling exposures. Inspection of hidden solder joints for assuring quality is challenging and is similar to ball grid arrays (BGAs). Understanding the key BTC/QFN technology trends, applications, processing parameters, workmanship defects, and reliability behavior is important when judicially selecting and narrowing the follow-on packages for evaluation and testing, as well as for the low risk insertion in high-reliability applications.
Deep ocean corrosion research in support of Oman India gas pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, F.W.; McKeehan, D.S.
1995-12-01
The increasing interest in deepwater exploration and production has motivated the development of technologies required to accomplish tasks heretofore possible only onshore and in shallow water. The tremendous expense of technology development and the cost of specialized equipment has created concerns that the design life of these facilities may be compromised by corrosion. The requirements to develop and prove design parameters to meet these demands will require an ongoing environmental testing and materials evaluation and development program. This paper describes a two-fold corrosion testing program involving: (1) the installation of two corrosion test devices installed in-situ, and (2) a laboratorymore » test conducted in simulated site-specific seawater. These tests are expected to qualify key parameters necessary to design a cathodic protection system to protect the Oman-to-India pipeline.« less
Recent advances in bioprinting techniques: approaches, applications and future prospects.
Li, Jipeng; Chen, Mingjiao; Fan, Xianqun; Zhou, Huifang
2016-09-20
Bioprinting technology shows potential in tissue engineering for the fabrication of scaffolds, cells, tissues and organs reproducibly and with high accuracy. Bioprinting technologies are mainly divided into three categories, inkjet-based bioprinting, pressure-assisted bioprinting and laser-assisted bioprinting, based on their underlying printing principles. These various printing technologies have their advantages and limitations. Bioprinting utilizes biomaterials, cells or cell factors as a "bioink" to fabricate prospective tissue structures. Biomaterial parameters such as biocompatibility, cell viability and the cellular microenvironment strongly influence the printed product. Various printing technologies have been investigated, and great progress has been made in printing various types of tissue, including vasculature, heart, bone, cartilage, skin and liver. This review introduces basic principles and key aspects of some frequently used printing technologies. We focus on recent advances in three-dimensional printing applications, current challenges and future directions.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell; Schifer, Nicholas
2011-01-01
Test hardware used to validate net heat prediction models. Problem: Net Heat Input cannot be measured directly during operation. Net heat input is a key parameter needed in prediction of efficiency for convertor performance. Efficiency = Electrical Power Output (Measured) divided by Net Heat Input (Calculated). Efficiency is used to compare convertor designs and trade technology advantages for mission planning.
Laser diode technology for coherent communications
NASA Technical Reports Server (NTRS)
Channin, D. J.; Palfrey, S. L.; Toda, M.
1989-01-01
The effect of diode laser characteristics on the overall performance capabilities of coherent communication systems is discussed. In particular, attention is given to optical performance issues for diode lasers in coherent systems, measurements of key performance parameters, and optical requirements for coherent single-channel and multichannel communication systems. The discussion also covers limitations imposed by diode laser optical performance on multichannel system capabilities and implications for future developments.
Autonomous Parameter Adjustment for SSVEP-Based BCIs with a Novel BCI Wizard.
Gembler, Felix; Stawicki, Piotr; Volosyak, Ivan
2015-01-01
Brain-Computer Interfaces (BCIs) transfer human brain activities into computer commands and enable a communication channel without requiring movement. Among other BCI approaches, steady-state visual evoked potential (SSVEP)-based BCIs have the potential to become accurate, assistive technologies for persons with severe disabilities. Those systems require customization of different kinds of parameters (e.g., stimulation frequencies). Calibration usually requires selecting predefined parameters by experienced/trained personnel, though in real-life scenarios an interface allowing people with no experience in programming to set up the BCI would be desirable. Another occurring problem regarding BCI performance is BCI illiteracy (also called BCI deficiency). Many articles reported that BCI control could not be achieved by a non-negligible number of users. In order to bypass those problems we developed a SSVEP-BCI wizard, a system that automatically determines user-dependent key-parameters to customize SSVEP-based BCI systems. This wizard was tested and evaluated with 61 healthy subjects. All subjects were asked to spell the phrase "RHINE WAAL UNIVERSITY" with a spelling application after key parameters were determined by the wizard. Results show that all subjects were able to control the spelling application. A mean (SD) accuracy of 97.14 (3.73)% was reached (all subjects reached an accuracy above 85% and 25 subjects even reached 100% accuracy).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikin, A.
2017-11-21
Electron beam ion sources technology made significant progress since 1968 when this method of producing highly charged ions in a potential trap within electron beam was proposed by E. Donets. Better understanding of physical processes in EBIS, technological advances and better simulation tools determined significant progress in key EBIS parameters: electron beam current and current density, ion trap capacity, attainable charge states. Greatly increased the scope of EBIS and EBIT applications. An attempt is made to compile some of EBIS engineering problems and solutions and to demonstrate a present stage of understanding the processes and approaches to build a bettermore » EBIS.« less
Parameter analysis on the ultrasonic TSV-filling process and electrochemical characters
NASA Astrophysics Data System (ADS)
Wang, Fuliang; Ren, Xinyu; Wang, Yan; Zeng, Peng; Zhou, Zhaohua; Xiao, Hongbin; Zhu, Wenhui
2017-10-01
As one of the key technologies in 3D packaging, through silicon via (TSV) interconnection technology has become a focus recently. In this paper, an electrodeposition method for TSV filling with the assistance of ultrasound and additives are introduced. Two important parameters i.e. current density and ultrasonic power are studied for TSV filling process and electrochemical properties. It is found that ultrasound can improve the quality of TSV-filling and change the TSV-filling mode. The experimental results also indicate that the filling rate enhances more significantly with decreasing current density under ultrasonic conditions than under silent conditions. In addition, according to the voltammetry curve, the increase of ultrasonic power can significantly increase the current density of cupric reduction, and decrease the thickness of diffusion layer. So that the reduction speed of copper ions is accelerated, resulting in a higher TSV-filling rate.
ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kramer, Klaas Jan; Homan, Greg; Brown, Rich
2009-04-15
The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprintmore » of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.« less
Study on key technologies of optimization of big data for thermal power plant performance
NASA Astrophysics Data System (ADS)
Mao, Mingyang; Xiao, Hong
2018-06-01
Thermal power generation accounts for 70% of China's power generation, the pollutants accounted for 40% of the same kind of emissions, thermal power efficiency optimization needs to monitor and understand the whole process of coal combustion and pollutant migration, power system performance data show explosive growth trend, The purpose is to study the integration of numerical simulation of big data technology, the development of thermal power plant efficiency data optimization platform and nitrogen oxide emission reduction system for the thermal power plant to improve efficiency, energy saving and emission reduction to provide reliable technical support. The method is big data technology represented by "multi-source heterogeneous data integration", "large data distributed storage" and "high-performance real-time and off-line computing", can greatly enhance the energy consumption capacity of thermal power plants and the level of intelligent decision-making, and then use the data mining algorithm to establish the boiler combustion mathematical model, mining power plant boiler efficiency data, combined with numerical simulation technology to find the boiler combustion and pollutant generation rules and combustion parameters of boiler combustion and pollutant generation Influence. The result is to optimize the boiler combustion parameters, which can achieve energy saving.
Hydrogen Storage for Aircraft Applications Overview
NASA Technical Reports Server (NTRS)
Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)
2002-01-01
Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.
Aerobots as a Ubiquitous Part of Society
NASA Technical Reports Server (NTRS)
Young, Larry A.
2006-01-01
Small autonomous aerial robots (aerobots) have the potential to make significant positive contributions to modern society. Aerobots of various vehicle-types - CTOL, STOL, VTOL, and even possibly LTA - will be a part of a new paradigm for the distribution of goods and services. Aerobots as a class of vehicles may test the boundaries of aircraft design. New system analysis and design tools will be required in order to account for the new technologies and design parameters/constraints for such vehicles. The analysis tools also provide new approaches to defining/assessing technology goals and objectives and the technology portfolio necessary to accomplish those goals and objectives. Using the aerobot concept as an illustrative test case, key attributes of these analysis tools are discussed.
Advanced uncooled infrared focal plane development at CEA/LETI
NASA Astrophysics Data System (ADS)
Tissot, Jean-Luc; Mottin, Eric; Martin, Jean-Luc; Yon, Jean-Jacques; Vilain, Michel
2017-11-01
LETI/LIR has been involved for a few year in the field of uncooled detectors and has chosen amorphous silicon for its microbolometer technology development. Uncooled IR detectors pave the way to reduced weight systems aboard satellites. The silicon compatibility of our thermometer is a key parameter which has enabled a very fast technology development and transfer to industry. This competitive technology is now able to provide a new approach for IR detectors for space applications. This paper presents the main characteristics of the CEA / LETI technology which is based on a monolithically integrated structure over a fully completed readout circuit from a commercially available 0.5 μm design rules CMOS line. The technology maturity will be illustrated by the results obtained at LETI/LIR and SOFRADIR on a 320 x 240 with a pitch of 45 μm. First improvement on device reliability and characterization results will be presented.
NASA Technical Reports Server (NTRS)
Howard, David; Perry,Jay; Sargusingh, Miriam; Toomarian, Nikzad
2016-01-01
NASA's technology development roadmaps provide guidance to focus technological development on areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-situ maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.
Full-field implementation of a perfect eavesdropper on a quantum cryptography system.
Gerhardt, Ilja; Liu, Qin; Lamas-Linares, Antía; Skaar, Johannes; Kurtsiefer, Christian; Makarov, Vadim
2011-06-14
Quantum key distribution (QKD) allows two remote parties to grow a shared secret key. Its security is founded on the principles of quantum mechanics, but in reality it significantly relies on the physical implementation. Technological imperfections of QKD systems have been previously explored, but no attack on an established QKD connection has been realized so far. Here we show the first full-field implementation of a complete attack on a running QKD connection. An installed eavesdropper obtains the entire 'secret' key, while none of the parameters monitored by the legitimate parties indicate a security breach. This confirms that non-idealities in physical implementations of QKD can be fully practically exploitable, and must be given increased scrutiny if quantum cryptography is to become highly secure.
A portable foot-parameter-extracting system
NASA Astrophysics Data System (ADS)
Zhang, MingKai; Liang, Jin; Li, Wenpan; Liu, Shifan
2016-03-01
In order to solve the problem of automatic foot measurement in garment customization, a new automatic footparameter- extracting system based on stereo vision, photogrammetry and heterodyne multiple frequency phase shift technology is proposed and implemented. The key technologies applied in the system are studied, including calibration of projector, alignment of point clouds, and foot measurement. Firstly, a new projector calibration algorithm based on plane model has been put forward to get the initial calibration parameters and a feature point detection scheme of calibration board image is developed. Then, an almost perfect match of two clouds is achieved by performing a first alignment using the Sampled Consensus - Initial Alignment algorithm (SAC-IA) and refining the alignment using the Iterative Closest Point algorithm (ICP). Finally, the approaches used for foot-parameterextracting and the system scheme are presented in detail. Experimental results show that the RMS error of the calibration result is 0.03 pixel and the foot parameter extracting experiment shows the feasibility of the extracting algorithm. Compared with the traditional measurement method, the system can be more portable, accurate and robust.
Determination of the key parameters affecting historic communications satellite trends
NASA Technical Reports Server (NTRS)
Namkoong, D.
1984-01-01
Data representing 13 series of commercial communications satellites procured between 1968 and 1982 were analyzed to determine the factors that have contributed to the general reduction over time of the per circuit cost of communications satellites. The model by which the data were analyzed was derived from a general telecommunications application and modified to be more directly applicable for communications satellites. In this model satellite mass, bandwidth-years, and technological change were the variable parameters. A linear, least squares, multiple regression routine was used to obtain the measure of significance of the model. Correlation was measured by coefficient of determination (R super 2) and t-statistic. The results showed that no correlation could be established with satellite mass. Bandwidth-year however, did show a significant correlation. Technological change in the bandwidth-year case was a significant factor in the model. This analysis and the conclusions derived are based on mature technologies, i.e., satellite designs that are evolutions of earlier designs rather than the first of a new generation. The findings, therefore, are appropriate to future satellites only if they are a continuation of design evolution.
Effect of liquid crystal birefringence on the opacity and off-axis haze of PDLC films
NASA Astrophysics Data System (ADS)
Pane, S.; Caporusso, M.
1998-02-01
PDLC systems are thin films consisting of a dispersion of liquid crystal micro-droplets in a continuous solid phase of polymer matrix. Application of an electric field on a thin layer of PDLC sandwiched between two transparent on-state. This effect make them useful for a wide variety of applications. Among them, smart windows for architectural is the most popular subject in literature. For this application, the key parameters of performance are the haze and the opacity. There are essentially two technologies used to prepare PDLC films, namely micro-encapsulation and phase separation.In the present work we will show the correlation between the opacity and the off-axis haze in PDLC films prepared with a phase separation technology. We will give the general rule in order to select the liquid crystal properties that allow the preparation of high opacity ad low haze PDLC films. Further study about the control of the parameters which influence the performances of PDLC films prepared with phase separation technology and the difference with the NCAP approach are in progress at our laboratory.
Key management and encryption under the bounded storage model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draelos, Timothy John; Neumann, William Douglas; Lanzone, Andrew J.
2005-11-01
There are several engineering obstacles that need to be solved before key management and encryption under the bounded storage model can be realized. One of the critical obstacles hindering its adoption is the construction of a scheme that achieves reliable communication in the event that timing synchronization errors occur. One of the main accomplishments of this project was the development of a new scheme that solves this problem. We show in general that there exist message encoding techniques under the bounded storage model that provide an arbitrarily small probability of transmission error. We compute the maximum capacity of this channelmore » using the unsynchronized key-expansion as side-channel information at the decoder and provide tight lower bounds for a particular class of key-expansion functions that are pseudo-invariant to timing errors. Using our results in combination with Dziembowski et al. [11] encryption scheme we can construct a scheme that solves the timing synchronization error problem. In addition to this work we conducted a detailed case study of current and future storage technologies. We analyzed the cost, capacity, and storage data rate of various technologies, so that precise security parameters can be developed for bounded storage encryption schemes. This will provide an invaluable tool for developing these schemes in practice.« less
Luo, Shezhou; Chen, Jing M; Wang, Cheng; Xi, Xiaohuan; Zeng, Hongcheng; Peng, Dailiang; Li, Dong
2016-05-30
Vegetation leaf area index (LAI), height, and aboveground biomass are key biophysical parameters. Corn is an important and globally distributed crop, and reliable estimations of these parameters are essential for corn yield forecasting, health monitoring and ecosystem modeling. Light Detection and Ranging (LiDAR) is considered an effective technology for estimating vegetation biophysical parameters. However, the estimation accuracies of these parameters are affected by multiple factors. In this study, we first estimated corn LAI, height and biomass (R2 = 0.80, 0.874 and 0.838, respectively) using the original LiDAR data (7.32 points/m2), and the results showed that LiDAR data could accurately estimate these biophysical parameters. Second, comprehensive research was conducted on the effects of LiDAR point density, sampling size and height threshold on the estimation accuracy of LAI, height and biomass. Our findings indicated that LiDAR point density had an important effect on the estimation accuracy for vegetation biophysical parameters, however, high point density did not always produce highly accurate estimates, and reduced point density could deliver reasonable estimation results. Furthermore, the results showed that sampling size and height threshold were additional key factors that affect the estimation accuracy of biophysical parameters. Therefore, the optimal sampling size and the height threshold should be determined to improve the estimation accuracy of biophysical parameters. Our results also implied that a higher LiDAR point density, larger sampling size and height threshold were required to obtain accurate corn LAI estimation when compared with height and biomass estimations. In general, our results provide valuable guidance for LiDAR data acquisition and estimation of vegetation biophysical parameters using LiDAR data.
NASA Technical Reports Server (NTRS)
Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.; Best, Paul K.
2007-01-01
In the companion paper, [Appl. Opt. 46, 5853 (2007)] a highly accurate white light interference model was developed from just a few key parameters characterized in terms of various moments of the source and instrument transmission function. We develop and implement the end-to-end process of calibrating these moment parameters together with the differential dispersion of the instrument and applying them to the algorithms developed in the companion paper. The calibration procedure developed herein is based on first obtaining the standard monochromatic parameters at the pixel level: wavenumber, phase, intensity, and visibility parameters via a nonlinear least-squares procedure that exploits the structure of the model. The pixel level parameters are then combined to obtain the required 'global' moment and dispersion parameters. The process is applied to both simulated scenarios of astrometric observations and to data from the microarcsecond metrology testbed (MAM), an interferometer testbed that has played a prominent role in the development of this technology.
NASA Astrophysics Data System (ADS)
Jamróz, Dariusz; Niedoba, Tomasz; Surowiak, Agnieszka; Tumidajski, Tadeusz; Szostek, Roman; Gajer, Mirosław
2017-09-01
The application of methods drawing upon multi-parameter visualization of data by transformation of multidimensional space into two-dimensional one allow to show multi-parameter data on computer screen. Thanks to that, it is possible to conduct a qualitative analysis of this data in the most natural way for human being, i.e. by the sense of sight. An example of such method of multi-parameter visualization is multidimensional scaling. This method was used in this paper to present and analyze a set of seven-dimensional data obtained from Janina Mining Plant and Wieczorek Coal Mine. It was decided to examine whether the method of multi-parameter data visualization allows to divide the samples space into areas of various applicability to fluidal gasification process. The "Technological applicability card for coals" was used for this purpose [Sobolewski et al., 2012; 2017], in which the key parameters, important and additional ones affecting the gasification process were described.
Climate Model Diagnostic Analyzer Web Service System
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.
2015-12-01
Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the new methodology as web services and incorporated the system into the Cloud. We have also developed a provenance management system for CMDA where CMDA service semantics modeling, service search and recommendation, and service execution history management are designed and implemented.
Integrated Spatial Modeling using Geoinformatics: A Prerequisite for Natural Resources Management
NASA Astrophysics Data System (ADS)
Katpatal, Y. B.
2014-12-01
Every natural system calls for complete visualization for its holistic and sustainable development. Many a times, especially in developing countries, the approaches deviate from this basic paradigm and results in ineffective management of the natural resources. This becomes more relevant in these countries which are witnessing heavy exodus of the rural population to urban areas increasing the pressures on the basic commodities. Spatial technologies which provide the opportunity to enhance the knowledge visualization of the policy makers and administrators which facilitates technical and scientific management of the resources. Increasing population has created negative impacts on the per capita availability of several resources, which has been well accepted in the statistical records of several developing countries. For instance, the per capita availability of water in India has decreased substantially in last decade and groundwater depletion is on the rise. There is hence a need of tool which helps in restoring the resource through visualization and evaluation temporally. Geological parameters play an important role in operation of several natural systems and earth sciences parameters may not be ignored. Spatial technologies enables application of 2D as well as 3D modeling taking into account variety of natural parameters related to diverse areas. The paper presents case studies where spatial technology has helped in not only understanding the natural systems but also providing solutions, especially in Indian context. The case studies relate to Groundwater Management, Watershed and Basin Management, Groundwater recharge, Environment sustainability using spatial technology. Key Words: Spatial model, Groundwater, Hydrogeology, Geoinformatics, Sustainable Development.
Manufacturing Methods and Technology Program Automatic In-Process Microcircuit Evaluation.
1980-10-01
methods of controlling the AIME system are with the computer and associated inter- face (CPU control), and with controls located on the front panels...Sync and Blanking signals When the AIME system is being operated by the front panel controls , the computer does not influence the system operation. SU...the color video monitor display. The operator controls these parameters by 1) depressing the appropriate key on the keyboard, 2) observing on the
Performance Evaluation of Solar Blind NLOS Ultraviolet Communication Systems
2008-12-01
noise and signal count statistical distributions . Then we further link key system parameters such as path loss and communication bit error rate (BER... quantum noise limited photon-counting detection. These benefits can now begin to be realized based on technological advances in both miniaturized...multiplication gain of 105~107, high responsivity of 62 A/W, large detection area of a few cm2, reasonable quantum efficiency of 15%, and low dark current
An on-line reactivity and power monitor for a TRIGA reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binney, Stephen E.; Bakir, Alia J.
1988-07-01
As the personal computer (PC) becomes more and more of a significant influence on modern technology, it is reasonable that at some point in time they would be used to interface with TRIGA reactors. A personal computer with a special interface board has been used to monitor key parameters during operation of the Oregon State University TRIGA Reactor (OSTR). A description of the apparatus used and sample results are included.
Stip, Emmanuel; Rialle, Vincent
2005-04-01
In light of the advent of new technologies, we proposed to reexamine certain challenges posed by cognitive remediation and social reintegration (that is, deinstitutionalization) of patients with severe and persistent mental disorders. We reviewed literature on cognition, remediation, smart homes, as well as on objects and utilities, using medical and computer science electronic library and Internet searches. These technologies provide solutions for disabled persons with respect to care delivery, workload reduction, and socialization. Examples include home support, video conferencing, remote monitoring of medical parameters through sensors, teledetection of critical situations (for example, a fall or malaise), measures of daily living activities, and help with tasks of daily living. One of the key concepts unifying all these technologies is the health-smart home. We present the notion of the health-smart home in general and then examine it more specifically in relation to schizophrenia. Management of people with schizophrenia with cognitive deficits who are being rehabilitated in the community can be improved with the use of technology; however, such technology has ethical ramifications.
NASA Astrophysics Data System (ADS)
Alligné, S.; Decaix, J.; Müller, A.; Nicolet, C.; Avellan, F.; Münch, C.
2017-04-01
Due to the massive penetration of alternative renewable energies, hydropower is a key energy conversion technology for stabilizing the electrical power network by using hydraulic machines at off design operating conditions. At full load, the axisymmetric cavitation vortex rope developing in Francis turbines acts as an internal source of energy, leading to an instability commonly referred to as self-excited surge. 1-D models are developed to predict this phenomenon and to define the range of safe operating points for a hydropower plant. These models require a calibration of several parameters. The present work aims at identifying these parameters by using CFD results as objective functions for an optimization process. A 2-D Venturi and 3-D Francis turbine are considered.
Investigation into the influence of build parameters on failure of 3D printed parts
NASA Astrophysics Data System (ADS)
Fornasini, Giacomo
Additive manufacturing, including fused deposition modeling (FDM), is transforming the built world and engineering education. Deep understanding of parts created through FDM technology has lagged behind its adoption in home, work, and academic environments. Properties of parts created from bulk materials through traditional manufacturing are understood well enough to accurately predict their behavior through analytical models. Unfortunately, Additive Manufacturing (AM) process parameters create anisotropy on a scale that fundamentally affects the part properties. Understanding AM process parameters (implemented by program algorithms called slicers) is necessary to predict part behavior. Investigating algorithms controlling print parameters (slicers) revealed stark differences between the generation of part layers. In this work, tensile testing experiments, including a full factorial design, determined that three key factors, width, thickness, infill density, and their interactions, significantly affect the tensile properties of 3D printed test samples.
Communications systems technology assessment study. Volume 2: Results
NASA Technical Reports Server (NTRS)
Kelley, R. L.; Khatri, R. K.; Kiesling, J. D.; Weiss, J. A.
1977-01-01
The cost and technology characteristics are examined for providing special satellite services at UHF, 2.5 GHz, and 14/12 GHz. Considered are primarily health, educational, informational and emergency disaster type services. The total cost of each configuration including space segment, earth station, installation operation and maintenance was optimized to reduce the user's total annual cost and establish preferred equipment performance parameters. Technology expected to be available between now and 1985 is identified and comparisons made between selected alternatives. A key element of the study is a survey of earth station equipment updating past work in the field, providing new insight into technology, and evaluating production and test methods that can reduce costs in large production runs. Various satellite configurations were examined. The cost impact of rain attenuation at Ku-band was evaluated. The factors affecting the ultimate capacity achievable with the available orbital arc and available bandwidth were analyzed.
Advanced Air Bag Technology Assessment
NASA Technical Reports Server (NTRS)
Phen, R. L.; Dowdy, M. W.; Ebbeler, D. H.; Kim. E.-H.; Moore, N. R.; VanZandt, T. R.
1998-01-01
As a result of the concern for the growing number of air-bag-induced injuries and fatalities, the administrators of the National Highway Traffic Safety Administration (NHTSA) and the National Aeronautics and Space Administration (NASA) agreed to a cooperative effort that "leverages NHTSA's expertise in motor vehicle safety restraint systems and biomechanics with NASAs position as one of the leaders in advanced technology development... to enable the state of air bag safety technology to advance at a faster pace..." They signed a NASA/NHTSA memorandum of understanding for NASA to "evaluate air bag to assess advanced air bag performance, establish the technological potential for improved technology (smart) air bag systems, and identify key expertise and technology within the agency (i.e., NASA) that can potentially contribute significantly to the improved effectiveness of air bags." NASA is committed to contributing to NHTSAs effort to: (1) understand and define critical parameters affecting air bag performance; (2) systematically assess air bag technology state of the art and its future potential; and (3) identify new concepts for air bag systems. The Jet Propulsion Laboratory (JPL) was selected by NASA to respond to the memorandum of understanding by conducting an advanced air bag technology assessment. JPL analyzed the nature of the need for occupant restraint, how air bags operate alone and with safety belts to provide restraint, and the potential hazards introduced by the technology. This analysis yielded a set of critical parameters for restraint systems. The researchers examined data on the performance of current air bag technology, and searched for and assessed how new technologies could reduce the hazards introduced by air bags while providing the restraint protection that is their primary purpose. The critical parameters which were derived are: (1) the crash severity; (2) the use of seat belts; (3) the physical characteristics of the occupants; (4) the proximity of the occupants to the airbag module; (5) the deployment time, which includes the time to sense the need for deployment, the inflator response parameters, the air bag response, and the reliability of the air bag. The requirements for an advanced air bag technology is discussed. These requirements includes that the system use information related to: (1) the crash severity; (2) the status of belt usage; (3) the occupant category; and (4) the proximity to the air bag to adjust air bag deployment. The parameters for the response of the air bag are: (1) deployment time; (2) inflator parameters; and (3) air bag response and reliability. The state of occupant protection advanced technology is reviewed. This review includes: the current safety restraint systems, and advanced technology characteristics. These characteristics are summarized in a table, which has information regarding the technology item, the potential, and an date of expected utilization. The use of technology and expertise at NASA centers is discussed. NASA expertise relating to sensors, computing, simulation, propellants, propulsion, inflatable systems, systems analysis and engineering is considered most useful. Specific NASA technology developments, which were included in the study are: (1) a capacitive detector; (2) stereoscopic vision system; (3) improved crash sensors; (4) the use of the acoustic signature of the crash to determine crash severity; and (5) the use of radar antenna for pre-crash sensing. Information relating to injury risk assessment is included, as is a summary of the areas of the technology which requires further development.
Feasibility Study of a Satellite Solar Power Station
NASA Technical Reports Server (NTRS)
Glaser, P. E.; Maynard, O. E.; Mackovciak, J. J. R.; Ralph, E. I.
1974-01-01
A feasibility study of a satellite solar power station (SSPS) was conducted to: (1) explore how an SSPS could be flown and controlled in orbit; (2) determine the techniques needed to avoid radio frequency interference (RFI); and (3) determine the key environmental, technological, and economic issues involved. Structural and dynamic analyses of the SSPS structure were performed, and deflections and internal member loads were determined. Desirable material characteristics were assessed and technology developments identified. Flight control performance of the SSPS baseline design was evaluated and parametric sizing studies were performed. The study of RFI avoidance techniques covered (1) optimization of the microwave transmission system; (2) device design and expected RFI; and (3) SSPS RFI effects. The identification of key issues involved (1) microwave generation, transmissions, and rectification and solar energy conversion; (2) environmental-ecological impact and biological effects; and (3) economic issues, i.e., costs and benefits associated with the SSPS. The feasibility of the SSPS based on the parameters of the study was established.
Assessment of Sensor Technologies for Advanced Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korsah, Kofi; Kisner, R. A.; Britton Jr., C. L.
This paper provides an assessment of sensor technologies and a determination of measurement needs for advanced reactors (AdvRx). It is a summary of a study performed to provide the technical basis for identifying and prioritizing research targets within the instrumentation and control (I&C) Technology Area under the Department of Energy’s (DOE’s) Advanced Reactor Technology (ART) program. The study covered two broad reactor technology categories: High Temperature Reactors and Fast Reactors. The scope of “High temperature reactors” included Gen IV reactors whose coolant exit temperatures exceed ≈650 °C and are moderated (as opposed to fast reactors). To bound the scope formore » fast reactors, this report reviewed relevant operating experience from US-operated Sodium Fast Reactor (SFR) and relevant test experience from the Fast Flux Test Facility (FFTF). For high temperature reactors the study showed that in many cases instrumentation have performed reasonably well in research and demonstration reactors. However, even in cases where the technology is “mature” (such as thermocouples), HTGRs can benefit from improved technologies. Current HTGR instrumentation is generally based on decades-old technology and adapting newer technologies could provide significant advantages. For sodium fast reactors, the study found that several key research needs arise around (1) radiation-tolerant sensor design for in-vessel or in-core applications, where possible non-invasive sensing approaches for key parameters that minimize the need to deploy sensors in-vessel, (2) approaches to exfiltrating data from in-vessel sensors while minimizing penetrations, (3) calibration of sensors in-situ, and (4) optimizing sensor placements to maximize the information content while minimizing the number of sensors needed.« less
High-energy laser weapons: technology overview
NASA Astrophysics Data System (ADS)
Perram, Glen P.; Marciniak, Michael A.; Goda, Matthew
2004-09-01
High energy laser (HEL) weapons are ready for some of today"s most challenging military applications. For example, the Airborne Laser (ABL) program is designed to defend against Theater Ballistic Missiles in a tactical war scenario. Similarly, the Tactical High Energy Laser (THEL) program is currently testing a laser to defend against rockets and other tactical weapons. The Space Based Laser (SBL), Advanced Tactical Laser (ATL) and Large Aircraft Infrared Countermeasures (LAIRCM) programs promise even greater applications for laser weapons. This technology overview addresses both strategic and tactical roles for HEL weapons on the modern battlefield and examines current technology limited performance of weapon systems components, including various laser device types, beam control systems, atmospheric propagation, and target lethality issues. The characteristics, history, basic hardware, and fundamental performance of chemical lasers, solid state lasers and free electron lasers are summarized and compared. The elements of beam control, including the primary aperture, fast steering mirror, deformable mirrors, wavefront sensors, beacons and illuminators will be discussed with an emphasis on typical and required performance parameters. The effects of diffraction, atmospheric absorption, scattering, turbulence and thermal blooming phenomenon on irradiance at the target are described. Finally, lethality criteria and measures of weapon effectiveness are addressed. The primary purpose of the presentation is to define terminology, establish key performance parameters, and summarize technology capabilities.
Thales SESO's hollow and massive corner cube solutions
NASA Astrophysics Data System (ADS)
Fappani, Denis; Dahan, Déborah; Costes, Vincent; Luitot, Clément
2017-11-01
For Space Activities, more and more Corner Cubes, used as solution for retro reflection of light (telemetry and positioning), are emerging worldwide in different projects. Depending on the application, they can be massive or hollow Corner Cubes. For corners as well as for any kind of space optics, it usual that use of light/lightened components is always a baseline for purpose of mass reduction payloads. But other parameters, such as the system stability under severe environment, are also major issues, especially for the corner cube systems which require generally very tight angular accuracies. For the particular case of the hollow corner cube, an alternative solution to the usual cementing of the 3 reflective surfaces, has been developed with success in collaboration with CNES to guarantee a better stability and fulfill the weight requirements.. Another important parameter is the dihedral angles that have a great influence on the wavefront error. Two technologies can be considered, either a Corner Cubes array assembled in a very stable housing, or the irreversible adherence technology used for assembling the three parts of a cube. This latter technology enables in particular not having to use cement. The poster will point out the conceptual design, the manufacturing and control key-aspects of such corner cube assemblies as well as the technologies used for their assembling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramsden, T.; Ruth, M.; Diakov, V.
2013-03-01
This report describes a life-cycle assessment conducted by the National Renewable Energy Laboratory (NREL) of 10 hydrogen production, delivery, dispensing, and use pathways that were evaluated for cost, energy use, and greenhouse gas (GHG) emissions. This evaluation updates and expands on a previous assessment of seven pathways conducted in 2009. This study summarizes key results, parameters, and sensitivities to those parameters for the 10 hydrogen pathways, reporting on the levelized cost of hydrogen in 2007 U.S. dollars as well as life-cycle well-to-wheels energy use and GHG emissions associated with the pathways.
NASA Technical Reports Server (NTRS)
Perry, Jay L.; Sargusingh, Miriam J.; Toomarian, Nikzad
2016-01-01
The National Aeronautics and Space Administration's (NASA) technology development roadmaps provide guidance to focus technological development in areas that enable crewed exploration missions beyond low-Earth orbit. Specifically, the technology area roadmap on human health, life support and habitation systems describes the need for life support system (LSS) technologies that can improve reliability and in-flight maintainability within a minimally-sized package while enabling a high degree of mission autonomy. To address the needs outlined by the guiding technology area roadmap, NASA's Advanced Exploration Systems (AES) Program has commissioned the Life Support Systems (LSS) Project to lead technology development in the areas of water recovery and management, atmosphere revitalization, and environmental monitoring. A notional exploration LSS architecture derived from the International Space has been developed and serves as the developmental basis for these efforts. Functional requirements and key performance parameters that guide the exploration LSS technology development efforts are presented and discussed. Areas where LSS flight operations aboard the ISS afford lessons learned that are relevant to exploration missions are highlighted.
Quantum-enhanced multiparameter estimation in multiarm interferometers
Ciampini, Mario A.; Spagnolo, Nicolò; Vitelli, Chiara; Pezzè, Luca; Smerzi, Augusto; Sciarrino, Fabio
2016-01-01
Quantum metrology is the state-of-the-art measurement technology. It uses quantum resources to enhance the sensitivity of phase estimation over that achievable by classical physics. While single parameter estimation theory has been widely investigated, much less is known about the simultaneous estimation of multiple phases, which finds key applications in imaging and sensing. In this manuscript we provide conditions of useful particle (qudit) entanglement for multiphase estimation and adapt them to multiarm Mach-Zehnder interferometry. We theoretically discuss benchmark multimode Fock states containing useful qudit entanglement and overcoming the sensitivity of separable qudit states in three and four arm Mach-Zehnder-like interferometers - currently within the reach of integrated photonics technology. PMID:27381743
Biofiltration: Fundamentals, design and operations principles and applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, W.J.; Loehr, R.C.
1997-06-01
Biofiltration is a biological air pollution control technology for volatile organic compounds (VOCs). This paper summarizes the fundamentals, design and operation, and application of the process. Biofiltration has been demonstrated to be an effective technology for VOCs from many industries. Large and full-scale systems are in use in Europe and the US. With proper design and operation, VOC removal efficiencies of 95--99% have been achieved. Important parameters for design and performance are empty-bed contact time, gas surface loading, mass loading, elimination capacity, and removal efficiency. Key design and operation factors include chemical and media properties, moisture, pH, temperature, nutrient availability,more » gas pretreatment, and variations in loading.« less
Pyrolysis of corn stalk biomass briquettes in a scaled-up microwave technology.
Salema, Arshad Adam; Afzal, Muhammad T; Bennamoun, Lyes
2017-06-01
Pyrolysis of corn stalk biomass briquettes was carried out in a developed microwave (MW) reactor supplied with 2.45GHz frequency using 3kW power generator. MW power and biomass loading were the key parameters investigated in this study. Highest bio-oil, biochar, and gas yield of 19.6%, 41.1%, and 54.0% was achieved at different process condition. In terms of quality, biochar exhibited good heating value (32MJ/kg) than bio-oil (2.47MJ/kg). Bio-oil was also characterised chemically using FTIR and GC-MS method. This work may open new dimension towards development of large-scale MW pyrolysis technology. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Price, M. A.; Murphy, A.; Butterfield, J.; McCool, R.; Fleck, R.
2011-05-01
The predictive methods currently used for material specification, component design and the development of manufacturing processes, need to evolve beyond the current `metal centric' state of the art, if advanced composites are to realise their potential in delivering sustainable transport solutions. There are however, significant technical challenges associated with this process. Deteriorating environmental, political, economic and social conditions across the globe have resulted in unprecedented pressures to improve the operational efficiency of the manufacturing sector generally and to change perceptions regarding the environmental credentials of transport systems in particular. There is a need to apply new technologies and develop new capabilities to ensure commercial sustainability in the face of twenty first century economic and climatic conditions as well as transport market demands. A major technology gap exists between design, analysis and manufacturing processes in both the OEMs, and the smaller companies that make up the SME based supply chain. As regulatory requirements align with environmental needs, manufacturers are increasingly responsible for the broader lifecycle aspects of vehicle performance. These include not only manufacture and supply but disposal and re-use or re-cycling. In order to make advances in the reduction of emissions coupled with improved economic efficiency through the provision of advanced lightweight vehicles, four key challenges are identified as follows: Material systems, Manufacturing systems, Integrated design methods using digital manufacturing tools and Validation systems. This paper presents a project which has been designed to address these four key issues, using at its core, a digital framework for the creation and management of key parameters related to the lifecycle performance of thermoplastic composite parts and structures. It aims to provide capability for the proposition, definition, evaluation and demonstration of advanced lightweight structures for new generation vehicles in the context of whole life performance parameters.
NASA Technical Reports Server (NTRS)
Colantonio, Renato Olaf
1993-01-01
An investigation was conducted to develop appropriate technologies for a low-NO(x), liquid-fueled combustor. The combustor incorporates an effervescent atomizer used to inject fuel into a premixing duct. Only a fraction of the combustion air is used in the premixing process to avoid autoignition and flashback problems. This fuel-rich mixture is introduced into the remaining combustion air by a rapid jet-shear-layer-mixing process involving radial fuel-air jets impinging on axial air jets in the primary combustion zone. Computational analysis was used to provide a better understanding of the fluid dynamics that occur in jet-shear-layer mixing and to facilitate a parametric analysis appropriate to the design of an optimum low-NO(x) combustor. A number of combustor configurations were studied to assess the key combustor technologies and to validate the modeling code. The results from the experimental testing and computational analysis indicate a low-NO(x) potential for the jet-shear-layer combustor. Key parameters found to affect NO(x) emissions are the primary combustion zone fuel-air ratio, the number of axial and radial jets, the aspect ratio and radial location of the axial air jets, and the radial jet inlet hole diameter. Each of these key parameters exhibits a low-NO(x) point from which an optimized combustor was developed. Using the parametric analysis, NO(x) emissions were reduced by a factor of 3 as compared with the emissions from conventional, liquid-fueled combustors operating at cruise conditions. Further development promises even lower NO(x) with high combustion efficiency.
NASA Astrophysics Data System (ADS)
Zhang, Z. L.; Nie, Q. Y.; Zhang, X. N.; Wang, Z. B.; Kong, F. R.; Jiang, B. H.; Lim, J. W. M.
2018-04-01
The dielectric barrier discharge (DBD) is a promising technology to generate high density and uniform cold plasmas in atmospheric pressure gases. The effective independent tuning of key plasma parameters is quite important for both application-focused and fundamental studies. In this paper, based on a one-dimensional fluid model with semi-kinetics treatment, numerical studies of ionization asymmetry effects on the properties modulation of atmospheric DBD sustained by tailored voltage waveforms are reported. The driving voltage waveform is characterized by an asymmetric-slope fundamental sinusoidal radio frequency signal superimposing one or more harmonics, and the effects of the number of harmonics, phase shift, as well as the fluctuation of harmonics on the sheath dynamics, impact ionization of electrons and key plasma parameters are investigated. The results have shown that the electron density can exhibit a substantial increase due to the effective electron heating by a spatially asymmetric sheath structure. The strategic modulation of harmonics number and phase shift is capable of raising the electron density significantly (e.g., nearly three times in this case), but without a significant increase in the gas temperature. Moreover, by tailoring the fluctuation of harmonics with a steeper slope, a more profound efficiency in electron impact ionization can be achieved, and thus enhancing the electron density effectively. This method then enables a novel alternative approach to realize the independent control of the key plasma parameters under atmospheric pressure.
Commercialization of New Beam Applications
NASA Astrophysics Data System (ADS)
McKeown, Joseph
1996-05-01
The commercialization of electron processing applications is driven by demonstrated technical advantages over current practice. Mature and reliable accelerator technology has permitted more consistent product quality and the development of new processes. However, the barriers to commercial adoption are often not amenable to solution within the laboratory alone. Aspects of the base accelerator technology, plant engineering, production, project management, financing, regulatory control, product throughput and plant operational efficiency all contribute to the business risk. Experiences in building three 10 MeV, 50 kW, IMPELA electron accelerators at approximately 8 M each and achieving cumulative operational availability greater than 98% in commercial environments have identified key parameters defining those aspects. The allowed ranges of these parameters to generate the 1.5 M annual revenue that is typically necessary to support outlays of this scale are presented. Such data have been used in proposals to displace expensive chemicals in the viscose industry, sterilize sewage sludge, detoxify chemically contaminated soils and build radiation service centers for a diversity of applications. The proposals face stiff competition from traditional chemical methods. Quantitative technical and business details of these activities are provided and an attempt is made to establish realistic expectations for the exploitation of electron beam technologies in emerging applications.
NASA Astrophysics Data System (ADS)
Tosi, Daniele; Schena, Emiliano; Molardi, Carlo; Korganbayev, Sanzhar
2018-07-01
One of the current frontier of optical fiber sensors, and a unique asset of this sensing technology is the possibility to use a whole optical fiber, or optical fiber device, as a sensor. This solution allows shifting the whole sensing paradigm, from the measurement of a single physical parameter (such as temperature, strain, vibrations, pressure) to the measurement of a spatial distribution, or profiling, of a physical parameter along the fiber length. In the recent years, several technologies are achieving this task with unprecedentedly narrow spatial resolution, ranging from the sub-millimeter to the centimeter-level. In this work, we review the main fiber optic sensing technologies that achieve a narrow spatial resolution: Fiber Bragg Grating (FBG) dense arrays, chirped FBG (CFBG) sensors, optical frequency domain reflectometry (OFDR) based on either Rayleigh scattering or reflective elements, and microwave photonics (MWP). In the second part of the work, we present the impact of spatially dense fiber optic sensors in biomedical applications, where they find the main impact, presenting the key results obtained in thermo-therapies monitoring, high-resolution diagnostic, catheters monitoring, smart textiles, and other emerging applicative fields.
The Impact of Uncertain Physical Parameters on HVAC Demand Response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yannan; Elizondo, Marcelo A.; Lu, Shuai
HVAC units are currently one of the major resources providing demand response (DR) in residential buildings. Models of HVAC with DR function can improve understanding of its impact on power system operations and facilitate the deployment of DR technologies. This paper investigates the importance of various physical parameters and their distributions to the HVAC response to DR signals, which is a key step to the construction of HVAC models for a population of units with insufficient data. These parameters include the size of floors, insulation efficiency, the amount of solid mass in the house, and efficiency of the HVAC units.more » These parameters are usually assumed to follow Gaussian or Uniform distributions. We study the effect of uncertainty in the chosen parameter distributions on the aggregate HVAC response to DR signals, during transient phase and in steady state. We use a quasi-Monte Carlo sampling method with linear regression and Prony analysis to evaluate sensitivity of DR output to the uncertainty in the distribution parameters. The significance ranking on the uncertainty sources is given for future guidance in the modeling of HVAC demand response.« less
NASA Langley Systems Analysis & Concepts Directorate Technology Assessment/Portfolio Analysis
NASA Technical Reports Server (NTRS)
Cavanaugh, Stephen; Chytka, Trina; Arcara, Phil; Jones, Sharon; Stanley, Doug; Wilhite, Alan W.
2006-01-01
Systems analysis develops and documents candidate mission and architectures, associated system concepts, enabling capabilities and investment strategies to achieve NASA s strategic objectives. The technology assessment process connects the mission and architectures to the investment strategies. In order to successfully implement a technology assessment, there is a need to collect, manipulate, analyze, document, and disseminate technology-related information. Information must be collected and organized on the wide variety of potentially applicable technologies, including: previous research results, key technical parameters and characteristics, technology readiness levels, relationships to other technologies, costs, and potential barriers and risks. This information must be manipulated to facilitate planning and documentation. An assessment is included of the programmatic and technical risks associated with each technology task as well as potential risk mitigation plans. Risks are assessed and tracked in terms of likelihood of the risk occurring and consequences of the risk if it does occur. The risk assessments take into account cost, schedule, and technical risk dimensions. Assessment data must be simplified for presentation to decision makers. The Systems Analysis and Concepts Directorate (SACD) at NASA Langley Research Center has a wealth of experience in performing Technology Assessment and Portfolio Analysis as this has been a business line since 1978.
Satellite-instrument system engineering best practices and lessons
NASA Astrophysics Data System (ADS)
Schueler, Carl F.
2009-08-01
This paper focuses on system engineering development issues driving satellite remote sensing instrumentation cost and schedule. A key best practice is early assessment of mission and instrumentation requirements priorities driving performance trades among major instrumentation measurements: Radiometry, spatial field of view and image quality, and spectral performance. Key lessons include attention to technology availability and applicability to prioritized requirements, care in applying heritage, approaching fixed-price and cost-plus contracts with appropriate attention to risk, and assessing design options with attention to customer preference as well as design performance, and development cost and schedule. A key element of success either in contract competition or execution is team experience. Perhaps the most crucial aspect of success, however, is thorough requirements analysis and flowdown to specifications driving design performance with sufficient parameter margin to allow for mistakes or oversights - the province of system engineering from design inception to development, test and delivery.
Study of high-speed civil transports
NASA Technical Reports Server (NTRS)
1989-01-01
A systems study to identify the economic potential for a high-speed commercial transport (HSCT) has considered technology, market characteristics, airport infrastructure, and environmental issues. Market forecasts indicate a need for HSCT service in the 2000/2010 time frame conditioned on economic viability and environmental acceptability. Design requirements focused on a 300 passenger, 3 class service, and 6500 nautical mile range based on the accelerated growth of the Pacific region. Compatibility with existing airports was an assumed requirement. Mach numbers between 2 and 25 were examined in conjunction with the appropriate propulsion systems, fuels, structural materials, and thermal management systems. Aircraft productivity was a key parameter with aircraft worth, in comparison to aircraft price, being the airline-oriented figure of merit. Aircraft screening led to determination that Mach 3.2 (TSJF) would have superior characteristics to Mach 5.0 (LNG) and the recommendation that the next generation high-speed commercial transport aircraft use a kerosene fuel. The sensitivity of aircraft performance and economics to environmental constraints (e.g., sonic boom, engine emissions, and airport/community noise) was identified together with key technologies. In all, current technology is not adequate to produce viable HSCTs for the world marketplace. Technology advancements must be accomplished to meet environmental requirements (these requirements are as yet undetermined for sonic boom and engine emissions). High priority is assigned to aircraft gross weight reduction which benefits both economics and environmental aspects. Specific technology requirements are identified and national economic benefits are projected.
Grating-assisted surface acoustic wave directional couplers
NASA Astrophysics Data System (ADS)
Golan, G.; Griffel, G.; Seidman, A.; Croitoru, N.
1991-07-01
Physical properties of novel grating-assisted Y directional couplers are examined using the coupled-mode theory. A general formalism for the analysis of the lateral perturbed directional coupler properties is presented. Explicit expressions for waveguide key parameters such as coupling length, grating period, and other structural characterizations, are obtained. The influence of other physical properties such as time and frequency response or cutoff conditions are also analyzed. A plane grating-assisted directional coupler is presented and examined as a basic component in the integrated acoustic technology.
1984-04-01
800OF and afterburner temperatures below 112000F. Explosives were detected in the combustion gases leaving the primary chamber for one test burn (i.e... combustion chamber. (c) Temperature in the secondary combustion chamber. l These key parameters were selected since they directly re- late to the...4523A 5.4 Heat exchanger (waste heat boiler) . The f lue gases discharged from the secondary combustion chamber were directed, via refractory-lined duct
2014-12-01
Simulated Solute Transport in a Numerical Replication of Britt’s 2005 Experiment Figure 44 In-Well Flow Inhibitor Figure 45 Results of a Preliminary Dye ...Tracer Experiment Conducted at INL Figure 46 Results Horizontally-Oriented Dye Tracer Experiment Conducted at INL ER-1704 Final Report 2014 vii...possible sources of well convection and mixing. Specifically, the modeling explored: • 2D and 3D physical tank models. Dye tracer testing was conducted
Critical level setting of continuous air monitor.
Li, Huibin; Jia, Mingyan; Wang, Kailiang
2013-01-01
Algorithms used to compensate the radon and thoron progeny's interference are one of the key technologies for continuous air monitors (CAMs). In this study, a CAM that can automatically change filter was manufactured, and equations used to calculate the transuranic aerosol concentration and the corresponding critical level were derived. The parameters used in calculation were acquired by continuous measurement in a high radon environment. At last, validation of the calculation was tested in a cave where the radon concentration fluctuated frequently, and the results were analysed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, J.H.; Ellis, J.R.; Montague, S.
1997-03-01
One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing.more » In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.« less
On Proper Selection of Multihop Relays for Future Enhancement of AeroMACS Networks
NASA Technical Reports Server (NTRS)
Kamali, Behnam; Kerczewski, Robert J.; Apaza, Rafael D.
2015-01-01
As the Aeronautical Mobile Airport Communications System (AeroMACS) has evolved from a technology concept to a deployed communications network over major US airports, it is now time to contemplate whether the existing capacity of AeroMACS is sufficient to meet the demands set forth by all fixed and mobile applications over the airport surface given the AeroMACS constraints regarding bandwidth and transmit power. The underlying idea in this article is to present IEEE 802.16j-based WiMAX as a technology that can address future capacity enhancements and therefore is most feasible for AeroMACS applications. The principal argument in favor IEEE 802.16j technology is the flexible and cost effective extension of radio coverage that is afforded by relay fortified networks, with virtually no increase in the power requirements and virtually no rise in interference levels to co-allocated applications. The IEEE 802.16j-based multihop relay systems are briefly described. The focus is on key features of this technology, frame structure, and its architecture. Next, AeroMACS is described as a WiMAX-based wireless network. The two major relay modes supported by IEEE 802.16j amendment, i.e., transparent and non-transparent are described. The benefits of employing multihop relays are listed. Some key challenges related to incorporating relays into AeroMACS networks are discussed. The selection of relay type in a broadband wireless network affects a number of network parameters such as latency, signal overhead, PHY (Scalable Physical Layer) and MAC (Media Access Layer) layer protocols, consequently it can alter key network quantities of throughput and QoS (Quality of Service).
NASA Astrophysics Data System (ADS)
Bai, Yang; Chen, Shufen; Fu, Li; Fang, Wei; Lu, Junjun
2005-01-01
A high bit rate more than 10Gbit/s optical pulse generation device is the key to achieving high-speed and broadband optical fiber communication network system .Now, we propose a novel high-speed optical transmission module(TM) consisting of a Ti:Er:LiNbO3 waveguide laser and a Mach-Zehnder-type encoding modulator on the same Er-doped substrate. According to the standard of ITU-T, we design the 10Gbit/ s transmission module at 1.53μm on the Z cut Y propagation LiNbO3 slice. A dynamic model and the corresponding numerical code are used to analyze the waveguide laser while the electrooptic effect to design the modulator. Meanwhile, the working principle, key technology, typical characteristic parameters of the module are given. The transmission module has a high extinction ratio and a low driving voltage, which supplies the efficient, miniaturized light source for wavelength division multiplexing(WDM) system. In additional, the relation of the laser gain with the cavity parameter, as well as the relation of the bandwidth of the electrooptic modulator with some key factors are discussed .The designed module structure is simulated by BPM software and HFSS software.
