Dr. William Tumas - Associate Laboratory Director, Materials and Chemical
Chemical Science and Technology Dr. William Tumas - Associate Laboratory Director, Materials and Chemical , technical direction, and workforce development of the materials and chemical science and technology , program management, and program execution. He joined NREL in December 2009 as Director of the Chemical and
CHEMICAL INDUCTION MIXER VERIFICATION - ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM
The Wet-Weather Flow Technologies Pilot of the Environmental Technology Verification (ETV) Program, which is supported by the U.S. Environmental Protection Agency and facilitated by NSF International, has recently evaluated the performance of chemical induction mixers used for di...
Catalysis and biocatalysis program
NASA Technical Reports Server (NTRS)
Ingham, J. D.
1993-01-01
This final report presents a summary of research activities and accomplishments for the Catalysis and Biocatalysis Program, which was renamed the Biological and Chemical Technologies Research (BCTR) Program, currently of the Advanced Industrial Concepts Division (AICD), Office of Industrial Technologies of the Department of Energy (DOE). The Program was formerly under the Division of Energy Conversion and Utilization Technologies (ECUT) until the DOE reorganization in April, 1990. The goals of the BCTR Program are consistent with the initial ECUT goals, but represent an increased effort toward advances in chemical and biological technology transfer. In addition, the transition reflects a need for the BCTR Program to assume a greater R&D role in chemical catalysis as well as a need to position itself for a more encompassing involvement in a broader range of biological and chemical technology research. The mission of the AICD is to create a balanced Program of high risk, long-term, directed interdisciplinary research and development that will improve energy efficiency and enhance fuel flexibility in the industrial sector. Under AICD, the DOE Catalysis and Biocatalysis Program sponsors research and development in furthering industrial biotechnology applications and promotes the integrated participation of universities, industrial companies, and government research laboratories.
SSTAC/ARTS Review of the Draft Integrated Technology Plan (ITP). Volume 2: Propulsion Systems
NASA Technical Reports Server (NTRS)
1991-01-01
The topics addressed are: (1) space propulsion technology program overview; (2) space propulsion technology program fact sheet; (3) low thrust propulsion; (4) advanced propulsion concepts; (5) high-thrust chemical propulsion; (6) cryogenic fluid management; (7) NASA CSTI earth-to-orbit propulsion; (8) advanced main combustion chamber program; (9) earth-to-orbit propulsion turbomachinery; (10) transportation technology; (11) space chemical engines technology; (12) nuclear propulsion; (13) spacecraft on-board propulsion; and (14) low-cost commercial transport.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...
Pilot Plants Enhance Brazosport Lab Courses.
ERIC Educational Resources Information Center
Krieger, James
1986-01-01
Describes an experiential lab program for a two-year college's chemical technology program. Discusses student experiences in six miniature pilot plants that represent the essential instrumentation and chemical processes found in the chemical industry. Recognizes the industries that helped implement the program. (TW)
NASA's Chemical Transfer Propulsion Program for Pathfinder
NASA Technical Reports Server (NTRS)
Hannum, Ned P.; Berkopec, Frank D.; Zurawski, Robert L.
1989-01-01
Pathfinder is a research and technology project, with specific deliverables, initiated by the National Aeronautics and Space Administration (NASA) which will strengthen the technology base of the United States civil space program in preparation for future space exploration missions. Pathfinder begins in Fiscal Year 1989, and is to advance a collection of critical technologies for these missions and ensure technology readiness for future national decisions regarding exploration of the solar system. The four major thrusts of Pathfinder are: surface exploration, in-space operations, humans-in-space, and space transfer. The space transfer thrust will provide the critical technologies needed for transportation to, and return from, the Moon, Mars, and other planets in the solar system, as well as for reliable and cost-effective Earth-orbit operations. A key element of this thrust is the Chemical Transfer Propulsion program which will provide the propulsion technology for high performance, liquid oxygen/liquid hydrogen expander cycle engines which may be operated and maintained in space. Described here are the program overview including the goals and objectives, management, technical plan, and technology transfer for the Chemical Transfer Propulsion element of Pathfinder.
High-Performance, Space-Storable, Bi-Propellant Program Status
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
2002-01-01
Bipropellant propulsion systems currently represent the largest bus subsystem for many missions. These missions range from low Earth orbit satellite to geosynchronous communications and planetary exploration. The payoff of high performance bipropellant systems is illustrated by the fact that Aerojet Redmond has qualified a commercial NTO/MMH engine based on the high Isp technology recently delivered by this program. They are now qualifying a NTO/hydrazine version of this engine. The advanced rhenium thrust chambers recently provided by this program have raised the performance of earth storable propellants from 315 sec to 328 sec of specific impulse. The recently introduced rhenium technology is the first new technology introduced to satellite propulsion in 30 years. Typically, the lead time required to develop and qualify new chemical thruster technology is not compatible with program development schedules. These technology development programs must be supported by a long term, Base R&T Program, if the technology s to be matured. This technology program then addresses the need for high performance, storable, on-board chemical propulsion for planetary rendezvous and descent/ascent. The primary NASA customer for this technology is Space Science, which identifies this need for such programs as Mars Surface Return, Titan Explorer, Neptune Orbiter, and Europa Lander. High performance (390 sec) chemical propulsion is estimated to add 105% payload to the Mars Sample Return mission or alternatively reduce the launch mass by 33%. In many cases, the use of existing (flight heritage) propellant technology is accommodated by reducing mission objectives and/or increasing enroute travel times sacrificing the science value per unit cost of the program. Therefore, a high performance storable thruster utilizing fluorinated oxidizers with hydrazine is being developed.
Biological and Chemical Technologies Research at OIT: Annual Summary Report, FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, G.
1998-03-01
The annual summary report presents the fiscal year (FY) 1 997 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1997 (ASR 97) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization; selected technical and programmatic highlights for 1 997; detailed descriptions of individual projects; and a listing of program output, including amore » bibliography of published work, patents, and awards arising from work supported by the program.« less
Current biodefense vaccine programs and challenges.
Wolfe, Daniel N; Florence, William; Bryant, Paula
2013-07-01
The Defense Threat Reduction Agency's Joint Science and Technology Office manages the Chemical and Biological Defense Program's Science and Technology portfolio. The Joint Science and Technology Office's mission is to invest in transformational ideas, innovative people and actionable technology development for Chemical and Biological Defense solutions, with the primary goal to deliver Science and Technology products and capabilities to the warfighter and civilian population that outpace the threat. This commentary focuses on one thrust area within this mission: the Vaccine program of the Joint Science and Technology Office's Translational Medical Division. Here, we will describe candidate vaccines currently in the S&T pipeline, enabling technologies that should facilitate advanced development of these candidates into FDA licensed vaccines, and how the ever-changing biological threat landscape impacts the future of biodefense vaccines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, G.; Bair, K.; Ross, J.
1994-03-01
The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listingmore » of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.« less
2011-09-09
Chemical and Biological Defense Defense Threat Reduction Agency (DTRA)/Joint Science & Technology Office (JSTO) Dr. Alan Rudolph , Director, Chemical...Mr. Douglas W. Bryce 9:05 am – 9:45 am Dr. Alan Rudolph Director, Chemical and Biological Technologies Directorate, Defense Threat Reduction...Joint Science and Technology Office for Chemical and Biological Defense Dr. Alan S. Rudolph Mr. David K. Grimm Acting Heidi Shyu Joint Combat
Reducing Future International Chemical and Biological Dangers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haddal, Chad; Bull, Diana L.; Hernandez, Patricia Marie
The International Biological and Chemical Threat Reduction Program at Sandia National Laboratories is developing a 15 - year technology road map in support the United States Government efforts to reduce international chemical and biological dangers . In 2017, the program leadership chartered an analysis team to explore dangers in the future international chemical and biological landscape through engagements with national security experts within and beyond Sandia to gain a multidisciplinary perspective on the future . This report offers a hi gh level landscape of future chemical and biological dangers based upon analysis of those engagements and provides support for furthermore » technology road map development.« less
The technology described in this report has been developed under the Emerging Technology Program of the Superfund Innovative Technology Evaluation (SITE) Program to photochemically oxidize organic compounds in wastewater by applying ultraviolet radiation using an excimer laser. T...
Chemical Weapons Disposal: Improvements Needed in Program Accountability and Financial Management
2000-05-01
United States General Accounting Office PAQ Report to Congressional Committees May 2000 CHEMICAL WEAPONS DISPOSAL Improvements Needed in Program...warfare materiel, and former production facilities and identify and locate buried chemical warfare materiel. Alternative Technologies and Approaches...production facilities, and buried chemical warfare materiel. These items are described in table 1. Table 1: Nonstockpile Chemical Materiel Category
Advanced physical-chemical life support systems research
NASA Technical Reports Server (NTRS)
Evanich, Peggy L.
1988-01-01
A proposed NASA space research and technology development program will provide adequate data for designing closed loop life support systems for long-duration manned space missions. This program, referred to as the Pathfinder Physical-Chemical Closed Loop Life Support Program, is to identify and develop critical chemical engineering technologies for the closure of air and water loops within the spacecraft, surface habitats or mobility devices. Computerized simulation can be used both as a research and management tool. Validated models will guide the selection of the best known applicable processes and in the development of new processes. For the integration of the habitat system, a biological subsystem would be introduced to provide food production and to enhance the physical-chemical life support functions on an ever-increasing basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-06-01
Oil shale technology has been divided into two sub-technologies: surfaceprocessing and in-situ processing. Definition of the research programs is essentially an amplification of the five King-Muir categories: (A) pollutants: characterization, measurement, and monitoring; (B) physical and chemical processes and effects; (C) health effects; (D) ecological processes and effects; and (E) integrated assessment. Twenty-three biomedical and environmental research projects are described as to program title, scope, milestones, technology time frame, program unit priority, and estimated program unit cost.
Progress in space power technology
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Randolph, L. P.; Hudson, W. R.
1980-01-01
The National Aeronautics and Space Administration's Space Power Research and Technology Program has the objective of providing the technology base for future space power systems. The current technology program which consists of photovoltaic energy conversion, chemical energy conversion and storage, thermal-to-electric conversion, power systems management and distribution, and advanced energetics is discussed. In each area highlights, current programs, and near-term directions will be presented.
Chemical Technology Division: Progress report, January 1, 1987--June 30, 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-02-01
This progress report summarizes the research and development efforts conducted in the Chemical Technology Division (Chem Tech) during the period January 1, 1987, to June 30, 1988. The following major areas are covered: waste management and environmental programs, radiochemical and reactor engineering programs, basic science and technology, Nuclear Regulatory Commission programs, and administrative resources and facilities. The Administrative Summary, an appendix, presents a comprehensive listing of publications, oral presentations, awards and recognitions, and patents of Chem Tech staff members during this period. A staffing level and financial summary and lists of seminars and Chem Tech consultants for the period aremore » also included.« less
Equipping the 2015 Chemical Technology Workforce: Partnering with Key Stakeholders
ERIC Educational Resources Information Center
Aronson, Blake; Wesemann, Jodi
2007-01-01
The opportunities and challenges associated with establishing and sustaining successful chemistry-based technology programs were discussed at Equipping the 2015 Chemical Technology Workforce, a Presidential Event held at the Fall 2006 ACS National Meeting, kicking off an initiative by the same name. The initiative is based on the recent ACS…
The NASA Space Power Technology Program
NASA Technical Reports Server (NTRS)
Mullin, J. P.; Hudson, W. R.; Randolph, L. P.
1979-01-01
This paper discusses the National Aeronautics and Space Administration's (NASA) Space Power Technology Program which is aimed at providing the needed technology for NASA's future missions. The technology program is subdivided into five areas: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal to electric conversion; (4) power system management and distribution, and (5) advanced energetics. Recent accomplishments, current status, and future directions are presented for each area.
An Approach to Help Departments Meet the New ABET Process Safety Requirements
ERIC Educational Resources Information Center
Vaughen, Bruce K.
2012-01-01
The proposed program criteria changes by the Accreditation Board for Engineering and Technology, Inc. (ABET), for chemical, biochemical, biomolecular, and similarly named programs includes a fundamental awareness expectation of the hazards involved in chemical processing for a graduating chemical engineer. As of July 2010, these four new words…
BCTR: Biological and Chemical Technologies Research 1994 annual summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, G.
1995-02-01
The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance,more » goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.« less
ChemTechLinks: Alliances for Chemical Technician Education
NASA Astrophysics Data System (ADS)
Nameroff, Tamara
2003-09-01
ChemTechLinks (CTL) is a project of the American Chemical Society (ACS) Educational and International Activities Division and funded by the National Science Foundation to support and advance chemistry-based technician education. The project aims to help improve technician education programs, foster academic-industry alliances, provide professional development opportunities for faculty, and increase student recruitment into chemical technology. The CTL Web site serves as an information clearinghouse and link to other ACS resources and programs, including a Web-based, Voluntary Industry Standards (VIS) database, the Chemistry Technician Program Approval Service, the College Chemistry Consultants Service, summer workshops for high school teachers and two-year college faculty that emphasize a technology-oriented curriculum, scholarships for two-year college faculty to attend ACS Short Courses, a self-study instructional guide for faculty to use in preparing for classroom instruction, and information and free recruitment materials about career opportunities in chemistry technology.
On Study of Teaching Reform of Organic Chemistry Course in Applied Chemical Industry Technology
NASA Astrophysics Data System (ADS)
Zhang, Yunshen
2017-11-01
with the implementation of new curriculum reform, the education sees great changes in teaching methods. Teaching reform is profound in organic chemistry course in applied chemical industry technology. However, many problems which have never been noticed before occur when reform programs are implemented which harm students’ ability for learning and enthusiasm in side face. This paper proposes reform measures like combining theory and practice, improving professional quality, supplementing professional needs and integrating teaching into life after analyzing organic chemistry course teaching in applied chemical industry technology currently, hoping to play a role of reference for organic chemistry course teaching reform in applied chemical industry technology.
The Wet-Weather Flow Technologies Pilot of the EPA's Environmental Technology Verification (ETV) Program under a partnership with NSF International has verified the performance of the GAS MASTRRR Series 32 Submersible Chemical Induction Mixers used for disinfection of wet-weather...
Summaries of FY 1979 research in the chemical sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-05-01
The purpose of this report is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. Chemists, physicists, chemical engineers and others who are considering the possibility of proposing research for support by this Division wll find the booklet useful for gauging the scope of the program in basic research, and the relationship of their interests to the overall program. These smmaries are intended to provide a rapid means for becoming acquainted with the Chemicalmore » Sciences program for members of the scientific and technological public, and interested persons in the Legislative and Executive Branches of the Government, in order to indicate the areas of research supported by the Division and energy technologies which may be advanced by use of basic knowledge discovered in this program. Scientific excellence is a major criterion applied in the selection of research supported by Chemical Sciences. Another important consideration is the identifying of chemical, physical and chemical engineering subdisciplines which are advancing in ways which produce new information related to energy, needed data, or new ideas.« less
This bench-scale study was conducted to evaluate the stabilization of mercury (Hg) and mercuric chloride-containing surrogate test materials by the chemically bonded phosphate ceramics technology. This study was performed as part of a U.S. EPA program to evaluate treatment and d...
Chemical Research Projects Office: Functions, accomplishments, and programs
NASA Technical Reports Server (NTRS)
Kourtides, D. A.; Parker, J. A.
1972-01-01
The purpose, technical accomplishments, and related activities of the Chemical Research Project Group are outlined. Data cover efforts made to: (1) identify chemical research and technology required for solutions to problems of national urgency, synchronous with aeronautics and space effort; (2) conduct basic and applied interdisciplinary research on chemical problems in the areas of macromolecular science and fire research, and (3) provide productive liason with the engineering community and effective transfer of technology to other agencies and industry.
The Wet-Weather Flow Technologies Pilot of the EPA's Technology Verification (ETV) Program under a partnership with NSF International has verified the performawnce of the USFilter/Stranco Products chemical induction mixer used for disinfection of wet-weather flows. The USFilter t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulte, H.F.; Stoker, A.K.; Campbell, E.E.
1976-06-01
Oil shale technology has been divided into two sub-technologies: surface processing and in-situ processing. Definition of the research programs is essentially an amplification of the five King-Muir categories: (A) pollutants: characterization, measurement, and monitoring; (B) physical and chemical processes and effects; (C) health effects; (D) ecological processes and effects; and (E) integrated assessment. Twenty-three biomedical and environmental research projects are described as to program title, scope, milestones, technolgy time frame, program unit priority, and estimated program unit cost.
NASA Technical Reports Server (NTRS)
Wilcox, R. E.
1983-01-01
The results of a Research Opportunity Notice (RON) disseminated by the Jet Propulsion Laboratory for the U.S. Department of Energy Conversion and Utilization Technologies (ECUT) Program's Biocatalysis Research Activity are presented. The RON was issued in late April of 1983 and solicited expressions of interest from petrochemical and chemical companies, bioengineering firms, biochemical engineering consultants, private research laboratories, and universities for participating in a federal research program to investigate potential applications of biotechnology in producing chemicals. The RON results indicate that broad interest exists within the nation's industry, universities, and research institutes for the Activity and its planned research and development program.
Recent advances in low-thrust propulsion technology
NASA Technical Reports Server (NTRS)
Stone, James R.
1988-01-01
The NASA low-thrust propulsion technology program is aimed at providing high performance options to a broad class of near-term and future missions. Major emphases of the program are on storable and hydrogen/oxygen low-thrust chemical, low-power (auxiliary) electrothermal, and high-power electric propulsion. This paper represents the major accomplishments of the program and discusses their impact.
The SITE Program funded a field demonstration to evaluate the Eco Logic Gas-Phase Chemical Reduction Process developed by ELI Eco Logic International Inc. (ELI), Ontario, Canada. The Demonstration took place at the Middleground Landfill in Bay City, Michigan using landfill wa...
Robotics crosscutting program: Technology summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Office of Environmental Management (EM) is responsible for cleaning up the legacy of radioactive and chemically hazardous waste at contaminated sites and facilities throughout the U.S. Department of Energy (DOE) nuclear weapons complex, preventing further environmental contamination, and instituting responsible environmental management. Initial efforts to achieve this mission resulted in the establishment of environmental restoration and waste management programs. However, as EM began to execute its responsibilities, decision makers became aware that the complexity and magnitude of this mission could not be achieved efficiently, affordably, safely, or reasonably with existing technology. Once the need for advanced cleanup technologies becamemore » evident, EM established an aggressive, innovative program of applied research and technology development. The Office of Technology Development (OTD) was established in November 1989 to advance new and improved environmental restoration and waste management technologies that would reduce risks to workers, the public, and the environment; reduce cleanup costs; and devise methods to correct cleanup problems that currently have no solutions. In 1996, OTD added two new responsibilities - management of a Congressionally mandated environmental science program and development of risk policy, requirements, and guidance. OTD was renamed the Office of Science and Technology (OST). This documents presents information concerning robotics tank waste retrieval overview, robotic chemical analysis automation, robotics decontamination and dismantlement, and robotics crosscutting and advanced technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawel, Steven J.; Armstrong, Beth L.; Haynes, James A.
The primary goal of the CPAC program at ORNL was to explore the feasibility of introducing various silica-based superhydrophobic (SH) powder additives as a way to improve the corrosion resistance of US Department of Defense (DOD) military-grade chemical agent resistant coating (CARC) systems. ORNL had previously developed and patented several SH technologies of interest to the USMC, and one of the objectives of this program was to identify methods to incorporate these technologies into the USMC’s corrosion-resistance strategy. This report discusses findings of the CPAC and their application.
Roos, Jason; Chue, Calvin; DiEuliis, Diane; Emanuel, Peter
The US Department of Defense (DOD) established programs to defend against chemical and biological weapons 100 years ago because military leaders understood that the operational capability of the US military is diminished when service member health is compromised. These threats to operational readiness can be from an overt attack using chemical and biological threats but may also arise from natural exposures. In the current era of rapidly emerging technologies, adversaries are not only rediscovering chemical and biological weapons; they are also displaying an increased propensity to employ them to cause strategic instability among deployed forces or nations undergoing conflict. The United States's investments in its Chemical and Biological Defense Program (CBDP) can be a critical enabler of the third offset strategy, which is a DOD initiative that seeks to maximize force capability to offset emerging threats. To realize this vision, the CBDP must make fundamental changes in acquiring and employing effective technologies so that enemy use of chemical and biological agents against US assets is no longer a viable option. Maximization of US force health status will provide a strategic advantage over theater opponents more vulnerable to operational degradation from chemical and biological threats.
Energy Efficiency and Renewable Energy Program. Bibliography, 1993 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
1993-06-01
The Bibliography contains listings of publicly available reports, journal articles, and published conference papers sponsored by the DOE Office of Energy Efficiency and Renewable Energy and published between 1987 and mid-1993. The topics of Bibliography include: analysis and evaluation; building equipment research; building thermal envelope systems and materials; district heating; residential and commercial conservation program; weatherization assistance program; existing buildings research program; ceramic technology project; alternative fuels and propulsion technology; microemulsion fuels; industrial chemical heat pumps; materials for advanced industrial heat exchangers; advanced industrial materials; tribology; energy-related inventions program; electric energy systems; superconducting technology program for electric energy systems; thermalmore » energy storage; biofuels feedstock development; biotechnology; continuous chromatography in multicomponent separations; sensors for electrolytic cells; hydropower environmental mitigation; environmental control technology; continuous fiber ceramic composite technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, H.D.
1991-11-01
Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a ``glass like`` material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable tomore » other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, H.D.
1991-11-01
Several of the technologies being evaluated for the treatment of waste material involve chemical reactions. Our example is the in situ vitrification (ISV) process where electrical energy is used to melt soil and waste into a glass like'' material that immobilizes and encapsulates any residual waste. During the ISV process, various chemical reactions may occur that produce significant amounts of products which must be contained and treated. The APOLLO program was developed to assist in predicting the composition of the gases that are formed. Although the development of this program was directed toward ISV applications, it should be applicable tomore » other technologies where chemical reactions are of interest. This document presents the mathematical methodology of the APOLLO computer code. APOLLO is a computer code that calculates the products of both equilibrium and kinetic chemical reactions. The current version, written in FORTRAN, is readily adaptable to existing transport programs designed for the analysis of chemically reacting flow systems. Separate subroutines EQREACT and KIREACT for equilibrium ad kinetic chemistry respectively have been developed. A full detailed description of the numerical techniques used, which include both Lagrange multiplies and a third-order integrating scheme is presented. Sample test problems are presented and the results are in excellent agreement with those reported in the literature.« less
NASA's In Space Propulsion Technology Program Accomplishments and Lessons Learned
NASA Technical Reports Server (NTRS)
Johnson, Les C.; Harris, David
2008-01-01
NASA's In-Space Propulsion Technology (ISPT) Program was managed for 5 years at the NASA MSFC and significant strides were made in the advancement of key transportation technologies that will enable or enhance future robotic science and deep space exploration missions. At the program's inception, a set of technology investment priorities were established using an NASA-wide, mission-driven prioritization process and, for the most part, these priorities changed little - thus allowing a consistent framework in which to fund and manage technology development. Technologies in the portfolio included aerocapture, advanced chemical propulsion, solar electric propulsion, solar sail propulsion, electrodynamic and momentum transfer tethers, and various very advanced propulsion technologies with significantly lower technology readiness. The program invested in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program was to lay the technological foundation for travel to nearby interstellar space. The ambitious goals of the program at its inception included supporting the development of technologies that could support all of NASA's missions, both human and robotic. As time went on and budgets were never as high as planned, the scope of the program was reduced almost every year, forcing the elimination of not only the broader goals of the initial program, but also of funding for over half of the technologies in the original portfolio. In addition, the frequency at which the application requirements for the program changed exceeded the development time required to mature technologies: forcing sometimes radical rescoping of research efforts already halfway (or more) to completion. At the end of its fifth year, both the scope and funding of the program were at a minimum despite the program successfully meeting all of it's initial high priority objectives. This paper will describe the program, its requirements, technology portfolio, and technology maturation processes. Also discussed will be the major technology milestones achieved and the lessons learned from managing a $100M+ technology program.
The History of Chemical Engineering and Pedagogy: The Paradox of Tradition and Innovation
ERIC Educational Resources Information Center
Wankat, Phillip C.
2009-01-01
The Massachusetts Institute of Technology started the first US chemical engineering program six score years ago. Since that time, the chemical engineering curriculum has evolved. The latest versions of the curriculum are attempts to broaden chemical engineering to add product engineering, biology and nanotechnology to the traditional process…
Film processing investigation. [improved chemical mixing system
NASA Technical Reports Server (NTRS)
Kelly, J. L.
1972-01-01
The present operational chemical mixing system for the Photographic Technology Division is evaluated, and the limitations are defined in terms of meeting the present and programmed chemical supply and delivery requirements. A major redesign of the entire chemical mixing, storage, analysis, and supply system is recommended. Other requirements for immediate and future implementations are presented.
Computer Technology for Industry
NASA Technical Reports Server (NTRS)
1982-01-01
Shell Oil Company used a COSMIC program, called VISCEL to insure the accuracy of the company's new computer code for analyzing polymers, and chemical compounds. Shell reported that there were no other programs available that could provide the necessary calculations. Shell produces chemicals for plastic products used in the manufacture of automobiles, housewares, appliances, film, textiles, electronic equipment and furniture.
Summaries of FY 1982 research in the chemical sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-09-01
The purpose of this booklet is to help those interested in research supported by the Department of Energy's Division of Chemical Sciences, which is one of six Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries are intended to provide a rapid means for becoming acquainted with the Chemical Sciences program to members of the scientific and technological public and interested persons in the Legislative and Executive Branches of the Government. Areas of research supported by the Division are to be seen in the section headings, the index and the summaries themselves. Energymore » technologies which may be advanced by use of the basic knowledge discovered in this program can be seen in the index and again (by reference) in the summaries. The table of contents lists the following: photochemical and radiation sciences; chemical physics; atomic physics; chemical energy; separation and analysis; chemical engineering sciences; offsite contracts; equipment funds; special facilities; topical index; institutional index for offsite contracts; investigator index.« less
OAST space power technology program
NASA Technical Reports Server (NTRS)
Mullin, J. P.
1978-01-01
The current research and technology (R and T) base program is first described, then special attention is directed toward outlining a new system technology specifically oriented toward providing the utility power plant technology base for semi-permanent earth orbital facilities expected to be needed in the middle to late 1980's. The R and T program involves five areas of research: (1) photovoltaic energy conversion; (2) chemical energy conversion and storage; (3) thermal-to-electric conversion; (4) environment interactions; and (5) power systems management and distribution. The general objectives and planned direction of efforts in each of these areas is summarized.
As part of the Superfund Innovative Technology Evaluation (SITE) program, the U.S. Environmental Protection Agency (EPA) demonstrated the Chemical Waste Management, Inc. (CWM), PO*WW*ER™ technology. The SITE demonstration was conducted in September 1992 at CWM's Lake Charles Tre...
VERIFICATION OF THE PERFORMANCE OF DECONTAMINATION TECHNOLOGIES IN EPA'S SAFE BUILDINGS PROGRAM
The paper describes initial progress in identifying and testing technologies applicable for decontaminating workplaces and other buildings that may be subject to chemical or biological attack. The EPA is using the process established in its Environmental Technology Verification (...
Trace contaminant control simulation computer program, version 8.1
NASA Technical Reports Server (NTRS)
Perry, J. L.
1994-01-01
The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various process technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. Included in the simulation are chemical and physical adsorption by activated charcoal, chemical adsorption by lithium hydroxide, absorption by humidity condensate, and low- and high-temperature catalytic oxidation. Means are provided for simulating regenerable as well as nonregenerable systems. The program provides an overall mass balance of chemical contaminants in a spacecraft cabin given specified generation rates. Removal rates are based on device flow rates specified by the user and calculated removal efficiencies based on cabin concentration and removal technology experimental data. Versions 1.0 through 8.0 are documented in NASA TM-108409. TM-108409 also contains a source file listing for version 8.0. Changes to version 8.0 are documented in this technical memorandum and a source file listing for the modified version, version 8.1, is provided. Detailed descriptions for the computer program subprograms are extracted from TM-108409 and modified as necessary to reflect version 8.1. Version 8.1 supersedes version 8.0. Information on a separate user's guide is available from the author.
This is an ESTE project summary brief. EPA’s Environmental Technology Verification Program (ETV) is verifying the performance of portable optical and thermal imaging devices for leak detection at petroleum refineries and chemical plans. Industrial facilities, such as chemical p...
Development of Improved Chemicals and Plastics from Oilseeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nugent, Patricia A.; Lysenko, Zenon
2006-11-09
The overall objective of this program was to develop technology that can be applied to the production of various chemicals and plastics from seed oils. This research and development program included activities in all four key barrier areas identified in the US DOE Technology Roadmap for Plant/Crop-Based Renewable Resources, namely Plant Science, Production, Processing, and Utilization. Participants in the project included The Dow Chemical Company, Castor Oil, Inc., and the USDA Western Regional Research Center (WRRC). The objective of this production task was to evaluate and develop metathesis catalyst technology as a means of utilizing seed oils as feedstocks formore » the chemical industry. Specifically, ethenolysis of fatty acid methyl esters, FAME’s, leads to functionalized derivatives. These serve as valuable starting points for materials which cascade into a variety of applications, many of which have a current market presence. The relatively recent discovery and commercial availability of a family of metathesis catalysts which are tolerant of polar functional groups and the acquisition and implementation of high throughput synthesis and screening infrastructure led to a prime opportunity to investigate this project area.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... PROGRAMS ENVIRONMENT, ENERGY AND WATER EFFICIENCY, RENEWABLE ENERGY TECHNOLOGIES, OCCUPATIONAL SAFETY, AND DRUG-FREE WORKPLACE Federal Compliance With Right-To-Know Laws and Pollution Prevention Requirements 23...). Priority chemical means a chemical identified by the Interagency Environmental Leadership Workgroup or...
THE TOXCAST PROGRAM FOR PRIORITIZING TOXICITY TESTING OF ENVIRONMENTAL CHEMICALS
The United States Environmental Protection Agency (EPA) is developing methods for utilizing computational chemistry, high-throughput screening (HTS) and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources towards chemicals...
In-Space Propulsion Technologies for Robotic Exploration of the Solar System
NASA Technical Reports Server (NTRS)
Johnson, Les; Meyer, Rae Ann; Frame, Kyle
2006-01-01
Supporting NASA's Science Mission Directorate, the In-Space Propulsion Technology Program is developing the next generation of space propulsion technologies for robotic, deep-space exploration. Recent technological advancements and demonstrations of key, high-payoff propulsion technologies have been achieved and will be described. Technologies under development and test include aerocapture, solar electric propulsion, solar sail propulsion, and advanced chemical propulsion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selkirk, J.K.
The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.
Profit opportunities for the chemical process industries
NASA Technical Reports Server (NTRS)
1971-01-01
Papers given at a seminar designed to assist industry in the utilization of NASA-developed technology are presented. The topics include the following: the Technology Utilization program, NASA patent policy changes, transfer of Hysttl resin technology, nonflammable cellulosic materials development, nonflammable paper technology, circuit board laminates and construction, polymide resins and other polymers, and intumescent coatings.
NASA Astrophysics Data System (ADS)
Demerjian, K. L.
2002-12-01
In the summer of 2001, an intensive field measurement campaign was carried out in Queens, NY as part of the PM2.5 Technology Assessment and Characterization Study in New York (PMTACS-NY) to characterize the physical and chemical composition of particulate matter and related precursors utilizing conventional and advanced instrumentation technologies. The measurement program, involving a team of scientists from federal, state, university and private sector organizations, was designed to provide detailed time resolved chemical and physical characterization of the urban PM2.5/co-pollutant complex in relation to the regional environment. A summary of the chemical and meteorological data defining specific events during the field intensive is presented as are results addressing specific hypothesis designed around PMTACS-NY program objectives. These include initial findings and conclusions related to 1) performance testing and evaluation of emerging measurement technologies and comparison with EPA mandated PM federal reference methods currently operational as part of the New York State and national PM2.5 monitoring network; 2) emissions characterization of CNG, standard diesel and CRT (Continuously Regenerating Technology) diesel retrofit powered vehicles; and 3) compositional comparisons of urban and regional PM2.5.
In November 1990, the Silicate Technology Corporation`s (STC) proprietary process for treating soil contaminated with toxic semivolatile organic and inorganic contaminants was evaluated in a Superfund Innovative Technology Evaluation (SITE) field demonstration at the Selma Pressu...
Chemical and Biological Defense Program Annual Report to Congress
2006-03-01
activities , which are closely guarded secrets. The prevalence of dual-use technologies and legitimate civilian applications means nuclear, chemical and...and non-state actors can conceal WMD programs and related activities , the United States, its allies and partners must expect further intelligence gaps... activities into three objective areas: Homeland Defense, War on Terror/Irregular (Asymmetric) Warfare, and Conventional Campaigns. In each area, it
Advanced Technology: It's Available at JPL
NASA Technical Reports Server (NTRS)
Edberg, James R.
1996-01-01
Non-NASA activities at JPL are the province of the JPL Technology and Applications Programs Directorate, and include working relationships with industry, academia, and other government agencies. Within this Directorate, the JPL Undersea Technology Program endeavors to apply and transfer these capabilities to the area of underwater research and operations. Of particular interest may be a Reversed Electron Attachment Detector (READ). It is a man-portable device capabable of unambiguous detection of unique chemical signatures associated with mines. In addition, there are other JPL technologies which merit investigation for marine applications.
Weapons of Mass Destruction Technology Evaluation and Training Range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kevin Larry Young
2009-05-01
The Idaho National Laboratory (INL) has a long history for providing technology evaluation and training for military and other federal level Weapons of Mass Destruction (WMD) response agencies. Currently there are many federal organizations and commercial companies developing technologies related to detecting, assessing, mitigating and protecting against hazards associated with a WMD event. Unfortunately, very few locations exist within the United States where WMD response technologies are realistically field tested and evaluated using real chemical, biological, radiological, nuclear and explosive materials. This is particularly true with biological and radiological hazards. Related to this lack of adequate WMD, multi-hazard technology testingmore » capability is the shortage of locations where WMD response teams can train using actual chemical, biological, and radiological material or highly realistic simulates. In response to these technology evaluation and training needs, the INL has assembled a consortium of subject matter experts from existing programs and identified dedicated resources for the purpose of establishing an all-hazards, WMD technology evaluation and training range. The author describes the challenges associated with creating the all-hazards WMD technology evaluation and training range and lists the technical, logistical and financial benefits of an all-hazards technology evaluation and training range. Current resources and capabilities for conducting all-hazard technology evaluation and training at the INL are identified. Existing technology evaluation and training programs at the INL related to radiological, biological and chemical hazards are highlighted, including successes and lessons learned. Finally, remaining gaps in WMD technology evaluation and training capabilities are identified along with recommendations for closing those gaps.« less
Innovation in academic chemical screening: filling the gaps in chemical biology.
Hasson, Samuel A; Inglese, James
2013-06-01
Academic screening centers across the world have endeavored to discover small molecules that can modulate biological systems. To increase the reach of functional-genomic and chemical screening programs, universities, research institutes, and governments have followed their industrial counterparts in adopting high-throughput paradigms. As academic screening efforts have steadily grown in scope and complexity, so have the ideas of what is possible with the union of technology and biology. This review addresses the recent conceptual and technological innovation that has been propelling academic screening into its own unique niche. In particular, high-content and whole-organism screening are changing how academics search for novel bioactive compounds. Importantly, we recognize examples of successful chemical probe development that have punctuated the changing technology landscape. Published by Elsevier Ltd.
EPA is developing methods for utilizing computational chemistry, high-throughput screening (HTS) and various toxicogenomic technologies to predict potential for toxicity and prioritize limited testing resources towards chemicals that likely represent the greatest hazard to human ...
INTEGRATED CHEMICAL INFORMATION TECHNOLOGIES APPLIED TO TOXICOLOGY
A central regulatory mandate of the Environmental Protection Agency, spanning many Program Offices and issues, is to assess the potential health and environmental risks of large numbers of chemicals released into the environment, often in the absence of relevant test data. Model...
VERIFICATION TESTING OF HIGH-RATE MECHANICAL INDUCTION MIXERS FOR CHEMICAL DISINFECTANTS
This paper describes the results of verification testing of mechanical induction mixers for dispersion of chemical disinfectants in wet-weather flow (WWF) conducted under the U.S. Environmental Protection Agency's Environmental Technology Verification (ETV) WWF Pilot Program. Th...
NETL’s Rare Earth Elements Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The National Energy Technology Laboratory has established a Rare Earth Elements (REE) program. REEs are a series of 17 chemical elements found in the Earth’s crust. They are an essential component to technology, health care, transportation and national defense.
Federal agencies active in chemical industry-related research and development
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-29
The Energy Policy Act of 1992 calls for a program to further the commercialization of renewable energy and energy efficient technologies for the industrial sector.. The primary objective of the Office of Industrial Technologies Chemical Industry Team is to work in partnership with the US chemical industry to maximize economic, energy, and environmental benefits through research and development of innovative technologies. This document was developed to inventory organizations within the federal government on current chemical industry-related research and development. While an amount of funding or number of projects specifically relating to chemical industry research and development was not defined inmore » all organizations, identified were about 60 distinct organizations representing 7 cabinet-level departments and 4 independent agencies, with research efforts exceeding $3.5 billion in fiscal year 1995. Effort were found to range from less than $500 thousand per year at the Departments of Agriculture and the Interior to over $100 million per year at the Departments of Commerce, Defense, Energy, and Health and Human Services and the National Aeronautics and Space Administration. The total number of projects in these programs exceeded 10,000. This document is complete to the extent that agencies volunteered information. Additions, corrections, and changes are encouraged and will be incorporated in future revisions.« less
In-situ Subsurface Soil Analyzer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ulmer, Chris
The Department of Energy’s (DOE’s) Terrestrial Ecosystem Science (TES) program is seeking improved sensor systems for monitoring hydro-biogeochemical processes in complex subsurface environments. The TES program is specifically interested in acquiring chemical and structural information regarding the type and nature of the hydration and redox states of subsurface chemical species. The technology should be able to perform on-site and real-time measurements to provide information not available using current sample acquisition and preservation processes. To address the needs of the DOE and the terrestrial science community, Physical Optics Corporation (POC) worked on the development of a new In-Situ Subsurface Soil Analyzermore » (ISSA) based on magnetic resonance technologies. Benchtop testing was performed to assess the feasibility of continuous wave electron pair resonance (CW-EPR) detection of chemical species in subsurface soil systems.« less
VERIFICATION TESTING OF HIGH-RATE MECHANICAL INDUCTION MIXERS FOR CHEMICAL DISINFECTANTS, Oregon
This paper describes the results of verification testing of mechanical induction mixers for dispersion of chemical disinfectants in wet-weather flow (WWF) conducted under the U.S. Environmental Protection Agency's Environmental Technology Verification (ETV) WWF Pilot Program. Th...
1987-08-01
THE DISPOSAL OF CNEM.. CU) GA TECHNOLOGIES INC SRN DIEGO CA A H SARSELL ET AL. RUG 97 GA-C- i @563 UNLRSS FIED S APEO-CDE-IS- 9 ?SIGDRAA±5-85-D-822...F/ 15/.3 NL I ihhhhhhhhhhhhlm I fflfflffllfllfllfllf smhhhhhhhhhhh ~1.02 U.,5 A I *Pig- FiLE copy CHEMICAL STOCKPILE DISPOSAL PROGRAM RISK ANALYSIS...vr~. ’ . - a ’ a’ ’- . ,I1 - .V [ N- VW; W UU V. , U .U : , r ,,, - . ..... . SECURITY CLASSIFICATION OF THIS PAGE IM : I omApproved
NASA Technical Reports Server (NTRS)
Bennett, Gary L.
1991-01-01
The NASA Office of Aeronautics and Space Technology (OAST) space power program was established to provide the technology base to meet power system requirements for future space missions, including the Space Station, earth orbiting spacecraft, lunar and planetary bases, and solar system exploration. The program spans photovoltaic energy conversion, chemical energy conversion, thermal energy conversion, power management, thermal management, and focused initiatives on high-capacity power, surface power, and space nuclear power. The OAST space power program covers a broad range of important technologies that will enable or enhance future U.S. space missions. The program is well under way and is providing the kind of experimental and analytical information needed for spacecraft designers to make intelligent decisions about future power system options.
High quality chemical structure inventories provide the foundation of the U.S. EPA’s ToxCast and Tox21 projects, which are employing high-throughput technologies to screen thousands of chemicals in hundreds of biochemical and cell-based assays, probing a wide diversity of targets...
Materials processing in space program tasks-supplement
NASA Technical Reports Server (NTRS)
Pentecost, E. (Compiler)
1983-01-01
An overview of the program scope for managers and scientists in industry, university, and government communities is provided. An introductory description of the program, its history, strategy, and overall goals; identification of the organizational structures and people involved; and a description of each research task, together with a list of recent publications are included. The tasks are grouped into six categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies; combustion experiments; and experimental technology.
The USEPA's National Homeland Security Research Center (NHSRC)Technology Testing and Evaluation Program (TTEP) is carrying out performance tests on homeland security technologies. Under TTEP, Battelle recently evaluated the performance of the Science Applications International Co...
7 CFR 91.5 - Where services are offered.
Code of Federal Regulations, 2010 CFR
2010-01-01
...) Science and Technology Programs National Science Laboratory. A variety of proximate, chemical, microbiological and biomolecular tests and laboratory analyses performed on fruits and vegetables, poultry, meat and meat products, fiber products and processed foods are performed at the Science and Technology...
ERIC Educational Resources Information Center
Ballinger, Jack T.; Wolf, Lawrence J.
This study guide is part of an interdisciplinary program of studies entitled the Science and Engineering Technician (SET) Curriculum. This curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic…
PERFORMANCE TESTING OF AIR CLEANING PRODUCTS
The paper discuses the application of the Environmental Technology Verification (ETV) Program for products that clean ventilation air to the problem of protecting buildings from chemical and biological attack. This program is funded by the U.S. Environmental Protection Agency und...
78 FR 20625 - Spent Nuclear Fuel Management at the Savannah River Site
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
... processing is a chemical separations process that involves dissolving spent fuel in nitric acid and... Engineering Laboratory Environmental Restoration and Waste Management Programs Final Environmental Impact... chemical properties, and radionuclide inventory. The fuel groups and the seven technologies that could be...
NASA Technical Reports Server (NTRS)
Hines, J.
1999-01-01
Sensors 2000! (S2K!) is a specialized, integrated projects team organized to provide focused, directed, advanced biosensor and bioinstrumentation systems technology support to NASA's spaceflight and ground-based research and development programs. Specific technology thrusts include telemetry-based sensor systems, chemical/ biological sensors, medical and physiological sensors, miniaturized instrumentation architectures, and data and signal processing systems. A concurrent objective is to promote the mutual use, application, and transition of developed technology by collaborating in academic-commercial-govemment leveraging, joint research, technology utilization and commercialization, and strategic partnering alliances. Sensors 2000! is organized around three primary program elements: Technology and Product Development, Technology infusion and Applications, and Collaborative Activities. Technology and Product Development involves development and demonstration of biosensor and biotelemetry systems for application to NASA Space Life Sciences Programs; production of fully certified spaceflight hardware and payload elements; and sensor/measurement systems development for NASA research and development activities. Technology Infusion and Applications provides technology and program agent support to identify available and applicable technologies from multiple sources for insertion into NASA's strategic enterprises and initiatives. Collaborative Activities involve leveraging of NASA technologies with those of other government agencies, academia, and industry to concurrently provide technology solutions and products of mutual benefit to participating members.
In Phase II of the ToxCast program, the U.S. EPA and Tox21 partners screened 1,877 chemicals, including pesticides; food, cosmetics and personal care ingredients; pharmaceuticals; and industrial chemicals. Testing used a 782 in vitro assays across 7 technologies and multiple bi...
An Exemplary Program in Higher Education for Chemists, Engineers, and Chemistry Teachers.
ERIC Educational Resources Information Center
Ayers, Jerry B.; And Others
This paper presents the rationale, structure, and specifications for a model program for the preparation of chemists, chemical engineers, and high school chemistry teachers. The model (an application of systems technology to program development in higher education) is based on the structure provided by the Georgia Educational Model Specifications…
The NASA Electric Propulsion Program
NASA Technical Reports Server (NTRS)
Callahan, Lisa Wood; Curran, Francis M.