Reverse design and characteristic study of multi-range HMCVT
NASA Astrophysics Data System (ADS)
Zhu, Zhen; Chen, Long; Zeng, Falin
2017-09-01
The reduction of fuel consumption and increase of transmission efficiency is one of the key problems of the agricultural machinery. Many promising technologies such as hydromechanical continuously variable transmissions (HMCVT) are the focus of research and investments, but there is little technical documentation that describes the design principle and presents the design parameters. This paper presents the design idea and characteristic study of HMCVT, in order to find out the suitable scheme for the big horsepower tractors. Analyzed the kinematics and dynamics of a large horsepower tractor, according to the characteristic parameters, a hydro-mechanical continuously variable transmission has been designed. Compared with the experimental curves and theoretical curves of the stepless speed regulation of transmission, the experimental result illustrates the rationality of the design scheme.
ERIC Educational Resources Information Center
Clyde, Albert
"Key technologies" is an umbrella term for appropriate technologies applied to give maximum economic benefit in particular circumstances that may cross traditional disciplinary boundaries. Development of the concept is necessitated by the rate of change of technological development. Key technologies may be classified in three groups related to…
2012-01-01
Background Assisted reproductive technologies (ART) are increasingly utilised for resolving difficulties conceiving. These technologies are expensive to both the public purse and the individual consumers. Acupuncture is widely used as an adjunct to ART with indications that it may assist reducing the time to conception and increasing live birth rates. Heterogeneity is high between treatment protocols. The aim of this study was to examine what fertility acupuncturists consider key components of best practice acupuncture during an ART cycle, and to establish an acupuncture protocol by consensus. Methods Fifteen international acupuncturists with extensive experience treating women during ART interventions participated in 3 rounds of Delphi questionnaires. The first round focused on identifying the parameters of acupuncture treatment as adjunct to ART, the second round evaluated statements derived from the earlier round, and the third evaluated specific parameters for a proposed trial protocol. Consensus was defined as greater than 80% agreement. Results Significant agreement was achieved on the parameters of best practice acupuncture, including an acupuncture protocol suitable for future research. Study participants confirmed the importance of needling aspects relating to the dose of acupuncture, the therapeutic relationship, tailoring treatment to the individual, and the role of co-interventions. From two rounds of the Delphi a consensus was achieved on seven treatment parameters for the design of the acupuncture treatment to be used in a clinical trial of acupuncture as an adjunct to ART. The treatment protocol includes the use of the traditional Chinese medicine acupuncture, use of manual acupuncture, a first treatment administered between day 6–8 of the stimulated ART cycle which is individualised to the participant, two treatments will be administered on the day of embryo transfer, and will include points SP8, SP10, LR3, ST29, CV4, and post transfer include: GV20, KD3, ST36, SP6, and PC6. Auricular points Shenmen and Zigong will be used. Practitioner intent or yi will be addressed in the treatment protocol. Conclusions Despite a lack of homogeneity in the research and clinical literature on ART and acupuncture, a consensus amongst experts on key components of a best practice treatment protocol was possible. Such consensus offers guidance for further research. PMID:22769059
Recent developments in photocatalytic water treatment technology: a review.
Chong, Meng Nan; Jin, Bo; Chow, Christopher W K; Saint, Chris
2010-05-01
In recent years, semiconductor photocatalytic process has shown a great potential as a low-cost, environmental friendly and sustainable treatment technology to align with the "zero" waste scheme in the water/wastewater industry. The ability of this advanced oxidation technology has been widely demonstrated to remove persistent organic compounds and microorganisms in water. At present, the main technical barriers that impede its commercialisation remained on the post-recovery of the catalyst particles after water treatment. This paper reviews the recent R&D progresses of engineered-photocatalysts, photoreactor systems, and the process optimizations and modellings of the photooxidation processes for water treatment. A number of potential and commercial photocatalytic reactor configurations are discussed, in particular the photocatalytic membrane reactors. The effects of key photoreactor operation parameters and water quality on the photo-process performances in terms of the mineralization and disinfection are assessed. For the first time, we describe how to utilize a multi-variables optimization approach to determine the optimum operation parameters so as to enhance process performance and photooxidation efficiency. Both photomineralization and photo-disinfection kinetics and their modellings associated with the photocatalytic water treatment process are detailed. A brief discussion on the life cycle assessment for retrofitting the photocatalytic technology as an alternative waste treatment process is presented. This paper will deliver a scientific and technical overview and useful information to scientists and engineers who work in this field.
NASA Astrophysics Data System (ADS)
Kishkovich, Oleg P.; Bolgov, Dennis; Goodwin, William
1999-06-01
In this paper, the authors discuss the requirements for chemical air filtration system used in conjunction with modern DUV photolithography equipment. Among the topics addressed are the scope of pollutants, their respective internal and external sources, and an overview of different types of filtration technologies currently in use. Key filtration parameters, including removal efficiency, service life, and spill protection capacity, are discussed and supported by actual data, reflection the total molecular base concentration in operational IC manufacturing facilities. The authors also describe a time-accelerated testing procedure for comparing and evaluating different filtration technologies and designs, and demonstrate how this three-day test procedure can reliably predict an effective filter service life up to ten years.
Key Tasks of Science in Improving Effectiveness of Hard Coal Production in Poland
NASA Astrophysics Data System (ADS)
Dubiński, Józef; Prusek, Stanisław; Turek, Marian
2017-09-01
The article presents an array of specific issues regarding the employed technology and operational efficiency of mining activities, which could and should become the subject of conducted scientific research. Given the circumstances of strong market competition and increasing requirements concerning environmental conditions, both in terms of conducted mining activities and produced coal quality parameters, it is imperative to develop and implement innovative solutions regarding the employed production technology, the safety of work conducted under the conditions of increasing natural hazards, as well as the mining enterprise management systems that enable its effective functioning. The article content pertains to the last group of issues in the most detailed way, particularly in terms of the possibility for rational conducted operation cost reduction.
Medical and surgical applications of space biosensor technology
NASA Astrophysics Data System (ADS)
Hines, John W.
1996-02-01
Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to remotely monitor key biochemical parameters in flight animals. Successful application of NASA implantable biosensor and biotelemetry technologies should accelerate the advancement of this and other modern medical procedures while furthering the exploration of life in space.
Medical and surgical applications of space biosensor technology
NASA Technical Reports Server (NTRS)
Hines, J. W.
1996-01-01
Researchers in space life sciences are rapidly approaching a technology impasse. Many of the critical questions on the impact of spaceflight on living systems simply cannot be answered with the limited available technologies. Research subjects, particularly small animal models like the rat, must be allowed to function relatively untended and unrestrained for long periods to fully reflect the impact of microgravity and spaceflight on their behavior and physiology. These requirements preclude the use of present hard-wired instrumentation techniques and limited data acquisition systems. Implantable sensors and miniaturized biotelemetry are the only means of capturing the fundamental and critical data. This same biosensor and biotelemetry technology has direct application to Earth-based medicine and surgery. Continuous, on-line data acquisition and improved measurement capabilities combined with the ease and flexibility offered by automated, wireless, and portable instruments and data systems, should provide a boon to the health care industry. Playing a key role in this technology revolution is the Sensors 2000! (S2K!) Program at NASA Ames Research Center. S2K!, in collaboration with space life sciences researchers and managers, provides an integrated capability for sensor technology development and applications, including advanced biosensor technology development, spaceflight hardware development, and technology transfer and commercialization. S2K! is presently collaborating on several spaceflight projects with dual-use medical applications. One prime example is a collaboration with the Fetal Treatment Center (FTC) at the University of California at San Francisco. The goal is to develop and apply implantable chemical sensor and biotelemetry technology to continuously monitor fetal patients during extra-uterine surgery, replacement into the womb, through birth and beyond. Once validated for ground use, the method will be transitioned to spaceflight applications to remotely monitor key biochemical parameters in flight animals. Successful application of NASA implantable biosensor and biotelemetry technologies should accelerate the advancement of this and other modern medical procedures while furthering the exploration of life in space.
Satellite Communications for Aeronautics Applications: Technology Development and Demonstration
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Hoder, Douglas J.; Zakrajsek, Robert J.
2001-01-01
The National Aeronautics and Space Administration (NASA) is performing research and development to improve the safety and increase the capacity of the National Airspace System (NAS). Improved communications, especially to and from the aircraft flight deck, has been identified as an essential enabling technology for future improvements to the air traffic management system and aviation safety. NASA's Glenn Research Center is engaged in research and development of satellite communications technologies for aeronautical applications. A mobile aero terminal has been developed for use with Ku band commercial communications satellites. This experimental terminal will be used in mobile ground and air-based tests and demonstrations during 2000-2004. This paper will describe the basic operational parameters of the Ku Band aero terminal, the communications architecture it is intended to demonstrate, and the key technology issues being addressed in the tests and demonstrations. The design of the Ku Band aero terminal and associated ground testbed, planned tests and demonstrations, and results to date will be presented.
Three fundamental devices in one: a reconfigurable multifunctional device in two-dimensional WSe2
NASA Astrophysics Data System (ADS)
Dhakras, Prathamesh; Agnihotri, Pratik; Lee, Ji Ung
2017-06-01
The three pillars of semiconductor device technologies are (1) the p-n diode, (2) the metal-oxide-semiconductor field-effect transistor and (3) the bipolar junction transistor. They have enabled the unprecedented growth in the field of information technology that we see today. Until recently, the technological revolution for better, faster and more efficient devices has been governed by scaling down the device dimensions following Moore’s Law. With the slowing of Moore’s law, there is a need for alternative materials and computing technologies that can continue the advancement in functionality. Here, we describe a single, dynamically reconfigurable device that implements these three fundamental device functions. The device uses buried gates to achieve n- and p-channels and fits into a larger effort to develop devices with enhanced functionalities, including logic functions, over device scaling. As they are all surface conducting devices, we use one material parameter, the interface trap density of states, to describe the key figure-of-merit of each device.
A Comparative Study of Aerocapture Missions with a Mars Destination
NASA Technical Reports Server (NTRS)
Vaughan, Diane; Miller, Heather C.; Griffin, Brand; James, Bonnie F.; Munk, Michelle M.
2005-01-01
Conventional interplanetary spacecraft use propulsive systems to decelerate into orbit. Aerocapture is an alternative approach for orbit capture, in which the spacecraft makes a single pass through a target destination's atmosphere. Although this technique has never been performed, studies show there are substantial benefits of using aerocapture for reduction of propellant mass, spacecraft size, and mission cost. The In-Space Propulsion (ISP) Program, part of NASA's Science Mission Directorate, has invested in aerocapture technology development since 2002. Aerocapture investments within ISP are largely driven by mission systems analysis studies, The purpose of this NASA-funded report is to identify and document the fundamental parameters of aerocapture within previous human and robotic Mars mission studies which will assist the community in identifying technology research gaps in human and robotic missions, and provide insight for future technology investments. Upon examination of the final data set, some key attributes within the aerocapture disciplines are identified.
The design of composite monitoring scheme for multilevel information in crop early diseases
NASA Astrophysics Data System (ADS)
Zhang, Yan; Meng, Qinglong; Shang, Jing
2018-02-01
It is difficult to monitor and predict the crops early diseases in that the crop disease monitoring is usually monitored by visible light images and the availabilities in early warning are poor at present. The features of common nondestructive testing technology applied to the crop diseases were analyzed in this paper. Based on the changeable characteristics of the virus from the incubation period to the onset period of crop activities, the multilevel composite information monitoring scheme were designed by applying infrared thermal imaging, visible near infrared hyperspectral imaging, micro-imaging technology to the monitoring of multilevel information of crop disease infection comprehensively. The early warning process and key monitoring parameters of compound monitoring scheme are given by taking the temperature, color, structure and texture of crops as the key monitoring characteristics of disease. With overcoming the deficiency that the conventional monitoring scheme is only suitable for the observation of diseases with naked eyes, the monitoring and early warning of the incubation and early onset of the infection crops can be realized by the composite monitoring program as mentioned in this paper.
Flexible graphene transistors for recording cell action potentials
NASA Astrophysics Data System (ADS)
Blaschke, Benno M.; Lottner, Martin; Drieschner, Simon; Bonaccini Calia, Andrea; Stoiber, Karolina; Rousseau, Lionel; Lissourges, Gaëlle; Garrido, Jose A.
2016-06-01
Graphene solution-gated field-effect transistors (SGFETs) are a promising platform for the recording of cell action potentials due to the intrinsic high signal amplification of graphene transistors. In addition, graphene technology fulfills important key requirements for in-vivo applications, such as biocompability, mechanical flexibility, as well as ease of high density integration. In this paper we demonstrate the fabrication of flexible arrays of graphene SGFETs on polyimide, a biocompatible polymeric substrate. We investigate the transistor’s transconductance and intrinsic electronic noise which are key parameters for the device sensitivity, confirming that the obtained values are comparable to those of rigid graphene SGFETs. Furthermore, we show that the devices do not degrade during repeated bending and the transconductance, governed by the electronic properties of graphene, is unaffected by bending. After cell culture, we demonstrate the recording of cell action potentials from cardiomyocyte-like cells with a high signal-to-noise ratio that is higher or comparable to competing state of the art technologies. Our results highlight the great capabilities of flexible graphene SGFETs in bioelectronics, providing a solid foundation for in-vivo experiments and, eventually, for graphene-based neuroprosthetics.
NASA Astrophysics Data System (ADS)
Gibson, Wayne H.; Levesque, Daniel
2000-03-01
This paper discusses how gamma irradiation plants are putting the latest advances in computer and information technology to use for better process control, cost savings, and strategic advantages. Some irradiator operations are gaining significant benefits by integrating computer technology and robotics with real-time information processing, multi-user databases, and communication networks. The paper reports on several irradiation facilities that are making good use of client/server LANs, user-friendly graphics interfaces, supervisory control and data acquisition (SCADA) systems, distributed I/O with real-time sensor devices, trending analysis, real-time product tracking, dynamic product scheduling, and automated dosimetry reading. These plants are lowering costs by fast and reliable reconciliation of dosimetry data, easier validation to GMP requirements, optimizing production flow, and faster release of sterilized products to market. There is a trend in the manufacturing sector towards total automation using "predictive process control". Real-time verification of process parameters "on-the-run" allows control parameters to be adjusted appropriately, before the process strays out of limits. Applying this technology to the gamma radiation process, control will be based on monitoring the key parameters such as time, and making adjustments during the process to optimize quality and throughput. Dosimetry results will be used as a quality control measurement rather than as a final monitor for the release of the product. Results are correlated with the irradiation process data to quickly and confidently reconcile variations. Ultimately, a parametric process control system utilizing responsive control, feedback and verification will not only increase productivity and process efficiency, but can also result in operating within tighter dose control set points.
Space Biosensor Systems: Implications for Technology Transfer
NASA Technical Reports Server (NTRS)
Hines, J. W.; Somps, C. J.; Madou, M.; Imprescia, Clifford C. (Technical Monitor)
1997-01-01
To meet the need for continuous, automated monitoring of animal subjects, including; humans, during space flight, NASA is developing advanced physiologic sensor and biotelemetry system technologies. The ability to continuously track basic physiological parameters, such as heart rate, blood pH, and body temperature, in untethered subjects in space is a challenging task. At NASA's Ames Research Center, where a key focus is gravitational biology research, engineers have teamed with life scientists to develop wireless sensor systems for automated physiologic monitoring of animal models as small as the rat. This technology is also being adapted, in collaboration with medical professionals, to meet human clinical monitoring needs both in space and on the ground. Thus, these advanced monitoring technologies have important dual-use functions; they meet space flight data collection requirements and constraints, while concurrently addressing a number of monitoring and data acquisition challenges on the ground in areas of clinical monitoring and biomedical research. Additional applications for these and related technologies are being sought and additional partnerships established that enhance development efforts, reduce costs and facilitate technology infusion between the public and private sectors. This paper describes technology transfer and co-development projects that have evolved out of NASA's miniaturized, implantable chemical sensor development efforts.
The NASA Advanced Space Power Systems Project
NASA Technical Reports Server (NTRS)
Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar
2015-01-01
The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.
[The current state of the brain-computer interface problem].
Shurkhay, V A; Aleksandrova, E V; Potapov, A A; Goryainov, S A
2015-01-01
It was only 40 years ago that the first PC appeared. Over this period, rather short in historical terms, we have witnessed the revolutionary changes in lives of individuals and the entire society. Computer technologies are tightly connected with any field, either directly or indirectly. We can currently claim that computers are manifold superior to a human mind in terms of a number of parameters; however, machines lack the key feature: they are incapable of independent thinking (like a human). However, the key to successful development of humankind is collaboration between the brain and the computer rather than competition. Such collaboration when a computer broadens, supplements, or replaces some brain functions is known as the brain-computer interface. Our review focuses on real-life implementation of this collaboration.
Experimental Implementation of a Quantum Optical State Comparison Amplifier
NASA Astrophysics Data System (ADS)
Donaldson, Ross J.; Collins, Robert J.; Eleftheriadou, Electra; Barnett, Stephen M.; Jeffers, John; Buller, Gerald S.
2015-03-01
We present an experimental demonstration of a practical nondeterministic quantum optical amplification scheme that employs two mature technologies, state comparison and photon subtraction, to achieve amplification of known sets of coherent states with high fidelity. The amplifier uses coherent states as a resource rather than single photons, which allows for a relatively simple light source, such as a diode laser, providing an increased rate of amplification. The amplifier is not restricted to low amplitude states. With respect to the two key parameters, fidelity and the amplified state production rate, we demonstrate significant improvements over previous experimental implementations, without the requirement of complex photonic components. Such a system may form the basis of trusted quantum repeaters in nonentanglement-based quantum communications systems with known phase alphabets, such as quantum key distribution or quantum digital signatures.
Processing parameter optimization for the laser dressing of bronze-bonded diamond wheels
NASA Astrophysics Data System (ADS)
Deng, H.; Chen, G. Y.; Zhou, C.; Li, S. C.; Zhang, M. J.
2014-01-01
In this paper, a pulsed fiber-laser dressing method for bronze-bonded diamond wheels was studied systematically and comprehensively. The mechanisms for the laser dressing of bronze-bonded diamond wheels were theoretically analyzed, and the key processing parameters that determine the results of laser dressing, including the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles, were proposed for the first time. Further, the effects of these four key parameters on the oxidation-damaged layer of the material surface, the material removal efficiency, the material surface roughness, and the average protrusion height of the diamond grains were explored and summarized through pulsed laser ablation experiments. Under the current experimental conditions, the ideal values of the laser power density, pulse overlap ratio, ablation track line overlap ratio, and number of scanning cycles were determined to be 4.2 × 107 W/cm2, 30%, 30%, and 16, respectively. Pulsed laser dressing experiments were conducted on bronze-bonded diamond wheels using the optimized processing parameters; next, both the normal and tangential grinding forces produced by the dressed grinding wheel were measured while grinding alumina ceramic materials. The results revealed that the normal and tangential grinding forces produced by the laser-dressed grinding wheel during grinding were smaller than those of grinding wheels dressed using the conventional mechanical method, indicating that the pulsed laser dressing technology provides irreplaceable advantages relative to the conventional mechanical dressing method.
High-performance radial AMTEC cell design for ultra-high-power solar AMTEC systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendricks, T.J.; Huang, C.
1999-07-01
Alkali Metal Thermal to Electric Conversion (AMTEC) technology is rapidly maturing for potential application in ultra-high-power solar AMTEC systems required by potential future US Air Force (USAF) spacecraft missions in medium-earth and geosynchronous orbits (MEO and GEO). Solar thermal AMTEC power systems potentially have several important advantages over current solar photovoltaic power systems in ultra-high-power spacecraft applications for USAF MEO and GEO missions. This work presents key aspects of radial AMTEC cell design to achieve high cell performance in solar AMTEC systems delivering larger than 50 kW(e) to support high power USAF missions. These missions typically require AMTEC cell conversionmore » efficiency larger than 25%. A sophisticated design parameter methodology is described and demonstrated which establishes optimum design parameters in any radial cell design to satisfy high-power mission requirements. Specific relationships, which are distinct functions of cell temperatures and pressures, define critical dependencies between key cell design parameters, particularly the impact of parasitic thermal losses on Beta Alumina Solid Electrolyte (BASE) area requirements, voltage, number of BASE tubes, and system power production for both maximum power-per-BASE-area and optimum efficiency conditions. Finally, some high-level system tradeoffs are demonstrated using the design parameter methodology to establish high-power radial cell design requirements and philosophy. The discussion highlights how to incorporate this methodology with sophisticated SINDA/FLUINT AMTEC cell modeling capabilities to determine optimum radial AMTEC cell designs.« less
Electrical Characterization of Semiconductor Materials and Devices
NASA Astrophysics Data System (ADS)
Deen, M.; Pascal, Fabien
Semiconductor materials and devices continue to occupy a preeminent technological position due to their importance when building integrated electronic systems used in a wide range of applications from computers, cell-phones, personal digital assistants, digital cameras and electronic entertainment systems, to electronic instrumentation for medical diagnositics and environmental monitoring. Key ingredients of this technological dominance have been the rapid advances made in the quality and processing of materials - semiconductors, conductors and dielectrics - which have given metal oxide semiconductor device technology its important characteristics of negligible standby power dissipation, good input-output isolation, surface potential control and reliable operation. However, when assessing material quality and device reliability, it is important to have fast, nondestructive, accurate and easy-to-use electrical characterization techniques available, so that important parameters such as carrier doping density, type and mobility of carriers, interface quality, oxide trap density, semiconductor bulk defect density, contact and other parasitic resistances and oxide electrical integrity can be determined. This chapter describes some of the more widely employed and popular techniques that are used to determine these important parameters. The techniques presented in this chapter range in both complexity and test structure requirements from simple current-voltage measurements to more sophisticated low-frequency noise, charge pumping and deep-level transient spectroscopy techniques.
Cuellar, Trinna L.; Barnes, Dwight; Nelson, Christopher; Tanguay, Joshua; Yu, Shang-Fan; Wen, Xiaohui; Scales, Suzie J.; Gesch, Julie; Davis, David; van Brabant Smith, Anja; Leake, Devin; Vandlen, Richard; Siebel, Christian W.
2015-01-01
Delivery of siRNA is a key hurdle to realizing the therapeutic promise of RNAi. By targeting internalizing cell surface antigens, antibody–siRNA complexes provide a possible solution. However, initial reports of antibody–siRNA complexes relied on non-specific charged interactions and have not been broadly applicable. To assess and improve this delivery method, we built on an industrial platform of therapeutic antibodies called THIOMABs, engineered to enable precise covalent coupling of siRNAs. We report that such coupling generates monomeric antibody–siRNA conjugates (ARCs) that retain antibody and siRNA activities. To broadly assess this technology, we generated a battery of THIOMABs against seven targets that use multiple internalization routes, enabling systematic manipulation of multiple parameters that impact delivery. We identify ARCs that induce targeted silencing in vitro and extend tests to target prostate carcinoma cells following systemic administration in mouse models. However, optimal silencing was restricted to specific conditions and only observed using a subset of ARCs. Trafficking studies point to ARC entrapment in endocytic compartments as a limiting factor, independent of the route of antigen internalization. Our broad characterization of multiple parameters using therapeutic-grade conjugate technology provides a thorough assessment of this delivery technology, highlighting both examples of success as well as remaining challenges. PMID:25550431
Surface Chemistry and Nano-/Microstructure Engineering on Photocatalytic In2S3 Nanocrystals.
Berestok, Taisiia; Guardia, Pablo; Portals, Javier Blanco; Estradé, Sònia; Llorca, Jordi; Peiró, Francesca; Cabot, Andreu; Brock, Stephanie L
2018-06-05
Colloidal nanocrystals (NCs) compete with molecular catalysts in the field of homogenous catalysis, offering easier recyclability and a number of potentially advantageous functionalities, such as tunable band gaps, plasmonic properties, or a magnetic moment. Using high-throughput printing technologies, colloidal NCs can also be supported onto substrates to produce cost-effective electronic, optoelectronic, electrocatalytic, and sensing devices. For both catalytic and technological application, NC surface chemistry and supracrystal organization are key parameters determining final performance. Here, we study the influence of the surface ligands and the NC organization on the catalytic properties of In 2 S 3 , both as a colloid and as a supported layer. As a colloid, NCs stabilized by inorganic ligands show the highest photocatalytic activities, which we associate with their large and more accessible surfaces. On the other hand, when NCs are supported on a substrate, their organization becomes an essential parameter determining performance. For instance, NC-based films produced through a gelation process provided five-fold higher photocurrent densities than those obtained from dense films produced by the direct printing of NCs.
Muro-de-la-Herran, Alvaro; Garcia-Zapirain, Begonya; Mendez-Zorrilla, Amaia
2014-01-01
This article presents a review of the methods used in recognition and analysis of the human gait from three different approaches: image processing, floor sensors and sensors placed on the body. Progress in new technologies has led the development of a series of devices and techniques which allow for objective evaluation, making measurements more efficient and effective and providing specialists with reliable information. Firstly, an introduction of the key gait parameters and semi-subjective methods is presented. Secondly, technologies and studies on the different objective methods are reviewed. Finally, based on the latest research, the characteristics of each method are discussed. 40% of the reviewed articles published in late 2012 and 2013 were related to non-wearable systems, 37.5% presented inertial sensor-based systems, and the remaining 22.5% corresponded to other wearable systems. An increasing number of research works demonstrate that various parameters such as precision, conformability, usability or transportability have indicated that the portable systems based on body sensors are promising methods for gait analysis. PMID:24556672
Yenkie, Kirti M.; Wu, Wenzhao; Maravelias, Christos T.
2017-05-08
Background. Bioseparations can contribute to more than 70% in the total production cost of a bio-based chemical, and if the desired chemical is localized intracellularly, there can be additional challenges associated with its recovery. Based on the properties of the desired chemical and other components in the stream, there can be multiple feasible options for product recovery. These options are composed of several alternative technologies, performing similar tasks. The suitability of a technology for a particular chemical depends on (1) its performance parameters, such as separation efficiency; (2) cost or amount of added separating agent; (3) properties of the bioreactormore » effluent (e.g., biomass titer, product content); and (4) final product specifications. Our goal is to first synthesize alternative separation options and then analyze how technology selection affects the overall process economics. To achieve this, we propose an optimization-based framework that helps in identifying the critical technologies and parameters. Results. We study the separation networks for two representative classes of chemicals based on their properties. The separation network is divided into three stages: cell and product isolation (stage I), product concentration (II), and product purification and refining (III). Each stage exploits differences in specific product properties for achieving the desired product quality. The cost contribution analysis for the two cases (intracellular insoluble and intracellular soluble) reveals that stage I is the key cost contributor (>70% of the overall cost). Further analysis suggests that changes in input conditions and technology performance parameters lead to new designs primarily in stage I. Conclusions. The proposed framework provides significant insights for technology selection and assists in making informed decisions regarding technologies that should be used in combination for a given set of stream/product properties and final output specifications. Additionally, the parametric sensitivity provides an opportunity to make crucial design and selection decisions in a comprehensive and rational manner. This will prove valuable in the selection of chemicals to be produced using bioconversions (bioproducts) as well as in creating better bioseparation flow sheets for detailed economic assessment and process implementation on the commercial scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yenkie, Kirti M.; Wu, Wenzhao; Maravelias, Christos T.
Background. Bioseparations can contribute to more than 70% in the total production cost of a bio-based chemical, and if the desired chemical is localized intracellularly, there can be additional challenges associated with its recovery. Based on the properties of the desired chemical and other components in the stream, there can be multiple feasible options for product recovery. These options are composed of several alternative technologies, performing similar tasks. The suitability of a technology for a particular chemical depends on (1) its performance parameters, such as separation efficiency; (2) cost or amount of added separating agent; (3) properties of the bioreactormore » effluent (e.g., biomass titer, product content); and (4) final product specifications. Our goal is to first synthesize alternative separation options and then analyze how technology selection affects the overall process economics. To achieve this, we propose an optimization-based framework that helps in identifying the critical technologies and parameters. Results. We study the separation networks for two representative classes of chemicals based on their properties. The separation network is divided into three stages: cell and product isolation (stage I), product concentration (II), and product purification and refining (III). Each stage exploits differences in specific product properties for achieving the desired product quality. The cost contribution analysis for the two cases (intracellular insoluble and intracellular soluble) reveals that stage I is the key cost contributor (>70% of the overall cost). Further analysis suggests that changes in input conditions and technology performance parameters lead to new designs primarily in stage I. Conclusions. The proposed framework provides significant insights for technology selection and assists in making informed decisions regarding technologies that should be used in combination for a given set of stream/product properties and final output specifications. Additionally, the parametric sensitivity provides an opportunity to make crucial design and selection decisions in a comprehensive and rational manner. This will prove valuable in the selection of chemicals to be produced using bioconversions (bioproducts) as well as in creating better bioseparation flow sheets for detailed economic assessment and process implementation on the commercial scale.« less
Yenkie, Kirti M; Wu, Wenzhao; Maravelias, Christos T
2017-01-01
Bioseparations can contribute to more than 70% in the total production cost of a bio-based chemical, and if the desired chemical is localized intracellularly, there can be additional challenges associated with its recovery. Based on the properties of the desired chemical and other components in the stream, there can be multiple feasible options for product recovery. These options are composed of several alternative technologies, performing similar tasks. The suitability of a technology for a particular chemical depends on (1) its performance parameters, such as separation efficiency; (2) cost or amount of added separating agent; (3) properties of the bioreactor effluent (e.g., biomass titer, product content); and (4) final product specifications. Our goal is to first synthesize alternative separation options and then analyze how technology selection affects the overall process economics. To achieve this, we propose an optimization-based framework that helps in identifying the critical technologies and parameters. We study the separation networks for two representative classes of chemicals based on their properties. The separation network is divided into three stages: cell and product isolation (stage I), product concentration (II), and product purification and refining (III). Each stage exploits differences in specific product properties for achieving the desired product quality. The cost contribution analysis for the two cases (intracellular insoluble and intracellular soluble) reveals that stage I is the key cost contributor (>70% of the overall cost). Further analysis suggests that changes in input conditions and technology performance parameters lead to new designs primarily in stage I. The proposed framework provides significant insights for technology selection and assists in making informed decisions regarding technologies that should be used in combination for a given set of stream/product properties and final output specifications. Additionally, the parametric sensitivity provides an opportunity to make crucial design and selection decisions in a comprehensive and rational manner. This will prove valuable in the selection of chemicals to be produced using bioconversions (bioproducts) as well as in creating better bioseparation flow sheets for detailed economic assessment and process implementation on the commercial scale.
NASA Astrophysics Data System (ADS)
Vongsaysy, Uyxing; Bassani, Dario M.; Servant, Laurent; Pavageau, Bertrand; Wantz, Guillaume; Aziz, Hany
2014-01-01
Polymeric bulk heterojunction (BHJ) organic solar cells represent one of the most promising technologies for renewable energy with a low fabrication cost. Control over BHJ morphology is one of the key factors in obtaining high-efficiency devices. This review focuses on formulation strategies for optimizing the BHJ morphology. We address how solvent choice and the introduction of processing additives affect the morphology. We also review a number of recent studies concerning prediction methods that utilize the Hansen solubility parameters to develop efficient solvent systems.
Parameter Studies, time-dependent simulations and design with automated Cartesian methods
NASA Technical Reports Server (NTRS)
Aftosmis, Michael
2005-01-01
Over the past decade, NASA has made a substantial investment in developing adaptive Cartesian grid methods for aerodynamic simulation. Cartesian-based methods played a key role in both the Space Shuttle Accident Investigation and in NASA's return to flight activities. The talk will provide an overview of recent technological developments focusing on the generation of large-scale aerodynamic databases, automated CAD-based design, and time-dependent simulations with of bodies in relative motion. Automation, scalability and robustness underly all of these applications and research in each of these topics will be presented.
Reverse osmosis desalination: water sources, technology, and today's challenges.
Greenlee, Lauren F; Lawler, Desmond F; Freeman, Benny D; Marrot, Benoit; Moulin, Philippe
2009-05-01
Reverse osmosis membrane technology has developed over the past 40 years to a 44% share in world desalting production capacity, and an 80% share in the total number of desalination plants installed worldwide. The use of membrane desalination has increased as materials have improved and costs have decreased. Today, reverse osmosis membranes are the leading technology for new desalination installations, and they are applied to a variety of salt water resources using tailored pretreatment and membrane system design. Two distinct branches of reverse osmosis desalination have emerged: seawater reverse osmosis and brackish water reverse osmosis. Differences between the two water sources, including foulants, salinity, waste brine (concentrate) disposal options, and plant location, have created significant differences in process development, implementation, and key technical problems. Pretreatment options are similar for both types of reverse osmosis and depend on the specific components of the water source. Both brackish water and seawater reverse osmosis (RO) will continue to be used worldwide; new technology in energy recovery and renewable energy, as well as innovative plant design, will allow greater use of desalination for inland and rural communities, while providing more affordable water for large coastal cities. A wide variety of research and general information on RO desalination is available; however, a direct comparison of seawater and brackish water RO systems is necessary to highlight similarities and differences in process development. This article brings to light key parameters of an RO process and process modifications due to feed water characteristics.
Next Generation Munitions Handler: Human-Machine Interface and Preliminary Performance Evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Draper, J.V.; Jansen, J.F.; Pin, F.G.
1999-04-25
The Next Generation Munitions Handler/Advanced Technology Demonstrator (NGMI-VATTD) is a technology demonstrator for the application of an advanced robotic device for re-arming U.S. Air Force (USAF) and U.S. Navy (USN) tactical fighters. It comprises two key hardware components: a heavy-lift dexterous manipulator (HDM) and a nonholonomic mobility platform. The NGMWATTD is capable of lifting weapons up to 4400 kg (2000 lb) and placing them on any weapons rack on existing fighters (including the F-22 Raptor). This report describes the NGMH mission with particular reference to human-machine interfaces. It also describes preliminary testing to garner feedback about the heavy-lift manipulator armmore » from experienced fighter load crewmen. The purpose of the testing was to provide preliminary information about control system parameters and to gather feed- back from users about manipulator arm functionality. To that end, the Air Force load crewmen interacted with the NGMWATTD in an informal testing session and provided feedback about the performance of the system. Certain con- trol system parameters were changed during the course of the testing and feedback from the participants was used to make a rough estimate of "good" initial operating parameters. Later, formal testing will concentrate within this range to identify optimal operating parameters. User reactions to the HDM were generally positive, All of the USAF personnel were favorably impressed with the capabilities of the system. Fine-tuning operating parameters created a system even more favorably regarded by the load crews. Further adjustment to control system parameters will result in a system that is operationally efficient, easy to use, and well accepted by users.« less
Vision technology/algorithms for space robotics applications
NASA Technical Reports Server (NTRS)
Krishen, Kumar; Defigueiredo, Rui J. P.
1987-01-01
The thrust of automation and robotics for space applications has been proposed for increased productivity, improved reliability, increased flexibility, higher safety, and for the performance of automating time-consuming tasks, increasing productivity/performance of crew-accomplished tasks, and performing tasks beyond the capability of the crew. This paper provides a review of efforts currently in progress in the area of robotic vision. Both systems and algorithms are discussed. The evolution of future vision/sensing is projected to include the fusion of multisensors ranging from microwave to optical with multimode capability to include position, attitude, recognition, and motion parameters. The key feature of the overall system design will be small size and weight, fast signal processing, robust algorithms, and accurate parameter determination. These aspects of vision/sensing are also discussed.
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review
Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-01-01
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on. PMID:29614024
Distributed Optical Fiber Sensors Based on Optical Frequency Domain Reflectometry: A review.
Ding, Zhenyang; Wang, Chenhuan; Liu, Kun; Jiang, Junfeng; Yang, Di; Pan, Guanyi; Pu, Zelin; Liu, Tiegen
2018-04-03
Distributed optical fiber sensors (DOFS) offer unprecedented features, the most unique one of which is the ability of monitoring variations of the physical and chemical parameters with spatial continuity along the fiber. Among all these distributed sensing techniques, optical frequency domain reflectometry (OFDR) has been given tremendous attention because of its high spatial resolution and large dynamic range. In addition, DOFS based on OFDR have been used to sense many parameters. In this review, we will survey the key technologies for improving sensing range, spatial resolution and sensing performance in DOFS based on OFDR. We also introduce the sensing mechanisms and the applications of DOFS based on OFDR including strain, stress, vibration, temperature, 3D shape, flow, refractive index, magnetic field, radiation, gas and so on.
QWIP focal plane arrays performances from MWIR up to VLWIR
NASA Astrophysics Data System (ADS)
Robo, J. A.; Costard, E.; Truffer, J. P.; Nedelcu, A.; Marcadet, X.; Bois, P.
2009-05-01
Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at the Alcatel-Thales-III-V Lab (formerly part of THALES Research and Technology Laboratory). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. Another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures at various wavelengths in MWIR, LWIR and VLWIR. An overview of the available performances of QWIPs in the whole infrared spectrum is presented here. We also discuss about the under-development products such as dual band and polarimetric structures.
Highly reflective polymeric substrates functionalized utilizing atomic layer deposition
NASA Astrophysics Data System (ADS)
Zuzuarregui, Ana; Coto, Borja; Rodríguez, Jorge; Gregorczyk, Keith E.; Ruiz de Gopegui, Unai; Barriga, Javier; Knez, Mato
2015-08-01
Reflective surfaces are one of the key elements of solar plants to concentrate energy in the receivers of solar thermal electricity plants. Polymeric substrates are being considered as an alternative to the widely used glass mirrors due to their intrinsic and processing advantages, but optimizing both the reflectance and the physical stability of polymeric mirrors still poses technological difficulties. In this work, polymeric surfaces have been functionalized with ceramic thin-films by atomic layer deposition. The characterization and optimization of the parameters involved in the process resulted in surfaces with a reflection index of 97%, turning polymers into a real alternative to glass substrates. The solution we present here can be easily applied in further technological areas where seemingly incompatible combinations of polymeric substrates and ceramic coatings occur.
Simulation of a high-efficiency silicon-based heterojunction solar cell
NASA Astrophysics Data System (ADS)
Jian, Liu; Shihua, Huang; Lü, He
2015-04-01
The basic parameters of a-Si:H/c-Si heterojunction solar cells, such as layer thickness, doping concentration, a-Si:H/c-Si interface defect density, and the work functions of the transparent conducting oxide (TCO) and back surface field (BSF) layer, are crucial factors that influence the carrier transport properties and the efficiency of the solar cells. The correlations between the carrier transport properties and these parameters and the performance of a-Si:H/c-Si heterojunction solar cells were investigated using the AFORS-HET program. Through the analysis and optimization of a TCO/n-a-Si:H/i-a-Si:H/p-c-Si/p+-a-Si:H/Ag solar cell, a photoelectric conversion efficiency of 27.07% (VOC) 749 mV, JSC: 42.86 mA/cm2, FF: 84.33%) was obtained through simulation. An in-depth understanding of the transport properties can help to improve the efficiency of a-Si:H/c-Si heterojunction solar cells, and provide useful guidance for actual heterojunction with intrinsic thin layer (HIT) solar cell manufacturing. Project supported by the National Natural Science Foundation of China (No. 61076055), the Open Project Program of Surface Physics Laboratory (National Key Laboratory) of Fudan University (No. FDS-KL2011-04), the Zhejiang Provincial Science and Technology Key Innovation Team (No. 2011R50012), and the Zhejiang Provincial Key Laboratory (No. 2013E10022).
CHAM: weak signals detection through a new multivariate algorithm for process control
NASA Astrophysics Data System (ADS)
Bergeret, François; Soual, Carole; Le Gratiet, B.
2016-10-01
Derivatives technologies based on core CMOS processes are significantly aggressive in term of design rules and process control requirements. Process control plan is a derived from Process Assumption (PA) calculations which result in a design rule based on known process variability capabilities, taking into account enough margin to be safe not only for yield but especially for reliability. Even though process assumptions are calculated with a 4 sigma known process capability margin, efficient and competitive designs are challenging the process especially for derivatives technologies in 40 and 28nm nodes. For wafer fab process control, PA are declined in monovariate (layer1 CD, layer2 CD, layer2 to layer1 overlay, layer3 CD etc….) control charts with appropriated specifications and control limits which all together are securing the silicon. This is so far working fine but such system is not really sensitive to weak signals coming from interactions of multiple key parameters (high layer2 CD combined with high layer3 CD as an example). CHAM is a software using an advanced statistical algorithm specifically designed to detect small signals, especially when there are many parameters to control and when the parameters can interact to create yield issues. In this presentation we will first present the CHAM algorithm, then the case-study on critical dimensions, with the results, and we will conclude on future work. This partnership between Ippon and STM is part of E450LMDAP, European project dedicated to metrology and lithography development for future technology nodes, especially 10nm.
Sensitivity studies for a space-based methane lidar mission
NASA Astrophysics Data System (ADS)
Kiemle, C.; Quatrevalet, M.; Ehret, G.; Amediek, A.; Fix, A.; Wirth, M.
2011-10-01
Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA) lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN) on a small satellite in polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1% over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol layers and thin ice clouds will be minimised.
Sensitivity studies for a space-based methane lidar mission
NASA Astrophysics Data System (ADS)
Kiemle, C.; Quatrevalet, M.; Ehret, G.; Amediek, A.; Fix, A.; Wirth, M.
2011-06-01
Methane is the third most important greenhouse gas in the atmosphere after water vapour and carbon dioxide. A major handicap to quantify the emissions at the Earth's surface in order to better understand biosphere-atmosphere exchange processes and potential climate feedbacks is the lack of accurate and global observations of methane. Space-based integrated path differential absorption (IPDA) lidar has potential to fill this gap, and a Methane Remote Lidar Mission (MERLIN) on a small satellite in Polar orbit was proposed by DLR and CNES in the frame of a German-French climate monitoring initiative. System simulations are used to identify key performance parameters and to find an advantageous instrument configuration, given the environmental, technological, and budget constraints. The sensitivity studies use representative averages of the atmospheric and surface state to estimate the measurement precision, i.e. the random uncertainty due to instrument noise. Key performance parameters for MERLIN are average laser power, telescope size, orbit height, surface reflectance, and detector noise. A modest-size lidar instrument with 0.45 W average laser power and 0.55 m telescope diameter on a 506 km orbit could provide 50-km averaged methane column measurement along the sub-satellite track with a precision of about 1 % over vegetation. The use of a methane absorption trough at 1.65 μm improves the near-surface measurement sensitivity and vastly relaxes the wavelength stability requirement that was identified as one of the major technological risks in the pre-phase A studies for A-SCOPE, a space-based IPDA lidar for carbon dioxide at the European Space Agency. Minimal humidity and temperature sensitivity at this wavelength position will enable accurate measurements in tropical wetlands, key regions with largely uncertain methane emissions. In contrast to actual passive remote sensors, measurements in Polar Regions will be possible and biases due to aerosol layers and thin ice clouds will be minimised.
Launch Vehicle Propulsion Parameter Design Multiple Selection Criteria
NASA Technical Reports Server (NTRS)
Shelton, Joey Dewayne
2004-01-01
The optimization tool described herein addresses and emphasizes the use of computer tools to model a system and focuses on a concept development approach for a liquid hydrogen/liquid oxygen single-stage-to-orbit system, but more particularly the development of the optimized system using new techniques. This methodology uses new and innovative tools to run Monte Carlo simulations, genetic algorithm solvers, and statistical models in order to optimize a design concept. The concept launch vehicle and propulsion system were modeled and optimized to determine the best design for weight and cost by varying design and technology parameters. Uncertainty levels were applied using Monte Carlo Simulations and the model output was compared to the National Aeronautics and Space Administration Space Shuttle Main Engine. Several key conclusions are summarized here for the model results. First, the Gross Liftoff Weight and Dry Weight were 67% higher for the design case for minimization of Design, Development, Test and Evaluation cost when compared to the weights determined by the minimization of Gross Liftoff Weight case. In turn, the Design, Development, Test and Evaluation cost was 53% higher for optimized Gross Liftoff Weight case when compared to the cost determined by case for minimization of Design, Development, Test and Evaluation cost. Therefore, a 53% increase in Design, Development, Test and Evaluation cost results in a 67% reduction in Gross Liftoff Weight. Secondly, the tool outputs define the sensitivity of propulsion parameters, technology and cost factors and how these parameters differ when cost and weight are optimized separately. A key finding was that for a Space Shuttle Main Engine thrust level the oxidizer/fuel ratio of 6.6 resulted in the lowest Gross Liftoff Weight rather than at 5.2 for the maximum specific impulse, demonstrating the relationships between specific impulse, engine weight, tank volume and tank weight. Lastly, the optimum chamber pressure for Gross Liftoff Weight minimization was 2713 pounds per square inch as compared to 3162 for the Design, Development, Test and Evaluation cost optimization case. This chamber pressure range is close to 3000 pounds per square inch for the Space Shuttle Main Engine.
Additive Manufacturing of Fuel Injectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadek Tadros, Dr. Alber Alphonse; Ritter, Dr. George W.; Drews, Charles Donald
Additive manufacturing (AM), also known as 3D-printing, has been shifting from a novelty prototyping paradigm to a legitimate manufacturing tool capable of creating components for highly complex engineered products. An emerging AM technology for producing metal parts is the laser powder bed fusion (L-PBF) process; however, industry manufacturing specifications and component design practices for L-PBF have not yet been established. Solar Turbines Incorporated (Solar), an industrial gas turbine manufacturer, has been evaluating AM technology for development and production applications with the desire to enable accelerated product development cycle times, overall turbine efficiency improvements, and supply chain flexibility relative to conventionalmore » manufacturing processes (casting, brazing, welding). Accordingly, Solar teamed with EWI on a joint two-and-a-half-year project with the goal of developing a production L-PBF AM process capable of consistently producing high-nickel alloy material suitable for high temperature gas turbine engine fuel injector components. The project plan tasks were designed to understand the interaction of the process variables and their combined impact on the resultant AM material quality. The composition of the high-nickel alloy powders selected for this program met the conventional cast Hastelloy X compositional limits and were commercially available in different particle size distributions (PSD) from two suppliers. Solar produced all the test articles and both EWI and Solar shared responsibility for analyzing them. The effects of powder metal input stock, laser parameters, heat treatments, and post-finishing methods were evaluated. This process knowledge was then used to generate tensile, fatigue, and creep material properties data curves suitable for component design activities. The key process controls for ensuring consistent material properties were documented in AM powder and process specifications. The basic components of the project were: • Powder metal input stock: Powder characterization, dimensional accuracy, metallurgical characterization, and mechanical properties evaluation. • Process parameters: Laser parameter effects, post-printing heat-treatment development, mechanical properties evaluation, and post-finishing technique. • Material design curves: Room and elevated temperature tensiles, low cycle fatigue, and creep rupture properties curves generated. • AM specifications: Key metal powder characteristics, laser parameters, and heat-treatment controls identified.« less
Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong
2017-03-01
Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors' memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm.
Cui, Huanqing; Shu, Minglei; Song, Min; Wang, Yinglong
2017-01-01
Localization is a key technology in wireless sensor networks. Faced with the challenges of the sensors’ memory, computational constraints, and limited energy, particle swarm optimization has been widely applied in the localization of wireless sensor networks, demonstrating better performance than other optimization methods. In particle swarm optimization-based localization algorithms, the variants and parameters should be chosen elaborately to achieve the best performance. However, there is a lack of guidance on how to choose these variants and parameters. Further, there is no comprehensive performance comparison among particle swarm optimization algorithms. The main contribution of this paper is three-fold. First, it surveys the popular particle swarm optimization variants and particle swarm optimization-based localization algorithms for wireless sensor networks. Secondly, it presents parameter selection of nine particle swarm optimization variants and six types of swarm topologies by extensive simulations. Thirdly, it comprehensively compares the performance of these algorithms. The results show that the particle swarm optimization with constriction coefficient using ring topology outperforms other variants and swarm topologies, and it performs better than the second-order cone programming algorithm. PMID:28257060
[A Terahertz Spectral Database Based on Browser/Server Technique].
Zhang, Zhuo-yong; Song, Yue
2015-09-01
With the solution of key scientific and technical problems and development of instrumentation, the application of terahertz technology in various fields has been paid more and more attention. Owing to the unique characteristic advantages, terahertz technology has been showing a broad future in the fields of fast, non-damaging detections, as well as many other fields. Terahertz technology combined with other complementary methods can be used to cope with many difficult practical problems which could not be solved before. One of the critical points for further development of practical terahertz detection methods depends on a good and reliable terahertz spectral database. We developed a BS (browser/server) -based terahertz spectral database recently. We designed the main structure and main functions to fulfill practical requirements. The terahertz spectral database now includes more than 240 items, and the spectral information was collected based on three sources: (1) collection and citation from some other abroad terahertz spectral databases; (2) collected from published literatures; and (3) spectral data measured in our laboratory. The present paper introduced the basic structure and fundament functions of the terahertz spectral database developed in our laboratory. One of the key functions of this THz database is calculation of optical parameters. Some optical parameters including absorption coefficient, refractive index, etc. can be calculated based on the input THz time domain spectra. The other main functions and searching methods of the browser/server-based terahertz spectral database have been discussed. The database search system can provide users convenient functions including user registration, inquiry, displaying spectral figures and molecular structures, spectral matching, etc. The THz database system provides an on-line searching function for registered users. Registered users can compare the input THz spectrum with the spectra of database, according to the obtained correlation coefficient one can perform the searching task very fast and conveniently. Our terahertz spectral database can be accessed at http://www.teralibrary.com. The proposed terahertz spectral database is based on spectral information so far, and will be improved in the future. We hope this terahertz spectral database can provide users powerful, convenient, and high efficient functions, and could promote the broader applications of terahertz technology.
Zhang, Hang; Xu, Qingyan; Liu, Baicheng
2014-01-01
The rapid development of numerical modeling techniques has led to more accurate results in modeling metal solidification processes. In this study, the cellular automaton-finite difference (CA-FD) method was used to simulate the directional solidification (DS) process of single crystal (SX) superalloy blade samples. Experiments were carried out to validate the simulation results. Meanwhile, an intelligent model based on fuzzy control theory was built to optimize the complicate DS process. Several key parameters, such as mushy zone width and temperature difference at the cast-mold interface, were recognized as the input variables. The input variables were functioned with the multivariable fuzzy rule to get the output adjustment of withdrawal rate (v) (a key technological parameter). The multivariable fuzzy rule was built, based on the structure feature of casting, such as the relationship between section area, and the delay time of the temperature change response by changing v, and the professional experience of the operator as well. Then, the fuzzy controlling model coupled with CA-FD method could be used to optimize v in real-time during the manufacturing process. The optimized process was proven to be more flexible and adaptive for a steady and stray-grain free DS process. PMID:28788535
Sensitivity of projected long-term CO2 emissions across the Shared Socioeconomic Pathways
NASA Astrophysics Data System (ADS)
Marangoni, G.; Tavoni, M.; Bosetti, V.; Borgonovo, E.; Capros, P.; Fricko, O.; Gernaat, D. E. H. J.; Guivarch, C.; Havlik, P.; Huppmann, D.; Johnson, N.; Karkatsoulis, P.; Keppo, I.; Krey, V.; Ó Broin, E.; Price, J.; van Vuuren, D. P.
2017-01-01
Scenarios showing future greenhouse gas emissions are needed to estimate climate impacts and the mitigation efforts required for climate stabilization. Recently, the Shared Socioeconomic Pathways (SSPs) have been introduced to describe alternative social, economic and technical narratives, spanning a wide range of plausible futures in terms of challenges to mitigation and adaptation. Thus far the key drivers of the uncertainty in emissions projections have not been robustly disentangled. Here we assess the sensitivities of future CO2 emissions to key drivers characterizing the SSPs. We use six state-of-the-art integrated assessment models with different structural characteristics, and study the impact of five families of parameters, related to population, income, energy efficiency, fossil fuel availability, and low-carbon energy technology development. A recently developed sensitivity analysis algorithm allows us to parsimoniously compute both the direct and interaction effects of each of these drivers on cumulative emissions. The study reveals that the SSP assumptions about energy intensity and economic growth are the most important determinants of future CO2 emissions from energy combustion, both with and without a climate policy. Interaction terms between parameters are shown to be important determinants of the total sensitivities.
Design Considerations For Imaging Charge-Coupled Device (ICCD) Star Sensors
NASA Astrophysics Data System (ADS)
McAloon, K. J.