1996-01-01
Nearly all space missions require on-board propulsion systems and these systems typically have a major impact on spacecraft mass and cost. Electric propulsion systems offer major performance advantages over conventional chemical systems for many mission functions and the NASA Office of Space Access and Technology (OSAT) supports an extensive effort to develop the technology for high-performance, on-board electric propulsion system options to enhance and enable near- and far-term US space missions. This program includes research and development efforts on electrothermal, electrostatic, and electromagnetic propulsion system technologies to cover a wide range of potential applications. To maximize expectations of technology transfer, the program emphasizes strong interaction with the user community through a variety of cooperative and contracted approaches. This paper provides an overview of the OSAT electric propulsion program with an emphasis on recent progress and future directions.
Space Research and Technology Program: Program and specific objectives, document approval
NASA Technical Reports Server (NTRS)
1982-01-01
A detailed view of the Space Research and Technology program work breakdown structure is provided down to the specific objective level. Goals or objectives at each of these levels are set forth. The specific objective narratives are structured into several parts. First, a short paragraph statement of the specific objective is given. This is followed by a list of subobjectives. A list of targets is then provided for those areas of the specific objective that are amenable to a quantitative description of technical accomplishment and schedule. Fluid and thermal physics, materials and structures, computer science and electronics, space energy conversion, multidisciplinary research, controls and human factors, chemical propulsion, spacecraft systems, transportation systems, platform systems, and spacecraft systems technology comprise the principal research programs.
Xpert Design and Diagnostic's (XDD)potassium permanganate in situ chemical oxidation (ISCO) process was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program at the former MEC Building site located in Hudson, New Hampshire. At this site, both soil and ...
Extrapolating toxicity data across species using U.S. EPA SeqAPASS tool
In vitro high-throughput screening (HTS) and in silico technologies have emerged as 21st century tools for chemical hazard identification. In 2007 the U.S. Environmental Protection Agency (EPA) launched the ToxCast Program, which has screened thousands of chemicals in hundreds of...
The protocol provides generic procedures for implementing a verification test for the performance of in situ chemical oxidation (ISCO), focused specifically to expand the application of ISCO at manufactured gas plants with polyaromatic hydrocarbon (PAH) contamination (MGP/PAH) an...
The US EPAs ToxCast Program for the Prioritization and Prediction of Environmental Chemical Toxicity
To meet the need for evaluating large numbers of chemicals for potential toxicity, the U.S. Environmental Protection Agency has initiated a research project call ToxCast that makes use of recent advances in molecular biology and high-throughput screening. These technologies have ...
2016-09-01
School of Engineering and Management Air Force Institute of Technology Air University Air Education and Training Command In Partial...chemical and biological defense programs for OSD and his/her official title was changed to Assistant to the Secretary of Defense for Nuclear, Chemical...weapons program was no longer the true 27 focus in this office. The current title of this office is Assistant Secretary of Defense for Nuclear
The DuPont Conference: Implications for the Chemical Technology Curriculum
NASA Astrophysics Data System (ADS)
Kenkel, John; Rutledge, Sue; Kelter, Paul B.
1998-05-01
Southeast Community College (SCC) hosted the first DuPont Conference for Chemical Technology Education at its Lincoln, Nebraska campus October 4-6, 1997. The conference brought together fourteen practicing chemists and chemistry technicians and five college and university faculty members for the express purpose of suggesting new laboratory activities that would help relate the real world of work to the education of chemical laboratory technicians in community colleges. Participants included seven men and seven women from DuPont, Procter & Gamble, Eastman Chemical, Eastman Kodak, Dow Chemical, Air Products and Chemicals, Monsanto, Union Carbide, the Nebraska Agriculture Laboratory, and the University of Nebraska Biological Process Development Facility, Department of Food Science. The conference, sponsored by the E. I. DuPont DeNemours & Company through a grant awarded to SCC in June 1997, was intended to help further the goals of the two major projects underway at SCC, funded by the National Science Foundation's Advanced Technological Education Program. These projects, dubbed "Assignment: Chemical Technology I and II", or ACT-I and ACT-II, are curriculum and materials development projects. The invited scientists had between 2 and 32 years of experience that ranged from bench work to management levels. Many are or have been active on the national scene as members and officers of the American Chemical Society's Division of Chemical Technicians and the ACS Committee on Technician Activities.
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-12-01
The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.
NASA Technical Reports Server (NTRS)
1979-01-01
Eastman Kodak Company, Rochester, New York is a broad-based firm which produces photographic apparatus and supplies, fibers, chemicals and vitamin concentrates. Much of the company's research and development effort is devoted to photographic science and imaging technology, including laser technology. Eastman Kodak is using a COSMIC computer program called LACOMA in the analysis of laser optical systems and camera design studies. The company reports that use of the program has provided development time savings and reduced computer service fees.
Borehole Plugging Program (Waste Disposal). Report 1. Initial Investigations and Preliminary Data
1978-01-01
on current technology, they are believed to be capable of being developed to have physical and chemical properties compatible with the various earth...attack, low permeability to both water and gas, and controlled expansive characteristics along with the normal properties of hardened and unhardened...American Admixtures Co. Sika Chemical Corp. Diamond Shamrock Chemical Co. Halliburton Co. * Natural pozzolans: Filter-Cel is uncalcined diatomite
The CHEMFIX solidification/stabilization process was evaluated in the U.S. Environment Protection Agency's SITE program. Waste from an uncontrolled hazardous waste site was treated by the CHEMFIX process and subjected to a variety of physical and chemical test methods. Physical t...
The CHEMFIX solidification/stabilization process was evaluated in the U.S. Environmental Protection Agency's SITE program. Waste from an uncontrolled hazardous waste site was treated by the CHEMFIX process and subjected to a variety of physical and chemical test methods. Physical...
To support the Nation's Homeland Security Program, this U.S. Environmental Protection Agency (EPA) Environmental Technology Verification (ETV) project is conducted to verify the performance of commercially available products, methods, and equipment for decontamination of hard and...
Prioritization methodology for chemical replacement
NASA Technical Reports Server (NTRS)
Cruit, Wendy; Goldberg, Ben; Schutzenhofer, Scott
1995-01-01
Since United States of America federal legislation has required ozone depleting chemicals (class 1 & 2) to be banned from production, The National Aeronautics and Space Administration (NASA) and industry have been required to find other chemicals and methods to replace these target chemicals. This project was initiated as a development of a prioritization methodology suitable for assessing and ranking existing processes for replacement 'urgency.' The methodology was produced in the form of a workbook (NASA Technical Paper 3421). The final workbook contains two tools, one for evaluation and one for prioritization. The two tools are interconnected in that they were developed from one central theme - chemical replacement due to imposed laws and regulations. This workbook provides matrices, detailed explanations of how to use them, and a detailed methodology for prioritization of replacement technology. The main objective is to provide a GUIDELINE to help direct the research for replacement technology. The approach for prioritization called for a system which would result in a numerical rating for the chemicals and processes being assessed. A Quality Function Deployment (QFD) technique was used in order to determine numerical values which would correspond to the concerns raised and their respective importance to the process. This workbook defines the approach and the application of the QFD matrix. This technique: (1) provides a standard database for technology that can be easily reviewed, and (2) provides a standard format for information when requesting resources for further research for chemical replacement technology. Originally, this workbook was to be used for Class 1 and Class 2 chemicals, but it was specifically designed to be flexible enough to be used for any chemical used in a process (if the chemical and/or process needs to be replaced). The methodology consists of comparison matrices (and the smaller comparison components) which allow replacement technology to be quantitatively compared in several categories, and a QFD matrix which allows process/chemical pairs to be rated against one another for importance (using consistent categories). Depending on the need for application, one can choose the part(s) needed or have the methodology completed in its entirety. For example, if a program needs to show the risk of changing a process/chemical one may choose to use part of Matrix A and Matrix C. If a chemical is being used, and the process must be changed; one might use the Process Concerns part of Matrix D for the existing process and all possible replacement processes. If an overall analysis of a program is needed, one may request the QFD to be completed.
ERIC Educational Resources Information Center
Edwards, Timothy I.; Roberson, Clarence E., Jr.
A survey of 470 graduates of the six engineering technology programs at Wake Technical Institute--Architectural, Chemical, Civil Engineering, Computer, Electronic Engineering, and Industrial Engineering Technologies--and 227 of their employers was conducted in October, 1979, to determine the science and mathematics topics most needed by…
Fire Hazard Assessment in Supporting Fire Protection System Design of a Chemical Process Facility
1996-08-01
CSDP/Studies/FireHaz –i– 3/28/97 FIRE HAZARD ASSESSMENT IN SUPPORTING FIRE PROTECTION SYSTEM DESIGN OF A CHEMICAL PROCESS FACILITY Ali Pezeshk...Joseph Chang, Dwight Hunt, and Peter Jahn Parsons Infrastructure & Technology Group, Inc. Pasadena, California 91124 ABSTRACT Because fires in a chemical ...Assessment in Supporting Fire Protection System Design of a Chemical Process Facility 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
Code of Federal Regulations, 2013 CFR
2013-01-01
... Agriculture. Analyses. Microbiological, chemical, or physical tests performed on a commodity. Applicant. Any person or organization requesting services provided by the Science and Technology (S&T) programs. Legal...
Code of Federal Regulations, 2011 CFR
2011-01-01
... Agriculture. Analyses. Microbiological, chemical, or physical tests performed on a commodity. Applicant. Any person or organization requesting services provided by the Science and Technology (S&T) programs. Legal...
Code of Federal Regulations, 2012 CFR
2012-01-01
... Agriculture. Analyses. Microbiological, chemical, or physical tests performed on a commodity. Applicant. Any person or organization requesting services provided by the Science and Technology (S&T) programs. Legal...
Code of Federal Regulations, 2014 CFR
2014-01-01
... Agriculture. Analyses. Microbiological, chemical, or physical tests performed on a commodity. Applicant. Any person or organization requesting services provided by the Science and Technology (S&T) programs. Legal...
36th ATLANTA EXECUTIVE SEMINAR
2011-04-04
Elimination of Chemical Weapons Program. In addition, he is responsible for appointing, managing, and evaluating program executive officers as well as...little can be spared.” The National Commission of Fiscal responsibility, The Moment, December 2010 Slide 14 Congressional Weapon System Concerns ...Acquisition and Technology (A&T), and the Defense Acquisition Board on acquisition/procurement strategies for all major weapon systems programs
TOXCAST, A TOOL FOR CATEGORIZATION AND ...
Across several EPA Program Offices (e.g., OPPTS, OW, OAR), there is a clear need to develop strategies and methods to screen large numbers of chemicals for potential toxicity, and to use the resulting information to prioritize the use of testing resources towards those entities and endpoints that present the greatest likelihood of risk to human health and the environment. This need could be addressed using the experience of the pharmaceutical industry in the use of advanced modern molecular biology and computational chemistry tools for the development of new drugs, with appropriate adjustment to the needs and desires of environmental toxicology. A conceptual approach named ToxCast has been developed to address the needs of EPA Program Offices in the area of prioritization and screening. Modern computational chemistry and molecular biology tools bring enabling technologies forward that can provide information about the physical and biological properties of large numbers of chemicals. The essence of the proposal is to conduct a demonstration project based upon a rich toxicological database (e.g., registered pesticides, or the chemicals tested in the NTP bioassay program), select a fairly large number (50-100 or more chemicals) representative of a number of differing structural classes and phenotypic outcomes (e.g., carcinogens, reproductive toxicants, neurotoxicants), and evaluate them across a broad spectrum of information domains that modern technology has pro
1978-05-16
Di~t Scci ~_STATEMENT ON THE SCIENCI AND TECHNOLOGY PROGRAM AND THE ROLE OF DEPARTMENT OF ’DEFENSE LABORATORIES DR. RUTH M. /DAVIS DEPUTY UNDER...guidance and control 2 and electronics through materials , mathematics and physics, through oceanographic and environmental sciences to chemical and...warfare 23 19 21 Weaponry Landmines, Landmine Countermeasures 13 18 18 and Barriers Ocean Vehicles 114 118 138 Land Mobility 26 26 47 Materials and
In response to the 1996 legislative mandate for an endocrine screening and testing program, we are helping develop, standardize and validate relatively sensitive, robust and relatively simple methods for in vitro screening of chemicals that affect estrogen, and androgen function ...
Materials and Chemical Science and Technology | Research | NREL
Applications and Performance Developing high-efficiency crystalline PV, measuring PV cell/module performance Cells and Hydrogen Program Developing, integrating, and demonstrating hydrogen production/delivery /storage through core programs and EFRCs Point of Contact Bill Tumas MCST Research Advisors/Fellows Senior
In vitro high-throughput screening (HTS) and in silico technologies have emerged as 21st century tools for chemical hazard identification. In 2007 the U.S. Environmental Protection Agency (EPA) launched the ToxCast Program, which has screened thousands of chemicals in hundreds of...
In vitro high-throughput screening (HTS) and in silico technologies have emerged as 21st century tools for chemical hazard identification. In 2007 the U.S. Environmental Protection Agency (EPA) launched the ToxCast Program, which has screened thousands of chemicals in hundreds of...
A Design Basis for Spacecraft Cabin Trace Contaminant Control
NASA Technical Reports Server (NTRS)
Perry, Jay L.
2009-01-01
Successful trace chemical contamination control is one of the components necessary for achieving good cabin atmospheric quality. While employing seemingly simple process technologies, sizing the active contamination control equipment must employ a reliable design basis for the trace chemical load in the cabin atmosphere. A simplified design basis that draws on experience gained from the International Space Station program is presented. The trace chemical contamination control design load refines generation source magnitudes and includes key chemical functional groups representing both engineering and toxicology challenges.
The SERI solar energy storage program
NASA Technical Reports Server (NTRS)
Copeland, R. J.; Wright, J. D.; Wyman, C. E.
1980-01-01
In support of the DOE thermal and chemical energy storage program, the solar energy storage program (SERI) provides research on advanced technologies, systems analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications. A ranking methodology for comparing thermal storage systems (performance and cost) is presented. Research in latent heat storage and thermochemical storage and transport is reported.
Alternative treatment technology information center computer database system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, D.
1995-10-01
The Alternative Treatment Technology Information Center (ATTIC) computer database system was developed pursuant to the 1986 Superfund law amendments. It provides up-to-date information on innovative treatment technologies to clean up hazardous waste sites. ATTIC v2.0 provides access to several independent databases as well as a mechanism for retrieving full-text documents of key literature. It can be accessed with a personal computer and modem 24 hours a day, and there are no user fees. ATTIC provides {open_quotes}one-stop shopping{close_quotes} for information on alternative treatment options by accessing several databases: (1) treatment technology database; this contains abstracts from the literature on all typesmore » of treatment technologies, including biological, chemical, physical, and thermal methods. The best literature as viewed by experts is highlighted. (2) treatability study database; this provides performance information on technologies to remove contaminants from wastewaters and soils. It is derived from treatability studies. This database is available through ATTIC or separately as a disk that can be mailed to you. (3) underground storage tank database; this presents information on underground storage tank corrective actions, surface spills, emergency response, and remedial actions. (4) oil/chemical spill database; this provides abstracts on treatment and disposal of spilled oil and chemicals. In addition to these separate databases, ATTIC allows immediate access to other disk-based systems such as the Vendor Information System for Innovative Treatment Technologies (VISITT) and the Bioremediation in the Field Search System (BFSS). The user may download these programs to their own PC via a high-speed modem. Also via modem, users are able to download entire documents through the ATTIC system. Currently, about fifty publications are available, including Superfund Innovative Technology Evaluation (SITE) program documents.« less
REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Koopman, D.
2009-08-01
A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previousmore » review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high aluminum sludge heels may be appropriate as a means of reducing oxalic acid usage. Reagents other than oxalic acid may also be needed for removing actinide elements from the tank heels. A systems engineering evaluation (SEE) was performed on the various alternative chemical cleaning reagents and organic oxidation technologies discussed in the literature review. The objective of the evaluation was to develop a short list of chemical cleaning reagents and oxalic acid destruction methods that should be the focus of further research and development. The results of the SEE found that eight of the thirteen organic oxidation technologies scored relatively close together. Six of the chemical cleaning reagents were also recommended for further investigation. Based on the results of the SEE and plan set out in the TTQAP the following broad areas are recommended for future study as part of the AECC task: (1) Basic Chemistry of Sludge Dissolution in Oxalic Acid: A better understanding of the variables effecting dissolution of sludge species is needed to efficiently remove sludge heels while minimizing the use of oxalic acid or other chemical reagents. Tests should investigate the effects of pH, acid concentration, phase ratios, temperature, and kinetics of the dissolution reactions of sludge components with oxalic acid, mineral acids, and combinations of oxalic/mineral acids. Real waste sludge samples should be characterized to obtain additional data on the mineral phases present in sludge heels. (2) Simulant Development Program: Current sludge simulants developed by other programs for use in waste processing tests, while compositionally similar to real sludge waste, generally have more hydrated forms of the major metal phases and dissolve more easily in acids. Better simulants containing the mineral phases identified by real waste characterization should be developed to test chemical cleaning methods. (3) Oxalic Acid Oxidation Technologies: The two Mn based oxidation methods that scored highly in the SEE should be studied to evaluate long term potential. One of the AOP's (UV/O{sub 3}/Solids Separator) is currently being implemented by the SRS liquid waste organization for use in tank heel chemical cleaning. (4) Corrosion Issues: A program will be needed to address potential corrosion issues from the use of low molarity mineral acids and mixtures of oxalic/mineral acids in the waste tanks for short durations. The addition of corrosion inhibitors to the acids to reduce corrosion rates should be investigated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Ames Laboratory conducts fundamental research in the physical, chemical, materials, and mathematical sciences and engineering which underlie energy generating, conversion, transmission and storage technologies, environmental improvement, and other technical areas essential to national needs. These efforts will be maintained so as to contribute to the achievement of the vision of DOE and, more specifically, to increase the general levels of knowledge and technical capabilities, to prepare engineering and physical sciences students for the future, both academia and industry, and to develop new technologies and practical applications from our basic scientific programs that will contribute to a strengthening of themore » US economy. The Laboratory approaches all its operations with the safety and health of all workers as a constant objective and with genuine concern for the environment. The Laboratory relies upon its strengths in materials synthesis and processing, materials reliability, chemical analysis, chemical sciences, photosynthesis, materials sciences, metallurgy, high-temperature superconductivity, and applied mathematical sciences to conduct the long term basic and intermediate range applied research needed to solve the complex problems encountered in energy production, and utilization as well as environmental restoration and waste management. Ames Laboratory will continue to maintain a very significant and highly beneficial pre-college math and science education program which currently serves both teachers and students at the middle school and high school levels. Our technology transfer program is aided by joint efforts with ISU`s technology development and commercialization enterprise and will sustain concerted efforts to implement Cooperative Research and Development Agreements, industrially sponsored Work for Others projects. and scientific personnel exchanges with our various customers.« less
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Masters, A. I.; Mitchell, J. C.
1991-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
In-Space Propulsion Program Overview and Status
NASA Technical Reports Server (NTRS)
Carroll, Carol; Johnson, Les; Baggett, Randy
2002-01-01
NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Electric Propulsion (Solar and Nuclear Electric) [note: The Nuclear Electric Propulsion work will be transferred to the NSI program in FY03]; Propellantless Propulsion (aerocapture, solar sails, plasma sails, and momentum exchange tethers); Advanced Chemical Propulsion. The ISP approach to identifying and prioritizing these most promising technologies is to use mission analysis and subsequent peer review. These technologies under consideration are mid-Technology Readiness Level (TRL) up to TRL-6 for incorporation into mission planning within three - five years of initiation. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRAs) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA HQ (Headquarters) and implemented by the Marshall Space Flight Center in Huntsville, Alabama.
Biennial Conference on Chemical Education, Abstracts (11th, Atlanta, Georgia, August 5-9, 1990).
ERIC Educational Resources Information Center
Mellon, E. K.; Pulliam, E. J.
This publication includes more than 470 abstracts of papers scheduled to be presented at a chemical education conference. Topics of the papers include: (1) human impact on the environment; (2) technology; (3) forensic science; (4) paper chemistry; (5) computer interfacing, software, videodisc and graphics; (6) faculty enhancement programs; (7)…
ERIC Educational Resources Information Center
Basitere, Moses; Ivala, Eunice
2015-01-01
This paper reports on a study carried out at a University of Technology, South Africa, aimed at identifying the existence of the mathematical knowledge gap and evaluating the intervention designed to bridge the knowledge gap amongst students studying first year mathematics at the Chemical Engineering Extended Curriculum Program (ECP). In this…
Chemical engineering: Measurements for a competitive age
NASA Technical Reports Server (NTRS)
1986-01-01
The NIST (National Institute of Standards and Technology) activities supporting chemical research, environmental research, combustion and fuel research, and related industries are described in this video. Highlights include private sector involvement in the research and associated and guest scientist programs, the calibration of customers' instruments, and the direct funding for the NIST research projects by outside industries.
Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Committee on Revealing Chemistry Through Advanced Chemical Imaging
2006-09-01
The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecularmore » processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.« less
In-Space Propulsion for Science and Exploration
NASA Technical Reports Server (NTRS)
Bishop-Behel, Karen; Johnson, Les
2004-01-01
This paper presents viewgraphs on the development of In-Space Propulsion Technologies for Science and Exploration. The topics include: 1) In-Space Propulsion Technology Program Overview; 2) In-Space Propulsion Technology Project Status; 3) Solar Electric Propulsion; 4) Next Generation Electric Propulsion; 5) Aerocapture Technology Alternatives; 6) Aerocapture; 7) Advanced Thermal Protection Systems Developed and Being Tested; 8) Solar Sails; 9) Advanced Chemical Propulsion; 10) Momentum Exchange Tethers; and 11) Momentum-exchange/electrodynamic reboost (MXER) Tether Basic Operation.
EPA-Health Canada CompTox Collaboration
Research program of EPA’s National Center for Computational Toxicology addresses chemical screening and prioritization needs for pesticidal inerts, anti-microbials, CCLs, HPVs and MPVs, comprehensive use of HTS technologies to generate.
32 CFR 202.8 - Training RAB members.
Code of Federal Regulations, 2011 CFR
2011-07-01
... technologies, chemicals of concern, and sampling protocols, as well as informing them of the availability of independent technical advice and document review through EPA's Technical Assistant Grant program and DoD's...
32 CFR 202.8 - Training RAB members.
Code of Federal Regulations, 2012 CFR
2012-07-01
... technologies, chemicals of concern, and sampling protocols, as well as informing them of the availability of independent technical advice and document review through EPA's Technical Assistant Grant program and DoD's...
32 CFR 202.8 - Training RAB members.
Code of Federal Regulations, 2013 CFR
2013-07-01
... technologies, chemicals of concern, and sampling protocols, as well as informing them of the availability of independent technical advice and document review through EPA's Technical Assistant Grant program and DoD's...
U.S. Climate Change Technology Program: Strategic Plan
2006-09-01
and Long Term, provides details on the 85 technologies in the R&D portfolio. 21 (Figure 2-1) Continuing Process The United States, in partnership with...locations may be centered near or in residential locations, and work processes and products may be more commonly communicated or delivered via digital... chemical properties, along with advanced methods to simulate processes , will stem from advances in computational technology. Current Portfolio The current
Solidification Technologies for Radioactive and Chemical Liquid Waste Treatment - Final CRADA Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castiglioni, Andrew J.; Gelis, Artem V.
This project, organized under DOE/NNSA's Global Initiatives for Proliferation Prevention program, joined Russian and DOE scientists in developing more effective solidification and storage technologies for liquid radioactive waste. Several patent applications were filed by the Russian scientists (Russia only) and in 2012, the technology developed was approved by Russia's Federal State Unitary Enterprise RADON for application throughout Russia in cleaning up and disposing of radioactive waste.
Physico-chemical foundations underpinning microarray and next-generation sequencing experiments
Harrison, Andrew; Binder, Hans; Buhot, Arnaud; Burden, Conrad J.; Carlon, Enrico; Gibas, Cynthia; Gamble, Lara J.; Halperin, Avraham; Hooyberghs, Jef; Kreil, David P.; Levicky, Rastislav; Noble, Peter A.; Ott, Albrecht; Pettitt, B. Montgomery; Tautz, Diethard; Pozhitkov, Alexander E.
2013-01-01
Hybridization of nucleic acids on solid surfaces is a key process involved in high-throughput technologies such as microarrays and, in some cases, next-generation sequencing (NGS). A physical understanding of the hybridization process helps to determine the accuracy of these technologies. The goal of a widespread research program is to develop reliable transformations between the raw signals reported by the technologies and individual molecular concentrations from an ensemble of nucleic acids. This research has inputs from many areas, from bioinformatics and biostatistics, to theoretical and experimental biochemistry and biophysics, to computer simulations. A group of leading researchers met in Ploen Germany in 2011 to discuss present knowledge and limitations of our physico-chemical understanding of high-throughput nucleic acid technologies. This meeting inspired us to write this summary, which provides an overview of the state-of-the-art approaches based on physico-chemical foundation to modeling of the nucleic acids hybridization process on solid surfaces. In addition, practical application of current knowledge is emphasized. PMID:23307556
The Chemical Engineer's Toolbox: A Glass Box Approach to Numerical Problem Solving
ERIC Educational Resources Information Center
Coronell, Daniel G.; Hariri, M. Hossein
2009-01-01
Computer programming in undergraduate engineering education all too often begins and ends with the freshman programming course. Improvements in computer technology and curriculum revision have improved this situation, but often at the expense of the students' learning due to the use of commercial "black box" software. This paper describes the…
NASA Technical Reports Server (NTRS)
Baker, C. E.
1977-01-01
The program structure is presented. The activities of the thermochemical cycles program are grouped according to the following categories: (1) specific cycle development, (2) support research and technology, (3) cycle evaluation. Specific objectives and status of on-going activities are discussed. Chemical reaction series for the production of hydrogen are presented. Efficiency and economic evaluations are also discussed.
In Situ Fabrication Technologies: Meeting the Challenge for Exploration
NASA Technical Reports Server (NTRS)
Howard, Richard W.
2005-01-01
A viewgraph presentation on Lunar and Martian in situ fabrication technologies meeting the challenges for exploration is shown. The topics include: 1) Exploration Vision; 2) Vision Requirements Early in the Program; 3) Vision Requirements Today; 4) Why is ISFR Technology Needed? 5) ISFR and In Situ Resource Utilization (ISRU); 6) Fabrication Feedstock Considerations; 7) Planetary Resource Primer; 8) Average Chemical Element Abundances in Lunar Soil; 9) Chemical Elements in Aerospace Engineering Materials; 10) Schematic of Raw Regolith Processing into Constituent Components; 11) Iron, Aluminum, and Basalt Processing from Separated Elements and Compounds; 12) Space Power Systems; 13) Power Source Applicability; 14) Fabrication Systems Technologies; 15) Repair and Nondestructive Evaluation (NDE); and 16) Habitat Structures. A development overview of Lunar and Martian repair and nondestructive evaluation is also presented.
NASA Astrophysics Data System (ADS)
Migdal, W.; Owczarczyk, B.; Kedzia, B.; Holderna-Kedzia, E.; Segiet-Kujawa, E.
1998-06-01
Several thousand tons of medical herbs are produced annually by pharmaceutical industry in Poland. This product should be of highest quality and microbial purity. Recently, chemical methods of decontamination are recognized as less safe, thus irradiation technique was chosen to replace them in use. In the Institute of Nuclear Chemistry and Technology the national program on the application of irradiation to the decontamination of medical herbs is in progress now. The purpose of the program is to elaborate, on the basis of research work, the facility standards and technological instructions indispensable for the practice of radiation technology.
Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8
DOE Office of Scientific and Technical Information (OSTI.GOV)
First, M.W.
1991-02-01
Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)
NASA In-Space Propulsion Technology Program: Overview and Update
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program's technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in - spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer.tethers, aeroassist and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA's plans for advancing them as part of the In-Space Propulsion Technology Program.
NASA's In-Space Propulsion Technology Program: Overview and Status
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy; Bonometti, Joe; Herrmann, Melody; James, Bonnie; Montgomery, Sandy
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next generation ion propulsion system operating in the 5 - 10 kW range, to advanced cryogenic propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called, 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, and NASA s plans for advancing them as part of the $60M per year In-Space Propulsion Technology Program.
NASA's In-Space Propulsion Technology Program: Overview and Update
NASA Technical Reports Server (NTRS)
Johnson, Les; Alexander, Leslie; Baggett, Randy M.; Bonometti, Joseph A.; Herrmann, Melody; James, Bonnie F.; Montgomery, Sandy E.
2004-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space - the maximum theoretical efficiencies have almost been reached and they are insufficient to meet needs for many ambitious science missions currently being considered. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion system operating in the 5- to 10-kW range to aerocapture and solar sails, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals ase the environment of space itself for energy and propulsion and are generically called 'propellantless' because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations such as solar sails, electrodynamic and momentum transfer tethers, aeroassist, and aerocapture. This paper will provide an overview of both propellantless and propellant-based advanced propulsion technologies, as well as NASA s plans for advancing them as part of the In-Space Propulsion Technology Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, B.E.; Singleton, A.H.; McAllister, K.K.
During the past twenty-five years, there have been significant developments in Underground Coal Gasification technology in the US. Government-funded programs have focused on the development of two process configurations: the Controlled Retracting Injection Point (CRIP) and the Steeply Dipping Bed (SDB). Private industry has participated in these programs and is continuing its activities in the development and commercialization of these technologies. This paper will trace the evolution of today`s processes from their origins in the Russian technologies and advancements that are continuing to be made in bringing the technologies to commercial reality in both the US and overseas. The statusmore » of both the CRIP and SDB technologies will be discussed along with developments in processes for utilization of the UCG product gas to generate power and to make chemicals and liquid fuels.« less
Defense Science and Technology RELIANCE. Defense Technology Objectives Success Stories
2001-03-01
27 MD.04 Medical Countermeasures for Botulinum Toxin ...flexibility of U.S. forces. Completed. 1998 SPONSORS DoD Chemical and Biological Defense Program MEDICAL COUNTERMEASURES FOR BOTULINUM TOXIN (MD.04) 29...system operates satisfactorily against a high-level jamming environment in the target area. On four AGTFT free flights, the AGTFT flight test vehicles
EPA is developing methods for utilizing computational chemistry, high-throughput screening (HTS)and genomic technologies to predict potential toxicity and prioritize the use of limited testing resources.
2011 Chemical, Biological, Radiological, and Nuclear Survivability Conference
2011-05-18
Protection (barrier, sorptive and reactive material technologies) o Top surface antimicrobial treatments (kills spores, bacteria, fungi, viruses ) o...Warning System (TWS) CDD - Countermeasure Anti-Torpedo ( CAT ) CDD UNCLASSIFIED Joint Program Executive Office for Chemical and Biological Defense May...Creating viruses de novo Biological Threats UNCLASSIFIED JPEO-CBD Radiological/Nuclear (RN) Status and Path Forward • Issue: No identified DoD
In-Space Chemical Propulsion System Model
NASA Technical Reports Server (NTRS)
Byers, David C.; Woodcock, Gordon; Benfield, Michael P. J.
2004-01-01
Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystem. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.
In-Space Chemical Propulsion System Model
NASA Technical Reports Server (NTRS)
Byers, David C.; Woodcock, Gordon; Benfield, M. P. J.
2004-01-01
Multiple, new technologies for chemical systems are becoming available and include high temperature rockets, very light propellant tanks and structures, new bipropellant and monopropellant options, lower mass propellant control components, and zero boil off subsystems. Such technologies offer promise of increasing the performance of in-space chemical propulsion for energetic space missions. A mass model for pressure-fed, Earth and space-storable, advanced chemical propulsion systems (ACPS) was developed in support of the NASA MSFC In-Space Propulsion Program. Data from flight systems and studies defined baseline system architectures and subsystems and analyses were formulated for parametric scaling relationships for all ACPS subsystems. The paper will first provide summary descriptions of the approaches used for the systems and the subsystems and then present selected analyses to illustrate use of the model for missions with characteristics of current interest.
NASA Technical Reports Server (NTRS)
Kurylo, M. J.; DeCola, P. L.; Kaye, J. A.
2000-01-01
Under the mandate contained in the FY 1976 NASA Authorization Act, the National Aeronautics and Space Administration (NASA) has developed and is implementing a comprehensive program of research, technology development, and monitoring of the Earth's upper atmosphere, with emphasis on the upper troposphere and stratosphere. This program aims at expanding our chemical and physical understanding to permit both the quantitative analysis of current perturbations as well as the assessment of possible future changes in this important region of our environment. It is carried out jointly by the Upper Atmosphere Research Program (UARP) and the Atmospheric Chemistry Modeling and Analysis Program (ACMAP), both managed within the Research Division in the Office of Earth Science at NASA. Significant contributions to this effort have also been provided by the Atmospheric Effects of Aviation Project (AEAP) of NASA's Office of Aero-Space Technology. The long-term objectives of the present program are to perform research to: understand the physics, chemistry, and transport processes of the upper troposphere and the stratosphere and their control on the distribution of atmospheric chemical species such as ozone; assess possible perturbations to the composition of the atmosphere caused by human activities and natural phenomena (with a specific emphasis on trace gas geographical distributions, sources, and sinks and the role of trace gases in defining the chemical composition of the upper atmosphere); understand the processes affecting the distributions of radiatively active species in the atmosphere, and the importance of chemical-radiative-dynamical feedbacks on the meteorology and climatology of the stratosphere and troposphere; and understand ozone production, loss, and recovery in an atmosphere with increasing abundances of greenhouse gases. The current report is composed of two parts. Part 1 summarizes the objectives, status, and accomplishments of the research tasks supported under NASA UARP and ACMAP in a document entitled, Research Summaries 1997- 1999. Part 2 is entitled Present State of Knowledge of the Upper Atmosphere 1999 An Assessment Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McAchran, G.E.
The author first addresses the impediments to successful technology transfer, e.g., tax programs, planning horizons, and capital availability. He emphasizes that written information emanating from universities and national laboratories, in and of itself, is usually insufficient to insure technology transfer. He notes that most information is transferred through informal channels and, most effectively, through personal contacts. Noting that Monsanto was a founding member and remains active in they Council on Chemical Research and Technology Transfer Conferences, Inc., he cites examples of their activities in the past 15 years. While geographic proximity is an important factor, usually, Monsanto's 5-year program withmore » Oxford Univ., UK, is funded at approximately $2 million; Monsanto scientists are located at Oxford to facilitate the work and bring the technology back home. 7 references« less
Biomass to Liquid Fuels and Electrical Power
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Steven; McDonald, Timothy; Gallagher, Thomas
This research program provided data on immediate applicability of forest biomass production and logistics models. Also, the research further developed and optimized fractionation techniques that can be used to separate biomass feedstocks into their basic chemical constituents. Finally, additional research established systematic techniques to determine economically feasible technologies for production of biomass-derived synthesis gases that will be used for clean, renewable power generation and for production of liquid transportation fuels. Moreover, this research program continued our efforts to educate the next generation of engineers and scientists needed to implement these technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mac Dougall, James
2016-02-05
Many U.S. manufacturing facilities generate unrecovered, low-grade waste heat, and also generate or are located near organic-content waste effluents. Bioelectrochemical systems, such as microbial fuel cells and microbial electrolysis cells, provide a means to convert organic-content effluents into electric power and useful chemical products. A novel biochemical electrical system for industrial manufacturing processes uniquely integrates both waste heat recovery and waste effluent conversion, thereby significantly reducing manufacturing energy requirements. This project will enable the further development of this technology so that it can be applied across a wide variety of US manufacturing segments, including the chemical, food, pharmaceutical, refinery, andmore » pulp and paper industries. It is conservatively estimated that adoption of this technology could provide nearly 40 TBtu/yr of energy, or more than 1% of the U.S. total industrial electricity use, while reducing CO 2 emissions by more than 6 million tons per year. Commercialization of this technology will make a significant contribution to DOE’s Industrial Technology Program goals for doubling energy efficiency and providing a more robust and competitive domestic manufacturing base.« less
1989-08-01
microproces;qor databaAing systems for monitoring project and contract reports and program technology trans. fers, coordinating and providing administratIvo ...The JWGD 3 annual planning process generally included: - Program review by the JWGD’ membership at quarterly meetings, which consisted of the review...Office developed the program planning and budget documents associated with the planning process outlined above. Program project databases and
NASA Technical Reports Server (NTRS)
Stephenson, Frank W., Jr.
1988-01-01
The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.
Chemical-biological defense remote sensing: what's happening
NASA Astrophysics Data System (ADS)
Carrico, John P.
1998-08-01
The proliferation of weapons of mass destruction (WMD) continues to be a serious threat to the security of the US. Proliferation of chemical and biological (CB) weapons is particularly disturbing, and the threats posed can be devastating. Critical elements of the US efforts to reduce and counter WMD proliferation include: (1) the location and characterization of WMD facilities and capabilities worldwide; (2) the ability to rapidly detect and identify the use of CB weapons for expeditious warning and reporting on the battlefield; and (3) the capability to mitigate deleterious consequences of a CB incident through effective protective and medical treatment measures. Remote sensing has been touted as a key technology in these efforts. Historically, the role of remote sensing in CB defense has been to provide early warning of an attack from an extended distance. However, additional roles for remote sensing in CB defense, as well as applications in related missions, are possible and should be pursued. This paper examines what has been happening in remote sensing over the past decade to address needs in this area. Accomplishments, emerging technologies, programmatic issues, and opportunities for the future are covered. The Department of Defence chemical- biological, the Department of Energy's Chemical Analysis by Laser Interrogation of Proliferation Effluents, and other agency related programs are examined. Also, the status of remote sensing in the commercial market arena for environmental monitoring, its relevance to the WMD counterproliferation program, and opportunities for technology transfer are discussed. A course of action for the future is recommended.
Managing Chemical & Material Risks
2011-12-01
Certification Program Acquisition, Technology and Logistics 9 DoD Hexavalent Chromium Risk Reduction Non- Chrome Primer II EXAVAJ ENT CHROM lrUMI...Royal Demolition eXplosive (RDX) • Cyclotrimethylenetrinitramine Hexavalent Chromium (Cr6+) Naphthalene …pending downgrade to watch list Beryllium...T1me (secondo) 700 Acquisition, Technology and Logistics 10 Hexavalent Chromium Risk Management Actions • DoD minimization policy signed April
Advanced Environmental Monitoring and Control Program: Technology Development Requirements
NASA Technical Reports Server (NTRS)
Jan, Darrell (Editor); Seshan, Panchalam (Editor); Ganapathi, Gani (Editor); Schmidt, Gregory (Editor); Doarn, Charles (Editor)
1996-01-01
Human missions in space, from the International Space Station on towards potential human exploration of the moon, Mars and beyond into the solar system, will require advanced systems to maintain an environment that supports human life. These systems will have to recycle air and water for many months or years at a time, and avoid harmful chemical or microbial contamination. NASA's Advanced Environmental Monitoring and Control program has the mission of providing future spacecraft with advanced, integrated networks of microminiaturized sensors to accurately determine and control the physical, chemical and biological environment of the crew living areas. This document sets out the current state of knowledge for requirements for monitoring the crew environment, based on (1) crew health, and (2) life support monitoring systems. Both areas are updated continuously through research and space mission experience. The technologies developed must meet the needs of future life support systems and of crew health monitoring. These technologies must be inexpensive and lightweight, and use few resources. Using these requirements to continue to push the state of the art in miniaturized sensor and control systems will produce revolutionary technologies to enable detailed knowledge of the crew environment.
In-Space Propulsion Program Overview and Status
NASA Technical Reports Server (NTRS)
Wercinski, Paul F.; Johnson, Les; Baggett, Randy M.
2003-01-01
NASA's In-Space Propulsion (ISP) Program is designed to develop advanced propulsion technologies that can enable or greatly enhance near and mid-term NASA science missions by significantly reducing cost, mass, and/or travel times. These technologies include: Solar Electric Propulsion, Aerocapture, Solar Sails, Momentum Exchange Tethers, Plasma Sails and other technologies such as Advanced Chemical Propulsion. The ISP Program intends to develop cost-effective propulsion technologies that will provide a broad spectrum of mission possibilities, enabling NASA to send vehicles on longer, more useful voyages and in many cases to destinations that were previously unreachable using conventional means. The ISP approach to identifying and prioritizing these most promising technologies is to use mission and system analysis and subsequent peer review. The ISP program seeks to develop technologies under consideration to Technology Readiness Level (TRL) -6 for incorporation into mission planning within 3-5 years of initiation. The NASA TRL 6 represents a level where a technology is ready for system level demonstration in a relevant environment, usually a space environment. In addition, maximum use of open competition is encouraged to seek optimum solutions under ISP. Several NASA Research Announcements (NRA's) have been released asking industry, academia and other organizations to propose propulsion technologies designed to improve our ability to conduct scientific study of the outer planets and beyond. The ISP Program is managed by NASA Headquarters Office of Space Science and implemented by the Marshall Space Flight Center in Huntsville, Alabama.
Integrated Weed Management Strategies for Control of Hydrilla
2009-02-01
Integrated weed management ( IWM ) can be defined as the application of mul- tiple technologies (chemical, biological, and cultural) for the purpose of...considering economic, ecological, and sociological consequences (Thill et al. 1991). Adopting an IWM program can reduce costs and chemical loading to...alternative for controlling hydrilla using an IWM approach. Efforts are ongoing to formulate M. terrestris as a marketable bioherbicide for use in
Marine Fouling and Thermal Dissipation of Undersea Wireless Power Transfer
2014-09-01
Warfare Systems Center Pacific (SSC Pacific), San Diego, CA. The Naval Innovative Science and Engineering (NISE) Program at SSC Pacific funded this team...FLIR Systems , Inc. MG Chemicals® is registered trademarks of MG Chemicals Ltd. Released by J. Spenser, Head Radiation Technologies Branch...Under authority of M. H. Berry. Head Maritime Systems Division iii EXECUTIVE SUMMARY This report describes the thermal effects and marine
Department of Defense Chemical and Biological Defense Program. FY2004-2006 Performance Plan
2005-03-01
Agents (NTAs) Compare the direct effects of PAF on smooth muscle, hematic constituents, and lung to determine role in toxicity. Continue to identify...Range Biometric Target ID System Explore technologies for a long range biometric target identification system. Air Containment Monitoring System...Continue development of systems for contained air monitoring for chemical agents.Long Range Biometric Air Containment Monitoring System Continued
Highlights of Nanosatellite Development Program at NASA-Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Rhee, Michael S.; Zakrzwski, Chuck M.; Thomas, Mike A.; Bauer, Frank H. (Technical Monitor)
2000-01-01
Currently the GN&C's Propulsion Branch of the NASA's Goddard Space Flight Center (GSFC) is conducting a broad technology development program for propulsion devices that are ideally suited for nanosatellite missions. The goal of our program is to develop nanosatellite propulsion systems that can be flight qualified in a few years and flown in support of nanosatellite missions. The miniature cold gas thruster technology, the first product from the GSFC's propulsion component technology development program, will be flown on the upcoming ST-5 mission in 2003. The ST-5 mission is designed to validate various nanosatellite technologies in all major subsystem areas. It is a precursor mission to more ambitious nanosatellite missions such as the Magnetospheric Constellation mission. By teaming with the industry and government partners, the GSFC propulsion component technology development program is aimed at pursuing a multitude of nanosatellite propulsion options simultaneously, ranging from miniaturized thrusters based on traditional chemical engines to MEMS based thruster systems. After a conceptual study phase to determine the feasibility and the applicability to nanosatellite missions, flight like prototypes of selected technology are fabricated for testing. The development program will further narrow down the effort to those technologies that are considered "mission-enabling" for future nanosatellite missions. These technologies will be flight qualified to be flown on upcoming nanosatellite missions. This paper will report on the status of our development program and provide details on the following technologies: Low power miniature cold gas thruster Nanosatellite solid rocket motor. Solid propellant gas generator system for cold gas thruster. Low temperature hydrazine blends for miniature hydrazine thruster. MEMS mono propellant thruster using hydrogen peroxide.