1981-04-01
A development program is currently underway to produce a precision star sensor using imaging charge coupled device (ICCD) technology. The effort is the critical component development phase for the Air Force Multi-Mission Attitude Determination and Autonomous Navigation System (MADAN). A number of unique considerations have evolved in designing an arcsecond accuracy sensor around an ICCD detector. Three tiers of performance criteria are involved: at the spacecraft attitude determination system level, at the star sensor level, and at the detector level. Optimum attitude determination system performance involves a tradeoff between Kalman filter iteration time and sensor ICCD integration time. The ICCD star sensor lends itself to the use of a new approach in the functional interface between the attitude determination system and the sensor. At the sensor level image data processing tradeoffs are important for optimum sensor performance. These tradeoffs involve the sensor optic configuration, the optical point spread function (PSF) size and shape, the PSF position locator, and the microprocessor locator algorithm. Performance modelling of the sensor mandates the use of computer simulation programs. Five key performance parameters at the ICCD detector level are defined. ICCD error characteristics have also been isolated to five key parameters.
Effects of Viscosity on the Performance of Air-Powered Liquid Jet Injectors
NASA Astrophysics Data System (ADS)
Portaro, Rocco; Jaber, Hadi; Ng, Hoi Dick
2017-11-01
Drug delivery without the use of hypodermic needles has been a long-term objective within the medical field. This study focuses on observing the effects of drug viscosity on injector performance for air-powered liquid jet injectors, as well as the viability of using this technology for delivering viscous-type medications such as monoclonal antibodies. The experiments are conducted through the use of a prototype injector which allows key parameters such as driver pressure, injection volume and nozzle size to be varied. Different viscosities which range from 0.9 cP to 87 cP are obtained by using a water-glycerol mix. The liquid jets emanating from the injector are assessed using high speed photography as well as a pressure transducer. Experimental findings are then compared to a CFD model which considered experimental geometry and parameters. The results of this study highlight the effect of viscosity on the operating pressure of the injector and the reduction in jet stagnation pressure. It also illustrates improved jet confinement as viscosity is increased, a finding which is in line with the numerical model, and should play a key role in improving the device's characteristics for puncturing skin.
Calibrating the system dynamics of LISA Pathfinder
NASA Astrophysics Data System (ADS)
Armano, M.; Audley, H.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A. M.; Danzmann, K.; de Deus Silva, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E. D.; Freschi, M.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C. J.; Lobo, J. A.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Mance, D.; Meshksar, N.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Ramos-Castro, J.; Reiche, J.; Robertson, D. I.; Rivas, F.; Russano, G.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Wass, P.; Weber, W. J.; Wissel, L.; Wittchen, A.; Zweifel, P.
2018-06-01
LISA Pathfinder (LPF) was a European Space Agency mission with the aim to test key technologies for future space-borne gravitational-wave observatories like LISA. The main scientific goal of LPF was to demonstrate measurements of differential acceleration between free-falling test masses at the sub-femto-g level, and to understand the residual acceleration in terms of a physical model of stray forces, and displacement readout noise. A key step toward reaching the LPF goals was the correct calibration of the dynamics of LPF, which was a three-body system composed by two test-masses enclosed in a single spacecraft, and subject to control laws for system stability. In this work, we report on the calibration procedures adopted to calculate the residual differential stray force per unit mass acting on the two test-masses in their nominal positions. The physical parameters of the adopted dynamical model are presented, together with their role on LPF performance. The analysis and results of these experiments show that the dynamics of the system was accurately modeled and the dynamical parameters were stationary throughout the mission. Finally, the impact and importance of calibrating system dynamics for future space-based gravitational wave observatories is discussed.
NASA Astrophysics Data System (ADS)
Zafar, Fahad; Kalavally, Vineetha; Bakaul, Masuduzzaman; Parthiban, R.
2015-09-01
For making commercial implementation of light emitting diode (LED) based visible light communication (VLC) systems feasible, it is necessary to incorporate it with dimming schemes which will provide energy savings, moods and increase the aesthetic value of the places using this technology. There are two general methods which are used to dim LEDs commonly categorized as analog and digital dimming. Incorporating fast data transmission with these techniques is a key challenge in VLC. In this paper, digital and analog dimming for a 10 Mb/s non return to zero on-off keying (NRZ-OOK) based VLC system is experimentally investigated considering both photometric and communicative parameters. A spectrophotometer was used for photometric analysis and a line of sight (LOS) configuration in the presence of ambient light was used for analyzing communication parameters. Based on the experimental results, it was determined that digital dimming scheme is preferable for use in indoor VLC systems requiring high dimming precision and data transmission at lower brightness levels. On the other hand, analog dimming scheme is a cost effective solution for high speed systems where dimming precision is insignificant.
Application of Unmanned Aircraft System Instrumentation to Study Coastal Geochemistry
NASA Astrophysics Data System (ADS)
Coffin, R. B.; Osburn, C. L.; Smith, J. P.
2016-02-01
Coastal evaluation of key geochemical cycles is in strong need for thorough spatial data to address diverse topics. In many field studies we find that fixed station data taken from ship operations does not provide complete understanding of key research questions. In complicated systems where there is a need to integrate physical, chemical and biological parameters data taken from research vessels needs to be interpreted across large spatial areas. New technology in Unmanned Aircraft System (UAS) instrumentation coupled with ship board data can provide the thorough spatial data needed for a thorough evaluation of coastal sciences. This presentation will provide field data related to UAS application in two diverse environments. One study focuses on the flux of carbon dioxide and methane from Alaskan Arctic tundra and shallow Beaufort Sea coastal region to the atmosphere. In this study gas chemistry from samples is used to predict the relative fluxes to the atmosphere. A second study applies bio-optical analyses to differentiate between Gulf of Mexico coastal water column DOC and Lignin. This wide range of parameters in diverse ecosystems is selected to show current capability for application of UAS and the potential for understanding large scale questions about climate change and carbon cycling in coastal waters.
NASA Astrophysics Data System (ADS)
Cao, Zhenggang; Ding, Zengqian; Hu, Zhixiong; Wen, Tao; Qiao, Wen; Liu, Wenli
2016-10-01
Optical coherence tomography (OCT) has been widely applied in diagnosis of eye diseases during the last 20 years. Differing from traditional two-dimension imaging technologies, OCT could also provide cross-sectional information of target tissues simultaneously and precisely. As well known, axial resolution is one of the most critical parameters impacting the OCT image quality, which determines whether an accurate diagnosis could be obtained. Therefore, it is important to evaluate the axial resolution of an OCT equipment. Phantoms always play an important role in the standardization and validation process. Here, a standard model eye with micro-scale multilayer structure was custom designed and manufactured. Mimicking a real human eye, analyzing the physical characteristic of layer structures of retina and cornea in-depth, appropriate materials were selected by testing the scattering coefficient of PDMS phantoms with difference concentration of TiO2 or BaSO4 particles. An artificial retina and cornea with multilayer-films which have a thickness of 10 to 60 micrometers for each layer were fabricated using spin coating technology. Considering key parameters of the standard model eye need to be traceable as well as accurate, the optical refractive index and layer structure thicknesses of phantoms were verified by utilizing Thickness Monitoring System. Consequently, a standard OCT model eye was obtained after the retinal or corneal phantom was embedded into a water-filled model eye which has been fabricated by 3D printing technology to simulate ocular dispersion and emmetropic refraction. The eye model was manufactured with a transparent resin to simulate realistic ophthalmic testing environment, and most key optical elements including cornea, lens and vitreous body were realized. By investigating with a research and a clinical OCT system respectively, the OCT model eye was demonstrated with similar physical properties as natural eye, and the multilayer film measurement provided an effective method to rapidly evaluate the axial resolution of ophthalmic OCT devices.
Boschetti, Lucio; Ottavian, Matteo; Facco, Pierantonio; Barolo, Massimiliano; Serva, Lorenzo; Balzan, Stefania; Novelli, Enrico
2013-11-01
The use of near-infrared spectroscopy (NIRS) is proposed in this study for the characterization of the quality parameters of a smoked and dry-cured meat product known as Bauernspeck (originally from Northern Italy), as well as of some technological traits of the pork carcass used for its manufacturing. In particular, NIRS is shown to successfully estimate several key quality parameters (including water activity, moisture, dry matter, ash and protein content), suggesting its suitability for real time application in replacement of expensive and time consuming chemical analysis. Furthermore, a correlative approach based on canonical correlation analysis was used to investigate the spectral regions that are mostly correlated to the characteristics of interest. The identification of these regions, which can be linked to the absorbance of the main functional chemical groups, is intended to provide a better understanding of the chemical structure of the substrate under investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Robust parameter extraction for decision support using multimodal intensive care data
Clifford, G.D.; Long, W.J.; Moody, G.B.; Szolovits, P.
2008-01-01
Digital information flow within the intensive care unit (ICU) continues to grow, with advances in technology and computational biology. Recent developments in the integration and archiving of these data have resulted in new opportunities for data analysis and clinical feedback. New problems associated with ICU databases have also arisen. ICU data are high-dimensional, often sparse, asynchronous and irregularly sampled, as well as being non-stationary, noisy and subject to frequent exogenous perturbations by clinical staff. Relationships between different physiological parameters are usually nonlinear (except within restricted ranges), and the equipment used to measure the observables is often inherently error-prone and biased. The prior probabilities associated with an individual's genetics, pre-existing conditions, lifestyle and ongoing medical treatment all affect prediction and classification accuracy. In this paper, we describe some of the key problems and associated methods that hold promise for robust parameter extraction and data fusion for use in clinical decision support in the ICU. PMID:18936019
Key Health Information Technologies and Related Issues for Iran: A Qualitative Study.
Hemmat, Morteza; Ayatollahi, Haleh; Maleki, Mohammadreza; Saghafi, Fatemeh
2018-01-01
Planning for the future of Health Information Technology (HIT) requires applying a systematic approach when conducting foresight studies. The aim of this study was to identify key health information technologies and related issues for Iran until 2025. This was a qualitative study and the participants included experts and policy makers in the field of health information technology. In-depth semi-structured interviews were conducted and data were analyzed by using framework analysis and MAXQDA software. The findings revealed that the development of national health information network, electronic health records, patient health records, a cloud-based service center, interoperability standards, patient monitoring technologies, telehealth, mhealth, clinical decision support systems, health information technology and mhealth infrastructure were found to be the key technologies for the future. These technologies could influence the economic, organizational and individual levels. To achieve them, the economic and organizational obstacles need to be overcome. In this study, a number of key technologies and related issues were identified. This approach can help to focus on the most important technologies in the future and to priorities these technologies for better resource allocation and policy making.
A novel integrated assessment methodology of urban water reuse.
Listowski, A; Ngo, H H; Guo, W S; Vigneswaran, S
2011-01-01
Wastewater is no longer considered a waste product and water reuse needs to play a stronger part in securing urban water supply. Although treatment technologies for water reclamation have significantly improved the question that deserves further analysis is, how selection of a particular wastewater treatment technology relates to performance and sustainability? The proposed assessment model integrates; (i) technology, characterised by selected quantity and quality performance parameters; (ii) productivity, efficiency and reliability criteria; (iii) quantitative performance indicators; (iv) development of evaluation model. The challenges related to hierarchy and selections of performance indicators have been resolved through the case study analysis. The goal of this study is to validate a new assessment methodology in relation to performance of the microfiltration (MF) technology, a key element of the treatment process. Specific performance data and measurements were obtained at specific Control and Data Acquisition Points (CP) to satisfy the input-output inventory in relation to water resources, products, material flows, energy requirements, chemicals use, etc. Performance assessment process contains analysis and necessary linking across important parametric functions leading to reliable outcomes and results.
Controlled cooling technology for bar and rod mills -- Computer simulation and operational results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauk, P.J.; Kruse, M.; Plociennik, U.
The Controlled Cooling Technology (CCT) developed by SMS to simulate the rolling process and automatic control of the water cooling sections is presented. The Controlled Rolling and Cooling Technology (CRCT) model is a key part of the CCT system. It is used to simulate temperature management for the rolling stock on the computer before the actual rolling process takes place. This makes it possible to dispense with extensive rolling tests in the early stages of project planning and to greatly reduce the extent of such tests prior to the start of commercial production in a rolling mill. The CRCT modelmore » has been in use at Von Moos Stahl Ag for three years. It demonstrates that, by targeted improvement of the set-up values in both the technology and the plant, it is possible to improve microstructure quality and achieve better geometrical parameters in the rolled products. Also, the results gained with the CCT system in practical operation at the Kia Steel Bar Mill, Kunsan, Korea, are presented.« less
Environmental Effects on Data Retention in Flash Cells
NASA Technical Reports Server (NTRS)
Katz, Rich; Flowers, David; Bergevin, Keith
2017-01-01
Flash technology is being utilized in fuzed munition applications and, based on the development of digital logic devices in the commercial world, usage of flash technology will increase. Antifuse technology, prevalent in non-volatile field programmable gate arrays (FPGAs), will eventually be phased out as new devices have not been developed for approximately a decade. The reliance on flash technology presents a long-term reliability issue for both DoD and NASA safety- and mission-critical applications. A thorough understanding of the data retention failure modes and statistics associated with Flash data retention is of vital concern to the fuze safety community. A key retention parameter for a flash cell is the threshold voltage (VTH), which is an indirect indicator of the amount of charge stored on the cells floating gate. This paper will present the results of our on-going tests: long-term storage at 150 C for a small population of devices, neutron radiation exposure, electrostatic discharge (ESD) testing, and the trends of large populations (over 300 devices for each condition) exposed to three difference temperatures: 25 C, 125 C, and 150 C.
Extending the life-cycle of reverse osmosis membranes: A review.
Coutinho de Paula, Eduardo; Amaral, Míriam Cristina Santos
2017-05-01
The reverse osmosis (RO) technology for desalination and demineralization serves the global water crisis context, both technically and economically, and its market is growing. However, RO membranes have a limited life-cycle and are often disposed of in landfills. The impacts caused by the disposal of thousands of tonnes per annum of RO membranes have grown dramatically around the world. Waste prevention should have a high priority and take effect before the end-of-life phase of a product is reached. In this review, a summary is presented of the main advances in the performance of the RO technology and the membrane lifespan. Afterwards, this paper reviews the most important relevant literature and summarizes the key findings of the research on reusing and recycling the discarded modules for the purpose of extending the life-cycle of the RO membranes. In addtion, there are some recent researches that indicated recycling RO membranes for use by the microfiltration or ultrafiltration separation processes is a promising solution to the disposal problem. However, there are many gaps and differences in procedures and results. This article also discusses and brings to light key parameters involved and controversies about oxidative treatment of discarded RO membranes.
Integrated Human-in-the-Loop Ground Testing - Value, History, and the Future
NASA Technical Reports Server (NTRS)
Henninger, Donald L.
2016-01-01
Systems for very long-duration human missions to Mars will be designed to operate reliably for many years and many of these systems will never be returned to Earth. The need for high reliability is driven by the requirement for safe functioning of remote, long-duration crewed systems and also by unsympathetic abort scenarios. Abort from a Mars mission could be as long as 450 days to return to Earth. The key to developing a human-in-the-loop architecture is a development process that allows for a logical sequence of validating successful development in a stepwise manner, with assessment of key performance parameters (KPPs) at each step; especially important are KPPs for technologies evaluated in a full systems context with human crews on Earth and on space platforms such as the ISS. This presentation will explore the implications of such an approach to technology development and validation including the roles of ground and space-based testing necessary to develop a highly reliable system for long duration human exploration missions. Historical development and systems testing from Mercury to the International Space Station (ISS) to ground testing will be reviewed. Current work as well as recommendations for future work will be described.
Practical device-independent quantum cryptography via entropy accumulation.
Arnon-Friedman, Rotem; Dupuis, Frédéric; Fawzi, Omar; Renner, Renato; Vidick, Thomas
2018-01-31
Device-independent cryptography goes beyond conventional quantum cryptography by providing security that holds independently of the quality of the underlying physical devices. Device-independent protocols are based on the quantum phenomena of non-locality and the violation of Bell inequalities. This high level of security could so far only be established under conditions which are not achievable experimentally. Here we present a property of entropy, termed "entropy accumulation", which asserts that the total amount of entropy of a large system is the sum of its parts. We use this property to prove the security of cryptographic protocols, including device-independent quantum key distribution, while achieving essentially optimal parameters. Recent experimental progress, which enabled loophole-free Bell tests, suggests that the achieved parameters are technologically accessible. Our work hence provides the theoretical groundwork for experimental demonstrations of device-independent cryptography.
Study on film resistivity of Energy Conversion Components for MEMS Initiating Explosive Device
NASA Astrophysics Data System (ADS)
Ren, Wei; Zhang, Bin; Zhao, Yulong; Chu, Enyi; Yin, Ming; Li, Hui; Wang, Kexuan
2018-03-01
Resistivity of Plane-film Energy Conversion Components is a key parameter to influence its resistance and explosive performance, and also it has important relations with the preparation of thin film technology, scale, structure and etc. In order to improve the design of Energy Conversion Components for MEMS Initiating Explosive Device, and reduce the design deviation of Energy Conversion Components in microscale, guarantee the design resistance and ignition performance of MEMS Initiating Explosive Device, this paper theoretically analyzed the influence factors of film resistivity in microscale, through the preparation of Al film and Ni-Cr film at different thickness with micro/nano, then obtain the film resistivity parameter of the typical metal under different thickness, and reveals the effect rule of the scale to the resistivity in microscale, at the same time we obtain the corresponding inflection point data.
Rotary wave-ejector enhanced pulse detonation engine
NASA Astrophysics Data System (ADS)
Nalim, M. R.; Izzy, Z. A.; Akbari, P.
2012-01-01
The use of a non-steady ejector based on wave rotor technology is modeled for pulse detonation engine performance improvement and for compatibility with turbomachinery components in hybrid propulsion systems. The rotary wave ejector device integrates a pulse detonation process with an efficient momentum transfer process in specially shaped channels of a single wave-rotor component. In this paper, a quasi-one-dimensional numerical model is developed to help design the basic geometry and operating parameters of the device. The unsteady combustion and flow processes are simulated and compared with a baseline PDE without ejector enhancement. A preliminary performance assessment is presented for the wave ejector configuration, considering the effect of key geometric parameters, which are selected for high specific impulse. It is shown that the rotary wave ejector concept has significant potential for thrust augmentation relative to a basic pulse detonation engine.
NASA Astrophysics Data System (ADS)
Costard, E.; Nedelcu, A.; Truffer, J. P.; Huet, O.; Dua, L.; Robo, J. A.; Marcadet, X.; Brière de l'Isle, N.; Facoetti, H.; Bois, P.
2009-11-01
Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at the Alcatel-Thales-III-V Lab (formerly part of THALES Research and Technology Laboratory). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. Another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures to fulfil the requirements of specific applications such as very long wavelength (VLWIR) or multi-spectral detection. In this presentation, we give the status of our LWIR QWIP production line, and also the current status of QWIPs for MWIR (<5 μm) and VLWIR (>15 μm) arrays. As the QWIP technology cannot cover the full electromagnetic spectrum, we develop other semiconductor compounds for SWIR and UV applications. We present here the status of our 320 × 256 SWIR module with InGaAs photodiodes.
Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology.
García-González, Carlos A; Concheiro, Angel; Alvarez-Lorenzo, Carmen
2015-07-15
The increase in the world demand of bone and cartilage replacement therapies urges the development of advanced synthetic scaffolds for regenerative purposes, not only providing mechanical support for tissue formation, but also promoting and guiding the tissue growth. Conventional manufacturing techniques have severe restrictions for designing these upgraded scaffolds, namely, regarding the use of organic solvents, shearing forces, and high operating temperatures. In this context, the use of supercritical fluid technology has emerged as an attractive solution to design solvent-free scaffolds and ingredients for scaffolds under mild processing conditions. The state-of-the-art on the technological endeavors for scaffold production using supercritical fluids is presented in this work with a critical review on the key processing parameters as well as the main advantages and limitations of each technique. A special stress is focused on the strategies suitable for the incorporation of bioactive agents (drugs, bioactive glasses, and growth factors) and the in vitro and in vivo performance of supercritical CO2-processed scaffolds.
Current status and challenges for automotive battery production technologies
NASA Astrophysics Data System (ADS)
Kwade, Arno; Haselrieder, Wolfgang; Leithoff, Ruben; Modlinger, Armin; Dietrich, Franz; Droeder, Klaus
2018-04-01
Production technology for automotive lithium-ion battery (LIB) cells and packs has improved considerably in the past five years. However, the transfer of developments in materials, cell design and processes from lab scale to production scale remains a challenge due to the large number of consecutive process steps and the significant impact of material properties, electrode compositions and cell designs on processes. This requires an in-depth understanding of the individual production processes and their interactions, and pilot-scale investigations into process parameter selection and prototype cell production. Furthermore, emerging process concepts must be developed at lab and pilot scale that reduce production costs and improve cell performance. Here, we present an introductory summary of the state-of-the-art production technologies for automotive LIBs. We then discuss the key relationships between process, quality and performance, as well as explore the impact of materials and processes on scale and cost. Finally, future developments and innovations that aim to overcome the main challenges are presented.
Cryogenic Fluid Storage Technology Development: Recent and Planned Efforts at NASA
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
2009-01-01
Recent technology development work conducted at NASA in the area of Cryogenic Fluid Management (CFM) storage is highlighted, including summary results, key impacts, and ongoing efforts. Thermodynamic vent system (TVS) ground test results are shown for hydrogen, methane, and oxygen. Joule-Thomson (J-T) device tests related to clogging in hydrogen are summarized, along with the absence of clogging in oxygen and methane tests. Confirmation of analytical relations and bonding techniques for broad area cooling (BAC) concepts based on tube-to-tank tests are presented. Results of two-phase lumped-parameter computational fluid dynamic (CFD) models are highlighted, including validation of the model with hydrogen self pressurization test data. These models were used to simulate Altair representative methane and oxygen tanks subjected to 210 days of lunar surface storage. Engineering analysis tools being developed to support system level trades and vehicle propulsion system designs are also cited. Finally, prioritized technology development risks identified for Constellation cryogenic propulsion systems are presented, and future efforts to address those risks are discussed.
Zhou, Qing; Son, Kyungjin; Liu, Ying; Revzin, Alexander
2015-01-01
Biosensors first appeared several decades ago to address the need for monitoring physiological parameters such as oxygen or glucose in biological fluids such as blood. More recently, a new wave of biosensors has emerged in order to provide more nuanced and granular information about the composition and function of living cells. Such biosensors exist at the confluence of technology and medicine and often strive to connect cell phenotype or function to physiological or pathophysiological processes. Our review aims to describe some of the key technological aspects of biosensors being developed for cell analysis. The technological aspects covered in our review include biorecognition elements used for biosensor construction, methods for integrating cells with biosensors, approaches to single-cell analysis, and the use of nanostructured biosensors for cell analysis. Our hope is that the spectrum of possibilities for cell analysis described in this review may pique the interest of biomedical scientists and engineers and may spur new collaborations in the area of using biosensors for cell analysis.
Morschett, Holger; Freier, Lars; Rohde, Jannis; Wiechert, Wolfgang; von Lieres, Eric; Oldiges, Marco
2017-01-01
Even though microalgae-derived biodiesel has regained interest within the last decade, industrial production is still challenging for economic reasons. Besides reactor design, as well as value chain and strain engineering, laborious and slow early-stage parameter optimization represents a major drawback. The present study introduces a framework for the accelerated development of phototrophic bioprocesses. A state-of-the-art micro-photobioreactor supported by a liquid-handling robot for automated medium preparation and product quantification was used. To take full advantage of the technology's experimental capacity, Kriging-assisted experimental design was integrated to enable highly efficient execution of screening applications. The resulting platform was used for medium optimization of a lipid production process using Chlorella vulgaris toward maximum volumetric productivity. Within only four experimental rounds, lipid production was increased approximately threefold to 212 ± 11 mg L -1 d -1 . Besides nitrogen availability as a key parameter, magnesium, calcium and various trace elements were shown to be of crucial importance. Here, synergistic multi-parameter interactions as revealed by the experimental design introduced significant further optimization potential. The integration of parallelized microscale cultivation, laboratory automation and Kriging-assisted experimental design proved to be a fruitful tool for the accelerated development of phototrophic bioprocesses. By means of the proposed technology, the targeted optimization task was conducted in a very timely and material-efficient manner.
BTDI detector technology for reconnaissance application
NASA Astrophysics Data System (ADS)
Hilbert, Stefan; Eckardt, Andreas; Krutz, David
2017-11-01
The Institute of Optical Sensor Systems (OS) at the Robotics and Mechatronics Center of the German Aerospace Center (DLR) has more than 30 years of experience with high-resolution imaging technology. This paper shows the institute's scientific results of the leading-edge detector design in a BTDI (Bidirectional Time Delay and Integration) architecture. This project demonstrates an approved technological design for high or multi-spectral resolution spaceborne instruments. DLR OS and BAE Systems were driving the technology of new detectors and the FPA design for future projects, new manufacturing accuracy in order to keep pace with ambitious scientific and user requirements. Resulting from customer requirements and available technologies the current generation of space borne sensor systems is focusing on VIS/NIR high spectral resolution to meet the requirements on earth and planetary observation systems. The combination of large swath and high-spectral resolution with intelligent control applications and new focal plane concepts opens the door to new remote sensing and smart deep space instruments. The paper gives an overview of the detector development and verification program at DLR on detector module level and key parameters like SNR, linearity, spectral response, quantum efficiency, PRNU, DSNU and MTF.
Imaging on a Shoestring: Cost-Effective Technologies for Probing Vadose Zone Transport Processes
NASA Astrophysics Data System (ADS)
Corkhill, C.; Bridge, J. W.; Barns, G.; Fraser, R.; Romero-Gonzalez, M.; Wilson, R.; Banwart, S.
2010-12-01
Key barriers to the widespread uptake of imaging technology for high spatial resolution monitoring of porous media systems are cost and accessibility. X-ray tomography, magnetic resonance imaging (MRI), gamma and neutron radiography require highly specialised equipment, controlled laboratory environments and/or access to large synchrotron facilities. Here we present results from visible light, fluorescence and autoradiographic imaging techniques developed at low cost and applied in standard analytical laboratories, adapted where necessary at minimal capital expense. UV-visible time lapse fluorescence imaging (UV-vis TLFI) in a transparent thin bed chamber enabled microspheres labelled with fluorescent dye and a conservative fluorophore solute (disodium fluorescein) to be measured simultaneously in saturated, partially-saturated and actively draining quartz sand to elucidate empirical values for colloid transport and deposition parameters distributed throughout the flow field, independently of theoretical approximations. Key results include the first experimental quantification of the effects of ionic strength and air-water interfacial area on colloid deposition above a capillary fringe, and the first direct observations of particle mobilisation and redeposition by moving saturation gradients during drainage. UV-vis imaging was also used to study biodegradation and reactive transport in a variety of saturated conditions, applying fluorescence as a probe for oxygen and nitrate concentration gradients, pH, solute transport parameters, reduction of uranium, and mapping of two-dimensional flow fields around a model dipole flow borehole system to validate numerical models. Costs are low: LED excitation sources (< US 50), flow chambers (US 200) and detectors (although a complete scientific-grade CCD set-up costs around US$ 8000, robust datasets can be obtained using a commercial digital SLR camera) mean that set-ups can be flexible to meet changing experimental requirements. The critical limitations of UV-vis fluorescence imaging are the need for reliable fluorescent probes suited to the experimental objective, and the reliance on thin-bed (2D) transparent porous media. Autoradiographic techniques address some of these limitations permit imaging of key biogeochemical processes in opaque media using radioactive probes, without the need for specialised radiation sources. We present initial calibration data for the use of autoradiography to monitor transport parameters for radionuclides (99-technetium), and a novel application of a radioactive salt tracer as a probe for pore water content, in model porous media systems.
Berndt, Rolf-Dietrich; Takenga, Claude; Preik, Petra; Kuehn, Sebastian; Berndt, Luise; Mayer, Herbert; Kaps, Alexander; Schiel, Ralf
2014-01-01
Being able to manage and adjust insulin doses is a key part of managing type-1 diabetes. Children and adolescents with type-1 diabetes mellitus often have serious difficulties with this dosage adjustment. Therefore, this paper aims to investigate the impact of using novel mobile, web and communication technologies in assisting their therapy and treatment. A trial was conducted in the north-eastern part of Germany to evaluate the impact of the “Mobil Diab”, a mobile diabetes management system, on the clinical outcome. 68 subjects aged between 8 and 18 years, divided randomly into control and intervention groups, were included into the study. Metrics such as changes in the quality of metabolic control, changes in psychological parameters, usability and acceptance of the technology were used for evaluation purpose. Metabolic control was mainly assessed by the mean HbAlc. Analysis showed a good acceptance of the proposed system. An overall improvement in mean levels of HbA1c was observed, however further studies will be conducted to prove evidence of the weight and BMI improvements. Moreover, initial indications of positive impact on the improvement in psychological parameters were presumed based on the result of the conducted study. The system appeared to be an efficient and time saving tool in diabetes management. PMID:25563223
Research progress of on-the-go soil parameter sensors based on NIRS
NASA Astrophysics Data System (ADS)
An, Xiaofei; Meng, Zhijun; Wu, Guangwei; Guo, Jianhua
2014-11-01
Both the ever-increasing prices of fertilizer and growing ecological concern over chemical run-off into sources of drinking water have brought the issues of precision agriculture and site-specific management to the forefront of present technological development within agriculture and ecology. Soil is an important and basic element in agriculture production. Acquisition of soil information plays an important role in precision agriculture. The soil parameters include soil total nitrogen, phosporus, potassium, soil organic matter, soil moisture, electrical conductivity and pH value and so on. Field rapid acquisition to all the kinds of soil physical and chemical parameters is one of the most important research directions. And soil parameter real-time monitoring is also the trend of future development in precision agriculture. While developments in precision agriculture and site-specific management procedures have made significant in-roads on these issues and many researchers have developed effective means to determine soil properties, routinely obtaining robust on-the-go measurements of soil properties which are reliable enough to drive effective fertilizer application remains a challenge. NIRS technology provides a new method to obtain soil parameter with low cost and rapid advantage. In this paper, research progresses of soil on-the-go spectral sensors at domestic and abroad was combed and analyzed. There is a need for the sensing system to perform at least six key indexes for any on-the-go soil spectral sensor to be successful. The six indexes are detection limit, specificity, robustness, accuracy, cost and easy-to-use. Both the research status and problems were discussed. Finally, combining the national conditions of china, development tendency of on-the-go soil spectral sensors was proposed. In the future, on-the-go soil spectral sensors with reliable enough, sensitive enough and continuous detection would become popular in precision agriculture.
A note on deep space optical communication link parameters
NASA Technical Reports Server (NTRS)
Dolinar, S. J.; Yuen, J. H.
1982-01-01
Topical communication in the context of a deep space communication link. Communication link analysis at the optical frequencies differs significantly from that at microwave frequencies such as the traditional S and X-bands used in deep space applications, due to the different technology of transmitter, antenna, modulators, and receivers. In addition, the important role of quantum noise in limiting system performance is quite different than that of thermal noise. The optical link design is put in a design control table format similar to a microwave telecom link design. Key considerations unique to the optical link are discussed.
NASA Astrophysics Data System (ADS)
Kaźmierczak, Andrzej; Bogaerts, Wim; Van Thourhout, Dries; Drouard, Emmanuel; Rojo-Romeo, Pedro; Giannone, Domenico; Gaffiot, Frederic
2008-04-01
We present a compact passive optical add-drop filter which incorporates two microring resonators and a waveguide intersection in silicon-on-insulator (SOI) technology. Such a filter is a key element for designing simple layouts of highly integrated complex optical networks-on-chip. The filter occupies an area smaller than 10μm×10μm and exhibits relatively high quality factors (up to 4000) and efficient signal dropping capabilities. In the present work, the influence of filter parameters such as the microring-resonators radii and the coupling section shape are analyzed theoretically and experimentally
NASA Astrophysics Data System (ADS)
Lupo, Cosmo; Ottaviani, Carlo; Papanastasiou, Panagiotis; Pirandola, Stefano
2018-06-01
One crucial step in any quantum key distribution (QKD) scheme is parameter estimation. In a typical QKD protocol the users have to sacrifice part of their raw data to estimate the parameters of the communication channel as, for example, the error rate. This introduces a trade-off between the secret key rate and the accuracy of parameter estimation in the finite-size regime. Here we show that continuous-variable QKD is not subject to this constraint as the whole raw keys can be used for both parameter estimation and secret key generation, without compromising the security. First, we show that this property holds for measurement-device-independent (MDI) protocols, as a consequence of the fact that in a MDI protocol the correlations between Alice and Bob are postselected by the measurement performed by an untrusted relay. This result is then extended beyond the MDI framework by exploiting the fact that MDI protocols can simulate device-dependent one-way QKD with arbitrarily high precision.
Mathematical Model for a Simplified Calculation of the Input Momentum Coefficient for AFC Purposes
NASA Astrophysics Data System (ADS)
Hirsch, Damian; Gharib, Morteza
2016-11-01
Active Flow Control (AFC) is an emerging technology which aims at enhancing the aerodynamic performance of flight vehicles (i.e., to save fuel). A viable AFC system must consider the limited resources available on a plane for attaining performance goals. A higher performance goal (i.e., airplane incremental lift) demands a higher input fluidic requirement (i.e., mass flow rate). Therefore, the key requirement for a successful and practical design is to minimize power input while maximizing performance to achieve design targets. One of the most used design parameters is the input momentum coefficient Cμ. The difficulty associated with Cμ lies in obtaining the parameters for its calculation. In the literature two main approaches can be found, which both have their own disadvantages (assumptions, difficult measurements). A new, much simpler calculation approach will be presented that is based on a mathematical model that can be applied to most jet designs (i.e., steady or sweeping jets). The model-incorporated assumptions will be justified theoretically as well as experimentally. Furthermore, the model's capabilities are exploited to give new insight to the AFC technology and its physical limitations. Supported by Boeing.
Estimation of energy density of Li-S batteries with liquid and solid electrolytes
NASA Astrophysics Data System (ADS)
Li, Chunmei; Zhang, Heng; Otaegui, Laida; Singh, Gurpreet; Armand, Michel; Rodriguez-Martinez, Lide M.
2016-09-01
With the exponential growth of technology in mobile devices and the rapid expansion of electric vehicles into the market, it appears that the energy density of the state-of-the-art Li-ion batteries (LIBs) cannot satisfy the practical requirements. Sulfur has been one of the best cathode material choices due to its high charge storage (1675 mAh g-1), natural abundance and easy accessibility. In this paper, calculations are performed for different cell design parameters such as the active material loading, the amount/thickness of electrolyte, the sulfur utilization, etc. to predict the energy density of Li-S cells based on liquid, polymeric and ceramic electrolytes. It demonstrates that Li-S battery is most likely to be competitive in gravimetric energy density, but not volumetric energy density, with current technology, when comparing with LIBs. Furthermore, the cells with polymer and thin ceramic electrolytes show promising potential in terms of high gravimetric energy density, especially the cells with the polymer electrolyte. This estimation study of Li-S energy density can be used as a good guidance for controlling the key design parameters in order to get desirable energy density at cell-level.
Paradisi, R; Vanella, S; Barzanti, R; Cani, C; Battaglia, C; Seracchioli, R; Venturoli, S
2009-06-01
A number of studies indicated a clear decline in semen quality in the past 30-50 years and there is accumulating evidence that this decline might result from exposure to high levels of air pollution. To examine the impact of environment on male reproductive ability, we undertook for the first time a pilot study on semen quality of infertile men exposed to purification of indoor air. Ten subjects with a history of unexplained male infertility and poor semen quality were exposed for at least 1 year to a cleaning indoor air system (Koala technology). The key feature of this air purifier is the unique innovative multiple filtering system. The treatment of total purification of indoor air showed neither improvements in semen parameters nor variation in reproductive hormones (P = N.S.), but induced an evident increase (P < 0.03 and more) in seminal leucocytic concentrations. Within the limits due to the small sample of subjects recruited, the sole purification of indoor air does not seem enough to improve semen quality, although the increase in leucocytic concentrations could indicate an activation of the role of immunosurveillance in a purified indoor air environment.
NASA Astrophysics Data System (ADS)
Yu, Hao Yun; Liu, Chun-Hung; Shen, Yu Tian; Lee, Hsuan-Ping; Tsai, Kuen Yu
2014-03-01
Line edge roughness (LER) influencing the electrical performance of circuit components is a key challenge for electronbeam lithography (EBL) due to the continuous scaling of technology feature sizes. Controlling LER within an acceptable tolerance that satisfies International Technology Roadmap for Semiconductors requirements while achieving high throughput become a challenging issue. Although lower dosage and more-sensitive resist can be used to improve throughput, they would result in serious LER-related problems because of increasing relative fluctuation in the incident positions of electrons. Directed self-assembly (DSA) is a promising technique to relax LER-related pattern fidelity (PF) requirements because of its self-healing ability, which may benefit throughput. To quantify the potential of throughput improvement in EBL by introducing DSA for post healing, rigorous numerical methods are proposed to simultaneously maximize throughput by adjusting writing parameters of EBL systems subject to relaxed LER-related PF requirements. A fast, continuous model for parameter sweeping and a hybrid model for more accurate patterning prediction are employed for the patterning simulation. The tradeoff between throughput and DSA self-healing ability is investigated. Preliminary results indicate that significant throughput improvements are achievable at certain process conditions.
Key Health Information Technologies and Related Issues for Iran: A Qualitative Study
Hemmat, Morteza; Ayatollahi, Haleh; Maleki, Mohammadreza; Saghafi, Fatemeh
2018-01-01
Background and Objective: Planning for the future of Health Information Technology (HIT) requires applying a systematic approach when conducting foresight studies. The aim of this study was to identify key health information technologies and related issues for Iran until 2025. Methods: This was a qualitative study and the participants included experts and policy makers in the field of health information technology. In-depth semi-structured interviews were conducted and data were analyzed by using framework analysis and MAXQDA software. Results: The findings revealed that the development of national health information network, electronic health records, patient health records, a cloud-based service center, interoperability standards, patient monitoring technologies, telehealth, mhealth, clinical decision support systems, health information technology and mhealth infrastructure were found to be the key technologies for the future. These technologies could influence the economic, organizational and individual levels. To achieve them, the economic and organizational obstacles need to be overcome. Conclusion: In this study, a number of key technologies and related issues were identified. This approach can help to focus on the most important technologies in the future and to priorities these technologies for better resource allocation and policy making. PMID:29854016
NASA Astrophysics Data System (ADS)
Costard, Eric; Truffer, Jean P.; Huet, Odile; Dua, Lydie; Nedelcu, Alexandre; Robo, J. A.; Marcadet, Xavier; Brèire de l'Isle, Nadia; Bois, Philippe
2006-09-01
Standard GaAs/AlGaAs Quantum Well Infrared Photodetectors (QWIP) are considered as a technological choice for 3 rdgeneration thermal imagers [1], [2]. Since 2001, the THALES Group has been manufacturing sensitive arrays using AsGa based QWIP technology at THALES Research and Technology Laboratory. This QWIP technology allows the realization of large staring arrays for Thermal Imagers (TI) working in the Infrared region of the spectrum. The main advantage of this GaAs detector technology is that it is also used for other commercial devices. The GaAs industry has lead to important improvements over the last ten years and it reaches now an undeniable level of maturity. As a result the key parameters to reach high production yield: large substrate and good uniformity characteristics, have already been achieved. Considering defective pixels, the main usual features are a high operability (> 99.9%) and a low number of clusters having a maximum of 4 dead pixels. Another advantage of this III-V technology is the versatility of the design and processing phases. It allows customizing both the quantum structure and the pixel architecture in order to fulfill the requirements of any specific applications. The spectral response of QWIPs is intrinsically resonant but the quantum structure can be designed for a given detection wavelength window ranging from MWIR, LWIR to VLWIR.
Fluorescence-guided surgery and intervention - An AAPM emerging technology blue paper.
Pogue, Brian W; Zhu, Timothy C; Ntziachristos, Vasilis; Paulsen, Keith D; Wilson, Brian C; Pfefer, Joshua; Nordstrom, Robert J; Litorja, Maritoni; Wabnitz, Heidrun; Chen, Yu; Gioux, Sylvain; Tromberg, Bruce J; Yodh, Arjun G
2018-04-10
Fluorescence-guided surgery (FGS) and other interventions are rapidly evolving as a class of technologically driven interventional approaches in which many surgical specialties visualize fluorescent molecular tracers or biomarkers through associated cameras or oculars to guide clinical decisions on pathological lesion detection and excision/ablation. The technology has been commercialized for some specific applications, but also presents technical challenges unique to optical imaging that could confound the utility of some interventional procedures where real-time decisions must be made. Accordingly, the AAPM has initiated the publication of this Blue Paper of The Emerging Technology Working Group (TETAWG) and the creation of a Task Group from the Therapy Physics Committee within the Treatment Delivery Subcommittee. In describing the relevant issues, this document outlines the key parameters, stakeholders, impacts, and outcomes of clinical FGS technology and its applications. The presentation is not intended to be conclusive, but rather to inform the field of medical physics and stimulate the discussions needed in the field with respect to a seemingly low-risk imaging technology that has high potential for significant therapeutic impact. This AAPM Task Group is working toward consensus around guidelines and standards for advancing the field safely and effectively. © 2018 American Association of Physicists in Medicine.
Smart City Pilot Projects Using LoRa and IEEE802.15.4 Technologies.
Pasolini, Gianni; Buratti, Chiara; Feltrin, Luca; Zabini, Flavio; De Castro, Cristina; Verdone, Roberto; Andrisano, Oreste
2018-04-06
Information and Communication Technologies (ICTs), through wireless communications and the Internet of Things (IoT) paradigm, are the enabling keys for transforming traditional cities into smart cities, since they provide the core infrastructure behind public utilities and services. However, to be effective, IoT-based services could require different technologies and network topologies, even when addressing the same urban scenario. In this paper, we highlight this aspect and present two smart city testbeds developed in Italy. The first one concerns a smart infrastructure for public lighting and relies on a heterogeneous network using the IEEE 802.15.4 short-range communication technology, whereas the second one addresses smart-building applications and is based on the LoRa low-rate, long-range communication technology. The smart lighting scenario is discussed providing the technical details and the economic benefits of a large-scale (around 3000 light poles) flexible and modular implementation of a public lighting infrastructure, while the smart-building testbed is investigated, through measurement campaigns and simulations, assessing the coverage and the performance of the LoRa technology in a real urban scenario. Results show that a proper parameter setting is needed to cover large urban areas while maintaining the airtime sufficiently low to keep packet losses at satisfactory levels.
Composite Development and Applications for RLV Tankage
NASA Technical Reports Server (NTRS)
Wright, Richard J.; Achary, David C.; McBain, Michael C.
2003-01-01
The development of polymer composite cryogenic tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 28%-41% reduction in weight that composite materials can provide over current aluminum technology. The development of composite cryogenic tanks, feedlines, and unpressurized structures are key enabling technologies for performance and cost enhancements for Reusable Launch Vehicles (RLVs). The technology development of composite tanks has provided direct and applicable data for feedlines, unpressurized structures, material compatibility, and cryogenic fluid containment for highly loaded complex structures and interfaces. All three types of structure have similar material systems, processing parameters, scaling issues, analysis methodologies, NDE development, damage tolerance, and repair scenarios. Composite cryogenic tankage is the most complex of the 3 areas and provides the largest breakthrough in technology. A building block approach has been employed to bring this family of difficult technologies to maturity. This approach has built up composite materials, processes, design, analysis and test methods technology through a series of composite test programs beginning with the NASP program to meet aggressive performance goals for reusable launch vehicles. In this paper, the development and application of advanced composites for RLV use is described.
Smart City Pilot Projects Using LoRa and IEEE802.15.4 Technologies
Buratti, Chiara; Zabini, Flavio; De Castro, Cristina; Verdone, Roberto; Andrisano, Oreste
2018-01-01
Information and Communication Technologies (ICTs), through wireless communications and the Internet of Things (IoT) paradigm, are the enabling keys for transforming traditional cities into smart cities, since they provide the core infrastructure behind public utilities and services. However, to be effective, IoT-based services could require different technologies and network topologies, even when addressing the same urban scenario. In this paper, we highlight this aspect and present two smart city testbeds developed in Italy. The first one concerns a smart infrastructure for public lighting and relies on a heterogeneous network using the IEEE 802.15.4 short-range communication technology, whereas the second one addresses smart-building applications and is based on the LoRa low-rate, long-range communication technology. The smart lighting scenario is discussed providing the technical details and the economic benefits of a large-scale (around 3000 light poles) flexible and modular implementation of a public lighting infrastructure, while the smart-building testbed is investigated, through measurement campaigns and simulations, assessing the coverage and the performance of the LoRa technology in a real urban scenario. Results show that a proper parameter setting is needed to cover large urban areas while maintaining the airtime sufficiently low to keep packet losses at satisfactory levels. PMID:29642391
An expert system for diagnostics and estimation of steam turbine components condition
NASA Astrophysics Data System (ADS)
Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.
2017-11-01
The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis, calculating the probability of faults hypotheses, given the degree of the expert confidence in estimation of turbine components operation parameters.
Input from Key Stakeholders in the National Security Technology Incubator
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
This report documents the input from key stakeholders of the National Security Technology Incubator (NSTI) in developing a new technology incubator and related programs for southern New Mexico. The technology incubator is being developed as part of the National Security Preparedness Project (NSPP), funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes identification of key stakeholders as well as a description and analysis of their input for the development of an incubator.
Khan, Z. N.; Ahmed, S.; Ali, M.
2016-01-01
Metal Oxide Semiconductor (MOS) capacitors (MOSCAP) have been instrumental in making CMOS nano-electronics realized for back-to-back technology nodes. High-k gate stacks including the desirable metal gate processing and its integration into CMOS technology remain an active research area projecting the solution to address the requirements of technology roadmaps. Screening, selection and deposition of high-k gate dielectrics, post-deposition thermal processing, choice of metal gate structure and its post-metal deposition annealing are important parameters to optimize the process and possibly address the energy efficiency of CMOS electronics at nano scales. Atomic layer deposition technique is used throughout this work because of its known deposition kinetics resulting in excellent electrical properties and conformal structure of the device. The dynamics of annealing greatly influence the electrical properties of the gate stack and consequently the reliability of the process as well as manufacturable device. Again, the choice of the annealing technique (migration of thermal flux into the layer), time-temperature cycle and sequence are key parameters influencing the device’s output characteristics. This work presents a careful selection of annealing process parameters to provide sufficient thermal budget to Si MOSCAP with atomic layer deposited HfSiO high-k gate dielectric and TiN gate metal. The post-process annealing temperatures in the range of 600°C -1000°C with rapid dwell time provide a better trade-off between the desirable performance of Capacitance-Voltage hysteresis and the leakage current. The defect dynamics is thought to be responsible for the evolution of electrical characteristics in this Si MOSCAP structure specifically designed to tune the trade-off at low frequency for device application. PMID:27571412
Needs for Robotic Assessments of Nuclear Disasters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor Walker; Derek Wadsworth
Following the nuclear disaster at the Fukushima nuclear reactor plant in Japan, the need for systems which can assist in dynamic high-radiation environments such as nuclear incidents has become more apparent. The INL participated in delivering robotic technologies to Japan and has identified key components which are needed for success and obstacles to their deployment. In addition, we are proposing new work and methods to improve assessments and reactions to such events in the future. Robotics needs in disaster situations include phases such as: Assessment, Remediation, and Recovery Our particular interest is in the initial assessment activities. In assessment wemore » need collection of environmental parameters, determination of conditions, and physical sample collection. Each phase would require key tools and efforts to develop. This includes study of necessary sensors and their deployment methods, the effects of radiation on sensors and deployment, and the development of training and execution systems.« less
Discrete Event Simulation Modeling and Analysis of Key Leader Engagements
2012-06-01
to offer. GreenPlayer agents require four parameters, pC, pKLK, pTK, and pRK , which give probabilities for being corrupt, having key leader...HandleMessageRequest component. The same parameter constraints apply to these four parameters. The parameter pRK is the same parameter from the CreatePlayers component...whether the local Green player has resource critical knowledge by using the parameter pRK . It schedules an EndResourceKnowledgeRequest event, passing
Srivastava, Vineet Kumar; Tuteja, Narendra
2014-01-01
Forisomes protein belongs to SEO gene family and is unique to Fabaceae family. These proteins are located in sieve tubes of phloem and function to prevent loss of nutrient-rich photoassimilates, upon mechanical injury/wounding. Forisome protein is also known as ATP independent, mechanically active proteins. Despite the wealth of information role of forisome in plants are not yet fully understood. Recent reports suggest that forisomes protein can act as ideal model to study self assembly mechanism for development of nanotechnological devices like microfluidic system application in space exploration mission. Improvement in micro instrument is highly demanding and has been a key technology by NASA in future space exploration missions. Based on its physical parameters, forisome are found to be ideal biomimetic materials for micro fluidic system because the conformational shifts can be replicated in vitro and are fully reversible over large number of cycles. By the use of protein engineering forisome recombinant protein can be tailored. Due to its unique ability to convert chemical energy into mechanical energy forisome has received much attention. For nanotechnological application and handling biomolecules such as DNA, RNA, protein and cell as a whole microfluidic system will be the most powerful technology. The discovery of new biomimetic smart materials has been a key factor in development of space science and its requirements in such a challenging environment. The field of microfludic, particularly in terms of development of its components along with identification of new biomimetic smart materials, deserves more attention. More biophysical investigation is required to characterize it to make it more suitable under parameters of performance.
Srivastava, Vineet Kumar; Tuteja, Narendra
2014-06-06
Forisomes protein belongs to SEO gene family and is unique to Fabaceae family. These proteins are located in sieve tubes of phloem and function to prevent loss of nutrient-rich photoassimilates, upon mechanical injury/wounding. Forisome protein is also known as ATP independent, mechanically active proteins. Despite the wealth of information role of forisome in plants are not yet fully understood. Recent reports suggest that forisomes protein can act as ideal model to study self assembly mechanism for development of nanotechnological devices like microfluidic system application in space exploration mission. Improvement in micro instrument is highly demanding and has been a key technology by NASA in future space exploration missions. Based on its physical parameters, forisome are found to be ideal biomimetic materials for micro fluidic system because the conformational shifts can be replicated in vitro and are fully reversible over large number of cycles. By the use of protein engineering forisome recombinant protein can be tailored. Due to its unique ability to convert chemical energy into mechanical energy forisome has received much attention. For nanotechnological application and handling biomolecules such as DNA, RNA, protein and cell as a whole microfluidic system will be the most powerful technology. The discovery of new biomimetic smart materials has been a key factor in development of space science and its requirements in such a challenging environment. The field of microfludic, particularly in terms of development of its components along with identification of new biomimetic smart materials, deserves more attention. More biophysical investigation is required to characterize it to make it more suitable under parameters of performance.
Srivastava, Vineet Kumar; Tuteja, Narendra
2014-01-01
Forisomes protein belongs to SEO gene family and is unique to Fabaceae family. These proteins are located in sieve tubes of phloem and function to prevent loss of nutrient-rich photoassimilates, upon mechanical injury/wounding. Forisome protein is also known as ATP independent, mechanically active proteins. Despite the wealth of information role of forisome in plants are not yet fully understood. Recent reports suggest that forisomes protein can act as ideal model to study self assembly mechanism for development of nanotechnological devices like microfluidic system application in space exploration mission. Improvement in micro instrument is highly demanding and has been a key technology by NASA in future space exploration missions. Based on its physical parameters, forisome are found to be ideal biomimetic materials for micro fluidic system because the conformational shifts can be replicated in vitro and are fully reversible over large number of cycles. By the use of protein engineering forisome recombinant protein can be tailored. Due to its unique ability to convert chemical energy into mechanical energy forisome has received much attention. For nanotechnological application and handling biomolecules such as DNA, RNA, protein and cell as a whole microfluidic system will be the most powerful technology. The discovery of new biomimetic smart materials has been a key factor in development of space science and its requirements in such a challenging environment. The field of microfludic, particularly in terms of development of its components along with identification of new biomimetic smart materials, deserves more attention. More biophysical investigation is required to characterize it to make it more suitable under parameters of performance. PMID:25763691
A novel and lightweight system to secure wireless medical sensor networks.
He, Daojing; Chan, Sammy; Tang, Shaohua
2014-01-01
Wireless medical sensor networks (MSNs) are a key enabling technology in e-healthcare that allows the data of a patient's vital body parameters to be collected by the wearable or implantable biosensors. However, the security and privacy protection of the collected data is a major unsolved issue, with challenges coming from the stringent resource constraints of MSN devices, and the high demand for both security/privacy and practicality. In this paper, we propose a lightweight and secure system for MSNs. The system employs hash-chain based key updating mechanism and proxy-protected signature technique to achieve efficient secure transmission and fine-grained data access control. Furthermore, we extend the system to provide backward secrecy and privacy preservation. Our system only requires symmetric-key encryption/decryption and hash operations and is thus suitable for the low-power sensor nodes. This paper also reports the experimental results of the proposed system in a network of resource-limited motes and laptop PCs, which show its efficiency in practice. To the best of our knowledge, this is the first secure data transmission and access control system for MSNs until now.
Key Findings and Recommendations for Technology Transfer at the ITS JPO
DOT National Transportation Integrated Search
2011-03-18
This report provides key findings and recommendations for technology transfer at the Intelligent Transportation Systems Joint Program Office (ITS JPO) based upon an assessment of best practices in technology transfer in other industries, such as nati...
The ECAR Study of Undergraduate Students and Information Technology, 2010. Key Findings
ERIC Educational Resources Information Center
Smith, Shannon D.; Caruso, Judith Borreson
2010-01-01
This document presents the key findings from "The ECAR Study of Undergraduate Students and Information Technology, 2010". Since 2004, the annual ECAR (EDUCAUSE Center for Applied Research) study of undergraduate students and information technology has sought to shed light on how information technology affects the college experience. We…
Calculated performance, stability and maneuverability of high-speed tilting-prop-rotor aircraft
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Lau, Benton H.; Bowles, Jeffrey V.
1986-01-01
The feasibility of operating tilting-prop-rotor aircraft at high speeds is examined by calculating the performance, stability, and maneuverability of representative configurations. The rotor performance is examined in high-speed cruise and in hover. The whirl-flutter stability of the coupled-wing and rotor motion is calculated in the cruise mode. Maneuverability is examined in terms of the rotor-thrust limit during turns in helicopter configuration. Rotor airfoils, rotor-hub configuration, wing airfoil, and airframe structural weights representing demonstrated advance technology are discussed. Key rotor and airframe parameters are optimized for high-speed performance and stability. The basic aircraft-design parameters are optimized for minimum gross weight. To provide a focus for the calculations, two high-speed tilt-rotor aircraft are considered: a 46-passenger, civil transport and an air-combat/escort fighter, both with design speeds of about 400 knots. It is concluded that such high-speed tilt-rotor aircraft are quite practical.
NASA Astrophysics Data System (ADS)
Post, Alexander; Beath, Andrew; Sauret, Emilie; Persky, Rodney
2017-06-01
Concentrated solar thermal power generation poses a unique situation for power block selection, in which a capital intensive heat source is subject to daily and seasonal fluctuations in intensity. In this study, a method is developed to easily evaluate the favourability of different power blocks for converting the heat supplied by a concentrated solar thermal plant into power at the 100MWe scale based on several key parameters. The method is then applied to a range of commercially available power cycles that operate over different temperatures and efficiencies, and with differing capital costs, each with performance and economic parameters selected to be typical of their technology type, as reported in literature. Using this method, the power cycle is identified among those examined that is most likely to result in a minimum levelised cost of energy of a solar thermal plant.
Acoustic emission data assisted process monitoring.
Yen, Gary G; Lu, Haiming
2002-07-01
Gas-liquid two-phase flows are widely used in the chemical industry. Accurate measurements of flow parameters, such as flow regimes, are the key of operating efficiency. Due to the interface complexity of a two-phase flow, it is very difficult to monitor and distinguish flow regimes on-line and real time. In this paper we propose a cost-effective and computation-efficient acoustic emission (AE) detection system combined with artificial neural network technology to recognize four major patterns in an air-water vertical two-phase flow column. Several crucial AE parameters are explored and validated, and we found that the density of acoustic emission events and ring-down counts are two excellent indicators for the flow pattern recognition problems. Instead of the traditional Fair map, a hit-count map is developed and a multilayer Perceptron neural network is designed as a decision maker to describe an approximate transmission stage of a given two-phase flow system.
Density of Spray-Formed Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin M. McHugh; Volker Uhlenwinkel; Nils Ellendr
2008-06-01
Spray Forming is an advanced materials processing technology that transforms molten metal into a near-net-shape solid by depositing atomized droplets onto a substrate. Depending on the application, the spray-formed material may be used in the as-deposited condition or it may undergo post-deposition processing. Regardless, the density of the as-deposited material is an important issue. Porosity is detrimental because it can significantly reduce strength, toughness, hardness and other properties. While it is not feasible to achieve fully-dense material in the as-deposited state, density greater than 99% of theoretical density is possible if the atomization and impact conditions are optimized. Thermal conditionsmore » at the deposit surface and droplet impact angle are key processing parameters that influence the density of the material. This paper examines the factors that contribute to porosity formation during spray forming and illustrates that very high as-deposited density is achieved by optimizing processing parameters.« less
Improvement of Biogas Production by Bioaugmentation
Kovács, K. L.; Ács, N.; Kovács, E.; Wirth, R.; Rákhely, G.; Strang, Orsolya; Herbel, Zsófia; Bagi, Z.
2013-01-01
Biogas production technologies commonly involve the use of natural anaerobic consortia of microbes. The objective of this study was to elucidate the importance of hydrogen in this complex microbial food chain. Novel laboratory biogas reactor prototypes were designed and constructed. The fates of pure hydrogen-producing cultures of Caldicellulosiruptor saccharolyticus and Enterobacter cloacae were followed in time in thermophilic and mesophilic natural biogas-producing communities, respectively. Molecular biological techniques were applied to study the altered ecosystems. A systematic study in 5-litre CSTR digesters revealed that a key fermentation parameter in the maintenance of an altered population balance is the loading rate of total organic solids. Intensification of the biogas production was observed and the results corroborate that the enhanced biogas productivity is associated with the increased abundance of the hydrogen producers. Fermentation parameters did not indicate signs of failure in the biogas production process. Rational construction of more efficient and sustainable biogas-producing microbial consortia is proposed. PMID:23484123
A time-dependent order parameter for ultrafast photoinduced phase transitions.
Beaud, P; Caviezel, A; Mariager, S O; Rettig, L; Ingold, G; Dornes, C; Huang, S-W; Johnson, J A; Radovic, M; Huber, T; Kubacka, T; Ferrer, A; Lemke, H T; Chollet, M; Zhu, D; Glownia, J M; Sikorski, M; Robert, A; Wadati, H; Nakamura, M; Kawasaki, M; Tokura, Y; Johnson, S L; Staub, U
2014-10-01
Strongly correlated electron systems often exhibit very strong interactions between structural and electronic degrees of freedom that lead to complex and interesting phase diagrams. For technological applications of these materials it is important to learn how to drive transitions from one phase to another. A key question here is the ultimate speed of such phase transitions, and to understand how a phase transition evolves in the time domain. Here we apply time-resolved X-ray diffraction to directly measure the changes in long-range order during ultrafast melting of the charge and orbitally ordered phase in a perovskite manganite. We find that although the actual change in crystal symmetry associated with this transition occurs over different timescales characteristic of the many electronic and vibrational coordinates of the system, the dynamics of the phase transformation can be well described using a single time-dependent 'order parameter' that depends exclusively on the electronic excitation.
Proof of concept of a novel SMA cage actuator
NASA Astrophysics Data System (ADS)
Deyer, Christopher W.; Brei, Diann E.
2001-06-01
Numerous industrial applications that currently utilize expensive solenoids or slow wax motors are good candidates for smart material actuation. Many of these applications require millimeter-scale displacement and low cost; thereby, eliminating piezoelectric technologies. Fortunately, there is a subset of these applications that can tolerate the slower response of shape memory alloys. This paper details a proof-of-concept study of a novel SMA cage actuator intended for proportional braking in commercial appliances. The chosen actuator architecture consists of a SMA wire cage enclosing a return spring. To develop an understanding of the influences of key design parameters on the actuator response time and displacement amplitude, a half-factorial 25 Design of Experiment (DOE) study was conducted utilizing eight differently configured prototypes. The DOE results guided the selection of the design parameters for the final proof-of-concept actuator. This actuator was built and experimentally characterized for stroke, proportional control and response time.
Antenna technology for advanced mobile communication systems
NASA Technical Reports Server (NTRS)
Rammos, Emmanuel; Roederer, Antoine; Rogard, Roger
1988-01-01
The onboard antenna front end is the key subsystem conditioning configuration and performance of mobile communication satellites. The objectives of this paper are to demonstrate this key role and to review L-band satellite antenna technology for earth coverage and regional applications. Multibeam arrays are first discussed, then unfurlable and inflatable reflector antennas are described. These technologies are now qualified in Europe for future mobile systems, for which the optimum choice of antenna technology has been found to be the key to efficient use of spectrum and power resources.
Research on Key Technology and Applications for Internet of Things
NASA Astrophysics Data System (ADS)
Chen, Xian-Yi; Jin, Zhi-Gang
The Internet of Things (IOT) has been paid more and more attention by the academe, industry, and government all over the world. The concept of IOT and the architecture of IOT are discussed. The key technologies of IOT, including Radio Frequency Identification technology, Electronic Product Code technology, and ZigBee technology are analyzed. The framework of digital agriculture application based on IOT is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Laura; Genser, Krzysztof; Hatcher, Robert
Geant4 is the leading detector simulation toolkit used in high energy physics to design detectors and to optimize calibration and reconstruction software. It employs a set of carefully validated physics models to simulate interactions of particles with matter across a wide range of interaction energies. These models, especially the hadronic ones, rely largely on directly measured cross-sections and phenomenological predictions with physically motivated parameters estimated by theoretical calculation or measurement. Because these models are tuned to cover a very wide range of possible simulation tasks, they may not always be optimized for a given process or a given material. Thismore » raises several critical questions, e.g. how sensitive Geant4 predictions are to the variations of the model parameters, or what uncertainties are associated with a particular tune of a Geant4 physics model, or a group of models, or how to consistently derive guidance for Geant4 model development and improvement from a wide range of available experimental data. We have designed and implemented a comprehensive, modular, user-friendly software toolkit to study and address such questions. It allows one to easily modify parameters of one or several Geant4 physics models involved in the simulation, and to perform collective analysis of multiple variants of the resulting physics observables of interest and comparison against a variety of corresponding experimental data. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. flexible run-time configurable workflow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented and illustrated with results obtained with Geant4 key hadronic models.« less
Extraction of Volatiles from Regolith or Soil on Mars, the Moon, and Asteroids
NASA Technical Reports Server (NTRS)
Linne, Diane; Kleinhenz, Julie; Trunek, Andrew; Hoffman, Stephen; Collins, Jacob
2017-01-01
NASA's Advanced Exploration Systems ISRU Technology Project is evaluating concepts to extract water from all resource types Near-term objectives: Produce high-fidelity mass, power, and volume estimates for mining and processing systems Identify critical challenges for development focus Begin demonstration of component and subsystem technologies in relevant environment Several processor types: Closed processors either partially or completely sealed during processing Open air processors operates at Mars ambient conditions In-situ processors Extract product directly without excavation of raw resource Design features Elimination of sweep gas reduces dust particles in water condensate Pressure maintained by height of soil in hopper Model developed to evaluate key design parameters Geometry: conveyor diameter, screw diameter, shaft diameter, flight spacing and pitch Operational: screw speed vs. screw length (residence time) Thermal: Heat flux, heat transfer to soil Testing to demonstrate feasibility and performance Agglomeration, clogging Pressure rise forced flow to condenser.
A K-Band Low-Power Phase Shifter Based on Injection Locked Oscillator in 0.13 μm CMOS Technology
NASA Astrophysics Data System (ADS)
Qiu, Qi-Lin; Yu, Xiao-Peng; Sui, Wen-Quan
2017-11-01
In this paper, the design challenges of the injection-locked oscillator (ILO)-based phase shifter are reviewed and analyzed. The key design considerations such as the operating frequency, locking range, and linearity of the phase shifters are analysed in detail. It is possible to optimize the phase shifter in certain parameters such as ultra-low power while meeting the requirements of a certain system. As a design example, a K-band phase shifter is implemented using a commercial 0.13 μm CMOS technology, where a conventional LC tank based topology is implemented but optimised with a good balance among power consumption, working range, sensitivity, and silicon area, etc. Measurement results show that the proposed phase shift is able to work at 22-23.4 GHz with a range of 180∘ while consuming 3.14 mW from a 1.2 V supply voltage.
Recent Advances in Cigarette Ignition Propensity Research and Development
O’Connor, Richard J.; Spalletta, Ron; Connolly, Gregory N.
2009-01-01
Major U.S. cigarette companies for decades conducted research and development regarding cigarette ignition propensity which has continued beyond fire safety standards for cigarettes that have recently been legislated. This paper describes recent scientific advances and technological development based on a comprehensive review of the physical, chemical, and engineering sciences, public health, and trade literature, U.S. and international patents, and research in the tobacco industry document libraries. Advancements since the first implementation of standards have made been in: a) understanding the key parameters involved in cigarette smoldering combustion and ignition of substrates; b) developing new cigarette and paper wrapper designs to reduce ignition propensity, including banded and non-banded cigarette paper approaches, c) assessing toxicology, and d) measuring performance. While the implications of manufacturers’ non-safety related aims are of concern, this research indicates possible alternative designs should experience with fire loss and existing technologies on the market suggest need for improvement. PMID:20495669
Development of Detonation Flame Sprayed Cu-Base Coatings Containing Large Ceramic Particles
NASA Astrophysics Data System (ADS)
Tillmann, Wolfgang; Vogli, Evelina; Nebel, Jan
2007-12-01
Metal-matrix composites (MMCs) containing large ceramic particles as superabrasives are typically used for grinding stone, minerals, and concrete. Sintering and brazing are the key manufacturing technologies for grinding tool production. However, restricted geometry flexibility and the absence of repair possibilities for damaged tool surfaces, as well as difficulties of controlling material interfaces, are the main weaknesses of these production processes. Thermal spraying offers the possibility to avoid these restrictions. The research for this paper investigated a fabrication method based on the use of detonation flame spraying technology to bond large superabrasive particles (150-600 μm, needed for grinding minerals and stones) in a metallic matrix. Layer morphology and bonding quality are evaluated with respect to superabrasive material, geometry, spraying, and powder-injection parameters. The influence of process temperature and the possibilities of thermal treatment of MMC layers are analyzed.
Murphy, Diarmaid J; Boyd, Peter; McCoy, Clare F; Kumar, Sandeep; Holt, Jonathon D S; Blanda, Wendy; Brimer, Andrew N; Malcolm, R Karl
2016-03-28
Despite a long history of incorporating steroids into silicone elastomers for drug delivery applications, little is presently known about the propensity for irreversible drug binding in these systems. In this study, the ability of the contraceptive progestin levonorgestrel to bind chemically with hydrosilane groups in addition-cure silicone elastomers has been thoroughly investigated. Cure time, cure temperature, levonorgestrel particle size, initial levonorgestrel loading and silicone elastomer type were demonstrated to be key parameters impacting the extent of levonorgestrel binding, each through their influence on the solubility of levonorgestrel in the silicone elastomer. Understanding and overcoming this levonorgestrel binding phenomenon is critical for the ongoing development of a number of drug delivery products, including a multi-purpose technology vaginal ring device offering simultaneous release of levonorgestrel and dapivirine - a lead candidate antiretroviral microbicide - for combination HIV prevention and hormonal contraception. Copyright © 2016 Elsevier B.V. All rights reserved.
Generic Stellarator-like Magnetic Fusion Reactor
NASA Astrophysics Data System (ADS)
Sheffield, John; Spong, Donald
2015-11-01
The Generic Magnetic Fusion Reactor paper, published in 1985, has been updated, reflecting the improved science and technology base in the magnetic fusion program. Key changes beyond inflation are driven by important benchmark numbers for technologies and costs from ITER construction, and the use of a more conservative neutron wall flux and fluence in modern fusion reactor designs. In this paper the generic approach is applied to a catalyzed D-D stellarator-like reactor. It is shown that an interesting power plant might be possible if the following parameters could be achieved for a reference reactor: R/ < a > ~ 4 , confinement factor, fren = 0.9-1.15, < β > ~ 8 . 0 -11.5 %, Zeff ~ 1.45 plus a relativistic temperature correction, fraction of fast ions lost ~ 0.07, Bm ~ 14-16 T, and R ~ 18-24 m. J. Sheffield was supported under ORNL subcontract 4000088999 with the University of Tennessee.
Process simulation of ethanol production from biomass gasification and syngas fermentation.
Pardo-Planas, Oscar; Atiyeh, Hasan K; Phillips, John R; Aichele, Clint P; Mohammad, Sayeed
2017-12-01
The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.
Stretchable biocompatible electronics by embedding electrical circuitry in biocompatible elastomers.
Jahanshahi, Amir; Salvo, Pietro; Vanfleteren, Jan
2012-01-01
Stretchable and curvilinear electronics has been used recently for the fabrication of micro systems interacting with the human body. The applications range from different kinds of implantable sensors inside the body to conformable electrodes and artificial skins. One of the key parameters in biocompatible stretchable electronics is the fabrication of reliable electrical interconnects. Although very recent literature has reported on the reliability of stretchable interconnects by cyclic loading, work still needs to be done on the integration of electrical circuitry composed of rigid components and stretchable interconnects in a biological environment. In this work, the feasibility of a developed technology to fabricate simple electrical circuits with meander shaped stretchable interconnects is presented. Stretchable interconnects are 200 nm thin Au layer supported with polyimide (PI). A stretchable array of light emitting diodes (LEDs) is embedded in biocompatible elastomer using this technology platform and it features a 50% total elongation.
Torsional Vibration in the National Wind Technology Center’s 2.5-Megawatt Dynamometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sethuraman, Latha; Keller, Jonathan; Wallen, Robb
2016-08-31
This report documents the torsional drivetrain dynamics of the NWTC's 2.5-megawatt dynamometer as identified experimentally and as calculated using lumped parameter models using known inertia and stiffness parameters. The report is presented in two parts beginning with the identification of the primary torsional modes followed by the investigation of approaches to damp the torsional vibrations. The key mechanical parameters for the lumped parameter models and justification for the element grouping used in the derivation of the torsional modes are presented. The sensitivities of the torsional modes to different test article properties are discussed. The oscillations observed from the low-speed andmore » generator torque measurements were used to identify the extent of damping inherently achieved through active and passive compensation techniques. A simplified Simulink model of the dynamometer test article integrating the electro-mechanical power conversion and control features was established to emulate the torque behavior that was observed during testing. The torque response in the high-speed, low-speed, and generator shafts were tested and validated against experimental measurements involving step changes in load with the dynamometer operating under speed-regulation mode. The Simulink model serves as a ready reference to identify the torque sensitivities to various system parameters and to explore opportunities to improve torsional damping under different conditions.« less
2013-06-01
1 18th ICCRTS Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables...AND SUBTITLE Using a Functional Simulation of Crisis Management to Test the C2 Agility Model Parameters on Key Performance Variables 5a. CONTRACT...command in crisis management. C2 Agility Model Agility can be conceptualized at a number of different levels; for instance at the team
2016-08-01
prioritization of key information technology limits management’s ability to focus audit readiness efforts on the systems with the highest risk...corrective actions for the higher-risk systems first. For an audit readiness plan for key information technology systems, the Navy provided a schedule...prioritization of key information technology systems used in the FBWT process limits management’s ability to focus audit readiness efforts on the most
Design and development of the CubeSat Infrared Atmospheric Sounder (CIRAS)
NASA Astrophysics Data System (ADS)
Pagano, Thomas S.; Abesamis, Carlo; Andrade, Andres; Aumann, Hartmut; Gunapala, Sarath; Heneghan, Cate; Jarnot, Robert; Johnson, Dean; Lamborn, Andy; Maruyama, Yuki; Rafol, Sir; Raouf, Nasrat; Rider, David; Ting, Dave; Wilson, Dan; Yee, Karl; Cole, Jerold; Good, Bill; Kampe, Tom; Soto, Juancarlos; Adams, Arn; Buckley, Matt; Nicol, Fred; Vengel, Tony
2017-09-01
The CubeSat Infrared Atmospheric Sounder (CIRAS) is a NASA Earth Science Technology Office (ESTO) sponsored mission to demonstrate key technologies used in very high spectral resolution infrared remote sensing of Earth's atmosphere from space. CIRAS was awarded under the ESTO In-flight Validation of Earth Science Technologies (InVEST) program in 2015 and is currently under development at NASA JPL with key subsystems being developed by industry. CIRAS incorporates key new instrument technologies including a 2D array of High Operating Temperature Barrier Infrared Detector (HOT-BIRD) material, selected for its high uniformity, low cost, low noise and higher operating temperatures than traditional materials. The second key technology is an MWIR Grating Spectrometer (MGS) designed to provide imaging spectroscopy for atmospheric sounding in a CubeSat volume. The MGS is under development by Ball Aerospace with the grating and slit developed by JPL. The third key technology is a blackbody fabricated with JPL's black silicon to have very high emissivity in a flat plate construction. JPL will also develop the mechanical, electronic and thermal subsystems for CIRAS, while the spacecraft will be a 6U CubeSat developed by Blue Canyon Technologies. This paper provides an overview of the design and acquisition approach, and provides a status of the current development.
Affordable Development and Demonstration of a Small NTR Engine and Stage: How Small is Big Enough?
NASA Technical Reports Server (NTRS)
Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G.; Werner, J.; Weitzberg, A.; Joyner, C. R.
2015-01-01
In FY11, NASA formulated a plan for Nuclear Thermal Propulsion (NTP) development that included Foundational Technology Development followed by system-level Technology Demonstrations The ongoing NTP project, funded by NASAs Advanced Exploration Systems (AES) program, is focused on Foundational Technology Development and includes 5 key task activities:(1) Fuel element fabrication and non-nuclear validation testing of heritage fuel options;(2) Engine conceptual design;(3) Mission analysis and engine requirements definition;(4) Identification of affordable options for ground testing; and(5) Formulation of an affordable and sustainable NTP development program Performance parameters for Point of Departure designs for a small criticality-limited and full size 25 klbf-class engine were developed during FYs 13-14 using heritage fuel element designs for both RoverNERVA Graphite Composite (GC) and Ceramic Metal (Cermet) fuel forms To focus the fuel development effort and maximize use of its resources, the AES program decided, in FY14, that a leader-follower down selection between GC and cermet fuel was required An Independent Review Panel (IRP) was convened by NASA and tasked with reviewing the available fuel data and making a recommendation to NASA. In February 2015, the IRP recommended and the AES program endorsed GC as the leader fuel In FY14, a preliminary development schedule DDTE plan was produced by GRC, DOE industry for the AES program. Assumptions, considerations and key task activities are presented here Two small (7.5 and 16.5 klbf) engine sizes were considered for ground and flight technology demonstration within a 10-year timeframe; their ability to support future human exploration missions was also examined and a recommendation on a preferred size is provided.
Gao, Mengdi; Yu, Yanyan; Zhao, Huixia; Li, Guofeng; Jiang, Hongyang; Wang, Congzhi; Cai, Feiyan; Chan, Leanne Lai-Hang; Chiu, Bernard; Qian, Wei; Qiu, Weibao; Zheng, Hairong
2017-09-01
Millions of people around the world suffer from varying degrees of vision loss (including complete blindness) because of retinal degenerative diseases. Artificial retinal prosthesis, which is usually based on electrical neurostimulation, is the most advanced technology for different types of retinal degeneration. However, this technology involves placing a device into the eyeball, and such a highly invasive procedure is inevitably highly risk and expensive. Ultrasound has been demonstrated to be a promising technology for noninvasive neurostimulation, making it possible to stimulate the retina and induce action potentials similar to those elicited by light stimulation. However, the technology of ultrasound retinal stimulation still requires considerable developments before it could be applied clinically. This paper proposes a novel contact-lens array transducer for use in an ultrasound retinal prosthesis (USRP). The transducer was designed in the shape of a contact lens so as to facilitate acoustic coupling with the eye liquid. The key parameters of the ultrasound transducer were simulated, and results are presented that indicate the achievement of 2-D pattern generation and that the proposed contact-lens array is suitable for multiple-focus neurostimulation, and can be used in a USRP.
Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy
2016-01-01
The aeronautics industry has been challenged on many fronts to increase efficiency, reduce emissions, and decrease dependency on carbon-based fuels. The NASA Aeronautics Research Mission Directorate has identified a suite of investments to meet long term research demands beyond the purview of commercial investment. Electrification of aviation propulsion through turboelectric or hybrid electric propulsion is one of many exciting research areas which has the potential to revolutionize the aviation industry. This paper will provide an overview of the turboelectric and hybrid electric technologies being developed under NASAs Advanced Air Transportation Technology (AATT) Project, and how these technologies can impact vehicle design. An overview will be presented of vehicle system studies and the electric drive system assumptions for successful turboelectric and hybrid electric propulsion in single aisle size commercial aircraft. Key performance parameters for electric drive system technologies will be reviewed, and the technical investment made in materials, electric machines, power electronics, and integrated power systems will be discussed. Finally, power components for a single aisle turboelectric aircraft with an electrically driven tail cone thruster and a hybrid electric nine passenger aircraft with a range extender will be parametrically sized.
Parametric investigations of target normal sheath acceleration experiments
NASA Astrophysics Data System (ADS)
Zani, Alessandro; Sgattoni, Andrea; Passoni, Matteo
2011-10-01
One of the most important challenges related to laser-driven ion acceleration research is to actively control some important ion beam features. This is a peculiar topic in the light of future possible technological applications. In the present work we make use of one theoretical model for target normal sheath acceleration in order to reproduce recent experimental parametric studies about maximum ion energy dependencies on laser parameters. The key role played by pulse energy and intensity is enlightened. Finally the effective dependence of maximum ion energy on intensity is evaluated using a combined theoretical approach, obtained by means of an analytical and a particle-in-cell numerical investigation.
A new car-following model for autonomous vehicles flow with mean expected velocity field
NASA Astrophysics Data System (ADS)
Wen-Xing, Zhu; Li-Dong, Zhang
2018-02-01
Due to the development of the modern scientific technology, autonomous vehicles may realize to connect with each other and share the information collected from each vehicle. An improved forward considering car-following model was proposed with mean expected velocity field to describe the autonomous vehicles flow behavior. The new model has three key parameters: adjustable sensitivity, strength factor and mean expected velocity field size. Two lemmas and one theorem were proven as criteria for judging the stability of homogeneousautonomous vehicles flow. Theoretical results show that the greater parameters means larger stability regions. A series of numerical simulations were carried out to check the stability and fundamental diagram of autonomous flow. From the numerical simulation results, the profiles, hysteresis loop and density waves of the autonomous vehicles flow were exhibited. The results show that with increased sensitivity, strength factor or field size the traffic jam was suppressed effectively which are well in accordance with the theoretical results. Moreover, the fundamental diagrams corresponding to three parameters respectively were obtained. It demonstrates that these parameters play almost the same role on traffic flux: i.e. before the critical density the bigger parameter is, the greater flux is and after the critical density, the opposite tendency is. In general, the three parameters have a great influence on the stability and jam state of the autonomous vehicles flow.
Advanced In-Pile Instrumentation for Materials Testing Reactors
NASA Astrophysics Data System (ADS)
Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.
2014-08-01
The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.
Global sustainability and key needs in future automotive design.
McAuley, John W
2003-12-01
The number of light vehicle registrations is forecast to increase worldwide by a factor of 3-5 over the next 50 years. This will dramatically increase environmental impacts worldwide of automobiles and light trucks. If light vehicles are to be environmentally sustainable globally, the automotive industry must implement fundamental changes in future automotive design. Important factors in assessing automobile design needs include fuel economy and reduced emissions. Many design parameters can impact vehicle air emissions and energy consumption including alternative fuel or engine technologies, rolling resistance, aerodynamics, drive train design, friction, and vehicle weight. Of these, vehicle weight is key and will translate into reduced energy demand across all energy distribution elements. A new class of vehicles is needed that combines ultra-light design with a likely hybrid or fuel cell engine technology. This could increase efficiency by a factor of 3-5 and reduce air emissions as well. Advanced lightweight materials, such as plastics or composites, will need to overtake the present metal-based infrastructure. Incorporating design features to facilitate end-of-life recycling and recovery is also important. The trend will be towards fewer materials and parts in vehicle design, combined with ease of disassembly. Mono-material construction can create vehicle design with improved recyclability as well as reduced numbers of parts and weight.
Dixon, Matthew C.
2008-01-01
In recent years, there has been a rapid growth in the number of scientific reports in which the quartz crystal microbalance (QCM) technique has played a key role in elucidating various aspects of biological materials and their interactions. This article illustrates some key advances in the development of a special variation of this technique called quartz crystal microbalance with dissipation monitoring (QCM-D). The main feature and advantage of QCM-D, compared with the conventional QCM, is that it in addition to measuring changes in resonant frequency (Δf), a simultaneous parameter related to the energy loss or dissipation (ΔD) of the system is also measured. Δf essentially measures changes in the mass attached to the sensor surface, while ΔD measures properties related to the viscoelastic properties of the adlayer. Thus, QCM-D measures two totally independent properties of the adlayer. The focus of this review is an overview of the QCM-D technology and highlights of recent applications. Specifically, recent applications dealing with DNA, proteins, lipids, and cells will be detailed. This is not intended as a comprehensive review of all possible applications of the QCM-D technology, but rather a glimpse into a few highlighted application areas in the biomolecular field that were published in 2007. PMID:19137101
Demonstration of a fully differential VGA chip with small THD for ECG acquisition system
NASA Astrophysics Data System (ADS)
Gongli, Xiao; Yuliang, Qin; Weilin, Xu; Baolin, Wei; Jihai, Duan; Xueming, Wei
2015-10-01
We present both a theoretical and experimental demonstration of a fully differential variable gain amplifier (VGA) with small total harmonic distortion (THD) for an electrocardiogram (ECG) acquisition system. Capacitive feedback technology is adopted to reduce the nonlinearity of VGA. The fully differential VGA has been fabricated in SMIC 0.18-μm CMOS process, and it only occupies 0.11 mm2. The measurements are in good agreement with simulation results. Experimental results show that the gain of VGA changes from 6.17 to 43.75 dB with a gain step of 3 dB. The high-pass corner frequency and low-pass corner frequency are around 0.22 Hz and 7.9 kHz, respectively. For each gain configuration, a maximal THD of 0.13% is obtained. The fully differential VGA has a low THD and its key performance parameters are well satisfied with the demands of ECG acquisition system application in the UWB wireless body area network. Project supported by the National Natural Science Foundation of China (Nos. 61264001, 61465004, 61161003, 61166004), the Guangxi Natural Science Foundation (Nos. 2013GXNSFAA019333, 2013GXNSFAA019338), the Science and Technology Research Key Project of Guangxi Department of Education (No. 2013ZD026), and the Innovation Project of GUET Graduate Education (No. GDYCSZ201457).
Low-frequency noise behavior of polysilicon emitter bipolar junction transistors: a review
NASA Astrophysics Data System (ADS)
Deen, M. Jamal; Pascal, Fabien
2003-05-01
For many analog integrated circuit applications, the polysilicon emitter bipolar junction transistor (PE-BJT) is still the preferred choice because of its higher operational frequency and lower noise performance characteristics compared to MOS transistors of similar active areas and at similar biasing currents. In this paper, we begin by motivating the reader with reasons why bipolar transistors are still of great interest for analog integrated circuits. This motivation includes a comparison between BJT and the MOSFET using a simple small-signal equivalent circuit to derive important parameters that can be used to compare these two technologies. An extensive review of the popular theories used to explain low frequency noise results is presented. However, in almost all instances, these theories have not been fully tested. The effects of different processing technologies and conditions on the noise performance of PE-BJTs is reviewed and a summary of some of the key technological steps and device parameters and their effects on noise is discussed. The effects of temperature and emitter geometries scaling is reviewed. It is shown that dispersion of the low frequency noise in ultra-small geometries is a serious issue since the rate of increase of the noise dispersion is faster than the noise itself as the emitter geometry is scaled to smaller values. Finally, some ideas for future research on PE-BJTs, some of which are also applicable to SiGe heteorjunction bipolar transistors and MOSFETs, are presented after the conclusions.
Nonisothermal glass molding for the cost-efficient production of precision freeform optics
NASA Astrophysics Data System (ADS)
Vu, Anh-Tuan; Kreilkamp, Holger; Dambon, Olaf; Klocke, Fritz
2016-07-01
Glass molding has become a key replication-based technology to satisfy intensively growing demands of complex precision optics in the today's photonic market. However, the state-of-the-art replicative technologies are still limited, mainly due to their insufficiency to meet the requirements of mass production. This paper introduces a newly developed nonisothermal glass molding in which a complex-shaped optic is produced in a very short process cycle. The innovative molding technology promises a cost-efficient production because of increased mold lifetime, less energy consumption, and high throughput from a fast process chain. At the early stage of the process development, the research focuses on an integration of finite element simulation into the process chain to reduce time and labor-intensive cost. By virtue of numerical modeling, defects including chill ripples and glass sticking in the nonisothermal molding process can be predicted and the consequent effects are avoided. In addition, the influences of process parameters and glass preforms on the surface quality, form accuracy, and residual stress are discussed. A series of experiments was carried out to validate the simulation results. The successful modeling, therefore, provides a systematic strategy for glass preform design, mold compensation, and optimization of the process parameters. In conclusion, the integration of simulation into the entire nonisothermal glass molding process chain will significantly increase the manufacturing efficiency as well as reduce the time-to-market for the mass production of complex precision yet low-cost glass optics.
QWIP development status at Thales Research and Technology
NASA Astrophysics Data System (ADS)
Costard, Eric; Nedelcu, Alexandru; Marcadet, Xavier; Belhaire, Eric; Bois, Philippe
2006-05-01
Standard GaAs/AlGaAs Quantum Well Infrared Photodetectors (QWIP) are now seriously considered as a technological choice for the 3 rd generation of thermal imagers. Since 2001, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on AsGa techniques through THALES Research and Technology Laboratory. This QWIP technology allows the realisation of large staring arrays for Thermal Imagers (TI) working in the Infrared region of the spectrum. A review of the current QWIP products is presented (LWIR, MWIR and dual color FPAs). The main advantage of this GaAs detector technology is that it is also used for other commercial devices. The duality of this QWIP technology has lead to important improvements over the last ten years and it reaches now an undeniable level of maturity. As a result, the processing of large substrate and a good characteristic uniformity, which are the key parameters for reaching high production yield, are already achieved. Concerning the defective pixels, the main common features are a high operability (above 99.9%) and a low number of clusters including a maximum of 5 dead pixels. Another advantage of this III-V technology is the versatility of the design and processing phases. It allows customizing both the quantum structure and the pixel architecture in order to fulfill the requirements of any specific applications. The spectral response of QWIPs is intrinsically resonant but the quantum structure can be designed for a given detection wavelength window ranging from MWIR, LWIR to VLWIR.
Effect of geometrical parameters on pressure distributions of impulse manufacturing technologies
NASA Astrophysics Data System (ADS)
Brune, Ryan Carl
Impulse manufacturing techniques constitute a growing field of methods that utilize high-intensity pressure events to conduct useful mechanical operations. As interest in applying this technology continues to grow, greater understanding must be achieved with respect to output pressure events in both magnitude and distribution. In order to address this need, a novel pressure measurement has been developed called the Profile Indentation Pressure Evaluation (PIPE) method that systematically analyzes indentation patterns created with impulse events. Correlation with quasi-static test data and use of software-assisted analysis techniques allows for colorized pressure maps to be generated for both electromagnetic and vaporizing foil actuator (VFA) impulse forming events. Development of this technique aided introduction of a design method for electromagnetic path actuator systems, where key geometrical variables are considered using a newly developed analysis method, which is called the Path Actuator Proximal Array (PAPA) pressure model. This model considers key current distribution and proximity effects and interprets generated pressure by considering the adjacent conductor surfaces as proximal arrays of individual conductors. According to PIPE output pressure analysis, the PAPA model provides a reliable prediction of generated pressure for path actuator systems as local geometry is changed. Associated mechanical calculations allow for pressure requirements to be calculated for shearing, flanging, and hemming operations, providing a design process for such cases. Additionally, geometry effect is investigated through a formability enhancement study using VFA metalworking techniques. A conical die assembly is utilized with both VFA high velocity and traditional quasi-static test methods on varied Hasek-type sample geometries to elicit strain states consistent with different locations on a forming limit diagram. Digital image correlation techniques are utilized to measure major and minor strains for each sample type to compare limit strain results. Overall testing indicated decreased formability at high velocity for 304 DDQ stainless steel and increased formability at high velocity for 3003-H14 aluminum. Microstructural and fractographic analysis helped dissect and analyze the observed differences in these cases. Overall, these studies comprehensively explore the effects of geometrical parameters on magnitude and distribution of impulse manufacturing generated pressure, establishing key guidelines and models for continued development and implementation in commercial applications.
Focal plane arrays from UV up to VLWIR
NASA Astrophysics Data System (ADS)
Costard, E.; Nedelcu, A.; Achouche, M.; Reverchon, J. L.; Truffer, J. P.; Huet, O.; Dua, L.; Robo, J. A.; Marcadet, X.; Brière de l'Isle, N.; Facoetti, H.; Bois, P.
2007-10-01
Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at the Alcatel-Thales-III-V Lab (formerly part of THALES Research and Technology Laboratory). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. Another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures to fulfil the requirements of specific applications such as very long wavelength (VLWIR) or multispectral detection. In this presentation, we give the status of our LWIR QWIP production line, and also the current status of QWIPs for MWIR (<5μm) and VLWIR (>15μm) arrays. As the QWIP technology cannot cover the full electromagnetic spectrum, we develop other semiconductor compounds for SWIR and UV applications. We present here the status of our first FPA realization in UV with GaN alloy, and at 1.5μm with InGaAs photodiodes.
Radiometric packaging of uncooled bolometric infrared focal plane arrays
NASA Astrophysics Data System (ADS)
García-Blanco, Sonia; Pope, Timothy; Côté, Patrice; Leclerc, Mélanie; Ngo Phong, Linh; Châteauneuf, François
2017-11-01
INO has a wide experience in the design and fabrication of different kinds of microbolometer focal plane arrays (FPAs). In particular, a 512x3 pixel microbolometer FPA has been selected as the sensor for the New Infrared Sensor Technology (NIRST) instrument, one of the payloads of the SACD/Aquarius mission. In order to make the absolute temperature measurements necessary for many infrared Earth observation applications, the microbolometer FPA must be integrated into a package offering a very stable thermal environment. The radiometric packaging technology developed at INO presents an innovative approach since it was conceived to be modular and adaptable for the packaging of different microbolometer FPAs and for different sets of assembly requirements without need for requalification of the assembly process. The development of the radiometric packaging technology has broadened the position of INO as a supplier of radiometric detector modules integrating FPAs of microbolometers inside a radiometric package capable of achieving the requirements of different space missions. This paper gives an overview of the design of INO's radiometric package. Key performance parameters are also discussed and the test campaign conducted with the radiometric package is presented.
Smart Health - Potential and Pathways: A Survey
NASA Astrophysics Data System (ADS)
Arulananthan, C.; Hanifa, Sabibullah Mohamed
2017-08-01
Healthcare is an imperative key field of research, where individuals or groups can be engaged in the self-tracking of any kind of biological, physical, behavioral, or environmental information. In a massive health care data, the valuable information is hidden. The quantity of the available unstructured data has been expanding on an exponential scale. The newly developing Disruptive Technologies can handle many challenges that face data analysis and ability to extract valuable information via data analytics. Connected Wellness in Healthcare would retrieve patient’s physiological, pathological and behavioral parameters through sensors to perform inner workings of human body analysis. Disruptive technologies can take us from a reactive illness-driven to a proactive wellness-driven system in health care. It is need to be strive and create a smart health system towards wellness-driven instead of being illness-driven, today’s biggest problem in health care. Wellness-driven-analytics application help to promote healthiest living environment called “Smart Health”, deliver empower based quality of living. The contributions of this survey reveals and opens (touches uncovered areas) the possible doors in the line of research on smart health and its computing technologies.
[Spectral navigation technology and its application in positioning the fruits of fruit trees].
Yu, Xiao-Lei; Zhao, Zhi-Min
2010-03-01
An innovative technology of spectral navigation is presented in the present paper. This new method adopts reflectance spectra of fruits, leaves and branches as one of the key navigation parameters and positions the fruits of fruit trees relying on the diversity of spectral characteristics. The research results show that the distinct smoothness as effect is available in the spectrum of leaves of fruit trees. On the other hand, gradual increasing as the trend is an important feature in the spectrum of branches of fruit trees while the spectrum of fruit fluctuates. In addition, the peak diversity of reflectance rate between fruits and leaves of fruit trees is reached at 850 nm of wavelength. So the limit value can be designed at this wavelength in order to distinguish fruits and leaves. The method introduced here can not only quickly distinguish fruits, leaves and branches, but also avoid the effects of surroundings. Compared with the traditional navigation systems based on machine vision, there are still some special and unique features in the field of positioning the fruits of fruit trees using spectral navigation technology.
Multi-criteria assessment of community-based fluoride-removal technologies for rural Ethiopia.
Osterwalder, Lars; Johnson, C Annette; Yang, Hong; Johnston, Richard B
2014-08-01
Elevated concentrations of naturally-occurring fluoride in groundwater pose a serious health risk to millions of people living in the Ethiopian Rift Valley. In the absence of low-fluoride water resources of sufficient capacity, fluoride removal from drinking water is the accepted mitigation option. To date, five different community-level fluoride-removal technologies have been implemented in Ethiopia, although only a few units have been found in a functional state in the field. Which technology should be promoted and up-scaled is the subject of controversial debate amongst key stakeholders. This paper describes a multi-criteria decision analysis exercise, which was conducted with the participation of stakeholders in Ethiopia during a one-day workshop, to assess in an objective and transparent manner the available technology options. Criteria for technology comparison were selected and weighted, thus enabling the participants to assess the advantages and disadvantages of the different technologies and hear the views of other stakeholders. It was shown that there is no single most-preferable, technical solution for fluoride removal in Ethiopia. Selection of the most suitable solution depends on location-specific parameters and on the relative importance given to different criteria by the stakeholders involved. The data presented in this paper can be used as reference values for Ethiopia. © 2013. Published by Elsevier B.V. All rights reserved.
Key Problems in Science and Technology in Thailand.
ERIC Educational Resources Information Center
Yuthavong, Yongyuth; And Others
1985-01-01
Cites the need for promoting science/technology management and policy formation in Thailand, viewing contributions of science/technology to the socioeconomic development of the country as high priorities. Criteria for selecting priority areas and key problems are noted; they include relevance to development, availability of human resources, and…
NASA Astrophysics Data System (ADS)
Faivre, R.; Colin, J.; Menenti, M.; Lindenbergh, R.; Van Den Bergh, L.; Yu, H.; Jia, L.; Xin, L.
2010-10-01
Improving the understanding and the monitoring of high elevation regions hydrology is of major relevance from both societal and environmental points of view for many Asian countries, in particular in terms of flood and drought, but also in terms of food security in a chang- ing environment. Satellite and airborne remote sensing technologies are of utmost for such a challenge. Exist- ing imaging spectro-radiometers, radars, microwave ra- diometers and backscatter LIDAR provide a very com- prehensive suite of measurements over a wide rage of wavelengths, time frequencies and spatial resolu- tions. It is however needed to devise new algorithms to convert these radiometric measurements into useful eco-hydrological quantitative parameters for hydrologi- cal modeling and water management. The DRAGON II project entitled Key Eco-Hydrological Parameters Re- trieval and Land Data Assimilation System Development in a Typical Inland River Basin of Chinas Arid Region (ID 5322) aims at improving the monitoring, understand- ing, and predictability of hydrological and ecological pro- cesses at catchment scale, and promote the applicability of quantitative remote sensing in watershed science. Ex- isting Earth Observation platforms provided by the Euro- pean Space Agency as well as prototype airborne systems developed in China - ENVISAT/AATSR, ALOS/PRISM and PALSAR, Airborne LIDAR - are used and combined to retrieve advanced land surface physical properties over high elevation arid regions of China. The existing syn- ergies between this project, the CEOP-AEGIS project (FP7) and the WATER project (CAS) provide incentives for innovative studies. The investigations presented in the following report focus on the development of advanced and innovative methodologies and algorithms to monitor both the state and the trend of key eco-hydrological vari- ables: 3D vegetation properties, land surface evaporation, glacier mass balance and drought indicators.
NASA Astrophysics Data System (ADS)
Zhao, Fengjun; Liu, Junting; Qu, Xiaochao; Xu, Xianhui; Chen, Xueli; Yang, Xiang; Cao, Feng; Liang, Jimin; Tian, Jie
2014-12-01
To solve the multicollinearity issue and unequal contribution of vascular parameters for the quantification of angiogenesis, we developed a quantification evaluation method of vascular parameters for angiogenesis based on in vivo micro-CT imaging of hindlimb ischemic model mice. Taking vascular volume as the ground truth parameter, nine vascular parameters were first assembled into sparse principal components (PCs) to reduce the multicolinearity issue. Aggregated boosted trees (ABTs) were then employed to analyze the importance of vascular parameters for the quantification of angiogenesis via the loadings of sparse PCs. The results demonstrated that vascular volume was mainly characterized by vascular area, vascular junction, connectivity density, segment number and vascular length, which indicated they were the key vascular parameters for the quantification of angiogenesis. The proposed quantitative evaluation method was compared with both the ABTs directly using the nine vascular parameters and Pearson correlation, which were consistent. In contrast to the ABTs directly using the vascular parameters, the proposed method can select all the key vascular parameters simultaneously, because all the key vascular parameters were assembled into the sparse PCs with the highest relative importance.
Webb, Lucy; Clough, Jonathan; O'Reilly, Declan; Wilmott, Danita; Witham, Gary
2017-01-01
To evaluate and summarise the utility and impact of information communication technology (ICT) in enhancing student performance and the learning environment in pre-registration nursing. A systematic review of empirical research across a range of themes in ICT health-related education. Science Direct, Cinahl, AMED, MEDLINE, PubMed, ASSIA, OVID and OVID SP (2008-2014). Further date parameters were imposed by theme. Evidence was reviewed by narrative synthesis, adopting Caldwell's appraisal framework and CASP for qualitative methods. Selection and inclusion was grounded in the PICOS structure, with language requirements (English), and further parameters were guided by theme appropriateness. Fifty studies were selected for review across six domains: reusable learning objects, media, audience response systems, e-portfolios, computer-based assessment and faculty adoption of e-learning. Educational ICT was found to be non-inferior to traditional teaching, while offering benefits to teaching and learning efficiency. Where support is in place, ICT improves the learning environment for staff and students, but human and environmental barriers need to be addressed. This review illuminates more advantages for ICT in nurse training than previously. The key advantage of flexibility is supported, though with little evidence for effect on depth of learning. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.
Adjustment and validation of a simulation tool for CSP plants based on parabolic trough technology
NASA Astrophysics Data System (ADS)
García-Barberena, Javier; Ubani, Nora
2016-05-01
The present work presents the validation process carried out for a simulation tool especially designed for the energy yield assessment of concentrating solar plants based on parabolic through (PT) technology. The validation has been carried out by comparing the model estimations with real data collected from a commercial CSP plant. In order to adjust the model parameters used for the simulation, 12 different days were selected among one-year of operational data measured at the real plant. The 12 days were simulated and the estimations compared with the measured data, focusing on the most important variables from the simulation point of view: temperatures, pressures and mass flow of the solar field, gross power, parasitic power, and net power delivered by the plant. Based on these 12 days, the key parameters for simulating the model were properly fixed and the simulation of a whole year performed. The results obtained for a complete year simulation showed very good agreement for the gross and net electric total production. The estimations for these magnitudes show a 1.47% and 2.02% BIAS respectively. The results proved that the simulation software describes with great accuracy the real operation of the power plant and correctly reproduces its transient behavior.
Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology.
Silow, Christoph; Zannini, Emanuele; Axel, Claudia; Belz, Markus C E; Arendt, Elke K
2017-02-22
Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM) was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50-200) and the final thickness (1.0-3.5 mm) of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK) and Multiple Puncture Probe (MPP), the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30%) puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt %) products. A sensory acceptance test revealed no significant differences in taste of fatness or 'liking of mouthfeel'. Additionally, the fat-reduced puff pastry resulted in a significant ( p < 0.05) positive correlation to 'liking of flavor' and overall acceptance by the assessors.
Optimization of Fat-Reduced Puff Pastry Using Response Surface Methodology
Silow, Christoph; Zannini, Emanuele; Axel, Claudia; Belz, Markus C. E.; Arendt, Elke K.
2017-01-01
Puff pastry is a high-fat bakery product with fat playing a key role, both during the production process and in the final pastry. In this study, response surface methodology (RSM) was successfully used to evaluate puff pastry quality for the development of a fat-reduced version. The technological parameters modified included the level of roll-in fat, the number of fat layers (50–200) and the final thickness (1.0–3.5 mm) of the laminated dough. Quality characteristics of puff pastry were measured using the Texture Analyzer with an attached Extended Craft Knife (ECK) and Multiple Puncture Probe (MPP), the VolScan and the C-Cell imaging system. The number of fat layers and final dough thickness, in combination with the amount of roll-in fat, had a significant impact on the internal and external structural quality parameters. With technological changes alone, a fat-reduced (≥30%) puff pastry was developed. The qualities of fat-reduced puff pastries were comparable to conventional full-fat (33 wt %) products. A sensory acceptance test revealed no significant differences in taste of fatness or ‘liking of mouthfeel’. Additionally, the fat-reduced puff pastry resulted in a significant (p < 0.05) positive correlation to ‘liking of flavor’ and overall acceptance by the assessors. PMID:28231095
Gross, Robert; Leach, Matthew; Bauen, Ausilio
2003-04-01
This paper provides an overview of some of the key technological and market developments for leading renewable energy technologies--wind, wave and tidal, photovoltaics (PV) and biomass energy. Market growth, innovation and policy are closely interrelated in the development of renewables and the key issues in each area are explored for each of the main types of renewable energy technology. This enables the prospects for future development and cost reduction to be considered in detail. Key issues for policy are outlined. Copyright 2002 Elsevier Science Ltd.
Implicit prosody mining based on the human eye image capture technology
NASA Astrophysics Data System (ADS)
Gao, Pei-pei; Liu, Feng
2013-08-01
The technology of eye tracker has become the main methods of analyzing the recognition issues in human-computer interaction. Human eye image capture is the key problem of the eye tracking. Based on further research, a new human-computer interaction method introduced to enrich the form of speech synthetic. We propose a method of Implicit Prosody mining based on the human eye image capture technology to extract the parameters from the image of human eyes when reading, control and drive prosody generation in speech synthesis, and establish prosodic model with high simulation accuracy. Duration model is key issues for prosody generation. For the duration model, this paper put forward a new idea for obtaining gaze duration of eyes when reading based on the eye image capture technology, and synchronous controlling this duration and pronunciation duration in speech synthesis. The movement of human eyes during reading is a comprehensive multi-factor interactive process, such as gaze, twitching and backsight. Therefore, how to extract the appropriate information from the image of human eyes need to be considered and the gaze regularity of eyes need to be obtained as references of modeling. Based on the analysis of current three kinds of eye movement control model and the characteristics of the Implicit Prosody reading, relative independence between speech processing system of text and eye movement control system was discussed. It was proved that under the same text familiarity condition, gaze duration of eyes when reading and internal voice pronunciation duration are synchronous. The eye gaze duration model based on the Chinese language level prosodic structure was presented to change previous methods of machine learning and probability forecasting, obtain readers' real internal reading rhythm and to synthesize voice with personalized rhythm. This research will enrich human-computer interactive form, and will be practical significance and application prospect in terms of disabled assisted speech interaction. Experiments show that Implicit Prosody mining based on the human eye image capture technology makes the synthesized speech has more flexible expressions.