NASA's In-Space Propulsion Technology Program: A Step Toward Interstellar Exploration
NASA Technical Reports Server (NTRS)
Johnson, Les; James, Bonnie; Baggett, Randy; Montgomery, Sandy
2005-01-01
NASA's In-Space Propulsion Technology Program is investing in technologies that have the potential to revolutionize the robotic exploration of deep space. For robotic exploration and science missions, increased efficiencies of future propulsion systems are critical to reduce overall life-cycle costs and, in some cases, enable missions previously considered impossible. Continued reliance on conventional chemical propulsion alone will not enable the robust exploration of deep space. The maximum theoretical efficiencies have almost been reached and are insufficient to meet needs for many ambitious science missions currently being considered. By developing the capability to support mid-term robotic mission needs, the program is laying the technological foundation for travel to nearby interstellar space. The In-Space Propulsion Technology Program s technology portfolio includes many advanced propulsion systems. From the next-generation ion propulsion systems operating in the 5-10 kW range, to solar sail propulsion, substantial advances in spacecraft propulsion performance are anticipated. Some of the most promising technologies for achieving these goals use the environment of space itself for energy and propulsion and are generically called "propellantless" because they do not require onboard fuel to achieve thrust. Propellantless propulsion technologies include scientific innovations, such as solar sails, electrodynamic and momentum transfer tethers, and aerocapture. This paper will provide an overview of those propellantless and propellant-based advanced propulsion technologies that will most significantly advance our exploration of deep space.
Biological and Chemical Security
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitch, P J
2002-12-19
The LLNL Chemical & Biological National Security Program (CBNP) provides science, technology and integrated systems for chemical and biological security. Our approach is to develop and field advanced strategies that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons. Recent events show the importance of civilian defense against terrorism. The 1995 nerve gas attack in Tokyo's subway served to catalyze and focus the early LLNL program on civilian counter terrorism. In the same year, LLNL began CBNP using Laboratory-Directed R&D investments and a focus on biodetection. The Nunn-Lugar-Domenici Defensemore » Against Weapons of Mass Destruction Act, passed in 1996, initiated a number of U.S. nonproliferation and counter-terrorism programs including the DOE (now NNSA) Chemical and Biological Nonproliferation Program (also known as CBNP). In 2002, the Department of Homeland Security was formed. The NNSA CBNP and many of the LLNL CBNP activities are being transferred as the new Department becomes operational. LLNL has a long history in national security including nonproliferation of weapons of mass destruction. In biology, LLNL had a key role in starting and implementing the Human Genome Project and, more recently, the Microbial Genome Program. LLNL has over 1,000 scientists and engineers with relevant expertise in biology, chemistry, decontamination, instrumentation, microtechnologies, atmospheric modeling, and field experimentation. Over 150 LLNL scientists and engineers work full time on chemical and biological national security projects.« less
EPAs National Center for Computational Toxicology is developing methods that apply computational chemistry, high-throughput screening (HTS) and genomic technologies to predict potential toxicity and prioritize the use of limited testing resources.
ERIC Educational Resources Information Center
Basitere, Moses; Ndeto Ivala, Eunice
2017-01-01
Today's 21st century students are regarded as "digital natives," who are influenced by digital environments for acquisition of information, communication and interaction. With the emergence of new technologies, educators are encouraged to find meaningful ways of incorporating these technologies into their classrooms. The practice…
United States Military Academy: 25 Years of Enlightening Research. 2012 Program Review
2012-01-01
is being used in agriculture to quickly assess produce for disease and ripeness. The technology has been incorporated into microscopes to conduct... disease and ripeness. The technology has been incorporated into microscopes to conduct micro analysis on chemical composition of pharmaceuticals...and electronically. The Optical spectrum analyzer (OSA) and Fabry -Perot interferometer (left inset) show a pure 150MHz tone with no extraneous
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
NASA physics and chemistry experiments in-space program
NASA Technical Reports Server (NTRS)
Gabris, E. A.
1981-01-01
The Physics and Chemistry Experiments Program (PACE) is part of the Office of Aeronautics and Space Technology (OAST) research and technology effort in understanding the fundamental characteristics of physics and chemical phenomena. This program seeks to increase the basic knowledge in these areas by well-planned research efforts which include in-space experiments when the limitations of ground-based activities precludes or restricts the achievement of research goals. Overview study areas are concerned with molecular beam experiments for Space Shuttle, experiments on drops and bubbles in a manned earth-orbiting laboratory, the study of combustion experiments in space, combustion experiments in orbiting spacecraft, gravitation experiments in space, and fluid physics, thermodynamics, and heat-transfer experiments. Procedures for the study program have four phases. An overview study was conducted in the area of materials science.
1986-06-01
Technology Development -Ed A. Theriot, WES Chemical Control Technology Development -Howard E. Westerdahl , WES 12:00 noon LUNCH iv 1:30 p.m. APCRP...PO Box 631 Vicksburg, MS 39180-0631 Vicksburg, MS 39180-0631 VkDan Thayer Howard Westerdahl Center for Aquatic Weeds USAE Waterways Experiment 7922...Technology Development, A Review by Howard E. Westerdahl * INTRODUCTION Over the past 8 years many advancements and a few disappointing events occurred that
Production and use of metals and oxygen for lunar propulsion
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Linne, Diane L.; Landis, Geoffrey A.; Groth, Mary F.; Colvin, James E.
1991-01-01
Production, power, and propulsion technologies for using oxygen and metals derived from lunar resources are discussed. The production process is described, and several of the more developed processes are discussed. Power requirements for chemical, thermal, and electrical production methods are compared. The discussion includes potential impact of ongoing power technology programs on lunar production requirements. The performance potential of several possible metal fuels including aluminum, silicon, iron, and titanium are compared. Space propulsion technology in the area of metal/oxygen rocket engines is discussed.
A feasibility study of the destruction of chemical weapons by photocatalytic oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hitchman, M.L.; Spackman, A.R.; Yusta, F.J.
1997-01-01
The destruction of existing arsenals or deposits of chemical weapons is an important obstacle on the way to the successful implementation of the Chemical Weapons Convention which was opened for signature in 1993. Many approaches have been proposed and none can be seen as panacea. Each has its merits and shortcomings. In this paper we review the different technologies and propose a new one, photocatalytic oxidation, which has the potential to fill an important gap; a cheap, small, mobile facility for chemical warfare agents which are difficult to transport or are deposited in a remote area. We report some relevantmore » experimental results with this technology for the destruction of chemical weapons. After many years of negotiation, a convention banning the production, possession and use of chemical weapons was opened for signature in Paris on January 13, 1993. The convention, once it is ratified, will provide a framework and a program for the destruction of chemical weapons by the nations party to it. The framework will cover such topics as definitions of terminology, general rules of verification and verification measures, level of destruction of chemical weapons, activities not prohibited under the convention, and investigations in cases of alleged use of chemical weapons. The program will require that countries with chemical weapons shall start their destruction not later than one year after they have ratified the convention, and that they shall complete it within a ten year period. For this period involved countries are required to declare their plans for destruction. These plans have to include a time schedule for the destruction process, an inventory of equipment and buildings to be destroyed, proposed measures for verification, safety measures to be observed during destruction, specification of the types of chemical weapons and the type and quantity of chemical fill to be destroyed, and specification of the destruction method. 38 refs.« less
NASA Technical Reports Server (NTRS)
Gregory, J. W.
1975-01-01
Plans are formulated for chemical propulsion technology programs to meet the needs of advanced space transportation systems from 1980 to the year 2000. The many possible vehicle applications are reviewed and cataloged to isolate the common threads of primary propulsion technology that satisfies near term requirements in the first decade and at the same time establish the technology groundwork for various potential far term applications in the second decade. Thrust classes of primary propulsion engines that are apparent include: (1) 5,000 to 30,000 pounds thrust for upper stages and space maneuvering; and (2) large booster engines of over 250,000 pounds thrust. Major classes of propulsion systems and the important subdivisions of each class are identified. The relative importance of each class is discussed in terms of the number of potential applications, the likelihood of that application materializing, and the criticality of the technology needed. Specific technology programs are described and scheduled to fulfill the anticipated primary propulsion technology requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, M.T.; Reed, B.E.; Gabr, M.
1993-07-01
West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Report for Year 1 of the Agreement. This report reflects the progress and/or efforts performed on the following nine technical projects encompassed by the Year 1 Agreement for the period of April 1 through June 30, 1993: Systematic assessment of the state of hazardous waste clean-up technologies; site remediation technologies -- drain-enhanced soil flushingmore » (DESF) for organic contaminants removal; site remediation technologies -- in situ bioremediation of organic contaminants; excavation systems for hazardous waste sites; chemical destruction of polychlorinated biphenyls; development of organic sensors -- monolayer and multilayer self-assembled films for chemical sensors; Winfield lock and dam remediation; Assessments of Technologies for hazardous waste site remediation -- non-treatment technologies and pilot scale test facility implementation; and remediation of hazardous sites with stream reforming.« less
Technician Program Uses Advanced Instruments.
ERIC Educational Resources Information Center
Stinson, Stephen
1981-01-01
Describes various aspects of a newly-developed computer-assisted drafting/computer-assisted manufacture (CAD/CAM) facility in the chemical engineering technology department at Broome Community College, Binghamton, New York. Stresses the use of new instruments such as microcomputers and microprocessor-equipped instruments. (CS)
APPLICATION, PERFORMANCE, AND COSTS OF ...
A critical review of biological treatment processes for remediation of contaminated soils is presented. The focus of the review is on documented cost and performance of biological treatment technologies demonstrated at full- or field-scale. Some of the data were generated by the U.S. Environmental Protection Agency's (EPA's) Bioremediation in the Field Program, jointly supported by EPA's Office of Research and Development, EPA's Office of Solid Waste and Emergency Waste, and the EPA Regions through the Superfund Innovative Technology Evaluation Program (SITE) Program. Military sites proved to be another fertile data source. Technologies reviewed in this report include both ex-situ processes, (land treatment, biopile/biocell treatment, composting, and bioslurry reactor treatment) and in-situ alternatives (conventional bioventing, enhanced or cometabolic bioventing, anaerobic bioventing, bioslurping, phytoremediation, and natural attenuation). Targeted soil contaminants at the documented sites were primarily organic chemicals, including BTEX, petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), chlorinated aliphatic hydrocarbons (CAHs), organic solvents, polychlorinated biphenyls (PCBs), pesticides, dioxin, and energetics. The advantages, limitations, and major cost drivers for each technology are discussed. Box and whisker plots are used to summarize before and after concentrations of important contaminant groups for those technologies consider
Health effects of coal technologies: research needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-01
In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidizedmore » bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.« less
1993-01-28
j- .FLI )ORO-EL.ASTOMERS BOOTS IF POLYMER-BLENDS SEALS COATINGS (rigid& flexible) PROGRAM FOCUS EFFECTS OF CHEMICAL AGENTS AND DECONTAMINANTS ON...threats: - Ballistic - Electronic Warfare - Nuclear - Chemical and Biological - Directed Energy GOALS AND OBJECTIVES Suiwabidy/Lefta Anasis Directorate...Proceedings APBI held at the Naval Surface Warfare Center, White Oak, Maryland on 27 - 28 January 1993 .STATEMENT 93-13681 Approved for Public Release; 1
Hong, Kuk-Ki; Kim, Jeong Hyun; Yoon, Jong Hyun; Park, Hye-Min; Choi, Su Jin; Song, Gyu Hyeon; Lee, Jea Chun; Yang, Young-Lyeol; Shin, Hyun Kwan; Kim, Ju Nam; Cho, Kyung Ho; Lee, Jung Ho
2014-10-01
There has been a significant global interest to produce bulk chemicals from renewable resources using engineered microorganisms. Large research programs have been launched by academia and industry towards this goal. Particularly, C4 chemicals such as succinic acid (SA) and 1,4-butanediol have been leading the path towards the commercialization of biobased technology with the effort of replacing chemical production. Here we present O-Succinyl-L-homoserine (SH) as a new, potentially important platform biochemical and demonstrate its central role as an intermediate in the production of SA, homoserine lactone (HSL), γ-butyrolactone (GBL) and its derivatives, and 1,4-butanediol (BDO). This technology encompasses (1) the genetic manipulation of Escherichia coli to produce SH with high productivity, (2) hydrolysis into SA and homoserine (HS) or homoserine lactone hydrochloride, and (3) chemical conversion of either HS or homoserine lactone HCL (HSL·HCl) into drop-in chemicals in polymer industry. This production strategy with environmental benefits is discussed in the perspective of targeting of fermented product and a process direction compared to petroleum-based chemical conversion, which may reduce the overall manufacturing cost.
NASA-EPA automotive thermal reactor technology program
NASA Technical Reports Server (NTRS)
Blankenship, C. P.; Hibbard, R. R.
1972-01-01
The status of the NASA-EPA automotive thermal reactor technology program is summarized. This program is concerned primarily with materials evaluation, reactor design, and combustion kinetics. From engine dynamometer tests of candidate metals and coatings, two ferritic iron alloys (GE 1541 and Armco 18-SR) and a nickel-base alloy (Inconel 601) offer promise for reactor use. None of the coatings evaluated warrant further consideration. Development studies on a ceramic thermal reactor appear promising based on initial vehicle road tests. A chemical kinetic study has shown that gas temperatures of at least 900 K to 1000 K are required for the effective cleanup of carbon monoxide and hydrocarbons, but that higher temperatures require shorter combustion times and thus may permit smaller reactors.
Radioisotope Power Systems Program Status and Expectations
NASA Technical Reports Server (NTRS)
Zakrajsek, June F.; Hamley, John A.; Sutliff, Thomas J.; Mccallum, Peter W.; Sandifer, Carl E.
2017-01-01
The Radioisotope Power Systems (RPS) Programs goal is to make RPS available for the exploration of the solar system in environments where conventional solar or chemical power generation is impractical or impossible to use to meet mission needs. To meet this goal, the RPS Program manages investments in RPS system development and RPS technologies. The RPS Program exists to support NASA's Science Mission Directorate (SMD). The RPS Program provides strategic leadership for RPS, enables the availability of RPS for use by the planetary science community, successfully executes RPS flight projects and mission deployments, maintains a robust technology development portfolio, manages RPS related National Environmental Policy Act (NEPA) and Nuclear Launch Safety (NLS) approval processes for SMD, maintains insight into the Department of Energy (DOE) implementation of NASA funded RPS production infrastructure operations, including implementation of the NASA funded Plutonium-238 production restart efforts. This paper will provide a status of recent RPS activities.
| 303-384-7904 Research Interests The economic, social, and sustainability effects of the emerging technologies and platforms Process design and economic analysis Production of premium fuels and chemicals from Programs Strategic and Market Analysis (PI) Economic and Sustainability Analysis (contributor) Biological
Manufacturing Methods and Technology Program Accomplishments
1981-10-01
ALIGNMENT USING CHARACTERISTIC X-RADIATION •KOSSEL PATTERNS KOSSEL PATTERN SHOWING EXPECTED EFFECT OF 1% HYDROSTATIC STRAIN >THE KOSSEL METHOD WAS...Chemical Demilitarization & Restoration, Attn: DRCPM-DR PM, Smoke/Obscurant3 (SMOKE), Attn: DRCPM- SMK Cdr, Attn: STEAP*MT-M, Mr. J. L. Sanders
42 CFR 493.1461 - Standard: General supervisor qualifications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... chemical, physical, biological or clinical laboratory science, or medical technology from an accredited... proficiency examination for technologist given by HHS between March 1, 1986 and December 31, 1987, qualifies... medical laboratory or clinical laboratory training program approved or accredited by the Accrediting...
42 CFR 493.1461 - Standard: General supervisor qualifications.
Code of Federal Regulations, 2010 CFR
2010-10-01
... chemical, physical, biological or clinical laboratory science, or medical technology from an accredited... proficiency examination for technologist given by HHS between March 1, 1986 and December 31, 1987, qualifies... medical laboratory or clinical laboratory training program approved or accredited by the Accrediting...
42 CFR 493.1461 - Standard: General supervisor qualifications.
Code of Federal Regulations, 2013 CFR
2013-10-01
... chemical, physical, biological or clinical laboratory science, or medical technology from an accredited... proficiency examination for technologist given by HHS between March 1, 1986 and December 31, 1987, qualifies... medical laboratory or clinical laboratory training program approved or accredited by the Accrediting...
42 CFR 493.1461 - Standard: General supervisor qualifications.
Code of Federal Regulations, 2011 CFR
2011-10-01
... chemical, physical, biological or clinical laboratory science, or medical technology from an accredited... proficiency examination for technologist given by HHS between March 1, 1986 and December 31, 1987, qualifies... medical laboratory or clinical laboratory training program approved or accredited by the Accrediting...
42 CFR 493.1461 - Standard: General supervisor qualifications.
Code of Federal Regulations, 2014 CFR
2014-10-01
... chemical, physical, biological or clinical laboratory science, or medical technology from an accredited... proficiency examination for technologist given by HHS between March 1, 1986 and December 31, 1987, qualifies... medical laboratory or clinical laboratory training program approved or accredited by the Accrediting...
7 CFR 91.5 - Where services are offered.
Code of Federal Regulations, 2011 CFR
2011-01-01
...) Science and Technology Programs National Science Laboratory. A variety of proximate for composition, chemical, physical, microbiological and biomolecular (DNA-based) tests and laboratory analyses performed on..., honey, meat and meat products, fiber products and processed foods are performed at the Science and...
7 CFR 91.5 - Where services are offered.
Code of Federal Regulations, 2013 CFR
2013-01-01
...) Science and Technology Programs National Science Laboratory. A variety of proximate for composition, chemical, physical, microbiological and biomolecular (DNA-based) tests and laboratory analyses performed on..., honey, meat and meat products, fiber products and processed foods are performed at the Science and...
7 CFR 91.5 - Where services are offered.
Code of Federal Regulations, 2014 CFR
2014-01-01
...) Science and Technology Programs National Science Laboratory. A variety of proximate for composition, chemical, physical, microbiological and biomolecular (DNA-based) tests and laboratory analyses performed on..., honey, meat and meat products, fiber products and processed foods are performed at the Science and...
7 CFR 91.5 - Where services are offered.
Code of Federal Regulations, 2012 CFR
2012-01-01
...) Science and Technology Programs National Science Laboratory. A variety of proximate for composition, chemical, physical, microbiological and biomolecular (DNA-based) tests and laboratory analyses performed on..., honey, meat and meat products, fiber products and processed foods are performed at the Science and...
ExpoCast: Exposure Science for Prioritization and Toxicity Testing (S)
The US EPA is completing the Phase I pilot for a chemical prioritization research program, called ToxCast. Here EPA is developing methods for using computational chemistry, high-throughput screening, and toxicogenomic technologies to predict potential toxicity and prioritize limi...
ExpoCast: Exposure Science for Prioritization and Toxicity Testing
The US EPA is completing the Phase I pilot for a chemical prioritization research program, called ToxCastTM. Here EPA is developing methods for using computational chemistry, high-throughput screening, and toxicogenomic technologies to predict potential toxicity and prioritize l...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali T-Raissi
The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammoniamore » and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.« less
New site characterization and monitoring technology
NASA Astrophysics Data System (ADS)
Nielsen, Bruce J.; Gillispie, Gregory D.; Bohne, David A.; Lindstrom, David R.
1995-10-01
The cost of characterizing and monitoring U.S. government hazardous waste sites could exceed $500 billion utilizing traditional methods and technology. New sensor technologies are being developed to meet the nation's environmental remediation and compliance programs. In 1993, the U.S. Air Force Armstrong Laboratory and Loral Defense System, Eagan (formerly a division of Unisys Corporation) signed a Cooperative Research and Development Agreement (CRDA) to commercialize fiber optic laser-induced fluorescence technology that had been developed with U.S. Air Force funding a North Dakota State University (NDSU). A consortium consisting of the CRDA partners (USAF and Loral), Dakota Technologies Inc., and NDSU submitted a proposal to the advanced Research Projects Agency, Technology Reinvestment Project and won an award to fund the commercialization. The result, the Rapid Optical Screening Tool or ROST is a state-of-the-art laser spectroscopy system for analysis of aromatic hydrocarbon-contaminated soil and groundwater. With ROST, environmental investigators are able to find, classify, and map the distribution of many hazardous chemicals in the field instead of waiting for reports to come back from the analytical laboratory. The research and development program leading to prototype laser spectrometers is summarized along with results from laboratory and field demonstrations illustrating system performance and benefits for site characterization. The technology has recently been demonstrated in Europe in Germany, the Netherlands, France an several sites in the United Kingdom having light, medium, and heavy aromatic hydrocarbon contamination from fuel spills and refinery or chemical plant operations. The use of the ROST system to find hydrocarbon contamination is now being offered as a service by Loral Corporation.
NASA Astrophysics Data System (ADS)
Kulkarni, S.
1993-03-01
This report discusses Nondestructive Evaluation (NDE) thrust area which supports initiatives that advance inspection science and technology. The goal of the NDE thrust area is to provide cutting-edge technologies that have promise of inspection tools three to five years in the future. In selecting projects, the thrust area anticipates the needs of existing and future Lawrence Livermore National Laboratory (LLNL) programs. NDE provides materials characterization inspections, finished parts, and complex objects to find flaws and fabrication defects and to determine their physical and chemical characteristics. NDE also encompasses process monitoring and control sensors and the monitoring of in-service damage. For concurrent engineering, NDE becomes a frontline technology and strongly impacts issues of certification and of life prediction and extension. In FY-92, in addition to supporting LLNL programs and the activities of nuclear weapons contractors, NDE has initiated several projects with government agencies and private industries to study aging infrastructures and to advance manufacturing processes. Examples of these projects are (1) the Aging Airplanes Inspection Program for the Federal Aviation Administration, (2) Signal Processing of Acoustic Signatures of Heart Valves for Shiley, Inc., and (3) Turbine Blade Inspection for the Air Force, jointly with Southwest Research Institute and Garrett. In FY-92, the primary contributions of the NDE thrust area, described in this report, were in fieldable chemical sensor systems, computed tomography, and laser generation and detection of ultrasonic energy.
Enabling the space exploration initiative: NASA's exploration technology program in space power
NASA Technical Reports Server (NTRS)
Bennett, Gary L.; Cull, Ronald C.
1991-01-01
Space power requirements for Space Exploration Initiative (SEI) are reviewed, including the results of a NASA 90-day study and reports by the National Research Council, the American Institute of Aeronautics and Astronautics (AIAA), NASA, the Advisory Committee on the Future of the U.S. Space Program, and the Synthesis Group. The space power requirements for the SEI robotic missions, lunar spacecraft, Mars spacecraft, and human missions are summarized. Planning for exploration technology is addressed, including photovoltaic, chemical and thermal energy conversion; high-capacity power; power and thermal management for the surface, Earth-orbiting platform and spacecraft; laser power beaming; and mobile surface systems.
NASA Technical Reports Server (NTRS)
Wilcox, R. E. (Compiler)
1983-01-01
Planned research efforts and reorganization of the Project as the Biocatalysis Research Activity are described, including the following topics: electrocatalysts, fluid extraction, ammonia synthesis, biocatalysis, membrane fouling, energy and economic analysis, decarboxylation, microscopic reaction models, plasmid monitoring, and reaction kinetics.
Joint Program Executive Office for Chemical and Biological Defense Collaboration Study
2011-03-01
Thesis Co-Advisor Kevin J. Maher Second Reader Robert F. Dell Chair, Department of Operations Research iv THIS PAGE INTENTIONALLY LEFT...none have been previously done on technology transfer and collaboration. Professor Sazali Wahab et al. of Universiti Putra Malaysia examined the
Translational Science for Energy and Beyond.
McKone, James R; Crans, Debbie C; Martin, Cheryl; Turner, John; Duggal, Anil R; Gray, Harry B
2016-09-19
A clear challenge for the coming decades is decreasing the carbon intensity of the global energy supply while simultaneously accommodating a rapid worldwide increase in power demand. Meeting this challenge of providing abundant, clean energy undoubtedly requires synergistic efforts between basic and applied researchers in the chemical sciences to develop and deploy new technologies. Among the available options, solar energy is one of the promising targets because of the high abundance of solar photons over much of the globe. Similarly, decarbonization of the global energy supply will require clean sources of hydrogen to use as reducing equivalents for fuel and chemical feedstocks. In this report, we discuss the importance of translational research-defined as work that explicitly targets basic discovery as well as technology development-in the context of photovoltaics and solar fuels. We focus on three representative research programs encompassing translational research in government, industry, and academia. We then discuss more broadly the benefits and challenges of translational research models and offer recommendations for research programs that address societal challenges in the energy sector and beyond.
The AOP framework and causality: Meeting chemical risk ...
Chemical safety assessments are expanding from a focus on a few chemicals (or chemical mixtures) to the broader “universe” of thousands, if not hundreds of thousands of substances that potentially could impact humans or the environment. This is exemplified in regulatory activities such as the REACH program in Europe, or the recent reauthorization of TSCA in the US, which require consideration of the potential impacts of a much greater number of chemicals than in the past. The data needed to address these types of legislated mandates cannot realistically be obtained solely through using the whole animal testing approaches historically employed for chemical risk assessment. Rather, there needs to be an increased emphasis on cost-effective tools that enable robust prediction of potential chemical impacts when empirical data are lacking. Concurrent with the realization that predictive methods will need to play an increasingly prominent role in regulatory toxicology has been the recent explosion in technology in the biological sciences enabling collection of large amounts of pathway-based molecular and biochemical data. For example, genomic techniques and high-throughput (robotic-based) in vitro testing enable the generation of knowledge concerning the effects of chemical perturbation on biological systems in an increasingly efficient and rapid manner. However, a pressing need stemming from these technological advances is the ability to actually apply th
Military deployment toxicology: a program manager's perspective.
Knechtges, P L
2000-02-01
The Persian Gulf War drew attention to the potential hazards of chemicals that personnel may encounter during military operations and deployments overseas. During the War, the oil well fires of Kuwait highlighted the military threat of industrial chemicals in the area of operations. Following the War, the occurrence of Gulf War Illnesses brought home concerns and suspicions regarding "low level" and "mixed" exposures to chemicals. The public's concern and attention resulted in numerous institutional responses to the real and perceived problems of health risks during military deployments. These institutional responses ranged in scope from a Presidential Review Directive to the initiative known as the Deployment Toxicology Research, Development, Testing and Evaluation (RDT&E) Program. Most institutions, however, seem to agree that additional research is needed to assess the health risks from chemical exposures during military deployments. Establishing and managing an effective RDT&E program in risk assessment for deployed forces is a challenging enterprise. The Deployment Toxicology RDT&E Program was conceived utilizing the military's acquisition framework, an effective methodology with a proven record of fielding of new technologies. Based on a series of structured meetings with military representatives that would utilize new risk assessment tools, a hierarchical set of plans was developed to identify and prioritize end products. The challenge ahead for the Deployment Toxicology RDT&E Program is to execute these plans, provide the necessary oversight, and transition the results into successful product development.
NASA Astrophysics Data System (ADS)
Yang, Yi-Bin; Liu, Ming-Gang; Chen, Wei-Jie; Han, Xiao-Biao; Chen, Jie; Lin, Xiu-Qi; Lin, Jia-Li; Luo, Hui; Liao, Qiang; Zang, Wen-Jie; Chen, Yin-Song; Qiu, Yun-Ling; Wu, Zhi-Sheng; Liu, Yang; Zhang, Bai-Jun
2015-09-01
In this work, the wafer bowing during growth can be in-situ measured by a reflectivity mapping method in the 3×2″ Thomas Swan close coupled showerhead metal organic chemical vapor deposition (MOCVD) system. The reflectivity mapping method is usually used to measure the film thickness and growth rate. The wafer bowing caused by stresses (tensile and compressive) during the epitaxial growth leads to a temperature variation at different positions on the wafer, and the lower growth temperature leads to a faster growth rate and vice versa. Therefore, the wafer bowing can be measured by analyzing the discrepancy of growth rates at different positions on the wafer. Furthermore, the wafer bowings were confirmed by the ex-situ wafer bowing measurement. High-resistivity and low-resistivity Si substrates were used for epitaxial growth. In comparison with low-resistivity Si substrate, GaN grown on high-resistivity substrate shows a larger wafer bowing caused by the highly compressive stress introduced by compositionally graded AlGaN buffer layer. This transition of wafer bowing can be clearly in-situ measured by using the reflectivity mapping method. Project supported by the National Natural Science Foundation of China (Grant Nos. 61274039 and 51177175), the National Basic Research Program of China (Grant No. 2011CB301903), the Ph.D. Programs Foundation of Ministry of Education of China (Grant No. 20110171110021), the International Science and Technology Collaboration Program of China (Grant No. 2012DFG52260), the International Science and Technology Collaboration Program of Guangdong Province, China (Grant No. 2013B051000041), the Science and Technology Plan of Guangdong Province, China (Grant No. 2013B010401013), the National High Technology Research and Development Program of China (Grant No. 2014AA032606), and the Opened Fund of the State Key Laboratory on Integrated Optoelectronics, China (Grant No. IOSKL2014KF17).
NASA RPS Program Overview: A Focus on RPS Users
NASA Technical Reports Server (NTRS)
Hamley, John A.; Sutliff, Thomas J.; Sandifer, Carl E., II; Zakrajsek, June F.
2016-01-01
The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.
The Energy Problem: What the Helios Project Can Do About it (LBNL Science at the Theater)
Chu, Steven
2018-06-15
The energy problem is one of the most important issues that science and technology has to solve. Nobel laureate and Berkeley Lab Director Steven Chu proposes an aggressive research program to transform the existing and future energy systems of the world away from technologies that emit greenhouse gases. Berkeley Lab's Helios Project concentrates on renewable fuels, such as biofuels, and solar technologies, including a new generation of solar photovoltaic cells and the conversion of electricity into chemical storage to meet future demand.
Development priorities for in-space propulsion technologies
NASA Astrophysics Data System (ADS)
Johnson, Les; Meyer, Michael; Palaszewski, Bryan; Coote, David; Goebel, Dan; White, Harold
2013-02-01
During the summer of 2010, NASA's Office of Chief Technologist assembled 15 civil service teams to support the creation of a NASA integrated technology roadmap. The Aero-Space Technology Area Roadmap is an integrated set of technology area roadmaps recommending the overall technology investment strategy and prioritization for NASA's technology programs. The integrated set of roadmaps will provide technology paths needed to meet NASA's strategic goals. The roadmaps have been reviewed by senior NASA management and the National Research Council. With the exception of electric propulsion systems used for commercial communications satellite station-keeping and a handful of deep space science missions, almost all of the rocket engines in use today are chemical rockets; that is, they obtain the energy needed to generate thrust by combining reactive chemicals to create a hot gas that is expanded to produce thrust. A significant limitation of chemical propulsion is that it has a relatively low specific impulse. Numerous concepts for advanced propulsion technologies with significantly higher values of specific impulse have been developed over the past 50 years. Advanced in-space propulsion technologies will enable much more effective exploration of our solar system, near and far, and will permit mission designers to plan missions to "fly anytime, anywhere, and complete a host of science objectives at the destinations" with greater reliability and safety. With a wide range of possible missions and candidate propulsion technologies with very diverse characteristics, the question of which technologies are 'best' for future missions is a difficult one. A portfolio of technologies to allow optimum propulsion solutions for a diverse set of missions and destinations are described in the roadmap and herein.
Straight, C L; Bubenheim, D L; Bates, M E; Flynn, M T
1994-01-01
The Controlled Ecological Life Support System (CELSS) Antarctic Analog Project (CAAP) is a joint endeavor between the National Science Foundation, Office of Polar Programs (NSF-OPP) and the National Aeronautics and Space Administration (NASA). Its fundamental objective is to develop, deploy and operate a testbed of NASA CELSS technologies and life support approaches at the Amundsen-Scott South Pole Station, located at latitude 90 degrees S, longitude 0 degrees. The goal of NASA's CELSS Program is to develop technologies and systems that will allow spacefaring scientists and explorers to carry out long duration extraterrestrial missions, leading ultimately to permanent habitation of the Solar System, without total dependence on a costly resupply system. A CELSS would do this by providing regenerated life support materials (air, food and water) and by processing "waste" materials into useful resources. This will be accomplished using biological and physical/chemical techniques in a nearly closed environmental habitation system. CELSS technologies also have great implications for application to terrestrial systems with intrinsic transferability to society at large. The CELSS Program intends to provide opportunities for the transfer of these systems and technologies outside the US Space Program, to applications within the American economy as space technology spin-offs.
The Advanced Industrial Materials (AIM) program office of industrial technologies fiscal year 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorrell, C.A.
1997-04-01
In many ways, the Advanced Industrial Materials (AIM) Program underwent a major transformation in FY95 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80%more » of industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 to 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.`« less
The Status of Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultralightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These inspace propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The status of spacecraft bus and platform technology development under the NASA ISPT program
NASA Astrophysics Data System (ADS)
Anderson, D. J.; Munk, M. M.; Pencil, E.; Dankanich, J.; Glaab, L.; Peterson, T.
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA's Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN& C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System and ultra-lightweight propellant tank technologies. Future directions for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV); and 3) electric propulsion. These technologies are more vehicles and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicabilit- to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
The Status of Spacecraft Bus and Platform Technology Development Under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John; Glaab, Louis J.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) and 3) electric propulsion. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
NASA Technical Reports Server (NTRS)
Schneider, Steven J.
1997-01-01
NASA Lewis Research Center's On-Board Propulsion program (OBP) is developing low-thrust chemical propulsion technologies for both satellite and vehicle reaction control applications. There is a vigorous international competition to develop new, highperformance bipropellant engines. High-leverage bipropellant systems are critical to both commercial competitiveness in the international communications market and to cost-effective mission design in government sectors. To significantly improve bipropellant engine performance, we must increase the thermal margin of the chamber materials. Iridium-coated rhenium (Ir/Re) engines, developed and demonstrated under OBP programs, can operate at temperatures well above the constraints of state-of-practice systems, providing a sufficient margin to maximize performance with the hypergolic propellants used in most satellite propulsion systems.
DEMONSTRATION AND QUALITY ASSURANCE PROJECT ...
The demonstration of technologies for determining the presence of dioxin in soil and sediment is being conducted under the U.S. Environmental Protection Agency Superfund Innovative Technology Evaluation Program in Saginaw, Michigan, at Green Point Environmental Learning Center from approximately April 26 to May 6, 2004. The primary purpose of the demonstration is to evaluate innovative monitoring technologies. The technologies listed below will be demonstrated. .AhRC PCRTM Kit, Hybrizyme Corporation .Ah-IMMUNOASSY@ Kit, Paralsian, Inc. .Coplanar PCB Immunoassay Kit, Abraxis LLC .DF-l Dioxin/Furan Immunoassay Kit, CAPE Technologies L.L.C. .CALUX@ by Xenobiotic Detection Systems, Inc- .Dioxin ELISA Kit, Wako Pure Chemical Industries LTD. This demonstration plan describes the procedures that will be used to verify the performance and cost of these technologies. The plan incorporates the quality assurance and quality control elements needed to generate data of sufficient quality to document each technology's performance and cost. A separate innovative technology verification report (ITVR) will.be prepared for each technology. The ITVRs will present the demonstration findings associated with the demonstration objectives. The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented performance and cost data obtained from field demonstrations.
Chlor-Alkali Industry: A Laboratory Scale Approach
ERIC Educational Resources Information Center
Sanchez-Sanchez, C. M.; Exposito, E.; Frias-Ferrer, A.; Gonzalez-Garaia, J.; Monthiel, V.; Aldaz, A.
2004-01-01
A laboratory experiment for students in the last year of degree program in chemical engineering, chemistry, or industrial chemistry is presented. It models the chlor-alkali process, one of the most important industrial applications of electrochemical technology and the second largest industrial consumer of electricity after aluminium industry.
Defining the taxonomic domain of applicability for mammalian-based high-throughput screening assays
Cell-based high throughput screening (HTS) technologies are becoming mainstream in chemical safety evaluations. The US Environmental Protection Agency (EPA) Toxicity Forecaster (ToxCastTM) and the multi-agency Tox21 Programs have been at the forefront in advancing this science, m...
NASA Propulsion Engineering Research Center, volume 2
NASA Technical Reports Server (NTRS)
1993-01-01
On 8-9 Sep. 1993, the Propulsion Engineering Research Center (PERC) at The Pennsylvania State University held its Fifth Annual Symposium. PERC was initiated in 1988 by a grant from the NASA Office of Aeronautics and Space Technology as a part of the University Space Engineering Research Center (USERC) program; the purpose of the USERC program is to replenish and enhance the capabilities of our Nation's engineering community to meet its future space technology needs. The Centers are designed to advance the state-of-the-art in key space-related engineering disciplines and to promote and support engineering education for the next generation of engineers for the national space program and related commercial space endeavors. Research on the following areas was initiated: liquid, solid, and hybrid chemical propulsion, nuclear propulsion, electrical propulsion, and advanced propulsion concepts.
Merrick, B Alex; Paules, Richard S; Tice, Raymond R
Humans are exposed to thousands of chemicals with inadequate toxicological data. Advances in computational toxicology, robotic high throughput screening (HTS), and genome-wide expression have been integrated into the Tox21 program to better predict the toxicological effects of chemicals. Tox21 is a collaboration among US government agencies initiated in 2008 that aims to shift chemical hazard assessment from traditional animal toxicology to target-specific, mechanism-based, biological observations using in vitro assays and lower organism models. HTS uses biocomputational methods for probing thousands of chemicals in in vitro assays for gene-pathway response patterns predictive of adverse human health outcomes. In 1999, NIEHS began exploring the application of toxicogenomics to toxicology and recent advances in NextGen sequencing should greatly enhance the biological content obtained from HTS platforms. We foresee an intersection of new technologies in toxicogenomics and HTS as an innovative development in Tox21. Tox21 goals, priorities, progress, and challenges will be reviewed.
Bioregenerative life support: not a picnic
NASA Technical Reports Server (NTRS)
Knott, W. M.
1998-01-01
If humans are to live permanently in space, regenerative life support systems are an enabling technology and must replace the picnic approach of taking all supplies required for each mission. These systems are classified by technologies as either physical/chemical or bioregenerative. Both of these system-types can recycle water, remove carbon dioxide, produce oxygen, and recover essential elements from waste products. Bioregenerative can also produce food, thus, making it essential if humans are to exist in space independent of earth. A solely bioregenerative life support system includes plants as a biomass production module and microbial organisms in bioreactors as a resource recovery module. In the Advanced Life Support Program, bioregenerative life support systems are being investigated through a research and technology development project which includes large scale testing as part of the Breadboard Project and human tests conducted in the soon to be constructed BioPlex facility. Research and technology development efforts are directed toward optimizing biomass productivity in controlled chambers by developing light weight, energy efficient, and automated systems; recycling liquid and solid wastes; baselining the operation of bioreactors; determining system microbial stability; assessing chemical contamination; and building models required for long term system operations. The program will include space flight studies in the near future to determine if these life support technologies will function in microgravity. When a bioregenerative system is finally incorporated into a mission, the conversion from a picnic and resupply mentality to permanent recycling and independence from earth will be complete.
Medical electronics: A need and a challenge
NASA Technical Reports Server (NTRS)
Dimeoff, J.
1973-01-01
Space programs have led to the development of telemetry pills for diagnosis of diseases of the digestive tract, reusable X-ray image storage plates that require no chemical processing, and muscular augmentation systems for the handicapped. These examples, together with countless other examples of technological innovation that can be drawn from research and development programs supported by government funds, offer a potential opportunity to stimulate growth and to control rising costs in medical electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, D.W.; Heinrich, R.R.; Jensen, K.J.
Technical and administrative activities of the Analytical Chemistry Laboratory (ACL) are reported for fiscal year 1984. The ACL is a full-cost-recovery service center, with the primary mission of providing a broad range of technical support services to the scientific and engineering programs at ANL. In addition, ACL conducts a research program in analytical chemistry, works on instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL is administratively within the Chemical Technology Division, the principal user, but provides technical support for all of the technical divisions and programs at ANL. The ACL has threemore » technical groups - Chemical Analysis, Instrumental Analysis, and Organic Analysis. Under technical activities 26 projects are briefly described. Under professional activities, a list is presented for publications and reports, oral presentations, awards and meetings attended. 6 figs., 2 tabs.« less
A users' guide to the trace contaminant control simulation computer program
NASA Technical Reports Server (NTRS)
Perry, J. L.
1994-01-01
The Trace Contaminant Control Simulation computer program is a tool for assessing the performance of various trace contaminant control technologies for removing trace chemical contamination from a spacecraft cabin atmosphere. The results obtained from the program can be useful in assessing different technology combinations, system sizing, system location with respect to other life support systems, and the overall life cycle economics of a trace contaminant control system. The user's manual is extracted in its entirety from NASA TM-108409 to provide a stand-alone reference for using any version of the program. The first publication of the manual as part of TM-108409 also included a detailed listing of version 8.0 of the program. As changes to the code were necessary, it became apparent that the user's manual should be separate from the computer code documentation and be general enough to provide guidance in using any version of the program. Provided in the guide are tips for input file preparation, general program execution, and output file manipulation. Information concerning source code listings of the latest version of the computer program may be obtained by contacting the author.
NASA Astrophysics Data System (ADS)
Ramohalli, K.
1981-05-01
The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.
NASA Technical Reports Server (NTRS)
Ramohalli, K.
1981-01-01
The solar thermal fuels and chemicals program at Jet Propulsion Laboratory are described. High technology is developed and applied to displace fossil fuel (oil) use in the production/processing of valuable fuels and chemicals. The technical and economic feasibility is demonstrated to extent that enables the industry to participate and commercialize the product. A representative process, namely Furfural production with a bottoming of acetone, butanol and ethanol, is described. Experimental data from all solar production of furfural is discussed. Estimates are given to show the attractiveness of this process, considering its flexibility to be adaptable to dishes, troughs or central receivers. Peat, lignite and low rank coal processing, heavy oil stripping and innovative technologies for process diagnostics and control are mentioned as examples of current projects under intensive development.
Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
1992-09-01
This report summarizes progress in OHER biological research and general life sciences research programs conducted conducted at PNL in FLY 1991. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long- term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and newly developed energy-related technologies through an increased understanding of the ways in which radiation and chemicals cause biological damage.
Electric propulsion technology
NASA Technical Reports Server (NTRS)
Finke, R. C.
1980-01-01
The advanced electric propulsion program is directed towards lowering the specific impulse and increasing the thrust per unit of ion thruster systems. In addition, electrothermal and electromagnetic propulsion technologies are being developed to attempt to fill the gap between the conventional ion thruster and chemical rocket systems. Most of these new concepts are exagenous and are represented by rail accelerators, ablative Teflon thrusters, MPD arcs, Free Radicals, etc. Endogenous systems such as metallic hydrogen offer great promise and are also being pursued.
Open Learning for Process Operators. ZIFF Papiere 78.
ERIC Educational Resources Information Center
Geary, David
This document describes the development and implementation of an open learning course for shift operators who work in British process industries. The course was developed collaboratively during 1979-82 by B.P. Chemicals Ltd. and Grimsby College of Technology and Arts, using the Business and Technician Education Council certification program.…
Code of Federal Regulations, 2010 CFR
2010-07-01
... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS IMPLEMENTATION Identification of Best Technology, Treatment Techniques or Other Means... community water systems and non-transient, non-community water systems to install and/or use any treatment...
In its Computational Toxicology Program, EPA/ORD proposes to integrate genomics and computational methods to provide a mechanistic basis for the prediction of toxicity of chemicals and the pathogenicity of microorganisms. The goal of microbiological water testing is to be able to...
2004-05-01
Agents (NTAs) Compare the direct effects of PAF on smooth muscle, hematic constituents, and lung to determine role in toxicity. Continue to...baselined. Long Range Biometric Target ID System Explore technologies for a long range biometric target identification system. 3.5.1.6
Pacific Northwest Laboratory annual report for 1990 to the DOE Office of Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
This report summarizes progress on OHER human health, biological, and general life sciences research programs conducted at PNL in FY 1990. The research develops the knowledge and scientific principles necessary to identify understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased of understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns epidemiological and statistical studiesmore » for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program.« less
NASA Astrophysics Data System (ADS)
Yang, Zongchun; Mei, Yingshuang; Chen, Chengke; Ruan, Yinlan; Hu, Xiaojun
2018-03-01
Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 50972129 and 50602039), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), European Unionʼs Horizon 2020 Research and Innovation Staff Exchange (RISE) Scheme (Grant No. 734578), and the One Belt and One Road International Cooperation Project from Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021).
NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview
NASA Technical Reports Server (NTRS)
Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualls, Louis
2016-01-01
The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Program's budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Program's portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.
NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview
NASA Technical Reports Server (NTRS)
Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualis, Louis
2016-01-01
The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.
Risk assessment of technologies for detecting illicit drugs in containers
NASA Astrophysics Data System (ADS)
Brandenstein, Albert E.
1995-03-01
This paper provides the highlights of the role risk assessment plays in the United States technology program for nonintrusive inspection of cargo containers for illicit drugs. The Counterdrug Technology Assessment Center is coordinating the national effort to develop prototype technologies for an advanced generation, nonintrusive cargo inspection system. In the future, the U.S. Customs Service could configure advanced technologies for finding not only drugs and other contraband hidden in cargo, but for a wide variety of commodities for customs duty verification purposes. The overall nonintrusive inspection system is envisioned to consist primarily of two classes of subsystems: (1) shipment document examination subsystems to prescreen exporter and importer documents; and (2) chemical and physics-based subsystems to detect and characterize illicit substances. The document examination subsystems would use software algorithms, artificial intelligence, and neural net technology to perform an initial prescreening of the information on the shipping manifest for suspicious patterns. This would be accomplished by creating a `profile' from the shipping information and matching it to trends known to be used by traffickers. The chemical and physics-based subsystems would apply nuclear physics, x-ray, gas chromatography and spectrometry technologies to locate and identify contraband in containers and other conveyances without the need for manual searches. The approach taken includes using technology testbeds to assist in evaluating technology prototypes and testing system concepts in a fully instrumented but realistic operational environment. This approach coupled with a substance signature phenomenology program to characterize those detectable elements of benign, as well as target substances lends itself particularly well to the topics of risk assessment and elemental characterization of substances. A technology testbed established in Tacoma, Washington provides a national facility for testing and evaluating existing and emerging prototype systems in an operational environment. The results of initial tests using the advanced x-ray subsystem installed at the testbed are given in this paper. A description of typical cargo contents and those characteristics applicable to nuclear interrogation techniques are provided in the appendix.
The 1981 NASA/ASEE Summer Faculty Fellowship Program: Research reports
NASA Technical Reports Server (NTRS)
Karr, G. R.; Dozier, J. B.; Kent, M. I.; Barfield, B. F.
1982-01-01
Research reports related to spacecraft industry technological advances, requirements, and applications were considered. Some of the topic areas addressed were: (1) Fabrication, evaluation, and use of high performance composites and ceramics, (2) antenna designs, (3) electronics and microcomputer applications and mathematical modeling and programming techniques, (4) design, fabrication, and failure detection methods for structural materials, components, and total systems, and (5) chemical studies of bindary organic mixtures and polymer synthesis. Space environment parameters were also discussed.
Survey of the US materials processing and manufacturing in space program
NASA Technical Reports Server (NTRS)
Mckannan, E. C.
1981-01-01
To promote potential commercial applications of low-g technology, the materials processing and manufacturing in space program is structured to: (1) analyze the scientific principles of gravitational effects on processes used in producing materials; (2) apply the research toward the technology used to control production process (on Earth or in space, as appropriate); and (3) establish the legal and managerial framework for commercial ventures. Presently federally funded NASA research is described as well as agreements for privately funded commercial activity, and a proposed academic participation process. The future scope of the program and related capabilities using ground based facilities, aircraft, sounding rockets, and space shuttles are discussed. Areas of interest described include crystal growth; solidification of metals and alloys; containerless processing; fluids and chemical processes (including biological separation processes); and processing extraterrestrial materials.
Publications of the NASA Controlled Ecological Life Support System (CELSS) program 1989-1992
NASA Technical Reports Server (NTRS)
Powers, Janet V.
1994-01-01
Publications of research sponsored by the NASA Controlled Ecological Life Support System (CELSS) program are listed. The CELSS program encompasses research and technology with the goal of developing an autonomous bioregenerative life support system, which is based upon the integration of biological and physical/chemical processes, that will produce nutritious and palatable food, potable and hygienic water, and a breathable atmosphere by recycling metabolic and other wastes. This research and technology development is being performed in the areas of biomass production/food processing, waste management, and systems management and control. The bibliography follows these divisions. Principal investigators whose research tasks resulted in publication are identified by an asterisk. Publications are identified by a record number corresponding with their entry in the Life Sciences Bibliographic Database, maintained at the George Washington University.
1980-12-01
40.8 Sodium 70.1 Zinc 0.01 37 The process includes the following steps (Pichat et al., 1979): - neutralization precipitation (silicates, borates...Compressive Strength of Polyester - Encapsulated Sodium Sulfate Waste Composite ....... .............. 64 9. Deep Chemical Mixer Mounted on a Barge...zinc, copper, lead, manganese and tin; sodium salts of arsenate, borate, phosphate, iodate, and sulfide; and sulfate salts. Sulfate salts form calcium
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Summaries of 41 research projects on enhanced recovery are presented under the following sections: (1) chemical flooding; (2) gas displacement; (3) thermal recovery; (4) geoscience technology; (5) resource assessment technology; and (6) reservoir classes. Each presentation gives the title of the project, contract number, research facility, contract date, expected completion data, amount of the award, principal investigator, and DOE program manager, and describes the objectives of the project and a summary of the technical progress.
Upper stage technology evaluation studies
NASA Technical Reports Server (NTRS)
1972-01-01
Studies to evaluate advanced technology relative to chemical upper stages and orbit-to-orbit stages are reported. The work described includes: development of LH2/LOX stage data, development of data to indicate stage sensitivity to engine tolerance, modified thermal routines to accommodate storable propellants, added stage geometries to computer program for monopropellant configurations, determination of the relative gain obtainable through improvement of stage mass fraction, future propulsion concepts, effect of ultrahigh chamber-pressure increases, and relative gains obtainable through improved mass fraction.
Advanced Food Technology Workshop Report. Volumes 1 and 2
NASA Technical Reports Server (NTRS)
Perchonok, Michele
2003-01-01
The Advanced Human Support Technology (AHST) Program conducts research and technology development to provide new technologies and next-generation system that will enable humans to live and work safely and effectively in space. One program element within the AHST Program is Advanced Life Support (ALS). The goal of the ALS program element is to develop regenerative life support systems directed at supporting National Aeronautics and Space Administration's (NASA) future long-duration missions. Such missions could last from months to years and make resupply impractical, thereby necessitating self-sufficiency. Thus, subsystems must be developed to fully recycle air and water, recover resources from solid wastes grow plants, process raw plant products into nutritious and palatable foods, control the thermal environment, while reducing the overall system mass. ALS systems will be a combination of physico-chemical and biological components depending on the specific mission requirements. In the transit vehicle, the food system will primarily be a prepackaged food system with the possible addition of salad crops that can be picked and eaten with limited preparation. On the lunar or planetary evolved base, the food system will be a combination of the prepackaged menu item and ingredients that are processed from the grown crops. Food processing and food preparation will be part of this food system.
Huang, Ruili; Lin, Ja-An; Sedykh, Alexander; Zhao, Jinghua; Tice, Raymond R.; Paules, Richard S.; Xia, Menghang; Auerbach, Scott S.
2017-01-01
Cytotoxicity is a commonly used in vitro endpoint for evaluating chemical toxicity. In support of the U.S. Tox21 screening program, the cytotoxicity of ~10K chemicals was interrogated at 0, 8, 16, 24, 32, & 40 hours of exposure in a concentration dependent fashion in two cell lines (HEK293, HepG2) using two multiplexed, real-time assay technologies. One technology measures the metabolic activity of cells (i.e., cell viability, glo) while the other evaluates cell membrane integrity (i.e., cell death, flor). Using glo technology, more actives and greater temporal variations were seen in HEK293 cells, while results for the flor technology were more similar across the two cell types. Chemicals were grouped into classes based on their cytotoxicity kinetics profiles and these classes were evaluated for their associations with activity in the Tox21 nuclear receptor and stress response pathway assays. Some pathways, such as the activation of H2AX, were associated with the fast-responding cytotoxicity classes, while others, such as activation of TP53, were associated with the slow-responding cytotoxicity classes. By clustering pathways based on their degree of association to the different cytotoxicity kinetics labels, we identified clusters of pathways where active chemicals presented similar kinetics of cytotoxicity. Such linkages could be due to shared underlying biological processes between pathways, for example, activation of H2AX and heat shock factor. Others involving nuclear receptor activity are likely due to shared chemical structures rather than pathway level interactions. Based on the linkage between androgen receptor antagonism and Nrf2 activity, we surmise that a subclass of androgen receptor antagonists cause cytotoxicity via oxidative stress that is associated with Nrf2 activation. In summary, the real-time cytotoxicity screen provides informative chemical cytotoxicity kinetics data related to their cytotoxicity mechanisms, and with our analysis, it is possible to formulate mechanism-based hypotheses on the cytotoxic properties of the tested chemicals. PMID:28531190
Generation rates and chemical compositions of waste streams in a typical crewed space habitat
NASA Technical Reports Server (NTRS)
Wydeven, Theodore; Golub, Morton A.
1990-01-01
A judicious compilation of generation rates and chemical compositions of potential waste feed streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future long-duration human space missions. Tables of data for the constituents and chemical formulas of the following waste streams are presented and discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Tables of data on dust generation and pH values of the different waste streams are also presented and discussed.
75 FR 33268 - Technology Innovation Program (TIP) Notice of Availability of Funds; Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-11
... military/ weaponry applications (e.g. warhead manufacture, chemical/biological warfare materials production.... production of biofuels or small molecule drugs); Projects that primarily focus on drug discovery or design of... design that are not a part of the manufacturing of engineered tissues; and Projects that do not have a...
ERIC Educational Resources Information Center
HALTERMAN, JERRY; AND OTHERS
DATA REVEALED BY STUDIES OF AGRICULTURAL BUSINESS TRAINING NEEDS CONDUCTED IN SEVERAL STATES PROMPTED THE DESIGN OF AN INSTRUCTIONAL MATERIALS SERIES TO ASSIST STATE AND LOCAL VOCATIONAL EDUCATION LEADERS IN DEVELOPING PROGRAMS TO PREPARE YOUTH AND ADULTS FOR EMPLOYMENT AND ADVANCEMENT IN OFF-FARM AGRICULTURAL OCCUPATIONS. THIS DOCUMENT, THE…
A Study of Coordination Between Mathematics and Chemistry in the Pre-Technical Program.
ERIC Educational Resources Information Center
Loiseau, Roger A.
This research was undertaken to determine whether the mathematics course offered to students taking courses in chemical technology was adequate. Students in a regular class and an experimental class were given mathematics and chemistry pretests and posttests. The experimental class was taught using a syllabus designed to maximize the coherence…
The US EPA’s ToxCastTM program seeks to combine advances in high-throughput screening technology with methodologies from statistics and computer science to develop high-throughput decision support tools for assessing chemical hazard and risk. To develop new methods of analysis of...
Environmental Justice and Green-Technology Adoption
ERIC Educational Resources Information Center
Ong, Paul
2012-01-01
This paper presents an analysis of an environmental justice (EJ) program adopted by the South Coast Air Quality Management District (SCAQMD) as a part of its regulation to phase out a toxic chemical used by dry cleaners. SCAQMD provided financial incentives to switch early and gave establishments in EJ neighborhoods priority in applying for…
In silico toxicology for the pharmaceutical sciences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valerio, Luis G., E-mail: Luis.Valerio@fda.hhs.go
2009-12-15
The applied use of in silico technologies (a.k.a. computational toxicology, in silico toxicology, computer-assisted tox, e-tox, i-drug discovery, predictive ADME, etc.) for predicting preclinical toxicological endpoints, clinical adverse effects, and metabolism of pharmaceutical substances has become of high interest to the scientific community and the public. The increased accessibility of these technologies for scientists and recent regulations permitting their use for chemical risk assessment supports this notion. The scientific community is interested in the appropriate use of such technologies as a tool to enhance product development and safety of pharmaceuticals and other xenobiotics, while ensuring the reliability and accuracy ofmore » in silico approaches for the toxicological and pharmacological sciences. For pharmaceutical substances, this means active and impurity chemicals in the drug product may be screened using specialized software and databases designed to cover these substances through a chemical structure-based screening process and algorithm specific to a given software program. A major goal for use of these software programs is to enable industry scientists not only to enhance the discovery process but also to ensure the judicious use of in silico tools to support risk assessments of drug-induced toxicities and in safety evaluations. However, a great amount of applied research is still needed, and there are many limitations with these approaches which are described in this review. Currently, there is a wide range of endpoints available from predictive quantitative structure-activity relationship models driven by many different computational software programs and data sources, and this is only expected to grow. For example, there are models based on non-proprietary and/or proprietary information specific to assessing potential rodent carcinogenicity, in silico screens for ICH genetic toxicity assays, reproductive and developmental toxicity, theoretical prediction of human drug metabolism, mechanisms of action for pharmaceuticals, and newer models for predicting human adverse effects. How accurate are these approaches is both a statistical issue and challenge in toxicology. In this review, fundamental concepts and the current capabilities and limitations of this technology will be critically addressed.« less
Translational Science for Energy and Beyond
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKone, James R.; Crans, Debbie C.; Martin, Cheryl
A clear challenge for the coming decades is decreasing the carbon intensity of the global energy supply while simultaneously accommodating a rapid worldwide increase in power demand. Meeting this challenge of providing abundant, clean energy undoubtedly requires synergistic efforts between basic and applied researchers in the chemical sciences to develop and deploy new technologies. Among the available options, solar energy is one of the promising targets because of the high abundance of solar photons over much of the globe. Similarly, decarbonization of the global energy supply will require clean sources of hydrogen to use as reducing equivalents for fuel andmore » chemical feedstocks. In this report, we discuss the importance of translational research -- defined as work that explicitly targets basic discovery as well as technology development -- in the context of photovoltaics and solar fuels. We focus on three representative research programs encompassing translational research in government, industry, and academia. We then discuss more broadly the benefits and challenges of translational research models and offer recommendations for research programs that address societal challenges in the energy sector and beyond.« less
Catalysis and biocatalysis program
NASA Technical Reports Server (NTRS)
1991-01-01
The annual report presents the fiscal year (FY) 1990 research activities and accomplishments for the Catalysis and Biocatalysis Program of the Advanced Industrial Concepts Division (AICD), Office of Industrial Technologies of the Department of Energy (DOE). The mission of the AICD is to create a balanced program of high risk, long term, directed interdisciplinary research and development that will improve energy efficiency and enhance fuel flexibility in the industrial sector. The Catalysis and Biocatalysis Program's technical activities were organized into five work elements: the Molecular Modeling and Catalysis by Design element; the Applied Microbiology and Genetics element; the Bioprocess Engineering element; the Separations and Novel Chemical Processes element; and the Process Design and Analysis element.
NASA's Radioisotope Power Systems Program Overview - A Focus on RPS Users
NASA Technical Reports Server (NTRS)
Hamley, John A.; McCallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.
2016-01-01
The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. To meet this goal, the RPS Program manages investments in RPS technologies and RPS system development, working closely with the Department of Energy. This paper provides an overview of the RPS Program content and status, its collaborations with potential RPS users, and the approach employed to maintain the readiness of RPS to support future NASA mission concepts.
A modular approach for automated sample preparation and chemical analysis
NASA Technical Reports Server (NTRS)
Clark, Michael L.; Turner, Terry D.; Klingler, Kerry M.; Pacetti, Randolph
1994-01-01
Changes in international relations, especially within the past several years, have dramatically affected the programmatic thrusts of the U.S. Department of Energy (DOE). The DOE now is addressing the environmental cleanup required as a result of 50 years of nuclear arms research and production. One major obstacle in the remediation of these areas is the chemical determination of potentially contaminated material using currently acceptable practices. Process bottlenecks and exposure to hazardous conditions pose problems for the DOE. One proposed solution is the application of modular automated chemistry using Standard Laboratory Modules (SLM) to perform Standard Analysis Methods (SAM). The Contaminant Analysis Automation (CAA) Program has developed standards and prototype equipment that will accelerate the development of modular chemistry technology and is transferring this technology to private industry.
Mechanically Pumped Fluid Loop (MPFL) Technologies for Thermal Control of Future Mars Rovers
NASA Technical Reports Server (NTRS)
Birur, Gaj; Bhandari, Pradeep; Prina, Mauro; Bame, Dave; Yavrouian, Andre; Plett, Gary
2006-01-01
Mechanically pumped fluid loop has been the basis of thermal control architecture for the last two Mars lander and rover missions and is the key part of the MSL thermal architecture. Several MPFL technologies are being developed for the MSL rover include long-life pumps, thermal control valves, mechanical fittings for use with CFC-11 at elevated temperatures of approx.100 C. Over three years of life tests and chemical compatibility tests on these MPFL components show that MPFL technology is mature for use on MSL. The advances in MPFL technologies for MSL Rover will benefit any future MPFL applications on NASA s Moon, Mars and Beyond Program.
Radioisotope Power Systems Program: A Program Overview
NASA Technical Reports Server (NTRS)
Hamley, John A.
2016-01-01
NASA's Radioisotope Power Systems (RPS) Program continues to plan, mature research in energy conversion, and partners with the Department of Energy (DOE) to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. Recent programs responsibilities include providing investment recommendations to NASA stakeholders on emerging thermoelectric and Stirling energy conversion technologies and insight on NASA investments at DOE in readying a generator for the Mars 2020 mission. This presentation provides an overview of the RPS Program content and status and the approach used to maintain the readiness of RPS to support potential future NASA missions.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Glaab, Louis; Peterson, Todd
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Spacecraft Bus and Platform Technology Development under the NASA ISPT Program
NASA Technical Reports Server (NTRS)
Anderson, David J.; Munk, Michelle M.; Pencil, Eric J.; Dankanich, John W.; Glaab, Louis J.; Peterson, Todd T.
2013-01-01
The In-Space Propulsion Technology (ISPT) program is developing spacecraft bus and platform technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (electric and chemical), Entry Vehicle Technologies (aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for near-term flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance 2) NASAs Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells and aerothermal effect models. Two component technologies being developed with flight infusion in mind are the Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future direction for ISPT are technologies that relate to sample return missions and other spacecraft bus technology needs like: 1) Mars Ascent Vehicles (MAV) 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle and mission-focused, and present a different set of technology development and infusion steps beyond those previously implemented. The Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion and spacecraft bus technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, Aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-08-01
In February 2009, the Office of Inspector General received a letter from Congressman Mark Steven Kirk of Illinois, which included constituent allegations that an exclusive technology licensing agreement by Argonne National Laboratory was tainted by inadequate competition, conflicts of interest, and other improprieties. The technology in question was for the Program for Response Options and Technology Enhancements for Chemical/Biological Terrorism, commonly referred to as PROTECT. Because of the importance of the Department of Energy's technology transfer program, especially as implementation of the American Recovery and Reinvestment Act matures, we reviewed selected aspects of the licensing process for PROTECT to determinemore » whether the allegations had merit. In summary, under the facts developed during our review, it was understandable that interested parties concluded that there was a conflict of interest in this matter and that Argonne may have provided the successful licensee with an unfair advantage. In part, this was consistent with aspects of the complaint from Congressman Kirk's constituent.« less
Mixed Waste Focus Area alternative oxidation technologies development and demonstration program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borduin, L.C.; Fewell, T.; Gombert, D.
1998-07-01
The Mixed Waste Focus Area (MWFA) is currently supporting the development and demonstration of several alternative oxidation technology (AOT) processes for treatment of combustible mixed low-level wastes. The impetus for this support derives from regulatory and political hurdles frequently encountered by traditional thermal techniques, primarily incinerators. AOTs have been defined as technologies that destroy organic material without using open-flame reactions. Whether thermal or nonthermal, the processes have the potential advantages of relatively low-volume gaseous emissions, generation of few or no dioxin/furan compounds, and operation at low enough temperatures that metals (except mercury) and most radionuclides are not volatilized. Technology developmentmore » and demonstration are needed to confirm and realize the potential of AOTs and to compare them on an equal basis with their fully demonstrated thermal counterparts. AOTs include both thermal and nonthermal processes that oxidize organic wastes but operate under significantly different physical and chemical conditions than incinerators. Nonthermal processes currently being studied include Delphi DETOX and acid digestion at the Savannah River Site, and direct chemical oxidation at Lawrence Livermore National Laboratory. All three technologies are at advanced stages of development or are entering the demonstration phase. Nonflame thermal processes include catalytic chemical oxidation, which is being developed and deployed at Lawrence Berkeley National Laboratory, and team reforming, a commercial process being supported by Department of Energy. Related technologies include two low-flow, secondary oxidation processes (Phoenix and Thermatrix units) that have been tested at MSE, Inc., in Butte, Montana. Although testing is complete on some AOT technologies, most require additional support to complete some or all of the identified development objectives. Brief descriptions, status, and planned paths forward for each of the technologies are presented.« less
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Raul Subia
GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility weremore » established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.« less
NASA Astrophysics Data System (ADS)
Wang, Jun; Hu, Hai-Yang; He, Yun-Rui; Deng, Can; Wang, Qi; Duan, Xiao-Feng; Huang, Yong-Qing; Ren, Xiao-Min
2015-08-01
Not Available Supported by the Fund of State Key Laboratory of Information Photonics and Optical Communications of Beijing University of Posts and Telecommunications, the National Basic Research Program of China under Grant No 2010CB327601, the Natural Science Foundational Science and Technology Cooperation Projects under Grant No 2011RR000100, the 111 Project of China under Grant No B07005, and the Doctoral Program of Higher Specialized Research Fund under Grant No 20130005130001.
Mycotoxins: A Fungal Genomics Perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Daren W.; Baker, Scott E.
The chemical and enzymatic diversity in the fungal kingdom is staggering. Large-scale fungal genome sequencing projects are generating a massive catalog of secondary metabolite biosynthetic genes and pathways. Fungal natural products are a boon and bane to man as valuable pharmaceuticals and harmful toxins. Understanding how these chemicals are synthesized will aid the development of new strategies to limit mycotoxin contamination of food and feeds as well as expand drug discovery programs. A survey of work focused on the fumonisin family of mycotoxins highlights technological advances and provides a blueprint for future studies of other fungal natural products. Expressed sequencemore » tags led to the discovery of new fumonisin genes (FUM) and hinted at a role for alternatively spliced transcripts in regulation. Phylogenetic studies of FUM genes uncovered a complex evolutionary history of the FUM cluster, as well as fungi with the potential to synthesize fumonisin or fumonisin-like chemicals. The application of new technologies (e.g., CRISPR) could substantially impact future efforts to harness fungal resources.« less
Chemical Transformation System: Cloud Based ...
Integrated Environmental Modeling (IEM) systems that account for the fate/transport of organics frequently require physicochemical properties as well as transformation products. A myriad of chemical property databases exist but these can be difficult to access and often do not contain the proprietary chemicals that environmental regulators must consider. We are building the Chemical Transformation System (CTS) to facilitate model parameterization and analysis. CTS integrates a number of physicochemical property calculators into the system including EPI Suite, SPARC, TEST and ChemAxon. The calculators are heterogeneous in their scientific methodologies, technology implementations and deployment stacks. CTS also includes a chemical transformation processing engine that has been loaded with reaction libraries for human biotransformation, abiotic reduction and abiotic hydrolysis. CTS implements a common interface for the disparate calculators accepting molecular identifiers (SMILES, IUPAC, CAS#, user-drawn molecule) before submission for processing. To make the system as accessible as possible and provide a consistent programmatic interface, we wrapped the calculators in a standardized RESTful Application Programming Interface (API) which makes it capable of servicing a much broader spectrum of clients without constraints to interoperability such as operating system or programming language. CTS is hosted in a shared cloud environment, the Quantitative Environmental
NASA Technical Reports Server (NTRS)
Distefano, S.; Gupta, A.; Ingham, J. D.
1983-01-01
A rhodium-based catalyst was prepared and preliminary experiments were completed where the catalyst appeared to decarboxylate dilute acids at concentrations of 1 to 10 vol%. Electron spin resonance spectroscoy was used to characterize the catalyst as a first step leading toward modeling and optimization of rhodium catalysts. Also, a hybrid chemical/biological process for the production of hydrocarbons has been assessed. These types of catalysts could greatly increase energy efficiency of this process.
Advanced expander test bed program
NASA Technical Reports Server (NTRS)
Riccardi, D. P.; Mitchell, J. C.
1993-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyrwas, R. B.
The testing presented in this report is in support of the investigation of the Alternative Chemical Cleaning program to aid in developing strategies and technologies to chemically clean radioactive High Level Waste tanks prior to tank closure. The data and conclusions presented here were the examination of the corrosion rates of A285 carbon steel and 304L stainless steel exposed to two proposed chemical cleaning solutions: acidic permanganate (0.18 M nitric acid and 0.05M sodium permanganate) and caustic permanganate. (10 M sodium hydroxide and 0.05M sodium permanganate). These solutions have been proposed as a chemical cleaning solution for the retrieval ofmore » actinides in the sludge in the waste tanks, and were tested with both HM and PUREX sludge simulants at a 20:1 ratio.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-05-01
West Virginia University (WVU) and the US DOE Morgantown Energy Technology Center (METC) entered into a Cooperative Agreement on August 29, 1992 entitled ``Decontamination Systems Information and Research Programs.`` Stipulated within the Agreement is the requirement that WVU submit to METC a series of Technical Progress Reports on a quarterly basis. This report comprises the first Quarterly Technical Progress Report for Year 2 of the Agreement. This report reflects the progress and/or efforts performed on the sixteen (16) technical projects encompassed by the Year 2 Agreement for the period of January 1 through March 31, 1994. In situ bioremediation ofmore » chlorinated organic solvents; Microbial enrichment for enhancing in-situ biodegradation of hazardous organic wastes; Treatment of volatile organic compounds (VOCs) using biofilters; Drain-enhanced soil flushing (DESF) for organic contaminants removal; Chemical destruction of chlorinated organic compounds; Remediation of hazardous sites with steam reforming; Soil decontamination with a packed flotation column; Use of granular activated carbon columns for the simultaneous removal of organics, heavy metals, and radionuclides; Monolayer and multilayer self-assembled polyion films for gas-phase chemical sensors; Compact mercuric iodide detector technology development; Evaluation of IR and mass spectrometric techniques for on-site monitoring of volatile organic compounds; A systematic database of the state of hazardous waste clean-up technologies; Dust control methods for insitu nuclear and hazardous waste handling; Winfield Lock and Dam remediation; and Socio-economic assessment of alternative environmental restoration technologies.« less
Modern drug discovery technologies: opportunities and challenges in lead discovery.
Guido, Rafael V C; Oliva, Glaucius; Andricopulo, Adriano D
2011-12-01
The identification of promising hits and the generation of high quality leads are crucial steps in the early stages of drug discovery projects. The definition and assessment of both chemical and biological space have revitalized the screening process model and emphasized the importance of exploring the intrinsic complementary nature of classical and modern methods in drug research. In this context, the widespread use of combinatorial chemistry and sophisticated screening methods for the discovery of lead compounds has created a large demand for small organic molecules that act on specific drug targets. Modern drug discovery involves the employment of a wide variety of technologies and expertise in multidisciplinary research teams. The synergistic effects between experimental and computational approaches on the selection and optimization of bioactive compounds emphasize the importance of the integration of advanced technologies in drug discovery programs. These technologies (VS, HTS, SBDD, LBDD, QSAR, and so on) are complementary in the sense that they have mutual goals, thereby the combination of both empirical and in silico efforts is feasible at many different levels of lead optimization and new chemical entity (NCE) discovery. This paper provides a brief perspective on the evolution and use of key drug design technologies, highlighting opportunities and challenges.
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting January 1, 2004 and ending March 31, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale shakedown and performance testing, program management and technology transfer.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL under Contract No. DE-FC26-00FT40974. This report summarizes program accomplishments for the period starting October 1, 2003 and ending December 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, pilot-scale demonstration and program management and technology transfer.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program, which is supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974) and GE. This report summarizes program accomplishments for the period starting April 1, 2004 and ending June 30, 2004. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale testing, kinetic modeling, program management and technology transfer.« less
Widder, Mark W; Brennan, Linda M; Hanft, Elizabeth A; Schrock, Mary E; James, Ryan R; van der Schalie, William H
2015-07-01
The US Army's need for a reliable and field-portable drinking water toxicity sensor was the catalyst for the development and evaluation of an electric cell-substrate impedance sensing (ECIS) device. Water testing technologies currently available to soldiers in the field are analyte-specific and have limited capabilities to detect broad-based water toxicity. The ECIS sensor described here uses rainbow trout gill epithelial cells seeded on fluidic biochips to measure changes in impedance for the detection of possible chemical contamination of drinking water supplies. Chemicals selected for testing were chosen as representatives of a broad spectrum of toxic industrial compounds. Results of a US Environmental Protection Agency (USEPA)-sponsored evaluation of the field portable device were similar to previously published US Army testing results of a laboratory-based version of the same technology. Twelve of the 18 chemicals tested following USEPA Technology Testing and Evaluation Program procedures were detected by the ECIS sensor within 1 h at USEPA-derived human lethal concentrations. To simplify field-testing methods further, elimination of a procedural step that acclimated cells to serum-free media streamlined the test process with only a slight loss of chemical sensitivity. For field use, the ECIS sensor will be used in conjunction with an enzyme-based sensor that is responsive to carbamate and organophosphorus pesticides. Copyright © 2014 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gary D. McGinnis
2001-12-31
The research is a laboratory and bench-scale investigation of a system to concentrate and destroy volatile organic compounds (VOCs), including hazardous air pollutants, formed from the drying of wood and the manufacture of wood board products (e.g., particle board and oriented strandboard). The approach that was investigated involved concentrating the dilute VOCs (<500 ppmv) with a physical/chemical adsorption unit, followed by the treatment of the concentrated voc stream (2,000 to 2,500 ppmv) with a biofiltration unit. The research program lasted three years, and involved three research organizations. Michigan Technological University was the primary recipient of the financial assistance, the USDAmore » Forest Products Laboratory (FPL) and Mississippi State University (MSU) were subcontractors to MTU. The ultimate objective of this research was to develop a pilot-scale demonstration of the technology with sufficient data to provide for the design of an industrial system. No commercialization activities were included in this project.« less
Waste streams in a crewed space habitat
NASA Technical Reports Server (NTRS)
Wydeven, T.; Golub, M. A.
1991-01-01
A judicious compilation of generation rates and chemical compositions of potential waste feed streams in a typical crewed space habitat was made in connection with the waste-management aspect of NASA's Physical/Chemical Closed-Loop Life Support Program. Waste composition definitions are needed for the design of waste-processing technologies involved in closing major life support functions in future long-duration human space missions. Tables of data for the constituents and chemical formulas of the following waste streams are presented and discussed: human urine, feces, hygiene (laundry and shower) water, cleansing agents, trash, humidity condensate, dried sweat, and trace contaminants. Tables of data on dust generation and pH values of the different waste streams are also presented and discussed.
Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parag Kulkarni; Jie Guan; Raul Subia
In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOEmore » NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs were benchmarked with IGCC polygen plants with similar level of CO{sub 2} capture. Based on the promising economic analysis comparison results (performed with the help from Worley Parsons), GE recommended a 'Go' decision in April 2006 to continue the experimental investigation of the UFP technology to address the remaining risks i.e. solids lifetime and the impact of impurities in the coal on overall system. Solids attrition and lifetime risk was addressed via bench-scale experiments that monitor solids performance over time and by assessing materials interactions at operating conditions. The product gas under the third reactor (high-temperature vitiated air) operating conditions was evaluated to assess the concentration of particulates, pollutants and other impurities relative to the specifications required for gas turbine feed streams. During this investigation, agglomeration of solids used in the UFP process was identified as a serious risk that impacts the lifetime of the solids and in turn feasibility of the UFP technology. The main causes of the solids agglomeration were the combination of oxygen transfer material (OTM) reduction at temperatures {approx}1000 C and interaction between OTM and CO{sub 2} absorbing material (CAM) at high operating temperatures (>1200 C). At the end of phase II, in March 2008, GEGR recommended a 'No-go' decision for taking the UFP technology to the next level of development, i.e. development of a 3-5 MW prototype system, at this time. GEGR further recommended focused materials development research programs on improving the performance and lifetime of solids materials used in UFP or chemical looping technologies. The scale-up activities would be recommended only after mitigating the risks involved with the agglomeration and overall lifetime of the solids. This is the final report for the phase II of the DOE-funded Vision 21 program entitled 'Fuel-Flexible Gasification-Combustion Technology for Production of H{sub 2} and Sequestration-Ready CO{sub 2}' (DOE Award No. DE-FC26-00NT40974). The report focuses on the major accomplishments and lessons learned in analyzing the risks of the novel UFP technology during Phase II of the DOE program.« less
Programming chemistry in DNA-addressable bioreactors
Fellermann, Harold; Cardelli, Luca
2014-01-01
We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis. PMID:25121647
Role of fuel chemical properties on combustor radiative heat load
NASA Technical Reports Server (NTRS)
Rosfjord, T. J.
1984-01-01
In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, United Technologies Research Center (UTRC) has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced high-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties; hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.
NASA Technical Reports Server (NTRS)
1986-01-01
Coal slurries are "clean" pulverized coal mixed with oil or water. Significant fuel savings can be realized when using coal slurries. Advanced Fuels Technology (AFT) utilized a COSMIC program, (Calculation of Complex Chemical Equilibrium Compositions), which provides specific capabilities for determining combustion products. The company has developed a cleaning process that removes much of the mineral sulphur and ash from the coals.
Alphus D. Wilson
2012-01-01
Novel mobile electronic-nose (e-nose) devices and algorithms capable of real-time detection of industrial and municipal pollutants, released from point-sources, recently have been developed by scientists worldwide that are useful for monitoring specific environmental-pollutant levels for enforcement and implementation of effective pollution-abatement programs. E-nose...
Introduction to session on materials and structures
NASA Technical Reports Server (NTRS)
Vosteen, L. F.
1978-01-01
A review was given of the development of composites for aircraft. Supporting base technology and the Aircraft Energy Efficiency Composites Program are included. Specific topics discussed include: (1) environmental effects on materials; (2) material quality and chemical characterization; (3) design and analysis methods; (4) structural durability; (5) impact sensitivity; (6) carbon fiber electrical effects; and (7) composite components.
ERIC Educational Resources Information Center
Ballinger, Jack T.; Wolf, Lawrence J.
This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed to provide a framework for training technicians in the use of electronic instruments and their applications. This interdisciplinary course of study integrates elements from the disciplines of chemistry, physics, mathematics,…
Advance Planning Briefing for Industry. Technology Requirements Briefings
2009-02-17
procedure drills through complex multiplayer interactions representative of a motorcade under heavy attack. The tool shall provide a first-person...Integrated Munitions Effect Assessment IMI Interactive Multimedia Instruction IP Internet Protocol IPE Intelligence Preparation of the Environment IR...CTTSO Programs and Mission Areas/Subgroups 13 Requirement Descriptions Blast Effects and Mitigation (BX) 16 Chemical, Biological, Radiological, and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilzbach, K. E.; Stetter, J. R.; Reilly, Jr., C. A.
1982-02-01
A collaborative environmental research program to provide information needed to assess the health and environmental effects associated with large-scale coal gasification technology is being conducted by Argonne National Laboratory (ANL) and the Grand Forks Energy Technology Center (GFETC). The objectives are to: investigate the toxicology and chemical composition of coal gasification by-products as a function of process variables and coal feed; compare the characteristics of isokinetic side-stream samples with those of process stream samples; identify the types of compounds responsible for toxicity; evaluate the chemical and toxicological effectiveness of various wastewater treatment operations; refine methodology for the collection and measurementmore » of organic vapors and particulates in workplace air; and obtain preliminary data on workplace air quality. So far the toxicities of a set of process stream samples (tar, oil, and gas liquor) and side-stream condensates from the GFETC gasifier have been measured in a battery of cellular screening tests for mutagenicity and cytotoxicity. Preliminary data on the effects of acute and chronic exposures of laboratory animals to process tar have been obtained. The process tar has been chemically fractionated and the distribution of mutagenicity and compound types among the fractions has been determined. Organic vapors and particulates collected at various times and locations in the gasifier building have been characterized.« less
ETV Program Report: Coatings for Wastewater Collection ...
The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and Technology (CIGMAT) Laboratory at the University of Houston. Testing was conducted over a period of six months to evaluate the coating’s (1) chemical resistance and (2) bonding strength for infrastructure applications. For chemical resistance, coated concrete and clay bricks with holidays (holes created in the coating) were used to evaluate the chemical resistance of the coating/substrate bond under a corrosive environment. Twenty coated concrete (dry and wet) and 20 coated clay brick (dry and wet) specimens were exposed to DI water and sulfuric acid solution (pH=1), and the specimens were visually inspected and weight changes measured. Evaluation of the coating-to-substrate bonding strength was determined using two modified ASTM test methods – one to determine bond strength of the coating with two specimens sandwiched together using the coating, and the second to determine the bond strength by applying a tensile load to the coating applied to specimens of each substrate. Forty-eight bonding tests were performed over the six month evaluation. The tests resulted in the following conclusions about Standard Cement’s SEC 4553 coating: • After the six-month chemi
NASA In-Space Propulsion Technologies and Their Infusion Potential
NASA Technical Reports Server (NTRS)
Anderson, David J.; Pencil,Eric J.; Peterson, Todd; Vento, Daniel; Munk, Michelle M.; Glaab, Louis J.; Dankanich, John W.
2012-01-01
The In-Space Propulsion Technology (ISPT) program has been developing in-space propulsion technologies that will enable or enhance NASA robotic science missions. The ISPT program is currently developing technology in four areas that include Propulsion System Technologies (Electric and Chemical), Entry Vehicle Technologies (Aerocapture and Earth entry vehicles), Spacecraft Bus and Sample Return Propulsion Technologies (components and ascent vehicles), and Systems/Mission Analysis. Three technologies are ready for flight infusion: 1) the high-temperature Advanced Material Bipropellant Rocket (AMBR) engine providing higher performance; 2) NASA s Evolutionary Xenon Thruster (NEXT) ion propulsion system, a 0.6-7 kW throttle-able gridded ion system; and 3) Aerocapture technology development with investments in a family of thermal protection system (TPS) materials and structures; guidance, navigation, and control (GN&C) models of blunt-body rigid aeroshells; and aerothermal effect models. Two component technologies that will be ready for flight infusion in the near future will be Advanced Xenon Flow Control System, and ultra-lightweight propellant tank technologies. Future focuses for ISPT are sample return missions and other spacecraft bus technologies like: 1) Mars Ascent Vehicles (MAV); 2) multi-mission technologies for Earth Entry Vehicles (MMEEV) for sample return missions; and 3) electric propulsion for sample return and low cost missions. These technologies are more vehicle-focused, and present a different set of technology infusion challenges. While the Systems/Mission Analysis area is focused on developing tools and assessing the application of propulsion technologies to a wide variety of mission concepts. These in-space propulsion technologies are applicable, and potentially enabling for future NASA Discovery, New Frontiers, and sample return missions currently under consideration, as well as having broad applicability to potential Flagship missions. This paper provides a brief overview of the ISPT program, describing the development status and technology infusion readiness of in-space propulsion technologies in the areas of electric propulsion, aerocapture, Earth entry vehicles, propulsion components, Mars ascent vehicle, and mission/systems analysis.
Kulik, Tetiana V; Lipkovska, Natalia O; Barvinchenko, Valentyna M; Palyanytsya, Borys B; Kazakova, Olga A; Dudik, Olesia O; Menyhárd, Alfréd; László, Krisztina
2016-05-15
Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability. Copyright © 2016 Elsevier Inc. All rights reserved.
Office of Science and Technology&International Year EndReport - 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodvarsson, G.S.
2005-10-27
Source Term, Materials Performance, Radionuclide Getters, Natural Barriers, and Advanced Technologies, a brief introduction in each section describes the overall organization and goals of each program area. All of these areas have great potential for improving our understanding of the safety performance of the proposed Yucca Mountain repository, as processes within these areas are generally very conservatively represented in the Total System Performance Assessment. In addition, some of the technology thrust areas in particular may enhance system efficiency and reduce risk to workers. Thus, rather modest effort in the S&T Program could lead to large savings in the lifetime repositorymore » total cost and significantly enhanced understanding of the behavior of the proposed Yucca Mountain repository, without safety being compromised, and in some instances being enhanced. An overall strength of the S&T Program is the significant amount of integration that has already been achieved after two years of research. As an example (illustrated in Figure 1), our understanding of the behavior of the total waste isolation system has been enhanced through integration of the Source Term, Materials Performance, and Natural Barriers Thrust areas. All three thrust areas contribute to the integration of different processes in the in-drift environment. These processes include seepage into the drift, dust accumulation on the waste package, brine formation and precipitation on the waste package, mass transfer through the fuel cladding, changes in the seepage-water chemical composition, and transport of released radionuclides through the invert and natural barriers. During FY2005, each of our program areas assembled a team of external experts to conduct an independent review of their respective projects, research directions, and emphasis. In addition, the S&T Program as a whole was independently reviewed by the S&T Programmatic Evaluation Panel. As a result of these reviews, adjustments to the S&T Program will be implemented in FY2006 to ensure that the Program is properly aligned with OCRWM's priorities. Also during FY2005, several programmatic documents were published, including the Science and Technology Program Strategic Plan, the Science and Technology Program Management Plan, and the Science and Technology Program Plan. These and other communication products are available on the OCRWM web site under the Science and Technology section (http://www.ocrwm.doe.gov/osti/index.shtml).« less
Advanced IGCC/Hydrogen Gas Turbine Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
York, William; Hughes, Michael; Berry, Jonathan
2015-07-30
The objective of this program was to develop the technologies required for a fuel flexible (coal derived hydrogen or syngas) gas turbine for IGCC that met DOE turbine performance goals. The overall DOE Advanced Power System goal was to conduct the research and development (R&D) necessary to produce coal-based IGCC power systems with high efficiency, near-zero emissions, and competitive capital cost. To meet this goal, the DOE Fossil Energy Turbine Program had as an interim objective of 2 to 3 percentage points improvement in combined cycle (CC) efficiency. The final goal is 3 to 5 percentage points improvement in CCmore » efficiency above the state of the art for CC turbines in IGCC applications at the time the program started. The efficiency goals were for NOx emissions of less than 2 ppm NOx (@15 % O2). As a result of the technologies developed under this program, the DOE goals were exceeded with a projected 8 point efficiency improvement. In addition, a new combustion technology was conceived of and developed to overcome the challenges of burning hydrogen and achieving the DOE’s NOx goal. This report also covers the developments under the ARRA-funded portion of the program that include gas turbine technology advancements for improvement in the efficiency, emissions, and cost performance of gas turbines for industrial applications with carbon capture and sequestration. Example applications could be cement plants, chemical plants, refineries, steel and aluminum plants, manufacturing facilities, etc. The DOE’s goal for more than 5 percentage point improvement in efficiency was met with cycle analyses performed for representative IGCC Steel Mill and IGCC Refinery applications. Technologies were developed in this program under the following areas: combustion, larger latter stage buckets, CMC and EBC, advanced materials and coatings, advanced configurations to reduce cooling, sealing and rotor purge flows, turbine aerodynamics, advanced sensors, advancements in first stage hot gas path components, and systems analyses to determine benefits of all previously mentioned technologies to a gas turbine system in an IGCC configuration. This project built on existing gas turbine technology and product developments, and developed and validated the necessary turbine related technologies and sub-systems needed to meet the DOE turbine program goals. The scope of the program did not cover the design and validation of a full-scale prototype machine with the technology advances from this program incorporated. In summary, the DOE goals were met with this program. While the commercial landscape has not resulted in a demand for IGCC gas turbines many of the technologies that were developed over the course of the program are benefiting the US by being applied to new higher efficiency natural gas fueled gas turbines.« less
Machine‐Assisted Organic Synthesis
Fitzpatrick, Daniel E.; Myers, Rebecca M.; Battilocchio, Claudio; Ingham, Richard. J.