Toward a Vision of the Future Role of Technology in Literacy Education.
ERIC Educational Resources Information Center
Labbo, Linda D.
This paper examines how technological innovations are likely to play a role in effective literacy education. The first section introduces three key factors, i.e., definition of literacy, predominate learning theory, and classroom communicative technologies. The second section lays the groundwork with brief glimpses of how the three key factors…
Space division multiplexing chip-to-chip quantum key distribution.
Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld; Rottwitt, Karsten; Oxenløwe, Leif Katsuo
2017-09-29
Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network.
National Institute of Justice (NIJ): technology challenges
NASA Astrophysics Data System (ADS)
Morgan, John S.
2004-09-01
Law enforcement agencies play a key role in protecting the nation from and responding to terrorist attacks. The National Institute of Justice (NIJ) is the focal point for the research, development, test and evaluation of technology for law enforcement. NIJ and the Department of Homeland Security's Directorate of Science & Technology (DHS S&T) have related missions to support research and technology development for public safety. DHS S&T provides law enforcement agencies technology to respond to terrorist threats involving weapons of mass destruction, while NIJ focuses on technologies applicable across the spectrum of law enforcement needs. Investment in C3I technology offers perhaps the greatest potential benefit with respect to improving the ability to law enforcement agencies to respond to all types of crime including terrorist acts. Providing effective communications and information systems remains a key technology challenge, as does providing law enforcement responders accurate information that they can act on. Sensors and surveillance systems can play a key role in identifying terrorists and preventing or effectively responding to a terrorist attack.
NASA Astrophysics Data System (ADS)
Chen, Yanling; Gong, Adu; Li, Jing; Wang, Jingmei
2017-04-01
Accurate crop growth monitoring and yield predictive information are significant to improve the sustainable development of agriculture and ensure the security of national food. Remote sensing observation and crop growth simulation models are two new technologies, which have highly potential applications in crop growth monitoring and yield forecasting in recent years. However, both of them have limitations in mechanism or regional application respectively. Remote sensing information can not reveal crop growth and development, inner mechanism of yield formation and the affection of environmental meteorological conditions. Crop growth simulation models have difficulties in obtaining data and parameterization from single-point to regional application. In order to make good use of the advantages of these two technologies, the coupling technique of remote sensing information and crop growth simulation models has been studied. Filtering and optimizing model parameters are key to yield estimation by remote sensing and crop model based on regional crop assimilation. Winter wheat of GaoCheng was selected as the experiment object in this paper. And then the essential data was collected, such as biochemical data and farmland environmental data and meteorological data about several critical growing periods. Meanwhile, the image of environmental mitigation small satellite HJ-CCD was obtained. In this paper, research work and major conclusions are as follows. (1) Seven vegetation indexes were selected to retrieve LAI, and then linear regression model was built up between each of these indexes and the measured LAI. The result shows that the accuracy of EVI model was the highest (R2=0.964 at anthesis stage and R2=0.920 at filling stage). Thus, EVI as the most optimal vegetation index to predict LAI in this paper. (2) EFAST method was adopted in this paper to conduct the sensitive analysis to the 26 initial parameters of the WOFOST model and then a sensitivity index was constructed to evaluate the influence of each parameter mentioned above on the winter wheat yield formation. Finally, six parameters that sensitivity index more than 0.1 as sensitivity factors were chose, which are TSUM1, SLATB1, SLATB2, SPAN, EFFTB3 and TMPF4. To other parameters, we confirmed them via practical measurement and calculation, available literature or WOFOST default. Eventually, we completed the regulation of WOFOST parameters. (3) Look-up table algorithm was used to realize single-point yield estimation through the assimilation of the WOFOST model and the retrieval LAI. This simulation achieved a high accuracy which perfectly meet the purpose of assimilation (R2=0.941 and RMSE=194.58kg/hm2). In this paper, the optimum value of sensitivity parameters were confirmed and the estimation of single-point yield were finished. Key words: yield estimation of winter wheat, LAI, WOFOST crop growth model, assimilation
Bugnicourt, Elodie; Kehoe, Timothy; Latorre, Marcos; Serrano, Cristina; Philippe, Séverine; Schmid, Markus
2016-08-19
Nanostructured materials have emerged as a key research field in order to confer materials with unique or enhanced properties. The performance of nanocomposites depends on a number of parameters, but the suitable dispersion of nanoparticles remains the key in order to obtain the full nanocomposites' potential in terms of, e.g., flame retardance, mechanical, barrier, thermal properties, etc. Likewise, the performance of nanocoatings to obtain, for example, tailored surface affinity with selected liquids (e.g., for self-cleaning ability or anti-fog properties), protective effects against flame propagation, ultra violet (UV) radiation or gas permeation, is highly dependent on the nanocoating's thickness and homogeneity. In terms of recent advances in the monitoring of nanocomposites and nanocoatings, this review discusses commonly-used offline characterization approaches, as well as promising inline systems. All in all, having good control over both the dispersion and thickness of these materials would help with reaching optimal and consistent properties to allow nanocomposites to extend their use.
Recent Prospects in the Inline Monitoring of Nanocomposites and Nanocoatings by Optical Technologies
Bugnicourt, Elodie; Kehoe, Timothy; Latorre, Marcos; Serrano, Cristina; Philippe, Séverine; Schmid, Markus
2016-01-01
Nanostructured materials have emerged as a key research field in order to confer materials with unique or enhanced properties. The performance of nanocomposites depends on a number of parameters, but the suitable dispersion of nanoparticles remains the key in order to obtain the full nanocomposites’ potential in terms of, e.g., flame retardance, mechanical, barrier, thermal properties, etc. Likewise, the performance of nanocoatings to obtain, for example, tailored surface affinity with selected liquids (e.g., for self-cleaning ability or anti-fog properties), protective effects against flame propagation, ultra violet (UV) radiation or gas permeation, is highly dependent on the nanocoating’s thickness and homogeneity. In terms of recent advances in the monitoring of nanocomposites and nanocoatings, this review discusses commonly-used offline characterization approaches, as well as promising inline systems. All in all, having good control over both the dispersion and thickness of these materials would help with reaching optimal and consistent properties to allow nanocomposites to extend their use. PMID:28335278
Stiff, light, strong and ductile: nano-structured High Modulus Steel.
Springer, H; Baron, C; Szczepaniak, A; Uhlenwinkel, V; Raabe, D
2017-06-05
Structural material development for lightweight applications aims at improving the key parameters strength, stiffness and ductility at low density, but these properties are typically mutually exclusive. Here we present how we overcome this trade-off with a new class of nano-structured steel - TiB 2 composites synthesised in-situ via bulk metallurgical spray-forming. Owing to the nano-sized dispersion of the TiB 2 particles of extreme stiffness and low density - obtained by the in-situ formation with rapid solidification kinetics - the new material has the mechanical performance of advanced high strength steels, and a 25% higher stiffness/density ratio than any of the currently used high strength steels, aluminium, magnesium and titanium alloys. This renders this High Modulus Steel the first density-reduced, high stiffness, high strength and yet ductile material which can be produced on an industrial scale. Also ideally suited for 3D printing technology, this material addresses all key requirements for high performance and cost effective lightweight design.
Balzarolo, Manuela; Anderson, Karen; Nichol, Caroline; Rossini, Micol; Vescovo, Loris; Arriga, Nicola; Wohlfahrt, Georg; Calvet, Jean-Christophe; Carrara, Arnaud; Cerasoli, Sofia; Cogliati, Sergio; Daumard, Fabrice; Eklundh, Lars; Elbers, Jan A.; Evrendilek, Fatih; Handcock, Rebecca N.; Kaduk, Joerg; Klumpp, Katja; Longdoz, Bernard; Matteucci, Giorgio; Meroni, Michele; Montagnani, Lenoardo; Ourcival, Jean-Marc; Sánchez-Cañete, Enrique P.; Pontailler, Jean-Yves; Juszczak, Radoslaw; Scholes, Bob; Martín, M. Pilar
2011-01-01
This paper reviews the currently available optical sensors, their limitations and opportunities for deployment at Eddy Covariance (EC) sites in Europe. This review is based on the results obtained from an online survey designed and disseminated by the Co-cooperation in Science and Technology (COST) Action ESO903—“Spectral Sampling Tools for Vegetation Biophysical Parameters and Flux Measurements in Europe” that provided a complete view on spectral sampling activities carried out within the different research teams in European countries. The results have highlighted that a wide variety of optical sensors are in use at flux sites across Europe, and responses further demonstrated that users were not always fully aware of the key issues underpinning repeatability and the reproducibility of their spectral measurements. The key findings of this survey point towards the need for greater awareness of the need for standardisation and development of a common protocol of optical sampling at the European EC sites. PMID:22164055
Manufacture of poly(methyl methacrylate) microspheres using membrane emulsification
Bux, Jaiyana; Manga, Mohamed S.; Hunter, Timothy N.
2016-01-01
Accurate control of particle size at relatively narrow polydispersity remains a key challenge in the production of synthetic polymer particles at scale. A cross-flow membrane emulsification (XME) technique was used here in the preparation of poly(methyl methacrylate) microspheres at a 1–10 l h−1 scale, to demonstrate its application for such a manufacturing challenge. XME technology has previously been shown to provide good control over emulsion droplet sizes with careful choice of the operating conditions. We demonstrate here that, for an appropriate formulation, equivalent control can be gained for a precursor emulsion in a batch suspension polymerization process. We report here the influence of key parameters on the emulsification process; we also demonstrate the close correlation in size between the precursor emulsion and the final polymer particles. Two types of polymer particle were produced in this work: a solid microsphere and an oil-filled matrix microcapsule. This article is part of the themed issue ‘Soft interfacial materials: from fundamentals to formulation’. PMID:27298430
ERIC Educational Resources Information Center
Davalos, Eugenia
2013-01-01
One of the core strategies to transform the United States national healthcare system is the implementation of key technologies such as the electronic patient medical record. Such key technologies improve patient care and help the organization gain competitive advantage. With a high demand for strategic and operational change, healthcare providers…
ERIC Educational Resources Information Center
Utah Univ., Salt Lake City. Human Resources Inst.
Volume 2, which accompanies "Mechanisms for Aiding Worker Adjustment to Technological Change, Volume 1," consists of a key word index for locating specific topics and the abstracts of literature reviewed in Volume 1. Key words, referring to aspects of worker adjustment to technological change appearing in the abstracted literature, are grouped…
Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact
ERIC Educational Resources Information Center
Fraser, John
2010-01-01
Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…
NASA Astrophysics Data System (ADS)
Das, Debajyoti; Mondal, Praloy
2017-09-01
Growth of highly conducting nanocrystalline silicon (nc-Si) thin films of optimum crystalline volume fraction, involving dominant <220> crystallographic preferred orientation with simultaneous low fraction of microstructures at a low substrate temperature and high growth rate, is a challenging task for its promising utilization in nc-Si solar cells. Utilizing enhanced electron density and superior ion flux densities of the high frequency (∼27.12 MHz) SiH4 plasma, improved nc-Si films have been produced by simple optimization of H2-dilution, controlling the ion damage and enhancing supply of atomic-hydrogen onto the growing surface. Single junction nc-Si p-i-n solar cells have been prepared with i-nc-Si absorber layer and optimized. The physical parameters of the absorber layer have been systematically correlated to variations of the solar cell parameters. The preferred <220> alignment of crystallites, its contribution to the low recombination losses for conduction of charge carriers along the vertical direction, its spectroscopic correlation with the dominant growth of ultra-nanocrystalline silicon (unc-Si) component and corresponding longer wavelength absorption, especially in the neighborhood of i/n-interface region recognize scientific and technological key issues that pave the ground for imminent advancement of multi-junction silicon solar cells.
Using findings in multimedia learning to inform technology-based behavioral health interventions.
Aronson, Ian David; Marsch, Lisa A; Acosta, Michelle C
2013-09-01
Clinicians and researchers are increasingly using technology-based behavioral health interventions to improve intervention effectiveness and to reach underserved populations. However, these interventions are rarely informed by evidence-based findings of how technology can be optimized to promote acquisition of key skills and information. At the same time, experts in multimedia learning generally do not apply their findings to health education or conduct research in clinical contexts. This paper presents an overview of some key aspects of multimedia learning research that may allow those developing health interventions to apply informational technology with the same rigor as behavioral science content. We synthesized empirical multimedia learning literature from 1992 to 2011. We identified key findings and suggested a framework for integrating technology with educational and behavioral science theory. A scientific, evidence-driven approach to developing technology-based interventions can yield greater effectiveness, improved fidelity, increased outcomes, and better client service.
Intelligent pump test system based on virtual instrument
NASA Astrophysics Data System (ADS)
Ma, Jungong; Wang, Shifu; Wang, Zhanlin
2003-09-01
The intelligent pump system is the key component of the aircraft hydraulic system that can solve the problem, such as the temperature sharply increasing. As the performance of the intelligent pump directly determines that of the aircraft hydraulic system and seriously affects fly security and reliability. So it is important to test all kinds of performance parameters of intelligent pump during design and development, while the advanced, reliable and complete test equipments are the necessary instruments for achieving the goal. In this paper, the application of virtual instrument and computer network technology in aircraft intelligent pump test is presented. The composition of the hardware, software, hydraulic circuit in this system are designed and implemented.
NASA Technical Reports Server (NTRS)
Volponi, Al; Simon, Donald L. (Technical Monitor)
2008-01-01
A key technological concept for producing reliable engine diagnostics and prognostics exploits the benefits of fusing sensor data, information, and/or processing algorithms. This report describes the development of a hybrid engine model for a propulsion gas turbine engine, which is the result of fusing two diverse modeling methodologies: a physics-based model approach and an empirical model approach. The report describes the process and methods involved in deriving and implementing a hybrid model configuration for a commercial turbofan engine. Among the intended uses for such a model is to enable real-time, on-board tracking of engine module performance changes and engine parameter synthesis for fault detection and accommodation.
Brillouin gain enhancement in nano-scale photonic waveguide
NASA Astrophysics Data System (ADS)
Nouri Jouybari, Soodabeh
2018-05-01
The enhancement of stimulated Brillouin scattering in nano-scale waveguides has a great contribution in the improvement of the photonic devices technology. The key factors in Brillouin gain are the electrostriction force and radiation pressure generated by optical waves in the waveguide. In this article, we have proposed a new scheme of nano-scale waveguide in which the Brillouin gain is considerably improved compared to the previously-reported schemes. The role of radiation pressure in the Brillouin gain was much higher than the role of the electrostriction force. The Brillouin gain strongly depends on the structural parameters of the waveguide and the maximum value of 12127 W-1 m-1 is obtained for the Brillouin gain.
Practical aspects of modern interferometry for optical manufacturing quality control: Part 2
NASA Astrophysics Data System (ADS)
Smythe, Robert
2012-07-01
Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space based satellite imaging and DVD and Blu-Ray disks are all enabled by phase shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful towards the practical use of interferometers. An understanding of the parameters that drive system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.
Practical aspects of modern interferometry for optical manufacturing quality control, Part 3
NASA Astrophysics Data System (ADS)
Smythe, Robert A.
2012-09-01
Modern phase shifting interferometers enable the manufacture of optical systems that drive the global economy. Semiconductor chips, solid-state cameras, cell phone cameras, infrared imaging systems, space-based satellite imaging, and DVD and Blu-Ray disks are all enabled by phase-shifting interferometers. Theoretical treatments of data analysis and instrument design advance the technology but often are not helpful toward the practical use of interferometers. An understanding of the parameters that drive the system performance is critical to produce useful results. Any interferometer will produce a data map and results; this paper, in three parts, reviews some of the key issues to minimize error sources in that data and provide a valid measurement.
ERIC Educational Resources Information Center
Britton, Todd Alan
2014-01-01
Purpose: The purpose of this study was to examine the key considerations of community, scalability, supportability, security, and functionality for selecting open-source software in California universities as perceived by technology leaders. Methods: After a review of the cogent literature, the key conceptual framework categories were identified…
NASA Astrophysics Data System (ADS)
Paul, S. K.; Ahmed, U.; Megahed, G. M.
2011-10-01
Low-carbon Al-killed hot rolled strips for direct forming, cold rolling, and galvanizing applications are produced from the similar chemistry at Ezz Flat Steel (EFS) through thin slab casting and rolling (TSCR) technology. The desired mechanical and microstructural properties in hot bands for different applications are achieved through control of hot rolling parameters, which in turn control the precipitation and growth of AlN. Nitrogen in solid solution strongly influences the yield strength (YS), ductility, strain aging index (SAI), and other formability properties of steel. The equilibrium solubility of AlN in austenite at different temperatures and its isothermal precipitation have been studied. To achieve the formability properties for direct forming, soluble nitrogen is fixed as AlN by coiling the strip at higher temperatures. For stringent cold forming, boron was added below the stoichiometric ratio with nitrogen, which improved the formability properties dramatically. The requirements of hot band for processing into cold rolled and annealed deep drawing sheets are high SAI and fine-grain microstructure. Higher finish rolling and low coiling temperatures are used to achieve these. Fully processed cold rolled sheets from these hot strips at customer's end have shown good formability properties. Coil break marks observed in some coils during uncoiling were found to be associated with yielding phenomenon. The spike height (difference between upper and lower yield stresses) and yield point elongation (YPE) were found to be the key material parameters for the break marks. Factors affecting these parameters have been studied and the coiling temperature optimized to overcome the problem.
Diagnostics for a waste processing plasma arc furnace (invited) (abstract)a)
NASA Astrophysics Data System (ADS)
Woskov, P. P.
1995-01-01
Maintaining the quality of our environment has become an important goal of society. As part of this goal new technologies are being sought to clean up hazardous waste sites and to treat ongoing waste streams. A 1 MW pilot scale dc graphite electrode plasma arc furnace (Mark II) has been constructed at MIT under a joint program among Pacific Northwest Laboratory (PNL), MIT, and Electro-Pyrolysis, Inc. (EPI)c) for the remediation of buried wastes in the DOE complex. A key part of this program is the development of new and improved diagnostics to study, monitor, and control the entire waste remediation process for the optimization of this technology and to safeguard the environment. Continuous, real time diagnostics are needed for a variety of the waste process parameters. These parameters include internal furnace temperatures, slag fill levels, trace metals content in the off-gas stream, off-gas molecular content, feed and slag characterization, and off-gas particulate size, density, and velocity distributions. Diagnostics are currently being tested at MIT for the first three parameters. An active millimeter-wave radiometer with a novel, rotatable graphite waveguide/mirror antenna system has been implemented on Mark II for the measurement of surface emission and emissivity which can be used to determine internal furnace temperatures and fill levels. A microwave torch plasma is being evaluated for use as a excitation source in the furnace off-gas stream for continuous atomic emission spectroscopy of trace metals. These diagnostics should find applicability not only to waste remediation, but also to other high temperature processes such as incinerators, power plants, and steel plants.
Experimental Design for the LATOR Mission
NASA Technical Reports Server (NTRS)
Turyshev, Slava G.; Shao, Michael; Nordtvedt, Kenneth, Jr.
2004-01-01
This paper discusses experimental design for the Laser Astrometric Test Of Relativity (LATOR) mission. LATOR is designed to reach unprecedented accuracy of 1 part in 10(exp 8) in measuring the curvature of the solar gravitational field as given by the value of the key Eddington post-Newtonian parameter gamma. This mission will demonstrate the accuracy needed to measure effects of the next post-Newtonian order (near infinity G2) of light deflection resulting from gravity s intrinsic non-linearity. LATOR will provide the first precise measurement of the solar quadrupole moment parameter, J(sub 2), and will improve determination of a variety of relativistic effects including Lense-Thirring precession. The mission will benefit from the recent progress in the optical communication technologies the immediate and natural step above the standard radio-metric techniques. The key element of LATOR is a geometric redundancy provided by the laser ranging and long-baseline optical interferometry. We discuss the mission and optical designs, as well as the expected performance of this proposed mission. LATOR will lead to very robust advances in the tests of Fundamental physics: this mission could discover a violation or extension of general relativity, or reveal the presence of an additional long range interaction in the physical law. There are no analogs to the LATOR experiment; it is unique and is a natural culmination of solar system gravity experiments.
NASA Astrophysics Data System (ADS)
Zhao, Huafeng; Zhou, Binwu; Wu, Xuecheng; Wu, Yingchun; Gao, Xiang; Gréhan, Gérard; Cen, Kefa
2014-04-01
Digital holography plays a key role in particle field measurement, and appears to be a strong contender as the next-generation technology for diagnostics of 3D particle field. However, various recording parameters, such as the recording distance, the particle size, the wavelength, the size of the CCD chip, the pixel size and the particle concentration, will affect the results of the reconstruction, and may even determine the success or failure of a measurement. This paper presents a numerical investigation on the effect of particle concentration, the volume depth to evaluate the capability of digital holographic microscopy. Standard particles holograms with all known recording parameters are numerically generated by using a common procedure based on Lorenz-Mie scattering theory. Reconstruction of those holograms are then performed by a wavelet-transform based method. Results show that the reconstruction efficiency decreases quickly until particle concentration reaches 50×104 (mm-3), and decreases linearly with the increase of particle concentration from 50 × 104 (mm-3) to 860 × 104 (mm-3) in the same volume. The first half of the line waves larger than the second half. It also indicates that the increase of concentration leads the rise in average diameter error and z position error of particles. Besides, the volume depth also plays a key role in reconstruction.
NASA Technical Reports Server (NTRS)
Bennett, Gary L.; Brandhorst, Henry W., Jr.; Atkins, Kenneth L.
1991-01-01
In July 1989, President Bush announced his space exploration initiative of going back to the Moon to stay and then going to Mars. Building upon its ongoing research and technology base, NASA has established an exploration technology program to develop the technologies needed for piloted missions to the Moon and Mars. A key element for the flights and for the planned bases is power. The NASA research and technology program on space power encompasses power sources, energy storage, and power management.
ERIC Educational Resources Information Center
Hora, Matthew T.; Holden, Jeremiah
2013-01-01
Instructional technology plays a key role in many teaching reform efforts at the postsecondary level, yet evidence suggests that faculty adopt these technology-based innovations in a slow and inconsistent fashion. A key to improving these efforts is to understand local practice and use these insights to design more locally attuned interventions.…
Application of BIM technology in construction bidding
NASA Astrophysics Data System (ADS)
wei, Li
2017-12-01
bidding is a very important step of construction project. For the owners, bidding is the key link of selecting the best construction plan and saving the project cost to the maximum extent. For Construction Corporation, it is the key to show their construction technology which can improve the probability of winning the bid. this paper researches on the application of BIM technology in bidding process of construction project in detail, and discussesthe application of BIM technology in construction field comprehensively.
Further applications of a Figure-of-Merit in space missions
NASA Technical Reports Server (NTRS)
Preiss, Bruce; Pan, Thomas; Ramohalli, Kumar
1991-01-01
A redesigned figure-of-merit (FoM) approach is described with respect to its applications in projects that employ in situ resource utilization (ISRU) and advanced modular engines. The FoM considers long-term effects, reliability of hardware, and risks inherent to new technologies, as well as significant design parameters. A spreadsheet is utilized to describe the FoM by means of key mission characteristics and combinations of the characteristic inputs in terms of precise governing equations. Results of the FoMs for historical and Mars Sample Return (MSR) missions are given for the conventional mission as well as an ISRU mission for the MSR. A detailed description of the most effective Mars mission is presented, showing how different factors affect the FoM. The results demonstrate that the FoM gives quantitative results based on overall mission design, allowing intercomparisons of similar missions. The FoM can be used as a screening parameter by modifying aspects of the mission by means of the R-factor.
Comparing modelling techniques when designing VPH gratings for BigBOSS
NASA Astrophysics Data System (ADS)
Poppett, Claire; Edelstein, Jerry; Lampton, Michael; Jelinsky, Patrick; Arns, James
2012-09-01
BigBOSS is a Stage IV Dark Energy instrument based on the Baryon Acoustic Oscillations (BAO) and Red Shift Distortions (RSD) techniques using spectroscopic data of 20 million ELG and LRG galaxies at 0.5<=z<=1.6 in addition to several hundred thousand QSOs at 0.5<=z<=3.5. When designing BigBOSS instrumentation, it is imperative to maximize throughput whilst maintaining a resolving power of between R=1500 and 4000 over a wavelength range of 360-980 nm. Volume phase Holographic (VPH) gratings have been identified as a key technology which will enable the efficiency requirement to be met, however it is important to be able to accurately predict their performance. In this paper we quantitatively compare different modelling techniques in order to assess the parameter space over which they are more capable of accurately predicting measured performance. Finally we present baseline parameters for grating designs that are most suitable for the BigBOSS instrument.
Kokko, Marika; Epple, Stefanie; Gescher, Johannes; Kerzenmacher, Sven
2018-06-01
Over the last decade, there has been an ever-growing interest in bioelectrochemical systems (BES) as a sustainable technology enabling simultaneous wastewater treatment and biological production of, e.g. electricity, hydrogen, and further commodities. A key component of any BES degrading organic matter is the anode where electric current is biologically generated from the oxidation of organic compounds. The performance of BES depends on the interactions of the anodic microbial communities. To optimize the operational parameters and process design of BES a better comprehension of the microbial community dynamics and interactions at the anode is required. This paper reviews the abundance of different microorganisms in anodic biofilms and discusses their roles and possible side reactions with respect to their implications on the performance of BES utilizing wastewaters. The most important operational parameters affecting anodic microbial communities grown with wastewaters are highlighted and guidelines for controlling the composition of microbial communities are given. Copyright © 2018 Elsevier Ltd. All rights reserved.
Late-stage pharmaceutical R&D and pricing policies under two-stage regulation.
Jobjörnsson, Sebastian; Forster, Martin; Pertile, Paolo; Burman, Carl-Fredrik
2016-12-01
We present a model combining the two regulatory stages relevant to the approval of a new health technology: the authorisation of its commercialisation and the insurer's decision about whether to reimburse its cost. We show that the degree of uncertainty concerning the true value of the insurer's maximum willingness to pay for a unit increase in effectiveness has a non-monotonic impact on the optimal price of the innovation, the firm's expected profit and the optimal sample size of the clinical trial. A key result is that there exists a range of values of the uncertainty parameter over which a reduction in uncertainty benefits the firm, the insurer and patients. We consider how different policy parameters may be used as incentive mechanisms, and the incentives to invest in R&D for marginal projects such as those targeting rare diseases. The model is calibrated using data on a new treatment for cystic fibrosis. Copyright © 2016 Elsevier B.V. All rights reserved.
Towards a complete caracterisation of Ganymede's environnement
NASA Astrophysics Data System (ADS)
Cessateur, Gaël; Barthélémy, Mathieu; Lilensten, Jean; Dudok de Wit, Thierry; Kretzschmar, Matthieu; Mbemba Kabuiku, Lydie
2013-04-01
In the framework to the JUICE mission to the Jovian system, a complete picture of the interaction between Ganymede's atmosphere and external forcing is needed. This will definitely allow us to constrain instrument performances according to the mission objectives. The main source of information regarding the upper atmosphere is the non LTE UV-Visible-near IR emissions. Those emissions are both induce by the incident solar UV flux and particle precipitations. This work aims at characterizing the impact from those external forcing, and then at deriving some key physical parameters that are measurable by an orbiter, namely the oxygen red line at 630 nm or the resonant oxygen line at 130 nm for example. We will also present the 4S4J instrument, a proposed EUV radiometer, which will provides the solar local EUV flux, an invaluable parameter for the JUICE mission. Based on new technologies and a new design, only two passbands are considered for reconstructing the whole EUV spectrum.
Liu, Guo-hai; Jiang, Hui; Xiao, Xia-hong; Zhang, Dong-juan; Mei, Cong-li; Ding, Yu-han
2012-04-01
Fourier transform near-infrared (FT-NIR) spectroscopy was attempted to determine pH, which is one of the key process parameters in solid-state fermentation of crop straws. First, near infrared spectra of 140 solid-state fermented product samples were obtained by near infrared spectroscopy system in the wavelength range of 10 000-4 000 cm(-1), and then the reference measurement results of pH were achieved by pH meter. Thereafter, the extreme learning machine (ELM) was employed to calibrate model. In the calibration model, the optimal number of PCs and the optimal number of hidden-layer nodes of ELM network were determined by the cross-validation. Experimental results showed that the optimal ELM model was achieved with 1040-1 topology construction as follows: R(p) = 0.961 8 and RMSEP = 0.104 4 in the prediction set. The research achievement could provide technological basis for the on-line measurement of the process parameters in solid-state fermentation.
Key Technology of Real-Time Road Navigation Method Based on Intelligent Data Research
Tang, Haijing; Liang, Yu; Huang, Zhongnan; Wang, Taoyi; He, Lin; Du, Yicong; Ding, Gangyi
2016-01-01
The effect of traffic flow prediction plays an important role in routing selection. Traditional traffic flow forecasting methods mainly include linear, nonlinear, neural network, and Time Series Analysis method. However, all of them have some shortcomings. This paper analyzes the existing algorithms on traffic flow prediction and characteristics of city traffic flow and proposes a road traffic flow prediction method based on transfer probability. This method first analyzes the transfer probability of upstream of the target road and then makes the prediction of the traffic flow at the next time by using the traffic flow equation. Newton Interior-Point Method is used to obtain the optimal value of parameters. Finally, it uses the proposed model to predict the traffic flow at the next time. By comparing the existing prediction methods, the proposed model has proven to have good performance. It can fast get the optimal value of parameters faster and has higher prediction accuracy, which can be used to make real-time traffic flow prediction. PMID:27872637
Carrino, Stefano; Caon, Maurizio; Angelini, Leonardo; Mugellini, Elena; Abou Khaled, Omar; Orte, Silvia; Vargiu, Eloisa; Coulson, Neil; Serrano, José C E; Tabozzi, Sarah; Lafortuna, Claudio; Rizzo, Giovanna
2014-01-01
Unhealthy alimentary behaviours and physical inactivity habits are key risk factors for major non communicable diseases. Several researches demonstrate that juvenile obesity can lead to serious medical conditions, pathologies and have important psycho-social consequences. PEGASO is a multidisciplinary project aimed at promoting healthy lifestyles among teenagers through assistive technology. The core of this project is represented by the ICT system, which allows providing tailored interventions to the users through their smartphones in order to motivate them. The novelty of this approach consists of developing a Virtual Individual Model (VIM) for user characterization, which is based on physical, functional and behavioural parameters opportunely selected by experts. These parameters are digitised and updated thanks to the user monitoring through smartphone; data mining algorithms are applied for the detection of activity and nutrition habits and this information is used to provide personalised feedback. The user interface will be developed using gamified approaches and integrating serious games to effectively promote health literacy and facilitate behaviour change.
Development of Thermal Protection Materials for Future Mars Entry, Descent and Landing Systems
NASA Technical Reports Server (NTRS)
Cassell, Alan M.; Beck, Robin A. S.; Arnold, James O.; Hwang, Helen; Wright, Michael J.; Szalai, Christine E.; Blosser, Max; Poteet, Carl C.
2010-01-01
Entry Systems will play a crucial role as NASA develops the technologies required for Human Mars Exploration. The Exploration Technology Development Program Office established the Entry, Descent and Landing (EDL) Technology Development Project to develop Thermal Protection System (TPS) materials for insertion into future Mars Entry Systems. An assessment of current entry system technologies identified significant opportunity to improve the current state of the art in thermal protection materials in order to enable landing of heavy mass (40 mT) payloads. To accomplish this goal, the EDL Project has outlined a framework to define, develop and model the thermal protection system material concepts required to allow for the human exploration of Mars via aerocapture followed by entry. Two primary classes of ablative materials are being developed: rigid and flexible. The rigid ablatives will be applied to the acreage of a 10x30 m rigid mid L/D Aeroshell to endure the dual pulse heating (peak approx.500 W/sq cm). Likewise, flexible ablative materials are being developed for 20-30 m diameter deployable aerodynamic decelerator entry systems that could endure dual pulse heating (peak aprrox.120 W/sq cm). A technology Roadmap is presented that will be used for facilitating the maturation of both the rigid and flexible ablative materials through application of decision metrics (requirements, key performance parameters, TRL definitions, and evaluation criteria) used to assess and advance the various candidate TPS material technologies.
Innovative sludge pretreatment technology for impurity separation using micromesh.
Mei, Xiaojie; Han, Xiaomeng; Zang, Lili; Wu, Zhichao
2018-05-23
In order to reduce the impacts on sludge treatment facilities caused by impurities such as fibers, hairs, plastic debris, and coarse sand, an innovative primary sludge pretreatment technology, sludge impurity separator (SIS), was proposed in this study. Non-woven micromesh with pore size of 0.40 mm was used to remove the impurities from primary sludge. Results of lab-scale tests showed that impurity concentration, aeration intensity, and channel gap were the key operation parameters, of which the optimized values were below 25 g/L, 0.8 m 3 /(m 2 min), and 2.5 cm, respectively. In the full-scale SIS with treatment capacity of 300 m 3 /day, over 88% of impurities could be removed from influent and the cleaning cycle of micromesh was more than 16 days. Economic analysis revealed that the average energy consumption was 1.06 kWh/m 3 treated sludge and operation cost was 0.6 yuan/m 3 treated sludge.
Estrada, José M; Kraakman, N J R; Lebrero, R; Muñoz, R
2015-11-01
Traditional physical/chemical end-of-the-pipe technologies for odor abatement are relatively expensive and present high environmental impacts. On the other hand, biotechnologies have recently emerged as cost-effective and environmentally friendly alternatives but are still limited by their investment costs and land requirements. A more desirable approach to odor control is the prevention of odorant formation before being released to the atmosphere, but limited information is available beyond good design and operational practices of the wastewater treatment process. The present paper reviews two widely applicable and economic alternatives for odor control, Activated Sludge Recycling (ASR) and Oxidized Ammonium Recycling (OAR), by discussing their fundamentals, key operating parameters and experience from the available pilot and field studies. Both technologies present high application potential using readily available plant by-products with a minimum plant upgrading, and low investment and operating costs, contributing to the sustainability and economic efficiency of odor control at wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.
Enhanced In-Pile Instrumentation at the Advanced Test Reactor
NASA Astrophysics Data System (ADS)
Rempe, Joy L.; Knudson, Darrell L.; Daw, Joshua E.; Unruh, Troy; Chase, Benjamin M.; Palmer, Joe; Condie, Keith G.; Davis, Kurt L.
2012-08-01
Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.
Dual-Mode Electro-Optical Techniques for Biosensing Applications: A Review
Johnson, Steven
2017-01-01
The monitoring of biomolecular interactions is a key requirement for the study of complex biological processes and the diagnosis of disease. Technologies that are capable of providing label-free, real-time insight into these interactions are of great value for the scientific and clinical communities. Greater understanding of biomolecular interactions alongside increased detection accuracy can be achieved using technology that can provide parallel information about multiple parameters of a single biomolecular process. For example, electro-optical techniques combine optical and electrochemical information to provide more accurate and detailed measurements that provide unique insights into molecular structure and function. Here, we present a comparison of the main methods for electro-optical biosensing, namely, electrochemical surface plasmon resonance (EC-SPR), electrochemical optical waveguide lightmode spectroscopy (EC-OWLS), and the recently reported silicon-based electrophotonic approach. The comparison considers different application spaces, such as the detection of low concentrations of biomolecules, integration, the tailoring of light-matter interaction for the understanding of biomolecular processes, and 2D imaging of biointeractions on a surface. PMID:28880211
Hydrothermal Gasification for Waste to Energy
NASA Astrophysics Data System (ADS)
Epps, Brenden; Laser, Mark; Choo, Yeunun
2014-11-01
Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.
A Comprehensive Approach to WSN-Based ITS Applications: A Survey
Losilla, Fernando; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan; Haas, Zygmunt J.
2011-01-01
In order to perform sensing tasks, most current Intelligent Transportation Systems (ITS) rely on expensive sensors, which offer only limited functionality. A more recent trend consists of using Wireless Sensor Networks (WSN) for such purpose, which reduces the required investment and enables the development of new collaborative and intelligent applications that further contribute to improve both driving safety and traffic efficiency. This paper surveys the application of WSNs to such ITS scenarios, tackling the main issues that may arise when developing these systems. The paper is divided into sections which address different matters including vehicle detection and classification as well as the selection of appropriate communication protocols, network architecture, topology and some important design parameters. In addition, in line with the multiplicity of different technologies that take part in ITS, it does not consider WSNs just as stand-alone systems, but also as key components of heterogeneous systems cooperating along with other technologies employed in vehicular scenarios. PMID:22346640
Dual-Mode Electro-Optical Techniques for Biosensing Applications: A Review.
Juan-Colás, José; Johnson, Steven; Krauss, Thomas F
2017-09-07
The monitoring of biomolecular interactions is a key requirement for the study of complex biological processes and the diagnosis of disease. Technologies that are capable of providing label-free, real-time insight into these interactions are of great value for the scientific and clinical communities. Greater understanding of biomolecular interactions alongside increased detection accuracy can be achieved using technology that can provide parallel information about multiple parameters of a single biomolecular process. For example, electro-optical techniques combine optical and electrochemical information to provide more accurate and detailed measurements that provide unique insights into molecular structure and function. Here, we present a comparison of the main methods for electro-optical biosensing, namely, electrochemical surface plasmon resonance (EC-SPR), electrochemical optical waveguide lightmode spectroscopy (EC-OWLS), and the recently reported silicon-based electrophotonic approach. The comparison considers different application spaces, such as the detection of low concentrations of biomolecules, integration, the tailoring of light-matter interaction for the understanding of biomolecular processes, and 2D imaging of biointeractions on a surface.
Gloom and doom? The future of marine capture fisheries
Garcia, Serge M.; Grainger, Richard J. R.
2005-01-01
Predicting global fisheries is a high-order challenge but predictions have been made and updates are needed. Past forecasts, present trends and perspectives of key parameters of the fisheries—including potential harvest, state of stocks, supply and demand, trade, fishing technology and governance—are reviewed in detail, as the basis for new forecasts and forecasting performance assessment. The future of marine capture fisheries will be conditioned by the political, social and economic evolution of the world within which they operate. Consequently, recent global scenarios for the future world are reviewed, with the emphasis on fisheries. The main driving forces (e.g. global economic development, demography, environment, public awareness, information technology, energy, ethics) including aquaculture are described. Outlooks are provided for each aspect of the fishery sector. The conclusion puts these elements in perspective and offers the authors’ personal interpretation of the possible future pathway of fisheries, the uncertainty about it and the still unanswered questions of direct relevance in shaping that future. PMID:15713587
Cross-Layer Adaptive Feedback Scheduling of Wireless Control Systems
Xia, Feng; Ma, Longhua; Peng, Chen; Sun, Youxian; Dong, Jinxiang
2008-01-01
There is a trend towards using wireless technologies in networked control systems. However, the adverse properties of the radio channels make it difficult to design and implement control systems in wireless environments. To attack the uncertainty in available communication resources in wireless control systems closed over WLAN, a cross-layer adaptive feedback scheduling (CLAFS) scheme is developed, which takes advantage of the co-design of control and wireless communications. By exploiting cross-layer design, CLAFS adjusts the sampling periods of control systems at the application layer based on information about deadline miss ratio and transmission rate from the physical layer. Within the framework of feedback scheduling, the control performance is maximized through controlling the deadline miss ratio. Key design parameters of the feedback scheduler are adapted to dynamic changes in the channel condition. An event-driven invocation mechanism for the feedback scheduler is also developed. Simulation results show that the proposed approach is efficient in dealing with channel capacity variations and noise interference, thus providing an enabling technology for control over WLAN. PMID:27879934
Solís-Dominguez, Fernando A; White, Scott A; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A; Chorover, Jon; Maier, Raina M
2012-01-17
Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ∼ 2.5) metalliferous (As, Pb, Zn: 2000-3000 mg kg(-1)) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites.
Solís-Dominguez, Fernando A.; White, Scott A.; Hutter, Travis Borrillo; Amistadi, Mary Kay; Root, Robert A.; Chorover, Jon; Maier, Raina M.
2012-01-01
Phytostabilization of mine tailings acts to mitigate both eolian dispersion and water erosion events which can disseminate barren tailings over large distances. This technology uses plants to establish a vegetative cover to permanently immobilize contaminants in the rooting zone, often requiring addition of an amendment to assist plant growth. Here we report the results of a greenhouse study that evaluated the ability of six native plant species to grow in extremely acidic (pH ~ 2.5) metalliferous (As, Pb, Zn: 2000–3000 mg kg−1) mine tailings from Iron King Mine Humboldt Smelter Superfund site when amended with a range of compost concentrations. Results revealed that three of the six plant species tested (buffalo grass, mesquite, and catclaw acacia) are good candidates for phytostabilization at an optimum level of 15% compost (w/w) amendment showing good growth and minimal shoot accumulation of metal(loid)s. A fourth candidate, quailbush, also met all criteria except for exceeding the domestic animal toxicity limit for shoot accumulation of zinc. A key finding of this study was that the plant species that grew most successfully on these tailings significantly influenced key tailings parameters; direct correlations between plant biomass and both increased tailings pH and neutrophilic heterotrophic bacterial counts were observed. We also observed decreased iron oxidizer counts and decreased bioavailability of metal(loid)s mainly as a result of compost amendment. Taken together, these results suggest that the phytostabilization process reduced tailings toxicity as well as the potential for metal(loid) mobilization. This study provides practical information on plant and tailings characteristics that is critically needed for successful implementation of assisted phytostabilization on acidic, metalliferous mine tailings sites. PMID:22191663
Human Mars EDL Pathfinder Study: Assessment of Technology Development Gaps and Mitigations
NASA Technical Reports Server (NTRS)
Lillard, Randolph; Olejniczak, Joe; Polsgrove, Tara; Cianciolo, Alice Dwyer; Munk, Michelle; Whetsel, Charles; Drake, Bret
2017-01-01
This paper presents the results of a NASA initiated Agency-wide assessment to better characterize the risks and potential mitigation approaches associated with landing human class Entry, Descent, and Landing (EDL) systems on Mars. Due to the criticality and long-lead nature of advancing EDL techniques, it is necessary to determine an appropriate strategy to improve the capability to land large payloads. A key focus of this study was to understand the key EDL risks and with a focus on determining what "must" be tested at Mars. This process identified the various risks and potential risk mitigation strategies along with the key near term technology development efforts required and in what environment those technology demonstrations were best suited. The study identified key risks along with advantages to each entry technology. In addition, it was identified that provided the EDL concept of operations (con ops) minimized large scale transition events, there was no technology requirement for a Mars pre-cursor demonstration. Instead, NASA should take a direct path to a human-scale lander.
Extending the performance of KrF laser for microlithography by using novel F2 control technology
NASA Astrophysics Data System (ADS)
Zambon, Paolo; Gong, Mengxiong; Carlesi, Jason; Padmabandu, Gunasiri G.; Binder, Mike; Swanson, Ken; Das, Palash P.
2000-07-01
Exposure tools for 248nm lithography have reached a level of maturity comparable to those based on i-line. With this increase in maturity, there is a concomitant requirement for greater flexibility from the laser by the process engineers. Usually, these requirements pertain to energy, spectral width and repetition rate. By utilizing a combination of laser parameters, the process engineers are often able to optimize throughput, reduce cost-of-operation or achieve greater process margin. Hitherto, such flexibility of laser operation was possible only via significant changes to various laser modules. During our investigation, we found that the key measure of the laser that impacts the aforementioned parameters is its F2 concentration. By monitoring and controlling its slope efficiency, the laser's F2 concentration may be precisely controlled. Thus a laser may tune to operate under specifications as diverse as 7mJ, (Delta) (lambda) FWHM < 0.3 pm and 10mJ, (Delta) (lambda) FWHM < 0.6pm and still meet the host of requirements necessary for lithography. We discus this new F2 control technique and highlight some laser performance parameters.
Optimizing health information technology's role in enabling comparative effectiveness research.
Navathe, Amol S; Conway, Patrick H
2010-12-01
Health information technology (IT) is a key enabler of comparative effectiveness research (CER). Health IT standards for data sharing are essential to advancing the research data infrastructure, and health IT is critical to the next step of incorporating clinical data into data sources. Four key principles for advancement of CER are (1) utilization of data as a strategic asset, (2) leveraging public-private partnerships, (3) building robust, scalable technology platforms, and (4) coordination of activities across government agencies. To maximize the value of the resources, payers and providers must contribute data to initiatives, engage with government agencies on lessons learned, continue to develop new technologies that address key challenges, and utilize the data to improve patient outcomes and conduct research.
Thermoelectric Energy Conversion: Future Directions and Technology Development Needs
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre
2007-01-01
This viewgraph presentation reviews the process of thermoelectric energy conversion along with key technology needs and challenges. The topics include: 1) The Case for Thermoelectrics; 2) Advances in Thermoelectrics: Investment Needed; 3) Current U.S. Investment (FY07); 4) Increasing Thermoelectric Materials Conversion Efficiency Key Science Needs and Challenges; 5) Developing Advanced TE Components & Systems Key Technology Needs and Challenges; 6) Thermoelectrics; 7) 200W Class Lightweight Portable Thermoelectric Generator; 8) Hybrid Absorption Cooling/TE Power Cogeneration System; 9) Major Opportunities in Energy Industry; 10) Automobile Waste Heat Recovery; 11) Thermoelectrics at JPL; 12) Recent Advances at JPL in Thermoelectric Converter Component Technologies; 13) Thermoelectrics Background on Power Generation and Cooling Operational Modes; 14) Thermoelectric Power Generation; and 15) Thermoelectric Cooling.
NASA Technical Reports Server (NTRS)
Cole, Stuart K.; Wallace, Jon; Schaffer, Mark; May, M. Scott; Greenberg, Marc W.
2014-01-01
As a leader in space technology research and development, NASA is continuing in the development of the Technology Estimating process, initiated in 2012, for estimating the cost and schedule of low maturity technology research and development, where the Technology Readiness Level is less than TRL 6. NASA' s Technology Roadmap areas consist of 14 technology areas. The focus of this continuing Technology Estimating effort included four Technology Areas (TA): TA3 Space Power and Energy Storage, TA4 Robotics, TA8 Instruments, and TA12 Materials, to confine the research to the most abundant data pool. This research report continues the development of technology estimating efforts completed during 2013-2014, and addresses the refinement of parameters selected and recommended for use in the estimating process, where the parameters developed are applicable to Cost Estimating Relationships (CERs) used in the parametric cost estimating analysis. This research addresses the architecture for administration of the Technology Cost and Scheduling Estimating tool, the parameters suggested for computer software adjunct to any technology area, and the identification of gaps in the Technology Estimating process.
NASA Astrophysics Data System (ADS)
Samsonov, Andrey; Gordeev, Evgeny; Sergeev, Victor
2017-04-01
As it was recently suggested (e.g., Gordeev et al., 2015), the global magnetospheric configuration can be characterized by a set of key parameters, such as the magnetopause distance at the subsolar point and on the terminator plane, the magnetic field in the magnetotail lobe and the plasma sheet thermal pressure, the cross polar cap electric potential drop and the total field-aligned current. For given solar wind conditions, the values of these parameters can be obtained from both empirical models and global MHD simulations. We validate the recently developed global MHD code SPSU-16 using the key magnetospheric parameters mentioned above. The code SPSU-16 can calculate both the isotropic and anisotropic MHD equations. In the anisotropic version, we use the modified double-adiabatic equations in which the T⊥/T∥ (the ratio of perpendicular to parallel thermal pressures) has been bounded from above by the mirror and ion-cyclotron thresholds and from below by the firehose threshold. The results of validation for the SPSU-16 code well agree with the previously published results of other global codes. Some key parameters coincide in the isotropic and anisotropic MHD simulations, but some are different.
Post Landsat-D advanced concept evaluation /PLACE/
NASA Technical Reports Server (NTRS)
Alexander, L. D.; Alvarado, U. R.; Flatow, F. S.
1979-01-01
The aim of the Post Landsat-D Advanced Concept Evaluation (PLACE) program was to identify the key technology requirements of earth resources satellite systems for the 1985-2000 period. The program involved four efforts: (1) examination of future needs in the earth resources area, (2) creation of a space systems technology model capable of satisfying these needs, (3) identification of key technology requirements posed by this model, and (4) development of a methodology (PRISM) to assist in the priority structuring of the resulting technologies.
NASA Astrophysics Data System (ADS)
Schlegel, N.; Seroussi, H. L.; Boening, C.; Larour, E. Y.; Limonadi, D.; Schodlok, M.; Watkins, M. M.
2017-12-01
The Jet Propulsion Laboratory-University of California at Irvine Ice Sheet System Model (ISSM) is a thermo-mechanical 2D/3D parallelized finite element software used to physically model the continental-scale flow of ice at high resolutions. Embedded into ISSM are uncertainty quantification (UQ) tools, based on the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) software. ISSM-DAKOTA offers various UQ methods for the investigation of how errors in model input impact uncertainty in simulation results. We utilize these tools to regionally sample model input and key parameters, based on specified bounds of uncertainty, and run a suite of continental-scale 100-year ISSM forward simulations of the Antarctic Ice Sheet. Resulting diagnostics (e.g., spread in local mass flux and regional mass balance) inform our conclusion about which parameters and/or forcing has the greatest impact on century-scale model simulations of ice sheet evolution. The results allow us to prioritize the key datasets and measurements that are critical for the minimization of ice sheet model uncertainty. Overall, we find that Antartica's total sea level contribution is strongly affected by grounding line retreat, which is driven by the magnitude of ice shelf basal melt rates and by errors in bedrock topography. In addition, results suggest that after 100 years of simulation, Thwaites glacier is the most significant source of model uncertainty, and its drainage basin has the largest potential for future sea level contribution. This work is performed at and supported by the California Institute of Technology's Jet Propulsion Laboratory. Supercomputing time is also supported through a contract with the National Aeronautics and Space Administration's Cryosphere program.
Elisa technology consolidation study overview
NASA Astrophysics Data System (ADS)
Fitzsimons, E. D.; Brandt, N.; Johann, U.; Kemble, S.; Schulte, H.-R.; Weise, D.; Ziegler, T.
2017-11-01
The eLISA (evolved Laser Interferometer Space Antenna) mission is an ESA L3 concept mission intended to detect and characterise gravitational radiation emitted from astrophysical sources [1]. Current designs for eLISA [2] are based on the ESA study conducted in 2011 to reformulate the original ESA/NASA LISA concept [3] into an ESA-only L1 candidate named NGO (New Gravitational Observatory) [4]. During this brief reformulation period, a number of significant changes were made to the baseline LISA design in order to create a more costeffective mission. Some of the key changes implemented during this reformulation were: • A reduction in the inter satellite distance (the arm length) from 5 Gm to 1 Gm. • A reduction in the diameter of the telescope from 40 cm to 20 cm. • A reduction in the required laser power by approximately 40%. • Implementation of only 2 laser arms instead of 3. Many further simplifications were then enabled by these main design changes including the elimination of payload items in the two spacecraft (S/C) with no laser-link between them (the daughter S/C), a reduction in the size and complexity of the optical bench and the elimination of the Point Ahead Angle Mechanism (PAAM), which corrects for variations in the pointing direction to the far S/C caused by orbital dynamics [4] [5]. In the run-up to an L3 mission definition phase later in the decade, it is desirable to review these design choices and analyse the inter-dependencies and scaling between the key mission parameters with the goal of better understanding the parameter space and ensuring that in the final selection of the eLISA mission parameters the optimal balance between cost, complexity and science return can be achieved.
NASA Astrophysics Data System (ADS)
Ozkat, Erkan Caner; Franciosa, Pasquale; Ceglarek, Dariusz
2017-08-01
Remote laser welding technology offers opportunities for high production throughput at a competitive cost. However, the remote laser welding process of zinc-coated sheet metal parts in lap joint configuration poses a challenge due to the difference between the melting temperature of the steel (∼1500 °C) and the vapourizing temperature of the zinc (∼907 °C). In fact, the zinc layer at the faying surface is vapourized and the vapour might be trapped within the melting pool leading to weld defects. Various solutions have been proposed to overcome this problem over the years. Among them, laser dimpling has been adopted by manufacturers because of its flexibility and effectiveness along with its cost advantages. In essence, the dimple works as a spacer between the two sheets in lap joint and allows the zinc vapour escape during welding process, thereby preventing weld defects. However, there is a lack of comprehensive characterization of dimpling process for effective implementation in real manufacturing system taking into consideration inherent changes in variability of process parameters. This paper introduces a methodology to develop (i) surrogate model for dimpling process characterization considering multiple-inputs (i.e. key control characteristics) and multiple-outputs (i.e. key performance indicators) system by conducting physical experimentation and using multivariate adaptive regression splines; (ii) process capability space (Cp-Space) based on the developed surrogate model that allows the estimation of a desired process fallout rate in the case of violation of process requirements in the presence of stochastic variation; and, (iii) selection and optimization of the process parameters based on the process capability space. The proposed methodology provides a unique capability to: (i) simulate the effect of process variation as generated by manufacturing process; (ii) model quality requirements with multiple and coupled quality requirements; and (iii) optimize process parameters under competing quality requirements such as maximizing the dimple height while minimizing the dimple lower surface area.
Fernández de Dios, Maria Ángeles; Iglesias, Olaia; Pazos, Marta; Sanromán, Maria Ángeles
2014-01-01
The applicability of electro-Fenton technology to remediation of wastewater contaminated by several organic pollutants such as dyes and polycyclic aromatic hydrocarbons has been evaluated using iron-enriched zeolite as heterogeneous catalyst. The electro-Fenton technology is an advanced oxidation process that is efficient for the degradation of organic pollutants, but it suffers from the high operating costs due to the need for power investment. For this reason, in this study microbial fuel cells (MFCs) were designed in order to supply electricity to electro-Fenton processes and to achieve high treatment efficiency at low cost. Initially, the effect of key parameters on the MFC power generation was evaluated. Afterwards, the degradation of Reactive Black 5 dye and phenanthrene was evaluated in an electro-Fenton reactor, containing iron-enriched zeolite as catalyst, using the electricity supplied by the MFC. Near complete dye decolourization and 78% of phenanthrene degradation were reached after 90 min and 30 h, respectively. Furthermore, preliminary reusability tests of the developed catalyst showed high degradation levels for successive cycles. The results permit concluding that the integrated system is adequate to achieve high treatment efficiency with low electrical consumption. PMID:24723828
Advanced plasma etch technologies for nanopatterning
NASA Astrophysics Data System (ADS)
Wise, Rich
2013-10-01
Advances in patterning techniques have enabled the extension of immersion lithography from 65/45 nm through 14/10 nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques, such as litho-etch-litho-etch, sidewall image transfer, line/cut mask, and self-aligned structures, have been implemented to solution required device scaling. Advances in dry plasma etch process control across wafer uniformity and etch selectivity to both masking materials have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes, such as trilayer etches, aggressive critical dimension shrink techniques, and the extension of resist trim processes, have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across-design variation, defectivity, profile stability within wafer, within lot, and across tools has been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated total patterning solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. We will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.
Advanced plasma etch technologies for nanopatterning
NASA Astrophysics Data System (ADS)
Wise, Rich
2012-03-01
Advances in patterning techniques have enabled the extension of immersion lithography from 65/45nm through 14/10nm device technologies. A key to this increase in patterning capability has been innovation in the subsequent dry plasma etch processing steps. Multiple exposure techniques such as litho-etch-litho-etch, sidewall image transfer, line/cut mask and self-aligned structures have been implemented to solution required device scaling. Advances in dry plasma etch process control, across wafer uniformity and etch selectivity to both masking materials and have enabled adoption of vertical devices and thin film scaling for increased device performance at a given pitch. Plasma etch processes such as trilayer etches, aggressive CD shrink techniques, and the extension of resist trim processes have increased the attainable device dimensions at a given imaging capability. Precise control of the plasma etch parameters affecting across design variation, defectivity, profile stability within wafer, within lot, and across tools have been successfully implemented to provide manufacturable patterning technology solutions. IBM has addressed these patterning challenges through an integrated Total Patterning Solutions team to provide seamless and synergistic patterning processes to device and integration internal customers. This paper will discuss these challenges and the innovative plasma etch solutions pioneered by IBM and our alliance partners.
Performance of an anaerobic, static bed, fixed film bioreactor for chlorinated solvent treatment
Lorah, Michelle M.; Walker, Charles; Graves, Duane
2015-01-01
Anaerobic, fixed film, bioreactors bioaugmented with a dechlorinating microbial consortium were evaluated as a potential technology for cost effective, sustainable, and reliable treatment of mixed chlorinated ethanes and ethenes in groundwater from a large groundwater recovery system. Bench- and pilot-scale testing at about 3 and 13,500 L, respectively, demonstrated that total chlorinated solvent removal to less than the permitted discharge limit of 100 μg/L. Various planned and unexpected upsets, interruptions, and changes demonstrated the robustness and reliability of the bioreactor system, which handled the operational variations with no observable change in performance. Key operating parameters included an adequately long hydraulic retention time for the surface area, a constant supply of electron donor, pH control with a buffer to minimize pH variance, an oxidation reduction potential of approximately −200 millivolts or lower, and a well-adapted biomass capable of degrading the full suite of chlorinated solvents in the groundwater. Results indicated that the current discharge criteria can be met using a bioreactor technology that is less complex and has less downtime than the sorption based technology currently being used to treat the groundwater.
Xing, Jin-Feng; Zheng, Mei-Ling; Duan, Xuan-Ming
2015-08-07
3D printing technology has attracted much attention due to its high potential in scientific and industrial applications. As an outstanding 3D printing technology, two-photon polymerization (TPP) microfabrication has been applied in the fields of micro/nanophotonics, micro-electromechanical systems, microfluidics, biomedical implants and microdevices. In particular, TPP microfabrication is very useful in tissue engineering and drug delivery due to its powerful fabrication capability for precise microstructures with high spatial resolution on both the microscopic and the nanometric scale. The design and fabrication of 3D hydrogels widely used in tissue engineering and drug delivery has been an important research area of TPP microfabrication. The resolution is a key parameter for 3D hydrogels to simulate the native 3D environment in which the cells reside and the drug is controlled to release with optimal temporal and spatial distribution in vitro and in vivo. The resolution of 3D hydrogels largely depends on the efficiency of TPP initiators. In this paper, we will review the widely used photoresists, the development of TPP photoinitiators, the strategies for improving the resolution and the microfabrication of 3D hydrogels.
Traceable nanoscale measurement at NML-SIRIM
NASA Astrophysics Data System (ADS)
Dahlan, Ahmad M.; Abdul Hapip, A. I.
2012-06-01
The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.
Assessment of sensor performance
NASA Astrophysics Data System (ADS)
Waldmann, C.; Tamburri, M.; Prien, R. D.; Fietzek, P.
2010-02-01
There is an international commitment to develop a comprehensive, coordinated and sustained ocean observation system. However, a foundation for any observing, monitoring or research effort is effective and reliable in situ sensor technologies that accurately measure key environmental parameters. Ultimately, the data used for modelling efforts, management decisions and rapid responses to ocean hazards are only as good as the instruments that collect them. There is also a compelling need to develop and incorporate new or novel technologies to improve all aspects of existing observing systems and meet various emerging challenges. Assessment of Sensor Performance was a cross-cutting issues session at the international OceanSensors08 workshop in Warnemünde, Germany, which also has penetrated some of the papers published as a result of the workshop (Denuault, 2009; Kröger et al., 2009; Zielinski et al., 2009). The discussions were focused on how best to classify and validate the instruments required for effective and reliable ocean observations and research. The following is a summary of the discussions and conclusions drawn from this workshop, which specifically addresses the characterisation of sensor systems, technology readiness levels, verification of sensor performance and quality management of sensor systems.
Biogas Production: Microbiology and Technology.
Schnürer, Anna
Biogas, containing energy-rich methane, is produced by microbial decomposition of organic material under anaerobic conditions. Under controlled conditions, this process can be used for the production of energy and a nutrient-rich residue suitable for use as a fertilising agent. The biogas can be used for production of heat, electricity or vehicle fuel. Different substrates can be used in the process and, depending on substrate character, various reactor technologies are available. The microbiological process leading to methane production is complex and involves many different types of microorganisms, often operating in close relationships because of the limited amount of energy available for growth. The microbial community structure is shaped by the incoming material, but also by operating parameters such as process temperature. Factors leading to an imbalance in the microbial community can result in process instability or even complete process failure. To ensure stable operation, different key parameters, such as levels of degradation intermediates and gas quality, are often monitored. Despite the fact that the anaerobic digestion process has long been used for industrial production of biogas, many questions need still to be resolved to achieve optimal management and gas yields and to exploit the great energy and nutrient potential available in waste material. This chapter discusses the different aspects that need to be taken into consideration to achieve optimal degradation and gas production, with particular focus on operation management and microbiology.
Jiang, Liying; Zhu, Runye; Mao, Yubo; Chen, Jianmeng; Zhang, Liang
2015-01-01
The combination of chemical oxidation methods with biotechnology to removal recalcitrant VOCs is a promising technology. In this paper, the aim was to identify the role of key process parameters and biodegradability of the degradation products using a dielectric barrier discharge (DBD) reactor, which provided the fundamental data to evaluate the possibilities of the combined system. Effects of various technologic parameters like initial concentration of mixtures, residence time and relative humidity on the decomposition and the degradation products were examined and discussed. It was found that the removal efficiency of mixed VOCs decreased with increasing initial concentration. The removal efficiency reached the maximum value as relative humidity was approximately 40%–60%. Increasing the residence time resulted in increasing the removal efficiency and the order of destruction efficiency of VOCs followed the order styrene > o-xylene. Compared with the single compounds, the removal efficiency of styrene and o-xylene in the mixtures of VOCs decreased significantly and o-xylene decreased more rapidly. The degradation products were analyzed by gas chromatography and gas chromatography-mass spectrometry, and the main compounds detected were O3, COx and benzene ring derivatives. The biodegradability of mixed VOCs was improved and the products had positive effect on biomass during plasma application, and furthermore typical results indicated that the biodegradability and biotoxicity of gaseous pollutant were quite depending on the specific input energy (SIE). PMID:25629961
Key participants in codeveloped technology pose for group picture
NASA Technical Reports Server (NTRS)
1997-01-01
Following the presentation of the Universal Signal Conditioning Amplifier (USCA), a new piece of technology developed through a National Aeronautics and Space Administration (NASA) partnership with industry, to Kennedy Space Center (KSC) Director Roy Bridges, Jr., key participants in the partnership pose for a group portrait. They are (from left) Bill Larson, NASA; Dr. Pedro Medelius, INET; Roy Bridges, Jr., KSC Director; Ed Gladney and William Saputo, L-3 Communications; Pam Gillespi, representing Congressman Dave Weldon; and Frank Kinney, Technological Research and Development Authority. The USCA is a key component of the codeveloped Automated Data Acquisition System (ADAS) that measures temperature, pressure and vibration at KSC's launch pads. The breakthrough technology is expected to reduce sensor setup and configuration times from hours to seconds. KSC teamed up with Florida's Technological Research and Development Authority and manufacturer L-3 Communications to produce a system that would benefit the aerospace industry and other commercial markets.
An Image Encryption Algorithm Utilizing Julia Sets and Hilbert Curves
Sun, Yuanyuan; Chen, Lina; Xu, Rudan; Kong, Ruiqing
2014-01-01
Image encryption is an important and effective technique to protect image security. In this paper, a novel image encryption algorithm combining Julia sets and Hilbert curves is proposed. The algorithm utilizes Julia sets’ parameters to generate a random sequence as the initial keys and gets the final encryption keys by scrambling the initial keys through the Hilbert curve. The final cipher image is obtained by modulo arithmetic and diffuse operation. In this method, it needs only a few parameters for the key generation, which greatly reduces the storage space. Moreover, because of the Julia sets’ properties, such as infiniteness and chaotic characteristics, the keys have high sensitivity even to a tiny perturbation. The experimental results indicate that the algorithm has large key space, good statistical property, high sensitivity for the keys, and effective resistance to the chosen-plaintext attack. PMID:24404181
Lang, Jun
2012-01-30
In this paper, we propose a novel secure image sharing scheme based on Shamir's three-pass protocol and the multiple-parameter fractional Fourier transform (MPFRFT), which can safely exchange information with no advance distribution of either secret keys or public keys between users. The image is encrypted directly by the MPFRFT spectrum without the use of phase keys, and information can be shared by transmitting the encrypted image (or message) three times between users. Numerical simulation results are given to verify the performance of the proposed algorithm.
A brief review on key technologies in the battery management system of electric vehicles
NASA Astrophysics Data System (ADS)
Liu, Kailong; Li, Kang; Peng, Qiao; Zhang, Cheng
2018-04-01
Batteries have been widely applied in many high-power applications, such as electric vehicles (EVs) and hybrid electric vehicles, where a suitable battery management system (BMS) is vital in ensuring safe and reliable operation of batteries. This paper aims to give a brief review on several key technologies of BMS, including battery modelling, state estimation and battery charging. First, popular battery types used in EVs are surveyed, followed by the introduction of key technologies used in BMS. Various battery models, including the electric model, thermal model and coupled electro-thermal model are reviewed. Then, battery state estimations for the state of charge, state of health and internal temperature are comprehensively surveyed. Finally, several key and traditional battery charging approaches with associated optimization methods are discussed.
NASA Astrophysics Data System (ADS)
Chen, Jie; Huang, Pu-Man; Han, Xiao-Biao; Pan, Zheng-Zhou; Zhong, Chang-Ming; Liang, Jie-Zhi; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun
2017-06-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 61574173), the National Key Research and Development Program, China (Grant No. 2016YFB0400105), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the International Science and Technology Collaboration Program of Guangzhou City, China (Grant No. 2016201604030055), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), Guangdong Provincial Natural Science Foundation, China (Grant No. 2015A030312011), the Science & Technology Plan of Guangdong Province, China (Grant Nos. 2015B090903062, 2015B010132007, and 2015B010129010), the Science and Technology Plan of Guangzhou, China (Grant No. 201508010048), the Science and Technology Plan of Foshan, China (Grant No. 201603130003), Guangdong-Hong Kong Joint Innovation Project of Guangdong Province, China (Grant No. 2014B050505009), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics (Grant No. IOSKL2014KF17), the Zhuhai Key Technology Laboratory of Wide Bandgap Semiconductor Power Electronics, Sun Yat-sen University (Grant No. 20167612042080001).
21st Century Cell Culture for 21st Century Toxicology.
Pamies, David; Hartung, Thomas
2017-01-17
There is no good science in bad models. Cell culture is especially prone to artifacts. A number of novel cell culture technologies have become more broadly available in the 21st century, which allow overcoming limitations of traditional culture and are more physiologically relevant. These include the use of stem-cell derived human cells, cocultures of different cell types, scaffolds and extracellular matrices, perfusion platforms (such as microfluidics), 3D culture, organ-on-chip technologies, tissue architecture, and organ functionality. The physiological relevance of such models is further enhanced by the measurement of biomarkers (e.g., key events of pathways), organ specific functionality, and more comprehensive assessment cell responses by high-content methods. These approaches are still rarely combined to create microphysiological systems. The complexity of the combination of these technologies can generate results closer to the in vivo situation but increases the number of parameters to control, bringing some new challenges. In fact, we do not argue that all cell culture needs to be that sophisticated. The efforts taken are determined by the purpose of our experiments and tests. If only a very specific molecular target to cell response is of interest, a very simple model, which reflects this, might be much more suited to allow standardization and high-throughput. However, the less defined the end point of interest and cellular response are, the better we should approximate organ- or tissue-like culture conditions to make physiological responses more probable. Besides these technologic advances, important progress in the quality assurance and reporting on cell cultures as well as the validation of cellular test systems brings the utility of cell cultures to a new level. The advancement and broader implementation of Good Cell Culture Practice (GCCP) is key here. In toxicology, this is a major prerequisite for meaningful and reliable results, ultimately supporting risk assessment and product development decisions.
Summers, Sarah K.; Rainey, Rochelle; Kaur, Maneet; Graham, Jay P.
2015-01-01
Background Carbon credits are an increasingly prevalent market-based mechanism used to subsidize household water treatment technologies (HWT). This involves generating credits through the reduction of carbon emissions from boiling water by providing a technology that reduces greenhouse gas emissions linked to climate change. Proponents claim this process delivers health and environmental benefits by providing clean drinking water and reducing greenhouse gases. Selling carbon credits associated with HWT projects requires rigorous monitoring to ensure households are using the HWT and achieving the desired benefits of the device. Critics have suggested that the technologies provide neither the benefits of clean water nor reduced emissions. This study explores the perspectives of carbon credit and water, sanitation and hygiene (WASH) experts on HWT carbon credit projects. Methods Thirteen semi-structured, in-depth interviews were conducted with key informants from the WASH and carbon credit development sectors. The interviews explored perceptions of the two groups with respect to the procedures applied in the Gold Standard methodology for trading Voluntary Emission Reduction (VER) credits. Results Agreement among the WASH and carbon credit experts existed for the concept of suppressed demand and parameters in the baseline water boiling test. Key differences, however, existed. WASH experts’ responses highlighted a focus on objectively verifiable data for monitoring carbon projects while carbon credit experts called for contextualizing observed data with the need for flexibility and balancing financial viability with quality assurance. Conclusions Carbon credit projects have the potential to become an important financing mechanism for clean energy in low- and middle-income countries. Based on this research we recommend that more effort be placed on building consensus on the underlying assumptions for obtaining carbon credits from HWT projects, as well as the approved methods for monitoring correct and consistent use of the HWT technologies in order to support public health impacts. PMID:25928139
Summers, Sarah K; Rainey, Rochelle; Kaur, Maneet; Graham, Jay P
2015-01-01
Carbon credits are an increasingly prevalent market-based mechanism used to subsidize household water treatment technologies (HWT). This involves generating credits through the reduction of carbon emissions from boiling water by providing a technology that reduces greenhouse gas emissions linked to climate change. Proponents claim this process delivers health and environmental benefits by providing clean drinking water and reducing greenhouse gases. Selling carbon credits associated with HWT projects requires rigorous monitoring to ensure households are using the HWT and achieving the desired benefits of the device. Critics have suggested that the technologies provide neither the benefits of clean water nor reduced emissions. This study explores the perspectives of carbon credit and water, sanitation and hygiene (WASH) experts on HWT carbon credit projects. Thirteen semi-structured, in-depth interviews were conducted with key informants from the WASH and carbon credit development sectors. The interviews explored perceptions of the two groups with respect to the procedures applied in the Gold Standard methodology for trading Voluntary Emission Reduction (VER) credits. Agreement among the WASH and carbon credit experts existed for the concept of suppressed demand and parameters in the baseline water boiling test. Key differences, however, existed. WASH experts' responses highlighted a focus on objectively verifiable data for monitoring carbon projects while carbon credit experts called for contextualizing observed data with the need for flexibility and balancing financial viability with quality assurance. Carbon credit projects have the potential to become an important financing mechanism for clean energy in low- and middle-income countries. Based on this research we recommend that more effort be placed on building consensus on the underlying assumptions for obtaining carbon credits from HWT projects, as well as the approved methods for monitoring correct and consistent use of the HWT technologies in order to support public health impacts.
Flight demonstrator concept for key technologies enabling future reusable launch vehicles
NASA Astrophysics Data System (ADS)
Ishimoto, Shinji; Fujii, Kenji; Mori, Takeshi
2005-07-01
A research center in JAXA has recently started research on reusable launch vehicles according to its plan placing emphasis on advanced launch technology. It is planned to demonstrate key technologies using a rocket-powered winged vehicle, and concept studies on the flight demonstrator have been conducted. This paper describes the present research plan and introduces the most compact vehicle concept among some versions under consideration.
Key parameters design of an aerial target detection system on a space-based platform
NASA Astrophysics Data System (ADS)
Zhu, Hanlu; Li, Yejin; Hu, Tingliang; Rao, Peng
2018-02-01
To ensure flight safety of an aerial aircraft and avoid recurrence of aircraft collisions, a method of multi-information fusion is proposed to design the key parameter to realize aircraft target detection on a space-based platform. The key parameters of a detection wave band and spatial resolution using the target-background absolute contrast, target-background relative contrast, and signal-to-clutter ratio were determined. This study also presented the signal-to-interference ratio for analyzing system performance. Key parameters are obtained through the simulation of a specific aircraft. And the simulation results show that the boundary ground sampling distance is 30 and 35 m in the mid- wavelength infrared (MWIR) and long-wavelength infrared (LWIR) bands for most aircraft detection, and the most reasonable detection wavebands is 3.4 to 4.2 μm and 4.35 to 4.5 μm in the MWIR bands, and 9.2 to 9.8 μm in the LWIR bands. We also found that the direction of detection has a great impact on the detection efficiency, especially in MWIR bands.
Novel image encryption algorithm based on multiple-parameter discrete fractional random transform
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Dong, Taiji; Wu, Jianhua
2010-08-01
A new method of digital image encryption is presented by utilizing a new multiple-parameter discrete fractional random transform. Image encryption and decryption are performed based on the index additivity and multiple parameters of the multiple-parameter fractional random transform. The plaintext and ciphertext are respectively in the spatial domain and in the fractional domain determined by the encryption keys. The proposed algorithm can resist statistic analyses effectively. The computer simulation results show that the proposed encryption algorithm is sensitive to the multiple keys, and that it has considerable robustness, noise immunity and security.
MIXI: Mobile Intelligent X-Ray Inspection System
NASA Astrophysics Data System (ADS)
Arodzero, Anatoli; Boucher, Salime; Kutsaev, Sergey V.; Ziskin, Vitaliy
2017-07-01
A novel, low-dose Mobile Intelligent X-ray Inspection (MIXI) concept is being developed at RadiaBeam Technologies. The MIXI concept relies on a linac-based, adaptive, ramped energy source of short X-ray packets of pulses, a new type of fast X-ray detector, rapid processing of detector signals for intelligent control of the linac, and advanced radiography image processing. The key parameters for this system include: better than 3 mm line pair resolution; penetration greater than 320 mm of steel equivalent; scan speed with 100% image sampling rate of up to 15 km/h; and material discrimination over a range of thicknesses up to 200 mm of steel equivalent. Its minimal radiation dose, size and weight allow MIXI to be placed on a lightweight truck chassis.
An approach of characterizing the degree of spatial color mixture
NASA Astrophysics Data System (ADS)
Chu, Miao; Tian, Shaohui
2017-07-01
The digital camouflage technology arranges different color mosaics according to a certain rules, compared with traditional camouflage, it has more outstanding results deal with different distance reconnaissance. The better result of digital camouflage is mainly attributed to spatial color mixture, and is also a key factor to improve digital camouflage design. However, the research of space color mixture is relatively lack, cannot provide inadequate support for digital camouflage design. Therefore, according to the process of spatial color mixture, this paper proposes an effective parameter, spatial-color-mixture ratio, to characterize the degree of spatial color mixture. The experimental results show that spatial-color-mixture ratio is feasible and effective in practice, which could provide a new direction for further research on digital camouflage.
Hyperpolarized Magnetic Resonance as a Sensitive Detector of Metabolic Function
2015-01-01
Hyperpolarized magnetic resonance allows for noninvasive measurements of biochemical reactions in vivo. Although this technique provides a unique tool for assaying enzymatic activities in intact organs, the scope of its application is still elusive for the wider scientific community. The purpose of this review is to provide key principles and parameters to guide the researcher interested in adopting this technology to address a biochemical, biomedical, or medical issue. It is presented in the form of a compendium containing the underlying essential physical concepts as well as suggestions to help assess the potential of the technique within the framework of specific research environments. Explicit examples are used to illustrate the power as well as the limitations of hyperpolarized magnetic resonance. PMID:25369537
Application Of Optical Techniques To Command, Control, And Communications (C3) Systems
NASA Astrophysics Data System (ADS)
Weinberg, M.; Steensma, P. D.
1981-02-01
This paper identifies and discusses specific applications of the optical transmission technology to various Command Control and Communications (C3) systems. Candidate C3 systems will first be identified and discussed briefly. These will include: 407L/485L Tactical Air Defense Systems (USAF) TAOC-85 Tactical Air Operations Central (USMC) SACDIN Strategic Air Command Digital Integrated Network (USAF) MX-C3 Missile "X" Command Control Communications Network The first tr are classified as tactical C3 systems while the latter two are classified as strategic C systems. Potential optical applications will be identified along with the benefits derived. Each application will be discussed with key parameters, cost performance benefits, potential problem areas, time frame for development identified.
Research on the application of vehicle network in optimization of automobile supply supply chain
NASA Astrophysics Data System (ADS)
Jing, Xuelei; Jia, Baoxian
2017-09-01
The four key areas of the development of Internet-connected (intelligent transportation) with great potential for development,environmental monitoring, goods tracking, and the development of smart grid are the core supporting technologies of many applications. In order to improve the adaptability of data distribution, so that it can be used in urban, rural or highway and other different car networking scenarios, the study test and hypothetical test of the technical means to accurately estimate the different car network scene parameters indicators, and then different scenarios take different distribution strategies. Taking into account the limited nature of the data distribution of the Internet network data, the paper uses the idea of a customer to optimize the simulation
Research and realization of key technology in HILS interactive system
NASA Astrophysics Data System (ADS)
Liu, Che; Lu, Huiming; Wang, Fankai
2018-03-01
This paper designed HILS (Hardware In the Loop Simulation) interactive system based on xPC platform . Through the interface between C++ and MATLAB engine, establish the seamless data connection between Simulink and interactive system, complete data interaction between system and Simulink, realize the function development of model configuration, parameter modification and off line simulation. We establish the data communication between host and target machine through TCP/IP protocol to realize the model download and real-time simulation. Use database to store simulation data, implement real-time simulation monitoring and simulation data management. Realize system function integration by Qt graphic interface library and dynamic link library. At last, take the typical control system as an example to verify the feasibility of HILS interactive system.
Tong, Xuming; Chen, Jinghang; Miao, Hongyu; Li, Tingting; Zhang, Le
2015-01-01
Agent-based models (ABM) and differential equations (DE) are two commonly used methods for immune system simulation. However, it is difficult for ABM to estimate key parameters of the model by incorporating experimental data, whereas the differential equation model is incapable of describing the complicated immune system in detail. To overcome these problems, we developed an integrated ABM regression model (IABMR). It can combine the advantages of ABM and DE by employing ABM to mimic the multi-scale immune system with various phenotypes and types of cells as well as using the input and output of ABM to build up the Loess regression for key parameter estimation. Next, we employed the greedy algorithm to estimate the key parameters of the ABM with respect to the same experimental data set and used ABM to describe a 3D immune system similar to previous studies that employed the DE model. These results indicate that IABMR not only has the potential to simulate the immune system at various scales, phenotypes and cell types, but can also accurately infer the key parameters like DE model. Therefore, this study innovatively developed a complex system development mechanism that could simulate the complicated immune system in detail like ABM and validate the reliability and efficiency of model like DE by fitting the experimental data. PMID:26535589
Measurement of agricultural parameters using wireless sensor network (WSN)
NASA Astrophysics Data System (ADS)
Guaña-Moya, Javier; Sánchez-Almeida, Tarquino; Salgado-Reyes, Nelson
2018-04-01
The technological advances have allowed to create new applications in telecommunications, applying low power and reduced costs in their equipment, thus achieving the evolution of new wireless networks or also denominated Wireless Sensor Network. These technologies allow the generation of measurements and analysis of environmental parameter data and soil. Precision agriculture requires parameters for the improvement of production, obtained through WSN technologies. This research analyzes the climatic requirements and soil parameters in a rose plantation in a greenhouse at an altitude of 3,100 meters above sea level. In the present investigation, maximum parameters were obtained in the production of roses, which are in the optimum range of production, whereas the minimum parameters of temperature, humidity and luminosity, evidenced that these parameters can damage the plants, since temperatures less than 10 °C slow down the growth of the plant and allow the proliferation of diseases and fungi.
[The characteristics of medical technologies in emergency medical care hospital].
Murakhovskiĭ, A G; Babenko, A I; Bravve, Iu I; Tataurova, E A
2013-01-01
The article analyzes the implementation of major 12 diagnostic and 17 treatment technologies applied during medical care of patients with 12 key nosology forms of diseases in departments of the emergency medical care hospital No 2 of Omsk. It is established that key groups of technologies in the implementation of diagnostic process are the laboratory clinical diagnostic analyses and common diagnostic activities at reception into hospital and corresponding departments. The percentage of this kind of activities is about 78.3% of all diagnostic technologies. During the realization of treatment process the priority technologies are common curative and rehabilitation activities, intensive therapy activities and clinical diagnostic monitoring activities. All of them consist 80.1% of all curative technologies.
Virtual imaging in sports broadcasting: an overview
NASA Astrophysics Data System (ADS)
Tan, Yi
2003-04-01
Virtual imaging technology is being used to augment television broadcasts -- virtual objects are seamlessly inserted into the video stream to appear as real entities to TV audiences. Virtual advertisements, the main application of this technology, are providing opportunities to improve the commercial value of television programming while enhancing the contents and the entertainment aspect of these programs. State-of-the-art technologies, such as image recognition, motion tracking and chroma keying, are central to a virtual imaging system. This paper reviews the general framework, the key techniques, and the sports broadcasting applications of virtual imaging technology.
Space Station Displays and Controls Technology Evolution
NASA Technical Reports Server (NTRS)
Blackburn, Greg C.
1990-01-01
Viewgraphs on space station displays and controls technology evolution are presented. Topics covered include: a historical perspective; major development objectives; current development activities; key technology areas; and technology evolution issues.
Designing and redesigning medical telecare services: a forces-oriented model.
Gortzis, L G
2007-01-01
Medical telecare services' designing and redesigning still remains a challenging issue since it often depends on how a number of socio-technological issues are framed. This work has two key objectives; the former is to theoretically analyze the nature of a telecare environment by developing a model that reveals potential areas of analysis and the latter is to support designing and redesigning medical telecare services by formulating a strategy as well as a number of 'state of the art' guidelines. We have extended Leavitt's diamond to develop a model capable of accurately reflecting the telecare environment building dimensions as well as their interactions. This model depends on the i) technology, ii) collaborators, iii) tasks, iv) structure, v) social forces, and the vi) procedure dimensions. Taking this model as a core element we have proposed a service designing and redesigning strategy formulating, in parallel, six scalable dimension-oriented guidelines. During the two-year period (2003-2005) an enormous amount of data was collected (by active participating in two EU projects, by conducting semistructured interviews, by performing onsite observations as well as by reviewing 78 previous projects) and classified, structuring six guidelines. These guidelines can be considered as the 'state of the art' to support future services' design and redesign. This work considering the telecare environment as a multi-dimensional, operational organization has put the focus on accurate telecare services' design and redesign. The parameters are not limited, by any means, and are drawn from experience of designing services in a variety of telecare domains. The optimal parameter combination must be chosen according to the aim of each telecare procedure. Further research is needed to determine the minimum parameters to support telecare service design.
Commercialization Issues For Catheter-Based Electrochemical Sensors
NASA Astrophysics Data System (ADS)
Nikolchev, Julian; Gaisford, Scott
1989-08-01
The need for continuous monitoring of key clinical parameters in hospitals is well recognized. Figure 1 shows typical time constants for blood gases, ions and enzymes in response to acute ventilatory changes and interventions. Although it can be seen that relatively low rates of data collection are necessary for many medical measurements, it is also clear that intermittent measurement of P02, PCO2 and pH are not sufficient to provide safe and effective management of the patient. Very frequent or continuous monitoring is often essential. This figure also shows why the emphasis of a large number of research efforts in this country and in Europe and Japan have as their goal the development of continuous blood gas sensors, i.e., sensors that continuously monitor blood pH, partial pressure of oxygen and partial pressure of carbon dioxide. These are three (3) of the most frequent parameters measured in hospitals and the ones having the shortest time constant. Considering that in the United States alone close to 25 million blood gas samples per year are taken from patients, the potential market for continuous monitoring sensors is enormous. The emergence of microelectronics and microfabrication technologies over the past 30 years are now pointing to a possible resolution of the well recognized need for real time monitoring of critically ill patients through catheter-based sensors. Although physicians will always prefer non-invasive monitoring techniques, there are a number of parameters that presently can only be monitored by invasive method. The emerging ability to miniaturize chemical sensors using silicon microfabrication or fiber-optic techniques offer an excellent opportunity to solve this need. In fact, the development of in vivo biomedical sensors with satisfactory performance characteristics has long been considered the ultimate application of these emerging technologies.
The Key Technologies. Some Implications for Education and Training. An Occasional Paper.
ERIC Educational Resources Information Center
Mansell, Jack; And Others
National competitiveness depends in large part on the practical application of technologies. Educational planners must, therefore, identify key (newly emerging) topics in science and engineering that are likely to have a major evolutionary effect on industry and incorporate these areas into existing vocational and technical curricula. Because…
A Business Educator's Guide to Transitioning to a Digital Curriculum
ERIC Educational Resources Information Center
Roberts, Scott D.; Rains, Russell E.; Perry, Gregory E.
2012-01-01
The authors, representing three key digital media business disciplines, present a case for how business curriculum could be updated to include a strong digital element without recreating the entire business school enterprise or spending millions on new faculty and technology. The three key disciplines are technology, law, and marketing.
Technological Advances and Information Education 1982-2007: Some Perspectives
ERIC Educational Resources Information Center
Guy, Fred
2007-01-01
The paper considers technological advances in relation to information education over the 25 years of existence of the journal, "Education for Information." Some key developments before 1980 such as the appearance of MARC and library co-operatives are mentioned along with key post-1980 developments including networking, the World Wide…
Scaled CMOS Technology Reliability Users Guide
NASA Technical Reports Server (NTRS)
White, Mark
2010-01-01
The desire to assess the reliability of emerging scaled microelectronics technologies through faster reliability trials and more accurate acceleration models is the precursor for further research and experimentation in this relevant field. The effect of semiconductor scaling on microelectronics product reliability is an important aspect to the high reliability application user. From the perspective of a customer or user, who in many cases must deal with very limited, if any, manufacturer's reliability data to assess the product for a highly-reliable application, product-level testing is critical in the characterization and reliability assessment of advanced nanometer semiconductor scaling effects on microelectronics reliability. A methodology on how to accomplish this and techniques for deriving the expected product-level reliability on commercial memory products are provided.Competing mechanism theory and the multiple failure mechanism model are applied to the experimental results of scaled SDRAM products. Accelerated stress testing at multiple conditions is applied at the product level of several scaled memory products to assess the performance degradation and product reliability. Acceleration models are derived for each case. For several scaled SDRAM products, retention time degradation is studied and two distinct soft error populations are observed with each technology generation: early breakdown, characterized by randomly distributed weak bits with Weibull slope (beta)=1, and a main population breakdown with an increasing failure rate. Retention time soft error rates are calculated and a multiple failure mechanism acceleration model with parameters is derived for each technology. Defect densities are calculated and reflect a decreasing trend in the percentage of random defective bits for each successive product generation. A normalized soft error failure rate of the memory data retention time in FIT/Gb and FIT/cm2 for several scaled SDRAM generations is presented revealing a power relationship. General models describing the soft error rates across scaled product generations are presented. The analysis methodology may be applied to other scaled microelectronic products and their key parameters.
NASA Astrophysics Data System (ADS)
Larchet, Kevin; Guédez, Rafael; Topel, Monika; Gustavsson, Lars; Machirant, Andrew; Hedlund, Maria-Lina; Laumert, Björn
2017-06-01
The present study quantifies the reduction in the levelized cost of electricity (LCoE) and capital expenditure (CAPEX) of a dish Stirling power plant (DSPP) through an increase in localization and unit production volume. Furthermore, the localization value of the plant is examined to determine how much investment is brought into the local economy. Ouarzazate, Morocco, was chosen as the location of the study due to the country's favorable regulatory framework with regards to solar power technologies and its established industry in the concentrating solar power (CSP) field. A detailed techno-economic model of a DSPP was developed using KTH's in-house modelling tool DYESOPT, which allows power plant evaluation by means of technical and economic performance indicators. Results on the basis of LCoE and CAPEX were compared between two different cases of production volume, examining both a minimum and maximum level of localization. Thereafter, the DSPP LCoE and localization value were compared against competing solar technologies to evaluate its competitiveness. In addition, a sensitivity analysis was conducted around key design parameters. The study confirms that the LCoE of a DSPP can be reduced to values similar to solar photovoltaic (PV) and lower than other CSP technologies. Furthermore, the investment in the local economy is far greater when compared to PV and of the same magnitude to other CSP technologies. The competiveness of a DSPP has the potential to increase further when coupled with thermal energy storage (TES), which is currently under development.
Microwave moisture sensing of seedcotton: Part 1: Seedcotton microwave material properties
USDA-ARS?s Scientific Manuscript database
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as alter the...
Microwave moisture sensing of seedcotton: Part 1: Seedcotton microwave material properties
USDA-ARS?s Scientific Manuscript database
Moisture content at harvest is a key parameter that impacts quality and how well the cotton crop can be stored without degrading before processing. It is also a key parameter of interest for harvest time field trials as it can directly influence the quality of the harvested crop as well as skew the...
Technology Benefit Estimator (T/BEST): User's Manual
NASA Technical Reports Server (NTRS)
Generazio, Edward R.; Chamis, Christos C.; Abumeri, Galib
1994-01-01
The Technology Benefit Estimator (T/BEST) system is a formal method to assess advanced technologies and quantify the benefit contributions for prioritization. T/BEST may be used to provide guidelines to identify and prioritize high payoff research areas, help manage research and limited resources, show the link between advanced concepts and the bottom line, i.e., accrued benefit and value, and to communicate credibly the benefits of research. The T/BEST software computer program is specifically designed to estimating benefits, and benefit sensitivities, of introducing new technologies into existing propulsion systems. Key engine cycle, structural, fluid, mission and cost analysis modules are used to provide a framework for interfacing with advanced technologies. An open-ended, modular approach is used to allow for modification and addition of both key and advanced technology modules. T/BEST has a hierarchical framework that yields varying levels of benefit estimation accuracy that are dependent on the degree of input detail available. This hierarchical feature permits rapid estimation of technology benefits even when the technology is at the conceptual stage. As knowledge of the technology details increases the accuracy of the benefit analysis increases. Included in T/BEST's framework are correlations developed from a statistical data base that is relied upon if there is insufficient information given in a particular area, e.g., fuel capacity or aircraft landing weight. Statistical predictions are not required if these data are specified in the mission requirements. The engine cycle, structural fluid, cost, noise, and emissions analyses interact with the default or user material and component libraries to yield estimates of specific global benefits: range, speed, thrust, capacity, component life, noise, emissions, specific fuel consumption, component and engine weights, pre-certification test, mission performance engine cost, direct operating cost, life cycle cost, manufacturing cost, development cost, risk, and development time. Currently, T/BEST operates on stand-alone or networked workstations, and uses a UNIX shell or script to control the operation of interfaced FORTRAN based analyses. T/BEST's interface structure works equally well with non-FORTRAN or mixed software analysis. This interface structure is designed to maintain the integrity of the expert's analyses by interfacing with expert's existing input and output files. Parameter input and output data (e.g., number of blades, hub diameters, etc.) are passed via T/BEST's neutral file, while copious data (e.g., finite element models, profiles, etc.) are passed via file pointers that point to the expert's analyses output files. In order to make the communications between the T/BEST's neutral file and attached analyses codes simple, only two software commands, PUT and GET, are required. This simplicity permits easy access to all input and output variables contained within the neutral file. Both public domain and proprietary analyses codes may be attached with a minimal amount of effort, while maintaining full data and analysis integrity, and security. T/BESt's sotware framework, status, beginner-to-expert operation, interface architecture, analysis module addition, and key analysis modules are discussed. Representative examples of T/BEST benefit analyses are shown.
Technology Benefit Estimator (T/BEST): User's manual
NASA Astrophysics Data System (ADS)
Generazio, Edward R.; Chamis, Christos C.; Abumeri, Galib
1994-12-01
The Technology Benefit Estimator (T/BEST) system is a formal method to assess advanced technologies and quantify the benefit contributions for prioritization. T/BEST may be used to provide guidelines to identify and prioritize high payoff research areas, help manage research and limited resources, show the link between advanced concepts and the bottom line, i.e., accrued benefit and value, and to communicate credibly the benefits of research. The T/BEST software computer program is specifically designed to estimating benefits, and benefit sensitivities, of introducing new technologies into existing propulsion systems. Key engine cycle, structural, fluid, mission and cost analysis modules are used to provide a framework for interfacing with advanced technologies. An open-ended, modular approach is used to allow for modification and addition of both key and advanced technology modules. T/BEST has a hierarchical framework that yields varying levels of benefit estimation accuracy that are dependent on the degree of input detail available. This hierarchical feature permits rapid estimation of technology benefits even when the technology is at the conceptual stage. As knowledge of the technology details increases the accuracy of the benefit analysis increases. Included in T/BEST's framework are correlations developed from a statistical data base that is relied upon if there is insufficient information given in a particular area, e.g., fuel capacity or aircraft landing weight. Statistical predictions are not required if these data are specified in the mission requirements. The engine cycle, structural fluid, cost, noise, and emissions analyses interact with the default or user material and component libraries to yield estimates of specific global benefits: range, speed, thrust, capacity, component life, noise, emissions, specific fuel consumption, component and engine weights, pre-certification test, mission performance engine cost, direct operating cost, life cycle cost, manufacturing cost, development cost, risk, and development time. Currently, T/BEST operates on stand-alone or networked workstations, and uses a UNIX shell or script to control the operation of interfaced FORTRAN based analyses. T/BEST's interface structure works equally well with non-FORTRAN or mixed software analysis. This interface structure is designed to maintain the integrity of the expert's analyses by interfacing with expert's existing input and output files. Parameter input and output data (e.g., number of blades, hub diameters, etc.) are passed via T/BEST's neutral file, while copious data (e.g., finite element models, profiles, etc.) are passed via file pointers that point to the expert's analyses output files. In order to make the communications between the T/BEST's neutral file and attached analyses codes simple, only two software commands, PUT and GET, are required. This simplicity permits easy access to all input and output variables contained within the neutral file. Both public domain and proprietary analyses codes may be attached with a minimal amount of effort, while maintaining full data and analysis integrity, and security.
Techniques for evaluating optimum data center operation
Hamann, Hendrik F.; Rodriguez, Sergio Adolfo Bermudez; Wehle, Hans-Dieter
2017-06-14
Techniques for modeling a data center are provided. In one aspect, a method for determining data center efficiency is provided. The method includes the following steps. Target parameters for the data center are obtained. Technology pre-requisite parameters for the data center are obtained. An optimum data center efficiency is determined given the target parameters for the data center and the technology pre-requisite parameters for the data center.
System Engineering Analysis For Improved Scout Business Information Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Slyke, D. A.
The project uses system engineering principles to address the need of Boy Scout leaders for an integrated system to facilitate advancement and awards records, leader training and planning for meetings and activities. Existing products to address needs of Scout leaders and relevant stakeholders function to support record keeping and some communication functions but opportunity exists for a better system to fully integrate these functions with training delivery and recording, activity planning along with feedback and information gathering from stakeholders. Key stakeholders for the sytem include Scouts and their families, leaders, training providers, sellers of supplies and awards, content generators andmore » facilities that serve Scout activities. Key performance parameters for the system are protection of personal information, availability of current information, information accuracy and information content that has depth. Implementation concepts considered for the system include (1) owned and operated by Boy Scouts of America, (2) Contracted out to a vendor (3) distributed system that functions with BSA managed interfaces. The selected concept is to contract out to a vendor to maximize the likelihood of successful integration and take advantage of the best technology. Development of requirements considers three key use cases (1) System facilitates planning a hike with training needed satisfied in advance and advancement recording real time (2) Scheduling and documenting in-person training, (3) Family interested in Scouting receives information and can request follow-up. Non-functional requirements are analyzed with the Quality Function Deployment tool. Requirement addressing frequency of backup, compatibility with legacy and new technology, language support, software update are developed to address system reliability and intuitive interface. System functions analyzed include update of activity database, maintenance of advancement status, archive of documents, and monitoring of content that is accessible. The study examines risks associated with information security, technological change and continued popularity of Scouting. Mitigation is based on system functions that are defined. The approach to developing an improved system for facilitating Boy Scout leader functions was iterative with insights into capabilities coming in the course of working through the used cases and sequence diagrams.« less
Two color QWIP and extended wavebands
NASA Astrophysics Data System (ADS)
Costard, Eric; Truffer, Jean P.; Huet, Odile; Dua, Lydie; Nedelcu, Alexandru; Robo, J. A.; Marcadet, Xavier; Briere de l'Isle, Nadia; Bois, Philippe; Manissadjian, A.; Gohier, D.
2007-04-01
Since 2002, the THALES Group has been manufacturing sensitive arrays using QWIP technology based on GaAs and related III-V compounds, at THALES Research and Technology Laboratory. The QWIP technology allows the realization of large staring arrays for Thermal Imagers (TI) working in the long-wave infrared (LWIR) band (8-12 μm). In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and has been the key parameter for the production to start. The 640x512 LWIR focal plane arrays (FPAs) with 20μm pitch was the demonstration that state of the art performances can be achieved even with small pixels. This opened the field for the realization of usable and affordable megapixel FPAs. Thales Research & Technology (TRT) has been developing third generation GaAs LWIR QWIP arrays for volume manufacture of high performance low cost thermal imaging cameras. In the past, another widely claimed advantage for QWIPs was the so-called band-gap engineering and versatility of the III-V processing allowing the custom design of quantum structures to fulfil the requirements of specific applications such as very long wavelength (VLWIR) or multispectral detection. In this presentation, we present the performances of both our first 384x288, 25 μm pitch, MWIR (3-5μm) / LWIR (8-9 μm) dual-band FPAs, and the current status of QWIPs for MWIR (< 5μm) and VLWIR (>15μm) arrays.
Fission Power System Technology for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Mason, Lee; Houts, Michael
2011-01-01
Under the NASA Exploration Technology Development Program, and in partnership with the Department of Energy (DOE), NASA is conducting a project to mature Fission Power System (FPS) technology. A primary project goal is to develop viable system options to support future NASA mission needs for nuclear power. The main FPS project objectives are as follows: 1) Develop FPS concepts that meet expected NASA mission power requirements at reasonable cost with added benefits over other options. 2) Establish a hardware-based technical foundation for FPS design concepts and reduce overall development risk. 3) Reduce the cost uncertainties for FPS and establish greater credibility for flight system cost estimates. 4) Generate the key products to allow NASA decisionmakers to consider FPS as a preferred option for flight development. In order to achieve these goals, the FPS project has two main thrusts: concept definition and risk reduction. Under concept definition, NASA and DOE are performing trade studies, defining requirements, developing analytical tools, and formulating system concepts. A typical FPS consists of the reactor, shield, power conversion, heat rejection, and power management and distribution (PMAD). Studies are performed to identify the desired design parameters for each subsystem that allow the system to meet the requirements with reasonable cost and development risk. Risk reduction provides the means to evaluate technologies in a laboratory test environment. Non-nuclear hardware prototypes are built and tested to verify performance expectations, gain operating experience, and resolve design uncertainties.
The future for electrocoagulation as a localised water treatment technology.
Holt, Peter K; Barton, Geoffrey W; Mitchell, Cynthia A
2005-04-01
Electrocoagulation is an electrochemical method of treating polluted water whereby sacrificial anodes corrode to release active coagulant precursors (usually aluminium or iron cations) into solution. Accompanying electrolytic reactions evolve gas (usually as hydrogen bubbles) at the cathode. Electrocoagulation has a long history as a water treatment technology having been employed to remove a wide range of pollutants. However electrocoagulation has never become accepted as a 'mainstream' water treatment technology. The lack of a systematic approach to electrocoagulation reactor design/operation and the issue of electrode reliability (particularly passivation of the electrodes over time) have limited its implementation. However recent technical improvements combined with a growing need for small-scale decentralised water treatment facilities have led to a re-evaluation of electrocoagulation. Starting with a review of electrocoagulation reactor design/operation, this article examines and identifies a conceptual framework for electrocoagulation that focuses on the interactions between electrochemistry, coagulation and flotation. In addition detailed experimental data are provided from a batch reactor system removing suspended solids together with a mathematical analysis based on the 'white water' model for the dissolved air flotation process. Current density is identified as the key operational parameter influencing which pollutant removal mechanism dominates. The conclusion is drawn that electrocoagulation has a future as a decentralised water treatment technology. A conceptual framework is presented for future research directed towards a more mechanistic understanding of the process.
An Overview of Active Flow Control Enhanced Vertical Tail Technology Development
NASA Technical Reports Server (NTRS)
Lin, John C.; Andino, Marlyn Y.; Alexander, Michael G.; Whalen, Edward A.; Spoor, Marc A.; Tran, John T.; Wygnanski, Israel J.
2016-01-01
This paper summarizes a joint NASA/Boeing research effort to advance Active Flow Control (AFC) technology to enhance aerodynamic efficiency of a vertical tail. Sweeping jet AFC technology was successfully tested on subscale and full-scale models as well as in flight. The subscale test was performed at Caltech on a 14% scale model. More than 50% side force enhancement was achieved by the sweeping jet actuation when the momentum coefficient was 1.7%. AFC caused significant increases in suction pressure on the actuator side and associated side force enhancement. Subsequently, a full-scale Boeing 757 vertical tail model equipped with sweeping jets was tested at the National Full-Scale Aerodynamics Complex 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. There, flow separation control optimization was performed at near flight conditions. Greater than 20% increase in side force were achieved for the maximum rudder deflection of 30deg at the key sideslip angles (0deg and -7.5deg) with a 31-actuator AFC configuration. Based on these tests, the momentum coefficient is shown to be a necessary, but not sufficient parameter to use for design and scaling of sweeping jet AFC from subscale tests to full-scale applications. Leveraging the knowledge gained from the wind tunnel tests, the AFC-enhanced vertical tail technology was successfully flown on the Boeing 757 ecoDemonstrator in the spring of 2015.
Surface Nuclear Power for Human Mars Missions
NASA Technical Reports Server (NTRS)
Mason, Lee S.
1999-01-01
The Design Reference Mission for NASA's human mission to Mars indicates the desire for in-situ propellant production and bio-regenerative life systems to ease Earth launch requirements. These operations, combined with crew habitation and science, result in surface power requirements approaching 160 kilowatts. The power system, delivered on an early cargo mission, must be deployed and operational prior to crew departure from Earth. The most mass efficient means of satisfying these requirements is through the use of nuclear power. Studies have been performed to identify a potential system concept using a mobile cart to transport the power system away from the Mars lander and provide adequate separation between the reactor and crew. The studies included an assessment of reactor and power conversion technology options, selection of system and component redundancy, determination of optimum separation distance, and system performance sensitivity to some key operating parameters. The resulting system satisfies the key mission requirements including autonomous deployment, high reliability, and cost effectiveness at a overall system mass of 12 tonnes and a stowed volume of about 63 cu m.
Residual stress evaluation of components produced via direct metal laser sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemerling, Brandon; Lippold, John C.; Fancher, Christopher M.
Direct metal laser sintering is an additive manufacturing process which is capable of fabricating three-dimensional components using a laser energy source and metal powder particles. Despite the numerous benefits offered by this technology, the process maturity is low with respect to traditional subtractive manufacturing methods. Relationships between key processing parameters and final part properties are generally lacking and require further development. In this study, residual stresses were evaluated as a function of key process variables. The variables evaluated included laser scan strategy and build plate preheat temperature. Residual stresses were measured experimentally via neutron diffraction and computationally via finite elementmore » analysis. Good agreement was shown between the experimental and computational results. Results showed variations in the residual stress profile as a function of laser scan strategy. Compressive stresses were dominant along the build height (z) direction, and tensile stresses were dominant in the x and y directions. Build plate preheating was shown to be an effective method for alleviating residual stress due to the reduction in thermal gradient.« less
Residual stress evaluation of components produced via direct metal laser sintering
Kemerling, Brandon; Lippold, John C.; Fancher, Christopher M.; ...