2015-01-01
Abstract In this Review we describe how the advent of machines is impacting on organic synthesis programs, with particular emphasis on the practical issues associated with the design of chemical reactors. In the rapidly changing, multivariant environment of the research laboratory, equipment needs to be modular to accommodate high and low temperatures and pressures, enzymes, multiphase systems, slurries, gases, and organometallic compounds. Additional technologies have been developed to facilitate more specialized reaction techniques such as electrochemical and photochemical methods. All of these areas create both opportunities and challenges during adoption as enabling technologies. PMID:26193360
NASA Astrophysics Data System (ADS)
Wang, Hao; Wang, Qunwei; He, Ming
2018-05-01
In order to investigate and improve the level of detection technology of water content in liquid chemical reagents of domestic laboratories, proficiency testing provider PT0031 (CNAS) has organized proficiency testing program of water content in toluene, 48 laboratories from 18 provinces/cities/municipals took part in the PT. This paper introduces the implementation process of proficiency testing for determination of water content in toluene, including sample preparation, homogeneity and stability test, the results of statistics of iteration robust statistic technique and analysis, summarized and analyzed those of the different test standards which are widely used in the laboratories, put forward the technological suggestions for the improvement of the test quality of water content. Satisfactory results were obtained by 43 laboratories, amounting to 89.6% of the total participating laboratories.
Materials processing in space program tasks
NASA Technical Reports Server (NTRS)
Pentecost, E. (Compiler)
1982-01-01
Active research areas as of the end of the fiscal year 1982 of the Materials Processing in Space Program, NASA-Office of Space and Terrestrial Applications, involving several NASA centers and other organizations are highlighted to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program is described as well as its history, strategy and overall goal; the organizational structures and people involved are identified and each research task is described together with a list of recent publications. The tasks are grouped into four categories: crystal growth; solidification of metals, alloys, and composites; fluids, transports, and chemical processes; and ultrahigh vacuum and containerless processing technologies.
Sensor Acquisition for Water Utilities: Survey, Down Selection Process, and Technology List
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alai, M; Glascoe, L; Love, A
2005-06-29
The early detection of the biological and chemical contamination of water distribution systems is a necessary capability for securing the nation's water supply. Current and emerging early-detection technology capabilities and shortcomings need to be identified and assessed to provide government agencies and water utilities with an improved methodology for assessing the value of installing these technologies. The Department of Homeland Security (DHS) has tasked a multi-laboratory team to evaluate current and future needs to protect the nation's water distribution infrastructure by supporting an objective evaluation of current and new technologies. The LLNL deliverable from this Operational Technology Demonstration (OTD) wasmore » to assist the development of a technology acquisition process for a water distribution early warning system. The technology survey includes a review of previous sensor surveys and current test programs and a compiled database of relevant technologies. In the survey paper we discuss previous efforts by governmental agencies, research organizations, and private companies. We provide a survey of previous sensor studies with regard to the use of Early Warning Systems (EWS) that includes earlier surveys, testing programs, and response studies. The list of sensor technologies was ultimately developed to assist in the recommendation of candidate technologies for laboratory and field testing. A set of recommendations for future sensor selection efforts has been appended to this document, as has a down selection example for a hypothetical water utility.« less
Technology for a Thermo-chemical Ice Penetrator for Icy Moons
NASA Astrophysics Data System (ADS)
Arenberg, Jonathan; Harpole, George; Zamel, James; Sen, Bashwar; Lee, Greg; Ross, Floyd; Retherford, Kurt D.
2016-10-01
The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be considered for infusion into a program.
The I/O transform of a chemical sensor
Katta, Nalin; Meier, Douglas C.; Benkstein, Kurt D.; Semancik, Steve; Raman, Baranidharan
2016-01-01
A number of sensing technologies, using a variety of transduction principles, have been proposed for non-invasive chemical sensing. A fundamental problem common to all these sensing technologies is determining what features of the transducer's signal constitute a chemical fingerprint that allows for precise analyte recognition. Of particular importance is the need to extract features that are robust with respect to the sensor's age or stimulus intensity. Here, using pulsed stimulus delivery, we show that a sensor's operation can be modeled as a linear input-output (I/O) transform. The I/O transform is unique for each analyte and can be used to precisely predict a temperature-programmed chemiresistor's response to the analyte given the recent stimulus history (i.e. state of an analyte delivery valve being open or closed). We show that the analyte specific I/O transforms are to a certain degree stimulus intensity invariant and can remain consistent even when the sensor has undergone considerable aging. Significantly, the I/O transforms for a given analyte are highly conserved across sensors of equal manufacture, thereby allowing training data obtained from one sensor to be used for recognition of the same set of chemical species with another sensor. Hence, this proposed approach facilitates decoupling of the signal processing algorithms from the chemical transducer, a key advance necessary for achieving long-term, non-invasive chemical sensing. PMID:27932855
High-speed Civil Transport Aircraft Emissions
NASA Technical Reports Server (NTRS)
Miake-Lye, Richard C.; Matulaitis, J. A.; Krause, F. H.; Dodds, Willard J.; Albers, Martin; Hourmouziadis, J.; Hasel, K. L.; Lohmann, R. P.; Stander, C.; Gerstle, John H.
1992-01-01
Estimates are given for the emissions from a proposed high speed civil transport (HSCT). This advanced technology supersonic aircraft would fly in the lower stratosphere at a speed of roughly Mach 1.6 to 3.2 (470 to 950 m/sec or 920 to 1850 knots). Because it would fly in the stratosphere at an altitude in the range of 15 to 23 km commensurate with its design speed, its exhaust effluents could perturb the chemical balance in the upper atmosphere. The first step in determining the nature and magnitude of any chemical changes in the atmosphere resulting from these proposed aircraft is to identify and quantify the chemically important species they emit. Relevant earlier work is summarized, dating back to the Climatic Impact Assessment Program of the early 1970s and current propulsion research efforts. Estimates are provided of the chemical composition of an HSCT's exhaust, and these emission indices are presented. Other aircraft emissions that are not due to combustion processes are also summarized; these emissions are found to be much smaller than the exhaust emissions. Future advances in propulsion technology, in experimental measurement techniques, and in understanding upper atmospheric chemistry may affect these estimates of the amounts of trace exhaust species or their relative importance.
Using natural products for drug discovery: the impact of the genomics era.
Zhang, Mingzi M; Qiao, Yuan; Ang, Ee Lui; Zhao, Huimin
2017-05-01
Evolutionarily selected over billions of years for their interactions with biomolecules, natural products have been and continue to be a major source of pharmaceuticals. In the 1990s, pharmaceutical companies scaled down their natural product discovery programs in favor of synthetic chemical libraries due to major challenges such as high rediscovery rates, challenging isolation, and low production titers. Propelled by advances in DNA sequencing and synthetic biology technologies, insights into microbial secondary metabolism provided have inspired a number of strategies to address these challenges. Areas covered: This review highlights the importance of genomics and metagenomics in natural product discovery, and provides an overview of the technical and conceptual advances that offer unprecedented access to molecules encoded by biosynthetic gene clusters. Expert opinion: Genomics and metagenomics revealed nature's remarkable biosynthetic potential and her vast chemical inventory that we can now prioritize and systematically mine for novel chemical scaffolds with desirable bioactivities. Coupled with synthetic biology and genome engineering technologies, significant progress has been made in identifying and predicting the chemical output of biosynthetic gene clusters, as well as in optimizing cluster expression in native and heterologous host systems for the production of pharmaceutically relevant metabolites and their derivatives.
Using natural products for drug discovery: the impact of the genomics era
Zhang, Mingzi M; Qiao, Yuan; Ang, Ee Lui; Zhao, Huimin
2017-01-01
Introduction Evolutionarily selected over billions of years for their interactions with biomolecules, natural products have been and continue to be a major source of pharmaceuticals. In the 1990s, pharmaceutical companies scaled down their natural product discovery programs in favor of synthetic chemical libraries due to major challenges such as high rediscovery rates, challenging isolation, and low production titers. Propelled by advances in DNA sequencing and synthetic biology technologies, insights into microbial secondary metabolism provided have inspired a number of strategies to address these challenges. Areas covered This review highlights the importance of genomics and metagenomics in natural product discovery, and provides an overview of the technical and conceptual advances that offer unprecedented access to molecules encoded by biosynthetic gene clusters. Expert opinion Genomics and metagenomics revealed nature’s remarkable biosynthetic potential and her vast chemical inventory that we can now prioritize and systematically mine for novel chemical scaffolds with desirable bioactivities. Coupled with synthetic biology and genome engineering technologies, significant progress has been made in identifying and predicting the chemical output of biosynthetic gene clusters, as well as in optimizing cluster expression in native and heterologous host systems for the production of pharmaceutically relevant metabolites and their derivatives. PMID:28277838
NASA Astrophysics Data System (ADS)
Pelz, M. S.; Ewing, N.; Hoeberechts, M.; Riddell, D. J.; McLean, M. A.; Brown, J. C. K.
2015-12-01
Ocean Networks Canada (ONC) uses education and communication to inspire, engage and educate via innovative "meet them where they are, and take them where they need to go" programs. ONC data are accessible via the internet allowing for the promotion of programs wherever the learners are located. We use technologies such as web portals, mobile apps and citizen science to share ocean science data with many different audiences. Here we focus specifically on one of ONC's most innovative programs: community observatories and the accompanying Ocean Sense program. The approach is based on equipping communities with the same technology enabled on ONC's large cabled observatories. ONC operates the world-leading NEPTUNE and VENUS cabled ocean observatories and they collect data on physical, chemical, biological, and geological aspects of the ocean over long time periods, supporting research on complex Earth processes in ways not previously possible. Community observatories allow for similar monitoring on a smaller scale, and support STEM efforts via a teacher-led program: Ocean Sense. This program, based on local observations and global connections improves data-rich teaching and learning via visualization tools, interactive plotting interfaces and lesson plans for teachers that focus on student inquiry and exploration. For example, students use all aspects of STEM by accessing, selecting, and interpreting data in multiple dimensions, from their local community observatories to the larger VENUS and NEPTUNE networks. The students make local observations and global connections in all STEM areas. The first year of the program with teachers and students who use this innovative technology is described. Future community observatories and their technological applications in education, communication and STEM efforts are also described.
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending September 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, bench-scale experimental testing, process modeling, pilot-scale system design and assembly, and program management.« less
Electric propulsion - Characteristics, applications, and status
NASA Technical Reports Server (NTRS)
Maloy, J. E.; Dulgeroff, C. R.; Poeschel, R. L.
1981-01-01
As chemical propulsion systems were achieving their ultimate capability for planetary exploration, space scientists were developing solar electric propulsion as the propulsion system need for future missions. This paper provides a comparative review of the principles of ion thruster and chemical rocket operations and discusses the current status of the 30-cm mercury ion thruster development and the specifications imposed on the 30-cm thruster by the Solar Electric Propulsion System program. The 30-cm thruster operating range, efficiency, wear out lifetime, and interface requirements are described. Finally, the areas of 30-cm thruster technology that remain to be refined are discussed.
Pacific Northwest Laboratory Annual Report for 1992 to the DOE Office of Energy Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kreml, S.A.; Park, J.F.
1993-06-01
This report summarizes progress in OHER biological research and general life sciences research programs conducted at PNL in FY 1992. The research develops the knowledge and fundamental principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from energy-related technologies through an increase understanding of the ways in which radiation and chemicals cause biological damage. Descriptors of individual research projects as detailed in this report one separately abstracted and indexed for the database.
Thermal Skin fabrication technology
NASA Technical Reports Server (NTRS)
Milam, T. B.
1972-01-01
Advanced fabrication techniques applicable to Thermal Skin structures were investigated, including: (1) chemical machining; (2) braze bonding; (3) diffusion bonding; and (4) electron beam welding. Materials investigated were nickel and nickel alloys. Sample Thermal Skin panels were manufactured using the advanced fabrication techniques studied and were structurally tested. Results of the program included: (1) development of improved chemical machining processes for nickel and several nickel alloys; (2) identification of design geometry limits; (3) identification of diffusion bonding requirements; (4) development of a unique diffusion bonding tool; (5) identification of electron beam welding limits; and (6) identification of structural properties of Thermal Skin material.
Oak Ridge Reservation annual site environmental report for 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koncinski, W.S.
1996-09-01
This report presents the details of the environmental monitoring and management program for the Oak Ridge Reservation. Topics discussed include: site background, climate, and operations; environmental compliance strategies; effluent monitoring; environmental management program including environmental restoration, decontamination and decommissioning, technology development, and public involvement; effluent monitoring of airborne discharges, liquid discharges, toxicity control and monitoring, biological monitoring and abatement; environmental surveillance which encompasses meteorological monitoring, ambient air monitoring, surface water monitoring, soils monitoring, sediment monitoring, and contamination of food stuffs monitoring; radiation doses; chemical exposures; ground water monitoring; and quality assurance.
An overview of the NASA Advanced Propulsion Concepts program
NASA Technical Reports Server (NTRS)
Curran, Francis M.; Bennett, Gary L.; Frisbee, Robert H.; Sercel, Joel C.; Lapointe, Michael R.
1992-01-01
NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems.
Reduced Chemical Kinetic Mechanisms for Hydrocarbon Fuels
2006-01-01
Technologies Reaction Engineering International 77 West 200 South, Suite # 210 Salt Lake City, UT 84101 3Professor Department of Mechanical ... Engineering University of California, Berkeley Berkeley, CA 94720 4Program Leader for Computational Chemistry Lawrence Livermore National Laboratory...species by the error introduced by assuming they are in quasi-steady state. The reduced mechanisms have been compared to detailed chemistry calculations
NASA Technical Reports Server (NTRS)
Du, B.; Daniels, V.; Crady, C.; Putcha, L.
2011-01-01
This slide presentation reviews preliminary results of the program to evaluate Commercial Off the Shelf (COTS) packaging materials for pharmaceutical stability. The need for improved packaging is due to possible changes in chemical and/or physical properties of the drugs, which cause reported reduced potency and/or altered bioavailability and decreased efficacy.
Alternative Solvents/Technologies for Paint Stripping: Phase 1.
1994-03-01
processes . Three phases of study are defined: Phase I, identify alternate solvents/strippers and screen them; Phase II, field test solvent/ strippers...Section Title Page 1 Metal Refinishing Process - Immersion Method ............... 8 2 Phase Summary Chart ........................ 12 3 The...of the following: (a) nontoxic chemical formulations, (b) new process development, and (c) new coating reformulations. This program consists of three
2014-11-01
Industrial Waste Water Treatment Aircraft & Component Paint Removal (ABM & Chemical) Chrome Electroplating Corrosion Treatment Aircraft...Hex Chrome post treatment ) Energy Use; Electrical (& Steam) NDI- Florescent Penetrant Solvent Tank Cleaning Water (& Sanitary) Use...Engineer Corrosion Science & Engineering NAVAIR Jacksonville Phone: (904) 790-6405 Email: john.benfer@navy.mil ASETS Technical Workshop (NOV
MyChemise: A 2D drawing program that uses morphing for visualisation purposes
2011-01-01
MyChemise (My Chemical Structure Editor) is a new 2D structure editor. It is designed as a Java applet that enables the direct creation of structures in the Internet using a web browser. MyChemise saves files in a digital format (.cse) and the import and export of .mol files using the appropriate connection tables is also possible. MyChemise is available as a free online version in English and German. The MyChemise GUI is designed to be user friendly and can be used intuitively. There is also an English and German program description available as a PDF file. In addition to the known ways of drawing chemical structure formulas, there are also parts implemented in the program that allow the creation of different types of presentation. The morphing module uses this technology as a component for dynamic visualisation. For example, it enables a clear and simple illustration of molecule vibrations and reaction sequences. PMID:22152022
Chemical Technology Division annual technical report, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-05-01
Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, andmore » treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.« less
High-energy laser weapons: technology overview
NASA Astrophysics Data System (ADS)
Perram, Glen P.; Marciniak, Michael A.; Goda, Matthew
2004-09-01
High energy laser (HEL) weapons are ready for some of today"s most challenging military applications. For example, the Airborne Laser (ABL) program is designed to defend against Theater Ballistic Missiles in a tactical war scenario. Similarly, the Tactical High Energy Laser (THEL) program is currently testing a laser to defend against rockets and other tactical weapons. The Space Based Laser (SBL), Advanced Tactical Laser (ATL) and Large Aircraft Infrared Countermeasures (LAIRCM) programs promise even greater applications for laser weapons. This technology overview addresses both strategic and tactical roles for HEL weapons on the modern battlefield and examines current technology limited performance of weapon systems components, including various laser device types, beam control systems, atmospheric propagation, and target lethality issues. The characteristics, history, basic hardware, and fundamental performance of chemical lasers, solid state lasers and free electron lasers are summarized and compared. The elements of beam control, including the primary aperture, fast steering mirror, deformable mirrors, wavefront sensors, beacons and illuminators will be discussed with an emphasis on typical and required performance parameters. The effects of diffraction, atmospheric absorption, scattering, turbulence and thermal blooming phenomenon on irradiance at the target are described. Finally, lethality criteria and measures of weapon effectiveness are addressed. The primary purpose of the presentation is to define terminology, establish key performance parameters, and summarize technology capabilities.
Integrated Energy System with Beneficial Carbon Dioxide (CO{sub 2}) Use
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xiaolei; Rink, Nancy
2011-04-30
To address the public concerns regarding the consequences of climate change from anthropogenic carbon dioxide (CO{sub 2}) emissions, the U.S. Department of Energy National Energy Technology Laboratory (DOE-NETL) is actively funding a CO{sub 2} management program to develop technologies capable of reducing the CO{sub 2} emissions from fossil fuel power plants and other industrial facilities. Over the past decade, this program has focused on reducing the costs of carbon capture and storage technologies. Recently, DOE-NETL launched an alternative CO{sub 2} mitigation program focusing on beneficial CO{sub 2} reuse and supporting the development of technologies that mitigate emissions by converting CO{submore » 2} to solid mineral form that can be utilized for enhanced oil recovery, in the manufacturing of concrete or as a benign landfill, in the production of valuable chemicals and/or fuels. This project was selected as a CO{sub 2} reuse activity which would conduct research and development (R&D) at the pilot scale via a cost-shared Cooperative Agreement number DE-FE0001099 with DOE-NETL and would utilize funds setaside by the American Recovery and Reinvestment Act (ARRA) of 2009 for Industrial Carbon Capture and Sequestration R&D,« less
Crane, Conrad C
2002-01-01
Much controversy still surrounds accusations that American forces in the Far East during the Korean War used biological warfare against North Korea and China. An analysis of recently declassified documents reveals that, although the United States attempted to accelerate its development and acquisition of such weapons during that period, its efforts to create a viable biological warfare capability were unsuccessful. Plans to similarly expand chemical warfare stocks and capabilities were also frustrated. Technological difficulties, personnel shortages, bureaucratic battles between the armed services, and policy limitations combined to hold back advances in American chemical and biological warfare. In light of the recent fears of terrorist attacks with such weapons, this analysis highlights the great difficulties involved in developing, acquiring, and delivering such capabilities.
NASA Technical Reports Server (NTRS)
1977-01-01
Possibilities were examined for improving agricultural productivity through the application of aerospace technology. An overview of agriculture and of the problems of feeding a growing world population are presented. The present state of agriculture, of plant and animal culture, and agri-business are reviewed. Also analyzed are the various systems for remote sensing, particularly applications to agriculture. The report recommends additional research and technology in the areas of aerial application of chemicals, of remote sensing systems, of weather and climate investigations, and of air vehicle design. Also considered in detail are the social, legal, economic, and political results of intensification of technical applications to agriculture.
Harding, Anna K.; Daston, George P.; Boyd, Glen R.; Lucier, George W.; Safe, Stephen H.; Stewart, Juarine; Tillitt, Donald E.; Van Der Kraak, Glen
2006-01-01
At the request of the U.S. Environmental Protection Agency (EPA) Office of Research and Development, a subcommittee of the Board of Scientific Counselors Executive Committee conducted an independent and open peer review of the Endocrine Disrupting Chemicals Research Program (EDC Research Program) of the U.S. EPA. The subcommittee was charged with reviewing the design, relevance, progress, scientific leadership, and resources of the program. The subcommittee found that the long-term goals and science questions in the EDC Program are appropriate and represent an understandable and solid framework for setting research priorities, representing a combination of problem-driven and core research. Long-term goal (LTG) 1, dealing with the underlying science surrounding endocrine disruptors, provides a solid scientific foundation for conducting risk assessments and making risk management decisions. LTG 2, dealing with defining the extent of the impact of endocrine-disrupting chemicals (EDCs), has shown greater progress on ecologic effects of EDCs compared with that on human health effects. LTG 3, which involves support of the Endocrine Disruptor Screening and Testing Program of the U.S. EPA, has two mammalian tests already through a validation program and soon available for use. Despite good progress, we recommend that the U.S. EPA a) strengthen their expertise in wildlife toxicology, b) expedite validation of the Endocrine Disruptors Screening and Testing Advisory Committee tests, c) continue dependable funding for the EDC Research Program, d) take a leadership role in the application of “omics” technologies to address many of the science questions critical for evaluating environmental and human health effects of EDCs, and e) continue to sponsor multidisciplinary intramural research and interagency collaborations.
Hydrazine Catalyst Production: Sustaining S-405 Technology
NASA Technical Reports Server (NTRS)
Wucherer, E. J.; Cook, Timothy; Stiefel, Mark; Humphries, Randy, Jr.; Parker, Janet
2003-01-01
The development of the iridium-based Shell 405 catalyst for spontaneous decomposition of hydrazine was one of the key enabling technologies for today's spacecraft and launch vehicles. To ensure that this crucial technology was not lost when Shell elected to exit the business, Aerojet, supported by NASA, has developed a dedicated catalyst production facility that will supply catalyst for future spacecraft and launch vehicle requirements. We have undertaken a program to transfer catalyst production from Shell Chemical USA (Houston, TX) to Aerojet's Redmond, WA location. This technology transition was aided by Aerojet's 30 years of catalyst manufacturing experience and NASA diligence and support in sustaining essential technologies. The facility has produced and tested S-405 catalyst to existing Shell 405 specifications and standards. Our presentation will describe the technology transition effort including development of the manufacturing facility, capture of the manufacturing process, test equipment validation, initial batch build and final testing.
Research in the chemical sciences. Summaries of FY 1995
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
This summary book is published annually to provide information on research supported by the Department of Energy`s Division of Chemical Sciences, which is one of four Divisions of the Office of Basic Energy Sciences in the Office of Energy Research. These summaries provide the scientific and technical public, as well as the legislative and executive branches of the Government, information, either generally or in some depth, about the Chemical Sciences program. Scientists interested in proposing research for support will find the publication useful for gauging the scope of the present basic research program and it`s relationship to their interests. Proposalsmore » that expand this scope may also be considered or directed to more appropriate offices. The primary goal of the research summarized here is to add significantly to the knowledge base in which existing and future efficient and safe energy technologies can evolve. As a result, scientific excellence is a major criterion applied in the selection of research supported by the Division of Chemical Sciences, but another important consideration is emphasis on science that is advancing in ways that will produce new information related to energy.« less
Chemical Technology Division, Annual technical report, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
Chemical Technology Division, Annual technical report, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-03-01
Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removalmore » of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting January 1, 2003 and ending March 31, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting October 1, 2002 and ending December 31, 2002. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab- and bench-scale experimental testing, pilot-scale design and assembly, and program management.« less
FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2
DOE Office of Scientific and Technical Information (OSTI.GOV)
George Rizeq; Janice West; Arnaldo Frydman
It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting April 1, 2003 and ending June 30, 2003. The report includes an introduction summarizing the UFP technology, main program tasks, and program objectives; it also provides a summary of program activities and accomplishments covering progress in tasks including lab-scale experimental testing, pilot-scale assembly, and program management.« less
Analytical Chemistry Division annual progress report for period ending December 31, 1988
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The Analytical Chemistry Division of Oak Ridge National Laboratory (ORNL) is a large and diversified organization. As such, it serves a multitude of functions for a clientele that exists both in and outside of ORNL. These functions fall into the following general categories: (1) Analytical Research, Development, and Implementation. The division maintains a program to conceptualize, investigate, develop, assess, improve, and implement advanced technology for chemical and physicochemical measurements. Emphasis is on problems and needs identified with ORNL and Department of Energy (DOE) programs; however, attention is also given to advancing the analytical sciences themselves. (2) Programmatic Research, Development, andmore » Utilization. The division carries out a wide variety of chemical work that typically involves analytical research and/or development plus the utilization of analytical capabilities to expedite programmatic interests. (3) Technical Support. The division performs chemical and physicochemical analyses of virtually all types. The Analytical Chemistry Division is organized into four major sections, each of which may carry out any of the three types of work mentioned above. Chapters 1 through 4 of this report highlight progress within the four sections during the period January 1 to December 31, 1988. A brief discussion of the division's role in an especially important environmental program is given in Chapter 5. Information about quality assurance, safety, and training programs is presented in Chapter 6, along with a tabulation of analyses rendered. Publications, oral presentations, professional activities, educational programs, and seminars are cited in Chapters 7 and 8.« less
Research Extension and Education Programs on Bio-based Energy Technologies and Products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Sam; Harper, David; Womac, Al
2010-03-02
The overall objectives of this project were to provide enhanced educational resources for the general public, educational and development opportunities for University faculty in the Southeast region, and enhance research knowledge concerning biomass preprocessing and deconstruction. All of these efforts combine to create a research and education program that enhances the biomass-based industries of the United States. This work was broken into five primary objective areas: • Task A - Technical research in the area of biomass preprocessing, analysis, and evaluation. • Tasks B&C - Technical research in the areas of Fluidized Beds for the Chemical Modification of Lignocellulosic Biomassmore » and Biomass Deconstruction and Evaluation. • Task D - Analyses for the non-scientific community to provides a comprehensive analysis of the current state of biomass supply, demand, technologies, markets and policies; identify a set of feasible alternative paths for biomass industry development and quantify the impacts associated with alternative path. • Task E - Efforts to build research capacity and develop partnerships through faculty fellowships with DOE national labs The research and education programs conducted through this grant have led to three primary results. They include: • A better knowledge base related to and understanding of biomass deconstruction, through both mechanical size reduction and chemical processing • A better source of information related to biomass, bioenergy, and bioproducts for researchers and general public users through the BioWeb system. • Stronger research ties between land-grant universities and DOE National Labs through the faculty fellowship program. In addition to the scientific knowledge and resources developed, funding through this program produced a minimum of eleven (11) scientific publications and contributed to the research behind at least one patent.« less
Aerocapture Systems Analysis for a Titan Mission
NASA Technical Reports Server (NTRS)
Lockwood, Mary K.; Queen, Eric M.; Way, David W.; Powell, Richard W.; Edquist, Karl; Starr, Brett W.; Hollis, Brian R.; Zoby, E. Vincent; Hrinda, Glenn A.; Bailey, Robert W.
2006-01-01
Performance projections for aerocapture show a vehicle mass savings of between 40 and 80%, dependent on destination, for an aerocapture vehicle compared to an all-propulsive chemical vehicle. In addition aerocapture is applicable to multiple planetary exploration destinations of interest to NASA. The 2001 NASA In-Space Propulsion Program (ISP) technology prioritization effort identified aerocapture as one of the top three propulsion technologies for solar system exploration missions. An additional finding was that aerocapture needed a better system definition and that supporting technology gaps needed to be identified. Consequently, the ISP program sponsored an aerocapture systems analysis effort that was completed in 2002. The focus of the effort was on aerocapture at Titan with a rigid aeroshell system. Titan was selected as the initial destination for the study due to potential interest in a follow-on mission to Cassini/Huygens. Aerocapture is feasible, and the performance is adequate, for the Titan mission and it can deliver 2.4 times more mass to Titan than an all-propulsive system for the same launch vehicle.
Programming chemistry in DNA-addressable bioreactors.
Fellermann, Harold; Cardelli, Luca
2014-10-06
We present a formal calculus, termed the chemtainer calculus, able to capture the complexity of compartmentalized reaction systems such as populations of possibly nested vesicular compartments. Compartments contain molecular cargo as well as surface markers in the form of DNA single strands. These markers serve as compartment addresses and allow for their targeted transport and fusion, thereby enabling reactions of previously separated chemicals. The overall system organization allows for the set-up of programmable chemistry in microfluidic or other automated environments. We introduce a simple sequential programming language whose instructions are motivated by state-of-the-art microfluidic technology. Our approach integrates electronic control, chemical computing and material production in a unified formal framework that is able to mimic the integrated computational and constructive capabilities of the subcellular matrix. We provide a non-deterministic semantics of our programming language that enables us to analytically derive the computational and constructive power of our machinery. This semantics is used to derive the sets of all constructable chemicals and supermolecular structures that emerge from different underlying instruction sets. Because our proofs are constructive, they can be used to automatically infer control programs for the construction of target structures from a limited set of resource molecules. Finally, we present an example of our framework from the area of oligosaccharide synthesis. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Materials processing in space programs tasks. [NASA research tasks
NASA Technical Reports Server (NTRS)
Pentecost, E.
1981-01-01
Active research tasks as of the end of fiscal year 1981 of the materials processing in space program, NASA Office of Space and Terrestrial Applications are summarized to provide an overview of the program scope for managers and scientists in industry, university, and government communities. The program, its history, strategy, and overall goal are described the organizational structures and people involved are identified and a list of recent publications is given for each research task. Four categories: Crystal Growth; Solidification of Metals, Alloys, and Composites; Fluids, Transports, and Chemical Processes, and Ultrahigh Vacuum and Containerless Processing Technologies are used to group the tasks. Some tasks are placed in more than one category to insure complete coverage of each category.
NASA Technical Reports Server (NTRS)
Miller, Scott; Henderson, Scott; Portz, Ron; Lu, Frank; Wilson, Kim; Krismer, David; Alexander, Leslie; Chapman, Jack; England, Chris
2007-01-01
This paper summarizes the work performed to dale on the NASA Cycle 3A Advanced Chemical Propulsion Technology Program. The primary goals of the program are to design, fabricate, and test high performance bipropellant engines using iridium/rhenium chamber technology to obtain 335 seconds specific impulse with nitrogen tetroxide/hydrazine propellants and 330 seconds specific impulse with nitrogen tetroxide/monomethylhydrazine propellants. Aerojet has successfully completed the Base Period of this program, wherein (1) mission and system studies have been performed to verify system performance benefits and to determine engine physical and operating parameters, (2) preliminary chamber and nozzle designs have been completed and a chamber supplier has been downselected, (3) high temperature, high pressure off-nominal hot fire testing of an existing state-of-the-art high performance bipropellant engine has been completed, and (4) thermal and performance data from the engine test have been correlated with new thermal models to enable design of the new engine injector and injector/chamber interface. In the next phase of the program, Aerojet will complete design, fabrication, and test of the nitrogen tetroxide/hydrazine engine to demonstrate 335 seconds specific impulse, and also investigate improved technologies for iridium/rhenium chamber fabrication. Achievement of the NRA goals will significantly benefit NASA interplanetary missions and other government and commercial opportunities by enabling reduced launch weight and/or increased payload. At the conclusion of the program, the objective is to have an engine ready for final design and qualification for a specific science mission or commercial application. The program also constitutes a stepping stone to future, development, such as higher pressure pump-fed in-space storable engines.
Improving the human hazard characterization of chemicals: a Tox21 update.
Tice, Raymond R; Austin, Christopher P; Kavlock, Robert J; Bucher, John R
2013-07-01
In 2008, the National Institute of Environmental Health Sciences/National Toxicology Program, the U.S. Environmental Protection Agency's National Center for Computational Toxicology, and the National Human Genome Research Institute/National Institutes of Health Chemical Genomics Center entered into an agreement on "high throughput screening, toxicity pathway profiling, and biological interpretation of findings." In 2010, the U.S. Food and Drug Administration (FDA) joined the collaboration, known informally as Tox21. The Tox21 partners agreed to develop a vision and devise an implementation strategy to shift the assessment of chemical hazards away from traditional experimental animal toxicology studies to one based on target-specific, mechanism-based, biological observations largely obtained using in vitro assays. Here we outline the efforts of the Tox21 partners up to the time the FDA joined the collaboration, describe the approaches taken to develop the science and technologies that are currently being used, assess the current status, and identify problems that could impede further progress as well as suggest approaches to address those problems. Tox21 faces some very difficult issues. However, we are making progress in integrating data from diverse technologies and end points into what is effectively a systems-biology approach to toxicology. This can be accomplished only when comprehensive knowledge is obtained with broad coverage of chemical and biological/toxicological space. The efforts thus far reflect the initial stage of an exceedingly complicated program, one that will likely take decades to fully achieve its goals. However, even at this stage, the information obtained has attracted the attention of the international scientific community, and we believe these efforts foretell the future of toxicology.
Improving the Human Hazard Characterization of Chemicals: A Tox21 Update
Austin, Christopher P.; Kavlock, Robert J.; Bucher, John R.
2013-01-01
Background: In 2008, the National Institute of Environmental Health Sciences/National Toxicology Program, the U.S. Environmental Protection Agency’s National Center for Computational Toxicology, and the National Human Genome Research Institute/National Institutes of Health Chemical Genomics Center entered into an agreement on “high throughput screening, toxicity pathway profiling, and biological interpretation of findings.” In 2010, the U.S. Food and Drug Administration (FDA) joined the collaboration, known informally as Tox21. Objectives: The Tox21 partners agreed to develop a vision and devise an implementation strategy to shift the assessment of chemical hazards away from traditional experimental animal toxicology studies to one based on target-specific, mechanism-based, biological observations largely obtained using in vitro assays. Discussion: Here we outline the efforts of the Tox21 partners up to the time the FDA joined the collaboration, describe the approaches taken to develop the science and technologies that are currently being used, assess the current status, and identify problems that could impede further progress as well as suggest approaches to address those problems. Conclusion: Tox21 faces some very difficult issues. However, we are making progress in integrating data from diverse technologies and end points into what is effectively a systems-biology approach to toxicology. This can be accomplished only when comprehensive knowledge is obtained with broad coverage of chemical and biological/toxicological space. The efforts thus far reflect the initial stage of an exceedingly complicated program, one that will likely take decades to fully achieve its goals. However, even at this stage, the information obtained has attracted the attention of the international scientific community, and we believe these efforts foretell the future of toxicology. PMID:23603828
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laughlin, Gary L.
The International, Homeland, and Nuclear Security (IHNS) Program Management Unit (PMU) oversees a broad portfolio of Sandia’s programs in areas ranging from global nuclear security to critical asset protection. We use science and technology, innovative research, and global engagement to counter threats, reduce dangers, and respond to disasters. The PMU draws on the skills of scientists and engineers from across Sandia. Our programs focus on protecting US government installations, safeguarding nuclear weapons and materials, facilitating nonproliferation activities, securing infrastructures, countering chemical and biological dangers, and reducing the risk of terrorist threats. We conduct research in risk and threat analysis, monitoringmore » and detection, decontamination and recovery, and situational awareness. We develop technologies for verifying arms control agreements, neutralizing dangerous materials, detecting intruders, and strengthening resiliency. Our programs use Sandia’s High-Performance Computing resources for predictive modeling and simulation of interdependent systems, for modeling dynamic threats and forecasting adaptive behavior, and for enabling decision support and processing large cyber data streams. In this report, we highlight four advanced computation projects that illustrate the breadth of the IHNS mission space.« less
NASA Technical Reports Server (NTRS)
Barr, B. G.
1974-01-01
A broad range of research projects contained in a cooperative space technology program at the University of Kansas are reported as they relate to the following three areas of interdisciplinary interest: (1) remote sensing of earth resources; (2) stability and control of light and general aviation aircraft; and (3) the vibrational response characteristics of aeronautical and space vehicles. Details of specific research efforts are given under their appropriate departments, among which are aerospace engineering, chemical and petroleum engineering, environmental health, water resources, the remote sensing laboratory, and geoscience applications studies.
Advanced expander test bed engine
NASA Technical Reports Server (NTRS)
Mitchell, J. P.
1992-01-01
The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.
Programming an Experiment Control System
NASA Technical Reports Server (NTRS)
Lange, Stuart
2004-01-01
As NASA develops plans for more and more ambitious missions into space, it is the job of NASA's researchers to develop the technologies that will make those planed missions feasible. One such technology is energy conversion. Energy is all around us; it is in the light that we see in the chemical bonds that hold compounds together, and in mass itself.Energy is the fundamental building block of our universe, yet it has always been straggle for humans to convert this energy into useable forms, like electricity. For space-based applications, NASA requires efficient energy conversion method that require little or no fuel.
Website for the Space Science Division
NASA Technical Reports Server (NTRS)
Schilling, James; DeVincenzi, Donald (Technical Monitor)
2002-01-01
The Space Science Division at NASA Ames Research Center is dedicated to research in astrophysics, exobiology, advanced life support technologies, and planetary science. These research programs are structured around Astrobiology (the study of life in the universe and the chemical and physical forces and adaptions that influence life's origin, evolution, and destiny), and address some of the most fundamental questions pursued by science. These questions examine the origin of life and our place in the universe. Ames is recognized as a world leader in Astrobiology. In pursuing our mission in Astrobiology, Space Science Division scientists perform pioneering basic research and technology development.
JPRS Report, Science & Technology, Europe
1992-03-12
the Chemical Industry Fund. However, the recent successes of this privately- sponsored research do present an ecological problem. Although the...SAMW issued medical- ethical guidelines prohibiting the manip- ulation of the genotype of gametes and embryos. In 1986, the Swiss Academies for...Concerning Large Fuel Burning Plants which took effect in 1983 triggered an " ecological renewal program" with mandatory limits based on state- of-the
Composite structural materials
NASA Technical Reports Server (NTRS)
Loewy, Robert G.; Wiberley, Stephen E.
1988-01-01
A decade long program to develop critical advanced composite technology in the areas of physical properties, structural concept and analysis, manufacturing, reliability, and life predictions is reviewed. Specific goals are discussed. The status of the chemical vapor deposition effects on carbon fiber properties; inelastic deformation of metal matrix laminates; fatigue damage in fibrous MMC laminates; delamination fracture toughness in thermoplastic matrix composites; and numerical analysis of composite micromechanical behavior are presented.
Measuring Safety: A New Perspective on Outcomes of a Long-Term Intensive Case Management Program
2005-05-01
treatment; complex treatment regimen, like electroconvulsive therapy (ECT), or new technologies; discharge against medical advice from inpatient...treatment; refractory to medication interventions; and need for therapy or psychiatric nursing in the home. While patients meeting the high acuity case...outpatient settings; individual, group, and family therapy ; and chemical dependency services. Exceptions to benefit limits were granted as needed, per
2.75-Inch Motor Manufacturing Waste Minimization Project
2006-06-19
Certification Program FEM Finite element model HFMI Highly Filled Materials Institute HOE Heat of explosion ICT Institute of Chemical Technology IHDIV...Trinitrotoluene TOW Tube-launched, optically tracked, wire-guided missile TPE Thermoplastic elastomers TSE Twin screw mixer/extruder VPDES Virginia Pollution...extruded and test fired. 1996–1997 Inert TPE Processing: Thermoplastic elastomers (TPE) are ideal binders for “green energetics” because they do
Workshop on In Situ Biogeochemical Transformation of Chlorinated Solvents
2008-02-01
sites across the country, and also has its own internal research programs. In situ bioremediation has become a widely- used technology for...concern [e.g., dithionite, sulfate (at high concentrations), pesticides , and agri-chemicals that are residues in mulch used in biowalls, as well as... Bioremediation of Chlorinated Solvents in Groundwater Using a Permeable Mulch Biowall, Operable Unit 1, Altus Air Force Base, Oklahoma. Prepared
Fire-protection research for energy technology: Fy 80 year end report
NASA Astrophysics Data System (ADS)
Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.
1981-05-01
This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.
Alternative aircraft fuels technology
NASA Technical Reports Server (NTRS)
Grobman, J.
1976-01-01
NASA is studying the characteristics of future aircraft fuels produced from either petroleum or nonpetroleum sources such as oil shale or coal. These future hydrocarbon based fuels may have chemical and physical properties that are different from present aviation turbine fuels. This research is aimed at determining what those characteristics may be, how present aircraft and engine components and materials would be affected by fuel specification changes, and what changes in both aircraft and engine design would be required to utilize these future fuels without sacrificing performance, reliability, or safety. This fuels technology program was organized to include both in-house and contract research on the synthesis and characterization of fuels, component evaluations of combustors, turbines, and fuel systems, and, eventually, full-scale engine demonstrations. A review of the various elements of the program and significant results obtained so far are presented.
Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.
2016-01-01
Background: Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. While these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals used throughout the process, including many known or suspected endocrine-disrupting chemicals.Objectives: We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and anti-hormonal activities for chemicals used.Methods: We discuss the literature on 1) surface and ground water contamination by oil and gas extraction operations, and 2) potential human exposure, particularly in context of the total hormonal and anti-hormonal activities present in surface and ground water from natural and anthropogenic sources, with initial analytical results and critical knowledge gaps discussed.Discussion: In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures.Conclusions: We describe a need for an endocrine-centric component for overall health assessments and provide supporting information that using this may help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.
Kassotis, Christopher D; Tillitt, Donald E; Lin, Chung-Ho; McElroy, Jane A; Nagel, Susan C
2016-03-01
Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs.
ACToR: Aggregated Computational Toxicology Resource (T) ...
The EPA Aggregated Computational Toxicology Resource (ACToR) is a set of databases compiling information on chemicals in the environment from a large number of public and in-house EPA sources. ACToR has 3 main goals: (1) The serve as a repository of public toxicology information on chemicals of interest to the EPA, and in particular to be a central source for the testing data on all chemicals regulated by all EPA programs; (2) To be a source of in vivo training data sets for building in vitro to in vivo computational models; (3) To serve as a central source of chemical structure and identity information for the ToxCastTM and Tox21 programs. There are 4 main databases, all linked through a common set of chemical information and a common structure linking chemicals to assay data: the public ACToR system (available at http://actor.epa.gov), the ToxMiner database holding ToxCast and Tox21 data, along with results form statistical analyses on these data; the Tox21 chemical repository which is managing the ordering and sample tracking process for the larger Tox21 project; and the public version of ToxRefDB. The public ACToR system contains information on ~500K compounds with toxicology, exposure and chemical property information from >400 public sources. The web site is visited by ~1,000 unique users per month and generates ~1,000 page requests per day on average. The databases are built on open source technology, which has allowed us to export them to a number of col
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wantuck, P. J.; Hollen, R. M.
2002-01-01
This paper provides an overview of some design and automation-related projects ongoing within the Applied Engineering Technologies (AET) Group at Los Alamos National Laboratory. AET uses a diverse set of technical capabilities to develop and apply processes and technologies to applications for a variety of customers both internal and external to the Laboratory. The Advanced Recovery and Integrated Extraction System (ARIES) represents a new paradigm for the processing of nuclear material from retired weapon systems in an environment that seeks to minimize the radiation dose to workers. To achieve this goal, ARIES relies upon automation-based features to handle and processmore » the nuclear material. Our Chemical Process Development Team specializes in fuzzy logic and intelligent control systems. Neural network technology has been utilized in some advanced control systems developed by team members. Genetic algorithms and neural networks have often been applied for data analysis. Enterprise modeling, or discrete event simulation, as well as chemical process simulation has been employed for chemical process plant design. Fuel cell research and development has historically been an active effort within the AET organization. Under the principal sponsorship of the Department of Energy, the Fuel Cell Team is now focusing on technologies required to produce fuel cell compatible feed gas from reformation of a variety of conventional fuels (e.g., gasoline, natural gas), principally for automotive applications. This effort involves chemical reactor design and analysis, process modeling, catalyst analysis, as well as full scale system characterization and testing. The group's Automation and Robotics team has at its foundation many years of experience delivering automated and robotic systems for nuclear, analytical chemistry, and bioengineering applications. As an integrator of commercial systems and a developer of unique custom-made systems, the team currently supports the automation needs of many Laboratory programs.« less
Advanced Industrial Materials (AIM) program. Annual progress report. FY 1996
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-04-01
The Advanced Industrial Materials (AIM) Program underwent a major transformation in Fiscal Year 1995 and these changes have continued to the present. When the Program was established in 1990 as the Advanced Industrial Concepts (AIC) Materials Program, the mission was to conduct applied research and development to bring materials and processing technologies from the knowledge derived from basic research to the maturity required for the end use sectors for commercialization. In 1995, the Office of Industrial Technologies (OIT) made radical changes in structure and procedures. All technology development was directed toward the seven `Vision Industries` that use about 80% ofmore » industrial energy and generated about 90% of industrial wastes. These are: aluminium; chemical; forest products; glass; metal casting; refineries; and steel. OIT is working with these industries, through appropriate organizations, to develop Visions of the desired condition of each industry some 20 or 25 years in the future and then to prepare Road Maps and Implementation Plans to enable them to reach their goals. The mission of AIM has, therefore, changed to `Support development and commercialization of new or improved materials to improve productivity, product quality, and energy efficiency in the major process industries.` Though AIM remains essentially a National Laboratory Program, it is necessary that each project have industrial partners, including suppliers to, and customers of, the seven industries. Now, well into FY 1996, the transition is nearly complete and the AIM Program remains healthy and productive, thanks to the superb investigators and Laboratory Program Managers. Separate abstracts have been indexed into the energy database for articles from this report.« less
Lessons learned in building a global information network on chemicals (GINC).
Kaminuma, Tsuguchika
2005-09-01
The Global Information Network on Chemicals (GINC) was a project to construct a worldwide information network linking international, national, and other organizations working for the safe management of chemicals. Proposed in 1993, the project started the next year and lasted almost 10 years. It was begun as a joint project of World Health Organization (WHO), International Labor Organization (ILO), and United Nations Environment Program (UNEP), and later endorsed by the Intergovernmental Forum on Chemical Safety (IFCS). Asia, particularly East Asia and the Pacific islands, was chosen as the feasibility study region. The author's group then at the National Institute of Health Sciences (NIHS) of Japan led this initiative and hosted numerous meetings. At these meetings, tutorial sessions for communicating chemical safety expertise and emerging new information technologies relevant to the safe management of chemicals were offered. Our experience with this project, particularly the Web-based system and the tutorial sessions, may be of use to others involved with Web-based instruction and the training of chemical safety specialists from both developed and developing countries.
Biological life-support systems for Mars mission.
Gitelson, J I
1992-01-01
Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. Conventional path proposed by technology for Martian mission LSS is to use physical-chemical approaches proved by the experience of astronautics. But the problem of man living beyond the limits of the earth biosphere can be fundamentally solved by making a closed ecosystem for him. The choice optimum for a Mars mission LSS can be substantiated by comparing the merits and demerits of physical-chemical and biological principles without ruling out possible compromise between them. The work gives comparative analysis of ecological and physical-chemical principles for LSS. Taking into consideration universal significance of ecological problems with artificial LSS as a particular case of their solution, complexity and high cost of large-scale experiments with manned LSS, it would be expedient for these works to have the status of an International Program open to be joined. A program of making artificial biospheres based on preceding experience and analysis of current situation is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, J.F.
This report summarizes progress on OHER human health, biological, general life sciences, and medical applications research programs conducted at PNL in FY 1989. The research develops the knowledge and scientific principles necessary to identify, understand, and anticipate the long-term health consequences of energy-related radiation and chemicals. Our continuing emphasis is to decrease the uncertainty of health risk estimates from existing and developing energy-related technologies through an increased understanding of how radiation and chemicals cause biological damage. The sequence of this report of PNL research reflects the OHER programmatic structure. The first section, on human health research, concerns statistical and epidemiologicalmore » studies for assessing health risks. The next section contains reports of biological research in laboratory animals and in vitro cell systems, including research with radionuclides and chemicals. The general life sciences research section reports research conducted for the OHER human genome research program, and the medical applications section summarizes commercial radioisotope production and distribution activities at DOE facilities. 6 refs., 50 figs., 35 tabs.« less
Recent achievements using chemical vapor composite silicon carbide (CVC SiC)
NASA Astrophysics Data System (ADS)
Goodman, William A.; Tanaka, Clifford
2009-08-01
This annual review documents our progress towards inexpensive mass production of silicon carbide mirrors and optical structures. Results are provided for a NASA Small Business Technology Transfer (STTR) X-Ray Mirror project. Trex partnered with the University of Alabama-Huntsville Center for Advanced Optics (UAH-CAO) to develop fabrication methods for polished cylindrical and conical chemical vapor composite (CVCTM) SiC mandrels. These mandrels are envisioned as pre-forms for the replication of fused silica x-ray optics to be eventually used in the International X-Ray Observatory (IXO). CVC SiCTM offers superior high temperature stability, thermal and mechanical performance and polishability required for this precision replication process. In this program, Trex fabricated prototype mandrels with design diameters of 10.5cm, 20cm and 45cm. UAH-CAO was Trex's university partner in this effort and worked on polishing and metrology of the unusual x-ray mandrel geometries. UAH-CAO successfully developed an innovative interferometric method for measuring the CVC SiCTM x-ray mandrels based on a precision cylindrical lens system. UAH-CAO also developed finishing and polishing methods for CVC SiCTM that utilized a Zeeko IRP200 computer controlled polishing tool. The three technologies key technologies demonstrated in this program (near net shape forming of CVC SiCTM mandrels, the x-ray mandrel metrology and free-form polishing capability on CVC SiCTM) could enable cost-effective manufacture of the x-ray mandrels required for the International X-Ray Observatory (IXO).
Keserű, György M; Erlanson, Daniel A; Ferenczy, György G; Hann, Michael M; Murray, Christopher W; Pickett, Stephen D
2016-09-22
Fragment-based drug discovery (FBDD) is well suited for discovering both drug leads and chemical probes of protein function; it can cover broad swaths of chemical space and allows the use of creative chemistry. FBDD is widely implemented for lead discovery in industry but is sometimes used less systematically in academia. Design principles and implementation approaches for fragment libraries are continually evolving, and the lack of up-to-date guidance may prevent more effective application of FBDD in academia. This Perspective explores many of the theoretical, practical, and strategic considerations that occur within FBDD programs, including the optimal size, complexity, physicochemical profile, and shape profile of fragments in FBDD libraries, as well as compound storage, evaluation, and screening technologies. This compilation of industry experience in FBDD will hopefully be useful for those pursuing FBDD in academia.
Enzyme-free nucleic acid dynamical systems.
Srinivas, Niranjan; Parkin, James; Seelig, Georg; Winfree, Erik; Soloveichik, David
2017-12-15
Chemistries exhibiting complex dynamics-from inorganic oscillators to gene regulatory networks-have been long known but either cannot be reprogrammed at will or rely on the sophisticated enzyme chemistry underlying the central dogma. Can simpler molecular mechanisms, designed from scratch, exhibit the same range of behaviors? Abstract chemical reaction networks have been proposed as a programming language for complex dynamics, along with their systematic implementation using short synthetic DNA molecules. We developed this technology for dynamical systems by identifying critical design principles and codifying them into a compiler automating the design process. Using this approach, we built an oscillator containing only DNA components, establishing that Watson-Crick base-pairing interactions alone suffice for complex chemical dynamics and that autonomous molecular systems can be designed via molecular programming languages. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Crystal growth of device quality GaAs in space
NASA Technical Reports Server (NTRS)
Gatos, H. C.; Lagowski, J.
1985-01-01
The present program has been aimed at solving the fundamental and technological problems associated with Crystal Growth of Device Quality in Space. The initial stage of the program was devoted strictly to ground-based research. The unsolved problems associated with the growth of bulk GaAs in the presence of gravitational forces were explored. Reliable chemical, structural and electronic characterization methods were developed which would permit the direct relation of the salient materials parameters (particularly those affected by zero gravity conditions) to the electronic characteristics of single crystal GaAs, in turn to device performance. These relationships are essential for the development of optimum approaches and techniques. It was concluded that the findings on elemental semiconductors Ge and Si regarding crystal growth, segregation, chemical composition, defect interactions, and materials properties-electronic properties relationships are not necessarily applicable to GaAs (and to other semiconductor compounds). In many instances totally unexpected relationships were found to prevail.
GPU Accelerated Chemical Similarity Calculation for Compound Library Comparison
Ma, Chao; Wang, Lirong; Xie, Xiang-Qun
2012-01-01
Chemical similarity calculation plays an important role in compound library design, virtual screening, and “lead” optimization. In this manuscript, we present a novel GPU-accelerated algorithm for all-vs-all Tanimoto matrix calculation and nearest neighbor search. By taking advantage of multi-core GPU architecture and CUDA parallel programming technology, the algorithm is up to 39 times superior to the existing commercial software that runs on CPUs. Because of the utilization of intrinsic GPU instructions, this approach is nearly 10 times faster than existing GPU-accelerated sparse vector algorithm, when Unity fingerprints are used for Tanimoto calculation. The GPU program that implements this new method takes about 20 minutes to complete the calculation of Tanimoto coefficients between 32M PubChem compounds and 10K Active Probes compounds, i.e., 324G Tanimoto coefficients, on a 128-CUDA-core GPU. PMID:21692447
Computational Toxicology as Implemented by the US EPA ...
Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, the U.S. Environmental Protection Agency EPA is developing robust and flexible computational tools that can be applied to the thousands of chemicals in commerce, and contaminant mixtures found in air, water, and hazardous-waste sites. The Office of Research and Development (ORD) Computational Toxicology Research Program (CTRP) is composed of three main elements. The largest component is the National Center for Computational Toxicology (NCCT), which was established in 2005 to coordinate research on chemical screening and prioritization, informatics, and systems modeling. The second element consists of related activities in the National Health and Environmental Effects Research Laboratory (NHEERL) and the National Exposure Research Laboratory (NERL). The third and final component consists of academic centers working on various aspects of computational toxicology and funded by the U.S. EPA Science to Achieve Results (STAR) program. Together these elements form the key components in the implementation of both the initial strategy, A Framework for a Computational Toxicology Research Program (U.S. EPA, 2003), and the newly released The U.S. Environmental Protection Agency's Strategic Plan for Evaluating the T
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Under contract with the US Department of Energy (DE-AC22-92PCO0367), Pittsburgh Energy Technology Center, Radian Corporation has conducted a test program to collect and analyze size-fractionated stack gas particulate samples for selected inorganic hazardous air pollutants (HAPS). Specific goals of the program are (1) the collection of one-gram quantities of size-fractionated stack gas particulate matter for bulk (total) and surface chemical charactization, and (2) the determination of the relationship between particle size, bulk and surface (leachable) composition, and unit load. The information obtained from this program identifies the effects of unit load, particle size, and wet FGD system operation on themore » relative toxicological effects of exposure to particulate emissions.« less
The Transfer of Chemical Knowledge: The Case of Chemical Technology and Its Textbooks
ERIC Educational Resources Information Center
Lundgren, Anders
2006-01-01
This paper is a study of textbooks in chemical technology in Sweden during the industrialisation in the 19th century. In this period, teaching in technological education in general became more and more founded on science. However, there existed very few textbooks in chemical technology, and it is argued that the reason was that the essentials of…
NASA Astrophysics Data System (ADS)
Bates, E.
1992-12-01
The STC demonstration was conducted under EPA's Superfund Innovative Technology Evaluation (SITE) Program in November, 1990, at the Selma Pressure Treating (SPT) wood preserving site in Selma, California. The SPT site was contaminated with both organics, predominantly pentachlorophenol (PCP), inorganics, mainly arsenic, chromium, and copper. Extensive sampling and analyses were performed on the waste both before and after treatment to compare physical, chemical, and leaching characteristics of raw and treated wastes. STC's contaminated soil treatment process was evaluated based on contaminant mobility measured by numerous leaching tests, structural integrity of the solidified material, measured by physical and engineering tests and morphological examinations; and economic analysis, using cost information supplied by STC and the results of the SITE demonstration, the vendor's design and test data, and other laboratory and field applications of the technology. It discusses the advantages, disadvantages, and limitations, as well as estimated costs of the technology.
NASA Technical Reports Server (NTRS)
Workman, Gary L
1992-01-01
Recent issues emerging in our fiscal and ecological environments have promulgated that federal agencies shall promote activities which respond to the improvement of both. In response to these developments, the National Aeronautics and Space Administration (NASA) has undertaken an innovative approach to improve the control of materials used in all NASA manufacturing activities. In concert with this goal, NASA is requiring that its contractors and their sub-contractors perform a more intensive consolidation of technologies that can provide an accounting of materials, which includes in-coming materials, materials in process, end-products and waste materials. The purpose of this handbook is to provide guidelines to NASA and its contractor personnel for the planning and implementation of chemical fingerprinting programs and to illustrate the chemical and statistical fundamentals needed for successful use of chemical fingerprinting.
DAWN (Design Assistant Workstation) for advanced physical-chemical life support systems
NASA Technical Reports Server (NTRS)
Rudokas, Mary R.; Cantwell, Elizabeth R.; Robinson, Peter I.; Shenk, Timothy W.
1989-01-01
This paper reports the results of a project supported by the National Aeronautics and Space Administration, Office of Aeronautics and Space Technology (NASA-OAST) under the Advanced Life Support Development Program. It is an initial attempt to integrate artificial intelligence techniques (via expert systems) with conventional quantitative modeling tools for advanced physical-chemical life support systems. The addition of artificial intelligence techniques will assist the designer in the definition and simulation of loosely/well-defined life support processes/problems as well as assist in the capture of design knowledge, both quantitative and qualitative. Expert system and conventional modeling tools are integrated to provide a design workstation that assists the engineer/scientist in creating, evaluating, documenting and optimizing physical-chemical life support systems for short-term and extended duration missions.
Book Review: Kirk-Othmer Chemical Technology and the Environment
These two volumes of chemical and environmental technology are comprised of chapter contributions selected from the 5th edition of the Kirk-Othmer Encyclopedia of Chemical Technology. A total of 73 chapters dealing with various established and emerging technologies based in bioch...
Fusion materials semiannual progress report for the period ending June 30, 1998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burn, G.
1998-09-01
This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Strategic Technologies for Deep Space Transport
NASA Technical Reports Server (NTRS)
Litchford, Ronald J.
2016-01-01
Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.
NASA's Radioisotope Power Systems Program Status
NASA Technical Reports Server (NTRS)
Dudzinski, Leonard A.; Hamley, John A.; McCallum, Peter W.; Sutliff, Thomas J.; Zakrajsek, June F.
2013-01-01
NASA's Radioisotope Power Systems (RPS) Program began formal implementation in December 2010. The RPS Program's goal is to make available RPS for the exploration of the solar system in environments where conventional solar or chemical power generation is impractical or impossible to meet mission needs. To meet this goal, the RPS Program manages investments in RPS system development and RPS technologies. The current keystone of the RPS Program is the development of the Advanced Stirling Radioisotope Generator (ASRG). This generator will be about four times more efficient than the more traditional thermoelectric generators, while providing a similar amount of power. This paper provides the status of the RPS Program and its related projects. Opportunities for RPS generator development and targeted research into RPS component performance enhancements, as well as constraints dealing with the supply of radioisotope fuel, are also discussed in the context of the next ten years of planetary science mission plans.
2012-06-01
23 5 TEST DESIGN ... research project, ORD will continue to focus on only the PCB inventory in the test zone and selected areas of the river as further defined in subsequent...1,000 500 50 25 5 TEST DESIGN This section of the report provides the detailed description of the experimental design and testing
2016-03-14
DoD Department of Defense EMI electromagnetic induction ESTCP Environmental Security Technology Certification Program ft. foot GPS global...three primary objectives: Test and validate detection and discrimination capabilities of a currently available advanced electromagnetic induction ... induction (EMI) sensors in dynamic and static data acquisition modes and associated analysis software. To achieve these objectives, a controlled test was
West Europe Report, Science and Technology, No. 140.
1983-03-18
French oil company Elf) and partly by the universities. Besides the afore- mentioned G3 we find Genetica (partly owned by the chemical giant RhSne...produced in these conditions . This will mean that preparation techniques used on earth will also undergo some significant changes. Remaining in the...speed, time... There are logic commands to make conditional jumps between two addresses of the same program, pauses until a certain event occurs
A Tool for Rating the Resilience of Critical Infrastructures in Extreme Fires
2014-05-01
provide a tool for NRC to help the Canadian industry to develop extreme fire protection materials and technologies for critical infrastructures. Future...supported by the Canadian Safety and Security Program (CSSP) which is led by Defence Research and Development Canada’s Centre for Security Science, in...in oil refinery and chemical industry facilities. The only available standard in North America that addresses the transportation infrastructure is
Manufacturing Methods and Technology Program for Ruggedized Tactical Fiber Optic Cable.
1979-10-26
cores manufactured on this unit since the improvements were incorporated. An automatic diameter control unit with a laser micrometer sensor has been...fiber optic sensor systems for the TACA-MO aircraft and power encoding, an 18-port single fiber data bus for the Autonetics information transfer...echnica del Estado, Santiago, Chile in 1958. He received a degree in Industrial Chemical Engineering from Escuela de Ingenieros Industriales , Santiago
NASA Astrophysics Data System (ADS)
Esser, B. K.; Beller, H. R.; Carroll, S.; Cherry, J. A.; Jackson, R. B.; Jordan, P. D.; Madrid, V.; Morris, J.; Parker, B. L.; Stringfellow, W. T.; Varadharajan, C.; Vengosh, A.
2015-12-01
California recently passed legislation mandating dedicated groundwater quality monitoring for new well stimulation operations. The authors provided the State with expert advice on the design of such monitoring networks. Factors that must be considered in designing a new and unique groundwater monitoring program include: Program design: The design of a monitoring program is contingent on its purpose, which can range from detection of individual well leakage to demonstration of regional impact. The regulatory goals for permit-required monitoring conducted by operators on a well-by-well basis will differ from the scientific goals of a regional monitoring program conducted by the State. Vulnerability assessment: Identifying factors that increase the probability of transport of fluids from the hydrocarbon target zone to a protected groundwater zone enables the intensity of permit-required monitoring to be tiered by risk and also enables prioritization of regional monitoring of groundwater basins based on vulnerability. Risk factors include well integrity; proximity to existing wellbores and geologic features; wastewater disposal; vertical separation between the hydrocarbon and groundwater zones; and site-specific hydrogeology. Analyte choice: The choice of chemical analytes in a regulatory monitoring program is guided by the goals of detecting impact, assuring public safety, preventing resource degradation, and minimizing cost. Balancing these goals may be best served by tiered approach in which targeted analysis of specific chemical additives is triggered by significant changes in relevant but more easily analyzed constituents. Such an approach requires characterization of baseline conditions, especially in areas with long histories of oil and gas development. Monitoring technology: Monitoring a deep subsurface process or a long wellbore is more challenging than monitoring a surface industrial source. The requirement for monitoring multiple groundwater aquifers across a range of depths and of monitoring at deeper depths than is typical for regulatory monitoring programs requires consideration of monitoring technology, which can range from clusters of wells to multiple wells in a single wellbore to multi-level systems in a single cased wellbore.
Chemical Sniffing Instrumentation for Security Applications.
Giannoukos, Stamatios; Brkić, Boris; Taylor, Stephen; Marshall, Alan; Verbeck, Guido F
2016-07-27
Border control for homeland security faces major challenges worldwide due to chemical threats from national and/or international terrorism as well as organized crime. A wide range of technologies and systems with threat detection and monitoring capabilities has emerged to identify the chemical footprint associated with these illegal activities. This review paper investigates artificial sniffing technologies used as chemical sensors for point-of-use chemical analysis, especially during border security applications. This article presents an overview of (a) the existing available technologies reported in the scientific literature for threat screening, (b) commercially available, portable (hand-held and stand-off) chemical detection systems, and (c) their underlying functional and operational principles. Emphasis is given to technologies that have been developed for in-field security operations, but laboratory developed techniques are also summarized as emerging technologies. The chemical analytes of interest in this review are (a) volatile organic compounds (VOCs) associated with security applications (e.g., illegal, hazardous, and terrorist events), (b) chemical "signatures" associated with human presence, and (c) threat compounds (drugs, explosives, and chemical warfare agents).
Advanced Industrial Materials (AIM) Program annual progress report, FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-05-01
The Advanced Industrial Materials (AIM) Program is a part of the Office of Industrial Technologies (OIT), Energy Efficiency and Renewable Energy, US Department of Energy (DOE). The mission of AIM is to support development and commercialization of new or improved materials to improve energy efficiency, productivity, product quality, and reduced waste in the major process industries. OIT has embarked on a fundamentally new way of working with industries--the Industries of the Future (IOF) strategy--concentrating on the major process industries that consume about 90% of the energy and generate about 90% of the waste in the industrial sector. These are themore » aluminum, chemical, forest products, glass, metalcasting, and steel industries. OIT has encouraged and assisted these industries in developing visions of what they will be like 20 or 30 years into the future, defining the drivers, technology needs, and barriers to realization of their visions. These visions provide a framework for development of technology roadmaps and implementation plans, some of which have been completed. The AIM Program supports IOF by conducting research and development on materials to solve problems identified in the roadmaps. This is done by National Laboratory/industry/university teams with the facilities and expertise needed to develop new and improved materials. Each project in the AIM Program has active industrial participation and support.« less
2002-08-01
A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, E.G.; Mioduszewski, R.J.
The Chemical Computer Man: Chemical Agent Response Simulation (CARS) is a computer model and simulation program for estimating the dynamic changes in human physiological dysfunction resulting from exposures to chemical-threat nerve agents. The newly developed CARS methodology simulates agent exposure effects on the following five indices of human physiological function: mental, vision, cardio-respiratory, visceral, and limbs. Mathematical models and the application of basic pharmacokinetic principles were incorporated into the simulation so that for each chemical exposure, the relationship between exposure dosage, absorbed dosage (agent blood plasma concentration), and level of physiological response are computed as a function of time. CARS,more » as a simulation tool, is designed for the users with little or no computer-related experience. The model combines maximum flexibility with a comprehensive user-friendly interactive menu-driven system. Users define an exposure problem and obtain immediate results displayed in tabular, graphical, and image formats. CARS has broad scientific and engineering applications, not only in technology for the soldier in the area of Chemical Defense, but also in minimizing animal testing in biomedical and toxicological research and the development of a modeling system for human exposure to hazardous-waste chemicals.« less
Chemical contamination in aquatic ecosystems.
Iwata, Hisato; Kim, Eun-Young; Yamauchi, Masanobu; Inoue, Suguru; Agusa, Tetsuro; Tanabe, Shinsuke
2007-03-01
The 21st Century's Center of Excellence (COE) Program "Coastal Marine Environmental Research" in Ehime University, funded by the Ministry of Education, Culture, Sports, Science and Technology, Government of Japan, started its activities in October 2002. One of the core projects of the COE Program in Ehime University is "studies on environmental behavior of hazardous chemicals and their toxic effects on wildlife". This core project deals with studies of the local and global distribution of environmental contaminants in aquatic ecosystems, retrospective analysis of such chemicals, their toxicokinetics in humans and wildlife, molecular mechanisms to determine species-specific reactions, and sensitivity of chemically induced effects, and with the development of methodology for risk assessment for the conservation of ecological and species diversity. This presentation describes our recent achievements of this project, including research on contamination by arsenic and organohalogen pollutants in the Mekong River basin and molecular mechanisms of morphologic deformities in dioxin-exposed red seabream (Pagrus major) embryos. We established the Environmental Specimen Bank (es-BANK) in Ehime University in 2004, archiving approximately 100000 cryogenic samples containing tissues of wildlife and humans that have been collected for the past 40 years. The CMES homepage offers details of samples through online database retrieval. The es-BANK facility was in operation by the end of 2005.
Optical properties monitor: Experiment definition phase
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry
1990-01-01
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment (both natural and induced) on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.
Optical properties monitor: Experiment definition phase
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Bennett, Jean M.; Hummer, Leigh L.; Chipman, Russell A.; Hadaway, James B.; Pezzaniti, Larry
1989-01-01
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment-both natural and induced-on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM Experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination.
Safety management of complex research operations
NASA Technical Reports Server (NTRS)
Brown, W. J.
1981-01-01
Complex research and technology operations present many varied potential hazards which must be addressed in a disciplined independent safety review and approval process. The research and technology effort at the Lewis Research Center is divided into programmatic areas of aeronautics, space and energy. Potential hazards vary from high energy fuels to hydrocarbon fuels, high pressure systems to high voltage systems, toxic chemicals to radioactive materials and high speed rotating machinery to high powered lasers. A Safety Permit System presently covers about 600 potentially hazardous operations. The Safety Management Program described in this paper is believed to be a major factor in maintaining an excellent safety record at the Lewis Research Center.
Laboratory directed research and development annual report 2004.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Densitymore » Sciences; and (15) Corporate Objectives.« less
Scientists Inspect Plant Grown onboard the ISS in 2002
NASA Technical Reports Server (NTRS)
2003-01-01
The Advanced Astroculture (tm) unit is growing plants on its second flight on the International Space Station. Dr. Weijia Zhou (left), director of the Wisconsin Center for Space Automation and Robotics at the University of Wisconsin-Madison, inspects soybeans grown in the plant growth unit aboard ISS in 2002. Coating technology is used inside the miniature plant greenhouse to remove ethylene, a chemical produced by plant leaves that can cause plants to mature too quickly. This same coating technology is used in a new anthrax-killing device. The Space Station experiment is managed by the Space Partnership Development Program at NASA's Marshall Space Flight Center in Huntsville, Ala.
1991 NASA Life Support Systems Analysis workshop
NASA Technical Reports Server (NTRS)
Evanich, Peggy L.; Crabb, Thomas M.; Gartrell, Charles F.
1992-01-01
The 1991 Life Support Systems Analysis Workshop was sponsored by NASA Headquarters' Office of Aeronautics and Space Technology (OAST) to foster communication among NASA, industrial, and academic specialists, and to integrate their inputs and disseminate information to them. The overall objective of systems analysis within the Life Support Technology Program of OAST is to identify, guide the development of, and verify designs which will increase the performance of the life support systems on component, subsystem, and system levels for future human space missions. The specific goals of this workshop were to report on the status of systems analysis capabilities, to integrate the chemical processing industry technologies, and to integrate recommendations for future technology developments related to systems analysis for life support systems. The workshop included technical presentations, discussions, and interactive planning, with time allocated for discussion of both technology status and time-phased technology development recommendations. Key personnel from NASA, industry, and academia delivered inputs and presentations on the status and priorities of current and future systems analysis methods and requirements.
Thermo-chemical Ice Penetrator for Icy Moons
NASA Astrophysics Data System (ADS)
Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.
2016-12-01
The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be considered for infusion into a program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trovato, S.A.; Parry, J.O.
1995-03-01
Key to the safe and efficient operation of the nation`s civilian nuclear power plants is the performance of maintenance activities within regulations and guidelines for personnel radiation exposure. However, maintenance activities, often performed in areas of relatively high radiation fields, will increase as the nation`s plant age. With the Nuclear Regulatory Commission (NRC) lowering the allowable radiation exposure to plant workers in 1994 and considering further reductions and regulations in the future, it is imperative that new techniques be developed and applied to reduce personnel exposure. Full primary system chemical decontamination technology offers the potential to be single most effectivemore » method of maintaining workers exposure {open_quotes}as low as reasonably achievable{close_quotes} (ALARA) while greatly reducing plant operation and maintenance (O&M) costs. A three-phase program underway since 1987, has as its goal to demonstrate that full RCS decontamination is a visible technology to reduce general plant radiation levels without threatening the long term reliability and operability of a plant. This paper discusses research leading to and plans for a National Demonstration of Full RCS Chemical Decontamination at Indian Point 2 nuclear generating station in 1995.« less
TECHNOLOGIES FORM MONITORING AND ...
A demonstration of technologies for determining the presence of dioxin and dioxin-like compounds in soil and sediment was conducted under EPA's Superfund Innovative Technology Evaluation Program in Saginaw, Michigan in April 2004. This report describes the evaluation of Wako Pure Chemical Industries's Dioxin ELISA Kit. The kit is an immunoassay technique that reports toxicity equivalents (TEQ) of dioxin/furans. The sample units are in pg/g 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalents (EQ). The technology results were compared to high resolution mass spectrometry (HRMS) TEQ results generated using EPA Method 1613B.The Wako results were biased both positively and negatively relative to HRMS results. The technologys estimated method detection limit was 83-201 pg/g 2,3,7,8-TCDD EQ, but this should be considered a rough estimate. Results from this demonstration suggest that the Wako kit could be an effective screening tool for determining sample results above and below 20 pg/g TEQ, and even more effective as a screen for samples above and below 50 pg/g TEQ, particularly considering the cost to analyze the 209 demonstration samples was significantly less than that of the reference laboratory ($150,294 vs. $213,580), and all samples were analyzed on-site in 9 days (in comparison to the reference laboratory which took 8 months). The objective of this program is to promote the acceptance and use of innovative field technologies by providing well-documented per
Review of chemical and electrokinetic remediation of PCBs contaminated soils and sediments.
Fan, Guangping; Wang, Yu; Fang, Guodong; Zhu, Xiangdong; Zhou, Dongmei
2016-09-14
Polychlorinated biphenyls (PCBs) are manmade organic compounds, and pollution due to PCBs has been a global environmental problem because of their persistence, long-range atmospheric transport and bioaccumulation. Many physical, chemical and biological technologies have been utilized to remediate PCBs contaminated soils and sediments, and there are some emerging new technologies and combined methods that may provide cost-effective alternatives to the existing remediation practice. This review provides a general overview on the recent developments in chemical treatment and electrokinetic remediation (EK) technologies related to PCBs remediation. In particular, four technologies including photocatalytic degradation of PCBs combined with soil washing, Fe-based reductive dechlorination, advanced oxidation process, and EK/integrated EK technology (e.g., EK coupled with chemical oxidation, nanotechnology and bioremediation) are reviewed in detail. We focus on the fundamental principles and governing factors of chemical technologies, and EK/integrated EK technologies. Comparative analysis of these technologies including their major advantages and disadvantages is summarized. The existing problems and future prospects of these technologies regarding PCBs remediation are further highlighted.
Evolution of Regolith Feed Systems for Lunar ISRU 02 Production Plants
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Townsend, Ivan I., III; Mantovani, James G.; Metzger, Philip T.
2010-01-01
The In-Situ Resource Utilization (ISRU) project of the NASA Constellation Program, Exploration Technology Development Program (ETDP) has been engaged in the design and testing of various Lunar ISRU O2 production plant prototypes that can extract chemically bound oxygen from the minerals in the lunar regolith. This work demands that lunar regolith (or simulants) shall be introduced into the O2 production plant from a holding bin or hopper and subsequently expelled from the ISRU O2 production plant for disposal. This sub-system is called the Regolith Feed System (RFS) which exists in a variety of configurations depending on the O2 production plant oxygen being used (e.g. Hydrogen Reduction, Carbothermal, Molten Oxide Electrolysis). Each configuration may use a different technology and in addition it is desirable to have heat recuperation from the spent hot regolith as an integral part of the RFS. This paper addresses the various RFS and heat recuperation technologies and system configurations that have been developed under the NASA ISRU project since 2007. In addition current design solutions and lessons learned from reduced gravity flight testing will be discussed.
Material Protection, Accounting, and Control Technologies (MPACT): Modeling and Simulation Roadmap
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cipiti, Benjamin; Dunn, Timothy; Durbin, Samual
The development of sustainable advanced nuclear fuel cycles is a long-term goal of the Office of Nuclear Energy’s (DOE-NE) Fuel Cycle Technologies program. The Material Protection, Accounting, and Control Technologies (MPACT) campaign is supporting research and development (R&D) of advanced instrumentation, analysis tools, and integration methodologies to meet this goal. This advanced R&D is intended to facilitate safeguards and security by design of fuel cycle facilities. The lab-scale demonstration of a virtual facility, distributed test bed, that connects the individual tools being developed at National Laboratories and university research establishments, is a key program milestone for 2020. These tools willmore » consist of instrumentation and devices as well as computer software for modeling. To aid in framing its long-term goal, during FY16, a modeling and simulation roadmap is being developed for three major areas of investigation: (1) radiation transport and sensors, (2) process and chemical models, and (3) shock physics and assessments. For each area, current modeling approaches are described, and gaps and needs are identified.« less
NASA Astrophysics Data System (ADS)
Trinchenko, A. A.; Paramonov, A. P.
2017-10-01
Work is devoted to the solution of problems of energy efficiency increase in low power boilers at combustion of solid fuel. The technological method of nitrogen oxides decomposition on a surface of carbon particles with education environmentally friendly carbonic acid and molecular nitrogen is considered during the work of a low-temperature swirl fire chamber. Based on the analysis of physical and chemical processes of a fuel chemically connected energy transition into thermal, using the diffusive and kinetic theory of burning modern approaches the technique, mathematical model and the settlement program for assessment of plant ecological indicators when using a new method are developed. Alternative calculations of furnace process are carried out, quantitative assessment of nitrogen oxides emissions level of the reconstructed boiler is executed. The results of modeling and experimental data have approved that the organization of swirl burning increases overall performance of a fire chamber and considerably reduces emissions of nitrogen oxides.
Materials processing in space: Future technology trends
NASA Technical Reports Server (NTRS)
Barter, N. J.
1980-01-01
NASA's materials processing in space- (MPS) program involves both ground and space-based research and looks to frequent and cost effective access to the space environment for necessary progress. The first generation payloads for research are under active design and development. They will be hosted by the Space Shuttle/Spacelab on Earth orbital flights in the early 1980's. hese missions will focus on the acquisition of materials behavior research data, the potential enhancement of Earth based technology, and the implementation of space based processing for specialized, high value materials. Some materials to be studied in these payloads may provide future breakthroughs for stronger alloys, ultrapure glasses, superior electronic components, and new or better chemicals. An operational 25 kW power system is expected to be operational to support sustained, systematic space processing activity beyond shuttle capability for second generation payload systems for SPACELAB and free flyer missions to study solidification and crystal growth and to process metal/alloys, glasses/ceramics, and chemicals and biologicals.
2015-08-30
Solar Thermal Propulsion for Micro. Sats 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Matthew R. Gilpin 5d...ABSTRACT Solar thermal propulsion (STP) offers an unique combination of thrust and efficiency, providing greater total V capability than chemical...to conventional technologies. The trend in solar thermal research over the past two decades has been towards simplification and miniaturization to
1988-04-01
TECHNOLOGY TO PROTECT LAMINATED FIBERGLASS REIN- FORCES STRUCTURES FROM CHEMICAL AGENTS AND DECONTAMINANTS . FLAME0 RETARDENCY, ADHESION, ABRASION RESISTANCE...OFFICE: BRDC- PVD ALTHOUGH THERE ARE NO INTRINSIC CONFLICTS FOR THE SAME MATERIAL SYSTEMS TO ACHIEVE BOTH THE RADAR ABSORPTION AND THERMAL SUPPRESSION...VEHICLE TOPIC# 135 OFFICE: BRDC- PVD THE OBJECTIVE OF THE PHASE I RESEARCH AND DEVELOPMENT PROPOSED HEREIN IS TO DETERMINE WHICH MAJOR COMPONENTS OF THE
ECUT: Energy Conversion and Utilization Technologies program. Biocatalysis project
NASA Technical Reports Server (NTRS)
1990-01-01
The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of Universities, Industrial Companies and Government Research Laboratories. The Project's technical activities were organized into three work elements: molecular modeling and applied genetics; bioprocess engineering; and bioprocess design and assessment.
Real time monitoring of environmental crack growth in BWRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hale, D.; Diehl, C.G.
1988-01-01
A comprehensive field test program was recently completed at several Boiling Water Reactors (BWR) to quantify the effect of coolant impurities on the initiation and growth of stress corrosion cracks. A new technology was utilized which allows for real time monitoring of stress corrosion crack growth rates. The BWR environments were characterized using Ion Chromatography and Electro Chemical Potential (ECP) measurements. The effects of typical water chemistry transients and startups were quantified.
2011-05-20
management. Wastes generated at WPAFB include waste flammable solvents, contaminated fuels and lubricants, paint /coating, stripping chemicals, waste...Comprehensive Environmental Response, Compensation, and Liability Act CFR Code of Federal Regulations CO carbon monoxide CWA Clean Water Act CY calendar...Restoration Program IT International Technology Corporation JP-8 Jet Fuel-8 LBP lead-based paint g/m3 micrograms per cubic meter MCD Miami Conservancy
Information Management for Installation Restoration with Focus on Aberdeen Proving Ground, Maryland
1993-08-01
savings. Edgewood Area Project Background EA has been the site of extensive military munitions testing and disposal for over 70 years. Onsite burial of...titled "Installation Restoration Data Manage- ment Information System" (IRDMIS). This program, begun in 1975, has undergone several updates as technology ...collocated with AEC on EA, Maryland. Data from geotechnical chemical analysis and field survey results are supplied by AEC-authorized contractors and
2009-05-01
Three (NAMRU-3) - Lima, Peru : Naval Medical Research Center Detachment (NMRCD) *These labs are co-located. To provide some measure of the scope and...Aceh, Indonesia and the more recent earthquakes in central Java and Peru . Edgewood Chemical Biological Center (ECBC) ECBC’s science and technology... diabetes , obesity, cancer, psychiatric disorders, problems of pregnancy, AIDS, hepatitis, malaria, parasitic infections, and a host of other
P80 SRM low torque flex-seal development - thermal and chemical modeling of molding process
NASA Astrophysics Data System (ADS)
Descamps, C.; Gautronneau, E.; Rousseau, G.; Daurat, M.
2009-09-01
The development of the flex-seal component of the P80 nozzle gave the opportunity to set up new design and manufacturing process methods. Due to the short development lead time required by VEGA program, the usual manufacturing iterative tests work flow, which is usually time consuming, had to be enhanced in order to use a more predictive approach. A newly refined rubber vulcanization description was built up and identified on laboratory samples. This chemical model was implemented in a thermal analysis code. The complete model successfully supports the manufacturing processes. These activities were conducted with the support of ESA/CNES Research & Technologies and DGA (General Delegation for Armament).
NASA Astrophysics Data System (ADS)
Kirvelis, Dobilas; Beitas, Kastytis
2008-10-01
The aim of this work is to show that the essence of life and living systems is their organization as bioinformational technology on the base of informational anticipatory control. Principal paradigmatic and structural schemes of functional organization of life (organisms and their systems) are constructed on the basis of systemic analysis and synthesis of main phenomenological features of living world. Life is based on functional elements that implement engineering procedures of closed-loop coding-decoding control (CL-CDC). Phenomenon of natural bioinformational control appeared and developed on the Earth 3-4 bln years ago, when the life originated as a result of chemical and later biological evolution. Informatics paradigm considers the physical and chemical transformations of energy and matter in organized systems as flows that are controlled and the signals as means for purposive informational control programs. The social and technical technological systems as informational control systems are a latter phenomenon engineered by man. The information emerges in organized systems as a necessary component of control technology. Generalized schemes of functional organization on levels of cell, organism and brain neocortex, as the highest biosystem with CL-CDC, are presented. CL-CDC concept expands the understanding of bioinformatics.
Application of High-Throughput In Vitro Assays for Risk-Based ...
Multiple drivers shape the types of human-health assessments performed on chemicals by U.S. EPA resulting in chemical assessments are “fit-for-purpose” ranging from prioritization for further testing to full risk assessments. Layered on top of the diverse assessment needs are the resource intensive nature of traditional toxicological studies used to test chemicals and the lack of toxicity information on many chemicals. To address these challenges, the Agency initiated the ToxCast program to screen thousands of chemicals across hundreds of high-throughput screening assays in concentrations-response format. One of the findings of the project has been that the majority of chemicals interact with multiple biological targets within a narrow concentration range and the extent of interactions increases rapidly near the concentration causing cytotoxicity. This means that application of high-throughput in vitro assays to chemical assessments will need to identify both the relative selectivity at chemicals interact with biological targets and the concentration at which these interactions perturb signaling pathways. The integrated analyses will be used to both define a point-of-departure for comparison with human exposure estimates and identify which chemicals may benefit from further studies in a mode-of-action or adverse outcome pathway framework. The application of new technologies in a risk-based, tiered manner provides flexibility in matching throughput and cos
Background: Chemical toxicity testing is being transformed by advances in biology and computer modeling, concerns over animal use and the thousands of environmental chemicals lacking toxicity data. EPA's ToxCast program aims to address these concerns by screening and prioritizing chemicals for potential human toxicity using in vitro assays and in silico approaches. Objectives: This project aims to evaluate the use of in vitro assays for understanding the types of molecular and pathway perturbations caused by environmental chemicals and to build initial prioritization models of in vivo toxicity. Methods: We tested 309 mostly pesticide active chemicals in 467 assays across 9 technologies, including high-throughput cell-free assays and cell-based assays in multiple human primary cells and cell lines, plus rat primary hepatocytes. Both individual and composite scores for effects on genes and pathways were analyzed. Results: Chemicals display a broad spectrum of activity at the molecular and pathway levels. Many expected interactions are seen, including endocrine and xenobiotic metabolism enzyme activity. Chemicals range in promiscuity across pathways, from no activity to affecting dozens of pathways. We find a statistically significant inverse association between the number of pathways perturbed by a chemical at low in vitro concentrations and the lowest in vivo dose at which a chemical causes toxicity. We also find associations between a small set in vitro ass
20150325 - Application of High-Throughput In Vitro Assays for ...
Multiple drivers shape the types of human-health assessments performed on chemicals by U.S. EPA resulting in chemical assessments are “fit-for-purpose” ranging from prioritization for further testing to full risk assessments. Layered on top of the diverse assessment needs are the resource intensive nature of traditional toxicological studies used to test chemicals and the lack of toxicity information on many chemicals. To address these challenges, the Agency initiated the ToxCast program to screen thousands of chemicals across hundreds of high-throughput screening assays in concentrations-response format. One of the findings of the project has been that the majority of chemicals interact with multiple biological targets within a narrow concentration range and the extent of interactions increases rapidly near the concentration causing cytotoxicity. This means that application of high-throughput in vitro assays to chemical assessments will need to identify both the relative selectivity at chemicals interact with biological targets and the concentration at which these interactions perturb signaling pathways. The integrated analyses will be used to both define a point-of-departure for comparison with human exposure estimates and identify which chemicals may benefit from further studies in a mode-of-action or adverse outcome pathway framework. The application of new technologies in a risk-based, tiered manner provides flexibility in matching throughput and cos
Wang, Zhenjun; Zeng, Jing; Song, Hao; Li, Feng
2017-05-01
Near-well ultrasonic processing technology attracts more attention due to its simple operation, high adaptability, low cost and no pollution to the formation. Although this technology has been investigated in detail through laboratory experiments and field tests, systematic and intensive researches are absent for certain major aspects, such as whether ultrasonic excitation is better than chemical agent for any plugs removal; whether ultrasound-chemical combination plug removal technology has the best plugs removal effect. In this paper, the comparison of removing drilling fluid plug, paraffin deposition plug, polymer plug and inorganic scale plug using ultrasonic excitation, chemical agent and ultrasound-chemical combination plug removal technology is investigated. Results show that the initial core permeability and ultrasonic frequency play a significant role in plug removal. Ultrasonic excitation and chemical agent have different impact on different plugs. The comparison results show that the effect of removing any plugs using ultrasound-chemicals composite plug removal technology is obviously better than that using ultrasonic excitation or chemical agent alone. Such conclusion proves that ultrasonic excitation and chemical agent can cause synergetic effects. Copyright © 2016 Elsevier B.V. All rights reserved.
General Atomics Sciences Education Foundation Outreach Programs
NASA Astrophysics Data System (ADS)
Winter, Patricia S.
1997-11-01
Scientific literacy for all students is a national goal. The General Atomics (GA) Foundation Outreach Program is committed to playing a major role in enhancing pre-college education in science, engineering and new technologies. GA has received wide recognition for its Sciences Education Program, a volunteer effort of GA employees and San Diego science teachers. GA teacher/scientist teams have developed inquiry-based education modules and associated workshops based on areas of core competency at GA: Fusion -- Energy of the Stars; Explorations in Materials Science; Portrait of an Atom; DNA Technology. [http://www.sci-ed-ga.org]. Workshops [teachers receive printed materials and laboratory kits for ``hands-on" modules] have been presented for 700+ teachers from 200+ area schools. Additional workshops include: University of Denver for Denver Public Schools; National Educators Workshop; Standard Experiments in Engineering Materials; Update '96 in Los Alamos; Newspapers in Education Workshop (LA Times); American Chemical Society Regional/National meetings, and California Science Teachers Association Conference. Other outreach includes High School Science Day, school partnerships, teacher and student mentoring and the San Diego Science Alliance [http://www.sdsa.org].