2018-03-22
Direct metal laser sintering is an additive manufacturing process which is capable of fabricating three-dimensional components using a laser energy source and metal powder particles. Despite the numerous benefits offered by this technology, the process maturity is low with respect to traditional subtractive manufacturing methods. Relationships between key processing parameters and final part properties are generally lacking and require further development. In this study, residual stresses were evaluated as a function of key process variables. The variables evaluated included laser scan strategy and build plate preheat temperature. Residual stresses were measured experimentally via neutron diffraction and computationally via finite elementmore » analysis. Good agreement was shown between the experimental and computational results. Results showed variations in the residual stress profile as a function of laser scan strategy. Compressive stresses were dominant along the build height (z) direction, and tensile stresses were dominant in the x and y directions. Build plate preheating was shown to be an effective method for alleviating residual stress due to the reduction in thermal gradient.« less
Improving ASR Recovery Efficiency by Partially-penetrating Wells in Brackish Aquifers
NASA Astrophysics Data System (ADS)
Chen, Y.
2015-12-01
Aquifer storage and recovery (ASR) is a proven cost-effective powerful technology for environmental protection and water resources optimization. The recovery efficiency (RE) is regarded as the key criteria for evaluating the ASR performance. In this study, a particular ASR scheme with the fully-penetrating well (FPW) for injection and the partially-penetrating well (PPW) for recovery is proposed to improve the RE for ASR schemes implemented in brackish aquifers. This design appreciates the tilting shape of the interface with underlying heavier salt water. For the FPW, recovery has to be terminated as soon as the interface toe reaches the well, while the toe can be pulled up to the PPW for recovery termination, resulting in later breakthrough of salt water into the pumping well, more recoverable water extracted from the shallow layers, and a higher RE. Key hydrogeological and operational parameters affecting the RE were investigated by numerical simulations. Results demonstrated the effectiveness and efficiency of the new ASR scheme and provided practical guidance for designing such a scheme in various hydrogeological conditions.
Research on the architecture and key technologies of SIG
NASA Astrophysics Data System (ADS)
Fu, Zhongliang; Meng, Qingxiang; Huang, Yan; Liu, Shufan
2007-06-01
Along with the development of computer network, Grid has become one of the hottest issues of researches on sharing and cooperation of Internet resources throughout the world. This paper illustrates a new architecture of SIG-a five-hierarchy architecture (including Data Collecting Layer, Grid Layer, Service Layer, Application Layer and Client Layer) of SIG from the traditional three hierarchies (only including resource layer, service layer and client layer). In the paper, the author proposes a new mixed network mode of Spatial Information Grid which integrates CAG (Certificate Authority of Grid) and P2P (Peer to Peer) in the Grid Layer, besides, the author discusses some key technologies of SIG and analysis the functions of these key technologies.
NASA Astrophysics Data System (ADS)
Wang, Liqiang; Liu, Zhen; Zhang, Zhonghua
2014-11-01
Stereo vision is the key in the visual measurement, robot vision, and autonomous navigation. Before performing the system of stereo vision, it needs to calibrate the intrinsic parameters for each camera and the external parameters of the system. In engineering, the intrinsic parameters remain unchanged after calibrating cameras, and the positional relationship between the cameras could be changed because of vibration, knocks and pressures in the vicinity of the railway or motor workshops. Especially for large baselines, even minute changes in translation or rotation can affect the epipolar geometry and scene triangulation to such a degree that visual system becomes disabled. A technology including both real-time examination and on-line recalibration for the external parameters of stereo system becomes particularly important. This paper presents an on-line method for checking and recalibrating the positional relationship between stereo cameras. In epipolar geometry, the external parameters of cameras can be obtained by factorization of the fundamental matrix. Thus, it offers a method to calculate the external camera parameters without any special targets. If the intrinsic camera parameters are known, the external parameters of system can be calculated via a number of random matched points. The process is: (i) estimating the fundamental matrix via the feature point correspondences; (ii) computing the essential matrix from the fundamental matrix; (iii) obtaining the external parameters by decomposition of the essential matrix. In the step of computing the fundamental matrix, the traditional methods are sensitive to noise and cannot ensure the estimation accuracy. We consider the feature distribution situation in the actual scene images and introduce a regional weighted normalization algorithm to improve accuracy of the fundamental matrix estimation. In contrast to traditional algorithms, experiments on simulated data prove that the method improves estimation robustness and accuracy of the fundamental matrix. Finally, we take an experiment for computing the relationship of a pair of stereo cameras to demonstrate accurate performance of the algorithm.
Survey of key technologies on millimeter-wave CMOS integrated circuits
NASA Astrophysics Data System (ADS)
Yu, Fei; Gao, Lei; Li, Lixiang; Cai, Shuo; Wang, Wei; Wang, Chunhua
2018-05-01
In order to provide guidance for the development of high performance millimeter-wave complementary metal oxide semiconductor (MMW-CMOS) integrated circuits (IC), this paper provides a survey of key technologies on MMW-CMOS IC. Technical background of MMW wireless communications is described. Then the recent development of the critical technologies of the MMW-CMOS IC are introduced in detail and compared. A summarization is given, and the development prospects on MMW-CMOS IC are also discussed.
The application of data encryption technology in computer network communication security
NASA Astrophysics Data System (ADS)
Gong, Lina; Zhang, Li; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen
2017-04-01
With the rapid development of Intemet and the extensive application of computer technology, the security of information becomes more and more serious, and the information security technology with data encryption technology as the core has also been developed greatly. Data encryption technology not only can encrypt and decrypt data, but also can realize digital signature, authentication and authentication and other functions, thus ensuring the confidentiality, integrity and confirmation of data transmission over the network. In order to improve the security of data in network communication, in this paper, a hybrid encryption system is used to encrypt and decrypt the triple DES algorithm with high security, and the two keys are encrypted with RSA algorithm, thus ensuring the security of the triple DES key and solving the problem of key management; At the same time to realize digital signature using Java security software, to ensure data integrity and non-repudiation. Finally, the data encryption system is developed by Java language. The data encryption system is simple and effective, with good security and practicality.
Overview of ESA life support activities in preparation of future exploration
NASA Astrophysics Data System (ADS)
Lasseur, Christophe; Paille, Christel
2016-07-01
Since 1987, the European Space Agency has been active in the field of Life Support development. When compare to its international colleagues, it is clear that ESA started activities in the field with a "delay of around 25 years. Due to this situation and to avoid duplication, ESA decided to focus more on long term manned missions and to consider more intensively regenerative technologies as well as the associated risks management ( e.g. physical, chemical and contaminants). Fortunately or not, during the same period, no clear plan of exploration and consequently not specific requirements materialized. This force ESA to keep a broader and generic approach of all technologies. Today with this important catalogue of technologies and know-how, ESA is contemplating the different scenario of manned exploration beyond LEO. In this presentation we review the key scenario of future exploration, and identify the key technologies who loo the more relevant. An more detailed status is presented on the key technologies and their development plan for the future.
Research on the photoelectric measuring method of warhead fragment velocity
NASA Astrophysics Data System (ADS)
Liu, Ji; Yu, Lixia; Zhang, Bin; Liu, Xiaoyan
2016-09-01
The velocity of warhead fragment is the key criteria to determine its mutilation efficiency. But owing to the small size, larger quantity, irregular shape, high speed, arbitrary direction, large dispersion of warhead fragment and adverse environment, the test of fragment velocity parameter is very difficult. The paper designed an optoelectronic system to measure the average velocity of warhead fragments accurately. The apparatus included two parallel laser screens spaced apart at a known fixed distance for providing time measurement between start and stop signals. The large effective screen area was composed of laser source, retro-reflector and large area photo-diode. Whenever a moving fragment interrupted two optical screens, the system would generate a target signal. Due to partial obscuration of the incident energy and the poor test condition of the explosion, fragment target signal is easily disturbed. Therefore, fragments signal processing technology has become a key technology of the system. The noise of signal was reduced by employing wavelet decomposition and reconstruction. The time of fragment passing though the target was obtained by adopting peak detection algorithm. Based on the method of search peak in different width scale and waveform trend by using optima wavelet, the problem of rolling waveform was solved. Lots of fragments experiments of the different types of the warheads were conducted. Experimental results show that: warhead fragments capture rate of system is better than 98%, which can give velocity of each fragment in the density of less than 20 pieces per m2.
NASA Astrophysics Data System (ADS)
Miller, Alina; Pertassek, Thomas; Steins, Andreas; Durner, Wolfgang; Göttlein, Axel; Petrik, Wolfgang; von Unold, Georg
2017-04-01
The particle-size distribution (PSD) is a key property of soils. The reference method for determining the PSD is based on gravitational sedimentation of particles in an initially homogeneous suspension. Traditional methods measure manually (i) the uplift of a floating body in the suspension at different times (Hydrometer method) or (ii) the mass of solids in extracted suspension aliquots at predefined sampling depths and times (Pipette method). Both methods lead to a disturbance of the sedimentation process and provide only discrete data of the PSD. Durner et al. (2017) recently developed a new automated method to determine particle-size distributions of soils and sediments from gravitational sedimentation (Durner, W., S.C. Iden, and G. von Unold: The integral suspension pressure method (ISP) for precise particle-size analysis by gravitational sedimentation, Water Resources Research, doi:10.1002/2016WR019830, 2017). The so-called integral suspension method (ISP) method estimates continuous PSD's from sedimentation experiments by recording the temporal evolution of the suspension pressure at a certain measurement depth in a sedimentation cylinder. It requires no manual interaction after start and thus no specialized training of the lab personnel and avoids any disturbance of the sedimentation process. The required technology to perform these experiments was developed by the UMS company, Munich and is now available as an instrument called PARIO, traded by the METER Group. In this poster, the basic functioning of PARIO is shown and key components and parameters of the technology are explained.
ERIC Educational Resources Information Center
Dean, Peter J.
1993-01-01
Provides a review of the key ethical theories and relevant empirical research relating to the practice of human performance technology. Topics addressed include ethics, morals, business ethics, ethics officers, empiricism versus normative ethical theory, consequentialism, utilitarianism, nonconsequentialism, Kohlberg model of cognitive moral…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-04
... being considered include: Alternative A Current Condition: Key elements are corridors open year round, annual allocation cap of 93,971, and no quiet technology incentive. Current tours for helicopters and... to quiet technology aircraft. Alternative F Modified Current Condition: Key elements are similar to...
Newer Technologies for School Security. ERIC Digest Number 145.
ERIC Educational Resources Information Center
Schneider, Tod
This digest describes several technologies that can be used to control access to, and improve surveillance of, school grounds. Access can be controlled by using "smart" cards to control keyed entries. Many schools have problems with multiple copies of keys, and these card systems are integrated with computer software that allows for…
NASA Astrophysics Data System (ADS)
Cao, Jian; Li, Qi; Cheng, Jicheng
2005-10-01
This paper discusses the concept, key technologies and main application of Spatial Services Grid. The technologies of Grid computing and Webservice is playing a revolutionary role in studying the spatial information services. The concept of the SSG (Spatial Services Grid) is put forward based on the SIG (Spatial Information Grid) and OGSA (open grid service architecture). Firstly, the grid computing is reviewed and the key technologies of SIG and their main applications are reviewed. Secondly, the grid computing and three kinds of SIG (in broad sense)--SDG (spatial data grid), SIG (spatial information grid) and SSG (spatial services grid) and their relationships are proposed. Thirdly, the key technologies of the SSG (spatial services grid) is put forward. Finally, three representative applications of SSG (spatial services grid) are discussed. The first application is urban location based services gird, which is a typical spatial services grid and can be constructed on OGSA (Open Grid Services Architecture) and digital city platform. The second application is region sustainable development grid which is the key to the urban development. The third application is Region disaster and emergency management services grid.
Symmetric encryption algorithms using chaotic and non-chaotic generators: A review
Radwan, Ahmed G.; AbdElHaleem, Sherif H.; Abd-El-Hafiz, Salwa K.
2015-01-01
This paper summarizes the symmetric image encryption results of 27 different algorithms, which include substitution-only, permutation-only or both phases. The cores of these algorithms are based on several discrete chaotic maps (Arnold’s cat map and a combination of three generalized maps), one continuous chaotic system (Lorenz) and two non-chaotic generators (fractals and chess-based algorithms). Each algorithm has been analyzed by the correlation coefficients between pixels (horizontal, vertical and diagonal), differential attack measures, Mean Square Error (MSE), entropy, sensitivity analyses and the 15 standard tests of the National Institute of Standards and Technology (NIST) SP-800-22 statistical suite. The analyzed algorithms include a set of new image encryption algorithms based on non-chaotic generators, either using substitution only (using fractals) and permutation only (chess-based) or both. Moreover, two different permutation scenarios are presented where the permutation-phase has or does not have a relationship with the input image through an ON/OFF switch. Different encryption-key lengths and complexities are provided from short to long key to persist brute-force attacks. In addition, sensitivities of those different techniques to a one bit change in the input parameters of the substitution key as well as the permutation key are assessed. Finally, a comparative discussion of this work versus many recent research with respect to the used generators, type of encryption, and analyses is presented to highlight the strengths and added contribution of this paper. PMID:26966561
Factors related to the implementation and diffusion of new technologies: a pilot study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-06-01
In order to develop an understanding of how government intervention affects the processes of implementation and diffusion of new technologies, case studies of 14 technologies were carried out: automobiles; broadcast radio; frozen foods; black and white TV; color TV; polio vaccine; supersonic transport; fluoridation of water supplies; computer-aided instruction; basic oxygen process for steel; numerical control in manufacturing; digital computers; lasers; and integrated circuit. The key factors, their motivations for implementing/adopting the technology (or not doing so), the interactions among the key factors, and how these affected implementation/adoption are examined.
Digital security technology simplified.
Scaglione, Bernard J
2007-01-01
Digital security technology is making great strides in replacing analog and other traditional security systems including CCTV card access, personal identification and alarm monitoring applications. Like any new technology, the author says, it is important to understand its benefits and limitations before purchasing and installing, to ensure its proper operation and effectiveness. This article is a primer for security directors on how digital technology works. It provides an understanding of the key components which make up the foundation for digital security systems, focusing on three key aspects of the digital security world: the security network, IP cameras and IP recorders.
Mutual Authentication Scheme in Secure Internet of Things Technology for Comfortable Lifestyle.
Park, Namje; Kang, Namhi
2015-12-24
The Internet of Things (IoT), which can be regarded as an enhanced version of machine-to-machine communication technology, was proposed to realize intelligent thing-to-thing communications by utilizing the Internet connectivity. In the IoT, "things" are generally heterogeneous and resource constrained. In addition, such things are connected to each other over low-power and lossy networks. In this paper, we propose an inter-device authentication and session-key distribution system for devices with only encryption modules. In the proposed system, unlike existing sensor-network environments where the key distribution center distributes the key, each sensor node is involved with the generation of session keys. In addition, in the proposed scheme, the performance is improved so that the authenticated device can calculate the session key in advance. The proposed mutual authentication and session-key distribution system can withstand replay attacks, man-in-the-middle attacks, and wiretapped secret-key attacks.
Education of natural science in the work of the Municipal Center for Extracurricular Activities
NASA Astrophysics Data System (ADS)
Jokin, I.
2012-04-01
In the description of my work I presented my own experience in the organizing and carrying out of extracurricular activities with the students, the used modes and methods of work, the obtained results and some good practices in the field of natural sciences. Organizing and carrying out of scientific festivals, participation in joint projects together with scientific organizations. Key words: European dimension, interactive methods, key competences, natural sciences, extracurricular activities. We are witnesses of a fundamental change in the pedagogical culture and practice in our schools to establish the parameters of the quality of training. The good scientific culture is an important part of the students' education. Unfortunately, at the present time the scientific and technological culture is on a low level. One of the contemporary problems and realities of the education in natural science school subjects, as a whole and in particular in the secondary education, is the decreased interest for the training in them and in particular in physics, as well as synchronization of the interrelations: school environment - society. In many countries there is a drop in the orientation of the students towards the science and technology - the problem of Science and Technology (S&T). The training of the young people often creates some problems. The teachers meet with the problem of insufficient motivation of the learners for study and difficulties that they encounter in the process of training. The students find it difficult to apply the mastered knowledge to an applied context. The knowledge is rather academic and rather remote from the context, in which the children live and communicate, which makes it nonfunctional. At present there are not enough extracurricular activities that should meet these necessities of the Bulgarian school. The reasons are various, but they mainly consist in the lack of a material base, an exchange of experience and good practices and motivation. The necessity for key competences to improve their educational achievements is a part of the strategies of the European Union for spiritual growth, professional realization and sustainable development. The basic knowledge in the field of natural sciences and technologies is one of the eight equally important key competences presented in the European Reference Framework adopted in 2006 by the European Parliament and the Council of Europe. The educative work through extracurricular activities provides an opportunity to acquire these skills and so to achieve the inter-subject standards in education. The used methods and modes of work are active with regard to the realized activities: project training (method of J. Dewey), working groups, round tables, role games, learning and upbringing through cooperation (method of Kegan).
Numerical Simulation Of Cratering Effects In Adobe
2013-07-01
DEVELOPMENT OF MATERIAL PARAMETERS .........................................................7 PROBLEM SETUP...37 PARAMETER ADJUSTMENTS ......................................................................................38 GLOSSARY...dependent yield surface with the Geological Yield Surface (GEO) modeled in CTH using well characterized adobe. By identifying key parameters that
Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration
Deng, Mingjun; Li, Jiansong
2017-01-01
The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675
Analysis of the variation of range parameters of thermal cameras
NASA Astrophysics Data System (ADS)
Bareła, Jarosław; Kastek, Mariusz; Firmanty, Krzysztof; Krupiński, Michał
2016-10-01
Measured range characteristics may vary considerably (up to several dozen percent) between different samples of the same camera type. The question is whether the manufacturing process somehow lacks repeatability or the commonly used measurement procedures themselves need improvement. The presented paper attempts to deal with the aforementioned question. The measurement method has been thoroughly analyzed as well as the measurement test bed. Camera components (such as detector and optics) have also been analyzed and their key parameters have been measured, including noise figures of the entire system. Laboratory measurements are the most precise method used to determine range parameters of a thermal camera. However, in order to obtain reliable results several important conditions have to be fulfilled. One must have the test equipment capable of measurement accuracy (uncertainty) significantly better than the magnitudes of measured quantities. The measurements must be performed in a controlled environment thus excluding the influence of varying environmental conditions. The personnel must be well-trained, experienced in testing the thermal imaging devices and familiar with the applied measurement procedures. The measurement data recorded for several dozen of cooled thermal cameras (from one of leading camera manufacturers) have been the basis of the presented analysis. The measurements were conducted in the accredited research laboratory of Institute of Optoelectronics (Military University of Technology).
Design of carbon therapy facility based on 10 years experience at HIMAC
NASA Astrophysics Data System (ADS)
Noda, K.; Furukawa, T.; Iwata, Y.; Kanai, T.; Kanazawa, M.; Kanematsu, N.; Kitagawa, A.; Komori, M.; Minohara, S.; Murakami, T.; Muramatsu, M.; Sato, S.; Sato, Y.; Shibuya, S.; Torikoshi, M.; Yamada, S.
2006-06-01
Since 1994, the clinical trial for cancer therapy with HIMAC has successfully progressed, and more than 2100 cancer patients have been treated with a carbon beam. Based on the development of the accelerator and irradiation technologies for 10 years, we have designed a new carbon-therapy facility for widespread use in Japan, and key technologies for the new facility have been developed. We describe the conceptual design of the new facility and the status of development for the key technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernacki, Bruce E.
2012-10-05
This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.
Enabling fast charging – A battery technology gap assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; and thermal management and pack designs to accommodate the higher operating voltage.
Enabling fast charging – A battery technology gap assessment
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; ...
2017-10-23
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; and thermal management and pack designs to accommodate the higher operating voltage.
Application and the key technology on high power fiber-optic laser in laser weapon
NASA Astrophysics Data System (ADS)
Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua
2014-12-01
The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.
Spectral distortion of dual-comb spectrometry due to repetition rate fluctuation
NASA Astrophysics Data System (ADS)
Hong-Lei, Yang; Hao-Yun, Wei; Yan, Li
2016-04-01
Dual-comb spectrometry suffers the fluctuations of parameters in combs. We demonstrate that the repetition rate is more important than any other parameter, since the fluctuation of the repetition rate leads to a change of difference in the repetition rate between both combs, consequently causing the conversion factor variation and spectral frequency misalignment. The measured frequency noise power spectral density of the repetition rate exhibits an integrated residual frequency modulation of 1.4 Hz from 1 Hz to 100 kHz in our system. This value corresponds to the absorption peak fluctuation within a root mean square value of 0.19 cm-1 that is verified by both simulation and experimental result. Further, we can also simulate spectrum degradation as the fluctuation varies. After modifying misaligned spectra and averaging, the measured result agrees well with the simulated spectrum based on the GEISA database. Project supported by the State Key Laboratory of Precision Measurement Technology & Instruments of Tsinghua University and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61205147).
An accurate behavioral model for single-photon avalanche diode statistical performance simulation
NASA Astrophysics Data System (ADS)
Xu, Yue; Zhao, Tingchen; Li, Ding
2018-01-01
An accurate behavioral model is presented to simulate important statistical performance of single-photon avalanche diodes (SPADs), such as dark count and after-pulsing noise. The derived simulation model takes into account all important generation mechanisms of the two kinds of noise. For the first time, thermal agitation, trap-assisted tunneling and band-to-band tunneling mechanisms are simultaneously incorporated in the simulation model to evaluate dark count behavior of SPADs fabricated in deep sub-micron CMOS technology. Meanwhile, a complete carrier trapping and de-trapping process is considered in afterpulsing model and a simple analytical expression is derived to estimate after-pulsing probability. In particular, the key model parameters of avalanche triggering probability and electric field dependence of excess bias voltage are extracted from Geiger-mode TCAD simulation and this behavioral simulation model doesn't include any empirical parameters. The developed SPAD model is implemented in Verilog-A behavioral hardware description language and successfully operated on commercial Cadence Spectre simulator, showing good universality and compatibility. The model simulation results are in a good accordance with the test data, validating high simulation accuracy.
The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network.
Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng
2017-05-30
The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Genser, Krzysztof; Hatcher, Robert; Kelsey, Michael
The Geant4 simulation toolkit is used to model interactions between particles and matter. Geant4 employs a set of validated physics models that span a wide range of interaction energies. These models rely on measured cross-sections and phenomenological models with the physically motivated parameters that are tuned to cover many application domains. To study what uncertainties are associated with the Geant4 physics models we have designed and implemented a comprehensive, modular, user-friendly software toolkit that allows the variation of one or more parameters of one or more Geant4 physics models involved in simulation studies. It also enables analysis of multiple variantsmore » of the resulting physics observables of interest in order to estimate the uncertainties associated with the simulation model choices. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. exible run-time con gurable work ow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented in this paper and illustrated with selected results.« less
The Lateral Tracking Control for the Intelligent Vehicle Based on Adaptive PID Neural Network
Han, Gaining; Fu, Weiping; Wang, Wen; Wu, Zongsheng
2017-01-01
The intelligent vehicle is a complicated nonlinear system, and the design of a path tracking controller is one of the key technologies in intelligent vehicle research. This paper mainly designs a lateral control dynamic model of the intelligent vehicle, which is used for lateral tracking control. Firstly, the vehicle dynamics model (i.e., transfer function) is established according to the vehicle parameters. Secondly, according to the vehicle steering control system and the CARMA (Controlled Auto-Regression and Moving-Average) model, a second-order control system model is built. Using forgetting factor recursive least square estimation (FFRLS), the system parameters are identified. Finally, a neural network PID (Proportion Integral Derivative) controller is established for lateral path tracking control based on the vehicle model and the steering system model. Experimental simulation results show that the proposed model and algorithm have the high real-time and robustness in path tracing control. This provides a certain theoretical basis for intelligent vehicle autonomous navigation tracking control, and lays the foundation for the vertical and lateral coupling control. PMID:28556817
Interfacial fluctuations of block copolymers: a coarse-grain molecular dynamics simulation study.
Srinivas, Goundla; Swope, William C; Pitera, Jed W
2007-12-13
The lamellar and cylindrical phases of block copolymers have a number of technological applications, particularly when they occur in supported thin films. One such application is block copolymer lithography, the use of these materials to subdivide or enhance submicrometer patterns defined by optical or electron beam methods. A key parameter of all lithographic methods is the line edge roughness (LER), because the electronic or optical activities of interest are sensitive to small pattern variations. While mean-field models provide a partial picture of the LER and interfacial width expected for the block interface in a diblock copolymer, these models lack chemical detail. To complement mean-field approaches, we have carried out coarse-grain molecular dynamics simulations on model poly(ethyleneoxide)-poly(ethylethylene) (PEO-PEE) lamellae, exploring the influence of chain length and hypothetical chemical modifications on the observed line edge roughness. As expected, our simulations show that increasing chi (the Flory-Huggins parameter) is the most direct route to decreased roughness, although the addition of strong specific interactions at the block interface can also produce smoother patterns.
NASA Astrophysics Data System (ADS)
Zhu, Jian-Rong; Li, Jian; Zhang, Chun-Mei; Wang, Qin
2017-10-01
The decoy-state method has been widely used in commercial quantum key distribution (QKD) systems. In view of the practical decoy-state QKD with both source errors and statistical fluctuations, we propose a universal model of full parameter optimization in biased decoy-state QKD with phase-randomized sources. Besides, we adopt this model to carry out simulations of two widely used sources: weak coherent source (WCS) and heralded single-photon source (HSPS). Results show that full parameter optimization can significantly improve not only the secure transmission distance but also the final key generation rate. And when taking source errors and statistical fluctuations into account, the performance of decoy-state QKD using HSPS suffered less than that of decoy-state QKD using WCS.
Technology gap assessment for a future large-aperture ultraviolet-optical-infrared space telescope
NASA Astrophysics Data System (ADS)
Bolcar, Matthew R.; Balasubramanian, Kunjithapatham; Crooke, Julie; Feinberg, Lee; Quijada, Manuel; Rauscher, Bernard J.; Redding, David; Rioux, Norman; Shaklan, Stuart; Stahl, H. Philip; Stahle, Carl M.; Thronson, Harley
2016-10-01
The Advanced Technology Large Aperture Space Telescope (ATLAST) team identified five key technology areas to enable candidate architectures for a future large-aperture ultraviolet/optical/infrared (LUVOIR) space observatory envisioned by the NASA Astrophysics 30-year roadmap, "Enduring Quests, Daring Visions." The science goals of ATLAST address a broad range of astrophysical questions from early galaxy and star formation to the processes that contributed to the formation of life on Earth, combining general astrophysics with direct-imaging and spectroscopy of habitable exoplanets. The key technology areas are internal coronagraphs, starshades (or external occulters), ultra-stable large-aperture telescope systems, detectors, and mirror coatings. For each technology area, we define best estimates of required capabilities, current state-of-the-art performance, and current technology readiness level (TRL), thus identifying the current technology gap. We also report on current, planned, or recommended efforts to develop each technology to TRL 5.
Secure and Efficient Signature Scheme Based on NTRU for Mobile Payment
NASA Astrophysics Data System (ADS)
Xia, Yunhao; You, Lirong; Sun, Zhe; Sun, Zhixin
2017-10-01
Mobile payment becomes more and more popular, however the traditional public-key encryption algorithm has higher requirements for hardware which is not suitable for mobile terminals of limited computing resources. In addition, these public-key encryption algorithms do not have the ability of anti-quantum computing. This paper researches public-key encryption algorithm NTRU for quantum computation through analyzing the influence of parameter q and k on the probability of generating reasonable signature value. Two methods are proposed to improve the probability of generating reasonable signature value. Firstly, increase the value of parameter q. Secondly, add the authentication condition that meet the reasonable signature requirements during the signature phase. Experimental results show that the proposed signature scheme can realize the zero leakage of the private key information of the signature value, and increase the probability of generating the reasonable signature value. It also improve rate of the signature, and avoid the invalid signature propagation in the network, but the scheme for parameter selection has certain restrictions.
Mooney, Karen; McElnay, James C; Donnelly, Ryan F
2015-08-01
Microneedle (MN) arrays could offer an alternative method to traditional drug delivery and blood sampling methods. However, acceptance among key end-users is critical for new technologies to succeed. MNs have been advocated for use in children and so, paediatricians are key potential end-users. However, the opinions of paediatricians on MN use have been previously unexplored. The aim of this study was to investigate the views of UK paediatricians on the use of MN technology within neonatal and paediatric care. An online survey was developed and distributed among UK paediatricians to gain their opinions of MN technology and its use in the neonatal and paediatric care settings, particularly for MN-mediated monitoring. A total of 145 responses were obtained, with a completion response rate of 13.7 %. Respondents believed an alternative monitoring technique to blood sampling in children was required. Furthermore, 83 % of paediatricians believed there was a particular need in premature neonates. Overall, this potential end-user group approved of the MN technology and a MN-mediated monitoring approach. Minimal pain and the perceived ease of use were important elements in gaining favour. Concerns included the need for confirmation of correct application and the potential for skin irritation. The findings of this study provide an initial indication of MN acceptability among a key potential end-user group. Furthermore, the concerns identified present a challenge to those working within the MN field to provide solutions to further improve this technology. The work strengthens the rationale behind MN technology and facilitates the translation of MN technology from lab bench into the clinical setting.
Lumped Parameter Model (LPM) for Light-Duty Vehicles
EPA’s Lumped Parameter Model (LPM) is a free, desktop computer application that estimates the effectiveness (CO2 Reduction) of various technology combinations or “packages,” in a manner that accounts for synergies between technologies.
ERIC Educational Resources Information Center
Schneider, Tod
This digest in Spanish describes several technologies that can be used to control access to, and improve surveillance of, school grounds. Access can be controlled by using "smart" cards to control keyed entries. Many schools have problems with multiple copies of keys, and these card systems are integrated with computer software that…
Naef, Olivier
2012-01-01
This short paper presents the abstracts of the different presentations during 10. Freiburger Symposium 2011 der SCG-Division Industrielle Chemie: Technology Progress, Success key for our production sites held Thursday and Friday, September 29 and 30, 2011 at the Ecole d'ingénieurs et d'architectes de Fribourg (Switzerland).
ERIC Educational Resources Information Center
Zhou, Guangli; Zha, Qiang
2010-01-01
China's key science and technology universities are modelled on the French "Ecole Polytechnique". As such, they are utilitarian institutions, rooted in the concept of cultivating manpower for society's economic progress, and tending to ignore the development of the individual. As China's elite higher education system took in a rapidly…
Chen, Meilan; Guo, Lanping; Yang, Guang; Chen, Min; Yang, Li; Huang, Luqi
2011-11-01
Applications of arbuscular mycorrhizal fungi in research of medicinal plant cultivation are increased in recent years. Medicinal plants habitat is complicated and many inclusions are in root, however crop habitat is simple and few inclusions in root. So appraisal methods and key technologies about the symbiotic system of crop and arbuscular mycorrhizal fungi can't completely suitable for the symbiotic system of medicinal plants and arbuscular mycorrhizal fungi. This article discuss the appraisal methods and key technologies about the symbiotic system of medicinal plant and arbuscular mycorrhizal fungi from the isolation and identification of arbuscular mycorrhiza, and the appraisal of colonization intensity. This article provides guidance for application research of arbuscular mycorrhizal fungi in cultivation of medicinal plants.
ERIC Educational Resources Information Center
Stivers, Richard
2004-01-01
If technology is the single most important factor in explaining the organization of modern societies, it is likewise the key to understanding the modern personality. The technological personality is the psychological counterpart to the technological society.Technology indirectly destroys the basis of a common morality and so leaves human…
NASA Astrophysics Data System (ADS)
Morita, Kazuyo; Yamamoto, Kimiko
2017-03-01
Xylan, one of hemicellulose family, block copolymer was newly developed for wide-range directed self-assembly lithography (DSA). Xylan is higher hydrophilic material because of having many hydroxy groups in one molecule. It means that xylan block copolymer has a possibility of high-chi block copolymer. Generally, DSA is focused on microphase separation for smaller size with high-chi block copolymer and not well known for larger size. In this study, xylan block copolymer was confirmed enabling wider range of patterning size, from smaller size to larger size. The key of xylan block copolymer is a new molecular structure of block copolymer and sugar chain control technology. Sugar content is the important parameter for not only micro-phase separation property but also line edge roughness (LER) and defects. Based on the sugar control technology, wide-range (hp 8.3nm to 26nm L/S and CD 10nm to 51nm hole) DSA patterning was demonstrated. Additionally it was confirmed that xylan block copolymer is suitable for sequential infiltration synthesis (SIS) process.
X-33 Base Region Thermal Protection System Design Study
NASA Technical Reports Server (NTRS)
Lycans, Randal W.
1998-01-01
The X-33 is an advanced technology demonstrator for validating critical technologies and systems required for an operational Single-Stage-to-Orbit (SSTO) Reusuable Launch Vehicle (RLV). Currently under development by a unique contractor/government team led by Lockheed- Martin Skunk Works (LMSW), and managed by Marshall Space Flight Center (MSFC), the X-33 will be the prototype of the first new launch system developed by the United States since the advent of the space shuttle. This paper documents a design trade study of the X-33 base region thermal protection system (TPS). Two candidate designs were evaluated for thermal performance and weight. The first candidate was a fully reusable metallic TPS using Inconel honeycomb panels insulated with high temperature fibrous insulation, while the second was an ablator/insulator sprayed on the metallic skin of the vehicle. The TPS configurations and insulation thickness requirements were determined for the predicted main engine plume heating environments and base region entry aerothermal environments. In addition to thermal analysis of the design concepts, sensitivity studies were performed to investigate the effect of variations in key parameters of the base TPS analysis.
Real-Time On-Board Processing Validation of MSPI Ground Camera Images
NASA Technical Reports Server (NTRS)
Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.
2010-01-01
The Earth Sciences Decadal Survey identifies a multiangle, multispectral, high-accuracy polarization imager as one requirement for the Aerosol-Cloud-Ecosystem (ACE) mission. JPL has been developing a Multiangle SpectroPolarimetric Imager (MSPI) as a candidate to fill this need. A key technology development needed for MSPI is on-board signal processing to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's Advanced Information Systems Technology (AIST) Program, JPL is solving the real-time data processing requirements to demonstrate, for the first time, how signal data at 95 Mbytes/sec over 16-channels for each of the 9 multiangle cameras in the spaceborne instrument can be reduced on-board to 0.45 Mbytes/sec. This will produce the intensity and polarization data needed to characterize aerosol and cloud microphysical properties. Using the Xilinx Virtex-5 FPGA including PowerPC440 processors we have implemented a least squares fitting algorithm that extracts intensity and polarimetric parameters in real-time, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information.
Espinoza, Karlos; Valera, Diego L; Torres, José A; López, Alejandro; Molina-Aiz, Francisco D
2015-08-12
Wind tunnels are a key experimental tool for the analysis of airflow parameters in many fields of application. Despite their great potential impact on agricultural research, few contributions have dealt with the development of automatic control systems for wind tunnels in the field of greenhouse technology. The objective of this paper is to present an automatic control system that provides precision and speed of measurement, as well as efficient data processing in low-speed wind tunnel experiments for greenhouse engineering applications. The system is based on an algorithm that identifies the system model and calculates the optimum PI controller. The validation of the system was performed on a cellulose evaporative cooling pad and on insect-proof screens to assess its response to perturbations. The control system provided an accuracy of <0.06 m·s(-1) for airflow speed and <0.50 Pa for pressure drop, thus permitting the reproducibility and standardization of the tests. The proposed control system also incorporates a fully-integrated software unit that manages the tests in terms of airflow speed and pressure drop set points.
NASA Astrophysics Data System (ADS)
Seo, Hosung; Ma, He; Govoni, Marco; Galli, Giulia
2017-12-01
The development of novel quantum bits is key to extending the scope of solid-state quantum-information science and technology. Using first-principles calculations, we propose that large metal ion-vacancy pairs are promising qubit candidates in two binary crystals: 4 H -SiC and w -AlN. In particular, we found that the formation of neutral Hf- and Zr-vacancy pairs is energetically favorable in both solids; these defects have spin-triplet ground states, with electronic structures similar to those of the diamond nitrogen-vacancy center and the SiC divacancy. Interestingly, they exhibit different spin-strain coupling characteristics, and the nature of heavy metal ions may allow for easy defect implantation in desired lattice locations and ensure stability against defect diffusion. To support future experimental identification of the proposed defects, we report predictions of their optical zero-phonon line, zero-field splitting, and hyperfine parameters. The defect design concept identified here may be generalized to other binary semiconductors to facilitate the exploration of new solid-state qubits.
Business model design for a wearable biofeedback system.
Hidefjäll, Patrik; Titkova, Dina
2015-01-01
Wearable sensor technologies used to track daily activities have become successful in the consumer market. In order for wearable sensor technology to offer added value in the more challenging areas of stress-rehab care and occupational health stress-related biofeedback parameters need to be monitored and more elaborate business models are needed. To identify probable success factors for a wearable biofeedback system (Affective Health) in the two mentioned market segments in a Swedish setting, we conducted literature studies and interviews with relevant representatives. Data were collected and used first to describe the two market segments and then to define likely feasible business model designs, according to the Business Model Canvas framework. Needs of stakeholders were identified as inputs to business model design. Value propositions, a key building block of a business model, were defined for each segment. The value proposition for occupational health was defined as "A tool that can both identify employees at risk of stress-related disorders and reinforce healthy sustainable behavior" and for healthcare as: "Providing therapists with objective data about the patient's emotional state and motivating patients to better engage in the treatment process".
A 94 GHz RF Electronics Subsystem for the CloudSat Cloud Profiling Radar
NASA Technical Reports Server (NTRS)
LaBelle, Remi C.; Girard, Ralph; Arbery, Graham
2003-01-01
The CloudSat spacecraft, scheduled for launch in 2004, will carry the 94 GHz Cloud Profiling Radar (CPR) instrument. The design, assembly and test of the flight Radio Frequency Electronics Subsystem (RFES) for this instrument has been completed and is presented here. The RFES consists of an Upconverter (which includes an Exciter and two Drive Amplifiers (DA's)), a Receiver, and a Transmitter Calibrator assembly. Some key performance parameters of the RFES are as follows: dual 100 mW pulse-modulated drive outputs at 94 GHz, overall Receiver noise figure < 5.0 dB, a highly stable W-band noise source to provide knowledge accuracy of Receiver gain of < 0.4 dB over the 2 year mission life, and a W-band peak power detector to monitor the transmitter output power to within 0.5 dB over life. Some recent monolithic microwave integrated circuit (MMIC) designs were utilized which implement the DA's in 0.1 micron GaAs high electron-mobility transistor (HEMT) technology and the Receiver low-noise amplifier (LNA) in 0.1 micron InP HEMT technology.
Body area network--a key infrastructure element for patient-centered telemedicine.
Norgall, Thomas; Schmidt, Robert; von der Grün, Thomas
2004-01-01
The Body Area Network (BAN) extends the range of existing wireless network technologies by an ultra-low range, ultra-low power network solution optimised for long-term or continuous healthcare applications. It enables wireless radio communication between several miniaturised, intelligent Body Sensor (or actor) Units (BSU) and a single Body Central Unit (BCU) worn at the human body. A separate wireless transmission link from the BCU to a network access point--using different technology--provides for online access to BAN components via usual network infrastructure. The BAN network protocol maintains dynamic ad-hoc network configuration scenarios and co-existence of multiple networks.BAN is expected to become a basic infrastructure element for electronic health services: By integrating patient-attached sensors and mobile actor units, distributed information and data processing systems, the range of medical workflow can be extended to include applications like wireless multi-parameter patient monitoring and therapy support. Beyond clinical use and professional disease management environments, private personal health assistance scenarios (without financial reimbursement by health agencies / insurance companies) enable a wide range of applications and services in future pervasive computing and networking environments.
Advanced Mirror Technology Development (AMTD) Thermal Trade Studies
NASA Technical Reports Server (NTRS)
Brooks, Thomas
2015-01-01
Advanced Mirror Technology Development (AMTD) is being done at Marshall Space Flight Center (MSFC) in preparation for the next large aperture UVOIR space observatory. A key science mission of that observatory is the detection and characterization of 'Earth-like' exoplanets. Direct exoplanet observation requires a telescope to see a planet which will be 10(exp -10) times dimmer than its host star. To accomplish this using an internal coronagraph requires a telescope with an ultra-stable wavefront error (WFE). This paper investigates parametric relationships between primary mirror physical parameters and thermal WFE stability. Candidate mirrors are designed as a mesh and placed into a thermal analysis model to determine the temperature distribution in the mirror when it is placed inside of an actively controlled cylindrical shroud at Lagrange point 2. Thermal strains resulting from the temperature distribution are found and an estimation of WFE is found to characterize the effect that thermal inputs have on the optical quality of the mirror. This process is repeated for several mirror material properties, material types, and mirror designs to determine how to design a mirror for thermal stability.
Astronomy 2020: A Pragmatic Approach
NASA Astrophysics Data System (ADS)
Graham, M. J.
2009-09-01
In the cinema history of astronomy, we are currently at the stage of the Lumiere brothers with contemporary surveys providing short monochromatic time sequences of the sky. By the end of the next decade, however, panchromatic blockbusters will be commonplace and science will be predominantly driven by the objects that change in successive ``frames''. Web-scale computing resources will be required just to process the torrents of data events but the key to understanding them will be contextualisation --- linking together disparate (sets of) events and relating them to archival and supplementary data in a machine-comprehensible way. Much of the data mining and analysis of such data portfolios will be performed by proxy scientists --- intelligent agent avatars that represent an individual's particular research interests in high-dimension parameter spaces. Although this view might sound like science fiction, in this paper, I will review the technologies that will make it achievable. In particular, I will cover new approaches to web services that will be required to support these massive event streams, social networking techniques that will facilitate science and semantic technologies that will underpin everything.
Cell patterning by laser-assisted bioprinting.
Devillard, Raphaël; Pagès, Emeline; Correa, Manuela Medina; Kériquel, Virginie; Rémy, Murielle; Kalisky, Jérôme; Ali, Muhammad; Guillotin, Bertrand; Guillemot, Fabien
2014-01-01
The aim of tissue engineering is to produce functional three-dimensional (3D) tissue substitutes. Regarding native organ and tissue complexity, cell density and cell spatial 3D organization, which influence cell behavior and fate, are key parameters in tissue engineering. Laser-Assisted Bioprinting (LAB) allows one to print cells and liquid materials with a cell- or picoliter-level resolution. Thus, LAB seems to be an emerging and promising technology to fabricate tissue-like structures that have the physiological functionality of their native counterparts. This technology has additional advantages such as automation, reproducibility, and high throughput. It makes LAB compatible with the (industrial) fabrication of 3D constructs of physiologically relevant sizes. Here we present exhaustively the numerous steps that allow printing of viable cells with a well-preserved micrometer pattern. To facilitate the understanding of the whole cell patterning experiment using LAB, it is discussed in two parts: (1) preprocessing: laser set-up, bio-ink cartridge and bio-paper preparation, and pattern design; and (2) processing: bio-ink printing on the bio-paper. Copyright © 2014 Elsevier Inc. All rights reserved.
IR LASER BASED CHEMICAL SENSOR FOR THE COOPERATIVE MONITORING PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edward A Whitaker
The purpose of this project was to investigate the device properties of the quantum cascade laser (QCL), a type of laser invented at Bell Laboratories, Lucent Technologies in the device physics research lab of Dr. Federico Capasso and more specifically to determine the remote sensing capability of this device. The PI and Stevens Institute of Technology collaborated with Dr. Capasso and Bell Laboratories to carry out this research project. The QCL is a unique laser source capable of generating laser radiation in the middle-infrared spectral region that overlaps the most important molecular absorption bands. With appropriate modulation techniques it ismore » possible to use the laser to measure the concentration of many molecules of interest to the remote sensing community. In addition, the mid-IR emission wavelength is well suited to atmospheric transmission as mid-IR experiences much less scattering due to dust and fog. At the onset of this project little was known about several key device performance parameters of this family of lasers and the NNSA supported research enabled them to determine values of several of these characteristics.« less
NASA Astrophysics Data System (ADS)
Satpute, Surekha K.; Płaza, Grażyna A.; Banpurkar, Arun G.
2017-03-01
A strong developed bio-based industrial sector will significantly reduce dependency on fossil resources, help the countries meet climate change targets, and lead to greener and more environmental friendly growth. The key is to develop new technologies to sustainably transform renewable natural resources into bio-based products and biofuels. Biomass is a valuable resource and many parameters need to be taken in to account when assessing its use and the products made from its. The bioeconomy encompass the production of renewable biological resources and their conversion into food, feed and bio-based products (chemicals, materials and fuels) via innovative and efficient technologies provided by industrial biotechnology. The paper presents the smart and efficient way to use the agro-industrial, dairy and food processing wastes for biosurfactant's production. Clarification processes are mandatory to use the raw substrates for microbial growth as well as biosurfactant production for commercial purposes. At the same time it is very essential to retain the nutritional values of those cheap substrates. Broad industrial perspectives can be achieved when quality as well as the quantity of the biosurfactant is considered in great depth. Since substrates resulting from food processing, dairy, animal fat industries are not explored in great details; and hence are potential areas which can be explored thoroughly.
Chen, Jiawen; Li, Jianhua; Li, Yiyuan; Chen, Yulong
2018-01-01
A miniaturized Co-based amorphous wire GMI (Giant magneto-impedance) magnetic sensor was designed and fabricated in this paper. The Co-based amorphous wire was used as the sense element due to its high sensitivity to the magnetic field. A three-dimensional micro coil surrounding the Co-based amorphous wire was fabricated by MEMS (Micro-Electro-Mechanical System) technology, which was used to extract the electrical signal. The three-dimensional micro pick-up coil was designed and simulated with HFSS (High Frequency Structure Simulator) software to determine the key parameters. Surface micro machining MEMS (Micro-Electro-Mechanical System) technology was employed to fabricate the three-dimensional coil. The size of the developed amorphous wire magnetic sensor is 5.6 × 1.5 × 1.1 mm3. Helmholtz coil was used to characterize the performance of the device. The test results of the sensor sample show that the voltage change is 130 mV/Oe and the linearity error is 4.83% in the range of 0~45,000 nT. The results indicate that the developed miniaturized magnetic sensor has high sensitivity. By testing the electrical resistance of the samples, the results also showed high uniformity of each device. PMID:29494477
Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks.
Al-Medhwahi, Mohammed; Hashim, Fazirulhisyam; Ali, Borhanuddin Mohd; Sali, Aduwati
2016-01-01
The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications.
The Spectral Emission Characteristics of Laser Induced Plasma on Tea Samples
NASA Astrophysics Data System (ADS)
Zheng, Peichao; Shi, Minjie; Wang, Jinmei; Liu, Hongdi
2015-08-01
Laser induced breakdown spectroscopy (LIBS) provides a useful technique for food security as well as determining nutrition contents. In this paper, optical emission studies of laser induced plasma on commercial tea samples were carried out. The spectral intensities of Mg, Mn, Ca, Al, C and CN vibration bands varying with laser energy and the detection delay time of an intensified charge coupled device were studied. In addition, the relative concentrations of six microelements, i.e., Mg, Mn, Ca, Al, Na and K, were analyzed semi-quantitatively as well as H, for four kinds of tea samples. Moreover, the plasma parameters were explored, including electron temperature and electron number density. The electron temperature and electron number density were around 11000 K and 1017 cm-3, respectively. The results show that it is reasonable to consider the LIBS technique as a new method for analyzing the compositions of tea leaf samples. supported by National Natural Science Foundation of China (No. 61205149), the Scientific and Technological Talents Training Project of Chongqing, China (No. CSTC2013kjrc-qnrc40002), the Scientific and Technological Project of Nan'an District (2011) and the Visiting Scholarship of State Key Laboratory of Power Transmission Equipment & System Security and New Technology at Chongqing University, China (No. 2007DA10512714409)
Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks
Ali, Borhanuddin Mohd; Sali, Aduwati
2016-01-01
The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications. PMID:27257964
Development of high-performance printed organic field-effect transistors and integrated circuits.
Xu, Yong; Liu, Chuan; Khim, Dongyoon; Noh, Yong-Young
2015-10-28
Organic electronics is regarded as an important branch of future microelectronics especially suited for large-area, flexible, transparent, and green devices, with their low cost being a key benefit. Organic field-effect transistors (OFETs), the primary building blocks of numerous expected applications, have been intensively studied, and considerable progress has recently been made. However, there are still a number of challenges to the realization of high-performance OFETs and integrated circuits (ICs) using printing technologies. Therefore, in this perspective article, we investigate the main issues concerning developing high-performance printed OFETs and ICs and seek strategies for further improvement. Unlike many other studies in the literature that deal with organic semiconductors (OSCs), printing technology, and device physics, our study commences with a detailed examination of OFET performance parameters (e.g., carrier mobility, threshold voltage, and contact resistance) by which the related challenges and potential solutions to performance development are inspected. While keeping this complete understanding of device performance in mind, we check the printed OFETs' components one by one and explore the possibility of performance improvement regarding device physics, material engineering, processing procedure, and printing technology. Finally, we analyze the performance of various organic ICs and discuss ways to optimize OFET characteristics and thus develop high-performance printed ICs for broad practical applications.
Medical device integration using mobile telecommunications infrastructure.
Moorman, Bridget A; Cockle, Richard A
2013-01-01
Financial pressures, an aging population, and a rising number of patients with chronic diseases, have encouraged the use of remote monitoring technologies. This usually entails at least one physiological parameter measurement for a clinician. Mobile telecommunication technologies lend themselves to this functionality, and in some cases, avoid some of the issues encountered with device integration. Moreover, the inherent characteristics of the mobile telecommunications infrastructure allow a coupling of business and clinical functions that were not possible before. Table I compares and contrasts some key aspect of device integration in and out of a healthcare facility. An HTM professional may be part of the team that acquires and/or manages a system using a mobile telecommunications technology. It is important for HTM professionals to ensure the data is in a standard format so that the interfaces across this system don't become brittle and break easily if one part changes. Moreover, the security and safety considerations of the system and the data should be a primary consideration in and y purchase, with attention given to the proper environmental and encryption mechanisms. Clinical engineers and other HTM professionals are unique in that they understand the patient/clinician/device interface and the need to ensure its safety and effectiveness regardless of geographical environment.
Steil, Garry M; Hipszer, Brian; Reifman, Jaques
2010-05-01
One year after its initial meeting, the Glycemia Modeling Working Group reconvened during the 2009 Diabetes Technology Meeting in San Francisco, CA. The discussion, involving 39 scientists, again focused on the need for individual investigators to have access to the clinical data required to develop and refine models of glucose metabolism, the need to understand the differences among the distinct models and control algorithms, and the significance of day-to-day subject variability. The key conclusion was that model-based comparisons of different control algorithms, or the models themselves, are limited by the inability to access individual model-patient parameters. It was widely agreed that these parameters, as opposed to the average parameters that are typically reported, are necessary to perform such comparisons. However, the prevailing view was that, if investigators were to make the parameters available, it would limit their ability (and that of their institution) to benefit from the invested work in developing their models. A general agreement was reached regarding the importance of each model having an insulin pharmacokinetic/pharmacodynamic profile that is not different from profiles reported in the literature (88% of the respondents agreed that the model should have similar curves or be analyzed separately) and the importance of capturing intraday variance in insulin sensitivity (91% of the respondents indicated that this could result in changes in fasting glucose of >or=15%, with 52% of the respondents believing that the variability could effect changes of >or=30%). Seventy-six percent of the participants indicated that high-fat meals were thought to effect changes in other model parameters in addition to gastric emptying. There was also widespread consensus as to how a closed-loop controller should respond to day-to-day changes in model parameters (with 76% of the participants indicating that fasting glucose should be within 15% of target, with 30% of the participants believing that it should be at target). The group was evenly divided as to whether the glucose sensor per se continues to be the major obstacle in achieving closed-loop control. Finally, virtually all participants agreed that a future two-day workshop should be organized to compare, contrast, and understand the differences among the different models and control algorithms. (c) 2010 Diabetes Technology Society.