Bütschli dynamic droplet system.
Armstrong, Rachel; Hanczyc, Martin
2013-01-01
Dynamical oil-water systems such as droplets display lifelike properties and may lend themselves to chemical programming to perform useful work, specifically with respect to the built environment. We present Bütschli water-in-oil droplets as a model for further investigation into the development of a technology with living properties. Otto Bütschli first described the system in 1898, when he used alkaline water droplets in olive oil to initiate a saponification reaction. This simple recipe produced structures that moved and exhibited characteristics that resembled, at least superficially, the amoeba. We reconstructed the Bütschli system and observed its life span under a light microscope, observing chemical patterns and droplet behaviors in nearly three hundred replicate experiments. Self-organizing patterns were observed, and during this dynamic, embodied phase the droplets provided a means of introducing temporal and spatial order in the system with the potential for chemical programmability. The authors propose that the discrete formation of dynamic droplets, characterized by their lifelike behavior patterns, during a variable window of time (from 30 s to 30 min after the addition of alkaline water to the oil phase), qualify this system as an example of living technology. The analysis of the Bütschli droplets suggests that a set of conditions may precede the emergence of lifelike characteristics and exemplifies the richness of this rudimentary chemical system, not only for artificial life investigations but also for possible real-world applications in architectural practice.
Low Loss Graded Index Polymer Optical Fiber for Local Networking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Claus, Richard Otto
The objective of this Department of Energy SBIR program has been to develop technology for the advancement of advanced computing systems. NanoSonic worked with two subcontractors, the Polymicro Division of Molex, a U.S.-based manufacturer of specialized optical fiber and fiber components, and Virginia Tech, a research university involved through the Global Environment for Network Innovations (GENI) program in high-speed computer networking research. NanoSonic developed a patented molecular-level self-assembly process to manufacture polymer-based optical fibers in a way similar to the modified chemical vapor deposition (MCVD) approach typically used to make glass optical fibers. Although polymer fiber has a higher attenuationmore » per unit length than glass fiber, short connectorized polymer fiber jumpers offer significant cost savings over their glass counterparts, particularly due to the potential use of low-cost plastic fiber connectors. As part of the SBIR commercialization process, NanoSonic exclusively licensed this technology to a large ($100B+ market cap) U.S.-based manufacturing conglomerate near the end of the first year of the Phase II program. With this base technology developed and licensed, NanoSonic then worked with Polymicro to address secondary program goals of using related but not conflicting production methods to enhance the performance of other specialty optical fiber products and components, and Virginia Tech continued its evaluation of developed polymer fibers in its network infrastructure system on the university campus. We also report our current understanding of the observation during the Phase I program of quantum conductance and partial quantum conductance in metal-insulator-metal (MIM) devices. Such conductance behavior may be modeled as singlemode behavior in one-dimensional electrically conducting waveguides, similar in principle to singlemode optical propagation in dielectric fiber waveguides. Although NanoSonic has not licensed any of the additional technology developed during the second year of the program, several proprietary discussions with major materials companies are underway as of the conclusion of Phase II.« less
Ultrasound‐assisted emerging technologies for chemical processes
Geertman, Rob; Wierschem, Matthias; Skiborowski, Mirko; Gielen, Bjorn; Jordens, Jeroen; John, Jinu J; Van Gerven, Tom
2018-01-01
Abstract The chemical industry has witnessed many important developments during past decades largely enabled by process intensification techniques. Some of them are already proven at commercial scale (e.g. reactive distillation) while others (e.g. ultrasound‐assisted extraction/crystallization/reaction) are on their way to becoming the next‐generation technologies. This article focuses on the advances of ultrasound (US)‐assisted technologies that could lead in the near future to significant improvements in commercial activities. The aim is to provide an authoritative discussion on US‐assisted technologies that are currently emerging from the research environment into the chemical industry, as well as give an overview of the current state‐of‐the‐art applications of US in chemical processing (e.g. enzymatic reactive distillation, crystallization of API). Sufficient information is included to allow the assessment of US‐assisted technologies and the challenges for implementation, as well as their potential for commercial applications. © 2017 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. PMID:29780194
NASA Astrophysics Data System (ADS)
Kriebel, Mary M.; Sanks, Terry M.
1992-02-01
Electric propulsion provides high specific impulses, and low thrust when compared to chemical propulsion systems. Therefore, electric propulsion offers improvements over chemical systems such as increased station-keeping time, prolonged on-orbit maneuverability, low acceleration of large structures, and increased launch vehicle flexibility. The anticipated near-term operational electric propulsion system for an electric orbit transfer vehicle is an arcjet propulsion system. Towards this end, the USAF's Phillips Laboratory (PL) has awarded a prime contract to TRW Space & Technology Group to design, build, and space qualify a 30-kWe class arcjet as well as develop and demonstrate, on the ground, a flight-qualified arcjet propulsion flight unit. The name of this effort is the 30 kWe Class Arcjet Advanced Technology Transition Demonstration (Arcjet ATTD) program. Once the flight unit has completed its ground qualification test, it will be given to the Space Test and Transportation Program Office of the Air Force's Space Systems Division (ST/T) for launch vehicle integration and space test. The flight unit's space test is known as the Electric Propulsion Space Experiment (ESEX). ESEX's mission scenario is 10 firings of 15 minutes each. The objectives of the ESEX flight are to measure arcjet plume deposition, electromagnetic interference, thermal radiation, and acceleration in space. Plume deposition, electromagnetic interference, and thermal radiation are operational issues that are primarily being answered for operational use. This paper describes the Arcjet ATTD flight unit design and identifies specifically how the diagnostic data will be collected as part of the ESEX program.
Chemical Looping Technology: Oxygen Carrier Characteristics.
Luo, Siwei; Zeng, Liang; Fan, Liang-Shih
2015-01-01
Chemical looping processes are characterized as promising carbonaceous fuel conversion technologies with the advantages of manageable CO2 capture and high energy conversion efficiency. Depending on the chemical looping reaction products generated, chemical looping technologies generally can be grouped into two types: chemical looping full oxidation (CLFO) and chemical looping partial oxidation (CLPO). In CLFO, carbonaceous fuels are fully oxidized to CO2 and H2O, as typically represented by chemical looping combustion with electricity as the primary product. In CLPO, however, carbonaceous fuels are partially oxidized, as typically represented by chemical looping gasification with syngas or hydrogen as the primary product. Both CLFO and CLPO share similar operational features; however, the optimum process configurations and the specific oxygen carriers used between them can vary significantly. Progress in both CLFO and CLPO is reviewed and analyzed with specific focus on oxygen carrier developments that characterize these technologies.
Life support systems analysis and technical trades for a lunar outpost
NASA Technical Reports Server (NTRS)
Ferrall, J. F.; Ganapathi, G. B.; Rohatgi, N. K.; Seshan, P. K.
1994-01-01
The NASA/JPL life support systems analysis (LISSA) software tool was used to perform life support system analysis and technology trades for a Lunar Outpost. The life support system was modeled using a chemical process simulation program on a steady-state, one-person, daily basis. Inputs to the LiSSA model include metabolic balance load data, hygiene load data, technology selection, process operational assumptions and mission parameter assumptions. A baseline set of technologies has been used against which comparisons have been made by running twenty-two cases with technology substitutions. System, subsystem, and technology weights and powers are compared for a crew of 4 and missions of 90 and 600 days. By assigning a weight value to power, equivalent system weights are compared. Several less-developed technologies show potential advantages over the baseline. Solid waste treatment technologies show weight and power disadvantages but one could have benefits associated with the reduction of hazardous wastes and very long missions. Technology development towards reducing the weight of resupplies and lighter materials of construction was recommended. It was also recommended that as technologies are funded for development, contractors should be required to generate and report data useful for quantitative technology comparisons.
A scientific assessment of a new technology orbital telescope
NASA Technical Reports Server (NTRS)
1995-01-01
As part of a program designed to test the Alpha chemical laser weapons system in space, the Ballistic Missile Defense Organization (BMDO) developed components of an agile, lightweight, 4-meter telescope, equipped with an advanced active-optics system. BMDO had proposed to make space available in the telescope's focal plane for instrumentation optimized for scientific applications in astrophysics and planetary astronomy for a potential flight mission. Such a flight mission could be undertaken if new or additional sponsorship can be found. Despite this uncertainty, BMDO requested assistance in defining the instrumentation and other design aspects necessary to enhance the scientific value of a pointing and tracking mission. In response to this request, the Space Studies Board established the Task Group on BMDO New Technology Orbital Observatory (TGBNTOO) and charged it to: (1) provide instrumentation, data management, and science-operations advice to BMDO to optimize the scientific value of a 4-meter mission; and (2) support a space studies board assessment of the relative scientific merit of the program. This report deals with the first of these tasks, assisting the Advanced Technology Demonstrator's (ATD's) program scientific potential. Given the potential scientific aspects of the 4-meter telescope, this project is referred to as the New Technology Orbital Telescope (NTOT), or as the ATD/NTOT, to emphasize its dual-use character. The task group's basic conclusion is that the ATD/NTOT mission does have the potential for contributing in a major way to astronomical goals.
The Transfer of Chemical Knowledge: The Case of Chemical Technology and its Textbooks
NASA Astrophysics Data System (ADS)
Lundgren, Anders
2006-11-01
This paper is a study of textbooks in chemical technology in Sweden during the industrialisation in the 19th century. In this period, teaching in technological education in general became more and more founded on science. However, there existed very few textbooks in chemical technology, and it is argued that the reason was that the essentials of the knowledge used for developing chemical industry were of a tacit and local character. Such knowledge could only with difficulty be transferred through textbooks with scientific ambitions. Thus the textbooks written or translated by scientists were not as widely used as the ones written or translated by chemical engineers. The usefulness of the latter group can be explained by the fact that they had been adapted to local circumstances, and expressed generalisations, not as scientific laws, but as rules of thumb. Finally, a model for the diffusion of knowledge is suggested, by which the role of textbooks in chemical technology better can be understood.
Programmable chemical controllers made from DNA.
Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg
2013-10-01
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.
Application of Biocatalysis to on-DNA Carbohydrate Library Synthesis.
Thomas, Baptiste; Lu, Xiaojie; Birmingham, William R; Huang, Kun; Both, Peter; Reyes Martinez, Juana Elizabeth; Young, Robert J; Davie, Christopher P; Flitsch, Sabine L
2017-05-04
DNA-encoded libraries are increasingly used for the discovery of bioactive lead compounds in high-throughput screening programs against specific biological targets. Although a number of libraries are now available, they cover limited chemical space due to bias in ease of synthesis and the lack of chemical reactions that are compatible with DNA tagging. For example, compound libraries rarely contain complex biomolecules such as carbohydrates with high levels of functionality, stereochemistry, and hydrophilicity. By using biocatalysis in combination with chemical methods, we aimed to significantly expand chemical space and generate generic libraries with potentially better biocompatibility. For DNA-encoded libraries, biocatalysis is particularly advantageous, as it is highly selective and can be performed in aqueous environments, which is an essential feature for this split-and-mix library technology. In this work, we demonstrated the application of biocatalysis for the on-DNA synthesis of carbohydrate-based libraries by using enzymatic oxidation and glycosylation in combination with traditional organic chemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Programmable chemical controllers made from DNA
NASA Astrophysics Data System (ADS)
Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg
2013-10-01
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language' and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents.
Programmable chemical controllers made from DNA
Chen, Yuan-Jyue; Dalchau, Neil; Srinivas, Niranjan; Phillips, Andrew; Cardelli, Luca; Soloveichik, David; Seelig, Georg
2014-01-01
Biological organisms use complex molecular networks to navigate their environment and regulate their internal state. The development of synthetic systems with similar capabilities could lead to applications such as smart therapeutics or fabrication methods based on self-organization. To achieve this, molecular control circuits need to be engineered to perform integrated sensing, computation and actuation. Here we report a DNA-based technology for implementing the computational core of such controllers. We use the formalism of chemical reaction networks as a 'programming language', and our DNA architecture can, in principle, implement any behaviour that can be mathematically expressed as such. Unlike logic circuits, our formulation naturally allows complex signal processing of intrinsically analogue biological and chemical inputs. Controller components can be derived from biologically synthesized (plasmid) DNA, which reduces errors associated with chemically synthesized DNA. We implement several building-block reaction types and then combine them into a network that realizes, at the molecular level, an algorithm used in distributed control systems for achieving consensus between multiple agents. PMID:24077029
An overview of Japanese CELSS research activities
NASA Technical Reports Server (NTRS)
Nitta, Keiji
1987-01-01
Development of Controlled Ecological Life Support System (CELSS) technology is inevitable for future long duration stays of human beings in space, for lunar base construction and for manned Mars flight programs. CELSS functions can be divided into 2 categories, Environmental Control and Material Recycling. Temperature, humidity, total atmospheric pressure and partial pressure of oxygen and carbon dioxide, necessary for all living things, are to be controlled by the environment control function. This function can be performed by technologies already developed and used as the Environment Control Life Support System (ECLSS) of Space Shuttle and Space Station. As for material recycling, matured technologies have not yet been established for fully satisfying the specific metabolic requirements of each living thing including human beings. Therefore, research activities for establishing CELSS technology should be focused on material recycling technologies using biological systems such as plants and animals and physico-chemical systems, for example, a gas recycling system, a water purifying and recycling system and a waste management system. Japanese research activities were conducted and will be continued accordingly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rhodie, K B; Mailhiot, C; Eaglesham, D
Lawrence Livermore National Laboratory's mission is as clear today as it was in 1952 when the Laboratory was founded--to ensure our country's national security and the safety and reliability of its nuclear deterrent. As a laboratory pursuing applied science in the national interest, we strive to accomplish our mission through excellence in science and technology. We do this while developing and implementing sound and robust business practices in an environment that emphasizes security and ensures our safety and the safety of the community around us. Our mission as a directorate derives directly from the Laboratory's charter. When I accepted themore » assignment of Associate Director for Chemistry and Materials Science (CMS), I talked to you about the need for strategic balance and excellence in all our endeavors. We also discussed how to take the directorate to the next level. The long-range CMS strategic plan presented here was developed with this purpose in mind. It also aligns with the Lab's institutional long-range science and technology plan and its 10-year facilities and infrastructure site plan. The plan is aimed at ensuring that we fulfill our directorate's two governing principles: (1) delivering on our commitments to Laboratory programs and sponsors, and (2) anticipating change and capitalizing on opportunities through innovation in science and technology. This will require us to attain a new level of creativity, agility, and flexibility as we move forward. Moreover, a new level of engagement in partnerships with other directorates across the Laboratory as well as with universities and other national labs will also be required. The group of managers and staff that I chartered to build a strategic plan identified four organizing themes that define our directorate's work and unite our staff with a set of common goals. The plan presented here explains how we will proceed in each of these four theme areas: (1) Materials properties and performance under extreme conditions--Fundamental investigations of the properties and performance of states of matter under extreme dynamic, environmental, and nanoscale conditions, with an emphasis on materials of interest to Laboratory programs and mission needs. (2) Chemistry under extreme conditions and chemical engineering to support national security programs--Insights into the chemical reactions of energetic materials in the nuclear stockpile through models of molecular response to extreme conditions of temperature and pressure, advancing a new technique for processing energetic materials by using sol-gel chemistry, providing materials for NIF optics, and furthering developments to enhance other high-power lasers. (3) Science supporting national objectives at the intersection of chemistry, materials science, and biology--Multidisciplinary research for developing new technologies to combat chemical and biological terrorism, to monitor changes in the nation's nuclear stockpile, and to enable the development and application of new physical-science-based methodologies and tools for fundamental biology studies and human health applications. (4) Applied nuclear science for human health and national security: Nuclear science research that is used to develop new methods and technologies for detecting and attributing nuclear materials, assisting Laboratory programs that require nuclear and radiochemical expertise in carrying out their missions, discovering new elements in the periodic table, and finding ways of detecting and understanding cellular response to radiation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The purpose of this report is to summarize the activities of the Analytical Chemistry Laboratory (ACL) at Argonne National Laboratory (ANL) for Fiscal Year (FY) 1993 (October 1992 through September 1993). This annual report is the tenth for the ACL and describes continuing effort on projects, work on new projects, and contributions of the ACL staff to various programs at ANL. The Analytical Chemistry Laboratory is a full-cost-recovery service center, with the primary mission of providing a broad range of analytical chemistry support services to the scientific and engineering programs at ANL. The ACL also has research programs in analyticalmore » chemistry, conducts instrumental and methods development, and provides analytical services for governmental, educational, and industrial organizations. The ACL handles a wide range of analytical problems. Some routine or standard analyses are done, but it is common for the Argonne programs to generate unique problems that require development or modification of methods and adaption of techniques to obtain useful analytical data. The ACL is administratively within the Chemical Technology Division (CMT), its principal ANL client, but provides technical support for many of the technical divisions and programs at ANL. The ACL has four technical groups--Chemical Analysis, Instrumental Analysis, Organic Analysis, and Environmental Analysis--which together include about 45 technical staff members. Talents and interests of staff members cross the group lines, as do many projects within the ACL.« less
46 CFR 16.205 - Implementation of chemical testing programs.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Implementation of chemical testing programs. 16.205... CHEMICAL TESTING Required Chemical Testing § 16.205 Implementation of chemical testing programs. (a) When a...) Upon written request of an employer, Commandant (CG-545) will review the employer's chemical testing...
46 CFR 16.205 - Implementation of chemical testing programs.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 1 2011-10-01 2011-10-01 false Implementation of chemical testing programs. 16.205... CHEMICAL TESTING Required Chemical Testing § 16.205 Implementation of chemical testing programs. (a) When a...) Upon written request of an employer, Commandant (CG-545) will review the employer's chemical testing...
46 CFR 16.205 - Implementation of chemical testing programs.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 1 2013-10-01 2013-10-01 false Implementation of chemical testing programs. 16.205... CHEMICAL TESTING Required Chemical Testing § 16.205 Implementation of chemical testing programs. (a) When a...) Upon written request of an employer, Commandant (CG-INV) will review the employer's chemical testing...
46 CFR 16.205 - Implementation of chemical testing programs.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 1 2014-10-01 2014-10-01 false Implementation of chemical testing programs. 16.205... CHEMICAL TESTING Required Chemical Testing § 16.205 Implementation of chemical testing programs. (a) When a...) Upon written request of an employer, Commandant (CG-INV) will review the employer's chemical testing...
46 CFR 16.205 - Implementation of chemical testing programs.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 1 2012-10-01 2012-10-01 false Implementation of chemical testing programs. 16.205... CHEMICAL TESTING Required Chemical Testing § 16.205 Implementation of chemical testing programs. (a) When a...) Upon written request of an employer, Commandant (CG-INV) will review the employer's chemical testing...
Safety management of complex research operators
NASA Technical Reports Server (NTRS)
Brown, W. J.
1981-01-01
Complex research and technology operations present varied potential hazards which are addressed in a disciplined, independent safety review and approval process. Potential hazards vary from high energy fuels to hydrocarbon fuels, high pressure systems to high voltage systems, toxic chemicals to radioactive materials and high speed rotating machinery to high powered lasers. A Safety Permit System presently covers about 600 potentially hazardous operations. The Safety Management Program described is believed to be a major factor in maintaining an excellent safety record.
Safety Control and Safety Education at Technical Institutes
NASA Astrophysics Data System (ADS)
Iino, Hiroshi
The importance of safety education for students at technical institutes is emphasized on three grounds including safety of all working members and students in their education, research and other activities. The Kanazawa Institute of Technology re-organized the safety organization into a line structure and improved safety minds of all their members and now has a chemical materials control system and a set of compulsory safety education programs for their students, although many problems still remain.
Laboratory directed research and development program FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-03-01
This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.
2009-05-01
both space and terrestrial (defense, automotive , computer, etc.) uses . NSF, EPA: These agencies funded the second Center for Environmental...performance of nanomaterials in commercial products within widely different industries , including aerospace, automotive , chemical, food, forest products...each of its nanotechnology R&D programs in order to foster a rapid transition from R&D to agency/ industry dual- use . Industry partners have included
Commercial objectives, technology transfer, and systems analysis for fusion power development
NASA Astrophysics Data System (ADS)
Dean, Stephen O.
1988-03-01
Fusion is an essentially inexhaustible source of energy that has the potential for economically attractive commercial applications with excellent safety and environmental characteristics. The primary focus for the fusion-energy development program is the generation of centralstation electricity. Fusion has the potential, however, for many other applications. The fact that a large fraction of the energy released in a DT fusion reaction is carried by high-energy neutrons suggests potentially unique applications. These include breeding of fissile fuels, production of hydrogen and other chemical products, transmutation or “burning” of various nuclear or chemical wastes, radiation processing of materials, production of radioisotopes, food preservation, medical diagnosis and medical treatment, and space power and space propulsion. In addition, fusion R&D will lead to new products and new markets. Each fusion application must meet certain standards of economic and safety and environmental attractiveness. For this reason, economics on the one hand, and safety and environment and licensing on the other hand, are the two primary criteria for setting long-range commercial fusion objectives. A major function of systems analysis is to evaluate the potential of fusion against these objectives and to help guide the fusion R&D program toward practical applications. The transfer of fusion technology and skills from the national laboratories and universities to industry is the key to achieving the long-range objective of commercial fusion applications.
Modern Chemical Technology, Volume 5.
ERIC Educational Resources Information Center
Pecsok, Robert L., Ed.; Chapman, Kenneth, Ed.
This volume contains chapters 26-31 for the American Chemical Society (ACS) "Modern Chemical Technology" (ChemTeC) instructional material intended to prepare chemical technologists. Chapter 26 reviews oxidation and reduction, including applications in titrations with potassium permanganate and iodometry. Coordination compounds are…
Using carbon dioxide in fisheries and aquatic invasive species management
Treanor, Hilary B.; Ray, Andrew M.; Layhee, Megan J.; Watten, Barnaby J.; Gross, Jason A.; Gresswell, Robert E.; Webb, Molly A. H.
2017-01-01
To restore native fish populations, fisheries programs often depend on active removal of aquatic invasive species. Chemical removal can be an effective method of eliminating aquatic invasive species, but chemicals can induce mortality in nontarget organisms and persist in the environment. Carbon dioxide (CO2) is an emerging alternative to traditional chemical control agents because it has been demonstrated to be toxic to fish, but is naturally occurring and readily neutralized. In addition, CO2 is a commercially available gas, is highly soluble, and has high absorption efficiency. When these characteristics are paired with advances in modern, large-scale gas delivery technologies, opportunities to use CO2 in natural or artificial (e.g., canals) waters to manage fish become increasingly feasible. Our objective is to describe the history of CO2 use in fisheries and outline potential future applications of CO2 to suppress and manipulate aquatic species in field and aquaculture settings.
Development of a security vulnerability assessment process for the RAMCAP chemical sector.
Moore, David A; Fuller, Brad; Hazzan, Michael; Jones, J William
2007-04-11
The Department of Homeland Security (DHS), Directorate of Information Analysis & Infrastructure Protection (IAIP), Protective Services Division (PSD), contracted the American Society of Mechanical Engineers Innovative Technologies Institute, LLC (ASME ITI, LLC) to develop guidance on Risk Analysis and Management for Critical Asset Protection (RAMCAP). AcuTech Consulting Group (AcuTech) has been contracted by ASME ITI, LLC, to provide assistance by facilitating the development of sector-specific guidance on vulnerability analysis and management for critical asset protection for the chemical manufacturing, petroleum refining, and liquefied natural gas (LNG) sectors. This activity involves two key tasks for these three sectors: Development of a screening to supplement DHS understanding of the assets that are important to protect against terrorist attack and to prioritize the activities. Development of a standard security vulnerability analysis (SVA) framework for the analysis of consequences, vulnerabilities, and threats. This project involves the cooperative effort of numerous leading industrial companies, industry trade associations, professional societies, and security and safety consultants representative of those sectors. Since RAMCAP is a voluntary program for ongoing risk management for homeland security, sector coordinating councils are being asked to assist in communicating the goals of the program and in encouraging participation. The RAMCAP project will have a profound and positive impact on all sectors as it is fully developed, rolled-out and implemented. It will help define the facilities and operations of national and regional interest for the threat of terrorism, define standardized methods for analyzing consequences, vulnerabilities, and threats, and describe best security practices of the industry. This paper will describe the results of the security vulnerability analysis process that was developed and field tested for the chemical manufacturing sector. This method was developed through the cooperation of the many organizations and the individuals involved from the chemical sector RAMCAP development activities. The RAMCAP SVA method is intended to provide a common basis for making vulnerability assessments and risk-based decisions for homeland security. Mr. Moore serves as the coordinator for the chemical manufacturing, petroleum refining, and LNG sectors for the RAMCAP project and Dr. Jones is the chief technology officer for ASME-ITI, LLC for RAMCAP.
Kassotis, Christopher D.; Tillitt, Donald E.; Lin, Chung-Ho; McElroy, Jane A.; Nagel, Susan C.
2015-01-01
Background Hydraulic fracturing technologies, developed over the last 65 years, have only recently been combined with horizontal drilling to unlock oil and gas reserves previously deemed inaccessible. Although these technologies have dramatically increased domestic oil and natural gas production, they have also raised concerns for the potential contamination of local water supplies with the approximately 1,000 chemicals that are used throughout the process, including many known or suspected endocrine-disrupting chemicals. Objectives We discuss the need for an endocrine component to health assessments for drilling-dense regions in the context of hormonal and antihormonal activities for chemicals used. Methods We discuss the literature on a) surface and groundwater contamination by oil and gas extraction operations, and b) potential human exposure, particularly in the context of the total hormonal and antihormonal activities present in surface and groundwater from natural and anthropogenic sources; we also discuss initial analytical results and critical knowledge gaps. Discussion In light of the potential for environmental release of oil and gas chemicals that can disrupt hormone receptor systems, we recommend methods for assessing complex hormonally active environmental mixtures. Conclusions We describe a need for an endocrine-centric component for overall health assessments and provide information supporting the idea that using such a component will help explain reported adverse health trends as well as help develop recommendations for environmental impact assessments and monitoring programs. Citation Kassotis CD, Tillitt DE, Lin CH, McElroy JA, Nagel SC. 2016. Endocrine-disrupting chemicals and oil and natural gas operations: potential environmental contamination and recommendations to assess complex environmental mixtures. Environ Health Perspect 124:256–264; http://dx.doi.org/10.1289/ehp.1409535 PMID:26311476
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmell, T.; Folga, S., Frey, G.; Molberg, J.
2001-04-30
This volume of the Technical Resource Document (TRD) for the ''Environmental Impact Statement (EIS) for the Design, Construction and Operation of One or More Pilot Test Facilities for Assembled Chemical Weapons Destruction Technologies at One or More Sites'' (PMACWA 2001c) pertains to the destruction of assembled chemical weapons (ACW) stored at Pueblo Chemical Depot (PCD), located outside Pueblo, Colorado. This volume presents technical and process information on each of the destruction technologies applicable to treatment of the specific ACW stored at PCD. The destruction technologies described are those that have been demonstrated during Phase I of the Assembled Chemical Weaponsmore » Assessment (ACWA) demonstration process (see Volume 1).« less
Modern Chemical Technology, Guidebook for Chemical Technicians.
ERIC Educational Resources Information Center
Pecsok, Robert L.; Chapman, Kenneth
This volume is a part of the ACS "Modern Chemical Technology" (ChemTeC) curriculum that is developed for chemical technicians. It is intended as a handbook that will be used throughout the instruction. Safety is stressed in eight of the ten chapters under the headings: safety in the chemical laboratory, personal protective equipment, fire safety…
Overall View of Chemical and Biochemical Weapons
Pitschmann, Vladimír
2014-01-01
This article describes a brief history of chemical warfare, which culminated in the signing of the Chemical Weapons Convention. It describes the current level of chemical weapons and the risk of using them. Furthermore, some traditional technology for the development of chemical weapons, such as increasing toxicity, methods of overcoming chemical protection, research on natural toxins or the introduction of binary technology, has been described. In accordance with many parameters, chemical weapons based on traditional technologies have achieved the limit of their development. There is, however, a big potential of their further development based on the most recent knowledge of modern scientific and technical disciplines, particularly at the boundary of chemistry and biology. The risk is even higher due to the fact that already, today, there is a general acceptance of the development of non-lethal chemical weapons at a technologically higher level. In the future, the chemical arsenal will be based on the accumulation of important information from the fields of chemical, biological and toxin weapons. Data banks obtained in this way will be hardly accessible and the risk of their materialization will persist. PMID:24902078
Overall view of chemical and biochemical weapons.
Pitschmann, Vladimír
2014-06-04
This article describes a brief history of chemical warfare, which culminated in the signing of the Chemical Weapons Convention. It describes the current level of chemical weapons and the risk of using them. Furthermore, some traditional technology for the development of chemical weapons, such as increasing toxicity, methods of overcoming chemical protection, research on natural toxins or the introduction of binary technology, has been described. In accordance with many parameters, chemical weapons based on traditional technologies have achieved the limit of their development. There is, however, a big potential of their further development based on the most recent knowledge of modern scientific and technical disciplines, particularly at the boundary of chemistry and biology. The risk is even higher due to the fact that already, today, there is a general acceptance of the development of non-lethal chemical weapons at a technologically higher level. In the future, the chemical arsenal will be based on the accumulation of important information from the fields of chemical, biological and toxin weapons. Data banks obtained in this way will be hardly accessible and the risk of their materialization will persist.
Final Progress Report for Award DE-FG07-05ID14637.pdf
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cathy Dixon
2012-03-09
2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missionsmore » in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.« less
Conservation and solar energy program: congressional budget request, FY 1982
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1981-01-01
Funding summaries are presented for the Conservation and Solar Energy Program funding information and program overview on energy conservation (Volume 7 of 7, DOE/CR-0011/2) are included for the Buildings and Community Systems, Industrial, Transportation; State and Local, Multi-Sector, Energy Impact Assistance, and Residential/Commercial retrofit programs. Funding information and program overviews on solar technology (Volume 2 of 7, DOE/CR-011/2) are included for Active and Passive Solar Heating and Cooling, Photovoltaics Energy Systems, Solar Thermal Power Systems, Biomass Energy Systems, Wind Energy Conversion Systems, Ocean Systems, Solar International Activities, Solar Information Systems, SERI Facility, MX-RES, Program Direction, and Alcohol Fuels programs. Informationmore » and overviews on energy production, demonstration, and distribution (Volume 6 of 7, DOE/CR-0011/2) are given for the solar program. A funding summary and a program overview are included for electrochemical and physical and chemical storage systems as appearing in DOE/CR-0011/2, Volume 3 of 7. Relevant tabulated data from the FY 1981. Request to the Congress are presented for Supplementals, Rescissions, and Deferrals. (MCW)« less
Internal fluid mechanics research on supercomputers for aerospace propulsion systems
NASA Technical Reports Server (NTRS)
Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.
1988-01-01
The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.
NASA Astrophysics Data System (ADS)
László, Gömze A.
2013-12-01
Competitiveness is one of the most important factors in our life and it plays a key role in the efficiency both of organizations and societies. The more scientifically supported and prepared organizations develop more competitive materials with better physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2nd International Conference on Competitive Materials and Technology Processes (ic-cmtp2) are the following: Promote new methods and results of scientific research in the fields of material, biological, environmental and technology sciences; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication between the scientist of different nations, countries and continents. Among the major fields of interest are materials with extreme physical, chemical, biological, medical, thermal, mechanical properties and dynamic strength; including their crystalline and nano-structures, phase transformations as well as methods of their technological processes, tests and measurements. Multidisciplinary applications of materials science and technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industry, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance to the program of the conference ic-cmtp2, more than 250 inquiries and registrations from different organizations were received. Researchers from 36 countries in Asia, Europe, Africa, North and South America arrived at the venue of conference. Including co-authors, the research work of more than 500 scientists are presented in this volume. Professor Dr Gömze A László Chair, ic-cmtp2 The PDF also contains lists of the boards, session chairs and sponsors.
TECHNOLOGY EVALUATION REPORT: PEROX-PURE CHEMICAL OXIDATION TECHNOLOGY
The report evaluates the perox-pure™ chemical oxidation technology's ability to remove volatile organic compounds (VOC) and other organic contaminants present in liquid wastes. The report also presents economic data from the Superfund Innovative Technology Evaluation (SITE) demon...
Preparation of Chemical Samples On Relevant Surfaces Using Inkjet Technology
2013-04-01
PREPARATION OF CHEMICAL SAMPLES ON RELEVANT SURFACES USING INKJET TECHNOLOGY...2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Preparation of Chemical Samples on Relevant Surfaces Using Inkjet Technology 5b. GRANT NUMBER...SUBJECT TERMS Surface detection Inkjet Simulant deposition 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF
Code of Federal Regulations, 2011 CFR
2011-01-01
... ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass destruction, or who are working on nuclear, chemical, biological, or other high-technology defense projects, as... production of ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass...
Code of Federal Regulations, 2010 CFR
2010-01-01
... ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass destruction, or who are working on nuclear, chemical, biological, or other high-technology defense projects, as... production of ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass...
Biomass from intensively cultured plantations as an energy, chemical, and nutritional feedstock
John E. Phelps
1983-01-01
Several technologies are described that have been developed to convert wood to fuel, chemicals or food products. Biomass from intensively cultured plantations has potential as a source of material for these energy related technologies. The technologies discussed here include: pyrolysis, gasification, liquefaction, hydrolysis, chemicals from lignin and hemicelluloses,...
CELSS research and development program
NASA Technical Reports Server (NTRS)
Bubenheim, David
1990-01-01
Research in Controlled Ecological Life Support Systems (CELSS) conducted by NASA indicate that plant based systems are feasible candidates for human support in space. Ames has responsibility for research and development, systems integration and control, and space flight experiment portions of the CELSS program. Important areas for development of new methods and technologies are biomass production, waste processing, water purification, air revitalization, and food processing. For the plant system, the approach was to identify the flexibility and response time for the food, water, and oxygen production, and carbon dioxide consumption processes. Tremendous increases in productivity, compared with terrestrial agriculture, were realized. Waste processing research emphasizes recycle (transformation) of human wastes, trash, and inedible biomass to forms usable as inputs to the plant production system. Efforts to improve efficiency of the plant system, select new CELSS crops for a balanced diet, and initiate closed system research with the Crop Growth Research Chambers continue. The System Control and Integration program goal is to insure orchestrated system operation of the biological, physical, and chemical operation of the biological, physical, and chemical component processors of the CELSS. Space flight studies are planned to verify adequate operation of the system in reduced gravity or microgravity environments.
DiTomaso, Joseph M; Van Steenwyk, Robert A; Nowierski, Robert M; Vollmer, Jennifer L; Lane, Eric; Chilton, Earl; Burch, Patrick L; Cowan, Phil E; Zimmerman, Kenneth; Dionigi, Christopher P
2017-01-01
Invasive species are one of the greatest economic and ecological threats to agriculture and natural areas in the US and the world. Among the available management tools, biological control provides one of the most economical and long-term effective strategies for managing widespread and damaging invasive species populations of nearly all taxa. However, integrating biological control programs in a more complete integrated pest management approach that utilizes increased information and communication, post-release monitoring, adaptive management practices, long-term stewardship strategies, and new and innovative ecological and genetic technologies can greatly improve the effectiveness of biological control. In addition, expanding partnerships among relevant national, regional, and local agencies, as well as academic scientists and land managers, offers far greater opportunities for long-term success in the suppression of established invasive species. In this paper we direct our recommendations to federal agencies that oversee, fund, conduct research, and develop classical biological control programs for invasive species. By incorporating these recommendations into adaptive management strategies, private and public land managers will have far greater opportunities for long-term success in suppression of established invasive species. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Kevin P.
2015-02-13
This final technical report details research works performed supported by a Department of Energy grant (DE-FE0003859), which was awarded under the University Coal Research Program administrated by National Energy Technology Laboratory. This research program studied high temperature fiber sensor for harsh environment applications. It developed two fiber optical sensor platform technology including regenerative fiber Bragg grating sensors and distributed fiber optical sensing based on Rayleigh backscattering optical frequency domain reflectometry. Through the studies of chemical and thermal regenerative techniques for fiber Bragg grating (FBG) fabrication, high-temperature stable FBG sensors were successfully developed and fabricated in air-hole microstructured fibers, high-attenuation fibers,more » rare-earth doped fibers, and standard telecommunication fibers. By optimizing the laser processing and thermal annealing procedures, fiber grating sensors with stable performance up to 1100°C have been developed. Using these temperature-stable FBG gratings as sensor platform, fiber optical flow, temperature, pressure, and chemical sensors have been developed to operate at high temperatures up to 800°C. Through the integration of on-fiber functional coating, the use of application-specific air-hole microstructural fiber, and application of active fiber sensing scheme, distributed fiber sensor for temperature, pressure, flow, liquid level, and chemical sensing have been demonstrated with high spatial resolution (1-cm or better) with wide temperature ranges. These include the demonstration of 1) liquid level sensing from 77K to the room temperature, pressure/temperature sensing from the room temperature to 800C and from the 15psi to 2000 psi, and hydrogen concentration measurement from 0.2% to 10% with temperature ranges from the room temperature to 700°C. Optical sensors developed by this program has broken several technical records including flow sensors with the highest operation temperature up to 750°C, first distributed chemical measurements at the record high temperature up to 700°C, first distributed pressure measurement at the record high temperature up to 800°C, and the fiber laser sensors with the record high operation temperature up to 700°C. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.« less
Modern Chemical Technology, Volume 6.
ERIC Educational Resources Information Center
Pecsok, Robert L., Ed.; Chapman, Kenneth, Ed.
This volume contains chapters 32-39 for the American Chemical Society (ACS) "Modern Chemical Technology" (ChemTeC) instructional materials intended to prepare chemical technologists. The study of organic chemistry is continued as these major topics are considered: alcohols and phenols, alkyl and aryl halides, ethers, aldehydes and…
NASA Technical Reports Server (NTRS)
Smith, W. W.
1981-01-01
The five major tasks of the program are reported. Task 1 is a literature search followed by selection and definition of seven generic spacecraft classes. Task 2 covers the determination and description of important disturbance effects. Task 3 applies the disturbances to the generic spacecraft and adds maneuver and stationkeeping functions to define total auxiliary propulsion systems requirements for control. The important auxiliary propulsion system characteristics are identified and sensitivities to control functions and large space system characteristics determined. In Task 4, these sensitivities are quantified and the optimum auxiliary propulsion system characteristics determined. Task 5 compares the desired characteristics with those available for both electrical and chemical auxiliary propulsion systems to identify the directions technology advances should take.
Public Health, Law, and Local Control: Destruction of the US Chemical Weapons Stockpile
Greenberg, Michael R.
2003-01-01
Destruction of US chemical weapons has begun at one of the 8 sites in the continental United States, was completed on Johnston Island in the Pacific Ocean, and is scheduled to begin in at least 3 other locations during the upcoming year. About 25% of the stockpile and 38% of the munitions had been destroyed as of December 31, 2002. However, the program has become controversial with regard to choice of technology, emergency management, and cost. This controversy is in large part due to efforts by some state and local governments and activist groups to play a more central role in a decisionmaking process that was once fully controlled by the US Army. PMID:12893599
MERCURY MEASUREMENTS USING DIRECT-ANALYZER ...
Under EPA's Water Quality Research Program, exposure studies are needed to determine how well control strategies and guidance are working. Consequently, reliable and convenient techniques that minimize waste production are of special interest. While traditional methods for determining mercury in solid samples involve the use of aggressive chemicals to dissolve the matrix and the use of other chemicals to properly reduce the mercury to the volatile elemental form, pyrolysis-based analyzers can be used by directly weighing the solid in a sampling boat and initiating the instrumental analysis for total mercury. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at con
Updated Heliostorm Warning Mission: Enhancements Based on New Technology
NASA Technical Reports Server (NTRS)
Young, Roy M.
2007-01-01
The Heliostorm (also referred to as Geostorm) mission has been regarded as the best choice for the first application of solar sail technology. The objective of Heliostorm is to obtain data from an orbit station slightly displaced from the ecliptic at or nearer to the Sun than 0.98 AU, which places it twice as close to the sun as Earth's natural L1 point at 0.993 AU. The maintenance of such an orbit location would require prohibitive amounts of propellants using chemical or electric propulsion systems; however, a solar sailcraft is ideally suited for this purpose because it relies solely on the propulsive force from photons for orbit maintenance. Heliostorm has been the subject of several mission studies over the past decade, with the most complete study conducted in 1999 in conjunction with a proposed New Millennium Program (NMP) Space Technology 5 (ST-5) flight opportunity. Recently, over a two and one-half year period dating from 2003 through 2005, NASA's In-Space Propulsion Technology Program (ISTP) matured solar sail technology from laboratory components to full systems, demonstrated in as relevant a space environment as could feasibly be simulated on the ground. Work under this program has yielded promising results for enhanced Heliostorm mission performance. This enhanced performance is achievable principally through reductions in the sail areal density. These reductions are realized through the use of lower linear mass density booms, a thinner sail membrane, and increased sail area. Advancements in sailcraft vehicle system design also offer potential mass reductions and hence improved performance. This paper will present the preliminary results of an updated Heliostorm mission design study including the enhancements incorporated during the design, development, analysis and testing of the system ground demonstrator.
Updated Heliostorm Warning Mission: Enhancements Based on New Technology
NASA Technical Reports Server (NTRS)
Young, Roy M.
2007-01-01
The Heliostorm (also referred to as Geostorm) mission has been regarded as the best choice for the first application of solar sail technology. The objective of Heliostorm is to obtain data from an orbit station slightly displaced from the ecliptic at or nearer to the Sun than 0.98 AU, which places it twice as dose to the sun as Earth's natural L1 point at 0.993 AU. The maintenance of such an orbit location would require prohibitive amounts of propellants using chemical or electric propulsion systems; however, a solar sailcraft is ideally suited for this purpose because it relies solely on the propulsive force from photons for orbit maintenance. Heliostorm has been the subject of several mission studies over the past decade, with the most complete study conducted in 1999 in conjunction with a proposed New Millennium Program (NMP) Space Technology 5 (ST-5) flight opportunity. Recently, over a two and one-half year period dating from 2003 through 2005, NASA's In-Space Propulsion Technology Program (ISTP) matured solar sail technology from laboratory components to full systems, demonstrated in as relevant a space environment as could feasibly be simulated on the ground. Work under this program has yielded promising results for enhanced Heliostorm mission performance. This enhanced performance is achievable principally through reductions in the sail areal density. These reductions are realized through the use of lower linear mass density booms, a thinner sail membrane, and increased sail area. Advancements in sailcraft vehicle system design also offer potential mass reductions and hence improved performance. This paper will present the preliminary results of an updated Heliostorm mission design study including the enhancements incorporated during the design, development, analysis and testing of the system ground demonstrator.
Technical area status report for waste destruction and stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dalton, J.D.; Harris, T.L.; DeWitt, L.M.
1993-08-01
The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less
DEVELOPMENT OF EMERGING TECHNOLOGIES WITHIN THE SITE PROGRAM
The Site Program is formed by five research programs: the Demonstration Program, the Emerging Technology Program, the Measurement and Monitoring Technology Development Program, the Innovative Technology Program, and the Technology Transfer Program. The Emerging Technology (ET) P...
Small rocket research and technology
NASA Technical Reports Server (NTRS)
Schneider, Steven; Biaglow, James
1993-01-01
Small chemical rockets are used on nearly all space missions. The small rocket program provides propulsion technology for civil and government space systems. Small rocket concepts are developed for systems which encompass reaction control for launch and orbit transfer systems, as well as on-board propulsion for large space systems and earth orbit and planetary spacecraft. Major roles for on-board propulsion include apogee kick, delta-V, de-orbit, drag makeup, final insertions, north-south stationkeeping, orbit change/trim, perigee kick, and reboost. The program encompasses efforts on earth-storable, space storable, and cryogenic propellants. The earth-storable propellants include nitrogen tetroxide (NTO) as an oxidizer with monomethylhydrazine (MMH) or anhydrous hydrazine (AH) as fuels. The space storable propellants include liquid oxygen (LOX) as an oxidizer with hydrazine or hydrocarbons such as liquid methane, ethane, and ethanol as fuels. Cryogenic propellants are LOX or gaseous oxygen (GOX) as oxidizers and liquid or gaseous hydrogen as fuels. Improved performance and lifetime for small chemical rockets are sought through the development of new predictive tools to understand the combustion and flow physics, the introduction of high temperature materials to eliminate fuel film cooling and its associated combustion inefficiency, and improved component designs to optimize performance. Improved predictive technology is sought through the comparison of both local and global predictions with experimental data. Results indicate that modeling of the injector and combustion process in small rockets needs improvement. High temperature materials require the development of fabrication processes, a durability data base in both laboratory and rocket environments, and basic engineering property data such as strength, creep, fatigue, and work hardening properties at both room and elevated temperature. Promising materials under development include iridium-coated rhenium and a ceramic composite of mixed hafnium carbide and tantalum carbide reinforced with graphite fibers.
Iwayanagi, Takao; Miyamoto, Sei; Konno, Takeshi; Mizutani, Hisashi; Hirai, Tomohiro; Shigemoto, Yasumasa; Gojobori, Takashi; Sugawara, Hideaki
2012-09-01
The Targeted Proteins Research Program (TPRP) promoted by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan is the phase II of structural biology project (2007-2011) following the Protein 3000 Project (2002-2006) in Japan. While the phase I Protein 3000 Project put partial emphasis on the construction and maintenance of pipelines for structural analyses, the TPRP is dedicated to revealing the structures and functions of the targeted proteins that have great importance in both basic research and industrial applications. To pursue this objective, 35 Targeted Proteins (TP) Projects selected in the three areas of fundamental biology, medicine and pharmacology, and food and environment are tightly collaborated with 10 Advanced Technology (AT) Projects in the four fields of protein production, structural analyses, chemical library and screening, and information platform. Here, the outlines and achievements of the 35 TP Projects are summarized in the system named TP Atlas. Progress in the diversified areas is described in the modules of Graphical Summary, General Summary, Tabular Summary, and Structure Gallery of the TP Atlas in the standard and unified format. Advances in TP Projects owing to novel technologies stemmed from AT Projects and collaborative research among TP Projects are illustrated as a hallmark of the Program. The TP Atlas can be accessed at http://net.genes.nig.ac.jp/tpatlas/index_e.html .
Solar Electric and Chemical Propulsion Technology Applications to a Titan Orbiter/Lander Mission
NASA Technical Reports Server (NTRS)
Cupples, Michael
2007-01-01
Several advanced propulsion technology options were assessed for a conceptual Titan Orbiter/Lander mission. For convenience of presentation, the mission was broken into two phases: interplanetary and Titan capture. The interplanetary phase of the mission was evaluated for an advanced Solar Electric Propulsion System (SEPS), while the Titan capture phase was evaluated for state-of-art chemical propulsion (NTO/Hydrazine), three advanced chemical propulsion options (LOX/Hydrazine, Fluorine/Hydrazine, high Isp mono-propellant), and advanced tank technologies. Hence, this study was referred to as a SEPS/Chemical based option. The SEPS/Chemical study results were briefly compared to a 2002 NASA study that included two general propulsion options for the same conceptual mission: an all propulsive based mission and a SEPS/Aerocapture based mission. The SEP/Chemical study assumed identical science payload as the 2002 NASA study science payload. The SEPS/Chemical study results indicated that the Titan mission was feasible for a medium launch vehicle, an interplanetary transfer time of approximately 8 years, an advanced SEPS (30 kW), and current chemical engine technology (yet with advanced tanks) for the Titan capture. The 2002 NASA study showed the feasibility of the mission based on a somewhat smaller medium launch vehicle, an interplanetary transfer time of approximately 5.9 years, an advanced SEPS (24 kW), and advanced Aerocapture based propulsion technology for the Titan capture. Further comparisons and study results were presented for the advanced chemical and advanced tank technologies.
Advanced Chemical Propulsion for Science Missions
NASA Technical Reports Server (NTRS)
Liou, Larry
2008-01-01
The advanced chemical propulsion technology area of NASA's In-Space Technology Project is investing in systems and components for increased performance and reduced cost of chemical propulsion technologies applicable to near-term science missions. Presently the primary investment in the advanced chemical propulsion technology area is in the AMBR high temperature storable bipropellant rocket engine. Scheduled to be available for flight development starting in year 2008, AMBR engine shows a 60 kg payload gain in an analysis for the Titan-Enceladus orbiter mission and a 33 percent manufacturing cost reduction over its baseline, state-of-the-art counterpart. Other technologies invested include the reliable lightweight tanks for propellant and the precision propellant management and mixture ratio control. Both technologies show significant mission benefit, can be applied to any liquid propulsion system, and upon completion of the efforts described in this paper, are at least in parts ready for flight infusion. Details of the technologies are discussed.
NASA Technical Reports Server (NTRS)
Averner, Maurice M.
1990-01-01
The NASA Controlled Ecological Life Support System (CELSS) program was initiated with the premise that NASA's goal would eventually include extended duration missions with sizable crews requiring capabilities beyond the ability of conventional life support technology. Currently, as mission duration and crew size increase, the mass and volume required for consumable life support supplies also increase linearly. Under these circumstances the logistics arrangements and associated costs for life support resupply will adversely affect the ability of NASA to conduct long duration missions. A solution to the problem is to develop technology for the recycling of life support supplies from wastes. The CELSS concept is based upon the integration of biological and physico-chemical processes to construct a system which will produce food, potable water, and a breathable atmosphere from metabolic and other wastes, in a stable and reliable manner. A central feature of a CELSS is the use of green plant photosynthesis to produce food, with the resulting production of oxygen and potable water, and the removal of carbon dioxide.
NASA Technical Reports Server (NTRS)
Giamei, A. F.; Salkeld, R. W.; Hayes, C. W.
1981-01-01
The objective of the High-Pressure Turbine Fabrication Program was to demonstrate the application and feasibility of Pratt & Whitney Aircraft-developed two-piece, single crystal casting and bonding technology on the turbine blade and vane configurations required for the high-pressure turbine in the Energy Efficient Engine. During the first phase of the program, casting feasibility was demonstrated. Several blade and vane halves were made for the bonding trials, plus solid blades and vanes were successfully cast for materials evaluation tests. Specimens exhibited the required microstructure and chemical composition. Bonding feasibility was demonstrated in the second phase of the effort. Bonding yields of 75 percent for the vane and 30 percent for the blade were achieved, and methods for improving these yield percentages were identified. A bond process was established for PWA 1480 single crystal material which incorporated a transient liquid phase interlayer. Bond properties were substantiated and sensitivities determined. Tooling die materials were identified, and an advanced differential thermal expansion tooling concept was incorporated into the bond process.
Industrial energy-efficiency improvement program
NASA Astrophysics Data System (ADS)
1980-12-01
The industrial energy efficiency improvement program to accelerate market penetration of new and emerging industrial technologies is described. Practices which will improve energy efficiency, encourage substitution of more plentiful domestic fuels, and enhance recovery of energy and materials from industrial waste streams are enumerated. Specific reports from the chemicals and allied products; primary metals; petroleum and coal products; stone, clay, and glass, paper and allied products; food and kindred products; fabricated metals; transportation equipment; machinery (except electrical); textile mill products; rubber and miscellaneous plastics; electrical and electronic equipment; lumber and wood; and tobacco products are discussed. A summary on progress in the utilization of recovered materials, and an analysis of industrial fuel mix is presented.
Present state of knowledge of the upper atmosphere: An assessment report
NASA Technical Reports Server (NTRS)
1984-01-01
A program of research, technology, and monitoring of the phenomena of the upper atmosphere, to provide for an understanding of and to maintain the chemical and physical integrity of the Earth's upper atmosphere was developed. NASA implemented a long-range upper atmospheric science program aimed at developing an organized, solid body of knowledge of upper atmospheric processes while providing, in the near term, assessments of potential effects of human activities on the atmosphere. The effects of chlorofluorocarbon (CFC) releases on stratospheric ozone were reported. Issues relating the current understanding of ozone predictions and trends and highlights recent and future anticipated developments that will improve our understanding of the system are summarized.
Searching for extraterrestrial intelligence - The ultimate exploration
NASA Technical Reports Server (NTRS)
Black, D.; Tarter, J.; Cuzzi, J. N.; Conners, M.; Clark, T. A.
1977-01-01
A survey highlighting the central issues of the SETI program (Search for Extraterrestrial Intelligence), including its rationale, scope, search problems, and goals is presented. Electromagnetic radiation is suggested as the most likely means via which knowledge of extraterrestrial intelligence will be obtained, and the variables governing these signals are discussed, including: signal frequency and polarization, state, possible coordinates, and signal duration. The modern history of SETI and NASA's involvement is briefly reviewed, and the search strategies used by the Jet Propulsion Laboratory and the Ames Research Center are discussed and compared. Some of the potential scientific and cultural impacts of the SETI program are mentioned, noting advancements in technological, biological, and chemical research.
DOE Chair of Excellence Professorship in Environmental Disciplines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoou-Yuh Chang
2013-01-31
The United States (US) nuclear weapons program during the Cold War left a legacy of radioactive, hazardous, chemical wastes and facilities that may seriously harm the environment and people even today. Widespread public concern about the environmental pollution has created an extraordinary demand for the treatment and disposal of wastes in a manner to protect the public health and safety. The pollution abatement and environmental protection require an understanding of technical, regulatory, economic, permitting, institutional, and public policy issues. Scientists and engineers have a major role in this national effort to clean our environment, especially in developing alternative solutions andmore » evaluation criteria and designing the necessary facilities to implement the solutions. The objective of the DOE Chair of Excellence project is to develop a high quality educational and research program in environmental engineering at North Carolina A&T State University (A&T). This project aims to increase the number of graduate and undergraduate students trained in environmental areas while developing a faculty concentrated in environmental education and research. Although A&T had a well developed environmental program prior to the Massie Chair grant, A&T's goal is to become a model of excellence in environmental engineering through the program's support. The program will provide a catalyst to enhance collaboration of faculty and students among various engineering departments to work together in a focus research area. The collaboration will be expanded to other programs at A&T. The past research focus areas include: hazardous and radioactive waste treatment and disposal fate and transport of hazardous chemicals in the environment innovative technologies for hazardous waste site remediation pollution prevention Starting from 2005, the new research focus was in the improvement of accuracy for radioactive contaminant transport models by ensemble based data assimilation. The specific objectives are to: 1). improve model accuracy for use in minimizing health and environmental risk, and 2). improve the decision making process in the selection and application of available technologies for long-term monitoring and safeguard operation at NNSA sites.« less
Identifying Metabolically Active Chemicals Using a Consensus ...
Traditional toxicity testing provides insight into the mechanisms underlying toxicological responses but requires a high investment in a large number of resources. The new paradigm of testing approaches involves rapid screening studies able to evaluate thousands of chemicals across hundreds of biological targets through use of in vitro assays. Endocrine disrupting chemicals (EDCs) are of concern due to their ability to alter neurodevelopment, behavior, and reproductive success of humans and other species. A recent integrated computational model examined results across 18 ER-related assays in the ToxCast in vitro screening program to eliminate chemicals that produce a false signal by possibly interfering with the technological attributes of an individual assay. However, in vitro assays can also lead to false negatives when the complex metabolic processes that render a chemical bioactive in a living system might be unable to be replicated in an in vitro environment. In the current study, the influence of metabolism was examined for over 1,400 chemicals considered inactive using the integrated computational model. Over 2,000 first-generation and over 4,000 second-generation metabolites were generated for the inactive chemicals using in silico techniques. Next, a consensus model comprised of individual structure activity relationship (SAR) models was used to predict ER-binding activity for each of the metabolites. Binding activity was predicted for 8-10% of the meta
Review of Rover fuel element protective coating development at Los Alamos
NASA Technical Reports Server (NTRS)
Wallace, Terry C.
1991-01-01
The Los Alamos Scientific Laboratory (LASL) entered the nuclear propulsion field in 1955 and began work on all aspects of a nuclear propulsion program with a target exhaust temperature of about 2750 K. A very extensive chemical vapor deposition coating technology for preventing catastrophic corrosion of reactor core components by the high temperature, high pressure hydrogen propellant gas was developed. Over the 17-year term of the program, more than 50,000 fuel elements were coated and evaluated. Advances in performance were achieved only through closely coupled interaction between the developing fuel element fabrication and protective coating technologies. The endurance of fuel elements in high temperature, high pressure hydrogen environment increased from several minutes at 2000 K exit gas temperature to 2 hours at 2440 K exit gas temperature in a reactor test and 10 hours at 2350 K exit gas temperature in a hot gas test. The purpose of this paper is to highlight the rationale for selection of coating materials used (NbC and ZrC), identify critical fuel element-coat interactions that had to be modified to increase system performance, and review the evolution of protective coating technology.
2007-09-01
a higher crystal density, a higher heat of formation, and a better oxidizer- to-fuel ratio than conventional nitramines used in propellants. The...resembles two RDX rings joined at several carbon atoms (Larson et al. 2001). CL-20 is a polycyclic nitramine with a higher crystal density, a higher...Heilmann et al. 1996). Research performed on RDX indicates that its degradation in alkaline media was initiated by a single denitration step, which
Conservation and Renewable Energy Program: Bibliography, 1988 edition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, K.H.
The 831 references covering the period 1980 through Feb. 1988, are arranged under the following: analysis and evaluation, building equipment, building thermal envelope systems and materials, community systems and cogeneration, residential conservation service, retrofit, advanced heat engine ceramics, alternative fuels, microemulsion fuels, industrial chemical heat pumps, materials for waste heat utilization, energy conversion and utilization materials, tribology, emergency energy conservation,inventions, electric energy systems, thermal storage, biofuels production, biotechnology, solar technology, geothermal, and continuous chromatography in multicomponent separations. An author index is included.
NASA Technical Reports Server (NTRS)
Huang, C. J.; Motard, R. L.
1978-01-01
The computing equipment in the engineering systems simulation laboratory of the Houston University Cullen College of Engineering is described and its advantages are summarized. The application of computer techniques in aerospace-related research psychology and in chemical, civil, electrical, industrial, and mechanical engineering is described in abstracts of 84 individual projects and in reprints of published reports. Research supports programs in acoustics, energy technology, systems engineering, and environment management as well as aerospace engineering.
Defense Threat Reduction Agency > Research
Sciences Protection Sciences Science to Defeat WMD Science to Secure WMD Chemical/Biological Technologies unconventional means to answer some of the most difficult questions about chemical, biological, radiological and partnering with us, explore our pages. Chemical/Biological Technologies Chemical and biological threats are
Dryden Flight Research Center Chemical Pharmacy Program
NASA Technical Reports Server (NTRS)
Davis, Bette
1997-01-01
The Dryden Flight Research Center (DFRC) Chemical Pharmacy "Crib" is a chemical sharing system which loans chemicals to users, rather than issuing them or having each individual organization or group purchasing the chemicals. This cooperative system of sharing chemicals eliminates multiple ownership of the same chemicals and also eliminates stockpiles. Chemical management duties are eliminated for each of the participating organizations. The chemical storage issues, hazards and responsibilities are eliminated. The system also ensures safe storage of chemicals and proper disposal practices. The purpose of this program is to reduce the total releases and transfers of toxic chemicals. The initial cost of the program to DFRC was $585,000. A savings of $69,000 per year has been estimated for the Center. This savings includes the reduced costs in purchasing, disposal and chemical inventory/storage responsibilities. DFRC has chemicals stored in 47 buildings and at 289 locations. When the program is fully implemented throughout the Center, there will be three chemical locations at this facility. The benefits of this program are the elimination of chemical management duties; elimination of the hazard associated with chemical storage; elimination of stockpiles; assurance of safe storage; assurance of proper disposal practices; assurance of a safer workplace; and more accurate emissions reports.
Advanced Ceramic Technology for Space Applications at NASA MSFC
NASA Technical Reports Server (NTRS)
Alim, Mohammad A.
2003-01-01
The ceramic processing technology using conventional methods is applied to the making of the state-of-the-art ceramics known as smart ceramics or intelligent ceramics or electroceramics. The sol-gel and wet chemical processing routes are excluded in this investigation considering economic aspect and proportionate benefit of the resulting product. The use of ceramic ingredients in making coatings or devices employing vacuum coating unit is also excluded in this investigation. Based on the present information it is anticipated that the conventional processing methods provide identical performing ceramics when compared to that processed by the chemical routes. This is possible when sintering temperature, heating and cooling ramps, peak temperature (sintering temperature), soak-time (hold-time), etc. are considered as variable parameters. In addition, optional calcination step prior to the sintering operation remains as a vital variable parameter. These variable parameters constitute a sintering profile to obtain a sintered product. Also it is possible to obtain identical products for more than one sintering profile attributing to the calcination step in conjunction with the variables of the sintering profile. Overall, the state-of-the-art ceramic technology is evaluated for potential thermal and electrical insulation coatings, microelectronics and integrated circuits, discrete and integrated devices, etc. applications in the space program.
Nuclear, biological, and chemical combined injuries and countermeasures on the battlefield.
Knudson, Gregory B; Elliott, Thomas B; Brook, Itzhak; Shoemaker, Michael O; Pastel, Ross H; Lowy, Robert J; King, Gregory L; Herzig, Thomas C; Landauer, Michael R; Wilson, Scott A; Peacock, Susan J; Bouhaouala, S Samy; Jackson, William E; Ledney, G David
2002-02-01
The Armed Forces Radiobiological Research Institute (AFRRI) has developed a research program to determine the major health risks from exposure to ionizing radiation in combination with biological and chemical warfare agents and to assess the extent to which exposure to ionizing radiation compromises the effectiveness of protective drugs, vaccines, and other biological and chemical warfare prophylactic and treatment strategies. AFRRI's Defense Technology Objective MD22 supports the development of treatment modalities and studies to assess the mortality rates for combined injuries from exposure to ionizing radiation and Bacillus anthracis, and research to provide data for casualty prediction models that assess the health consequences of combined exposures. In conjunction with the Defense Threat Reduction Agency, our research data are contributing to the development of casualty prediction models that estimate mortality and incapacitation in an environment of radiation exposure plus other weapons of mass destruction. Specifically, the AFFRI research program assesses the effects of ionizing radiation exposure in combination with B. anthracis, Venezuelan equine encephalomyelitis virus, Shigella sonnei, nerve agents, and mustard as well as their associated treatments and vaccines. In addition, the long-term psychological effects of radiation combined with nuclear, biological, and chemical (NBC) injuries are being evaluated. We are also assessing the effectiveness of gamma photons and high-speed neutrons and electrons for neutralizing biological and chemical warfare agents. New protocols based on our NBC bioeffects experiments will enable U.S. armed forces to accomplish military operations in NBC environments while optimizing both survival and military performance. Preserving combatants' health in an NBC environment will improve warfighting operations and mission capabilities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klipstein, David H.; Robinson, Sharon
The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).
The potential contribution of the natural products from Brazilian biodiversity to bioeconomy.
Valli, Marilia; Russo, Helena M; Bolzani, Vanderlan S
2018-01-01
The development of our society has been based on the use of biodiversity, especially for medicines and nutrition. Brazil is the nation with the largest biodiversity in the world accounting for more than 15% of all living species. The devastation of biodiversity in Brazil is critical and may not only cause the loss of species and genes that encode enzymes involved in the complex metabolism of organisms, but also the loss of a rich chemical diversity, which is a potential source for bioeconomy based on natural products and new synthetic derivatives. Bioeconomy focus on the use of bio-based products, instead of fossil-based ones and could address some of the important challenges faced by society. Considering the chemical and biological diversity of Brazil, this review highlights the Brazilian natural products that were successfully used to develop new products and the value of secondary metabolites from Brazilian biodiversity with potential application for new products and technologies. Additionally, we would like to address the importance of new technologies and scientific programs to support preservation policies, bioeconomy and strategies for the sustainable use of biodiversity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kohan, S.M.; Barkhordar, P.M.
1979-01-01
The thermochemical conversion of biomass feedstocks generally denotes technologies that use elevated temperatures to convert the fixed carbon content of biomass materials to produce other, more useful energy forms. Examples are combustion to produce heat, steam, electricity, or combinations of these; pyrolysis to produce gas (low- or intermediate-Btu), pyrolytic liquids and chemicals, and char; gasification to produce low or intermediate Btu gas (and, from IBG, additional products such as SNG, ammonia, methanol, or Fischer-Tropsch liquids); and liquefaction to produce heavy fuel oil or, with upgrading, lighter-boiling liquid products such as distillates, light fuel oils, or gasoline. This section discusses themore » selection of the feedstock used in the analysis of thermochemical conversion technologies. The following sections present detailed technical and economic evaluations of biomass conversion to electricity and steam by combustion, SNG by gasification and methanation, methanol by gasification and synthesis, oil by catalytic liquefaction, oil and char by pyrolysis, and ammonia by gasification and synthesis. The conversion options were reviewed with DOE for approval at the start of the project.« less
NASA Astrophysics Data System (ADS)
Narakidze, N. D.; Shaykhutdinov, D. V.; Shirokov, K. M.; Gorbatenko, N. I.; Yanvarev, S. G.
2017-02-01
The quality of lubricating oil in mechanical engineering, technology of creation of units, in particular in equipment of transmission gears, is a factor which considerably defines reliability and safety of the whole propulsion system or the greased constructive components. There are many soluble oil additives such as, for example, different additives for extreme compression conditions or additives against wear. Additives are used with mineral oils, products from mineral oils or synthetic oils for lubricant action or chemical properties improvement. The most exact way of definition of the chemical composition of a substance at the moment is the method of nuclear magnetic resonance (NMR). In the first section of this article, a brief and very simplified review of the NMR basic principles using classical physics is provided. The second section is focused on the description of the hardware solutions and the architecture of the NMR spectrometers. The software developments (LabVIEW programs) of the data-acquisition and signal processing techniques are presented in the third section. At the end, results of measurements are provided.
DEMONSTRATION BULLETIN: PEROX-PURE CHEMICAL OXIDATION TREATMENT
Technology Description: The perox-pure™ chemical oxidation treatment technology was developed by Peroxidation Systems, Inc. (PSI), to destroy dissolved organic contaminants in water. The technology uses ultraviolet (UV) radiation and hydrogen peroxide to oxidize organic co...
Computational Toxicology at the US EPA | Science Inventory ...
Computational toxicology is the application of mathematical and computer models to help assess chemical hazards and risks to human health and the environment. Supported by advances in informatics, high-throughput screening (HTS) technologies, and systems biology, EPA is developing robust and flexible computational tools that can be applied to the thousands of chemicals in commerce, and contaminant mixtures found in America’s air, water, and hazardous-waste sites. The ORD Computational Toxicology Research Program (CTRP) is composed of three main elements. The largest component is the National Center for Computational Toxicology (NCCT), which was established in 2005 to coordinate research on chemical screening and prioritization, informatics, and systems modeling. The second element consists of related activities in the National Health and Environmental Effects Research Laboratory (NHEERL) and the National Exposure Research Laboratory (NERL). The third and final component consists of academic centers working on various aspects of computational toxicology and funded by the EPA Science to Achieve Results (STAR) program. Key intramural projects of the CTRP include digitizing legacy toxicity testing information toxicity reference database (ToxRefDB), predicting toxicity (ToxCast™) and exposure (ExpoCast™), and creating virtual liver (v-Liver™) and virtual embryo (v-Embryo™) systems models. The models and underlying data are being made publicly available t
NASA Astrophysics Data System (ADS)
Scipio, Deana Aeolani
This dissertation examines learning within an out-of-school time (OST) Science, Technology, Engineering, and Mathematics (STEM) broadening participation program. The dissertation includes an introduction, three empirical chapters (written as individual articles), and a conclusion. The dissertation context is a chemical oceanography OST program for middle school students called Project COOL---Chemical Oceanography Outside the Lab. The program was a collaboration between middle school OST programming, a learning sciences research laboratory, and a chemical oceanography laboratory. Both labs were located at a research-based university in the Pacific Northwest of the United States. Participants include 34 youth, 12 undergraduates, and five professional scientists. The dissertation data corpus includes six years of ethnographic field notes across three field sites, 400 hours of video and audio recordings, 40 hours of semi-structured interviews, and more than 100 participant generated artifacts. Analysis methods include comparative case analysis, cognitive mapping, semiotic cluster analysis, video interaction analysis, and discourse analysis. The first empirical article focuses on synthesizing productive programmatic features from four years of design-based research.. The second article is a comparative case study of three STEM mentors from non-dominant communities in the 2011 COOL OST Program. The third article is a comparative case study of undergraduates learning to be mentors in the 2014 COOL OST Program. Findings introduce Deep Hanging as a theory of learning in practice. Deep Hanging entails authentic tasks in rich contexts, providing access, capitalizing on opportunity, and building interpersonal relationships. Taken together, these three chapters illuminate the process of designing a rich OST learning environment and the kinds of learning in practice that occurred for adult learners learning to be mentors through their participation in the COOL OST program. In the conclusion, I offer a set of design principles for mentor learning gleaned from empirical findings from the last two empirical chapters on how mentors can productively support the science learning of youth. The findings from this dissertation offer implications for designers of learning environments seeking to leverage experts for mentoring while engaging youth in contemporary science practices in order to broaden participation for youth and adult participants from non-dominant communities in STEM disciplines.
Separation science and technology. Semiannual progress report, October 1993--March 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandegrift, G.F.; Aase, S.B.; Buchholz, B.
1997-12-01
This document reports on the work done by the Separations Science and Technology Programs of the Chemical Technology Division, Argonne National Laboratory (ANL), in the period October 1993-March 1994. This effort is mainly concerned with developing the TRUEX process for removing and concentrating actinides from acidic waste streams contaminated with transuranic (TRU) elements. The objectives of TRUEX processing are to recover valuable TRU elements and to lower disposal costs for the nonTRU waste product of the process. Other projects are underway with the objective of developing (1) evaporation technology for concentrating radioactive waste and product streams such as those generatedmore » by the TRUEX process, (2) treatment schemes for liquid wastes stored are being generated at ANL, (3) a process based on sorbing modified TRUEX solvent on magnetic beads to be used for separation of contaminants from radioactive and hazardous waste streams, and (4) a process that uses low-enriched uranium targets for production of {sup 99}Mo for nuclear medicine uses.« less
NASA Astrophysics Data System (ADS)
McGinty, A. B.
1982-04-01
Contents: The Air Force Geophysics Laboratory; Aeronomy Division--Upper Atmosphere Composition, Middle Atmosphere Effects, Atmospheric UV Radiation, Satellite Accelerometer Density Measurement, Theoretical Density Studies, Chemical Transport Models, Turbulence and Forcing Functions, Atmospheric Ion Chemistry, Energy Budget Campaign, Kwajalein Reference Atmospheres, 1979, Satellite Studies of the Neutral Atmosphere, Satellite Studies of the Ionosphere, Aerospace Instrumentation Division--Sounding Rocket Program, Satellite Support, Rocket and Satellite Instrumentation; Space Physics Division--Solar Research, Solar Radio Research, Environmental Effects on Space Systems, Solar Proton Event Studies, Defense Meteorological Satellite Program, Ionospheric Effects Research, Spacecraft Charging Technology; Meteorology Division--Cloud Physics, Ground-Based Remote-Sensing Techniques, Mesoscale Observing and Forecasting, Design Climatology, Aircraft Icing Program, Atmospheric Dynamics; Terrestrial Sciences Division--Geodesy and Gravity, Geokinetics; Optical Physics Division--Atmospheric Transmission, Remote Sensing, INfrared Background; and Appendices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hess, W.P.; Bushaw, B.A.; McCarthy, M.I.
1996-10-01
The Department of Energy is undertaking the enormous task of remediating defense wastes and environmental insults which have occurred over 50 years of nuclear weapons production. It is abundantly clear that significant technology advances are needed to characterize, process, and store highly radioactive waste and to remediate contaminated zones. In addition to the processing and waste form issues, analytical technologies needed for the characterization of solids, and for monitoring storage tanks and contaminated sites do not exist or are currently expensive labor-intensive tasks. This report describes progress in developing sensitive, rapid, and widely applicable laser-based mass spectrometry techniques for analysismore » of mixed chemical wastes and contaminated soils.« less
In Brief: Nominations requested for U.S. science medals
NASA Astrophysics Data System (ADS)
Showstack, Randy
2011-02-01
Scientists can help recognize the contributions of colleagues by submitting nominations for the National Medal of Science and the National Medal of Technology and Innovation, which are the highest honors the president bestows in science, technology, and innovation. The National Medal of Science, the nation's highest honor for American scientists and engineers, is given to individuals deserving special recognition for outstanding contributions to knowledge, or the total impact of their work, in the chemical, physical, biological, mathematical, engineering, or behavioral sciences. Nominations and three letters of support must be submitted by 31 March. For more information, contact program manager Mayra Montrose at nms@nsf.gov or +1-703-292-8040, or visit http://www.nsf.gov/od/nms/medal.jsp.
Outer Planet Exploration with Advanced Radioisotope Electric Propulsion
NASA Technical Reports Server (NTRS)
Oleson, Steven; Gefert, Leon; Patterson, Michael; Schreiber, Jeffrey; Benson, Scott; McAdams, Jim; Ostdiek, Paul
2002-01-01
In response to a request by the NASA Deep Space Exploration Technology Program, NASA Glenn Research Center conducted a study to identify advanced technology options to perform a Pluto/Kuiper mission without depending on a 2004 Jupiter Gravity Assist, but still arriving before 2020. A concept using a direct trajectory with small, sub-kilowatt ion thrusters and Stirling radioisotope power systems was shown to allow the same or smaller launch vehicle class as the chemical 2004 baseline and allow a launch slip and still flyby in the 2014 to 2020 timeframe. With this promising result the study was expanded to use a radioisotope power source for small electrically propelled orbiter spacecraft for outer planet targets such as Uranus, Neptune, and Pluto.
Additive manufacturing of biologically-inspired materials.
Studart, André R
2016-01-21
Additive manufacturing (AM) technologies offer an attractive pathway towards the fabrication of functional materials featuring complex heterogeneous architectures inspired by biological systems. In this paper, recent research on the use of AM approaches to program the local chemical composition, structure and properties of biologically-inspired materials is reviewed. A variety of structural motifs found in biological composites have been successfully emulated in synthetic systems using inkjet-based, direct-writing, stereolithography and slip casting technologies. The replication in synthetic systems of design principles underlying such structural motifs has enabled the fabrication of lightweight cellular materials, strong and tough composites, soft robots and autonomously shaping structures with unprecedented properties and functionalities. Pushing the current limits of AM technologies in future research should bring us closer to the manufacturing capabilities of living organisms, opening the way for the digital fabrication of advanced materials with superior performance, lower environmental impact and new functionalities.
FMC: Expanding its chemical universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, A.
1992-12-23
With a portfolio ranging from defense systems to gold to food machinery - the source of its name - FMC Corp. (Chicago) ranks as a diversified conglomerate. The company's industrial chemicals operation consists of alkali chemicals, chiefly soda ash and derivatives: peroxygen chemicals, made up of hydrogen peroxide and other peroxygens; and phosphorus chemicals. FMC has about a 30% market share in each of these three. It also includes the Foret (Barcelona) division, part of FMC Europe. Moving lithium into FMC's specialties group reflects the R D-intensive nature of many lithium compounds, explains F. Wyman Morgan, director/group technology for themore » chemical product and specialty chemicals groups. FMC is also involved in collaborative research programs to develop lithium-based batteries and fuel cells. We have a decentralized business-oriented R D focus, Morgan says. The main thrusts in lithium are in developing organolithiums for drug synthesis. FMC also has a major industrial lithium business; it recently added a new butyl lithium unit in Texas and is looking to expand production through the development of lithium deposits in Latin America. But lithium is growing fastest in the downstream areas, says W. Reginald Hall, v.p. and group manager/specialty chemicals group. It has an unbelievable range of uses, he says, including catalytic applications in the pharmaceuticals industry. We are working on lithium compounds that allow you to drop a functional organic group into a molecule in a reliable way.« less
Jones, Peter D; Stelzle, Martin
2016-01-01
Artificial chemical stimulation could provide improvements over electrical neurostimulation. Physiological neurotransmission between neurons relies on the nanoscale release and propagation of specific chemical signals to spatially-localized receptors. Current knowledge of nanoscale fluid dynamics and nanofluidic technology allows us to envision artificial mechanisms to achieve fast, high resolution neurotransmitter release. Substantial technological development is required to reach this goal. Nanofluidic technology-rather than microfluidic-will be necessary; this should come as no surprise given the nanofluidic nature of neurotransmission. This perspective reviews the state of the art of high resolution electrical neuroprostheses and their anticipated limitations. Chemical release rates from nanopores are compared to rates achieved at synapses and with iontophoresis. A review of microfluidic technology justifies the analysis that microfluidic control of chemical release would be insufficient. Novel nanofluidic mechanisms are discussed, and we propose that hydrophobic gating may allow control of chemical release suitable for mimicking neurotransmission. The limited understanding of hydrophobic gating in artificial nanopores and the challenges of fabrication and large-scale integration of nanofluidic components are emphasized. Development of suitable nanofluidic technology will require dedicated, long-term efforts over many years.
Chemical Stockpile Disposal Program. Transportation of Chemical Munitions at Reduced Temperature
1987-08-01
ADA193346 Chemical Stockpile Disposal Program. Transportation of Chemical Munitions at Reduced Temperature. MITRE CORP MCLEAN VA AUG 1987...NO. ACCESSION NO. Aberdeen Proving Ground, fD 21010-5401 11. TITLE (Include Security Classification) Transportation of Chemical Munitions at Reducfd...Year, Month, Day) S. PAGE COUNT nal FROM TO Au USt 1987 65 16. SUPPLEMENTARY NOTATION Prepared for the Chemical Stockpile D’i sal Program Programmatic
A Survey of Doctoral Programs in Chemical Education in the United States
NASA Astrophysics Data System (ADS)
Mason, Diana
2001-02-01
Employment opportunities are expanding in chemical education and chemical education research. Consequently, more students are seeking to further their education in chemistry by obtaining tertiary degrees in chemical education. At the Fall 2000 ACS Meeting in Washington, DC, DivCHED sponsored a symposium highlighting several doctoral programs in chemical education in the U.S. Included in this summary is the following information regarding each program: name of university, faculty contact(s), corresponding email addresses and URLs, and a brief description of the program.
Initiating the 2002 Mars Science Laboratory (MSL) Technology Program
NASA Technical Reports Server (NTRS)
Caffrey, Robert T.; Udomkesmalee, Gabriel; Hayati, Samad A.; Henderson, Rebecca
2004-01-01
The Mars Science Laboratory (MSL) Project is an aggressive mission launching in 2009 to investigate the Martian environment and requires new capabilities that are currently are not available. The MSL Technology Program is developing a wide-range of technologies needed for this Mission and potentially other space missions. The MSL Technology Program reports to both the MSL Project and the Mars Technology Program (MTP). The dual reporting process creates a challenging management situation, but ensures the new technology meets both the specific MSL requirements and the broader Mars Program requirements. MTP is a NASA-wide technology development program managed by JPL and is divided into a Focused Program and a Base Program. The MSL Technology Program is under the focused program and is tightly coupled to MSL's mission milestones and deliverables. The technology budget is separate from the flight Project budget, but the technology's requirements and the development process are tightly coordinated with the Project. The MSL Technology Program combines the proven management techniques of flight projects with the commercial technology management strategies of industry and academia, to create a technology management program that meets the short-term requirements of MSL and the long-term requirements of MTP. This paper examines the initiation of 2002 MSL Technology program. Some of the areas discussed in this paper include technology definition, task selection, technology management, and technology assessment. This paper also provides an update of the 2003 MSL technology program and examines some of the drivers that changed the program from its initiation.
Evaluation and analysis of non-intrusive techniques for detecting illicit substances
DOE Office of Scientific and Technical Information (OSTI.GOV)
Micklich, B.J.; Roche, C.T.; Fink, C.L.
1995-12-31
Argonne National Laboratory (ANL) and the Houston Advanced Research Center (HARC) have been tasked by the Counterdrug Technology Assessment Center of the Office of National Drug Control Policy to conduct evaluations and analyses of technologies for the non-intrusive inspection of containers for illicit substances. These technologies span the range of nuclear, X-ray, and chemical techniques used in nondestructive sample analysis. ANL has performed assessments of nuclear and X-ray inspection concepts and undertaken site visits with developers to understand the capabilities and the range of applicability of candidate systems. ANL and HARC have provided support to law enforcement agencies (LEAs), includingmore » participation in numerous field studies. Both labs have provided staff to assist in the Narcotics Detection Technology Assessment (NDTA) program for evaluating drug detection systems. Also, the two labs are performing studies of drug contamination of currency. HARC has directed technical evaluations of automated ballistics imaging and identification systems under consideration by law enforcement agencies. ANL and HARC have sponsored workshops and a symposium, and are participating in a Non-Intrusive Inspection Study being led by Dynamics Technology, Incorporated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
PETC developed a comprehensive program of coal-related, acid-rain research and development with a major activity area centering on flue gas cleanup and control of SO{sub 2} emissions. Particular emphasis was placed on the retrofit measures for older coal-fired power plants which predate the 1971 New Source Performance Standards. Candidate emission control technologies fall into three categories, depending upon their point of application along the fuel path (i.e., pre, during, or post combustion). The post-combustion, in-duct injection of a calcium-based chemical reagent seemed promising. Preliminary studies showed that reagent injection between the existing air heater and electrostatic precipitator (ESP) could removemore » between 50-60% of the SO{sub 2} and produce an environmentally safe, dry, solid waste that is easily disposed. Although SO{sub 2} removal efficiencies were less, the estimated capital costs for duct injection technology were low making the economics of duct injection systems seem favorable when compared to conventional wet slurry scrubbers under certain circumstances. With the promulgation of the Clean Air Act Amendments of 1990 came more incentive for the development of low capital cost flue gas desulfurization (FGD) processes. A number of technical problems had to be resolved, however, before duct injection technology could be brought to a state of commercial readiness. The Duct Injection Technology Development Program was launched as a comprehensive, four-year research effort undertaken by PETC to develop this new technology. Completed in 1992, this Duct Injection Design Handbook and the three-dimensional predictive mathematical model constitute two primary end products from this development program. The aim of this design handbook and the accompanying math model is to provide utility personnel with sufficient information to evaluate duct injection technology against competing SO{sub 2} emissions reduction strategies for an existing plant.« less
NASA Astrophysics Data System (ADS)
Hammond, S. R.; Baker, E. T.; Embley, R. W.
2015-12-01
Inspiration for the Vents program arose from two serendipitous events: the discovery of seafloor spreading-center hydrothermal venting on the Galápagos Rift in 1977, and NOAA's deployment of the first US civilian research multibeam bathymetric sonar on the NOAA Ship Surveyor in 1979. Multibeam mapping in the NE Pacific revealed an unprecedented and revolutionary perspective of the Gorda and Juan de Fuca spreading centers, thus stimulating a successful exploration for volcanic and hydrothermal activity at numerous locations along both. After the 1986 discovery of the first "megaplume,", quickly recognized as the water column manifestation of a deep submarine volcanic eruption, the Vents program embarked on a multi-decadal effort to discover and understand local-, regional-, and, ultimately, global-scale physical, chemical, and biological ocean environmental impacts of submarine volcanism and hydrothermal venting. The Vents program made scores of scientific discoveries, many of which owed their success to the program's equally innovative and productive technological prowess. These discoveries were documented in hundreds of peer-reviewed papers by Vents researchers and their colleagues around the world. An emblematic success was the internationally recognized, first-ever detection, location, and study of an active deep volcanic eruption in 1993. To continue the Vents mission and further enhance its effectiveness in marine science and technology innovation, the program was reorganized in 2014 into two distinct, but closely linked, programs: Earth-Oceans Interactions and Acoustics. Both are currently engaged in expeditions and projects that maintain the Vents tradition of pioneering ocean exploration and research.
2004-07-28
The grand opening of NASA’s new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.
NASA's Propulsion Research Laboratory
NASA Technical Reports Server (NTRS)
2004-01-01
The grand opening of NASA's new, world-class laboratory for research into future space transportation technologies located at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama, took place in July 2004. The state-of-the-art Propulsion Research Laboratory (PRL) serves as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of innovative propulsion technologies for space exploration. The facility is the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, features a high degree of experimental capability. Its flexibility allows it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellant propulsion. An important area of emphasis is the development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and sets the stage of research that could revolutionize space transportation for a broad range of applications.
Artist's Concept of NASA's Propulsion Research Laboratory
NASA Technical Reports Server (NTRS)
2002-01-01
A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications.
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project
NASA Technical Reports Server (NTRS)
Baresi, Larry
1989-01-01
The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.
ECUT (Energy Conversion and Utilization Technologies) program: Biocatalysis project
NASA Astrophysics Data System (ADS)
Baresi, Larry
1989-03-01
The Annual Report presents the fiscal year (FY) 1988 research activities and accomplishments, for the Biocatalysis Project of the U.S. Department of Energy, Energy Conversion and Utilization Technologies (ECUT) Division. The ECUT Biocatalysis Project is managed by the Jet Propulsion Laboratory, California Institute of Technology. The Biocatalysis Project is a mission-oriented, applied research and exploratory development activity directed toward resolution of the major generic technical barriers that impede the development of biologically catalyzed commercial chemical production. The approach toward achieving project objectives involves an integrated participation of universities, industrial companies and government research laboratories. The Project's technical activities were organized into three work elements: (1) The Molecular Modeling and Applied Genetics work element includes research on modeling of biological systems, developing rigorous methods for the prediction of three-dimensional (tertiary) protein structure from the amino acid sequence (primary structure) for designing new biocatalysis, defining kinetic models of biocatalyst reactivity, and developing genetically engineered solutions to the generic technical barriers that preclude widespread application of biocatalysis. (2) The Bioprocess Engineering work element supports efforts in novel bioreactor concepts that are likely to lead to substantially higher levels of reactor productivity, product yields and lower separation energetics. Results of work within this work element will be used to establish the technical feasibility of critical bioprocess monitoring and control subsystems. (3) The Bioprocess Design and Assessment work element attempts to develop procedures (via user-friendly computer software) for assessing the energy-economics of biocatalyzed chemical production processes, and initiation of technology transfer for advanced bioprocesses.
Yantasee, Wassana; Lin, Yuehe; Hongsirikarn, Kitiya; Fryxell, Glen E.; Addleman, Raymond; Timchalk, Charles
2007-01-01
To support the development and implementation of biological monitoring programs, we need quantitative technologies for measuring xenobiotic exposure. Microanalytical based sensors that work with complex biomatrices such as blood, urine, or saliva are being developed and validated and will improve our ability to make definitive associations between chemical exposures and disease. Among toxic metals, lead continues to be one of the most problematic. Despite considerable efforts to identify and eliminate Pb exposure sources, this metal remains a significant health concern, particularly for young children. Ongoing research focuses on the development of portable metal analyzers that have many advantages over current available technologies, thus potentially representing the next generation of toxic metal analyzers. In this article, we highlight the development and validation of two classes of metal analyzers for the voltammetric detection of Pb, including: a) an analyzer based on flow injection analysis and anodic stripping voltammetry at a mercury-film electrode, and b) Hg-free metal analyzers employing adsorptive stripping voltammetry and novel nanostructure materials that include the self-assembled monolayers on mesoporous supports and carbon nanotubes. These sensors have been optimized to detect Pb in urine, blood, and saliva as accurately as the state-of-the-art inductively coupled plasma-mass spectrometry with high reproducibility, and sensitivity allows. These improved and portable analytical sensor platforms will facilitate our ability to conduct biological monitoring programs to understand the relationship between chemical exposure assessment and disease outcomes. PMID:18087583
Lewis John Lewis John Lewis Researcher IV-Chemical Engineering John.Lewis@nrel.gov | 303-275-3021 Education Ph.D. Chemical Engineering, California Institute of Technology, Pasadena, CA, 1996 M.S. Chemical Engineering, California Institute of Technology, Pasadena, CA, 1993 B.S. Chemical Engineering, Texas A&M
A series of seven technical presentations involving chemical oxidation will be given to faculty, graduate students, and environmental professionals at the Chinese Academy of Sciences in Beijing, China (April 21-22, 2010). Chemical oxidation technologies include in-situ chemical o...