Development of an Aircraft Approach and Departure Atmospheric Profile Generation Algorithm
NASA Technical Reports Server (NTRS)
Buck, Bill K.; Velotas, Steven G.; Rutishauser, David K. (Technical Monitor)
2004-01-01
In support of NASA Virtual Airspace Modeling and Simulation (VAMS) project, an effort was initiated to develop and test techniques for extracting meteorological data from landing and departing aircraft, and for building altitude based profiles for key meteorological parameters from these data. The generated atmospheric profiles will be used as inputs to NASA s Aircraft Vortex Spacing System (AVOLSS) Prediction Algorithm (APA) for benefits and trade analysis. A Wake Vortex Advisory System (WakeVAS) is being developed to apply weather and wake prediction and sensing technologies with procedures to reduce current wake separation criteria when safe and appropriate to increase airport operational efficiency. The purpose of this report is to document the initial theory and design of the Aircraft Approach Departure Atmospheric Profile Generation Algorithm.
Fernandez, A; Mills, E N C; Lovik, M; Spoek, A; Germini, A; Mikalsen, A; Wal, J M
2013-12-01
Allergenicity assessment of genetically modified (GM) plants is one of the key pillars in the safety assessment process of these products. As part of this evaluation, one of the concerns is to assess that unintended effects (e.g. over-expression of endogenous allergens) relevant for the food safety have not occurred due to the genetic modification. Novel technologies are now available and could be used as complementary and/or alternative methods to those based on human sera for the assessment of endogenous allergenicity. In view of these developments and as a step forward in the allergenicity assessment of GM plants, it is recommended that known endogenous allergens are included in the compositional analysis as additional parameters to be measured. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Subtype classification of ceftriaxone sodium and its influence on the quality of product].
Xue, Jing; Jia, Yan-Hua; Li, Jin; Yin, Li-Hui; Hu, Chang-Qin
2014-07-01
Powder X-ray diffraction (PXRD) technology combined with cluster analysis method was used to classify 75 batches of crystalline ceftriaxone sodium into subtypes, the crystalline characteristics of each subtype were measured with scanning electron microscope (SEM). By comparing some parameters of these subtypes correlated to crystallization process of ceftriaxone sodium, such as salification rate, water content in different subtypes, as well as by studying different lattice stabilities, different compatibilities with rubber closures during accelerated stability tests, the key point to improve the quality of domestic ceftriaxone sodium was disclosed. The results of this paper indicated that the fine structure of the products could be controlled well by improving the salification and crystallization process. As a result, the subtype II of ceftriaxone sodium with high stability can be produced.
Can Nucleoli Be Markers of Developmental Potential in Human Zygotes?
Fulka, Helena; Kyogoku, Hirohisa; Zatsepina, Olga; Langerova, Alena; Fulka, Josef
2015-11-01
In 1999, Tesarik and Greco reported that they could predict the developmental potential of human zygotes from a single static evaluation of their pronuclei. This was based on the distribution and number of specific nuclear organelles - the nucleoli. Recent studies in mice show that nucleoli play a key role in parental genome restructuring after fertilization, and that interfering with this process may lead to developmental failure. These studies thus support the Tesarik-Greco evaluation as a potentially useful method for selecting high-quality embryos in human assisted reproductive technologies. In this opinion article we discuss recent evidence linking nucleoli to parental genome reprogramming, and ask whether nucleoli can mirror or be used as representative markers of embryonic parameters such as chromosome content or DNA fragmentation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Application and research of artificial water mist on photoelectric interference
NASA Astrophysics Data System (ADS)
He, Yuejun; Ren, Baolin
2018-04-01
Water mist is a new type of photoelectric interfering material. It can exert a strong interference and shielding effect on infrared light, laser and radar wave through scattering, reflection, refraction and absorption. Based on this, this paper illustrates the application of an artificial high pressure water mist technology in infrared interference system. First, the operating principle of the infrared interference system is introduced. Next, the design principle of self-excited rotary vortex nozzle, the key part of the system, is elaborated. Then, the calculation of the main control parameters of the system is clarified. In the end, the paper verifies interference and shielding effect of the system by experiment. Experiment shows that the interference system can significantly reduce infrared signature of the target, featuring excellent infrared interference performance and high practical value.
NASA Astrophysics Data System (ADS)
Ma, Wenying; Ma, Changwei; Wang, Weimin
2018-03-01
Deformable mirrors (DM) based on microelectromechanical system (MEMS) technology are being applied in adaptive optics (AO) system for astronomical telescopes and human eyes more and more. In this paper a MEMS DM with hexagonal actuator is proposed and designed. The relationship between structural design and performance parameters, mainly actuator coupling, is analyzed carefully and calculated. The optimum value of actuator coupling is obtained. A 7-element DM prototype is fabricated using a commercial available standard three-layer polysilicon surface multi-user-MEMS-processes (PolyMUMPs). Some key performances, including surface figure and voltage-displacement curve, are measured through a 3D white light profiler. The measured performances are very consistent with the theoretical values. The proposed DM will benefit the miniaturization of AO systems and lower their cost.
Novel formulations of ballistic gelatin. 1. Rheological properties.
Zecheru, Teodora; Său, Ciprian; Lăzăroaie, Claudiu; Zaharia, Cătălin; Rotariu, Traian; Stănescu, Paul-Octavian
2016-06-01
Ballistic gelatin is the simulant of the human body during field tests in forensics and other related fields, due to its physical and mechanical similarities to human trunk and organs. Since the ballistic gelatin used in present has important issues to overcome, an alternative approach is the use of gelatin-polymer composites, where a key factor is the insertion of biocompatible materials, which replicate accurately the human tissues. In order to be able to obtain an improved material in terms of mechanical performances by an easy industrial-scale technology, before the verification of the ballistic parameters by shooting in agreement with military standards, one of the best and cheapest solutions is to perform a thorough check of their rheological properties, in standard conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Metcalf, David
1995-01-01
Multimedia Information eXchange (MIX) is a multimedia information system that accommodates multiple data types and provides consistency across platforms. Information from all over the world can be accessed quickly and efficiently with the Internet-based system. I-NET's MIX uses the World Wide Web and Mosaic graphical user interface. Mosaic is available on all platforms used at I-NET's Kennedy Space Center (KSC) facilities. Key information system design concepts and benefits are reviewed. The MIX system also defines specific configuration and helper application parameters to ensure consistent operations across the entire organization. Guidelines and procedures for other areas of importance in information systems design are also addressed. Areas include: code of ethics, content, copyright, security, system administration, and support.
Bouhadid, Myriam; Caron, Thomas; Veignal, Florian; Pasquinet, Eric; Ratsimihety, Amédée; Ganachaud, François; Montméat, Pierre
2012-10-15
For the development of fluorescent sensors, one of the key points is choosing the sensitive material. In this article, we aim at evaluating, under strictly identical experimental conditions, the performance of three materials for the detection of dinitrotoluene (a volatile marker of trinitrotoluene) through different parameters: response time, fluorescence intensity, sensitivity, reversibility, reaction after successive exposures and long-term stability. The results are discussed according to the nature of the sensitive materials. This first study rendered it possible to select a conjugated molecule as the best sensitive material for the development of a lab-made prototype. In a second part, the selectivity of this particular sensitive material was studied and its ability to detect TNT could be demonstrated. Copyright © 2012. Published by Elsevier B.V.
Bluetooth Roaming for Sensor Network System in Clinical Environment.
Kuroda, Tomohiro; Noma, Haruo; Takase, Kazuhiko; Sasaki, Shigeto; Takemura, Tadamasa
2015-01-01
A sensor network is key infrastructure for advancing a hospital information system (HIS). The authors proposed a method to provide roaming functionality for Bluetooth to realize a Bluetooth-based sensor network, which is suitable to connect clinical devices. The proposed method makes the average response time of a Bluetooth connection less than one second by making the master device repeat the inquiry process endlessly and modifies parameters of the inquiry process. The authors applied the developed sensor network for daily clinical activities in an university hospital, and confirmed the stabilitya and effectiveness of the sensor network. As Bluetooth becomes a quite common wireless interface for medical devices, the proposed protocol that realizes Bluetooth-based sensor network enables HIS to equip various clinical devices and, consequently, lets information and communication technologies advance clinical services.
Palo Alto Research Center - Smart Embedded Network of Sensors with an Optical Readout
Raghavan, Ajay; Sahu, Saroj; Bringans, Ross; Johnson, Noble; Kiesel, Peter; Saha, Bhaskar
2018-05-18
PARC is developing new fiber optic sensors that would be embedded into batteries to monitor and measure key internal parameters during charge and discharge cycles. Two significant problems with today's best batteries are their lack of internal monitoring capabilities and their design oversizing. The lack of monitoring interferes with the ability to identify and manage performance or safety issues as they arise, which are presently managed by very conservative design oversizing and protection approaches that result in cost inefficiencies. PARC's design combines low-cost, embedded optical battery sensors and smart algorithms to overcome challenges faced by today's best battery management systems. These advanced fiber optic sensing technologies have the potential to dramatically improve the safety, performance, and life-time of energy storage systems.
Hysteretic Flux Response and Nondegenerate Gain of Flux-Driven Josephson Parametric Amplifiers
NASA Astrophysics Data System (ADS)
Pogorzalek, Stefan; Fedorov, Kirill G.; Zhong, Ling; Goetz, Jan; Wulschner, Friedrich; Fischer, Michael; Eder, Peter; Xie, Edwar; Inomata, Kunihiro; Yamamoto, Tsuyoshi; Nakamura, Yasunobu; Marx, Achim; Deppe, Frank; Gross, Rudolf
2017-08-01
Josephson parametric amplifiers (JPAs) have become key devices in quantum science and technology with superconducting circuits. In particular, they can be utilized as quantum-limited amplifiers or as a source of squeezed microwave fields. Here, we report on the detailed measurements of five flux-driven JPAs exhibiting a hysteretic dependence of the resonant frequency on the applied magnetic flux. We model the measured characteristics by numerical simulations based on the two-dimensional potential landscape of the dc superconducting quantum interference devices, which provide the JPA nonlinearity for a nonzero screening parameter βL>0 and demonstrate excellent agreement between the numerical results and the experimental data. Furthermore, we study the nondegenerate response of different JPAs and accurately describe the experimental results with our theory.
How to choose the therapeutic goals to improve tissue perfusion in septic shock
de Assuncao, Murillo Santucci Cesar; Corrêa, Thiago Domingos; Bravim, Bruno de Arruda; Silva, Eliézer
2015-01-01
The early recognition and treatment of severe sepsis and septic shock is the key to a successful outcome. The longer the delay in starting treatment, the worse the prognosis due to persistent tissue hypoperfusion and consequent development and worsening of organ dysfunction. One of the main mechanisms responsible for the development of cellular dysfunction is tissue hypoxia. The adjustments necessary for adequate tissue blood flow and therefore of oxygen supply to metabolic demand according to the assessment of the cardiac index and oxygen extraction rate should be performed during resuscitation period, especially in high complexity patients. New technologies, easily handled at the bedside, and new studies that directly assess the impact of macro-hemodynamic parameter optimization on microcirculation and in the clinical outcome of septic patients, are needed. PMID:26313438
NASA Astrophysics Data System (ADS)
Reiterer, Alexander; Egly, Uwe; Vicovac, Tanja; Mai, Enrico; Moafipoor, Shahram; Grejner-Brzezinska, Dorota A.; Toth, Charles K.
2010-12-01
Artificial Intelligence (AI) is one of the key technologies in many of today's novel applications. It is used to add knowledge and reasoning to systems. This paper illustrates a review of AI methods including examples of their practical application in Geodesy like data analysis, deformation analysis, navigation, network adjustment, and optimization of complex measurement procedures. We focus on three examples, namely, a geo-risk assessment system supported by a knowledge-base, an intelligent dead reckoning personal navigator, and evolutionary strategies for the determination of Earth gravity field parameters. Some of the authors are members of IAG Sub-Commission 4.2 - Working Group 4.2.3, which has the main goal to study and report on the application of AI in Engineering Geodesy.
Systems thinking for assistive technology: a commentary on the GREAT summit.
MacLachlan, Malcolm; Scherer, Marcia J
2018-07-01
The area of assistive technology has a long history of technological ingenuity and innovation. In order to ensure that the benefits of assistive technology are equitably distributed across the population and life course, it is necessary to adopt a systemic approach to the area. We describe examples of systems thinking and non-systems thinking across 10 Ps. These Ps are People (or users, as the primary beneficiaries of assistive technology), Policy, Products, Personnel, Provision (as key strategic drivers at systems level); and Procurement, Place, Pace, Promotion and Partnership (as key situational factors for systems). Together these Ps should constitute a framework for an "open" system that can evolve and adapt, that empowers users, inter-connects key components and locates these in the reality of differing contexts. The adoption of a stronger systems thinking perspective within the assistive technology field should allow for more equitable, more resilient and more sustainable assistive technology across high, middle- and low-income contexts and countries. Implications for Rehabilitation The progress of assistive technology provison has been hampered by disconnected initiatives and activities and this needs to be corrected. Systems thinking is a way of thinking about the connections between things and how these are influenced by contextual and other factors. By encouraging the providers and users of assitive technology to think more systemically we can provide a more cohesive and resilient systems. The user experience is the central component of systems thinking in assistive technologies.
NASA Astrophysics Data System (ADS)
Nagorkin, M. N.; Fyodorov, V. P.; Kovalyova, E. V.
2018-03-01
The paper presents a methodology for quantitative assessment of the influence of technological heredity on the formation of quality parameters for surfaces of machine parts. An example of an estimation of influence factors of technological subsystems of processing by end milling processing by composite 10 and the subsequent diamond burnishing is presented.
ERIC Educational Resources Information Center
Potter, Norman R.; Dieterly, Duncan L.
The literature review was undertaken to establish the current status of the methodology for forecasting and assessing technology and for quantizing human resource parameters with respect to the impact of incoming technologies. The review of 140 selected documents applicable to the study was undertaken with emphasis on the identification of methods…
Fischer, Henrik; Gruber, Julia; Neuhold, Stephanie; Frantal, Sophie; Hochbrugger, Eva; Herkner, Harald; Schöchl, Herbert; Steinlechner, Barbara; Greif, Robert
2011-07-01
Correctly performed basic life support (BLS) and early defibrillation are the most effective measures to treat sudden cardiac arrest. Audiovisual feedback improves BLS. Automated external defibrillators (AED) with feedback technology may play an important role in improving CPR quality. The aim of this simulation study was to investigate if an AED with audiovisual feedback improves CPR parameters during standard BLS performed by trained laypersons. With ethics committee approval and informed consent, 68 teams (2 flight attendants each) performed 12 min of standard CPR with the AED's audiovisual feedback mechanism enabled or disabled. We recorded CPR quality parameters during resuscitation on a manikin in this open, prospective, randomized controlled trial. Between the feedback and control-group we measured differences in compression depth and rate as main outcome parameters and effective compressions, correct hand position, and incomplete decompression as secondary outcome parameters. An effective compression was defined as a compression with correct depth, hand position, and decompression. The feedback-group delivered compression rates closest to the recommended guidelines (101 ± 9 vs. 109 ± 15/min, p=0.009), more effective compressions (20 ± 18 vs. 5 ± 6%, p<0.001), more compressions with correct hand position (96 ± 13 vs. 88 ± 16%, p<0.001), and less leaning (21 ± 31 vs. 77 ± 33%, p<0.001). However, only the control-group adhered to the recommended compression depth (44 ± 7 mm vs. 39 ± 6, p=0.003). Use of an AED's audiovisual feedback system improved some CPR-quality parameters, thus confirming findings of earlier studies with the notable exception of decreased compression depth, which is a key parameter that might be linked to reduced cardiac output. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Ching Hua; Gan, Chee Kwan
2017-07-01
Phonon-mediated thermal conductivity, which is of great technological relevance, arises due fundamentally to anharmonic scattering from interatomic potentials. Despite its prevalence, accurate first-principles calculations of thermal conductivity remain challenging, primarily due to the high computational cost of anharmonic interatomic force constant (IFC) calculations. Meanwhile, the related anharmonic phenomenon of thermal expansion is much more tractable, being computable from the Grüneisen parameters associated with phonon frequency shifts due to crystal deformations. In this work, we propose an approach for computing the largest cubic IFCs from the Grüneisen parameter data. This allows an approximate determination of the thermal conductivity via a much less expensive route. The key insight is that although the Grüneisen parameters cannot possibly contain all the information on the cubic IFCs, being derivable from spatially uniform deformations, they can still unambiguously and accurately determine the largest and most physically relevant ones. By fitting the anisotropic Grüneisen parameter data along judiciously designed deformations, we can deduce (i.e., reverse-engineer) the dominant cubic IFCs and estimate three-phonon scattering amplitudes. We illustrate our approach by explicitly computing the largest cubic IFCs and thermal conductivity of graphene, especially for its out-of-plane (flexural) modes that exhibit anomalously large anharmonic shifts and thermal conductivity contributions. Our calculations on graphene not only exhibit reasonable agreement with established density-functional theory results, but they also present a pedagogical opportunity for introducing an elegant analytic treatment of the Grüneisen parameters of generic two-band models. Our approach can be readily extended to more complicated crystalline materials with nontrivial anharmonic lattice effects.
Field spectrometer (S191H) preprocessor tape quality test program design document
NASA Technical Reports Server (NTRS)
Campbell, H. M.
1976-01-01
Program QA191H performs quality assurance tests on field spectrometer data recorded on 9-track magnetic tape. The quality testing involves the comparison of key housekeeping and data parameters with historic and predetermined tolerance limits. Samples of key parameters are processed during the calibration period and wavelength cal period, and the results are printed out and recorded on an historical file tape.
Port wine oxidation management: a multiparametric kinetic approach.
Martins, Rui Costa; Monforte, Ana Rita; Silva Ferreira, António
2013-06-05
Port wine is a flagship fortified wine of Portugal, which undergoes a particularly long aging period, developing a dynamic sensory profile over time, responsible for several wine categories, which is dependent upon the type of aging (bottle or barrel). Therefore, the quality of the product is dependent upon the chemical mechanisms occurring during the aging process, such as oxidation or Maillard reactions. To attain the desired quality management, it is necessary to understand how technological parameters, such as temperature or oxygen exposure, affect the kinetics of the formation of key odorants, such as sotolon. There is a lack of information about the impact of the storage conditions (oxygen and temperature) on Port wine quality. In this study, the effect of these two parameters were investigated to increase the knowledge database concerning aging management of Port wines. It was found that sotolon formation is highly dependent upon oxygen and temperature. There is however a synergistic effect between these two parameters that could significantly increase the concentration. The kinetic parameters of oxygen, sotolon, and other compounds related to Port aging (cis- and trans-5-hydroxy-2-methyl-1,3-dioxan, 2-furfural, 5-hydroxy-methyl-furfural, and 5-methyl-furfural) are also reported. Kinetic models with Monte Carlo simulations, where the oxygen permeability dispersion and temperature are the parameters under evaluation, were applied. On the basis of the modeling predictions, it would seem that the temperature of a cellar would have a more significant impact on the Port wines stored in containers where the oxygen intake is higher (barrels) when compared to containers with low oxygen permeability (bottles using cork stoppers).
Preparing Mathematics Teachers for Technology-Rich Environments
ERIC Educational Resources Information Center
Sturdivant, Rodney X.; Dunham, Penelope; Jardine, Richard
2009-01-01
This article describes key elements for faculty development programs to prepare mathematics teachers for technology-rich environments. We offer practical examples from our experiences in teaching mathematics with technology and in teaching others to incorporate technology-based pedagogies. We address challenges faced by faculty using technology,…
Toward a Fast-Response Active Turbine Tip Clearance Control
NASA Technical Reports Server (NTRS)
Melcher, Kevin J.; Kypuros, Javier A.
2003-01-01
This paper describes active tip clearance control research being conducted by NASA to improve turbine engine systems. The target application for this effort is commercial aircraft engines. However, technologies developed for clearance control can benefit a broad spectrum of current and future turbomachinery. The first portion of the paper addresses the research from a programmatic viewpoint. Recent studies that provide motivation for the work, identification of key technologies, and NASA's plan for addressing deficiencies in the technologies are discussed. The later portion of the paper drills down into one of the key technologies by presenting equations and results for a preliminary dynamic model of the tip clearance phenomena.
A conceptual framework of outcomes for caregivers of assistive technology users.
Demers, Louise; Fuhrer, Marcus J; Jutai, Jeffrey; Lenker, James; Depa, Malgorzata; De Ruyter, Frank
2009-08-01
To develop and validate the content of a conceptual framework concerning outcomes for caregivers whose recipients are assistive technology users. The study was designed in four stages. First, a list of potential key variables relevant to the caregivers of assistive technology users was generated from a review of the existing literature and semistructured interviews with caregivers. Second, the variables were analyzed, regrouped, and partitioned, using a conceptual mapping approach. Third, the key areas were anchored in a general stress model of caregiving. Finally, the judgments of rehabilitation experts were used to evaluate the conceptual framework. An important result of this study is the identification of a complex set of variables that need to be considered when examining the experience of caregivers of assistive technology users. Stressors, such as types of assistance, number of tasks, and physical effort, are predominant contributors to caregiver outcomes along with caregivers' personal resources acting as mediating factors (intervening variables) and assistive technology acting as a key moderating factor (effect modifier variable). Recipients' use of assistive technology can enhance caregivers' well being because of its potential for alleviating a number of stressors associated with caregiving. Viewed as a whole, this work demonstrates that the assistive technology experience of caregivers has many facets that merit the attention of outcomes researchers.
NASA Astrophysics Data System (ADS)
Chen, Shuo; Lin, Xiaoqian; Zhu, Caigang; Liu, Quan
2014-12-01
Key tissue parameters, e.g., total hemoglobin concentration and tissue oxygenation, are important biomarkers in clinical diagnosis for various diseases. Although point measurement techniques based on diffuse reflectance spectroscopy can accurately recover these tissue parameters, they are not suitable for the examination of a large tissue region due to slow data acquisition. The previous imaging studies have shown that hemoglobin concentration and oxygenation can be estimated from color measurements with the assumption of known scattering properties, which is impractical in clinical applications. To overcome this limitation and speed-up image processing, we propose a method of sequential weighted Wiener estimation (WE) to quickly extract key tissue parameters, including total hemoglobin concentration (CtHb), hemoglobin oxygenation (StO2), scatterer density (α), and scattering power (β), from wide-band color measurements. This method takes advantage of the fact that each parameter is sensitive to the color measurements in a different way and attempts to maximize the contribution of those color measurements likely to generate correct results in WE. The method was evaluated on skin phantoms with varying CtHb, StO2, and scattering properties. The results demonstrate excellent agreement between the estimated tissue parameters and the corresponding reference values. Compared with traditional WE, the sequential weighted WE shows significant improvement in the estimation accuracy. This method could be used to monitor tissue parameters in an imaging setup in real time.
NASA Astrophysics Data System (ADS)
Leigh, Roland J.; Whyte, C.; Cutter, M. A.; Lobb, D. R.; Monks, P. S.
2017-11-01
Under the first phase of the Centre for Earth Observation Instrumentation (CEOI), a breadboard demonstrator of a novel UV/VIS spectrometer has been developed. Using designs from Surrey Satellite Technology Ltd (SSTL) the demonstrator has been constructed and tested at the University of Leicester's Space Research Centre. This spectrometer provides an exceptionally compact instrument for differential optical absorption spectroscopy (DOAS) applications from LEO, GEO, HAP or ground-based platforms. Measurement of atmo spheric compounds with climate change or air quality implications is a key driver for the ground and space-based Earth Observation communities. Techniques using UV/VIS spectroscopy such as DOAS provide measurements of ozone profiles, aerosol optical depth, certain Volatile Organic Compounds, halogenated species, and key air quality parameters including tropospheric nitrogen dioxide. Compact instruments providing the necessary optical performance and spectral resolution are therefore a key enabling technology. The Compact Air Quality Spectrometer (CompAQS) features a concentric arrangement of a spherical meniscus lens, a concave spherical mirror and a suitable curved diffraction grating. This compact design provides efficiency and performance benefits over traditional concepts, improving the precision and spatial resolution available from space borne instruments with limited weight and size budgets. The breadboard spectrometer currently operating at the University of Leicester offers high throughput with a spectral range from 310 to 450 nm at 0.5nm(UV) to 1.0nm (visible) resolution, suitable for DOAS applications. The concentric design is capable of handling high relative apertures, owing to spherical aberration and coma being near zero at all surfaces. The design also provides correction for transverse chromatic aberration and distortion, in addition to correcting for the distortion called `smile' - the curvature of the slit image formed at each wavelength. These properties render this design capable of superior spectral and spatial performance with size and weight budgets significantly lower than standard configurations. In this presentation, the design of the spectrometer is detailed, with results from instrument characterisations undertaken at the University of Leicester, including demonstrations of DOAS fits for key air quality species.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2016-01-01
The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2015-01-01
The purpose of this presentation is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Turboelectric Aircraft Drive Key Performance Parameters and Functional Requirements
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.; Brown, Gerald V.; Felder, James L.; Duffy, Kirsten P.
2015-01-01
The purpose of this paper is to propose specific power and efficiency as the key performance parameters for a turboelectric aircraft power system and investigate their impact on the overall aircraft. Key functional requirements are identified that impact the power system design. Breguet range equations for a base aircraft and a turboelectric aircraft are found. The benefits and costs that may result from the turboelectric system are enumerated. A break-even analysis is conducted to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.
Batinti, Alberto
2015-12-01
I propose an application of the pure-consumption version of the Grossman model of health care demand, where utility depends on consumption and health status and health status on medical care and health technology. I derive the conditions under which an improvement in health care technology leads to an increase/decrease in health care consumption. In particular, I show how the direction of the effect depends on the relationship between the constant elasticity of substitution parameters of the utility and health production functions. I find that, under the constancy assumption, the ratio of the two elasticity of substitution parameters determines the direction of a technological change on health care demand. On the other hand, the technology share parameter in the health production function contributes to the size but not to the direction of the technological effect. I finally explore how the ratio of the elasticity of substitution parameters work in measurement and practice and discuss how future research may use the theoretical insight provided here. Copyright © 2014 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Uglyanitca, Andrey; Solonin, Kirill
2017-11-01
The environmentally friendly technology for filling the vertical mine workings with autoclaved slag-concrete, prefabricated on the surface of the mine is presented in the article; the optimal parameters of filling technology are proposed. The developed technology for filling the abandoned vertical mine workings allows ensuring the environmental safety of the territories adjacent to the abandoned mine, utilizing slag dumps and providing the possibility of shaft recovery, if necessary, with minimal labor and material costs.
The name-locator guide: A new resource for technology transfer
NASA Technical Reports Server (NTRS)
Clingman, W. H.
1974-01-01
A new transfer mechanism to facilitate technology transfer between aerospace technology and nonaerospace industries, was proposed with the following sequence of steps. First, the key technical problems in a given industry would be analyzed. The analysis will define the characteristics which relevant technology will have. Second, a limited list of subject terms will be developed using words familiar to those working in the industry. It is these which will be applied in subsequent steps to the NASA technology and used to locate technology relevant to a specific problem in the industry. Third, for each Required Technology Program, terms applicable to that program would be chosen from this list. Fourth, a name-locator guide would be provided to the Regional Dissemination Centers. This guide would be analogous to an index. The key words would be chosen from the special subject term list for the given industry.
Human Exploration and Avionic Technology Challenges
NASA Technical Reports Server (NTRS)
Benjamin, Andrew L.
2005-01-01
For this workshop, I will identify critical avionic gaps, enabling technologies, high-pay off investment opportunities, promising capabilities, and space applications for human lunar and Mars exploration. Key technology disciplines encompass fault tolerance, miniaturized instrumentation sensors, MEMS-based guidance, navigation, and controls, surface communication networks, and rendezvous and docking. Furthermore, I will share bottom-up strategic planning relevant to manned mission -driven needs. Blending research expertise, facilities, and personnel with internal NASA is vital to stimulating collaborative technology solutions that achieve NASA grand vision. Retaining JSC expertise in unique and critical areas is paramount to our long-term success. Civil servants will maintain key roles in setting technology agenda, ensuring quality results, and integrating technologies into avionic systems and manned missions. Finally, I will present to NASA, academia, and the aerospace community some on -going and future advanced avionic technology programs and activities that are relevant to our mission goals and objectives.
Transforming revenue management.
Silveria, Richard; Alliegro, Debra; Nudd, Steven
2008-11-01
Healthcare organizations that want to undertake a patient administrative/revenue management transformation should: Define the vision with underlying business objectives and key performance measures. Strategically partner with key vendors for business process development and technology design. Create a program organization and governance infrastructure. Develop a corporate design model that defines the standards for operationalizing the vision. Execute the vision through technology deployment and corporate design model implementation.
Technology and Adolescents: Perspectives on the Things to Come
ERIC Educational Resources Information Center
Katz, Raul L.; Felix, Max; Gubernick, Madlen
2014-01-01
Assuming that, given the processes of technology diffusion, adolescent behavior forecasts future consumption of digital information, it would seem pertinent to study the characteristics of teenager technology use. This research asks: What are the key patterns regarding the use of technology platforms by teenagers? Is technology usage among…
Management of physical health in patients with schizophrenia: practical recommendations.
Heald, A; Montejo, A L; Millar, H; De Hert, M; McCrae, J; Correll, C U
2010-06-01
Improved physical health care is a pressing need for patients with schizophrenia. It can be achieved by means of a multidisciplinary team led by the psychiatrist. Key priorities should include: selection of antipsychotic therapy with a low risk of weight gain and metabolic adverse effects; routine assessment, recording and longitudinal tracking of key physical health parameters, ideally by electronic spreadsheets; and intervention to control CVD risk following the same principles as for the general population. A few simple tools to assess and record key physical parameters, combined with lifestyle intervention and pharmacological treatment as indicated, could significantly improve physical outcomes. Effective implementation of strategies to optimise physical health parameters in patients with severe enduring mental illness requires engagement and communication between psychiatrists and primary care in most health settings. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution
NASA Astrophysics Data System (ADS)
Guo, Ying; Xie, Cailang; Huang, Peng; Li, Jiawei; Zhang, Ling; Huang, Duan; Zeng, Guihua
2018-05-01
This paper deals with a channel-parameter estimation for continuous-variable quantum key distribution (CV-QKD) over a satellite-to-submarine link. In particular, we focus on the channel transmittances and the excess noise which are affected by atmospheric turbulence, surface roughness, zenith angle of the satellite, wind speed, submarine depth, etc. The estimation method is based on proposed algorithms and is applied to low-Earth orbits using the Monte Carlo approach. For light at 550 nm with a repetition frequency of 1 MHz, the effects of the estimated parameters on the performance of the CV-QKD system are assessed by a simulation by comparing the secret key bit rate in the daytime and at night. Our results show the feasibility of satellite-to-submarine CV-QKD, providing an unconditionally secure approach to achieve global networks for underwater communications.
Entry, Descent, and Landing for Human Mars Missions
NASA Technical Reports Server (NTRS)
Munk, Michelle M.; DwyerCianciolo, Alicia M.
2012-01-01
One of the most challenging aspects of a human mission to Mars is landing safely on the Martian surface. Mars has such low atmospheric density that decelerating large masses (tens of metric tons) requires methods that have not yet been demonstrated, and are not yet planned in future Mars missions. To identify the most promising options for Mars entry, descent, and landing, and to plan development of the needed technologies, NASA's Human Architecture Team (HAT) has refined candidate methods for emplacing needed elements of the human Mars exploration architecture (such as ascent vehicles and habitats) on the Mars surface. This paper explains the detailed, optimized simulations that have been developed to define the mass needed at Mars arrival to accomplish the entry, descent, and landing functions. Based on previous work, technology options for hypersonic deceleration include rigid, mid-L/D (lift-to-drag ratio) aeroshells, and inflatable aerodynamic decelerators (IADs). The hypersonic IADs, or HIADs, are about 20% less massive than the rigid vehicles, but both have their technology development challenges. For the supersonic regime, supersonic retropropulsion (SRP) is an attractive option, since a propulsive stage must be carried for terminal descent and can be ignited at higher speeds. The use of SRP eliminates the need for an additional deceleration system, but SRP is at a low Technology Readiness Level (TRL) in that the interacting plumes are not well-characterized, and their effect on vehicle stability has not been studied, to date. These architecture-level assessments have been used to define the key performance parameters and a technology development strategy for achieving the challenging mission of landing large payloads on Mars.
Improved high operating temperature MCT MWIR modules
NASA Astrophysics Data System (ADS)
Lutz, H.; Breiter, R.; Figgemeier, H.; Schallenberg, T.; Schirmacher, W.; Wollrab, R.
2014-06-01
High operating temperature (HOT) IR-detectors are a key factor to size, weight and power (SWaP) reduced IR-systems. Such systems are essential to provide infantrymen with low-weight handheld systems with increased battery lifetimes or most compact clip-on weapon sights in combination with high electro-optical performance offered by cooled IR-technology. AIM's MCT standard n-on-p technology with vacancy doping has been optimized over many years resulting in MWIR-detectors with excellent electro-optical performance up to operating temperatures of ~120K. In the last years the effort has been intensified to improve this standard technology by introducing extrinsic doping with Gold as an acceptor. As a consequence the dark current could considerably be suppressed and allows for operation at ~140K with good e/o performance. More detailed investigations showed that limitation for HOT > 140K is explained by consequences from rising dark current rather than from defective pixel level. Recently, several crucial parameters were identified showing great promise for further optimization of HOT-performance. Among those, p-type concentration could successfully be reduced from the mid 1016 / cm3 to the lower 1015/ cm3 range. Since AIM is one of the leading manufacturers of split linear cryocoolers, an increase in operating temperature will directly lead to IR-modules with improved SWaP characteristics by making use of the miniature members of its SX cooler family with single piston and balancer technology. The paper will present recent progress in the development of HOT MWIR-detector arrays at AIM and show electro-optical performance data in comparison to focal plane arrays produced in the standard technology.
Afolabi, Oluwasola O D; Sohail, M
2017-02-01
The prolonged challenges and terrible consequences of poor sanitation, especially in developing economies, call for the exploration of new sustainable sanitation technologies. Such technologies must be: capable of effectively treating human faecal wastes without any health or environmental impacts; scalable to address rapid increases in population and urbanization; capable of meeting environmental regulations and standards for faecal management; and competitive with existing strategies. Further and importantly, despite its noxiousness and pathogenic load, the chemical composition of human faecal sludge indicates that it could be considered a potentially valuable, nutrient-rich renewable resource, rather than a problematic waste product. New approaches to faecal sludge management must consequently seek to incorporate a 'valuable resource recovery' approach, compatible with stringent treatment requirements. This review intends to advance the understanding of human faecal sludge as a sustainable organic-rich resource that is typically high in moisture (up to 97 per cent), making it a suitable candidate for dielectric heating, i.e. microwave irradiation, to promote faecal treatment, while also recovering value-added products such as ammonia liquor concentrate (suitable for fertilizers) and chars (suitable for fuel) - which can provide an economic base to sustain the technology. Additionally, microwaving human faecal sludge represents a thermally effective approach that can destroy pathogens, eradicate the foul odour associated human faecal sludge, while also preventing hazardous product formations and/or emissions, aside from other benefits such as improved dewaterability and heavy metals recovery. Key technological parameters crucial for scaling the technology as a complementary solution to the challenges of onsite sanitation are also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fast Simulation of the Impact Parameter Calculation of Electrons through Pair Production
NASA Astrophysics Data System (ADS)
Bang, Hyesun; Kweon, MinJung; Huh, Kyoung Bum; Pachmayer, Yvonne
2018-05-01
A fast simulation method is introduced that reduces tremendously the time required for the impact parameter calculation, a key observable in physics analyses of high energy physics experiments and detector optimisation studies. The impact parameter of electrons produced through pair production was calculated considering key related processes using the Bethe-Heitler formula, the Tsai formula and a simple geometric model. The calculations were performed at various conditions and the results were compared with those from full GEANT4 simulations. The computation time using this fast simulation method is 104 times shorter than that of the full GEANT4 simulation.
Parameter as a Switch Between Dynamical States of a Network in Population Decoding.
Yu, Jiali; Mao, Hua; Yi, Zhang
2017-04-01
Population coding is a method to represent stimuli using the collective activities of a number of neurons. Nevertheless, it is difficult to extract information from these population codes with the noise inherent in neuronal responses. Moreover, it is a challenge to identify the right parameter of the decoding model, which plays a key role for convergence. To address the problem, a population decoding model is proposed for parameter selection. Our method successfully identified the key conditions for a nonzero continuous attractor. Both the theoretical analysis and the application studies demonstrate the correctness and effectiveness of this strategy.
Enabling fast charging - A battery technology gap assessment
NASA Astrophysics Data System (ADS)
Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Tanim, Tanvir; Dufek, Eric J.; Pesaran, Ahmad; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Hardy, Keith; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Michelbacher, Christopher; Mohanpurkar, Manish; Nelson, Paul A.; Robertson, David C.; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Vijayagopal, Ram; Zhang, Jiucai
2017-11-01
The battery technology literature is reviewed, with an emphasis on key elements that limit extreme fast charging. Key gaps in existing elements of the technology are presented as well as developmental needs. Among these needs are advanced models and methods to detect and prevent lithium plating; new positive-electrode materials which are less prone to stress-induced failure; better electrode designs to accommodate very rapid diffusion in and out of the electrode; measure temperature distributions during fast charge to enable/validate models; and develop thermal management and pack designs to accommodate the higher operating voltage.
Material Analysis and Identification
NASA Technical Reports Server (NTRS)
2004-01-01
KeyMaster Technologies, Inc., develops and markets specialized, hand-held X-ray fluorescence (XRF) instruments and unique tagging technology used to identify and authenticate materials or processes. NASA first met with this Kennewick, Washington-based company as the Agency began seeking companies to develop a hand-held instrument that would detect data matrix symbols on parts covered by paint and other coatings. Since the Federal Aviation Administration was also searching for methods to detect and eliminate the use of unapproved parts, it recommended that NASA and KeyMaster work together to develop a technology that would benefit both agencies.
Durr, W
1998-01-01
Call centers are strategically and tactically important to many industries, including the healthcare industry. Call centers play a key role in acquiring and retaining customers. The ability to deliver high-quality and timely customer service without much expense is the basis for the proliferation and expansion of call centers. Call centers are unique blends of people and technology, where performance indicates combining appropriate technology tools with sound management practices built on key operational data. While the technology is fascinating, the people working in call centers and the skill of the management team ultimately make a difference to their companies.
Research on key technology of planning and design for AC/DC hybrid distribution network
NASA Astrophysics Data System (ADS)
Shen, Yu; Wu, Guilian; Zheng, Huan; Deng, Junpeng; Shi, Pengjia
2018-04-01
With the increasing demand of DC generation and DC load, the development of DC technology, AC and DC distribution network integrating will become an important form of future distribution network. In this paper, the key technology of planning and design for AC/DC hybrid distribution network is proposed, including the selection of AC and DC voltage series, the design of typical grid structure and the comprehensive evaluation method of planning scheme. The research results provide some ideas and directions for the future development of AC/DC hybrid distribution network.
ERIC Educational Resources Information Center
Commission of the European Communities, Brussels (Belgium).
This report, the first volume in a three volume set, summarizes the results of a study performed by the DELTA (Developing European Learning through Technological Advance) Unit in parallel with the projects underway in the research and development Exploratory Action. The report identifies the key issues, associated requirements and options, and…
Düking, Peter; Hotho, Andreas; Holmberg, Hans-Christer; Fuss, Franz Konstantin; Sperlich, Billy
2016-01-01
Athletes adapt their training daily to optimize performance, as well as avoid fatigue, overtraining and other undesirable effects on their health. To optimize training load, each athlete must take his/her own personal objective and subjective characteristics into consideration and an increasing number of wearable technologies (wearables) provide convenient monitoring of various parameters. Accordingly, it is important to help athletes decide which parameters are of primary interest and which wearables can monitor these parameters most effectively. Here, we discuss the wearable technologies available for non-invasive monitoring of various parameters concerning an athlete's training and health. On the basis of these considerations, we suggest directions for future development. Furthermore, we propose that a combination of several wearables is most effective for accessing all relevant parameters, disturbing the athlete as little as possible, and optimizing performance and promoting health. PMID:27014077
Advanced reactors and associated fuel cycle facilities: safety and environmental impacts.
Hill, R N; Nutt, W M; Laidler, J J
2011-01-01
The safety and environmental impacts of new technology and fuel cycle approaches being considered in current U.S. nuclear research programs are contrasted to conventional technology options in this paper. Two advanced reactor technologies, the sodium-cooled fast reactor (SFR) and the very high temperature gas-cooled reactor (VHTR), are being developed. In general, the new reactor technologies exploit inherent features for enhanced safety performance. A key distinction of advanced fuel cycles is spent fuel recycle facilities and new waste forms. In this paper, the performance of existing fuel cycle facilities and applicable regulatory limits are reviewed. Technology options to improve recycle efficiency, restrict emissions, and/or improve safety are identified. For a closed fuel cycle, potential benefits in waste management are significant, and key waste form technology alternatives are described. Copyright © 2010 Health Physics Society
Mutual Authentication Scheme in Secure Internet of Things Technology for Comfortable Lifestyle
Park, Namje; Kang, Namhi
2015-01-01
The Internet of Things (IoT), which can be regarded as an enhanced version of machine-to-machine communication technology, was proposed to realize intelligent thing-to-thing communications by utilizing the Internet connectivity. In the IoT, “things” are generally heterogeneous and resource constrained. In addition, such things are connected to each other over low-power and lossy networks. In this paper, we propose an inter-device authentication and session-key distribution system for devices with only encryption modules. In the proposed system, unlike existing sensor-network environments where the key distribution center distributes the key, each sensor node is involved with the generation of session keys. In addition, in the proposed scheme, the performance is improved so that the authenticated device can calculate the session key in advance. The proposed mutual authentication and session-key distribution system can withstand replay attacks, man-in-the-middle attacks, and wiretapped secret-key attacks. PMID:26712759
Controlling Ethylene for Extended Preservation of Fresh Fruits and Vegetables
2008-12-01
into a process simulation to determine the effects of key design parameters on the overall performance of the system. Integrating process simulation...High Decay [Asian Pears High High Decay [ Avocados High High Decay lBananas Moderate ~igh Decay Cantaloupe High Moderate Decay Cherimoya Very High High...ozonolysis. Process simulation was subsequently used to understand the effect of key system parameters on EEU performance. Using this modeling work
Ba, Kamarel; Thiaw, Modou; Lazar, Najih; Sarr, Alassane; Brochier, Timothée; Ndiaye, Ismaïla; Faye, Alioune; Sadio, Oumar; Panfili, Jacques; Thiaw, Omar Thiom; Brehmer, Patrice
2016-01-01
The stock of the Senegalese flat sardinella, Sardinella maderensis, is highly exploited in Senegal, West Africa. Its growth and reproduction parameters are key biological indicators for improving fisheries management. This study reviewed these parameters using landing data from small-scale fisheries in Senegal and literature information dated back more than 25 years. Age was estimated using length-frequency data to calculate growth parameters and assess the growth performance index. With global climate change there has been an increase in the average sea surface temperature along the Senegalese coast but the length-weight parameters, sex ratio, size at first sexual maturity, period of reproduction and condition factor of S. maderensis have not changed significantly. The above parameters of S. maderensis have hardly changed, despite high exploitation and fluctuations in environmental conditions that affect the early development phases of small pelagic fish in West Africa. This lack of plasticity of the species regarding of the biological parameters studied should be considered when planning relevant fishery management plans.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-bo; Wang, Zhi-xue; Li, Jian-xin; Ma, Jian-hui; Li, Yang; Li, Yan-qiang
In order to facilitate Bluetooth function realization and information can be effectively tracked in the process of production, the vehicle Bluetooth hands-free devices need to download such key parameters as Bluetooth address, CVC license and base plate numbers, etc. Therefore, it is the aim to search simple and effective methods to download parameters for each vehicle Bluetooth hands-free device, and to control and record the use of parameters. In this paper, by means of Bluetooth Serial Peripheral Interface programmer device, the parallel port is switched to SPI. The first step is to download parameters is simulating SPI with the parallel port. To perform SPI function, operating the parallel port in accordance with the SPI timing. The next step is to achieve SPI data transceiver functions according to the programming parameters of options. Utilizing the new method, downloading parameters is fast and accurate. It fully meets vehicle Bluetooth hands-free devices production requirements. In the production line, it has played a large role.
ERIC Educational Resources Information Center
New York State Education Dept., Albany.
This booklet is designed to assist teachers in developing examinations for classroom use. It is a collection of 955 objective test questions, mostly multiple choice, for industrial arts students in the three areas of graphics technology, power technology, and production technology. Scoring keys are provided. There are no copyright restrictions,…
Modeling and analysis of tritium dynamics in a DT fusion fuel cycle
NASA Astrophysics Data System (ADS)
Kuan, William
1998-11-01
A number of crucial design issues have a profound effect on the dynamics of the tritium fuel cycle in a DT fusion reactor, where the development of appropriate solutions to these issues is of particular importance to the introduction of fusion as a commercial system. Such tritium-related issues can be classified according to their operational, safety, and economic impact to the operation of the reactor during its lifetime. Given such key design issues inherent in next generation fusion devices using the DT fuel cycle development of appropriate models can then lead to optimized designs of the fusion fuel cycle for different types of DT fusion reactors. In this work, two different types of modeling approaches are developed and their application to solving key tritium issues presented. For the first approach, time-dependent inventories, concentrations, and flow rates characterizing the main subsystems of the fuel cycle are simulated with a new dynamic modular model of a fusion reactor's fuel cycle, named X-TRUFFLES (X-Windows TRitiUm Fusion Fuel cycLE dynamic Simulation). The complex dynamic behavior of the recycled fuel within each of the modeled subsystems is investigated using this new integrated model for different reactor scenarios and design approaches. Results for a proposed fuel cycle design taking into account current technologies are presented, including sensitivity studies. Ways to minimize the tritium inventory are also assessed by examining various design options that could be used to minimize local and global tritium inventories. The second modeling approach involves an analytical model to be used for the calculation of the required tritium breeding ratio, i.e., a primary design issue which relates directly to the feasibility and economics of DT fusion systems. A time-integrated global tritium balance scheme is developed and appropriate analytical expressions are derived for tritium self-sufficiency relevant parameters. The easy exploration of the large parameter space of the fusion fuel cycle can thus be conducted as opposed to previous modeling approaches. Future guidance for R&D (research and development) in fusion nuclear technology is discussed in view of possible routes to take in reducing the tritium breeding requirements of DT fusion reactors.
Space Launch System Upper Stage Technology Assessment
NASA Technical Reports Server (NTRS)
Holladay, Jon; Hampton, Bryan; Monk, Timothy
2014-01-01
The Space Launch System (SLS) is envisioned as a heavy-lift vehicle that will provide the foundation for future beyond low-Earth orbit (LEO) exploration missions. Previous studies have been performed to determine the optimal configuration for the SLS and the applicability of commercial off-the-shelf in-space stages for Earth departure. Currently NASA is analyzing the concept of a Dual Use Upper Stage (DUUS) that will provide LEO insertion and Earth departure burns. This paper will explore candidate in-space stages based on the DUUS design for a wide range of beyond LEO missions. Mission payloads will range from small robotic systems up to human systems with deep space habitats and landers. Mission destinations will include cislunar space, Mars, Jupiter, and Saturn. Given these wide-ranging mission objectives, a vehicle-sizing tool has been developed to determine the size of an Earth departure stage based on the mission objectives. The tool calculates masses for all the major subsystems of the vehicle including propellant loads, avionics, power, engines, main propulsion system components, tanks, pressurization system and gases, primary structural elements, and secondary structural elements. The tool uses an iterative sizing algorithm to determine the resulting mass of the stage. Any input into one of the subsystem sizing routines or the mission parameters can be treated as a parametric sweep or as a distribution for use in Monte Carlo analysis. Taking these factors together allows for multi-variable, coupled analysis runs. To increase confidence in the tool, the results have been verified against two point-of-departure designs of the DUUS. The tool has also been verified against Apollo moon mission elements and other manned space systems. This paper will focus on trading key propulsion technologies including chemical, Nuclear Thermal Propulsion (NTP), and Solar Electric Propulsion (SEP). All of the key performance inputs and relationships will be presented and discussed in light of the various missions. For each mission there are several trajectory options and each will be discussed in terms of delta-v required and transit duration. Each propulsion system will be modeled, sized, and judged based on their applicability to the whole range of beyond LEO missions. Criteria for scoring will include the resulting dry mass of the stage, resulting propellant required, time to destination, and an assessment of key enabling technologies. In addition to the larger metrics, this paper will present the results of several coupled sensitivity studies. The ultimate goals of these tools and studies are to provide NASA with the most mass-, technology-, and cost-effective in-space stage for its future exploration missions.
Additive Manufacturing of Thermoplastic Matrix Composites Using Ultrasonics
NASA Astrophysics Data System (ADS)
Olson, Meghan
Advanced composite materials have great potential for facilitating energy efficient product design and their manufacture if improvements are made to current composite manufacturing processes. This thesis focuses on the development of a novel manufacturing process for thermoplastic composite structures entitled Laser-Ultrasonic Additive Manufacturing ('LUAM'), which is intended to combine the benefits of laser processing technology, developed by Automated Dynamics Inc., with ultrasonic bonding technology that is used commercially for unreinforced polymers. These technologies used together have the potential to significantly reduce the energy consumption and void content of thermoplastic composites made using Automated Fiber Placement (AFP). To develop LUAM in a methodical manner with minimal risk, a staged approach was devised whereby coupon-level mechanical testing and prototyping utilizing existing equipment was accomplished. Four key tasks have been identified for this effort: Benchmarking, Ultrasonic Compaction, Laser Assisted Ultrasonic Compaction, and Demonstration and Characterization of LUAM. This thesis specifically addresses Tasks 1 and 2, i.e. Benchmarking and Ultrasonic Compaction, respectively. Task 1, fabricating test specimens using two traditional processes (autoclave and thermal press) and testing structural performance and dimensional accuracy, provide results of a benchmarking study by which the performance of all future phases will be gauged. Task 2, fabricating test specimens using a non-traditional process (ultrasonic conpaction) and evaluating in a similar fashion, explores the the role of ultrasonic processing parameters using three different thermoplastic composite materials. Further development of LUAM, although beyond the scope of this thesis, will combine laser and ultrasonic technology and eventually demonstrate a working system.
1300°F 800 MWe USC CFB Boiler Design Study
NASA Astrophysics Data System (ADS)
Robertson, Archie; Goidich, Steve; Fan, Zhen
Concern about air emissions and the effect on global warming is one of the key factors for developing and implementing new advanced energy production solutions today. One state-of-the-art solution is circulating fluidized bed (CFB) combustion technology combined with a high efficiency once-through steam cycle. Due to this extremely high efficiency, the proven CFB technology offers a good solution for CO2 reduction. Its excellent fuel flexibility further reduces CO2 emissions by co-firing coal with biomass. Development work is under way to offer CFB technology up to 800MWe capacities with ultra-supercritical (USC) steam parameters. In 2009 a 460MWe once-through supercritical (OTSC) CFB boiler designed and constructed by Foster Wheeler will start up. However, scaling up the technology further to 600-800MWe with net efficiency of 45-50% is needed to meet the future requirements of utility operators. To support the move to these larger sizes, an 800MWe CFB boiler conceptual design study was conducted and is reported on herein. The use of USC conditions (˜11 00°F steam) was studied and then the changes, that would enable the unit to generate 1300°F steam, were identified. The study has shown that by using INTREX™ heat exchangers in a unique internal-external solids circulation arrangement, Foster Wheeler's CFB boiler configuration can easily accommodate 1300°F steam and will not require a major increase in heat transfer surface areas.